1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 81 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 82 OpenCLRuntime(0), OpenMPRuntime(nullptr), CUDARuntime(0), DebugInfo(0), 83 ARCData(0), NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr), 84 CFConstantStringClassRef(0), 85 ConstantStringClassRef(0), NSConstantStringType(0), 86 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 87 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 88 LifetimeStartFn(0), LifetimeEndFn(0), 89 SanitizerBlacklist( 90 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 91 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 92 : LangOpts.Sanitize) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (SanOpts.Thread || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (llvm::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 } 150 151 CodeGenModule::~CodeGenModule() { 152 delete ObjCRuntime; 153 delete OpenCLRuntime; 154 delete OpenMPRuntime; 155 delete CUDARuntime; 156 delete TheTargetCodeGenInfo; 157 delete TBAA; 158 delete DebugInfo; 159 delete ARCData; 160 delete RRData; 161 } 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime = CreateGNUObjCRuntime(*this); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 ObjCRuntime = CreateMacObjCRuntime(*this); 177 return; 178 } 179 llvm_unreachable("bad runtime kind"); 180 } 181 182 void CodeGenModule::createOpenCLRuntime() { 183 OpenCLRuntime = new CGOpenCLRuntime(*this); 184 } 185 186 void CodeGenModule::createOpenMPRuntime() { 187 OpenMPRuntime = new CGOpenMPRuntime(*this); 188 } 189 190 void CodeGenModule::createCUDARuntime() { 191 CUDARuntime = CreateNVCUDARuntime(*this); 192 } 193 194 void CodeGenModule::applyReplacements() { 195 for (ReplacementsTy::iterator I = Replacements.begin(), 196 E = Replacements.end(); 197 I != E; ++I) { 198 StringRef MangledName = I->first(); 199 llvm::Constant *Replacement = I->second; 200 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 201 if (!Entry) 202 continue; 203 auto *OldF = cast<llvm::Function>(Entry); 204 auto *NewF = dyn_cast<llvm::Function>(Replacement); 205 if (!NewF) { 206 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 207 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 208 } else { 209 auto *CE = cast<llvm::ConstantExpr>(Replacement); 210 assert(CE->getOpcode() == llvm::Instruction::BitCast || 211 CE->getOpcode() == llvm::Instruction::GetElementPtr); 212 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 213 } 214 } 215 216 // Replace old with new, but keep the old order. 217 OldF->replaceAllUsesWith(Replacement); 218 if (NewF) { 219 NewF->removeFromParent(); 220 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 221 } 222 OldF->eraseFromParent(); 223 } 224 } 225 226 void CodeGenModule::checkAliases() { 227 // Check if the constructed aliases are well formed. It is really unfortunate 228 // that we have to do this in CodeGen, but we only construct mangled names 229 // and aliases during codegen. 230 bool Error = false; 231 DiagnosticsEngine &Diags = getDiags(); 232 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 233 E = Aliases.end(); I != E; ++I) { 234 const GlobalDecl &GD = *I; 235 const auto *D = cast<ValueDecl>(GD.getDecl()); 236 const AliasAttr *AA = D->getAttr<AliasAttr>(); 237 StringRef MangledName = getMangledName(GD); 238 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 239 auto *Alias = cast<llvm::GlobalAlias>(Entry); 240 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 241 if (!GV) { 242 Error = true; 243 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 244 } else if (GV->isDeclaration()) { 245 Error = true; 246 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 247 } 248 249 llvm::Constant *Aliasee = Alias->getAliasee(); 250 llvm::GlobalValue *AliaseeGV; 251 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 252 assert((CE->getOpcode() == llvm::Instruction::BitCast || 253 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 254 "Unsupported aliasee"); 255 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 256 } else { 257 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 258 } 259 260 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 261 StringRef AliasSection = SA->getName(); 262 if (AliasSection != AliaseeGV->getSection()) 263 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 264 << AliasSection; 265 } 266 267 // We have to handle alias to weak aliases in here. LLVM itself disallows 268 // this since the object semantics would not match the IL one. For 269 // compatibility with gcc we implement it by just pointing the alias 270 // to its aliasee's aliasee. We also warn, since the user is probably 271 // expecting the link to be weak. 272 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 273 if (GA->mayBeOverridden()) { 274 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 275 << GA->getAliasedGlobal()->getName() << GA->getName(); 276 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 277 GA->getAliasee(), Alias->getType()); 278 Alias->setAliasee(Aliasee); 279 } 280 } 281 } 282 if (!Error) 283 return; 284 285 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 286 E = Aliases.end(); I != E; ++I) { 287 const GlobalDecl &GD = *I; 288 StringRef MangledName = getMangledName(GD); 289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 290 auto *Alias = cast<llvm::GlobalAlias>(Entry); 291 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 292 Alias->eraseFromParent(); 293 } 294 } 295 296 void CodeGenModule::clear() { 297 DeferredDeclsToEmit.clear(); 298 } 299 300 void CodeGenModule::Release() { 301 EmitDeferred(); 302 applyReplacements(); 303 checkAliases(); 304 EmitCXXGlobalInitFunc(); 305 EmitCXXGlobalDtorFunc(); 306 EmitCXXThreadLocalInitFunc(); 307 if (ObjCRuntime) 308 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 309 AddGlobalCtor(ObjCInitFunction); 310 if (getCodeGenOpts().ProfileInstrGenerate) 311 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 312 AddGlobalCtor(PGOInit, 0); 313 if (PGOReader && PGOStats.isOutOfDate()) 314 getDiags().Report(diag::warn_profile_data_out_of_date) 315 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 316 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 317 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 318 EmitGlobalAnnotations(); 319 EmitStaticExternCAliases(); 320 emitLLVMUsed(); 321 322 if (CodeGenOpts.Autolink && 323 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 324 EmitModuleLinkOptions(); 325 } 326 if (CodeGenOpts.DwarfVersion) 327 // We actually want the latest version when there are conflicts. 328 // We can change from Warning to Latest if such mode is supported. 329 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 330 CodeGenOpts.DwarfVersion); 331 if (DebugInfo) 332 // We support a single version in the linked module: error out when 333 // modules do not have the same version. We are going to implement dropping 334 // debug info when the version number is not up-to-date. Once that is 335 // done, the bitcode linker is not going to see modules with different 336 // version numbers. 337 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 338 llvm::DEBUG_METADATA_VERSION); 339 340 SimplifyPersonality(); 341 342 if (getCodeGenOpts().EmitDeclMetadata) 343 EmitDeclMetadata(); 344 345 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 346 EmitCoverageFile(); 347 348 if (DebugInfo) 349 DebugInfo->finalize(); 350 351 EmitVersionIdentMetadata(); 352 } 353 354 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 355 // Make sure that this type is translated. 356 Types.UpdateCompletedType(TD); 357 } 358 359 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 360 if (!TBAA) 361 return 0; 362 return TBAA->getTBAAInfo(QTy); 363 } 364 365 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 366 if (!TBAA) 367 return 0; 368 return TBAA->getTBAAInfoForVTablePtr(); 369 } 370 371 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 372 if (!TBAA) 373 return 0; 374 return TBAA->getTBAAStructInfo(QTy); 375 } 376 377 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 378 if (!TBAA) 379 return 0; 380 return TBAA->getTBAAStructTypeInfo(QTy); 381 } 382 383 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 384 llvm::MDNode *AccessN, 385 uint64_t O) { 386 if (!TBAA) 387 return 0; 388 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 389 } 390 391 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 392 /// and struct-path aware TBAA, the tag has the same format: 393 /// base type, access type and offset. 394 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 395 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 396 llvm::MDNode *TBAAInfo, 397 bool ConvertTypeToTag) { 398 if (ConvertTypeToTag && TBAA) 399 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 400 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 401 else 402 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 403 } 404 405 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 406 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 407 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 408 } 409 410 /// ErrorUnsupported - Print out an error that codegen doesn't support the 411 /// specified stmt yet. 412 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 413 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 414 "cannot compile this %0 yet"); 415 std::string Msg = Type; 416 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 417 << Msg << S->getSourceRange(); 418 } 419 420 /// ErrorUnsupported - Print out an error that codegen doesn't support the 421 /// specified decl yet. 422 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 423 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 424 "cannot compile this %0 yet"); 425 std::string Msg = Type; 426 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 427 } 428 429 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 430 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 431 } 432 433 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 434 const NamedDecl *D) const { 435 // Internal definitions always have default visibility. 436 if (GV->hasLocalLinkage()) { 437 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 438 return; 439 } 440 441 // Set visibility for definitions. 442 LinkageInfo LV = D->getLinkageAndVisibility(); 443 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 444 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 445 } 446 447 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 448 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 449 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 450 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 451 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 452 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 453 } 454 455 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 456 CodeGenOptions::TLSModel M) { 457 switch (M) { 458 case CodeGenOptions::GeneralDynamicTLSModel: 459 return llvm::GlobalVariable::GeneralDynamicTLSModel; 460 case CodeGenOptions::LocalDynamicTLSModel: 461 return llvm::GlobalVariable::LocalDynamicTLSModel; 462 case CodeGenOptions::InitialExecTLSModel: 463 return llvm::GlobalVariable::InitialExecTLSModel; 464 case CodeGenOptions::LocalExecTLSModel: 465 return llvm::GlobalVariable::LocalExecTLSModel; 466 } 467 llvm_unreachable("Invalid TLS model!"); 468 } 469 470 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 471 const VarDecl &D) const { 472 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 473 474 llvm::GlobalVariable::ThreadLocalMode TLM; 475 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 476 477 // Override the TLS model if it is explicitly specified. 478 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 479 TLM = GetLLVMTLSModel(Attr->getModel()); 480 } 481 482 GV->setThreadLocalMode(TLM); 483 } 484 485 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 486 const auto *ND = cast<NamedDecl>(GD.getDecl()); 487 488 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 489 if (!Str.empty()) 490 return Str; 491 492 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 493 IdentifierInfo *II = ND->getIdentifier(); 494 assert(II && "Attempt to mangle unnamed decl."); 495 496 Str = II->getName(); 497 return Str; 498 } 499 500 SmallString<256> Buffer; 501 llvm::raw_svector_ostream Out(Buffer); 502 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 503 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 504 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 505 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 506 else 507 getCXXABI().getMangleContext().mangleName(ND, Out); 508 509 // Allocate space for the mangled name. 510 Out.flush(); 511 size_t Length = Buffer.size(); 512 char *Name = MangledNamesAllocator.Allocate<char>(Length); 513 std::copy(Buffer.begin(), Buffer.end(), Name); 514 515 Str = StringRef(Name, Length); 516 517 return Str; 518 } 519 520 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 521 const BlockDecl *BD) { 522 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 523 const Decl *D = GD.getDecl(); 524 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 525 if (D == 0) 526 MangleCtx.mangleGlobalBlock(BD, 527 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 528 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 529 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 530 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 531 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 532 else 533 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 534 } 535 536 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 537 return getModule().getNamedValue(Name); 538 } 539 540 /// AddGlobalCtor - Add a function to the list that will be called before 541 /// main() runs. 542 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 543 // FIXME: Type coercion of void()* types. 544 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 545 } 546 547 /// AddGlobalDtor - Add a function to the list that will be called 548 /// when the module is unloaded. 549 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 550 // FIXME: Type coercion of void()* types. 551 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 552 } 553 554 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 555 // Ctor function type is void()*. 556 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 557 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 558 559 // Get the type of a ctor entry, { i32, void ()* }. 560 llvm::StructType *CtorStructTy = 561 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 562 563 // Construct the constructor and destructor arrays. 564 SmallVector<llvm::Constant*, 8> Ctors; 565 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 566 llvm::Constant *S[] = { 567 llvm::ConstantInt::get(Int32Ty, I->second, false), 568 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 569 }; 570 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 571 } 572 573 if (!Ctors.empty()) { 574 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 575 new llvm::GlobalVariable(TheModule, AT, false, 576 llvm::GlobalValue::AppendingLinkage, 577 llvm::ConstantArray::get(AT, Ctors), 578 GlobalName); 579 } 580 } 581 582 llvm::GlobalValue::LinkageTypes 583 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 584 const auto *D = cast<FunctionDecl>(GD.getDecl()); 585 586 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 587 588 bool UseThunkForDtorVariant = 589 isa<CXXDestructorDecl>(D) && 590 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 591 GD.getDtorType()); 592 593 return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false, 594 UseThunkForDtorVariant); 595 } 596 597 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 598 llvm::Function *F) { 599 setNonAliasAttributes(D, F); 600 } 601 602 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 603 const CGFunctionInfo &Info, 604 llvm::Function *F) { 605 unsigned CallingConv; 606 AttributeListType AttributeList; 607 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 608 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 609 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 610 } 611 612 /// Determines whether the language options require us to model 613 /// unwind exceptions. We treat -fexceptions as mandating this 614 /// except under the fragile ObjC ABI with only ObjC exceptions 615 /// enabled. This means, for example, that C with -fexceptions 616 /// enables this. 617 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 618 // If exceptions are completely disabled, obviously this is false. 619 if (!LangOpts.Exceptions) return false; 620 621 // If C++ exceptions are enabled, this is true. 622 if (LangOpts.CXXExceptions) return true; 623 624 // If ObjC exceptions are enabled, this depends on the ABI. 625 if (LangOpts.ObjCExceptions) { 626 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 627 } 628 629 return true; 630 } 631 632 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 633 llvm::Function *F) { 634 llvm::AttrBuilder B; 635 636 if (CodeGenOpts.UnwindTables) 637 B.addAttribute(llvm::Attribute::UWTable); 638 639 if (!hasUnwindExceptions(LangOpts)) 640 B.addAttribute(llvm::Attribute::NoUnwind); 641 642 if (D->hasAttr<NakedAttr>()) { 643 // Naked implies noinline: we should not be inlining such functions. 644 B.addAttribute(llvm::Attribute::Naked); 645 B.addAttribute(llvm::Attribute::NoInline); 646 } else if (D->hasAttr<OptimizeNoneAttr>()) { 647 // OptimizeNone implies noinline; we should not be inlining such functions. 648 B.addAttribute(llvm::Attribute::OptimizeNone); 649 B.addAttribute(llvm::Attribute::NoInline); 650 } else if (D->hasAttr<NoDuplicateAttr>()) { 651 B.addAttribute(llvm::Attribute::NoDuplicate); 652 } else if (D->hasAttr<NoInlineAttr>()) { 653 B.addAttribute(llvm::Attribute::NoInline); 654 } else if (D->hasAttr<AlwaysInlineAttr>() && 655 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 656 llvm::Attribute::NoInline)) { 657 // (noinline wins over always_inline, and we can't specify both in IR) 658 B.addAttribute(llvm::Attribute::AlwaysInline); 659 } 660 661 if (D->hasAttr<ColdAttr>()) { 662 B.addAttribute(llvm::Attribute::OptimizeForSize); 663 B.addAttribute(llvm::Attribute::Cold); 664 } 665 666 if (D->hasAttr<MinSizeAttr>()) 667 B.addAttribute(llvm::Attribute::MinSize); 668 669 if (D->hasAttr<OptimizeNoneAttr>()) { 670 // OptimizeNone wins over OptimizeForSize and MinSize. 671 B.removeAttribute(llvm::Attribute::OptimizeForSize); 672 B.removeAttribute(llvm::Attribute::MinSize); 673 } 674 675 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 676 B.addAttribute(llvm::Attribute::StackProtect); 677 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 678 B.addAttribute(llvm::Attribute::StackProtectStrong); 679 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 680 B.addAttribute(llvm::Attribute::StackProtectReq); 681 682 // Add sanitizer attributes if function is not blacklisted. 683 if (!SanitizerBlacklist->isIn(*F)) { 684 // When AddressSanitizer is enabled, set SanitizeAddress attribute 685 // unless __attribute__((no_sanitize_address)) is used. 686 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 687 B.addAttribute(llvm::Attribute::SanitizeAddress); 688 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 689 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 690 B.addAttribute(llvm::Attribute::SanitizeThread); 691 } 692 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 693 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 694 B.addAttribute(llvm::Attribute::SanitizeMemory); 695 } 696 697 F->addAttributes(llvm::AttributeSet::FunctionIndex, 698 llvm::AttributeSet::get( 699 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 700 701 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 702 F->setUnnamedAddr(true); 703 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 704 if (MD->isVirtual()) 705 F->setUnnamedAddr(true); 706 707 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 708 if (alignment) 709 F->setAlignment(alignment); 710 711 // C++ ABI requires 2-byte alignment for member functions. 712 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 713 F->setAlignment(2); 714 } 715 716 void CodeGenModule::SetCommonAttributes(const Decl *D, 717 llvm::GlobalValue *GV) { 718 if (const auto *ND = dyn_cast<NamedDecl>(D)) 719 setGlobalVisibility(GV, ND); 720 else 721 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 722 723 if (D->hasAttr<UsedAttr>()) 724 addUsedGlobal(GV); 725 } 726 727 void CodeGenModule::setNonAliasAttributes(const Decl *D, 728 llvm::GlobalValue *GV) { 729 assert(!isa<llvm::GlobalAlias>(GV)); 730 SetCommonAttributes(D, GV); 731 732 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 733 GV->setSection(SA->getName()); 734 735 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 736 } 737 738 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 739 llvm::Function *F, 740 const CGFunctionInfo &FI) { 741 SetLLVMFunctionAttributes(D, FI, F); 742 SetLLVMFunctionAttributesForDefinition(D, F); 743 744 F->setLinkage(llvm::Function::InternalLinkage); 745 746 setNonAliasAttributes(D, F); 747 } 748 749 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 750 const NamedDecl *ND) { 751 // Set linkage and visibility in case we never see a definition. 752 LinkageInfo LV = ND->getLinkageAndVisibility(); 753 if (LV.getLinkage() != ExternalLinkage) { 754 // Don't set internal linkage on declarations. 755 } else { 756 if (ND->hasAttr<DLLImportAttr>()) { 757 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 758 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 759 } else if (ND->hasAttr<DLLExportAttr>()) { 760 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 761 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 762 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 763 // "extern_weak" is overloaded in LLVM; we probably should have 764 // separate linkage types for this. 765 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 766 } 767 768 // Set visibility on a declaration only if it's explicit. 769 if (LV.isVisibilityExplicit()) 770 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 771 } 772 } 773 774 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 775 llvm::Function *F, 776 bool IsIncompleteFunction) { 777 if (unsigned IID = F->getIntrinsicID()) { 778 // If this is an intrinsic function, set the function's attributes 779 // to the intrinsic's attributes. 780 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 781 (llvm::Intrinsic::ID)IID)); 782 return; 783 } 784 785 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 786 787 if (!IsIncompleteFunction) 788 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 789 790 // Add the Returned attribute for "this", except for iOS 5 and earlier 791 // where substantial code, including the libstdc++ dylib, was compiled with 792 // GCC and does not actually return "this". 793 if (getCXXABI().HasThisReturn(GD) && 794 !(getTarget().getTriple().isiOS() && 795 getTarget().getTriple().isOSVersionLT(6))) { 796 assert(!F->arg_empty() && 797 F->arg_begin()->getType() 798 ->canLosslesslyBitCastTo(F->getReturnType()) && 799 "unexpected this return"); 800 F->addAttribute(1, llvm::Attribute::Returned); 801 } 802 803 // Only a few attributes are set on declarations; these may later be 804 // overridden by a definition. 805 806 setLinkageAndVisibilityForGV(F, FD); 807 808 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 809 F->setSection(SA->getName()); 810 811 // A replaceable global allocation function does not act like a builtin by 812 // default, only if it is invoked by a new-expression or delete-expression. 813 if (FD->isReplaceableGlobalAllocationFunction()) 814 F->addAttribute(llvm::AttributeSet::FunctionIndex, 815 llvm::Attribute::NoBuiltin); 816 } 817 818 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 819 assert(!GV->isDeclaration() && 820 "Only globals with definition can force usage."); 821 LLVMUsed.push_back(GV); 822 } 823 824 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 825 assert(!GV->isDeclaration() && 826 "Only globals with definition can force usage."); 827 LLVMCompilerUsed.push_back(GV); 828 } 829 830 static void emitUsed(CodeGenModule &CGM, StringRef Name, 831 std::vector<llvm::WeakVH> &List) { 832 // Don't create llvm.used if there is no need. 833 if (List.empty()) 834 return; 835 836 // Convert List to what ConstantArray needs. 837 SmallVector<llvm::Constant*, 8> UsedArray; 838 UsedArray.resize(List.size()); 839 for (unsigned i = 0, e = List.size(); i != e; ++i) { 840 UsedArray[i] = 841 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 842 CGM.Int8PtrTy); 843 } 844 845 if (UsedArray.empty()) 846 return; 847 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 848 849 auto *GV = new llvm::GlobalVariable( 850 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 851 llvm::ConstantArray::get(ATy, UsedArray), Name); 852 853 GV->setSection("llvm.metadata"); 854 } 855 856 void CodeGenModule::emitLLVMUsed() { 857 emitUsed(*this, "llvm.used", LLVMUsed); 858 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 859 } 860 861 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 862 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 863 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 864 } 865 866 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 867 llvm::SmallString<32> Opt; 868 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 869 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 870 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 871 } 872 873 void CodeGenModule::AddDependentLib(StringRef Lib) { 874 llvm::SmallString<24> Opt; 875 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 876 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 877 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 878 } 879 880 /// \brief Add link options implied by the given module, including modules 881 /// it depends on, using a postorder walk. 882 static void addLinkOptionsPostorder(CodeGenModule &CGM, 883 Module *Mod, 884 SmallVectorImpl<llvm::Value *> &Metadata, 885 llvm::SmallPtrSet<Module *, 16> &Visited) { 886 // Import this module's parent. 887 if (Mod->Parent && Visited.insert(Mod->Parent)) { 888 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 889 } 890 891 // Import this module's dependencies. 892 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 893 if (Visited.insert(Mod->Imports[I-1])) 894 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 895 } 896 897 // Add linker options to link against the libraries/frameworks 898 // described by this module. 899 llvm::LLVMContext &Context = CGM.getLLVMContext(); 900 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 901 // Link against a framework. Frameworks are currently Darwin only, so we 902 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 903 if (Mod->LinkLibraries[I-1].IsFramework) { 904 llvm::Value *Args[2] = { 905 llvm::MDString::get(Context, "-framework"), 906 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 907 }; 908 909 Metadata.push_back(llvm::MDNode::get(Context, Args)); 910 continue; 911 } 912 913 // Link against a library. 914 llvm::SmallString<24> Opt; 915 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 916 Mod->LinkLibraries[I-1].Library, Opt); 917 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 918 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 919 } 920 } 921 922 void CodeGenModule::EmitModuleLinkOptions() { 923 // Collect the set of all of the modules we want to visit to emit link 924 // options, which is essentially the imported modules and all of their 925 // non-explicit child modules. 926 llvm::SetVector<clang::Module *> LinkModules; 927 llvm::SmallPtrSet<clang::Module *, 16> Visited; 928 SmallVector<clang::Module *, 16> Stack; 929 930 // Seed the stack with imported modules. 931 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 932 MEnd = ImportedModules.end(); 933 M != MEnd; ++M) { 934 if (Visited.insert(*M)) 935 Stack.push_back(*M); 936 } 937 938 // Find all of the modules to import, making a little effort to prune 939 // non-leaf modules. 940 while (!Stack.empty()) { 941 clang::Module *Mod = Stack.pop_back_val(); 942 943 bool AnyChildren = false; 944 945 // Visit the submodules of this module. 946 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 947 SubEnd = Mod->submodule_end(); 948 Sub != SubEnd; ++Sub) { 949 // Skip explicit children; they need to be explicitly imported to be 950 // linked against. 951 if ((*Sub)->IsExplicit) 952 continue; 953 954 if (Visited.insert(*Sub)) { 955 Stack.push_back(*Sub); 956 AnyChildren = true; 957 } 958 } 959 960 // We didn't find any children, so add this module to the list of 961 // modules to link against. 962 if (!AnyChildren) { 963 LinkModules.insert(Mod); 964 } 965 } 966 967 // Add link options for all of the imported modules in reverse topological 968 // order. We don't do anything to try to order import link flags with respect 969 // to linker options inserted by things like #pragma comment(). 970 SmallVector<llvm::Value *, 16> MetadataArgs; 971 Visited.clear(); 972 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 973 MEnd = LinkModules.end(); 974 M != MEnd; ++M) { 975 if (Visited.insert(*M)) 976 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 977 } 978 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 979 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 980 981 // Add the linker options metadata flag. 982 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 983 llvm::MDNode::get(getLLVMContext(), 984 LinkerOptionsMetadata)); 985 } 986 987 void CodeGenModule::EmitDeferred() { 988 // Emit code for any potentially referenced deferred decls. Since a 989 // previously unused static decl may become used during the generation of code 990 // for a static function, iterate until no changes are made. 991 992 while (true) { 993 if (!DeferredVTables.empty()) { 994 EmitDeferredVTables(); 995 996 // Emitting a v-table doesn't directly cause more v-tables to 997 // become deferred, although it can cause functions to be 998 // emitted that then need those v-tables. 999 assert(DeferredVTables.empty()); 1000 } 1001 1002 // Stop if we're out of both deferred v-tables and deferred declarations. 1003 if (DeferredDeclsToEmit.empty()) break; 1004 1005 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1006 GlobalDecl D = G.GD; 1007 llvm::GlobalValue *GV = G.GV; 1008 DeferredDeclsToEmit.pop_back(); 1009 1010 assert(GV == GetGlobalValue(getMangledName(D))); 1011 // Check to see if we've already emitted this. This is necessary 1012 // for a couple of reasons: first, decls can end up in the 1013 // deferred-decls queue multiple times, and second, decls can end 1014 // up with definitions in unusual ways (e.g. by an extern inline 1015 // function acquiring a strong function redefinition). Just 1016 // ignore these cases. 1017 if(!GV->isDeclaration()) 1018 continue; 1019 1020 // Otherwise, emit the definition and move on to the next one. 1021 EmitGlobalDefinition(D, GV); 1022 } 1023 } 1024 1025 void CodeGenModule::EmitGlobalAnnotations() { 1026 if (Annotations.empty()) 1027 return; 1028 1029 // Create a new global variable for the ConstantStruct in the Module. 1030 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1031 Annotations[0]->getType(), Annotations.size()), Annotations); 1032 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1033 llvm::GlobalValue::AppendingLinkage, 1034 Array, "llvm.global.annotations"); 1035 gv->setSection(AnnotationSection); 1036 } 1037 1038 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1039 llvm::Constant *&AStr = AnnotationStrings[Str]; 1040 if (AStr) 1041 return AStr; 1042 1043 // Not found yet, create a new global. 1044 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1045 auto *gv = 1046 new llvm::GlobalVariable(getModule(), s->getType(), true, 1047 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1048 gv->setSection(AnnotationSection); 1049 gv->setUnnamedAddr(true); 1050 AStr = gv; 1051 return gv; 1052 } 1053 1054 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1055 SourceManager &SM = getContext().getSourceManager(); 1056 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1057 if (PLoc.isValid()) 1058 return EmitAnnotationString(PLoc.getFilename()); 1059 return EmitAnnotationString(SM.getBufferName(Loc)); 1060 } 1061 1062 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1063 SourceManager &SM = getContext().getSourceManager(); 1064 PresumedLoc PLoc = SM.getPresumedLoc(L); 1065 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1066 SM.getExpansionLineNumber(L); 1067 return llvm::ConstantInt::get(Int32Ty, LineNo); 1068 } 1069 1070 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1071 const AnnotateAttr *AA, 1072 SourceLocation L) { 1073 // Get the globals for file name, annotation, and the line number. 1074 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1075 *UnitGV = EmitAnnotationUnit(L), 1076 *LineNoCst = EmitAnnotationLineNo(L); 1077 1078 // Create the ConstantStruct for the global annotation. 1079 llvm::Constant *Fields[4] = { 1080 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1081 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1082 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1083 LineNoCst 1084 }; 1085 return llvm::ConstantStruct::getAnon(Fields); 1086 } 1087 1088 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1089 llvm::GlobalValue *GV) { 1090 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1091 // Get the struct elements for these annotations. 1092 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1093 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1094 } 1095 1096 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1097 // Never defer when EmitAllDecls is specified. 1098 if (LangOpts.EmitAllDecls) 1099 return false; 1100 1101 return !getContext().DeclMustBeEmitted(Global); 1102 } 1103 1104 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1105 const CXXUuidofExpr* E) { 1106 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1107 // well-formed. 1108 StringRef Uuid = E->getUuidAsStringRef(Context); 1109 std::string Name = "_GUID_" + Uuid.lower(); 1110 std::replace(Name.begin(), Name.end(), '-', '_'); 1111 1112 // Look for an existing global. 1113 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1114 return GV; 1115 1116 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1117 assert(Init && "failed to initialize as constant"); 1118 1119 auto *GV = new llvm::GlobalVariable( 1120 getModule(), Init->getType(), 1121 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1122 return GV; 1123 } 1124 1125 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1126 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1127 assert(AA && "No alias?"); 1128 1129 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1130 1131 // See if there is already something with the target's name in the module. 1132 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1133 if (Entry) { 1134 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1135 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1136 } 1137 1138 llvm::Constant *Aliasee; 1139 if (isa<llvm::FunctionType>(DeclTy)) 1140 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1141 GlobalDecl(cast<FunctionDecl>(VD)), 1142 /*ForVTable=*/false); 1143 else 1144 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1145 llvm::PointerType::getUnqual(DeclTy), 0); 1146 1147 auto *F = cast<llvm::GlobalValue>(Aliasee); 1148 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1149 WeakRefReferences.insert(F); 1150 1151 return Aliasee; 1152 } 1153 1154 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1155 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1156 1157 // Weak references don't produce any output by themselves. 1158 if (Global->hasAttr<WeakRefAttr>()) 1159 return; 1160 1161 // If this is an alias definition (which otherwise looks like a declaration) 1162 // emit it now. 1163 if (Global->hasAttr<AliasAttr>()) 1164 return EmitAliasDefinition(GD); 1165 1166 // If this is CUDA, be selective about which declarations we emit. 1167 if (LangOpts.CUDA) { 1168 if (CodeGenOpts.CUDAIsDevice) { 1169 if (!Global->hasAttr<CUDADeviceAttr>() && 1170 !Global->hasAttr<CUDAGlobalAttr>() && 1171 !Global->hasAttr<CUDAConstantAttr>() && 1172 !Global->hasAttr<CUDASharedAttr>()) 1173 return; 1174 } else { 1175 if (!Global->hasAttr<CUDAHostAttr>() && ( 1176 Global->hasAttr<CUDADeviceAttr>() || 1177 Global->hasAttr<CUDAConstantAttr>() || 1178 Global->hasAttr<CUDASharedAttr>())) 1179 return; 1180 } 1181 } 1182 1183 // Ignore declarations, they will be emitted on their first use. 1184 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1185 // Forward declarations are emitted lazily on first use. 1186 if (!FD->doesThisDeclarationHaveABody()) { 1187 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1188 return; 1189 1190 StringRef MangledName = getMangledName(GD); 1191 1192 // Compute the function info and LLVM type. 1193 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1194 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1195 1196 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1197 /*DontDefer=*/false); 1198 return; 1199 } 1200 } else { 1201 const auto *VD = cast<VarDecl>(Global); 1202 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1203 1204 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1205 return; 1206 } 1207 1208 // Defer code generation when possible if this is a static definition, inline 1209 // function etc. These we only want to emit if they are used. 1210 if (!MayDeferGeneration(Global)) { 1211 // Emit the definition if it can't be deferred. 1212 EmitGlobalDefinition(GD); 1213 return; 1214 } 1215 1216 // If we're deferring emission of a C++ variable with an 1217 // initializer, remember the order in which it appeared in the file. 1218 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1219 cast<VarDecl>(Global)->hasInit()) { 1220 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1221 CXXGlobalInits.push_back(0); 1222 } 1223 1224 // If the value has already been used, add it directly to the 1225 // DeferredDeclsToEmit list. 1226 StringRef MangledName = getMangledName(GD); 1227 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1228 addDeferredDeclToEmit(GV, GD); 1229 else { 1230 // Otherwise, remember that we saw a deferred decl with this name. The 1231 // first use of the mangled name will cause it to move into 1232 // DeferredDeclsToEmit. 1233 DeferredDecls[MangledName] = GD; 1234 } 1235 } 1236 1237 namespace { 1238 struct FunctionIsDirectlyRecursive : 1239 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1240 const StringRef Name; 1241 const Builtin::Context &BI; 1242 bool Result; 1243 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1244 Name(N), BI(C), Result(false) { 1245 } 1246 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1247 1248 bool TraverseCallExpr(CallExpr *E) { 1249 const FunctionDecl *FD = E->getDirectCallee(); 1250 if (!FD) 1251 return true; 1252 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1253 if (Attr && Name == Attr->getLabel()) { 1254 Result = true; 1255 return false; 1256 } 1257 unsigned BuiltinID = FD->getBuiltinID(); 1258 if (!BuiltinID) 1259 return true; 1260 StringRef BuiltinName = BI.GetName(BuiltinID); 1261 if (BuiltinName.startswith("__builtin_") && 1262 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1263 Result = true; 1264 return false; 1265 } 1266 return true; 1267 } 1268 }; 1269 } 1270 1271 // isTriviallyRecursive - Check if this function calls another 1272 // decl that, because of the asm attribute or the other decl being a builtin, 1273 // ends up pointing to itself. 1274 bool 1275 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1276 StringRef Name; 1277 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1278 // asm labels are a special kind of mangling we have to support. 1279 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1280 if (!Attr) 1281 return false; 1282 Name = Attr->getLabel(); 1283 } else { 1284 Name = FD->getName(); 1285 } 1286 1287 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1288 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1289 return Walker.Result; 1290 } 1291 1292 bool 1293 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1294 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1295 return true; 1296 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1297 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1298 return false; 1299 // PR9614. Avoid cases where the source code is lying to us. An available 1300 // externally function should have an equivalent function somewhere else, 1301 // but a function that calls itself is clearly not equivalent to the real 1302 // implementation. 1303 // This happens in glibc's btowc and in some configure checks. 1304 return !isTriviallyRecursive(F); 1305 } 1306 1307 /// If the type for the method's class was generated by 1308 /// CGDebugInfo::createContextChain(), the cache contains only a 1309 /// limited DIType without any declarations. Since EmitFunctionStart() 1310 /// needs to find the canonical declaration for each method, we need 1311 /// to construct the complete type prior to emitting the method. 1312 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1313 if (!D->isInstance()) 1314 return; 1315 1316 if (CGDebugInfo *DI = getModuleDebugInfo()) 1317 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1318 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1319 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1320 } 1321 } 1322 1323 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1324 const auto *D = cast<ValueDecl>(GD.getDecl()); 1325 1326 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1327 Context.getSourceManager(), 1328 "Generating code for declaration"); 1329 1330 if (isa<FunctionDecl>(D)) { 1331 // At -O0, don't generate IR for functions with available_externally 1332 // linkage. 1333 if (!shouldEmitFunction(GD)) 1334 return; 1335 1336 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1337 CompleteDIClassType(Method); 1338 // Make sure to emit the definition(s) before we emit the thunks. 1339 // This is necessary for the generation of certain thunks. 1340 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1341 EmitCXXConstructor(CD, GD.getCtorType()); 1342 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1343 EmitCXXDestructor(DD, GD.getDtorType()); 1344 else 1345 EmitGlobalFunctionDefinition(GD, GV); 1346 1347 if (Method->isVirtual()) 1348 getVTables().EmitThunks(GD); 1349 1350 return; 1351 } 1352 1353 return EmitGlobalFunctionDefinition(GD, GV); 1354 } 1355 1356 if (const auto *VD = dyn_cast<VarDecl>(D)) 1357 return EmitGlobalVarDefinition(VD); 1358 1359 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1360 } 1361 1362 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1363 /// module, create and return an llvm Function with the specified type. If there 1364 /// is something in the module with the specified name, return it potentially 1365 /// bitcasted to the right type. 1366 /// 1367 /// If D is non-null, it specifies a decl that correspond to this. This is used 1368 /// to set the attributes on the function when it is first created. 1369 llvm::Constant * 1370 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1371 llvm::Type *Ty, 1372 GlobalDecl GD, bool ForVTable, 1373 bool DontDefer, 1374 llvm::AttributeSet ExtraAttrs) { 1375 const Decl *D = GD.getDecl(); 1376 1377 // Lookup the entry, lazily creating it if necessary. 1378 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1379 if (Entry) { 1380 if (WeakRefReferences.erase(Entry)) { 1381 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1382 if (FD && !FD->hasAttr<WeakAttr>()) 1383 Entry->setLinkage(llvm::Function::ExternalLinkage); 1384 } 1385 1386 if (Entry->getType()->getElementType() == Ty) 1387 return Entry; 1388 1389 // Make sure the result is of the correct type. 1390 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1391 } 1392 1393 // This function doesn't have a complete type (for example, the return 1394 // type is an incomplete struct). Use a fake type instead, and make 1395 // sure not to try to set attributes. 1396 bool IsIncompleteFunction = false; 1397 1398 llvm::FunctionType *FTy; 1399 if (isa<llvm::FunctionType>(Ty)) { 1400 FTy = cast<llvm::FunctionType>(Ty); 1401 } else { 1402 FTy = llvm::FunctionType::get(VoidTy, false); 1403 IsIncompleteFunction = true; 1404 } 1405 1406 llvm::Function *F = llvm::Function::Create(FTy, 1407 llvm::Function::ExternalLinkage, 1408 MangledName, &getModule()); 1409 assert(F->getName() == MangledName && "name was uniqued!"); 1410 if (D) 1411 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1412 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1413 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1414 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1415 llvm::AttributeSet::get(VMContext, 1416 llvm::AttributeSet::FunctionIndex, 1417 B)); 1418 } 1419 1420 if (!DontDefer) { 1421 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1422 // each other bottoming out with the base dtor. Therefore we emit non-base 1423 // dtors on usage, even if there is no dtor definition in the TU. 1424 if (D && isa<CXXDestructorDecl>(D) && 1425 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1426 GD.getDtorType())) 1427 addDeferredDeclToEmit(F, GD); 1428 1429 // This is the first use or definition of a mangled name. If there is a 1430 // deferred decl with this name, remember that we need to emit it at the end 1431 // of the file. 1432 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1433 if (DDI != DeferredDecls.end()) { 1434 // Move the potentially referenced deferred decl to the 1435 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1436 // don't need it anymore). 1437 addDeferredDeclToEmit(F, DDI->second); 1438 DeferredDecls.erase(DDI); 1439 1440 // Otherwise, if this is a sized deallocation function, emit a weak 1441 // definition 1442 // for it at the end of the translation unit. 1443 } else if (D && cast<FunctionDecl>(D) 1444 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1445 addDeferredDeclToEmit(F, GD); 1446 1447 // Otherwise, there are cases we have to worry about where we're 1448 // using a declaration for which we must emit a definition but where 1449 // we might not find a top-level definition: 1450 // - member functions defined inline in their classes 1451 // - friend functions defined inline in some class 1452 // - special member functions with implicit definitions 1453 // If we ever change our AST traversal to walk into class methods, 1454 // this will be unnecessary. 1455 // 1456 // We also don't emit a definition for a function if it's going to be an 1457 // entry 1458 // in a vtable, unless it's already marked as used. 1459 } else if (getLangOpts().CPlusPlus && D) { 1460 // Look for a declaration that's lexically in a record. 1461 const auto *FD = cast<FunctionDecl>(D); 1462 FD = FD->getMostRecentDecl(); 1463 do { 1464 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1465 if (FD->isImplicit() && !ForVTable) { 1466 assert(FD->isUsed() && 1467 "Sema didn't mark implicit function as used!"); 1468 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1469 break; 1470 } else if (FD->doesThisDeclarationHaveABody()) { 1471 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1472 break; 1473 } 1474 } 1475 FD = FD->getPreviousDecl(); 1476 } while (FD); 1477 } 1478 } 1479 1480 getTargetCodeGenInfo().emitTargetMD(D, F, *this); 1481 1482 // Make sure the result is of the requested type. 1483 if (!IsIncompleteFunction) { 1484 assert(F->getType()->getElementType() == Ty); 1485 return F; 1486 } 1487 1488 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1489 return llvm::ConstantExpr::getBitCast(F, PTy); 1490 } 1491 1492 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1493 /// non-null, then this function will use the specified type if it has to 1494 /// create it (this occurs when we see a definition of the function). 1495 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1496 llvm::Type *Ty, 1497 bool ForVTable, 1498 bool DontDefer) { 1499 // If there was no specific requested type, just convert it now. 1500 if (!Ty) 1501 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1502 1503 StringRef MangledName = getMangledName(GD); 1504 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1505 } 1506 1507 /// CreateRuntimeFunction - Create a new runtime function with the specified 1508 /// type and name. 1509 llvm::Constant * 1510 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1511 StringRef Name, 1512 llvm::AttributeSet ExtraAttrs) { 1513 llvm::Constant *C = 1514 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1515 /*DontDefer=*/false, ExtraAttrs); 1516 if (auto *F = dyn_cast<llvm::Function>(C)) 1517 if (F->empty()) 1518 F->setCallingConv(getRuntimeCC()); 1519 return C; 1520 } 1521 1522 /// isTypeConstant - Determine whether an object of this type can be emitted 1523 /// as a constant. 1524 /// 1525 /// If ExcludeCtor is true, the duration when the object's constructor runs 1526 /// will not be considered. The caller will need to verify that the object is 1527 /// not written to during its construction. 1528 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1529 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1530 return false; 1531 1532 if (Context.getLangOpts().CPlusPlus) { 1533 if (const CXXRecordDecl *Record 1534 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1535 return ExcludeCtor && !Record->hasMutableFields() && 1536 Record->hasTrivialDestructor(); 1537 } 1538 1539 return true; 1540 } 1541 1542 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1543 if (!VD->isStaticDataMember()) 1544 return false; 1545 const VarDecl *InitDecl; 1546 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1547 if (!InitExpr) 1548 return false; 1549 if (InitDecl->isThisDeclarationADefinition()) 1550 return false; 1551 return true; 1552 } 1553 1554 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1555 /// create and return an llvm GlobalVariable with the specified type. If there 1556 /// is something in the module with the specified name, return it potentially 1557 /// bitcasted to the right type. 1558 /// 1559 /// If D is non-null, it specifies a decl that correspond to this. This is used 1560 /// to set the attributes on the global when it is first created. 1561 llvm::Constant * 1562 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1563 llvm::PointerType *Ty, 1564 const VarDecl *D, 1565 bool UnnamedAddr) { 1566 // Lookup the entry, lazily creating it if necessary. 1567 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1568 if (Entry) { 1569 if (WeakRefReferences.erase(Entry)) { 1570 if (D && !D->hasAttr<WeakAttr>()) 1571 Entry->setLinkage(llvm::Function::ExternalLinkage); 1572 } 1573 1574 if (UnnamedAddr) 1575 Entry->setUnnamedAddr(true); 1576 1577 if (Entry->getType() == Ty) 1578 return Entry; 1579 1580 // Make sure the result is of the correct type. 1581 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1582 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1583 1584 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1585 } 1586 1587 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1588 auto *GV = new llvm::GlobalVariable( 1589 getModule(), Ty->getElementType(), false, 1590 llvm::GlobalValue::ExternalLinkage, 0, MangledName, 0, 1591 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1592 1593 // This is the first use or definition of a mangled name. If there is a 1594 // deferred decl with this name, remember that we need to emit it at the end 1595 // of the file. 1596 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1597 if (DDI != DeferredDecls.end()) { 1598 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1599 // list, and remove it from DeferredDecls (since we don't need it anymore). 1600 addDeferredDeclToEmit(GV, DDI->second); 1601 DeferredDecls.erase(DDI); 1602 } 1603 1604 // Handle things which are present even on external declarations. 1605 if (D) { 1606 // FIXME: This code is overly simple and should be merged with other global 1607 // handling. 1608 GV->setConstant(isTypeConstant(D->getType(), false)); 1609 1610 setLinkageAndVisibilityForGV(GV, D); 1611 1612 if (D->getTLSKind()) { 1613 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1614 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1615 setTLSMode(GV, *D); 1616 } 1617 1618 // If required by the ABI, treat declarations of static data members with 1619 // inline initializers as definitions. 1620 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1621 isVarDeclInlineInitializedStaticDataMember(D)) 1622 EmitGlobalVarDefinition(D); 1623 1624 // Handle XCore specific ABI requirements. 1625 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1626 D->getLanguageLinkage() == CLanguageLinkage && 1627 D->getType().isConstant(Context) && 1628 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1629 GV->setSection(".cp.rodata"); 1630 } 1631 1632 if (AddrSpace != Ty->getAddressSpace()) 1633 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1634 1635 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 1636 1637 return GV; 1638 } 1639 1640 1641 llvm::GlobalVariable * 1642 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1643 llvm::Type *Ty, 1644 llvm::GlobalValue::LinkageTypes Linkage) { 1645 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1646 llvm::GlobalVariable *OldGV = 0; 1647 1648 1649 if (GV) { 1650 // Check if the variable has the right type. 1651 if (GV->getType()->getElementType() == Ty) 1652 return GV; 1653 1654 // Because C++ name mangling, the only way we can end up with an already 1655 // existing global with the same name is if it has been declared extern "C". 1656 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1657 OldGV = GV; 1658 } 1659 1660 // Create a new variable. 1661 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1662 Linkage, 0, Name); 1663 1664 if (OldGV) { 1665 // Replace occurrences of the old variable if needed. 1666 GV->takeName(OldGV); 1667 1668 if (!OldGV->use_empty()) { 1669 llvm::Constant *NewPtrForOldDecl = 1670 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1671 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1672 } 1673 1674 OldGV->eraseFromParent(); 1675 } 1676 1677 return GV; 1678 } 1679 1680 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1681 /// given global variable. If Ty is non-null and if the global doesn't exist, 1682 /// then it will be created with the specified type instead of whatever the 1683 /// normal requested type would be. 1684 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1685 llvm::Type *Ty) { 1686 assert(D->hasGlobalStorage() && "Not a global variable"); 1687 QualType ASTTy = D->getType(); 1688 if (Ty == 0) 1689 Ty = getTypes().ConvertTypeForMem(ASTTy); 1690 1691 llvm::PointerType *PTy = 1692 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1693 1694 StringRef MangledName = getMangledName(D); 1695 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1696 } 1697 1698 /// CreateRuntimeVariable - Create a new runtime global variable with the 1699 /// specified type and name. 1700 llvm::Constant * 1701 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1702 StringRef Name) { 1703 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1704 true); 1705 } 1706 1707 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1708 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1709 1710 if (MayDeferGeneration(D)) { 1711 // If we have not seen a reference to this variable yet, place it 1712 // into the deferred declarations table to be emitted if needed 1713 // later. 1714 StringRef MangledName = getMangledName(D); 1715 if (!GetGlobalValue(MangledName)) { 1716 DeferredDecls[MangledName] = D; 1717 return; 1718 } 1719 } 1720 1721 // The tentative definition is the only definition. 1722 EmitGlobalVarDefinition(D); 1723 } 1724 1725 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1726 return Context.toCharUnitsFromBits( 1727 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1728 } 1729 1730 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1731 unsigned AddrSpace) { 1732 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1733 if (D->hasAttr<CUDAConstantAttr>()) 1734 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1735 else if (D->hasAttr<CUDASharedAttr>()) 1736 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1737 else 1738 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1739 } 1740 1741 return AddrSpace; 1742 } 1743 1744 template<typename SomeDecl> 1745 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1746 llvm::GlobalValue *GV) { 1747 if (!getLangOpts().CPlusPlus) 1748 return; 1749 1750 // Must have 'used' attribute, or else inline assembly can't rely on 1751 // the name existing. 1752 if (!D->template hasAttr<UsedAttr>()) 1753 return; 1754 1755 // Must have internal linkage and an ordinary name. 1756 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1757 return; 1758 1759 // Must be in an extern "C" context. Entities declared directly within 1760 // a record are not extern "C" even if the record is in such a context. 1761 const SomeDecl *First = D->getFirstDecl(); 1762 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1763 return; 1764 1765 // OK, this is an internal linkage entity inside an extern "C" linkage 1766 // specification. Make a note of that so we can give it the "expected" 1767 // mangled name if nothing else is using that name. 1768 std::pair<StaticExternCMap::iterator, bool> R = 1769 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1770 1771 // If we have multiple internal linkage entities with the same name 1772 // in extern "C" regions, none of them gets that name. 1773 if (!R.second) 1774 R.first->second = 0; 1775 } 1776 1777 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1778 llvm::Constant *Init = 0; 1779 QualType ASTTy = D->getType(); 1780 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1781 bool NeedsGlobalCtor = false; 1782 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1783 1784 const VarDecl *InitDecl; 1785 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1786 1787 if (!InitExpr) { 1788 // This is a tentative definition; tentative definitions are 1789 // implicitly initialized with { 0 }. 1790 // 1791 // Note that tentative definitions are only emitted at the end of 1792 // a translation unit, so they should never have incomplete 1793 // type. In addition, EmitTentativeDefinition makes sure that we 1794 // never attempt to emit a tentative definition if a real one 1795 // exists. A use may still exists, however, so we still may need 1796 // to do a RAUW. 1797 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1798 Init = EmitNullConstant(D->getType()); 1799 } else { 1800 initializedGlobalDecl = GlobalDecl(D); 1801 Init = EmitConstantInit(*InitDecl); 1802 1803 if (!Init) { 1804 QualType T = InitExpr->getType(); 1805 if (D->getType()->isReferenceType()) 1806 T = D->getType(); 1807 1808 if (getLangOpts().CPlusPlus) { 1809 Init = EmitNullConstant(T); 1810 NeedsGlobalCtor = true; 1811 } else { 1812 ErrorUnsupported(D, "static initializer"); 1813 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1814 } 1815 } else { 1816 // We don't need an initializer, so remove the entry for the delayed 1817 // initializer position (just in case this entry was delayed) if we 1818 // also don't need to register a destructor. 1819 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1820 DelayedCXXInitPosition.erase(D); 1821 } 1822 } 1823 1824 llvm::Type* InitType = Init->getType(); 1825 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1826 1827 // Strip off a bitcast if we got one back. 1828 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1829 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1830 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1831 // All zero index gep. 1832 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1833 Entry = CE->getOperand(0); 1834 } 1835 1836 // Entry is now either a Function or GlobalVariable. 1837 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1838 1839 // We have a definition after a declaration with the wrong type. 1840 // We must make a new GlobalVariable* and update everything that used OldGV 1841 // (a declaration or tentative definition) with the new GlobalVariable* 1842 // (which will be a definition). 1843 // 1844 // This happens if there is a prototype for a global (e.g. 1845 // "extern int x[];") and then a definition of a different type (e.g. 1846 // "int x[10];"). This also happens when an initializer has a different type 1847 // from the type of the global (this happens with unions). 1848 if (GV == 0 || 1849 GV->getType()->getElementType() != InitType || 1850 GV->getType()->getAddressSpace() != 1851 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1852 1853 // Move the old entry aside so that we'll create a new one. 1854 Entry->setName(StringRef()); 1855 1856 // Make a new global with the correct type, this is now guaranteed to work. 1857 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1858 1859 // Replace all uses of the old global with the new global 1860 llvm::Constant *NewPtrForOldDecl = 1861 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1862 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1863 1864 // Erase the old global, since it is no longer used. 1865 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1866 } 1867 1868 MaybeHandleStaticInExternC(D, GV); 1869 1870 if (D->hasAttr<AnnotateAttr>()) 1871 AddGlobalAnnotations(D, GV); 1872 1873 GV->setInitializer(Init); 1874 1875 // If it is safe to mark the global 'constant', do so now. 1876 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1877 isTypeConstant(D->getType(), true)); 1878 1879 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1880 1881 // Set the llvm linkage type as appropriate. 1882 llvm::GlobalValue::LinkageTypes Linkage = 1883 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1884 GV->setLinkage(Linkage); 1885 if (D->hasAttr<DLLImportAttr>()) 1886 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1887 else if (D->hasAttr<DLLExportAttr>()) 1888 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1889 1890 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1891 // common vars aren't constant even if declared const. 1892 GV->setConstant(false); 1893 1894 setNonAliasAttributes(D, GV); 1895 1896 // Emit the initializer function if necessary. 1897 if (NeedsGlobalCtor || NeedsGlobalDtor) 1898 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1899 1900 // If we are compiling with ASan, add metadata indicating dynamically 1901 // initialized globals. 1902 if (SanOpts.Address && NeedsGlobalCtor) { 1903 llvm::Module &M = getModule(); 1904 1905 llvm::NamedMDNode *DynamicInitializers = 1906 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1907 llvm::Value *GlobalToAdd[] = { GV }; 1908 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1909 DynamicInitializers->addOperand(ThisGlobal); 1910 } 1911 1912 // Emit global variable debug information. 1913 if (CGDebugInfo *DI = getModuleDebugInfo()) 1914 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1915 DI->EmitGlobalVariable(GV, D); 1916 } 1917 1918 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1919 // Don't give variables common linkage if -fno-common was specified unless it 1920 // was overridden by a NoCommon attribute. 1921 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1922 return true; 1923 1924 // C11 6.9.2/2: 1925 // A declaration of an identifier for an object that has file scope without 1926 // an initializer, and without a storage-class specifier or with the 1927 // storage-class specifier static, constitutes a tentative definition. 1928 if (D->getInit() || D->hasExternalStorage()) 1929 return true; 1930 1931 // A variable cannot be both common and exist in a section. 1932 if (D->hasAttr<SectionAttr>()) 1933 return true; 1934 1935 // Thread local vars aren't considered common linkage. 1936 if (D->getTLSKind()) 1937 return true; 1938 1939 // Tentative definitions marked with WeakImportAttr are true definitions. 1940 if (D->hasAttr<WeakImportAttr>()) 1941 return true; 1942 1943 return false; 1944 } 1945 1946 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator( 1947 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable, 1948 bool UseThunkForDtorVariant) { 1949 if (Linkage == GVA_Internal) 1950 return llvm::Function::InternalLinkage; 1951 1952 if (D->hasAttr<WeakAttr>()) { 1953 if (IsConstantVariable) 1954 return llvm::GlobalVariable::WeakODRLinkage; 1955 else 1956 return llvm::GlobalVariable::WeakAnyLinkage; 1957 } 1958 1959 // We are guaranteed to have a strong definition somewhere else, 1960 // so we can use available_externally linkage. 1961 if (Linkage == GVA_AvailableExternally) 1962 return llvm::Function::AvailableExternallyLinkage; 1963 1964 // LinkOnceODRLinkage is insufficient if the symbol is required to exist in 1965 // the symbol table. Promote the linkage to WeakODRLinkage to preserve the 1966 // semantics of LinkOnceODRLinkage while providing visibility in the symbol 1967 // table. 1968 llvm::GlobalValue::LinkageTypes OnceLinkage = 1969 llvm::GlobalValue::LinkOnceODRLinkage; 1970 if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>()) 1971 OnceLinkage = llvm::GlobalVariable::WeakODRLinkage; 1972 1973 // Note that Apple's kernel linker doesn't support symbol 1974 // coalescing, so we need to avoid linkonce and weak linkages there. 1975 // Normally, this means we just map to internal, but for explicit 1976 // instantiations we'll map to external. 1977 1978 // In C++, the compiler has to emit a definition in every translation unit 1979 // that references the function. We should use linkonce_odr because 1980 // a) if all references in this translation unit are optimized away, we 1981 // don't need to codegen it. b) if the function persists, it needs to be 1982 // merged with other definitions. c) C++ has the ODR, so we know the 1983 // definition is dependable. 1984 if (Linkage == GVA_DiscardableODR) 1985 return !Context.getLangOpts().AppleKext ? OnceLinkage 1986 : llvm::Function::InternalLinkage; 1987 1988 // An explicit instantiation of a template has weak linkage, since 1989 // explicit instantiations can occur in multiple translation units 1990 // and must all be equivalent. However, we are not allowed to 1991 // throw away these explicit instantiations. 1992 if (Linkage == GVA_StrongODR) 1993 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 1994 : llvm::Function::ExternalLinkage; 1995 1996 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 1997 // emitted on an as-needed basis. 1998 if (UseThunkForDtorVariant) 1999 return OnceLinkage; 2000 2001 // If required by the ABI, give definitions of static data members with inline 2002 // initializers at least linkonce_odr linkage. 2003 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 2004 isa<VarDecl>(D) && 2005 isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D))) 2006 return OnceLinkage; 2007 2008 // C++ doesn't have tentative definitions and thus cannot have common 2009 // linkage. 2010 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2011 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2012 return llvm::GlobalVariable::CommonLinkage; 2013 2014 // selectany symbols are externally visible, so use weak instead of 2015 // linkonce. MSVC optimizes away references to const selectany globals, so 2016 // all definitions should be the same and ODR linkage should be used. 2017 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2018 if (D->hasAttr<SelectAnyAttr>()) 2019 return llvm::GlobalVariable::WeakODRLinkage; 2020 2021 // Otherwise, we have strong external linkage. 2022 assert(Linkage == GVA_StrongExternal); 2023 return llvm::GlobalVariable::ExternalLinkage; 2024 } 2025 2026 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2027 const VarDecl *VD, bool IsConstant) { 2028 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2029 return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant, 2030 /*UseThunkForDtorVariant=*/false); 2031 } 2032 2033 /// Replace the uses of a function that was declared with a non-proto type. 2034 /// We want to silently drop extra arguments from call sites 2035 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2036 llvm::Function *newFn) { 2037 // Fast path. 2038 if (old->use_empty()) return; 2039 2040 llvm::Type *newRetTy = newFn->getReturnType(); 2041 SmallVector<llvm::Value*, 4> newArgs; 2042 2043 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2044 ui != ue; ) { 2045 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2046 llvm::User *user = use->getUser(); 2047 2048 // Recognize and replace uses of bitcasts. Most calls to 2049 // unprototyped functions will use bitcasts. 2050 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2051 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2052 replaceUsesOfNonProtoConstant(bitcast, newFn); 2053 continue; 2054 } 2055 2056 // Recognize calls to the function. 2057 llvm::CallSite callSite(user); 2058 if (!callSite) continue; 2059 if (!callSite.isCallee(&*use)) continue; 2060 2061 // If the return types don't match exactly, then we can't 2062 // transform this call unless it's dead. 2063 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2064 continue; 2065 2066 // Get the call site's attribute list. 2067 SmallVector<llvm::AttributeSet, 8> newAttrs; 2068 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2069 2070 // Collect any return attributes from the call. 2071 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2072 newAttrs.push_back( 2073 llvm::AttributeSet::get(newFn->getContext(), 2074 oldAttrs.getRetAttributes())); 2075 2076 // If the function was passed too few arguments, don't transform. 2077 unsigned newNumArgs = newFn->arg_size(); 2078 if (callSite.arg_size() < newNumArgs) continue; 2079 2080 // If extra arguments were passed, we silently drop them. 2081 // If any of the types mismatch, we don't transform. 2082 unsigned argNo = 0; 2083 bool dontTransform = false; 2084 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2085 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2086 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2087 dontTransform = true; 2088 break; 2089 } 2090 2091 // Add any parameter attributes. 2092 if (oldAttrs.hasAttributes(argNo + 1)) 2093 newAttrs. 2094 push_back(llvm:: 2095 AttributeSet::get(newFn->getContext(), 2096 oldAttrs.getParamAttributes(argNo + 1))); 2097 } 2098 if (dontTransform) 2099 continue; 2100 2101 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2102 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2103 oldAttrs.getFnAttributes())); 2104 2105 // Okay, we can transform this. Create the new call instruction and copy 2106 // over the required information. 2107 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2108 2109 llvm::CallSite newCall; 2110 if (callSite.isCall()) { 2111 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2112 callSite.getInstruction()); 2113 } else { 2114 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2115 newCall = llvm::InvokeInst::Create(newFn, 2116 oldInvoke->getNormalDest(), 2117 oldInvoke->getUnwindDest(), 2118 newArgs, "", 2119 callSite.getInstruction()); 2120 } 2121 newArgs.clear(); // for the next iteration 2122 2123 if (!newCall->getType()->isVoidTy()) 2124 newCall->takeName(callSite.getInstruction()); 2125 newCall.setAttributes( 2126 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2127 newCall.setCallingConv(callSite.getCallingConv()); 2128 2129 // Finally, remove the old call, replacing any uses with the new one. 2130 if (!callSite->use_empty()) 2131 callSite->replaceAllUsesWith(newCall.getInstruction()); 2132 2133 // Copy debug location attached to CI. 2134 if (!callSite->getDebugLoc().isUnknown()) 2135 newCall->setDebugLoc(callSite->getDebugLoc()); 2136 callSite->eraseFromParent(); 2137 } 2138 } 2139 2140 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2141 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2142 /// existing call uses of the old function in the module, this adjusts them to 2143 /// call the new function directly. 2144 /// 2145 /// This is not just a cleanup: the always_inline pass requires direct calls to 2146 /// functions to be able to inline them. If there is a bitcast in the way, it 2147 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2148 /// run at -O0. 2149 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2150 llvm::Function *NewFn) { 2151 // If we're redefining a global as a function, don't transform it. 2152 if (!isa<llvm::Function>(Old)) return; 2153 2154 replaceUsesOfNonProtoConstant(Old, NewFn); 2155 } 2156 2157 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2158 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2159 // If we have a definition, this might be a deferred decl. If the 2160 // instantiation is explicit, make sure we emit it at the end. 2161 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2162 GetAddrOfGlobalVar(VD); 2163 2164 EmitTopLevelDecl(VD); 2165 } 2166 2167 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2168 llvm::GlobalValue *GV) { 2169 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2170 2171 // Compute the function info and LLVM type. 2172 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2173 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2174 2175 // Get or create the prototype for the function. 2176 if (!GV) { 2177 llvm::Constant *C = 2178 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2179 2180 // Strip off a bitcast if we got one back. 2181 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2182 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2183 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2184 } else { 2185 GV = cast<llvm::GlobalValue>(C); 2186 } 2187 } 2188 2189 if (!GV->isDeclaration()) { 2190 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2191 return; 2192 } 2193 2194 if (GV->getType()->getElementType() != Ty) { 2195 // If the types mismatch then we have to rewrite the definition. 2196 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2197 2198 // F is the Function* for the one with the wrong type, we must make a new 2199 // Function* and update everything that used F (a declaration) with the new 2200 // Function* (which will be a definition). 2201 // 2202 // This happens if there is a prototype for a function 2203 // (e.g. "int f()") and then a definition of a different type 2204 // (e.g. "int f(int x)"). Move the old function aside so that it 2205 // doesn't interfere with GetAddrOfFunction. 2206 GV->setName(StringRef()); 2207 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2208 2209 // This might be an implementation of a function without a 2210 // prototype, in which case, try to do special replacement of 2211 // calls which match the new prototype. The really key thing here 2212 // is that we also potentially drop arguments from the call site 2213 // so as to make a direct call, which makes the inliner happier 2214 // and suppresses a number of optimizer warnings (!) about 2215 // dropping arguments. 2216 if (!GV->use_empty()) { 2217 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2218 GV->removeDeadConstantUsers(); 2219 } 2220 2221 // Replace uses of F with the Function we will endow with a body. 2222 if (!GV->use_empty()) { 2223 llvm::Constant *NewPtrForOldDecl = 2224 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2225 GV->replaceAllUsesWith(NewPtrForOldDecl); 2226 } 2227 2228 // Ok, delete the old function now, which is dead. 2229 GV->eraseFromParent(); 2230 2231 GV = NewFn; 2232 } 2233 2234 // We need to set linkage and visibility on the function before 2235 // generating code for it because various parts of IR generation 2236 // want to propagate this information down (e.g. to local static 2237 // declarations). 2238 auto *Fn = cast<llvm::Function>(GV); 2239 setFunctionLinkage(GD, Fn); 2240 2241 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2242 setGlobalVisibility(Fn, D); 2243 2244 MaybeHandleStaticInExternC(D, Fn); 2245 2246 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2247 2248 setFunctionDefinitionAttributes(D, Fn); 2249 SetLLVMFunctionAttributesForDefinition(D, Fn); 2250 2251 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2252 AddGlobalCtor(Fn, CA->getPriority()); 2253 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2254 AddGlobalDtor(Fn, DA->getPriority()); 2255 if (D->hasAttr<AnnotateAttr>()) 2256 AddGlobalAnnotations(D, Fn); 2257 } 2258 2259 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2260 const auto *D = cast<ValueDecl>(GD.getDecl()); 2261 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2262 assert(AA && "Not an alias?"); 2263 2264 StringRef MangledName = getMangledName(GD); 2265 2266 // If there is a definition in the module, then it wins over the alias. 2267 // This is dubious, but allow it to be safe. Just ignore the alias. 2268 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2269 if (Entry && !Entry->isDeclaration()) 2270 return; 2271 2272 Aliases.push_back(GD); 2273 2274 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2275 2276 // Create a reference to the named value. This ensures that it is emitted 2277 // if a deferred decl. 2278 llvm::Constant *Aliasee; 2279 if (isa<llvm::FunctionType>(DeclTy)) 2280 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2281 /*ForVTable=*/false); 2282 else 2283 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2284 llvm::PointerType::getUnqual(DeclTy), 0); 2285 2286 // Create the new alias itself, but don't set a name yet. 2287 auto *GA = 2288 new llvm::GlobalAlias(Aliasee->getType(), llvm::Function::ExternalLinkage, 2289 "", Aliasee, &getModule()); 2290 2291 if (Entry) { 2292 assert(Entry->isDeclaration()); 2293 2294 // If there is a declaration in the module, then we had an extern followed 2295 // by the alias, as in: 2296 // extern int test6(); 2297 // ... 2298 // int test6() __attribute__((alias("test7"))); 2299 // 2300 // Remove it and replace uses of it with the alias. 2301 GA->takeName(Entry); 2302 2303 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2304 Entry->getType())); 2305 Entry->eraseFromParent(); 2306 } else { 2307 GA->setName(MangledName); 2308 } 2309 2310 // Set attributes which are particular to an alias; this is a 2311 // specialization of the attributes which may be set on a global 2312 // variable/function. 2313 if (D->hasAttr<DLLExportAttr>()) { 2314 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2315 // The dllexport attribute is ignored for undefined symbols. 2316 if (FD->hasBody()) 2317 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2318 } else { 2319 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2320 } 2321 } else if (D->hasAttr<WeakAttr>() || 2322 D->hasAttr<WeakRefAttr>() || 2323 D->isWeakImported()) { 2324 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2325 } 2326 2327 SetCommonAttributes(D, GA); 2328 } 2329 2330 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2331 ArrayRef<llvm::Type*> Tys) { 2332 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2333 Tys); 2334 } 2335 2336 static llvm::StringMapEntry<llvm::Constant*> & 2337 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2338 const StringLiteral *Literal, 2339 bool TargetIsLSB, 2340 bool &IsUTF16, 2341 unsigned &StringLength) { 2342 StringRef String = Literal->getString(); 2343 unsigned NumBytes = String.size(); 2344 2345 // Check for simple case. 2346 if (!Literal->containsNonAsciiOrNull()) { 2347 StringLength = NumBytes; 2348 return Map.GetOrCreateValue(String); 2349 } 2350 2351 // Otherwise, convert the UTF8 literals into a string of shorts. 2352 IsUTF16 = true; 2353 2354 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2355 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2356 UTF16 *ToPtr = &ToBuf[0]; 2357 2358 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2359 &ToPtr, ToPtr + NumBytes, 2360 strictConversion); 2361 2362 // ConvertUTF8toUTF16 returns the length in ToPtr. 2363 StringLength = ToPtr - &ToBuf[0]; 2364 2365 // Add an explicit null. 2366 *ToPtr = 0; 2367 return Map. 2368 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2369 (StringLength + 1) * 2)); 2370 } 2371 2372 static llvm::StringMapEntry<llvm::Constant*> & 2373 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2374 const StringLiteral *Literal, 2375 unsigned &StringLength) { 2376 StringRef String = Literal->getString(); 2377 StringLength = String.size(); 2378 return Map.GetOrCreateValue(String); 2379 } 2380 2381 llvm::Constant * 2382 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2383 unsigned StringLength = 0; 2384 bool isUTF16 = false; 2385 llvm::StringMapEntry<llvm::Constant*> &Entry = 2386 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2387 getDataLayout().isLittleEndian(), 2388 isUTF16, StringLength); 2389 2390 if (llvm::Constant *C = Entry.getValue()) 2391 return C; 2392 2393 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2394 llvm::Constant *Zeros[] = { Zero, Zero }; 2395 llvm::Value *V; 2396 2397 // If we don't already have it, get __CFConstantStringClassReference. 2398 if (!CFConstantStringClassRef) { 2399 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2400 Ty = llvm::ArrayType::get(Ty, 0); 2401 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2402 "__CFConstantStringClassReference"); 2403 // Decay array -> ptr 2404 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2405 CFConstantStringClassRef = V; 2406 } 2407 else 2408 V = CFConstantStringClassRef; 2409 2410 QualType CFTy = getContext().getCFConstantStringType(); 2411 2412 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2413 2414 llvm::Constant *Fields[4]; 2415 2416 // Class pointer. 2417 Fields[0] = cast<llvm::ConstantExpr>(V); 2418 2419 // Flags. 2420 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2421 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2422 llvm::ConstantInt::get(Ty, 0x07C8); 2423 2424 // String pointer. 2425 llvm::Constant *C = 0; 2426 if (isUTF16) { 2427 ArrayRef<uint16_t> Arr = 2428 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2429 const_cast<char *>(Entry.getKey().data())), 2430 Entry.getKey().size() / 2); 2431 C = llvm::ConstantDataArray::get(VMContext, Arr); 2432 } else { 2433 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2434 } 2435 2436 // Note: -fwritable-strings doesn't make the backing store strings of 2437 // CFStrings writable. (See <rdar://problem/10657500>) 2438 auto *GV = 2439 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2440 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2441 GV->setUnnamedAddr(true); 2442 // Don't enforce the target's minimum global alignment, since the only use 2443 // of the string is via this class initializer. 2444 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2445 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2446 // that changes the section it ends in, which surprises ld64. 2447 if (isUTF16) { 2448 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2449 GV->setAlignment(Align.getQuantity()); 2450 GV->setSection("__TEXT,__ustring"); 2451 } else { 2452 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2453 GV->setAlignment(Align.getQuantity()); 2454 GV->setSection("__TEXT,__cstring,cstring_literals"); 2455 } 2456 2457 // String. 2458 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2459 2460 if (isUTF16) 2461 // Cast the UTF16 string to the correct type. 2462 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2463 2464 // String length. 2465 Ty = getTypes().ConvertType(getContext().LongTy); 2466 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2467 2468 // The struct. 2469 C = llvm::ConstantStruct::get(STy, Fields); 2470 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2471 llvm::GlobalVariable::PrivateLinkage, C, 2472 "_unnamed_cfstring_"); 2473 GV->setSection("__DATA,__cfstring"); 2474 Entry.setValue(GV); 2475 2476 return GV; 2477 } 2478 2479 llvm::Constant * 2480 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2481 unsigned StringLength = 0; 2482 llvm::StringMapEntry<llvm::Constant*> &Entry = 2483 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2484 2485 if (llvm::Constant *C = Entry.getValue()) 2486 return C; 2487 2488 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2489 llvm::Constant *Zeros[] = { Zero, Zero }; 2490 llvm::Value *V; 2491 // If we don't already have it, get _NSConstantStringClassReference. 2492 if (!ConstantStringClassRef) { 2493 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2494 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2495 llvm::Constant *GV; 2496 if (LangOpts.ObjCRuntime.isNonFragile()) { 2497 std::string str = 2498 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2499 : "OBJC_CLASS_$_" + StringClass; 2500 GV = getObjCRuntime().GetClassGlobal(str); 2501 // Make sure the result is of the correct type. 2502 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2503 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2504 ConstantStringClassRef = V; 2505 } else { 2506 std::string str = 2507 StringClass.empty() ? "_NSConstantStringClassReference" 2508 : "_" + StringClass + "ClassReference"; 2509 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2510 GV = CreateRuntimeVariable(PTy, str); 2511 // Decay array -> ptr 2512 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2513 ConstantStringClassRef = V; 2514 } 2515 } 2516 else 2517 V = ConstantStringClassRef; 2518 2519 if (!NSConstantStringType) { 2520 // Construct the type for a constant NSString. 2521 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2522 D->startDefinition(); 2523 2524 QualType FieldTypes[3]; 2525 2526 // const int *isa; 2527 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2528 // const char *str; 2529 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2530 // unsigned int length; 2531 FieldTypes[2] = Context.UnsignedIntTy; 2532 2533 // Create fields 2534 for (unsigned i = 0; i < 3; ++i) { 2535 FieldDecl *Field = FieldDecl::Create(Context, D, 2536 SourceLocation(), 2537 SourceLocation(), 0, 2538 FieldTypes[i], /*TInfo=*/0, 2539 /*BitWidth=*/0, 2540 /*Mutable=*/false, 2541 ICIS_NoInit); 2542 Field->setAccess(AS_public); 2543 D->addDecl(Field); 2544 } 2545 2546 D->completeDefinition(); 2547 QualType NSTy = Context.getTagDeclType(D); 2548 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2549 } 2550 2551 llvm::Constant *Fields[3]; 2552 2553 // Class pointer. 2554 Fields[0] = cast<llvm::ConstantExpr>(V); 2555 2556 // String pointer. 2557 llvm::Constant *C = 2558 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2559 2560 llvm::GlobalValue::LinkageTypes Linkage; 2561 bool isConstant; 2562 Linkage = llvm::GlobalValue::PrivateLinkage; 2563 isConstant = !LangOpts.WritableStrings; 2564 2565 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2566 Linkage, C, ".str"); 2567 GV->setUnnamedAddr(true); 2568 // Don't enforce the target's minimum global alignment, since the only use 2569 // of the string is via this class initializer. 2570 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2571 GV->setAlignment(Align.getQuantity()); 2572 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2573 2574 // String length. 2575 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2576 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2577 2578 // The struct. 2579 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2580 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2581 llvm::GlobalVariable::PrivateLinkage, C, 2582 "_unnamed_nsstring_"); 2583 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2584 const char *NSStringNonFragileABISection = 2585 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2586 // FIXME. Fix section. 2587 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2588 ? NSStringNonFragileABISection 2589 : NSStringSection); 2590 Entry.setValue(GV); 2591 2592 return GV; 2593 } 2594 2595 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2596 if (ObjCFastEnumerationStateType.isNull()) { 2597 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2598 D->startDefinition(); 2599 2600 QualType FieldTypes[] = { 2601 Context.UnsignedLongTy, 2602 Context.getPointerType(Context.getObjCIdType()), 2603 Context.getPointerType(Context.UnsignedLongTy), 2604 Context.getConstantArrayType(Context.UnsignedLongTy, 2605 llvm::APInt(32, 5), ArrayType::Normal, 0) 2606 }; 2607 2608 for (size_t i = 0; i < 4; ++i) { 2609 FieldDecl *Field = FieldDecl::Create(Context, 2610 D, 2611 SourceLocation(), 2612 SourceLocation(), 0, 2613 FieldTypes[i], /*TInfo=*/0, 2614 /*BitWidth=*/0, 2615 /*Mutable=*/false, 2616 ICIS_NoInit); 2617 Field->setAccess(AS_public); 2618 D->addDecl(Field); 2619 } 2620 2621 D->completeDefinition(); 2622 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2623 } 2624 2625 return ObjCFastEnumerationStateType; 2626 } 2627 2628 llvm::Constant * 2629 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2630 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2631 2632 // Don't emit it as the address of the string, emit the string data itself 2633 // as an inline array. 2634 if (E->getCharByteWidth() == 1) { 2635 SmallString<64> Str(E->getString()); 2636 2637 // Resize the string to the right size, which is indicated by its type. 2638 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2639 Str.resize(CAT->getSize().getZExtValue()); 2640 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2641 } 2642 2643 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2644 llvm::Type *ElemTy = AType->getElementType(); 2645 unsigned NumElements = AType->getNumElements(); 2646 2647 // Wide strings have either 2-byte or 4-byte elements. 2648 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2649 SmallVector<uint16_t, 32> Elements; 2650 Elements.reserve(NumElements); 2651 2652 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2653 Elements.push_back(E->getCodeUnit(i)); 2654 Elements.resize(NumElements); 2655 return llvm::ConstantDataArray::get(VMContext, Elements); 2656 } 2657 2658 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2659 SmallVector<uint32_t, 32> Elements; 2660 Elements.reserve(NumElements); 2661 2662 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2663 Elements.push_back(E->getCodeUnit(i)); 2664 Elements.resize(NumElements); 2665 return llvm::ConstantDataArray::get(VMContext, Elements); 2666 } 2667 2668 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2669 /// constant array for the given string literal. 2670 llvm::Constant * 2671 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2672 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2673 2674 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2675 llvm::GlobalVariable *GV = nullptr; 2676 if (!LangOpts.WritableStrings) { 2677 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2678 switch (S->getCharByteWidth()) { 2679 case 1: 2680 ConstantStringMap = &Constant1ByteStringMap; 2681 break; 2682 case 2: 2683 ConstantStringMap = &Constant2ByteStringMap; 2684 break; 2685 case 4: 2686 ConstantStringMap = &Constant4ByteStringMap; 2687 break; 2688 default: 2689 llvm_unreachable("unhandled byte width!"); 2690 } 2691 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2692 GV = Entry->getValue(); 2693 } 2694 2695 if (!GV) { 2696 SmallString<256> MangledNameBuffer; 2697 StringRef GlobalVariableName; 2698 llvm::GlobalValue::LinkageTypes LT; 2699 2700 // Mangle the string literal if the ABI allows for it. However, we cannot 2701 // do this if we are compiling with ASan or -fwritable-strings because they 2702 // rely on strings having normal linkage. 2703 if (!LangOpts.WritableStrings && !SanOpts.Address && 2704 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2705 llvm::raw_svector_ostream Out(MangledNameBuffer); 2706 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2707 Out.flush(); 2708 2709 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2710 GlobalVariableName = MangledNameBuffer; 2711 } else { 2712 LT = llvm::GlobalValue::PrivateLinkage; 2713 GlobalVariableName = ".str"; 2714 } 2715 2716 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2717 unsigned AddrSpace = 0; 2718 if (getLangOpts().OpenCL) 2719 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2720 2721 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2722 GV = new llvm::GlobalVariable( 2723 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2724 GlobalVariableName, /*InsertBefore=*/nullptr, 2725 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2726 GV->setUnnamedAddr(true); 2727 if (Entry) 2728 Entry->setValue(GV); 2729 } 2730 2731 if (Align.getQuantity() > GV->getAlignment()) 2732 GV->setAlignment(Align.getQuantity()); 2733 2734 return GV; 2735 } 2736 2737 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2738 /// array for the given ObjCEncodeExpr node. 2739 llvm::Constant * 2740 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2741 std::string Str; 2742 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2743 2744 return GetAddrOfConstantCString(Str); 2745 } 2746 2747 2748 /// GenerateWritableString -- Creates storage for a string literal. 2749 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2750 bool constant, 2751 CodeGenModule &CGM, 2752 const char *GlobalName, 2753 unsigned Alignment) { 2754 // Create Constant for this string literal. Don't add a '\0'. 2755 llvm::Constant *C = 2756 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2757 2758 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2759 unsigned AddrSpace = 0; 2760 if (CGM.getLangOpts().OpenCL) 2761 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2762 2763 // Create a global variable for this string 2764 auto *GV = new llvm::GlobalVariable( 2765 CGM.getModule(), C->getType(), constant, 2766 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2767 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2768 GV->setAlignment(Alignment); 2769 GV->setUnnamedAddr(true); 2770 return GV; 2771 } 2772 2773 /// GetAddrOfConstantString - Returns a pointer to a character array 2774 /// containing the literal. This contents are exactly that of the 2775 /// given string, i.e. it will not be null terminated automatically; 2776 /// see GetAddrOfConstantCString. Note that whether the result is 2777 /// actually a pointer to an LLVM constant depends on 2778 /// Feature.WriteableStrings. 2779 /// 2780 /// The result has pointer to array type. 2781 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2782 const char *GlobalName, 2783 unsigned Alignment) { 2784 // Get the default prefix if a name wasn't specified. 2785 if (!GlobalName) 2786 GlobalName = ".str"; 2787 2788 if (Alignment == 0) 2789 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2790 .getQuantity(); 2791 2792 // Don't share any string literals if strings aren't constant. 2793 if (LangOpts.WritableStrings) 2794 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2795 2796 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2797 Constant1ByteStringMap.GetOrCreateValue(Str); 2798 2799 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2800 if (Alignment > GV->getAlignment()) { 2801 GV->setAlignment(Alignment); 2802 } 2803 return GV; 2804 } 2805 2806 // Create a global variable for this. 2807 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2808 Alignment); 2809 Entry.setValue(GV); 2810 return GV; 2811 } 2812 2813 /// GetAddrOfConstantCString - Returns a pointer to a character 2814 /// array containing the literal and a terminating '\0' 2815 /// character. The result has pointer to array type. 2816 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2817 const char *GlobalName, 2818 unsigned Alignment) { 2819 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2820 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2821 } 2822 2823 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2824 const MaterializeTemporaryExpr *E, const Expr *Init) { 2825 assert((E->getStorageDuration() == SD_Static || 2826 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2827 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2828 2829 // If we're not materializing a subobject of the temporary, keep the 2830 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2831 QualType MaterializedType = Init->getType(); 2832 if (Init == E->GetTemporaryExpr()) 2833 MaterializedType = E->getType(); 2834 2835 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2836 if (Slot) 2837 return Slot; 2838 2839 // FIXME: If an externally-visible declaration extends multiple temporaries, 2840 // we need to give each temporary the same name in every translation unit (and 2841 // we also need to make the temporaries externally-visible). 2842 SmallString<256> Name; 2843 llvm::raw_svector_ostream Out(Name); 2844 getCXXABI().getMangleContext().mangleReferenceTemporary( 2845 VD, E->getManglingNumber(), Out); 2846 Out.flush(); 2847 2848 APValue *Value = 0; 2849 if (E->getStorageDuration() == SD_Static) { 2850 // We might have a cached constant initializer for this temporary. Note 2851 // that this might have a different value from the value computed by 2852 // evaluating the initializer if the surrounding constant expression 2853 // modifies the temporary. 2854 Value = getContext().getMaterializedTemporaryValue(E, false); 2855 if (Value && Value->isUninit()) 2856 Value = 0; 2857 } 2858 2859 // Try evaluating it now, it might have a constant initializer. 2860 Expr::EvalResult EvalResult; 2861 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2862 !EvalResult.hasSideEffects()) 2863 Value = &EvalResult.Val; 2864 2865 llvm::Constant *InitialValue = 0; 2866 bool Constant = false; 2867 llvm::Type *Type; 2868 if (Value) { 2869 // The temporary has a constant initializer, use it. 2870 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2871 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2872 Type = InitialValue->getType(); 2873 } else { 2874 // No initializer, the initialization will be provided when we 2875 // initialize the declaration which performed lifetime extension. 2876 Type = getTypes().ConvertTypeForMem(MaterializedType); 2877 } 2878 2879 // Create a global variable for this lifetime-extended temporary. 2880 llvm::GlobalValue::LinkageTypes Linkage = 2881 getLLVMLinkageVarDefinition(VD, Constant); 2882 // There is no need for this temporary to have global linkage if the global 2883 // variable has external linkage. 2884 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2885 Linkage = llvm::GlobalVariable::PrivateLinkage; 2886 unsigned AddrSpace = GetGlobalVarAddressSpace( 2887 VD, getContext().getTargetAddressSpace(MaterializedType)); 2888 auto *GV = new llvm::GlobalVariable( 2889 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2890 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2891 AddrSpace); 2892 setGlobalVisibility(GV, VD); 2893 GV->setAlignment( 2894 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2895 if (VD->getTLSKind()) 2896 setTLSMode(GV, *VD); 2897 Slot = GV; 2898 return GV; 2899 } 2900 2901 /// EmitObjCPropertyImplementations - Emit information for synthesized 2902 /// properties for an implementation. 2903 void CodeGenModule::EmitObjCPropertyImplementations(const 2904 ObjCImplementationDecl *D) { 2905 for (const auto *PID : D->property_impls()) { 2906 // Dynamic is just for type-checking. 2907 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2908 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2909 2910 // Determine which methods need to be implemented, some may have 2911 // been overridden. Note that ::isPropertyAccessor is not the method 2912 // we want, that just indicates if the decl came from a 2913 // property. What we want to know is if the method is defined in 2914 // this implementation. 2915 if (!D->getInstanceMethod(PD->getGetterName())) 2916 CodeGenFunction(*this).GenerateObjCGetter( 2917 const_cast<ObjCImplementationDecl *>(D), PID); 2918 if (!PD->isReadOnly() && 2919 !D->getInstanceMethod(PD->getSetterName())) 2920 CodeGenFunction(*this).GenerateObjCSetter( 2921 const_cast<ObjCImplementationDecl *>(D), PID); 2922 } 2923 } 2924 } 2925 2926 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2927 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2928 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2929 ivar; ivar = ivar->getNextIvar()) 2930 if (ivar->getType().isDestructedType()) 2931 return true; 2932 2933 return false; 2934 } 2935 2936 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2937 /// for an implementation. 2938 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2939 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2940 if (needsDestructMethod(D)) { 2941 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2942 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2943 ObjCMethodDecl *DTORMethod = 2944 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2945 cxxSelector, getContext().VoidTy, 0, D, 2946 /*isInstance=*/true, /*isVariadic=*/false, 2947 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2948 /*isDefined=*/false, ObjCMethodDecl::Required); 2949 D->addInstanceMethod(DTORMethod); 2950 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2951 D->setHasDestructors(true); 2952 } 2953 2954 // If the implementation doesn't have any ivar initializers, we don't need 2955 // a .cxx_construct. 2956 if (D->getNumIvarInitializers() == 0) 2957 return; 2958 2959 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2960 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2961 // The constructor returns 'self'. 2962 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2963 D->getLocation(), 2964 D->getLocation(), 2965 cxxSelector, 2966 getContext().getObjCIdType(), 0, 2967 D, /*isInstance=*/true, 2968 /*isVariadic=*/false, 2969 /*isPropertyAccessor=*/true, 2970 /*isImplicitlyDeclared=*/true, 2971 /*isDefined=*/false, 2972 ObjCMethodDecl::Required); 2973 D->addInstanceMethod(CTORMethod); 2974 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2975 D->setHasNonZeroConstructors(true); 2976 } 2977 2978 /// EmitNamespace - Emit all declarations in a namespace. 2979 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2980 for (auto *I : ND->decls()) { 2981 if (const auto *VD = dyn_cast<VarDecl>(I)) 2982 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2983 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2984 continue; 2985 EmitTopLevelDecl(I); 2986 } 2987 } 2988 2989 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2990 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2991 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2992 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2993 ErrorUnsupported(LSD, "linkage spec"); 2994 return; 2995 } 2996 2997 for (auto *I : LSD->decls()) { 2998 // Meta-data for ObjC class includes references to implemented methods. 2999 // Generate class's method definitions first. 3000 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3001 for (auto *M : OID->methods()) 3002 EmitTopLevelDecl(M); 3003 } 3004 EmitTopLevelDecl(I); 3005 } 3006 } 3007 3008 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3009 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3010 // Ignore dependent declarations. 3011 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3012 return; 3013 3014 switch (D->getKind()) { 3015 case Decl::CXXConversion: 3016 case Decl::CXXMethod: 3017 case Decl::Function: 3018 // Skip function templates 3019 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3020 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3021 return; 3022 3023 EmitGlobal(cast<FunctionDecl>(D)); 3024 break; 3025 3026 case Decl::Var: 3027 // Skip variable templates 3028 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3029 return; 3030 case Decl::VarTemplateSpecialization: 3031 EmitGlobal(cast<VarDecl>(D)); 3032 break; 3033 3034 // Indirect fields from global anonymous structs and unions can be 3035 // ignored; only the actual variable requires IR gen support. 3036 case Decl::IndirectField: 3037 break; 3038 3039 // C++ Decls 3040 case Decl::Namespace: 3041 EmitNamespace(cast<NamespaceDecl>(D)); 3042 break; 3043 // No code generation needed. 3044 case Decl::UsingShadow: 3045 case Decl::ClassTemplate: 3046 case Decl::VarTemplate: 3047 case Decl::VarTemplatePartialSpecialization: 3048 case Decl::FunctionTemplate: 3049 case Decl::TypeAliasTemplate: 3050 case Decl::Block: 3051 case Decl::Empty: 3052 break; 3053 case Decl::Using: // using X; [C++] 3054 if (CGDebugInfo *DI = getModuleDebugInfo()) 3055 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3056 return; 3057 case Decl::NamespaceAlias: 3058 if (CGDebugInfo *DI = getModuleDebugInfo()) 3059 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3060 return; 3061 case Decl::UsingDirective: // using namespace X; [C++] 3062 if (CGDebugInfo *DI = getModuleDebugInfo()) 3063 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3064 return; 3065 case Decl::CXXConstructor: 3066 // Skip function templates 3067 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3068 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3069 return; 3070 3071 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3072 break; 3073 case Decl::CXXDestructor: 3074 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3075 return; 3076 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3077 break; 3078 3079 case Decl::StaticAssert: 3080 // Nothing to do. 3081 break; 3082 3083 // Objective-C Decls 3084 3085 // Forward declarations, no (immediate) code generation. 3086 case Decl::ObjCInterface: 3087 case Decl::ObjCCategory: 3088 break; 3089 3090 case Decl::ObjCProtocol: { 3091 auto *Proto = cast<ObjCProtocolDecl>(D); 3092 if (Proto->isThisDeclarationADefinition()) 3093 ObjCRuntime->GenerateProtocol(Proto); 3094 break; 3095 } 3096 3097 case Decl::ObjCCategoryImpl: 3098 // Categories have properties but don't support synthesize so we 3099 // can ignore them here. 3100 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3101 break; 3102 3103 case Decl::ObjCImplementation: { 3104 auto *OMD = cast<ObjCImplementationDecl>(D); 3105 EmitObjCPropertyImplementations(OMD); 3106 EmitObjCIvarInitializations(OMD); 3107 ObjCRuntime->GenerateClass(OMD); 3108 // Emit global variable debug information. 3109 if (CGDebugInfo *DI = getModuleDebugInfo()) 3110 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3111 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3112 OMD->getClassInterface()), OMD->getLocation()); 3113 break; 3114 } 3115 case Decl::ObjCMethod: { 3116 auto *OMD = cast<ObjCMethodDecl>(D); 3117 // If this is not a prototype, emit the body. 3118 if (OMD->getBody()) 3119 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3120 break; 3121 } 3122 case Decl::ObjCCompatibleAlias: 3123 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3124 break; 3125 3126 case Decl::LinkageSpec: 3127 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3128 break; 3129 3130 case Decl::FileScopeAsm: { 3131 auto *AD = cast<FileScopeAsmDecl>(D); 3132 StringRef AsmString = AD->getAsmString()->getString(); 3133 3134 const std::string &S = getModule().getModuleInlineAsm(); 3135 if (S.empty()) 3136 getModule().setModuleInlineAsm(AsmString); 3137 else if (S.end()[-1] == '\n') 3138 getModule().setModuleInlineAsm(S + AsmString.str()); 3139 else 3140 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3141 break; 3142 } 3143 3144 case Decl::Import: { 3145 auto *Import = cast<ImportDecl>(D); 3146 3147 // Ignore import declarations that come from imported modules. 3148 if (clang::Module *Owner = Import->getOwningModule()) { 3149 if (getLangOpts().CurrentModule.empty() || 3150 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3151 break; 3152 } 3153 3154 ImportedModules.insert(Import->getImportedModule()); 3155 break; 3156 } 3157 3158 case Decl::ClassTemplateSpecialization: { 3159 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3160 if (DebugInfo && 3161 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3162 DebugInfo->completeTemplateDefinition(*Spec); 3163 } 3164 3165 default: 3166 // Make sure we handled everything we should, every other kind is a 3167 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3168 // function. Need to recode Decl::Kind to do that easily. 3169 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3170 } 3171 } 3172 3173 /// Turns the given pointer into a constant. 3174 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3175 const void *Ptr) { 3176 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3177 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3178 return llvm::ConstantInt::get(i64, PtrInt); 3179 } 3180 3181 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3182 llvm::NamedMDNode *&GlobalMetadata, 3183 GlobalDecl D, 3184 llvm::GlobalValue *Addr) { 3185 if (!GlobalMetadata) 3186 GlobalMetadata = 3187 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3188 3189 // TODO: should we report variant information for ctors/dtors? 3190 llvm::Value *Ops[] = { 3191 Addr, 3192 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3193 }; 3194 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3195 } 3196 3197 /// For each function which is declared within an extern "C" region and marked 3198 /// as 'used', but has internal linkage, create an alias from the unmangled 3199 /// name to the mangled name if possible. People expect to be able to refer 3200 /// to such functions with an unmangled name from inline assembly within the 3201 /// same translation unit. 3202 void CodeGenModule::EmitStaticExternCAliases() { 3203 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3204 E = StaticExternCValues.end(); 3205 I != E; ++I) { 3206 IdentifierInfo *Name = I->first; 3207 llvm::GlobalValue *Val = I->second; 3208 if (Val && !getModule().getNamedValue(Name->getName())) 3209 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3210 Name->getName(), Val, &getModule())); 3211 } 3212 } 3213 3214 /// Emits metadata nodes associating all the global values in the 3215 /// current module with the Decls they came from. This is useful for 3216 /// projects using IR gen as a subroutine. 3217 /// 3218 /// Since there's currently no way to associate an MDNode directly 3219 /// with an llvm::GlobalValue, we create a global named metadata 3220 /// with the name 'clang.global.decl.ptrs'. 3221 void CodeGenModule::EmitDeclMetadata() { 3222 llvm::NamedMDNode *GlobalMetadata = 0; 3223 3224 // StaticLocalDeclMap 3225 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3226 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3227 I != E; ++I) { 3228 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3229 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3230 } 3231 } 3232 3233 /// Emits metadata nodes for all the local variables in the current 3234 /// function. 3235 void CodeGenFunction::EmitDeclMetadata() { 3236 if (LocalDeclMap.empty()) return; 3237 3238 llvm::LLVMContext &Context = getLLVMContext(); 3239 3240 // Find the unique metadata ID for this name. 3241 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3242 3243 llvm::NamedMDNode *GlobalMetadata = 0; 3244 3245 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3246 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3247 const Decl *D = I->first; 3248 llvm::Value *Addr = I->second; 3249 3250 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3251 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3252 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3253 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3254 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3255 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3256 } 3257 } 3258 } 3259 3260 void CodeGenModule::EmitVersionIdentMetadata() { 3261 llvm::NamedMDNode *IdentMetadata = 3262 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3263 std::string Version = getClangFullVersion(); 3264 llvm::LLVMContext &Ctx = TheModule.getContext(); 3265 3266 llvm::Value *IdentNode[] = { 3267 llvm::MDString::get(Ctx, Version) 3268 }; 3269 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3270 } 3271 3272 void CodeGenModule::EmitCoverageFile() { 3273 if (!getCodeGenOpts().CoverageFile.empty()) { 3274 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3275 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3276 llvm::LLVMContext &Ctx = TheModule.getContext(); 3277 llvm::MDString *CoverageFile = 3278 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3279 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3280 llvm::MDNode *CU = CUNode->getOperand(i); 3281 llvm::Value *node[] = { CoverageFile, CU }; 3282 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3283 GCov->addOperand(N); 3284 } 3285 } 3286 } 3287 } 3288 3289 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3290 QualType GuidType) { 3291 // Sema has checked that all uuid strings are of the form 3292 // "12345678-1234-1234-1234-1234567890ab". 3293 assert(Uuid.size() == 36); 3294 for (unsigned i = 0; i < 36; ++i) { 3295 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3296 else assert(isHexDigit(Uuid[i])); 3297 } 3298 3299 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3300 3301 llvm::Constant *Field3[8]; 3302 for (unsigned Idx = 0; Idx < 8; ++Idx) 3303 Field3[Idx] = llvm::ConstantInt::get( 3304 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3305 3306 llvm::Constant *Fields[4] = { 3307 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3308 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3309 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3310 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3311 }; 3312 3313 return llvm::ConstantStruct::getAnon(Fields); 3314 } 3315