1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::AppleARM64: 80 case TargetCXXABI::Fuchsia: 81 case TargetCXXABI::GenericAArch64: 82 case TargetCXXABI::GenericARM: 83 case TargetCXXABI::iOS: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 405 llvm::Module &M) { 406 if (!LO.VisibilityFromDLLStorageClass) 407 return; 408 409 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 410 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 411 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 412 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 413 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 414 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 415 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 416 CodeGenModule::GetLLVMVisibility( 417 LO.getExternDeclNoDLLStorageClassVisibility()); 418 419 for (llvm::GlobalValue &GV : M.global_values()) { 420 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 421 continue; 422 423 // Reset DSO locality before setting the visibility. This removes 424 // any effects that visibility options and annotations may have 425 // had on the DSO locality. Setting the visibility will implicitly set 426 // appropriate globals to DSO Local; however, this will be pessimistic 427 // w.r.t. to the normal compiler IRGen. 428 GV.setDSOLocal(false); 429 430 if (GV.isDeclarationForLinker()) { 431 GV.setVisibility(GV.getDLLStorageClass() == 432 llvm::GlobalValue::DLLImportStorageClass 433 ? ExternDeclDLLImportVisibility 434 : ExternDeclNoDLLStorageClassVisibility); 435 } else { 436 GV.setVisibility(GV.getDLLStorageClass() == 437 llvm::GlobalValue::DLLExportStorageClass 438 ? DLLExportVisibility 439 : NoDLLStorageClassVisibility); 440 } 441 442 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 443 } 444 } 445 446 void CodeGenModule::Release() { 447 EmitDeferred(); 448 EmitVTablesOpportunistically(); 449 applyGlobalValReplacements(); 450 applyReplacements(); 451 checkAliases(); 452 emitMultiVersionFunctions(); 453 EmitCXXGlobalInitFunc(); 454 EmitCXXGlobalCleanUpFunc(); 455 registerGlobalDtorsWithAtExit(); 456 EmitCXXThreadLocalInitFunc(); 457 if (ObjCRuntime) 458 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 459 AddGlobalCtor(ObjCInitFunction); 460 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 461 CUDARuntime) { 462 if (llvm::Function *CudaCtorFunction = 463 CUDARuntime->makeModuleCtorFunction()) 464 AddGlobalCtor(CudaCtorFunction); 465 } 466 if (OpenMPRuntime) { 467 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 468 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 469 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 470 } 471 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 472 OpenMPRuntime->clear(); 473 } 474 if (PGOReader) { 475 getModule().setProfileSummary( 476 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 477 llvm::ProfileSummary::PSK_Instr); 478 if (PGOStats.hasDiagnostics()) 479 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 480 } 481 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 482 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 483 EmitGlobalAnnotations(); 484 EmitStaticExternCAliases(); 485 EmitDeferredUnusedCoverageMappings(); 486 if (CoverageMapping) 487 CoverageMapping->emit(); 488 if (CodeGenOpts.SanitizeCfiCrossDso) { 489 CodeGenFunction(*this).EmitCfiCheckFail(); 490 CodeGenFunction(*this).EmitCfiCheckStub(); 491 } 492 emitAtAvailableLinkGuard(); 493 if (Context.getTargetInfo().getTriple().isWasm() && 494 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 495 EmitMainVoidAlias(); 496 } 497 emitLLVMUsed(); 498 if (SanStats) 499 SanStats->finish(); 500 501 if (CodeGenOpts.Autolink && 502 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 503 EmitModuleLinkOptions(); 504 } 505 506 // On ELF we pass the dependent library specifiers directly to the linker 507 // without manipulating them. This is in contrast to other platforms where 508 // they are mapped to a specific linker option by the compiler. This 509 // difference is a result of the greater variety of ELF linkers and the fact 510 // that ELF linkers tend to handle libraries in a more complicated fashion 511 // than on other platforms. This forces us to defer handling the dependent 512 // libs to the linker. 513 // 514 // CUDA/HIP device and host libraries are different. Currently there is no 515 // way to differentiate dependent libraries for host or device. Existing 516 // usage of #pragma comment(lib, *) is intended for host libraries on 517 // Windows. Therefore emit llvm.dependent-libraries only for host. 518 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 519 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 520 for (auto *MD : ELFDependentLibraries) 521 NMD->addOperand(MD); 522 } 523 524 // Record mregparm value now so it is visible through rest of codegen. 525 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 526 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 527 CodeGenOpts.NumRegisterParameters); 528 529 if (CodeGenOpts.DwarfVersion) { 530 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 531 CodeGenOpts.DwarfVersion); 532 } 533 534 if (Context.getLangOpts().SemanticInterposition) 535 // Require various optimization to respect semantic interposition. 536 getModule().setSemanticInterposition(1); 537 538 if (CodeGenOpts.EmitCodeView) { 539 // Indicate that we want CodeView in the metadata. 540 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 541 } 542 if (CodeGenOpts.CodeViewGHash) { 543 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 544 } 545 if (CodeGenOpts.ControlFlowGuard) { 546 // Function ID tables and checks for Control Flow Guard (cfguard=2). 547 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 548 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 549 // Function ID tables for Control Flow Guard (cfguard=1). 550 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 551 } 552 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 553 // We don't support LTO with 2 with different StrictVTablePointers 554 // FIXME: we could support it by stripping all the information introduced 555 // by StrictVTablePointers. 556 557 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 558 559 llvm::Metadata *Ops[2] = { 560 llvm::MDString::get(VMContext, "StrictVTablePointers"), 561 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 562 llvm::Type::getInt32Ty(VMContext), 1))}; 563 564 getModule().addModuleFlag(llvm::Module::Require, 565 "StrictVTablePointersRequirement", 566 llvm::MDNode::get(VMContext, Ops)); 567 } 568 if (getModuleDebugInfo()) 569 // We support a single version in the linked module. The LLVM 570 // parser will drop debug info with a different version number 571 // (and warn about it, too). 572 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 573 llvm::DEBUG_METADATA_VERSION); 574 575 // We need to record the widths of enums and wchar_t, so that we can generate 576 // the correct build attributes in the ARM backend. wchar_size is also used by 577 // TargetLibraryInfo. 578 uint64_t WCharWidth = 579 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 580 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 581 582 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 583 if ( Arch == llvm::Triple::arm 584 || Arch == llvm::Triple::armeb 585 || Arch == llvm::Triple::thumb 586 || Arch == llvm::Triple::thumbeb) { 587 // The minimum width of an enum in bytes 588 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 589 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 590 } 591 592 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 593 StringRef ABIStr = Target.getABI(); 594 llvm::LLVMContext &Ctx = TheModule.getContext(); 595 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 596 llvm::MDString::get(Ctx, ABIStr)); 597 } 598 599 if (CodeGenOpts.SanitizeCfiCrossDso) { 600 // Indicate that we want cross-DSO control flow integrity checks. 601 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 602 } 603 604 if (CodeGenOpts.WholeProgramVTables) { 605 // Indicate whether VFE was enabled for this module, so that the 606 // vcall_visibility metadata added under whole program vtables is handled 607 // appropriately in the optimizer. 608 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 609 CodeGenOpts.VirtualFunctionElimination); 610 } 611 612 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 613 getModule().addModuleFlag(llvm::Module::Override, 614 "CFI Canonical Jump Tables", 615 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 616 } 617 618 if (CodeGenOpts.CFProtectionReturn && 619 Target.checkCFProtectionReturnSupported(getDiags())) { 620 // Indicate that we want to instrument return control flow protection. 621 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 622 1); 623 } 624 625 if (CodeGenOpts.CFProtectionBranch && 626 Target.checkCFProtectionBranchSupported(getDiags())) { 627 // Indicate that we want to instrument branch control flow protection. 628 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 629 1); 630 } 631 632 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 633 Arch == llvm::Triple::aarch64_be) { 634 getModule().addModuleFlag(llvm::Module::Error, 635 "branch-target-enforcement", 636 LangOpts.BranchTargetEnforcement); 637 638 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 639 LangOpts.hasSignReturnAddress()); 640 641 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 642 LangOpts.isSignReturnAddressScopeAll()); 643 644 getModule().addModuleFlag(llvm::Module::Error, 645 "sign-return-address-with-bkey", 646 !LangOpts.isSignReturnAddressWithAKey()); 647 } 648 649 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 650 llvm::LLVMContext &Ctx = TheModule.getContext(); 651 getModule().addModuleFlag( 652 llvm::Module::Error, "MemProfProfileFilename", 653 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 654 } 655 656 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 657 // Indicate whether __nvvm_reflect should be configured to flush denormal 658 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 659 // property.) 660 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 661 CodeGenOpts.FP32DenormalMode.Output != 662 llvm::DenormalMode::IEEE); 663 } 664 665 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 666 if (LangOpts.OpenCL) { 667 EmitOpenCLMetadata(); 668 // Emit SPIR version. 669 if (getTriple().isSPIR()) { 670 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 671 // opencl.spir.version named metadata. 672 // C++ is backwards compatible with OpenCL v2.0. 673 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 674 llvm::Metadata *SPIRVerElts[] = { 675 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 676 Int32Ty, Version / 100)), 677 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 678 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 679 llvm::NamedMDNode *SPIRVerMD = 680 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 681 llvm::LLVMContext &Ctx = TheModule.getContext(); 682 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 683 } 684 } 685 686 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 687 assert(PLevel < 3 && "Invalid PIC Level"); 688 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 689 if (Context.getLangOpts().PIE) 690 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 691 } 692 693 if (getCodeGenOpts().CodeModel.size() > 0) { 694 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 695 .Case("tiny", llvm::CodeModel::Tiny) 696 .Case("small", llvm::CodeModel::Small) 697 .Case("kernel", llvm::CodeModel::Kernel) 698 .Case("medium", llvm::CodeModel::Medium) 699 .Case("large", llvm::CodeModel::Large) 700 .Default(~0u); 701 if (CM != ~0u) { 702 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 703 getModule().setCodeModel(codeModel); 704 } 705 } 706 707 if (CodeGenOpts.NoPLT) 708 getModule().setRtLibUseGOT(); 709 710 SimplifyPersonality(); 711 712 if (getCodeGenOpts().EmitDeclMetadata) 713 EmitDeclMetadata(); 714 715 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 716 EmitCoverageFile(); 717 718 if (CGDebugInfo *DI = getModuleDebugInfo()) 719 DI->finalize(); 720 721 if (getCodeGenOpts().EmitVersionIdentMetadata) 722 EmitVersionIdentMetadata(); 723 724 if (!getCodeGenOpts().RecordCommandLine.empty()) 725 EmitCommandLineMetadata(); 726 727 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 728 729 EmitBackendOptionsMetadata(getCodeGenOpts()); 730 731 // Set visibility from DLL storage class 732 // We do this at the end of LLVM IR generation; after any operation 733 // that might affect the DLL storage class or the visibility, and 734 // before anything that might act on these. 735 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 736 } 737 738 void CodeGenModule::EmitOpenCLMetadata() { 739 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 740 // opencl.ocl.version named metadata node. 741 // C++ is backwards compatible with OpenCL v2.0. 742 // FIXME: We might need to add CXX version at some point too? 743 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 744 llvm::Metadata *OCLVerElts[] = { 745 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 746 Int32Ty, Version / 100)), 747 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 748 Int32Ty, (Version % 100) / 10))}; 749 llvm::NamedMDNode *OCLVerMD = 750 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 751 llvm::LLVMContext &Ctx = TheModule.getContext(); 752 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 753 } 754 755 void CodeGenModule::EmitBackendOptionsMetadata( 756 const CodeGenOptions CodeGenOpts) { 757 switch (getTriple().getArch()) { 758 default: 759 break; 760 case llvm::Triple::riscv32: 761 case llvm::Triple::riscv64: 762 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 763 CodeGenOpts.SmallDataLimit); 764 break; 765 } 766 } 767 768 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 769 // Make sure that this type is translated. 770 Types.UpdateCompletedType(TD); 771 } 772 773 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 774 // Make sure that this type is translated. 775 Types.RefreshTypeCacheForClass(RD); 776 } 777 778 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 779 if (!TBAA) 780 return nullptr; 781 return TBAA->getTypeInfo(QTy); 782 } 783 784 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 785 if (!TBAA) 786 return TBAAAccessInfo(); 787 if (getLangOpts().CUDAIsDevice) { 788 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 789 // access info. 790 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 791 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 792 nullptr) 793 return TBAAAccessInfo(); 794 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 795 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 796 nullptr) 797 return TBAAAccessInfo(); 798 } 799 } 800 return TBAA->getAccessInfo(AccessType); 801 } 802 803 TBAAAccessInfo 804 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 805 if (!TBAA) 806 return TBAAAccessInfo(); 807 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 808 } 809 810 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 811 if (!TBAA) 812 return nullptr; 813 return TBAA->getTBAAStructInfo(QTy); 814 } 815 816 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 817 if (!TBAA) 818 return nullptr; 819 return TBAA->getBaseTypeInfo(QTy); 820 } 821 822 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 823 if (!TBAA) 824 return nullptr; 825 return TBAA->getAccessTagInfo(Info); 826 } 827 828 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 829 TBAAAccessInfo TargetInfo) { 830 if (!TBAA) 831 return TBAAAccessInfo(); 832 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 833 } 834 835 TBAAAccessInfo 836 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 837 TBAAAccessInfo InfoB) { 838 if (!TBAA) 839 return TBAAAccessInfo(); 840 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 841 } 842 843 TBAAAccessInfo 844 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 845 TBAAAccessInfo SrcInfo) { 846 if (!TBAA) 847 return TBAAAccessInfo(); 848 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 849 } 850 851 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 852 TBAAAccessInfo TBAAInfo) { 853 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 854 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 855 } 856 857 void CodeGenModule::DecorateInstructionWithInvariantGroup( 858 llvm::Instruction *I, const CXXRecordDecl *RD) { 859 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 860 llvm::MDNode::get(getLLVMContext(), {})); 861 } 862 863 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 864 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 865 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 866 } 867 868 /// ErrorUnsupported - Print out an error that codegen doesn't support the 869 /// specified stmt yet. 870 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 871 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 872 "cannot compile this %0 yet"); 873 std::string Msg = Type; 874 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 875 << Msg << S->getSourceRange(); 876 } 877 878 /// ErrorUnsupported - Print out an error that codegen doesn't support the 879 /// specified decl yet. 880 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 881 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 882 "cannot compile this %0 yet"); 883 std::string Msg = Type; 884 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 885 } 886 887 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 888 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 889 } 890 891 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 892 const NamedDecl *D) const { 893 if (GV->hasDLLImportStorageClass()) 894 return; 895 // Internal definitions always have default visibility. 896 if (GV->hasLocalLinkage()) { 897 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 898 return; 899 } 900 if (!D) 901 return; 902 // Set visibility for definitions, and for declarations if requested globally 903 // or set explicitly. 904 LinkageInfo LV = D->getLinkageAndVisibility(); 905 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 906 !GV->isDeclarationForLinker()) 907 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 908 } 909 910 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 911 llvm::GlobalValue *GV) { 912 if (GV->hasLocalLinkage()) 913 return true; 914 915 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 916 return true; 917 918 // DLLImport explicitly marks the GV as external. 919 if (GV->hasDLLImportStorageClass()) 920 return false; 921 922 const llvm::Triple &TT = CGM.getTriple(); 923 if (TT.isWindowsGNUEnvironment()) { 924 // In MinGW, variables without DLLImport can still be automatically 925 // imported from a DLL by the linker; don't mark variables that 926 // potentially could come from another DLL as DSO local. 927 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 928 !GV->isThreadLocal()) 929 return false; 930 } 931 932 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 933 // remain unresolved in the link, they can be resolved to zero, which is 934 // outside the current DSO. 935 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 936 return false; 937 938 // Every other GV is local on COFF. 939 // Make an exception for windows OS in the triple: Some firmware builds use 940 // *-win32-macho triples. This (accidentally?) produced windows relocations 941 // without GOT tables in older clang versions; Keep this behaviour. 942 // FIXME: even thread local variables? 943 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 944 return true; 945 946 const auto &CGOpts = CGM.getCodeGenOpts(); 947 llvm::Reloc::Model RM = CGOpts.RelocationModel; 948 const auto &LOpts = CGM.getLangOpts(); 949 950 if (TT.isOSBinFormatMachO()) { 951 if (RM == llvm::Reloc::Static) 952 return true; 953 return GV->isStrongDefinitionForLinker(); 954 } 955 956 // Only handle COFF and ELF for now. 957 if (!TT.isOSBinFormatELF()) 958 return false; 959 960 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 961 // On ELF, if -fno-semantic-interposition is specified and the target 962 // supports local aliases, there will be neither CC1 963 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 964 // dso_local if using a local alias is preferable (can avoid GOT 965 // indirection). 966 if (!GV->canBenefitFromLocalAlias()) 967 return false; 968 return !(CGM.getLangOpts().SemanticInterposition || 969 CGM.getLangOpts().HalfNoSemanticInterposition); 970 } 971 972 // A definition cannot be preempted from an executable. 973 if (!GV->isDeclarationForLinker()) 974 return true; 975 976 // Most PIC code sequences that assume that a symbol is local cannot produce a 977 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 978 // depended, it seems worth it to handle it here. 979 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 980 return false; 981 982 // PowerPC64 prefers TOC indirection to avoid copy relocations. 983 if (TT.isPPC64()) 984 return false; 985 986 if (CGOpts.DirectAccessExternalData) { 987 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 988 // for non-thread-local variables. If the symbol is not defined in the 989 // executable, a copy relocation will be needed at link time. dso_local is 990 // excluded for thread-local variables because they generally don't support 991 // copy relocations. 992 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 993 if (!Var->isThreadLocal()) 994 return true; 995 996 // -fno-pic sets dso_local on a function declaration to allow direct 997 // accesses when taking its address (similar to a data symbol). If the 998 // function is not defined in the executable, a canonical PLT entry will be 999 // needed at link time. -fno-direct-access-external-data can avoid the 1000 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1001 // it could just cause trouble without providing perceptible benefits. 1002 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1003 return true; 1004 } 1005 1006 // If we can use copy relocations we can assume it is local. 1007 1008 // Otherwise don't assume it is local. 1009 return false; 1010 } 1011 1012 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1013 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1014 } 1015 1016 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1017 GlobalDecl GD) const { 1018 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1019 // C++ destructors have a few C++ ABI specific special cases. 1020 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1021 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1022 return; 1023 } 1024 setDLLImportDLLExport(GV, D); 1025 } 1026 1027 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1028 const NamedDecl *D) const { 1029 if (D && D->isExternallyVisible()) { 1030 if (D->hasAttr<DLLImportAttr>()) 1031 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1032 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 1033 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1034 } 1035 } 1036 1037 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1038 GlobalDecl GD) const { 1039 setDLLImportDLLExport(GV, GD); 1040 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1041 } 1042 1043 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1044 const NamedDecl *D) const { 1045 setDLLImportDLLExport(GV, D); 1046 setGVPropertiesAux(GV, D); 1047 } 1048 1049 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1050 const NamedDecl *D) const { 1051 setGlobalVisibility(GV, D); 1052 setDSOLocal(GV); 1053 GV->setPartition(CodeGenOpts.SymbolPartition); 1054 } 1055 1056 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1057 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1058 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1059 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1060 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1061 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1062 } 1063 1064 llvm::GlobalVariable::ThreadLocalMode 1065 CodeGenModule::GetDefaultLLVMTLSModel() const { 1066 switch (CodeGenOpts.getDefaultTLSModel()) { 1067 case CodeGenOptions::GeneralDynamicTLSModel: 1068 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1069 case CodeGenOptions::LocalDynamicTLSModel: 1070 return llvm::GlobalVariable::LocalDynamicTLSModel; 1071 case CodeGenOptions::InitialExecTLSModel: 1072 return llvm::GlobalVariable::InitialExecTLSModel; 1073 case CodeGenOptions::LocalExecTLSModel: 1074 return llvm::GlobalVariable::LocalExecTLSModel; 1075 } 1076 llvm_unreachable("Invalid TLS model!"); 1077 } 1078 1079 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1080 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1081 1082 llvm::GlobalValue::ThreadLocalMode TLM; 1083 TLM = GetDefaultLLVMTLSModel(); 1084 1085 // Override the TLS model if it is explicitly specified. 1086 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1087 TLM = GetLLVMTLSModel(Attr->getModel()); 1088 } 1089 1090 GV->setThreadLocalMode(TLM); 1091 } 1092 1093 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1094 StringRef Name) { 1095 const TargetInfo &Target = CGM.getTarget(); 1096 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1097 } 1098 1099 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1100 const CPUSpecificAttr *Attr, 1101 unsigned CPUIndex, 1102 raw_ostream &Out) { 1103 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1104 // supported. 1105 if (Attr) 1106 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1107 else if (CGM.getTarget().supportsIFunc()) 1108 Out << ".resolver"; 1109 } 1110 1111 static void AppendTargetMangling(const CodeGenModule &CGM, 1112 const TargetAttr *Attr, raw_ostream &Out) { 1113 if (Attr->isDefaultVersion()) 1114 return; 1115 1116 Out << '.'; 1117 const TargetInfo &Target = CGM.getTarget(); 1118 ParsedTargetAttr Info = 1119 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1120 // Multiversioning doesn't allow "no-${feature}", so we can 1121 // only have "+" prefixes here. 1122 assert(LHS.startswith("+") && RHS.startswith("+") && 1123 "Features should always have a prefix."); 1124 return Target.multiVersionSortPriority(LHS.substr(1)) > 1125 Target.multiVersionSortPriority(RHS.substr(1)); 1126 }); 1127 1128 bool IsFirst = true; 1129 1130 if (!Info.Architecture.empty()) { 1131 IsFirst = false; 1132 Out << "arch_" << Info.Architecture; 1133 } 1134 1135 for (StringRef Feat : Info.Features) { 1136 if (!IsFirst) 1137 Out << '_'; 1138 IsFirst = false; 1139 Out << Feat.substr(1); 1140 } 1141 } 1142 1143 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1144 const NamedDecl *ND, 1145 bool OmitMultiVersionMangling = false) { 1146 SmallString<256> Buffer; 1147 llvm::raw_svector_ostream Out(Buffer); 1148 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1149 if (MC.shouldMangleDeclName(ND)) 1150 MC.mangleName(GD.getWithDecl(ND), Out); 1151 else { 1152 IdentifierInfo *II = ND->getIdentifier(); 1153 assert(II && "Attempt to mangle unnamed decl."); 1154 const auto *FD = dyn_cast<FunctionDecl>(ND); 1155 1156 if (FD && 1157 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1158 Out << "__regcall3__" << II->getName(); 1159 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1160 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1161 Out << "__device_stub__" << II->getName(); 1162 } else { 1163 Out << II->getName(); 1164 } 1165 } 1166 1167 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1168 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1169 switch (FD->getMultiVersionKind()) { 1170 case MultiVersionKind::CPUDispatch: 1171 case MultiVersionKind::CPUSpecific: 1172 AppendCPUSpecificCPUDispatchMangling(CGM, 1173 FD->getAttr<CPUSpecificAttr>(), 1174 GD.getMultiVersionIndex(), Out); 1175 break; 1176 case MultiVersionKind::Target: 1177 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1178 break; 1179 case MultiVersionKind::None: 1180 llvm_unreachable("None multiversion type isn't valid here"); 1181 } 1182 } 1183 1184 return std::string(Out.str()); 1185 } 1186 1187 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1188 const FunctionDecl *FD) { 1189 if (!FD->isMultiVersion()) 1190 return; 1191 1192 // Get the name of what this would be without the 'target' attribute. This 1193 // allows us to lookup the version that was emitted when this wasn't a 1194 // multiversion function. 1195 std::string NonTargetName = 1196 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1197 GlobalDecl OtherGD; 1198 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1199 assert(OtherGD.getCanonicalDecl() 1200 .getDecl() 1201 ->getAsFunction() 1202 ->isMultiVersion() && 1203 "Other GD should now be a multiversioned function"); 1204 // OtherFD is the version of this function that was mangled BEFORE 1205 // becoming a MultiVersion function. It potentially needs to be updated. 1206 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1207 .getDecl() 1208 ->getAsFunction() 1209 ->getMostRecentDecl(); 1210 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1211 // This is so that if the initial version was already the 'default' 1212 // version, we don't try to update it. 1213 if (OtherName != NonTargetName) { 1214 // Remove instead of erase, since others may have stored the StringRef 1215 // to this. 1216 const auto ExistingRecord = Manglings.find(NonTargetName); 1217 if (ExistingRecord != std::end(Manglings)) 1218 Manglings.remove(&(*ExistingRecord)); 1219 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1220 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1221 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1222 Entry->setName(OtherName); 1223 } 1224 } 1225 } 1226 1227 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1228 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1229 1230 // Some ABIs don't have constructor variants. Make sure that base and 1231 // complete constructors get mangled the same. 1232 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1233 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1234 CXXCtorType OrigCtorType = GD.getCtorType(); 1235 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1236 if (OrigCtorType == Ctor_Base) 1237 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1238 } 1239 } 1240 1241 auto FoundName = MangledDeclNames.find(CanonicalGD); 1242 if (FoundName != MangledDeclNames.end()) 1243 return FoundName->second; 1244 1245 // Keep the first result in the case of a mangling collision. 1246 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1247 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1248 1249 // Ensure either we have different ABIs between host and device compilations, 1250 // says host compilation following MSVC ABI but device compilation follows 1251 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1252 // mangling should be the same after name stubbing. The later checking is 1253 // very important as the device kernel name being mangled in host-compilation 1254 // is used to resolve the device binaries to be executed. Inconsistent naming 1255 // result in undefined behavior. Even though we cannot check that naming 1256 // directly between host- and device-compilations, the host- and 1257 // device-mangling in host compilation could help catching certain ones. 1258 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1259 getLangOpts().CUDAIsDevice || 1260 (getContext().getAuxTargetInfo() && 1261 (getContext().getAuxTargetInfo()->getCXXABI() != 1262 getContext().getTargetInfo().getCXXABI())) || 1263 getCUDARuntime().getDeviceSideName(ND) == 1264 getMangledNameImpl( 1265 *this, 1266 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1267 ND)); 1268 1269 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1270 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1271 } 1272 1273 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1274 const BlockDecl *BD) { 1275 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1276 const Decl *D = GD.getDecl(); 1277 1278 SmallString<256> Buffer; 1279 llvm::raw_svector_ostream Out(Buffer); 1280 if (!D) 1281 MangleCtx.mangleGlobalBlock(BD, 1282 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1283 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1284 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1285 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1286 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1287 else 1288 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1289 1290 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1291 return Result.first->first(); 1292 } 1293 1294 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1295 return getModule().getNamedValue(Name); 1296 } 1297 1298 /// AddGlobalCtor - Add a function to the list that will be called before 1299 /// main() runs. 1300 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1301 llvm::Constant *AssociatedData) { 1302 // FIXME: Type coercion of void()* types. 1303 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1304 } 1305 1306 /// AddGlobalDtor - Add a function to the list that will be called 1307 /// when the module is unloaded. 1308 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1309 bool IsDtorAttrFunc) { 1310 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1311 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1312 DtorsUsingAtExit[Priority].push_back(Dtor); 1313 return; 1314 } 1315 1316 // FIXME: Type coercion of void()* types. 1317 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1318 } 1319 1320 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1321 if (Fns.empty()) return; 1322 1323 // Ctor function type is void()*. 1324 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1325 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1326 TheModule.getDataLayout().getProgramAddressSpace()); 1327 1328 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1329 llvm::StructType *CtorStructTy = llvm::StructType::get( 1330 Int32Ty, CtorPFTy, VoidPtrTy); 1331 1332 // Construct the constructor and destructor arrays. 1333 ConstantInitBuilder builder(*this); 1334 auto ctors = builder.beginArray(CtorStructTy); 1335 for (const auto &I : Fns) { 1336 auto ctor = ctors.beginStruct(CtorStructTy); 1337 ctor.addInt(Int32Ty, I.Priority); 1338 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1339 if (I.AssociatedData) 1340 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1341 else 1342 ctor.addNullPointer(VoidPtrTy); 1343 ctor.finishAndAddTo(ctors); 1344 } 1345 1346 auto list = 1347 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1348 /*constant*/ false, 1349 llvm::GlobalValue::AppendingLinkage); 1350 1351 // The LTO linker doesn't seem to like it when we set an alignment 1352 // on appending variables. Take it off as a workaround. 1353 list->setAlignment(llvm::None); 1354 1355 Fns.clear(); 1356 } 1357 1358 llvm::GlobalValue::LinkageTypes 1359 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1360 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1361 1362 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1363 1364 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1365 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1366 1367 if (isa<CXXConstructorDecl>(D) && 1368 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1369 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1370 // Our approach to inheriting constructors is fundamentally different from 1371 // that used by the MS ABI, so keep our inheriting constructor thunks 1372 // internal rather than trying to pick an unambiguous mangling for them. 1373 return llvm::GlobalValue::InternalLinkage; 1374 } 1375 1376 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1377 } 1378 1379 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1380 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1381 if (!MDS) return nullptr; 1382 1383 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1384 } 1385 1386 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1387 const CGFunctionInfo &Info, 1388 llvm::Function *F) { 1389 unsigned CallingConv; 1390 llvm::AttributeList PAL; 1391 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1392 F->setAttributes(PAL); 1393 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1394 } 1395 1396 static void removeImageAccessQualifier(std::string& TyName) { 1397 std::string ReadOnlyQual("__read_only"); 1398 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1399 if (ReadOnlyPos != std::string::npos) 1400 // "+ 1" for the space after access qualifier. 1401 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1402 else { 1403 std::string WriteOnlyQual("__write_only"); 1404 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1405 if (WriteOnlyPos != std::string::npos) 1406 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1407 else { 1408 std::string ReadWriteQual("__read_write"); 1409 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1410 if (ReadWritePos != std::string::npos) 1411 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1412 } 1413 } 1414 } 1415 1416 // Returns the address space id that should be produced to the 1417 // kernel_arg_addr_space metadata. This is always fixed to the ids 1418 // as specified in the SPIR 2.0 specification in order to differentiate 1419 // for example in clGetKernelArgInfo() implementation between the address 1420 // spaces with targets without unique mapping to the OpenCL address spaces 1421 // (basically all single AS CPUs). 1422 static unsigned ArgInfoAddressSpace(LangAS AS) { 1423 switch (AS) { 1424 case LangAS::opencl_global: 1425 return 1; 1426 case LangAS::opencl_constant: 1427 return 2; 1428 case LangAS::opencl_local: 1429 return 3; 1430 case LangAS::opencl_generic: 1431 return 4; // Not in SPIR 2.0 specs. 1432 case LangAS::opencl_global_device: 1433 return 5; 1434 case LangAS::opencl_global_host: 1435 return 6; 1436 default: 1437 return 0; // Assume private. 1438 } 1439 } 1440 1441 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1442 const FunctionDecl *FD, 1443 CodeGenFunction *CGF) { 1444 assert(((FD && CGF) || (!FD && !CGF)) && 1445 "Incorrect use - FD and CGF should either be both null or not!"); 1446 // Create MDNodes that represent the kernel arg metadata. 1447 // Each MDNode is a list in the form of "key", N number of values which is 1448 // the same number of values as their are kernel arguments. 1449 1450 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1451 1452 // MDNode for the kernel argument address space qualifiers. 1453 SmallVector<llvm::Metadata *, 8> addressQuals; 1454 1455 // MDNode for the kernel argument access qualifiers (images only). 1456 SmallVector<llvm::Metadata *, 8> accessQuals; 1457 1458 // MDNode for the kernel argument type names. 1459 SmallVector<llvm::Metadata *, 8> argTypeNames; 1460 1461 // MDNode for the kernel argument base type names. 1462 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1463 1464 // MDNode for the kernel argument type qualifiers. 1465 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1466 1467 // MDNode for the kernel argument names. 1468 SmallVector<llvm::Metadata *, 8> argNames; 1469 1470 if (FD && CGF) 1471 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1472 const ParmVarDecl *parm = FD->getParamDecl(i); 1473 QualType ty = parm->getType(); 1474 std::string typeQuals; 1475 1476 if (ty->isPointerType()) { 1477 QualType pointeeTy = ty->getPointeeType(); 1478 1479 // Get address qualifier. 1480 addressQuals.push_back( 1481 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1482 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1483 1484 // Get argument type name. 1485 std::string typeName = 1486 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1487 1488 // Turn "unsigned type" to "utype" 1489 std::string::size_type pos = typeName.find("unsigned"); 1490 if (pointeeTy.isCanonical() && pos != std::string::npos) 1491 typeName.erase(pos + 1, 8); 1492 1493 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1494 1495 std::string baseTypeName = 1496 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1497 Policy) + 1498 "*"; 1499 1500 // Turn "unsigned type" to "utype" 1501 pos = baseTypeName.find("unsigned"); 1502 if (pos != std::string::npos) 1503 baseTypeName.erase(pos + 1, 8); 1504 1505 argBaseTypeNames.push_back( 1506 llvm::MDString::get(VMContext, baseTypeName)); 1507 1508 // Get argument type qualifiers: 1509 if (ty.isRestrictQualified()) 1510 typeQuals = "restrict"; 1511 if (pointeeTy.isConstQualified() || 1512 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1513 typeQuals += typeQuals.empty() ? "const" : " const"; 1514 if (pointeeTy.isVolatileQualified()) 1515 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1516 } else { 1517 uint32_t AddrSpc = 0; 1518 bool isPipe = ty->isPipeType(); 1519 if (ty->isImageType() || isPipe) 1520 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1521 1522 addressQuals.push_back( 1523 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1524 1525 // Get argument type name. 1526 std::string typeName; 1527 if (isPipe) 1528 typeName = ty.getCanonicalType() 1529 ->castAs<PipeType>() 1530 ->getElementType() 1531 .getAsString(Policy); 1532 else 1533 typeName = ty.getUnqualifiedType().getAsString(Policy); 1534 1535 // Turn "unsigned type" to "utype" 1536 std::string::size_type pos = typeName.find("unsigned"); 1537 if (ty.isCanonical() && pos != std::string::npos) 1538 typeName.erase(pos + 1, 8); 1539 1540 std::string baseTypeName; 1541 if (isPipe) 1542 baseTypeName = ty.getCanonicalType() 1543 ->castAs<PipeType>() 1544 ->getElementType() 1545 .getCanonicalType() 1546 .getAsString(Policy); 1547 else 1548 baseTypeName = 1549 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1550 1551 // Remove access qualifiers on images 1552 // (as they are inseparable from type in clang implementation, 1553 // but OpenCL spec provides a special query to get access qualifier 1554 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1555 if (ty->isImageType()) { 1556 removeImageAccessQualifier(typeName); 1557 removeImageAccessQualifier(baseTypeName); 1558 } 1559 1560 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1561 1562 // Turn "unsigned type" to "utype" 1563 pos = baseTypeName.find("unsigned"); 1564 if (pos != std::string::npos) 1565 baseTypeName.erase(pos + 1, 8); 1566 1567 argBaseTypeNames.push_back( 1568 llvm::MDString::get(VMContext, baseTypeName)); 1569 1570 if (isPipe) 1571 typeQuals = "pipe"; 1572 } 1573 1574 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1575 1576 // Get image and pipe access qualifier: 1577 if (ty->isImageType() || ty->isPipeType()) { 1578 const Decl *PDecl = parm; 1579 if (auto *TD = dyn_cast<TypedefType>(ty)) 1580 PDecl = TD->getDecl(); 1581 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1582 if (A && A->isWriteOnly()) 1583 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1584 else if (A && A->isReadWrite()) 1585 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1586 else 1587 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1588 } else 1589 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1590 1591 // Get argument name. 1592 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1593 } 1594 1595 Fn->setMetadata("kernel_arg_addr_space", 1596 llvm::MDNode::get(VMContext, addressQuals)); 1597 Fn->setMetadata("kernel_arg_access_qual", 1598 llvm::MDNode::get(VMContext, accessQuals)); 1599 Fn->setMetadata("kernel_arg_type", 1600 llvm::MDNode::get(VMContext, argTypeNames)); 1601 Fn->setMetadata("kernel_arg_base_type", 1602 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1603 Fn->setMetadata("kernel_arg_type_qual", 1604 llvm::MDNode::get(VMContext, argTypeQuals)); 1605 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1606 Fn->setMetadata("kernel_arg_name", 1607 llvm::MDNode::get(VMContext, argNames)); 1608 } 1609 1610 /// Determines whether the language options require us to model 1611 /// unwind exceptions. We treat -fexceptions as mandating this 1612 /// except under the fragile ObjC ABI with only ObjC exceptions 1613 /// enabled. This means, for example, that C with -fexceptions 1614 /// enables this. 1615 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1616 // If exceptions are completely disabled, obviously this is false. 1617 if (!LangOpts.Exceptions) return false; 1618 1619 // If C++ exceptions are enabled, this is true. 1620 if (LangOpts.CXXExceptions) return true; 1621 1622 // If ObjC exceptions are enabled, this depends on the ABI. 1623 if (LangOpts.ObjCExceptions) { 1624 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1625 } 1626 1627 return true; 1628 } 1629 1630 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1631 const CXXMethodDecl *MD) { 1632 // Check that the type metadata can ever actually be used by a call. 1633 if (!CGM.getCodeGenOpts().LTOUnit || 1634 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1635 return false; 1636 1637 // Only functions whose address can be taken with a member function pointer 1638 // need this sort of type metadata. 1639 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1640 !isa<CXXDestructorDecl>(MD); 1641 } 1642 1643 std::vector<const CXXRecordDecl *> 1644 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1645 llvm::SetVector<const CXXRecordDecl *> MostBases; 1646 1647 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1648 CollectMostBases = [&](const CXXRecordDecl *RD) { 1649 if (RD->getNumBases() == 0) 1650 MostBases.insert(RD); 1651 for (const CXXBaseSpecifier &B : RD->bases()) 1652 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1653 }; 1654 CollectMostBases(RD); 1655 return MostBases.takeVector(); 1656 } 1657 1658 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1659 llvm::Function *F) { 1660 llvm::AttrBuilder B; 1661 1662 if (CodeGenOpts.UnwindTables) 1663 B.addAttribute(llvm::Attribute::UWTable); 1664 1665 if (CodeGenOpts.StackClashProtector) 1666 B.addAttribute("probe-stack", "inline-asm"); 1667 1668 if (!hasUnwindExceptions(LangOpts)) 1669 B.addAttribute(llvm::Attribute::NoUnwind); 1670 1671 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1672 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1673 B.addAttribute(llvm::Attribute::StackProtect); 1674 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1675 B.addAttribute(llvm::Attribute::StackProtectStrong); 1676 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1677 B.addAttribute(llvm::Attribute::StackProtectReq); 1678 } 1679 1680 if (!D) { 1681 // If we don't have a declaration to control inlining, the function isn't 1682 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1683 // disabled, mark the function as noinline. 1684 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1685 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1686 B.addAttribute(llvm::Attribute::NoInline); 1687 1688 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1689 return; 1690 } 1691 1692 // Track whether we need to add the optnone LLVM attribute, 1693 // starting with the default for this optimization level. 1694 bool ShouldAddOptNone = 1695 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1696 // We can't add optnone in the following cases, it won't pass the verifier. 1697 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1698 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1699 1700 // Add optnone, but do so only if the function isn't always_inline. 1701 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1702 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1703 B.addAttribute(llvm::Attribute::OptimizeNone); 1704 1705 // OptimizeNone implies noinline; we should not be inlining such functions. 1706 B.addAttribute(llvm::Attribute::NoInline); 1707 1708 // We still need to handle naked functions even though optnone subsumes 1709 // much of their semantics. 1710 if (D->hasAttr<NakedAttr>()) 1711 B.addAttribute(llvm::Attribute::Naked); 1712 1713 // OptimizeNone wins over OptimizeForSize and MinSize. 1714 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1715 F->removeFnAttr(llvm::Attribute::MinSize); 1716 } else if (D->hasAttr<NakedAttr>()) { 1717 // Naked implies noinline: we should not be inlining such functions. 1718 B.addAttribute(llvm::Attribute::Naked); 1719 B.addAttribute(llvm::Attribute::NoInline); 1720 } else if (D->hasAttr<NoDuplicateAttr>()) { 1721 B.addAttribute(llvm::Attribute::NoDuplicate); 1722 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1723 // Add noinline if the function isn't always_inline. 1724 B.addAttribute(llvm::Attribute::NoInline); 1725 } else if (D->hasAttr<AlwaysInlineAttr>() && 1726 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1727 // (noinline wins over always_inline, and we can't specify both in IR) 1728 B.addAttribute(llvm::Attribute::AlwaysInline); 1729 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1730 // If we're not inlining, then force everything that isn't always_inline to 1731 // carry an explicit noinline attribute. 1732 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1733 B.addAttribute(llvm::Attribute::NoInline); 1734 } else { 1735 // Otherwise, propagate the inline hint attribute and potentially use its 1736 // absence to mark things as noinline. 1737 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1738 // Search function and template pattern redeclarations for inline. 1739 auto CheckForInline = [](const FunctionDecl *FD) { 1740 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1741 return Redecl->isInlineSpecified(); 1742 }; 1743 if (any_of(FD->redecls(), CheckRedeclForInline)) 1744 return true; 1745 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1746 if (!Pattern) 1747 return false; 1748 return any_of(Pattern->redecls(), CheckRedeclForInline); 1749 }; 1750 if (CheckForInline(FD)) { 1751 B.addAttribute(llvm::Attribute::InlineHint); 1752 } else if (CodeGenOpts.getInlining() == 1753 CodeGenOptions::OnlyHintInlining && 1754 !FD->isInlined() && 1755 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1756 B.addAttribute(llvm::Attribute::NoInline); 1757 } 1758 } 1759 } 1760 1761 // Add other optimization related attributes if we are optimizing this 1762 // function. 1763 if (!D->hasAttr<OptimizeNoneAttr>()) { 1764 if (D->hasAttr<ColdAttr>()) { 1765 if (!ShouldAddOptNone) 1766 B.addAttribute(llvm::Attribute::OptimizeForSize); 1767 B.addAttribute(llvm::Attribute::Cold); 1768 } 1769 if (D->hasAttr<HotAttr>()) 1770 B.addAttribute(llvm::Attribute::Hot); 1771 if (D->hasAttr<MinSizeAttr>()) 1772 B.addAttribute(llvm::Attribute::MinSize); 1773 } 1774 1775 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1776 1777 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1778 if (alignment) 1779 F->setAlignment(llvm::Align(alignment)); 1780 1781 if (!D->hasAttr<AlignedAttr>()) 1782 if (LangOpts.FunctionAlignment) 1783 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1784 1785 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1786 // reserve a bit for differentiating between virtual and non-virtual member 1787 // functions. If the current target's C++ ABI requires this and this is a 1788 // member function, set its alignment accordingly. 1789 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1790 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1791 F->setAlignment(llvm::Align(2)); 1792 } 1793 1794 // In the cross-dso CFI mode with canonical jump tables, we want !type 1795 // attributes on definitions only. 1796 if (CodeGenOpts.SanitizeCfiCrossDso && 1797 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1798 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1799 // Skip available_externally functions. They won't be codegen'ed in the 1800 // current module anyway. 1801 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1802 CreateFunctionTypeMetadataForIcall(FD, F); 1803 } 1804 } 1805 1806 // Emit type metadata on member functions for member function pointer checks. 1807 // These are only ever necessary on definitions; we're guaranteed that the 1808 // definition will be present in the LTO unit as a result of LTO visibility. 1809 auto *MD = dyn_cast<CXXMethodDecl>(D); 1810 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1811 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1812 llvm::Metadata *Id = 1813 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1814 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1815 F->addTypeMetadata(0, Id); 1816 } 1817 } 1818 } 1819 1820 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1821 llvm::Function *F) { 1822 if (D->hasAttr<StrictFPAttr>()) { 1823 llvm::AttrBuilder FuncAttrs; 1824 FuncAttrs.addAttribute("strictfp"); 1825 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1826 } 1827 } 1828 1829 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1830 const Decl *D = GD.getDecl(); 1831 if (dyn_cast_or_null<NamedDecl>(D)) 1832 setGVProperties(GV, GD); 1833 else 1834 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1835 1836 if (D && D->hasAttr<UsedAttr>()) 1837 addUsedGlobal(GV); 1838 1839 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1840 const auto *VD = cast<VarDecl>(D); 1841 if (VD->getType().isConstQualified() && 1842 VD->getStorageDuration() == SD_Static) 1843 addUsedGlobal(GV); 1844 } 1845 } 1846 1847 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1848 llvm::AttrBuilder &Attrs) { 1849 // Add target-cpu and target-features attributes to functions. If 1850 // we have a decl for the function and it has a target attribute then 1851 // parse that and add it to the feature set. 1852 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1853 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1854 std::vector<std::string> Features; 1855 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1856 FD = FD ? FD->getMostRecentDecl() : FD; 1857 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1858 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1859 bool AddedAttr = false; 1860 if (TD || SD) { 1861 llvm::StringMap<bool> FeatureMap; 1862 getContext().getFunctionFeatureMap(FeatureMap, GD); 1863 1864 // Produce the canonical string for this set of features. 1865 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1866 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1867 1868 // Now add the target-cpu and target-features to the function. 1869 // While we populated the feature map above, we still need to 1870 // get and parse the target attribute so we can get the cpu for 1871 // the function. 1872 if (TD) { 1873 ParsedTargetAttr ParsedAttr = TD->parse(); 1874 if (!ParsedAttr.Architecture.empty() && 1875 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1876 TargetCPU = ParsedAttr.Architecture; 1877 TuneCPU = ""; // Clear the tune CPU. 1878 } 1879 if (!ParsedAttr.Tune.empty() && 1880 getTarget().isValidCPUName(ParsedAttr.Tune)) 1881 TuneCPU = ParsedAttr.Tune; 1882 } 1883 } else { 1884 // Otherwise just add the existing target cpu and target features to the 1885 // function. 1886 Features = getTarget().getTargetOpts().Features; 1887 } 1888 1889 if (!TargetCPU.empty()) { 1890 Attrs.addAttribute("target-cpu", TargetCPU); 1891 AddedAttr = true; 1892 } 1893 if (!TuneCPU.empty()) { 1894 Attrs.addAttribute("tune-cpu", TuneCPU); 1895 AddedAttr = true; 1896 } 1897 if (!Features.empty()) { 1898 llvm::sort(Features); 1899 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1900 AddedAttr = true; 1901 } 1902 1903 return AddedAttr; 1904 } 1905 1906 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1907 llvm::GlobalObject *GO) { 1908 const Decl *D = GD.getDecl(); 1909 SetCommonAttributes(GD, GO); 1910 1911 if (D) { 1912 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1913 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1914 GV->addAttribute("bss-section", SA->getName()); 1915 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1916 GV->addAttribute("data-section", SA->getName()); 1917 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1918 GV->addAttribute("rodata-section", SA->getName()); 1919 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1920 GV->addAttribute("relro-section", SA->getName()); 1921 } 1922 1923 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1924 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1925 if (!D->getAttr<SectionAttr>()) 1926 F->addFnAttr("implicit-section-name", SA->getName()); 1927 1928 llvm::AttrBuilder Attrs; 1929 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1930 // We know that GetCPUAndFeaturesAttributes will always have the 1931 // newest set, since it has the newest possible FunctionDecl, so the 1932 // new ones should replace the old. 1933 llvm::AttrBuilder RemoveAttrs; 1934 RemoveAttrs.addAttribute("target-cpu"); 1935 RemoveAttrs.addAttribute("target-features"); 1936 RemoveAttrs.addAttribute("tune-cpu"); 1937 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1938 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1939 } 1940 } 1941 1942 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1943 GO->setSection(CSA->getName()); 1944 else if (const auto *SA = D->getAttr<SectionAttr>()) 1945 GO->setSection(SA->getName()); 1946 } 1947 1948 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1949 } 1950 1951 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1952 llvm::Function *F, 1953 const CGFunctionInfo &FI) { 1954 const Decl *D = GD.getDecl(); 1955 SetLLVMFunctionAttributes(GD, FI, F); 1956 SetLLVMFunctionAttributesForDefinition(D, F); 1957 1958 F->setLinkage(llvm::Function::InternalLinkage); 1959 1960 setNonAliasAttributes(GD, F); 1961 } 1962 1963 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1964 // Set linkage and visibility in case we never see a definition. 1965 LinkageInfo LV = ND->getLinkageAndVisibility(); 1966 // Don't set internal linkage on declarations. 1967 // "extern_weak" is overloaded in LLVM; we probably should have 1968 // separate linkage types for this. 1969 if (isExternallyVisible(LV.getLinkage()) && 1970 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1971 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1972 } 1973 1974 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1975 llvm::Function *F) { 1976 // Only if we are checking indirect calls. 1977 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1978 return; 1979 1980 // Non-static class methods are handled via vtable or member function pointer 1981 // checks elsewhere. 1982 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1983 return; 1984 1985 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1986 F->addTypeMetadata(0, MD); 1987 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1988 1989 // Emit a hash-based bit set entry for cross-DSO calls. 1990 if (CodeGenOpts.SanitizeCfiCrossDso) 1991 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1992 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1993 } 1994 1995 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1996 bool IsIncompleteFunction, 1997 bool IsThunk) { 1998 1999 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2000 // If this is an intrinsic function, set the function's attributes 2001 // to the intrinsic's attributes. 2002 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2003 return; 2004 } 2005 2006 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2007 2008 if (!IsIncompleteFunction) 2009 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 2010 2011 // Add the Returned attribute for "this", except for iOS 5 and earlier 2012 // where substantial code, including the libstdc++ dylib, was compiled with 2013 // GCC and does not actually return "this". 2014 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2015 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2016 assert(!F->arg_empty() && 2017 F->arg_begin()->getType() 2018 ->canLosslesslyBitCastTo(F->getReturnType()) && 2019 "unexpected this return"); 2020 F->addAttribute(1, llvm::Attribute::Returned); 2021 } 2022 2023 // Only a few attributes are set on declarations; these may later be 2024 // overridden by a definition. 2025 2026 setLinkageForGV(F, FD); 2027 setGVProperties(F, FD); 2028 2029 // Setup target-specific attributes. 2030 if (!IsIncompleteFunction && F->isDeclaration()) 2031 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2032 2033 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2034 F->setSection(CSA->getName()); 2035 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2036 F->setSection(SA->getName()); 2037 2038 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2039 if (FD->isInlineBuiltinDeclaration()) { 2040 const FunctionDecl *FDBody; 2041 bool HasBody = FD->hasBody(FDBody); 2042 (void)HasBody; 2043 assert(HasBody && "Inline builtin declarations should always have an " 2044 "available body!"); 2045 if (shouldEmitFunction(FDBody)) 2046 F->addAttribute(llvm::AttributeList::FunctionIndex, 2047 llvm::Attribute::NoBuiltin); 2048 } 2049 2050 if (FD->isReplaceableGlobalAllocationFunction()) { 2051 // A replaceable global allocation function does not act like a builtin by 2052 // default, only if it is invoked by a new-expression or delete-expression. 2053 F->addAttribute(llvm::AttributeList::FunctionIndex, 2054 llvm::Attribute::NoBuiltin); 2055 } 2056 2057 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2058 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2059 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2060 if (MD->isVirtual()) 2061 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2062 2063 // Don't emit entries for function declarations in the cross-DSO mode. This 2064 // is handled with better precision by the receiving DSO. But if jump tables 2065 // are non-canonical then we need type metadata in order to produce the local 2066 // jump table. 2067 if (!CodeGenOpts.SanitizeCfiCrossDso || 2068 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2069 CreateFunctionTypeMetadataForIcall(FD, F); 2070 2071 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2072 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2073 2074 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2075 // Annotate the callback behavior as metadata: 2076 // - The callback callee (as argument number). 2077 // - The callback payloads (as argument numbers). 2078 llvm::LLVMContext &Ctx = F->getContext(); 2079 llvm::MDBuilder MDB(Ctx); 2080 2081 // The payload indices are all but the first one in the encoding. The first 2082 // identifies the callback callee. 2083 int CalleeIdx = *CB->encoding_begin(); 2084 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2085 F->addMetadata(llvm::LLVMContext::MD_callback, 2086 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2087 CalleeIdx, PayloadIndices, 2088 /* VarArgsArePassed */ false)})); 2089 } 2090 } 2091 2092 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2093 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2094 "Only globals with definition can force usage."); 2095 LLVMUsed.emplace_back(GV); 2096 } 2097 2098 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2099 assert(!GV->isDeclaration() && 2100 "Only globals with definition can force usage."); 2101 LLVMCompilerUsed.emplace_back(GV); 2102 } 2103 2104 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2105 std::vector<llvm::WeakTrackingVH> &List) { 2106 // Don't create llvm.used if there is no need. 2107 if (List.empty()) 2108 return; 2109 2110 // Convert List to what ConstantArray needs. 2111 SmallVector<llvm::Constant*, 8> UsedArray; 2112 UsedArray.resize(List.size()); 2113 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2114 UsedArray[i] = 2115 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2116 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2117 } 2118 2119 if (UsedArray.empty()) 2120 return; 2121 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2122 2123 auto *GV = new llvm::GlobalVariable( 2124 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2125 llvm::ConstantArray::get(ATy, UsedArray), Name); 2126 2127 GV->setSection("llvm.metadata"); 2128 } 2129 2130 void CodeGenModule::emitLLVMUsed() { 2131 emitUsed(*this, "llvm.used", LLVMUsed); 2132 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2133 } 2134 2135 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2136 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2137 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2138 } 2139 2140 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2141 llvm::SmallString<32> Opt; 2142 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2143 if (Opt.empty()) 2144 return; 2145 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2146 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2147 } 2148 2149 void CodeGenModule::AddDependentLib(StringRef Lib) { 2150 auto &C = getLLVMContext(); 2151 if (getTarget().getTriple().isOSBinFormatELF()) { 2152 ELFDependentLibraries.push_back( 2153 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2154 return; 2155 } 2156 2157 llvm::SmallString<24> Opt; 2158 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2159 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2160 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2161 } 2162 2163 /// Add link options implied by the given module, including modules 2164 /// it depends on, using a postorder walk. 2165 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2166 SmallVectorImpl<llvm::MDNode *> &Metadata, 2167 llvm::SmallPtrSet<Module *, 16> &Visited) { 2168 // Import this module's parent. 2169 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2170 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2171 } 2172 2173 // Import this module's dependencies. 2174 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2175 if (Visited.insert(Mod->Imports[I - 1]).second) 2176 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2177 } 2178 2179 // Add linker options to link against the libraries/frameworks 2180 // described by this module. 2181 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2182 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2183 2184 // For modules that use export_as for linking, use that module 2185 // name instead. 2186 if (Mod->UseExportAsModuleLinkName) 2187 return; 2188 2189 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2190 // Link against a framework. Frameworks are currently Darwin only, so we 2191 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2192 if (Mod->LinkLibraries[I-1].IsFramework) { 2193 llvm::Metadata *Args[2] = { 2194 llvm::MDString::get(Context, "-framework"), 2195 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2196 2197 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2198 continue; 2199 } 2200 2201 // Link against a library. 2202 if (IsELF) { 2203 llvm::Metadata *Args[2] = { 2204 llvm::MDString::get(Context, "lib"), 2205 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2206 }; 2207 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2208 } else { 2209 llvm::SmallString<24> Opt; 2210 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2211 Mod->LinkLibraries[I - 1].Library, Opt); 2212 auto *OptString = llvm::MDString::get(Context, Opt); 2213 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2214 } 2215 } 2216 } 2217 2218 void CodeGenModule::EmitModuleLinkOptions() { 2219 // Collect the set of all of the modules we want to visit to emit link 2220 // options, which is essentially the imported modules and all of their 2221 // non-explicit child modules. 2222 llvm::SetVector<clang::Module *> LinkModules; 2223 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2224 SmallVector<clang::Module *, 16> Stack; 2225 2226 // Seed the stack with imported modules. 2227 for (Module *M : ImportedModules) { 2228 // Do not add any link flags when an implementation TU of a module imports 2229 // a header of that same module. 2230 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2231 !getLangOpts().isCompilingModule()) 2232 continue; 2233 if (Visited.insert(M).second) 2234 Stack.push_back(M); 2235 } 2236 2237 // Find all of the modules to import, making a little effort to prune 2238 // non-leaf modules. 2239 while (!Stack.empty()) { 2240 clang::Module *Mod = Stack.pop_back_val(); 2241 2242 bool AnyChildren = false; 2243 2244 // Visit the submodules of this module. 2245 for (const auto &SM : Mod->submodules()) { 2246 // Skip explicit children; they need to be explicitly imported to be 2247 // linked against. 2248 if (SM->IsExplicit) 2249 continue; 2250 2251 if (Visited.insert(SM).second) { 2252 Stack.push_back(SM); 2253 AnyChildren = true; 2254 } 2255 } 2256 2257 // We didn't find any children, so add this module to the list of 2258 // modules to link against. 2259 if (!AnyChildren) { 2260 LinkModules.insert(Mod); 2261 } 2262 } 2263 2264 // Add link options for all of the imported modules in reverse topological 2265 // order. We don't do anything to try to order import link flags with respect 2266 // to linker options inserted by things like #pragma comment(). 2267 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2268 Visited.clear(); 2269 for (Module *M : LinkModules) 2270 if (Visited.insert(M).second) 2271 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2272 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2273 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2274 2275 // Add the linker options metadata flag. 2276 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2277 for (auto *MD : LinkerOptionsMetadata) 2278 NMD->addOperand(MD); 2279 } 2280 2281 void CodeGenModule::EmitDeferred() { 2282 // Emit deferred declare target declarations. 2283 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2284 getOpenMPRuntime().emitDeferredTargetDecls(); 2285 2286 // Emit code for any potentially referenced deferred decls. Since a 2287 // previously unused static decl may become used during the generation of code 2288 // for a static function, iterate until no changes are made. 2289 2290 if (!DeferredVTables.empty()) { 2291 EmitDeferredVTables(); 2292 2293 // Emitting a vtable doesn't directly cause more vtables to 2294 // become deferred, although it can cause functions to be 2295 // emitted that then need those vtables. 2296 assert(DeferredVTables.empty()); 2297 } 2298 2299 // Emit CUDA/HIP static device variables referenced by host code only. 2300 if (getLangOpts().CUDA) 2301 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2302 DeferredDeclsToEmit.push_back(V); 2303 2304 // Stop if we're out of both deferred vtables and deferred declarations. 2305 if (DeferredDeclsToEmit.empty()) 2306 return; 2307 2308 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2309 // work, it will not interfere with this. 2310 std::vector<GlobalDecl> CurDeclsToEmit; 2311 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2312 2313 for (GlobalDecl &D : CurDeclsToEmit) { 2314 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2315 // to get GlobalValue with exactly the type we need, not something that 2316 // might had been created for another decl with the same mangled name but 2317 // different type. 2318 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2319 GetAddrOfGlobal(D, ForDefinition)); 2320 2321 // In case of different address spaces, we may still get a cast, even with 2322 // IsForDefinition equal to true. Query mangled names table to get 2323 // GlobalValue. 2324 if (!GV) 2325 GV = GetGlobalValue(getMangledName(D)); 2326 2327 // Make sure GetGlobalValue returned non-null. 2328 assert(GV); 2329 2330 // Check to see if we've already emitted this. This is necessary 2331 // for a couple of reasons: first, decls can end up in the 2332 // deferred-decls queue multiple times, and second, decls can end 2333 // up with definitions in unusual ways (e.g. by an extern inline 2334 // function acquiring a strong function redefinition). Just 2335 // ignore these cases. 2336 if (!GV->isDeclaration()) 2337 continue; 2338 2339 // If this is OpenMP, check if it is legal to emit this global normally. 2340 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2341 continue; 2342 2343 // Otherwise, emit the definition and move on to the next one. 2344 EmitGlobalDefinition(D, GV); 2345 2346 // If we found out that we need to emit more decls, do that recursively. 2347 // This has the advantage that the decls are emitted in a DFS and related 2348 // ones are close together, which is convenient for testing. 2349 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2350 EmitDeferred(); 2351 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2352 } 2353 } 2354 } 2355 2356 void CodeGenModule::EmitVTablesOpportunistically() { 2357 // Try to emit external vtables as available_externally if they have emitted 2358 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2359 // is not allowed to create new references to things that need to be emitted 2360 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2361 2362 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2363 && "Only emit opportunistic vtables with optimizations"); 2364 2365 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2366 assert(getVTables().isVTableExternal(RD) && 2367 "This queue should only contain external vtables"); 2368 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2369 VTables.GenerateClassData(RD); 2370 } 2371 OpportunisticVTables.clear(); 2372 } 2373 2374 void CodeGenModule::EmitGlobalAnnotations() { 2375 if (Annotations.empty()) 2376 return; 2377 2378 // Create a new global variable for the ConstantStruct in the Module. 2379 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2380 Annotations[0]->getType(), Annotations.size()), Annotations); 2381 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2382 llvm::GlobalValue::AppendingLinkage, 2383 Array, "llvm.global.annotations"); 2384 gv->setSection(AnnotationSection); 2385 } 2386 2387 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2388 llvm::Constant *&AStr = AnnotationStrings[Str]; 2389 if (AStr) 2390 return AStr; 2391 2392 // Not found yet, create a new global. 2393 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2394 auto *gv = 2395 new llvm::GlobalVariable(getModule(), s->getType(), true, 2396 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2397 gv->setSection(AnnotationSection); 2398 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2399 AStr = gv; 2400 return gv; 2401 } 2402 2403 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2404 SourceManager &SM = getContext().getSourceManager(); 2405 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2406 if (PLoc.isValid()) 2407 return EmitAnnotationString(PLoc.getFilename()); 2408 return EmitAnnotationString(SM.getBufferName(Loc)); 2409 } 2410 2411 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2412 SourceManager &SM = getContext().getSourceManager(); 2413 PresumedLoc PLoc = SM.getPresumedLoc(L); 2414 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2415 SM.getExpansionLineNumber(L); 2416 return llvm::ConstantInt::get(Int32Ty, LineNo); 2417 } 2418 2419 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2420 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2421 if (Exprs.empty()) 2422 return llvm::ConstantPointerNull::get(Int8PtrTy); 2423 2424 llvm::FoldingSetNodeID ID; 2425 for (Expr *E : Exprs) { 2426 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2427 } 2428 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2429 if (Lookup) 2430 return Lookup; 2431 2432 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2433 LLVMArgs.reserve(Exprs.size()); 2434 ConstantEmitter ConstEmiter(*this); 2435 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2436 const auto *CE = cast<clang::ConstantExpr>(E); 2437 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2438 CE->getType()); 2439 }); 2440 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2441 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2442 llvm::GlobalValue::PrivateLinkage, Struct, 2443 ".args"); 2444 GV->setSection(AnnotationSection); 2445 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2446 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2447 2448 Lookup = Bitcasted; 2449 return Bitcasted; 2450 } 2451 2452 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2453 const AnnotateAttr *AA, 2454 SourceLocation L) { 2455 // Get the globals for file name, annotation, and the line number. 2456 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2457 *UnitGV = EmitAnnotationUnit(L), 2458 *LineNoCst = EmitAnnotationLineNo(L), 2459 *Args = EmitAnnotationArgs(AA); 2460 2461 llvm::Constant *ASZeroGV = GV; 2462 if (GV->getAddressSpace() != 0) { 2463 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2464 GV, GV->getValueType()->getPointerTo(0)); 2465 } 2466 2467 // Create the ConstantStruct for the global annotation. 2468 llvm::Constant *Fields[] = { 2469 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2470 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2471 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2472 LineNoCst, 2473 Args, 2474 }; 2475 return llvm::ConstantStruct::getAnon(Fields); 2476 } 2477 2478 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2479 llvm::GlobalValue *GV) { 2480 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2481 // Get the struct elements for these annotations. 2482 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2483 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2484 } 2485 2486 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2487 llvm::Function *Fn, 2488 SourceLocation Loc) const { 2489 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2490 // Blacklist by function name. 2491 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2492 return true; 2493 // Blacklist by location. 2494 if (Loc.isValid()) 2495 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2496 // If location is unknown, this may be a compiler-generated function. Assume 2497 // it's located in the main file. 2498 auto &SM = Context.getSourceManager(); 2499 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2500 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2501 } 2502 return false; 2503 } 2504 2505 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2506 SourceLocation Loc, QualType Ty, 2507 StringRef Category) const { 2508 // For now globals can be blacklisted only in ASan and KASan. 2509 const SanitizerMask EnabledAsanMask = 2510 LangOpts.Sanitize.Mask & 2511 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2512 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2513 SanitizerKind::MemTag); 2514 if (!EnabledAsanMask) 2515 return false; 2516 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2517 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2518 return true; 2519 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2520 return true; 2521 // Check global type. 2522 if (!Ty.isNull()) { 2523 // Drill down the array types: if global variable of a fixed type is 2524 // blacklisted, we also don't instrument arrays of them. 2525 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2526 Ty = AT->getElementType(); 2527 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2528 // We allow to blacklist only record types (classes, structs etc.) 2529 if (Ty->isRecordType()) { 2530 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2531 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2532 return true; 2533 } 2534 } 2535 return false; 2536 } 2537 2538 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2539 StringRef Category) const { 2540 const auto &XRayFilter = getContext().getXRayFilter(); 2541 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2542 auto Attr = ImbueAttr::NONE; 2543 if (Loc.isValid()) 2544 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2545 if (Attr == ImbueAttr::NONE) 2546 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2547 switch (Attr) { 2548 case ImbueAttr::NONE: 2549 return false; 2550 case ImbueAttr::ALWAYS: 2551 Fn->addFnAttr("function-instrument", "xray-always"); 2552 break; 2553 case ImbueAttr::ALWAYS_ARG1: 2554 Fn->addFnAttr("function-instrument", "xray-always"); 2555 Fn->addFnAttr("xray-log-args", "1"); 2556 break; 2557 case ImbueAttr::NEVER: 2558 Fn->addFnAttr("function-instrument", "xray-never"); 2559 break; 2560 } 2561 return true; 2562 } 2563 2564 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2565 // Never defer when EmitAllDecls is specified. 2566 if (LangOpts.EmitAllDecls) 2567 return true; 2568 2569 if (CodeGenOpts.KeepStaticConsts) { 2570 const auto *VD = dyn_cast<VarDecl>(Global); 2571 if (VD && VD->getType().isConstQualified() && 2572 VD->getStorageDuration() == SD_Static) 2573 return true; 2574 } 2575 2576 return getContext().DeclMustBeEmitted(Global); 2577 } 2578 2579 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2580 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2581 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2582 // Implicit template instantiations may change linkage if they are later 2583 // explicitly instantiated, so they should not be emitted eagerly. 2584 return false; 2585 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2586 // not emit them eagerly unless we sure that the function must be emitted on 2587 // the host. 2588 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2589 !LangOpts.OpenMPIsDevice && 2590 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2591 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2592 return false; 2593 } 2594 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2595 if (Context.getInlineVariableDefinitionKind(VD) == 2596 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2597 // A definition of an inline constexpr static data member may change 2598 // linkage later if it's redeclared outside the class. 2599 return false; 2600 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2601 // codegen for global variables, because they may be marked as threadprivate. 2602 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2603 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2604 !isTypeConstant(Global->getType(), false) && 2605 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2606 return false; 2607 2608 return true; 2609 } 2610 2611 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2612 StringRef Name = getMangledName(GD); 2613 2614 // The UUID descriptor should be pointer aligned. 2615 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2616 2617 // Look for an existing global. 2618 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2619 return ConstantAddress(GV, Alignment); 2620 2621 ConstantEmitter Emitter(*this); 2622 llvm::Constant *Init; 2623 2624 APValue &V = GD->getAsAPValue(); 2625 if (!V.isAbsent()) { 2626 // If possible, emit the APValue version of the initializer. In particular, 2627 // this gets the type of the constant right. 2628 Init = Emitter.emitForInitializer( 2629 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2630 } else { 2631 // As a fallback, directly construct the constant. 2632 // FIXME: This may get padding wrong under esoteric struct layout rules. 2633 // MSVC appears to create a complete type 'struct __s_GUID' that it 2634 // presumably uses to represent these constants. 2635 MSGuidDecl::Parts Parts = GD->getParts(); 2636 llvm::Constant *Fields[4] = { 2637 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2638 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2639 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2640 llvm::ConstantDataArray::getRaw( 2641 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2642 Int8Ty)}; 2643 Init = llvm::ConstantStruct::getAnon(Fields); 2644 } 2645 2646 auto *GV = new llvm::GlobalVariable( 2647 getModule(), Init->getType(), 2648 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2649 if (supportsCOMDAT()) 2650 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2651 setDSOLocal(GV); 2652 2653 llvm::Constant *Addr = GV; 2654 if (!V.isAbsent()) { 2655 Emitter.finalize(GV); 2656 } else { 2657 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2658 Addr = llvm::ConstantExpr::getBitCast( 2659 GV, Ty->getPointerTo(GV->getAddressSpace())); 2660 } 2661 return ConstantAddress(Addr, Alignment); 2662 } 2663 2664 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2665 const TemplateParamObjectDecl *TPO) { 2666 StringRef Name = getMangledName(TPO); 2667 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 2668 2669 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2670 return ConstantAddress(GV, Alignment); 2671 2672 ConstantEmitter Emitter(*this); 2673 llvm::Constant *Init = Emitter.emitForInitializer( 2674 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 2675 2676 if (!Init) { 2677 ErrorUnsupported(TPO, "template parameter object"); 2678 return ConstantAddress::invalid(); 2679 } 2680 2681 auto *GV = new llvm::GlobalVariable( 2682 getModule(), Init->getType(), 2683 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2684 if (supportsCOMDAT()) 2685 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2686 Emitter.finalize(GV); 2687 2688 return ConstantAddress(GV, Alignment); 2689 } 2690 2691 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2692 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2693 assert(AA && "No alias?"); 2694 2695 CharUnits Alignment = getContext().getDeclAlign(VD); 2696 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2697 2698 // See if there is already something with the target's name in the module. 2699 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2700 if (Entry) { 2701 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2702 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2703 return ConstantAddress(Ptr, Alignment); 2704 } 2705 2706 llvm::Constant *Aliasee; 2707 if (isa<llvm::FunctionType>(DeclTy)) 2708 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2709 GlobalDecl(cast<FunctionDecl>(VD)), 2710 /*ForVTable=*/false); 2711 else 2712 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2713 llvm::PointerType::getUnqual(DeclTy), 2714 nullptr); 2715 2716 auto *F = cast<llvm::GlobalValue>(Aliasee); 2717 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2718 WeakRefReferences.insert(F); 2719 2720 return ConstantAddress(Aliasee, Alignment); 2721 } 2722 2723 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2724 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2725 2726 // Weak references don't produce any output by themselves. 2727 if (Global->hasAttr<WeakRefAttr>()) 2728 return; 2729 2730 // If this is an alias definition (which otherwise looks like a declaration) 2731 // emit it now. 2732 if (Global->hasAttr<AliasAttr>()) 2733 return EmitAliasDefinition(GD); 2734 2735 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2736 if (Global->hasAttr<IFuncAttr>()) 2737 return emitIFuncDefinition(GD); 2738 2739 // If this is a cpu_dispatch multiversion function, emit the resolver. 2740 if (Global->hasAttr<CPUDispatchAttr>()) 2741 return emitCPUDispatchDefinition(GD); 2742 2743 // If this is CUDA, be selective about which declarations we emit. 2744 if (LangOpts.CUDA) { 2745 if (LangOpts.CUDAIsDevice) { 2746 if (!Global->hasAttr<CUDADeviceAttr>() && 2747 !Global->hasAttr<CUDAGlobalAttr>() && 2748 !Global->hasAttr<CUDAConstantAttr>() && 2749 !Global->hasAttr<CUDASharedAttr>() && 2750 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2751 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2752 return; 2753 } else { 2754 // We need to emit host-side 'shadows' for all global 2755 // device-side variables because the CUDA runtime needs their 2756 // size and host-side address in order to provide access to 2757 // their device-side incarnations. 2758 2759 // So device-only functions are the only things we skip. 2760 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2761 Global->hasAttr<CUDADeviceAttr>()) 2762 return; 2763 2764 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2765 "Expected Variable or Function"); 2766 } 2767 } 2768 2769 if (LangOpts.OpenMP) { 2770 // If this is OpenMP, check if it is legal to emit this global normally. 2771 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2772 return; 2773 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2774 if (MustBeEmitted(Global)) 2775 EmitOMPDeclareReduction(DRD); 2776 return; 2777 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2778 if (MustBeEmitted(Global)) 2779 EmitOMPDeclareMapper(DMD); 2780 return; 2781 } 2782 } 2783 2784 // Ignore declarations, they will be emitted on their first use. 2785 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2786 // Forward declarations are emitted lazily on first use. 2787 if (!FD->doesThisDeclarationHaveABody()) { 2788 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2789 return; 2790 2791 StringRef MangledName = getMangledName(GD); 2792 2793 // Compute the function info and LLVM type. 2794 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2795 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2796 2797 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2798 /*DontDefer=*/false); 2799 return; 2800 } 2801 } else { 2802 const auto *VD = cast<VarDecl>(Global); 2803 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2804 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2805 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2806 if (LangOpts.OpenMP) { 2807 // Emit declaration of the must-be-emitted declare target variable. 2808 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2809 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2810 bool UnifiedMemoryEnabled = 2811 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2812 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2813 !UnifiedMemoryEnabled) { 2814 (void)GetAddrOfGlobalVar(VD); 2815 } else { 2816 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2817 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2818 UnifiedMemoryEnabled)) && 2819 "Link clause or to clause with unified memory expected."); 2820 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2821 } 2822 2823 return; 2824 } 2825 } 2826 // If this declaration may have caused an inline variable definition to 2827 // change linkage, make sure that it's emitted. 2828 if (Context.getInlineVariableDefinitionKind(VD) == 2829 ASTContext::InlineVariableDefinitionKind::Strong) 2830 GetAddrOfGlobalVar(VD); 2831 return; 2832 } 2833 } 2834 2835 // Defer code generation to first use when possible, e.g. if this is an inline 2836 // function. If the global must always be emitted, do it eagerly if possible 2837 // to benefit from cache locality. 2838 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2839 // Emit the definition if it can't be deferred. 2840 EmitGlobalDefinition(GD); 2841 return; 2842 } 2843 2844 // If we're deferring emission of a C++ variable with an 2845 // initializer, remember the order in which it appeared in the file. 2846 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2847 cast<VarDecl>(Global)->hasInit()) { 2848 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2849 CXXGlobalInits.push_back(nullptr); 2850 } 2851 2852 StringRef MangledName = getMangledName(GD); 2853 if (GetGlobalValue(MangledName) != nullptr) { 2854 // The value has already been used and should therefore be emitted. 2855 addDeferredDeclToEmit(GD); 2856 } else if (MustBeEmitted(Global)) { 2857 // The value must be emitted, but cannot be emitted eagerly. 2858 assert(!MayBeEmittedEagerly(Global)); 2859 addDeferredDeclToEmit(GD); 2860 } else { 2861 // Otherwise, remember that we saw a deferred decl with this name. The 2862 // first use of the mangled name will cause it to move into 2863 // DeferredDeclsToEmit. 2864 DeferredDecls[MangledName] = GD; 2865 } 2866 } 2867 2868 // Check if T is a class type with a destructor that's not dllimport. 2869 static bool HasNonDllImportDtor(QualType T) { 2870 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2871 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2872 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2873 return true; 2874 2875 return false; 2876 } 2877 2878 namespace { 2879 struct FunctionIsDirectlyRecursive 2880 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2881 const StringRef Name; 2882 const Builtin::Context &BI; 2883 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2884 : Name(N), BI(C) {} 2885 2886 bool VisitCallExpr(const CallExpr *E) { 2887 const FunctionDecl *FD = E->getDirectCallee(); 2888 if (!FD) 2889 return false; 2890 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2891 if (Attr && Name == Attr->getLabel()) 2892 return true; 2893 unsigned BuiltinID = FD->getBuiltinID(); 2894 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2895 return false; 2896 StringRef BuiltinName = BI.getName(BuiltinID); 2897 if (BuiltinName.startswith("__builtin_") && 2898 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2899 return true; 2900 } 2901 return false; 2902 } 2903 2904 bool VisitStmt(const Stmt *S) { 2905 for (const Stmt *Child : S->children()) 2906 if (Child && this->Visit(Child)) 2907 return true; 2908 return false; 2909 } 2910 }; 2911 2912 // Make sure we're not referencing non-imported vars or functions. 2913 struct DLLImportFunctionVisitor 2914 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2915 bool SafeToInline = true; 2916 2917 bool shouldVisitImplicitCode() const { return true; } 2918 2919 bool VisitVarDecl(VarDecl *VD) { 2920 if (VD->getTLSKind()) { 2921 // A thread-local variable cannot be imported. 2922 SafeToInline = false; 2923 return SafeToInline; 2924 } 2925 2926 // A variable definition might imply a destructor call. 2927 if (VD->isThisDeclarationADefinition()) 2928 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2929 2930 return SafeToInline; 2931 } 2932 2933 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2934 if (const auto *D = E->getTemporary()->getDestructor()) 2935 SafeToInline = D->hasAttr<DLLImportAttr>(); 2936 return SafeToInline; 2937 } 2938 2939 bool VisitDeclRefExpr(DeclRefExpr *E) { 2940 ValueDecl *VD = E->getDecl(); 2941 if (isa<FunctionDecl>(VD)) 2942 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2943 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2944 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2945 return SafeToInline; 2946 } 2947 2948 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2949 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2950 return SafeToInline; 2951 } 2952 2953 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2954 CXXMethodDecl *M = E->getMethodDecl(); 2955 if (!M) { 2956 // Call through a pointer to member function. This is safe to inline. 2957 SafeToInline = true; 2958 } else { 2959 SafeToInline = M->hasAttr<DLLImportAttr>(); 2960 } 2961 return SafeToInline; 2962 } 2963 2964 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2965 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2966 return SafeToInline; 2967 } 2968 2969 bool VisitCXXNewExpr(CXXNewExpr *E) { 2970 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2971 return SafeToInline; 2972 } 2973 }; 2974 } 2975 2976 // isTriviallyRecursive - Check if this function calls another 2977 // decl that, because of the asm attribute or the other decl being a builtin, 2978 // ends up pointing to itself. 2979 bool 2980 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2981 StringRef Name; 2982 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2983 // asm labels are a special kind of mangling we have to support. 2984 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2985 if (!Attr) 2986 return false; 2987 Name = Attr->getLabel(); 2988 } else { 2989 Name = FD->getName(); 2990 } 2991 2992 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2993 const Stmt *Body = FD->getBody(); 2994 return Body ? Walker.Visit(Body) : false; 2995 } 2996 2997 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2998 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2999 return true; 3000 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3001 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3002 return false; 3003 3004 if (F->hasAttr<DLLImportAttr>()) { 3005 // Check whether it would be safe to inline this dllimport function. 3006 DLLImportFunctionVisitor Visitor; 3007 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3008 if (!Visitor.SafeToInline) 3009 return false; 3010 3011 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3012 // Implicit destructor invocations aren't captured in the AST, so the 3013 // check above can't see them. Check for them manually here. 3014 for (const Decl *Member : Dtor->getParent()->decls()) 3015 if (isa<FieldDecl>(Member)) 3016 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3017 return false; 3018 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3019 if (HasNonDllImportDtor(B.getType())) 3020 return false; 3021 } 3022 } 3023 3024 // PR9614. Avoid cases where the source code is lying to us. An available 3025 // externally function should have an equivalent function somewhere else, 3026 // but a function that calls itself through asm label/`__builtin_` trickery is 3027 // clearly not equivalent to the real implementation. 3028 // This happens in glibc's btowc and in some configure checks. 3029 return !isTriviallyRecursive(F); 3030 } 3031 3032 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3033 return CodeGenOpts.OptimizationLevel > 0; 3034 } 3035 3036 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3037 llvm::GlobalValue *GV) { 3038 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3039 3040 if (FD->isCPUSpecificMultiVersion()) { 3041 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3042 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3043 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3044 // Requires multiple emits. 3045 } else 3046 EmitGlobalFunctionDefinition(GD, GV); 3047 } 3048 3049 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3050 const auto *D = cast<ValueDecl>(GD.getDecl()); 3051 3052 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3053 Context.getSourceManager(), 3054 "Generating code for declaration"); 3055 3056 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3057 // At -O0, don't generate IR for functions with available_externally 3058 // linkage. 3059 if (!shouldEmitFunction(GD)) 3060 return; 3061 3062 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3063 std::string Name; 3064 llvm::raw_string_ostream OS(Name); 3065 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3066 /*Qualified=*/true); 3067 return Name; 3068 }); 3069 3070 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3071 // Make sure to emit the definition(s) before we emit the thunks. 3072 // This is necessary for the generation of certain thunks. 3073 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3074 ABI->emitCXXStructor(GD); 3075 else if (FD->isMultiVersion()) 3076 EmitMultiVersionFunctionDefinition(GD, GV); 3077 else 3078 EmitGlobalFunctionDefinition(GD, GV); 3079 3080 if (Method->isVirtual()) 3081 getVTables().EmitThunks(GD); 3082 3083 return; 3084 } 3085 3086 if (FD->isMultiVersion()) 3087 return EmitMultiVersionFunctionDefinition(GD, GV); 3088 return EmitGlobalFunctionDefinition(GD, GV); 3089 } 3090 3091 if (const auto *VD = dyn_cast<VarDecl>(D)) 3092 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3093 3094 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3095 } 3096 3097 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3098 llvm::Function *NewFn); 3099 3100 static unsigned 3101 TargetMVPriority(const TargetInfo &TI, 3102 const CodeGenFunction::MultiVersionResolverOption &RO) { 3103 unsigned Priority = 0; 3104 for (StringRef Feat : RO.Conditions.Features) 3105 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3106 3107 if (!RO.Conditions.Architecture.empty()) 3108 Priority = std::max( 3109 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3110 return Priority; 3111 } 3112 3113 void CodeGenModule::emitMultiVersionFunctions() { 3114 for (GlobalDecl GD : MultiVersionFuncs) { 3115 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3116 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3117 getContext().forEachMultiversionedFunctionVersion( 3118 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3119 GlobalDecl CurGD{ 3120 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3121 StringRef MangledName = getMangledName(CurGD); 3122 llvm::Constant *Func = GetGlobalValue(MangledName); 3123 if (!Func) { 3124 if (CurFD->isDefined()) { 3125 EmitGlobalFunctionDefinition(CurGD, nullptr); 3126 Func = GetGlobalValue(MangledName); 3127 } else { 3128 const CGFunctionInfo &FI = 3129 getTypes().arrangeGlobalDeclaration(GD); 3130 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3131 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3132 /*DontDefer=*/false, ForDefinition); 3133 } 3134 assert(Func && "This should have just been created"); 3135 } 3136 3137 const auto *TA = CurFD->getAttr<TargetAttr>(); 3138 llvm::SmallVector<StringRef, 8> Feats; 3139 TA->getAddedFeatures(Feats); 3140 3141 Options.emplace_back(cast<llvm::Function>(Func), 3142 TA->getArchitecture(), Feats); 3143 }); 3144 3145 llvm::Function *ResolverFunc; 3146 const TargetInfo &TI = getTarget(); 3147 3148 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3149 ResolverFunc = cast<llvm::Function>( 3150 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3151 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3152 } else { 3153 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3154 } 3155 3156 if (supportsCOMDAT()) 3157 ResolverFunc->setComdat( 3158 getModule().getOrInsertComdat(ResolverFunc->getName())); 3159 3160 llvm::stable_sort( 3161 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3162 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3163 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3164 }); 3165 CodeGenFunction CGF(*this); 3166 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3167 } 3168 } 3169 3170 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3171 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3172 assert(FD && "Not a FunctionDecl?"); 3173 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3174 assert(DD && "Not a cpu_dispatch Function?"); 3175 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3176 3177 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3178 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3179 DeclTy = getTypes().GetFunctionType(FInfo); 3180 } 3181 3182 StringRef ResolverName = getMangledName(GD); 3183 3184 llvm::Type *ResolverType; 3185 GlobalDecl ResolverGD; 3186 if (getTarget().supportsIFunc()) 3187 ResolverType = llvm::FunctionType::get( 3188 llvm::PointerType::get(DeclTy, 3189 Context.getTargetAddressSpace(FD->getType())), 3190 false); 3191 else { 3192 ResolverType = DeclTy; 3193 ResolverGD = GD; 3194 } 3195 3196 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3197 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3198 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3199 if (supportsCOMDAT()) 3200 ResolverFunc->setComdat( 3201 getModule().getOrInsertComdat(ResolverFunc->getName())); 3202 3203 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3204 const TargetInfo &Target = getTarget(); 3205 unsigned Index = 0; 3206 for (const IdentifierInfo *II : DD->cpus()) { 3207 // Get the name of the target function so we can look it up/create it. 3208 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3209 getCPUSpecificMangling(*this, II->getName()); 3210 3211 llvm::Constant *Func = GetGlobalValue(MangledName); 3212 3213 if (!Func) { 3214 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3215 if (ExistingDecl.getDecl() && 3216 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3217 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3218 Func = GetGlobalValue(MangledName); 3219 } else { 3220 if (!ExistingDecl.getDecl()) 3221 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3222 3223 Func = GetOrCreateLLVMFunction( 3224 MangledName, DeclTy, ExistingDecl, 3225 /*ForVTable=*/false, /*DontDefer=*/true, 3226 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3227 } 3228 } 3229 3230 llvm::SmallVector<StringRef, 32> Features; 3231 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3232 llvm::transform(Features, Features.begin(), 3233 [](StringRef Str) { return Str.substr(1); }); 3234 Features.erase(std::remove_if( 3235 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3236 return !Target.validateCpuSupports(Feat); 3237 }), Features.end()); 3238 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3239 ++Index; 3240 } 3241 3242 llvm::sort( 3243 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3244 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3245 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3246 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3247 }); 3248 3249 // If the list contains multiple 'default' versions, such as when it contains 3250 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3251 // always run on at least a 'pentium'). We do this by deleting the 'least 3252 // advanced' (read, lowest mangling letter). 3253 while (Options.size() > 1 && 3254 CodeGenFunction::GetX86CpuSupportsMask( 3255 (Options.end() - 2)->Conditions.Features) == 0) { 3256 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3257 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3258 if (LHSName.compare(RHSName) < 0) 3259 Options.erase(Options.end() - 2); 3260 else 3261 Options.erase(Options.end() - 1); 3262 } 3263 3264 CodeGenFunction CGF(*this); 3265 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3266 3267 if (getTarget().supportsIFunc()) { 3268 std::string AliasName = getMangledNameImpl( 3269 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3270 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3271 if (!AliasFunc) { 3272 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3273 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3274 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3275 auto *GA = llvm::GlobalAlias::create( 3276 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3277 GA->setLinkage(llvm::Function::WeakODRLinkage); 3278 SetCommonAttributes(GD, GA); 3279 } 3280 } 3281 } 3282 3283 /// If a dispatcher for the specified mangled name is not in the module, create 3284 /// and return an llvm Function with the specified type. 3285 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3286 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3287 std::string MangledName = 3288 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3289 3290 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3291 // a separate resolver). 3292 std::string ResolverName = MangledName; 3293 if (getTarget().supportsIFunc()) 3294 ResolverName += ".ifunc"; 3295 else if (FD->isTargetMultiVersion()) 3296 ResolverName += ".resolver"; 3297 3298 // If this already exists, just return that one. 3299 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3300 return ResolverGV; 3301 3302 // Since this is the first time we've created this IFunc, make sure 3303 // that we put this multiversioned function into the list to be 3304 // replaced later if necessary (target multiversioning only). 3305 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3306 MultiVersionFuncs.push_back(GD); 3307 3308 if (getTarget().supportsIFunc()) { 3309 llvm::Type *ResolverType = llvm::FunctionType::get( 3310 llvm::PointerType::get( 3311 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3312 false); 3313 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3314 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3315 /*ForVTable=*/false); 3316 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3317 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3318 GIF->setName(ResolverName); 3319 SetCommonAttributes(FD, GIF); 3320 3321 return GIF; 3322 } 3323 3324 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3325 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3326 assert(isa<llvm::GlobalValue>(Resolver) && 3327 "Resolver should be created for the first time"); 3328 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3329 return Resolver; 3330 } 3331 3332 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3333 /// module, create and return an llvm Function with the specified type. If there 3334 /// is something in the module with the specified name, return it potentially 3335 /// bitcasted to the right type. 3336 /// 3337 /// If D is non-null, it specifies a decl that correspond to this. This is used 3338 /// to set the attributes on the function when it is first created. 3339 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3340 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3341 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3342 ForDefinition_t IsForDefinition) { 3343 const Decl *D = GD.getDecl(); 3344 3345 // Any attempts to use a MultiVersion function should result in retrieving 3346 // the iFunc instead. Name Mangling will handle the rest of the changes. 3347 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3348 // For the device mark the function as one that should be emitted. 3349 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3350 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3351 !DontDefer && !IsForDefinition) { 3352 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3353 GlobalDecl GDDef; 3354 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3355 GDDef = GlobalDecl(CD, GD.getCtorType()); 3356 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3357 GDDef = GlobalDecl(DD, GD.getDtorType()); 3358 else 3359 GDDef = GlobalDecl(FDDef); 3360 EmitGlobal(GDDef); 3361 } 3362 } 3363 3364 if (FD->isMultiVersion()) { 3365 if (FD->hasAttr<TargetAttr>()) 3366 UpdateMultiVersionNames(GD, FD); 3367 if (!IsForDefinition) 3368 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3369 } 3370 } 3371 3372 // Lookup the entry, lazily creating it if necessary. 3373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3374 if (Entry) { 3375 if (WeakRefReferences.erase(Entry)) { 3376 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3377 if (FD && !FD->hasAttr<WeakAttr>()) 3378 Entry->setLinkage(llvm::Function::ExternalLinkage); 3379 } 3380 3381 // Handle dropped DLL attributes. 3382 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3383 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3384 setDSOLocal(Entry); 3385 } 3386 3387 // If there are two attempts to define the same mangled name, issue an 3388 // error. 3389 if (IsForDefinition && !Entry->isDeclaration()) { 3390 GlobalDecl OtherGD; 3391 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3392 // to make sure that we issue an error only once. 3393 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3394 (GD.getCanonicalDecl().getDecl() != 3395 OtherGD.getCanonicalDecl().getDecl()) && 3396 DiagnosedConflictingDefinitions.insert(GD).second) { 3397 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3398 << MangledName; 3399 getDiags().Report(OtherGD.getDecl()->getLocation(), 3400 diag::note_previous_definition); 3401 } 3402 } 3403 3404 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3405 (Entry->getValueType() == Ty)) { 3406 return Entry; 3407 } 3408 3409 // Make sure the result is of the correct type. 3410 // (If function is requested for a definition, we always need to create a new 3411 // function, not just return a bitcast.) 3412 if (!IsForDefinition) 3413 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3414 } 3415 3416 // This function doesn't have a complete type (for example, the return 3417 // type is an incomplete struct). Use a fake type instead, and make 3418 // sure not to try to set attributes. 3419 bool IsIncompleteFunction = false; 3420 3421 llvm::FunctionType *FTy; 3422 if (isa<llvm::FunctionType>(Ty)) { 3423 FTy = cast<llvm::FunctionType>(Ty); 3424 } else { 3425 FTy = llvm::FunctionType::get(VoidTy, false); 3426 IsIncompleteFunction = true; 3427 } 3428 3429 llvm::Function *F = 3430 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3431 Entry ? StringRef() : MangledName, &getModule()); 3432 3433 // If we already created a function with the same mangled name (but different 3434 // type) before, take its name and add it to the list of functions to be 3435 // replaced with F at the end of CodeGen. 3436 // 3437 // This happens if there is a prototype for a function (e.g. "int f()") and 3438 // then a definition of a different type (e.g. "int f(int x)"). 3439 if (Entry) { 3440 F->takeName(Entry); 3441 3442 // This might be an implementation of a function without a prototype, in 3443 // which case, try to do special replacement of calls which match the new 3444 // prototype. The really key thing here is that we also potentially drop 3445 // arguments from the call site so as to make a direct call, which makes the 3446 // inliner happier and suppresses a number of optimizer warnings (!) about 3447 // dropping arguments. 3448 if (!Entry->use_empty()) { 3449 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3450 Entry->removeDeadConstantUsers(); 3451 } 3452 3453 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3454 F, Entry->getValueType()->getPointerTo()); 3455 addGlobalValReplacement(Entry, BC); 3456 } 3457 3458 assert(F->getName() == MangledName && "name was uniqued!"); 3459 if (D) 3460 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3461 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3462 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3463 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3464 } 3465 3466 if (!DontDefer) { 3467 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3468 // each other bottoming out with the base dtor. Therefore we emit non-base 3469 // dtors on usage, even if there is no dtor definition in the TU. 3470 if (D && isa<CXXDestructorDecl>(D) && 3471 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3472 GD.getDtorType())) 3473 addDeferredDeclToEmit(GD); 3474 3475 // This is the first use or definition of a mangled name. If there is a 3476 // deferred decl with this name, remember that we need to emit it at the end 3477 // of the file. 3478 auto DDI = DeferredDecls.find(MangledName); 3479 if (DDI != DeferredDecls.end()) { 3480 // Move the potentially referenced deferred decl to the 3481 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3482 // don't need it anymore). 3483 addDeferredDeclToEmit(DDI->second); 3484 DeferredDecls.erase(DDI); 3485 3486 // Otherwise, there are cases we have to worry about where we're 3487 // using a declaration for which we must emit a definition but where 3488 // we might not find a top-level definition: 3489 // - member functions defined inline in their classes 3490 // - friend functions defined inline in some class 3491 // - special member functions with implicit definitions 3492 // If we ever change our AST traversal to walk into class methods, 3493 // this will be unnecessary. 3494 // 3495 // We also don't emit a definition for a function if it's going to be an 3496 // entry in a vtable, unless it's already marked as used. 3497 } else if (getLangOpts().CPlusPlus && D) { 3498 // Look for a declaration that's lexically in a record. 3499 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3500 FD = FD->getPreviousDecl()) { 3501 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3502 if (FD->doesThisDeclarationHaveABody()) { 3503 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3504 break; 3505 } 3506 } 3507 } 3508 } 3509 } 3510 3511 // Make sure the result is of the requested type. 3512 if (!IsIncompleteFunction) { 3513 assert(F->getFunctionType() == Ty); 3514 return F; 3515 } 3516 3517 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3518 return llvm::ConstantExpr::getBitCast(F, PTy); 3519 } 3520 3521 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3522 /// non-null, then this function will use the specified type if it has to 3523 /// create it (this occurs when we see a definition of the function). 3524 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3525 llvm::Type *Ty, 3526 bool ForVTable, 3527 bool DontDefer, 3528 ForDefinition_t IsForDefinition) { 3529 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3530 "consteval function should never be emitted"); 3531 // If there was no specific requested type, just convert it now. 3532 if (!Ty) { 3533 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3534 Ty = getTypes().ConvertType(FD->getType()); 3535 } 3536 3537 // Devirtualized destructor calls may come through here instead of via 3538 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3539 // of the complete destructor when necessary. 3540 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3541 if (getTarget().getCXXABI().isMicrosoft() && 3542 GD.getDtorType() == Dtor_Complete && 3543 DD->getParent()->getNumVBases() == 0) 3544 GD = GlobalDecl(DD, Dtor_Base); 3545 } 3546 3547 StringRef MangledName = getMangledName(GD); 3548 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3549 /*IsThunk=*/false, llvm::AttributeList(), 3550 IsForDefinition); 3551 } 3552 3553 static const FunctionDecl * 3554 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3555 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3556 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3557 3558 IdentifierInfo &CII = C.Idents.get(Name); 3559 for (const auto &Result : DC->lookup(&CII)) 3560 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3561 return FD; 3562 3563 if (!C.getLangOpts().CPlusPlus) 3564 return nullptr; 3565 3566 // Demangle the premangled name from getTerminateFn() 3567 IdentifierInfo &CXXII = 3568 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3569 ? C.Idents.get("terminate") 3570 : C.Idents.get(Name); 3571 3572 for (const auto &N : {"__cxxabiv1", "std"}) { 3573 IdentifierInfo &NS = C.Idents.get(N); 3574 for (const auto &Result : DC->lookup(&NS)) { 3575 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3576 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3577 for (const auto &Result : LSD->lookup(&NS)) 3578 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3579 break; 3580 3581 if (ND) 3582 for (const auto &Result : ND->lookup(&CXXII)) 3583 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3584 return FD; 3585 } 3586 } 3587 3588 return nullptr; 3589 } 3590 3591 /// CreateRuntimeFunction - Create a new runtime function with the specified 3592 /// type and name. 3593 llvm::FunctionCallee 3594 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3595 llvm::AttributeList ExtraAttrs, bool Local, 3596 bool AssumeConvergent) { 3597 if (AssumeConvergent) { 3598 ExtraAttrs = 3599 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3600 llvm::Attribute::Convergent); 3601 } 3602 3603 llvm::Constant *C = 3604 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3605 /*DontDefer=*/false, /*IsThunk=*/false, 3606 ExtraAttrs); 3607 3608 if (auto *F = dyn_cast<llvm::Function>(C)) { 3609 if (F->empty()) { 3610 F->setCallingConv(getRuntimeCC()); 3611 3612 // In Windows Itanium environments, try to mark runtime functions 3613 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3614 // will link their standard library statically or dynamically. Marking 3615 // functions imported when they are not imported can cause linker errors 3616 // and warnings. 3617 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3618 !getCodeGenOpts().LTOVisibilityPublicStd) { 3619 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3620 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3621 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3622 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3623 } 3624 } 3625 setDSOLocal(F); 3626 } 3627 } 3628 3629 return {FTy, C}; 3630 } 3631 3632 /// isTypeConstant - Determine whether an object of this type can be emitted 3633 /// as a constant. 3634 /// 3635 /// If ExcludeCtor is true, the duration when the object's constructor runs 3636 /// will not be considered. The caller will need to verify that the object is 3637 /// not written to during its construction. 3638 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3639 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3640 return false; 3641 3642 if (Context.getLangOpts().CPlusPlus) { 3643 if (const CXXRecordDecl *Record 3644 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3645 return ExcludeCtor && !Record->hasMutableFields() && 3646 Record->hasTrivialDestructor(); 3647 } 3648 3649 return true; 3650 } 3651 3652 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3653 /// create and return an llvm GlobalVariable with the specified type. If there 3654 /// is something in the module with the specified name, return it potentially 3655 /// bitcasted to the right type. 3656 /// 3657 /// If D is non-null, it specifies a decl that correspond to this. This is used 3658 /// to set the attributes on the global when it is first created. 3659 /// 3660 /// If IsForDefinition is true, it is guaranteed that an actual global with 3661 /// type Ty will be returned, not conversion of a variable with the same 3662 /// mangled name but some other type. 3663 llvm::Constant * 3664 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3665 llvm::PointerType *Ty, 3666 const VarDecl *D, 3667 ForDefinition_t IsForDefinition) { 3668 // Lookup the entry, lazily creating it if necessary. 3669 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3670 if (Entry) { 3671 if (WeakRefReferences.erase(Entry)) { 3672 if (D && !D->hasAttr<WeakAttr>()) 3673 Entry->setLinkage(llvm::Function::ExternalLinkage); 3674 } 3675 3676 // Handle dropped DLL attributes. 3677 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3678 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3679 3680 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3681 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3682 3683 if (Entry->getType() == Ty) 3684 return Entry; 3685 3686 // If there are two attempts to define the same mangled name, issue an 3687 // error. 3688 if (IsForDefinition && !Entry->isDeclaration()) { 3689 GlobalDecl OtherGD; 3690 const VarDecl *OtherD; 3691 3692 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3693 // to make sure that we issue an error only once. 3694 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3695 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3696 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3697 OtherD->hasInit() && 3698 DiagnosedConflictingDefinitions.insert(D).second) { 3699 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3700 << MangledName; 3701 getDiags().Report(OtherGD.getDecl()->getLocation(), 3702 diag::note_previous_definition); 3703 } 3704 } 3705 3706 // Make sure the result is of the correct type. 3707 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3708 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3709 3710 // (If global is requested for a definition, we always need to create a new 3711 // global, not just return a bitcast.) 3712 if (!IsForDefinition) 3713 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3714 } 3715 3716 auto AddrSpace = GetGlobalVarAddressSpace(D); 3717 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3718 3719 auto *GV = new llvm::GlobalVariable( 3720 getModule(), Ty->getElementType(), false, 3721 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3722 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3723 3724 // If we already created a global with the same mangled name (but different 3725 // type) before, take its name and remove it from its parent. 3726 if (Entry) { 3727 GV->takeName(Entry); 3728 3729 if (!Entry->use_empty()) { 3730 llvm::Constant *NewPtrForOldDecl = 3731 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3732 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3733 } 3734 3735 Entry->eraseFromParent(); 3736 } 3737 3738 // This is the first use or definition of a mangled name. If there is a 3739 // deferred decl with this name, remember that we need to emit it at the end 3740 // of the file. 3741 auto DDI = DeferredDecls.find(MangledName); 3742 if (DDI != DeferredDecls.end()) { 3743 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3744 // list, and remove it from DeferredDecls (since we don't need it anymore). 3745 addDeferredDeclToEmit(DDI->second); 3746 DeferredDecls.erase(DDI); 3747 } 3748 3749 // Handle things which are present even on external declarations. 3750 if (D) { 3751 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3752 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3753 3754 // FIXME: This code is overly simple and should be merged with other global 3755 // handling. 3756 GV->setConstant(isTypeConstant(D->getType(), false)); 3757 3758 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3759 3760 setLinkageForGV(GV, D); 3761 3762 if (D->getTLSKind()) { 3763 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3764 CXXThreadLocals.push_back(D); 3765 setTLSMode(GV, *D); 3766 } 3767 3768 setGVProperties(GV, D); 3769 3770 // If required by the ABI, treat declarations of static data members with 3771 // inline initializers as definitions. 3772 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3773 EmitGlobalVarDefinition(D); 3774 } 3775 3776 // Emit section information for extern variables. 3777 if (D->hasExternalStorage()) { 3778 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3779 GV->setSection(SA->getName()); 3780 } 3781 3782 // Handle XCore specific ABI requirements. 3783 if (getTriple().getArch() == llvm::Triple::xcore && 3784 D->getLanguageLinkage() == CLanguageLinkage && 3785 D->getType().isConstant(Context) && 3786 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3787 GV->setSection(".cp.rodata"); 3788 3789 // Check if we a have a const declaration with an initializer, we may be 3790 // able to emit it as available_externally to expose it's value to the 3791 // optimizer. 3792 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3793 D->getType().isConstQualified() && !GV->hasInitializer() && 3794 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3795 const auto *Record = 3796 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3797 bool HasMutableFields = Record && Record->hasMutableFields(); 3798 if (!HasMutableFields) { 3799 const VarDecl *InitDecl; 3800 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3801 if (InitExpr) { 3802 ConstantEmitter emitter(*this); 3803 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3804 if (Init) { 3805 auto *InitType = Init->getType(); 3806 if (GV->getValueType() != InitType) { 3807 // The type of the initializer does not match the definition. 3808 // This happens when an initializer has a different type from 3809 // the type of the global (because of padding at the end of a 3810 // structure for instance). 3811 GV->setName(StringRef()); 3812 // Make a new global with the correct type, this is now guaranteed 3813 // to work. 3814 auto *NewGV = cast<llvm::GlobalVariable>( 3815 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3816 ->stripPointerCasts()); 3817 3818 // Erase the old global, since it is no longer used. 3819 GV->eraseFromParent(); 3820 GV = NewGV; 3821 } else { 3822 GV->setInitializer(Init); 3823 GV->setConstant(true); 3824 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3825 } 3826 emitter.finalize(GV); 3827 } 3828 } 3829 } 3830 } 3831 } 3832 3833 if (GV->isDeclaration()) 3834 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3835 3836 LangAS ExpectedAS = 3837 D ? D->getType().getAddressSpace() 3838 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3839 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3840 Ty->getPointerAddressSpace()); 3841 if (AddrSpace != ExpectedAS) 3842 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3843 ExpectedAS, Ty); 3844 3845 return GV; 3846 } 3847 3848 llvm::Constant * 3849 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3850 const Decl *D = GD.getDecl(); 3851 3852 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3853 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3854 /*DontDefer=*/false, IsForDefinition); 3855 3856 if (isa<CXXMethodDecl>(D)) { 3857 auto FInfo = 3858 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3859 auto Ty = getTypes().GetFunctionType(*FInfo); 3860 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3861 IsForDefinition); 3862 } 3863 3864 if (isa<FunctionDecl>(D)) { 3865 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3866 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3867 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3868 IsForDefinition); 3869 } 3870 3871 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3872 } 3873 3874 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3875 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3876 unsigned Alignment) { 3877 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3878 llvm::GlobalVariable *OldGV = nullptr; 3879 3880 if (GV) { 3881 // Check if the variable has the right type. 3882 if (GV->getValueType() == Ty) 3883 return GV; 3884 3885 // Because C++ name mangling, the only way we can end up with an already 3886 // existing global with the same name is if it has been declared extern "C". 3887 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3888 OldGV = GV; 3889 } 3890 3891 // Create a new variable. 3892 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3893 Linkage, nullptr, Name); 3894 3895 if (OldGV) { 3896 // Replace occurrences of the old variable if needed. 3897 GV->takeName(OldGV); 3898 3899 if (!OldGV->use_empty()) { 3900 llvm::Constant *NewPtrForOldDecl = 3901 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3902 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3903 } 3904 3905 OldGV->eraseFromParent(); 3906 } 3907 3908 if (supportsCOMDAT() && GV->isWeakForLinker() && 3909 !GV->hasAvailableExternallyLinkage()) 3910 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3911 3912 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3913 3914 return GV; 3915 } 3916 3917 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3918 /// given global variable. If Ty is non-null and if the global doesn't exist, 3919 /// then it will be created with the specified type instead of whatever the 3920 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3921 /// that an actual global with type Ty will be returned, not conversion of a 3922 /// variable with the same mangled name but some other type. 3923 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3924 llvm::Type *Ty, 3925 ForDefinition_t IsForDefinition) { 3926 assert(D->hasGlobalStorage() && "Not a global variable"); 3927 QualType ASTTy = D->getType(); 3928 if (!Ty) 3929 Ty = getTypes().ConvertTypeForMem(ASTTy); 3930 3931 llvm::PointerType *PTy = 3932 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3933 3934 StringRef MangledName = getMangledName(D); 3935 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3936 } 3937 3938 /// CreateRuntimeVariable - Create a new runtime global variable with the 3939 /// specified type and name. 3940 llvm::Constant * 3941 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3942 StringRef Name) { 3943 auto PtrTy = 3944 getContext().getLangOpts().OpenCL 3945 ? llvm::PointerType::get( 3946 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3947 : llvm::PointerType::getUnqual(Ty); 3948 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3949 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3950 return Ret; 3951 } 3952 3953 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3954 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3955 3956 StringRef MangledName = getMangledName(D); 3957 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3958 3959 // We already have a definition, not declaration, with the same mangled name. 3960 // Emitting of declaration is not required (and actually overwrites emitted 3961 // definition). 3962 if (GV && !GV->isDeclaration()) 3963 return; 3964 3965 // If we have not seen a reference to this variable yet, place it into the 3966 // deferred declarations table to be emitted if needed later. 3967 if (!MustBeEmitted(D) && !GV) { 3968 DeferredDecls[MangledName] = D; 3969 return; 3970 } 3971 3972 // The tentative definition is the only definition. 3973 EmitGlobalVarDefinition(D); 3974 } 3975 3976 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3977 EmitExternalVarDeclaration(D); 3978 } 3979 3980 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3981 return Context.toCharUnitsFromBits( 3982 getDataLayout().getTypeStoreSizeInBits(Ty)); 3983 } 3984 3985 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3986 LangAS AddrSpace = LangAS::Default; 3987 if (LangOpts.OpenCL) { 3988 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3989 assert(AddrSpace == LangAS::opencl_global || 3990 AddrSpace == LangAS::opencl_global_device || 3991 AddrSpace == LangAS::opencl_global_host || 3992 AddrSpace == LangAS::opencl_constant || 3993 AddrSpace == LangAS::opencl_local || 3994 AddrSpace >= LangAS::FirstTargetAddressSpace); 3995 return AddrSpace; 3996 } 3997 3998 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3999 if (D && D->hasAttr<CUDAConstantAttr>()) 4000 return LangAS::cuda_constant; 4001 else if (D && D->hasAttr<CUDASharedAttr>()) 4002 return LangAS::cuda_shared; 4003 else if (D && D->hasAttr<CUDADeviceAttr>()) 4004 return LangAS::cuda_device; 4005 else if (D && D->getType().isConstQualified()) 4006 return LangAS::cuda_constant; 4007 else 4008 return LangAS::cuda_device; 4009 } 4010 4011 if (LangOpts.OpenMP) { 4012 LangAS AS; 4013 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4014 return AS; 4015 } 4016 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4017 } 4018 4019 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 4020 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4021 if (LangOpts.OpenCL) 4022 return LangAS::opencl_constant; 4023 if (auto AS = getTarget().getConstantAddressSpace()) 4024 return AS.getValue(); 4025 return LangAS::Default; 4026 } 4027 4028 // In address space agnostic languages, string literals are in default address 4029 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4030 // emitted in constant address space in LLVM IR. To be consistent with other 4031 // parts of AST, string literal global variables in constant address space 4032 // need to be casted to default address space before being put into address 4033 // map and referenced by other part of CodeGen. 4034 // In OpenCL, string literals are in constant address space in AST, therefore 4035 // they should not be casted to default address space. 4036 static llvm::Constant * 4037 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4038 llvm::GlobalVariable *GV) { 4039 llvm::Constant *Cast = GV; 4040 if (!CGM.getLangOpts().OpenCL) { 4041 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 4042 if (AS != LangAS::Default) 4043 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4044 CGM, GV, AS.getValue(), LangAS::Default, 4045 GV->getValueType()->getPointerTo( 4046 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4047 } 4048 } 4049 return Cast; 4050 } 4051 4052 template<typename SomeDecl> 4053 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4054 llvm::GlobalValue *GV) { 4055 if (!getLangOpts().CPlusPlus) 4056 return; 4057 4058 // Must have 'used' attribute, or else inline assembly can't rely on 4059 // the name existing. 4060 if (!D->template hasAttr<UsedAttr>()) 4061 return; 4062 4063 // Must have internal linkage and an ordinary name. 4064 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4065 return; 4066 4067 // Must be in an extern "C" context. Entities declared directly within 4068 // a record are not extern "C" even if the record is in such a context. 4069 const SomeDecl *First = D->getFirstDecl(); 4070 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4071 return; 4072 4073 // OK, this is an internal linkage entity inside an extern "C" linkage 4074 // specification. Make a note of that so we can give it the "expected" 4075 // mangled name if nothing else is using that name. 4076 std::pair<StaticExternCMap::iterator, bool> R = 4077 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4078 4079 // If we have multiple internal linkage entities with the same name 4080 // in extern "C" regions, none of them gets that name. 4081 if (!R.second) 4082 R.first->second = nullptr; 4083 } 4084 4085 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4086 if (!CGM.supportsCOMDAT()) 4087 return false; 4088 4089 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 4090 // them being "merged" by the COMDAT Folding linker optimization. 4091 if (D.hasAttr<CUDAGlobalAttr>()) 4092 return false; 4093 4094 if (D.hasAttr<SelectAnyAttr>()) 4095 return true; 4096 4097 GVALinkage Linkage; 4098 if (auto *VD = dyn_cast<VarDecl>(&D)) 4099 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4100 else 4101 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4102 4103 switch (Linkage) { 4104 case GVA_Internal: 4105 case GVA_AvailableExternally: 4106 case GVA_StrongExternal: 4107 return false; 4108 case GVA_DiscardableODR: 4109 case GVA_StrongODR: 4110 return true; 4111 } 4112 llvm_unreachable("No such linkage"); 4113 } 4114 4115 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4116 llvm::GlobalObject &GO) { 4117 if (!shouldBeInCOMDAT(*this, D)) 4118 return; 4119 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4120 } 4121 4122 /// Pass IsTentative as true if you want to create a tentative definition. 4123 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4124 bool IsTentative) { 4125 // OpenCL global variables of sampler type are translated to function calls, 4126 // therefore no need to be translated. 4127 QualType ASTTy = D->getType(); 4128 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4129 return; 4130 4131 // If this is OpenMP device, check if it is legal to emit this global 4132 // normally. 4133 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4134 OpenMPRuntime->emitTargetGlobalVariable(D)) 4135 return; 4136 4137 llvm::Constant *Init = nullptr; 4138 bool NeedsGlobalCtor = false; 4139 bool NeedsGlobalDtor = 4140 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4141 4142 const VarDecl *InitDecl; 4143 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4144 4145 Optional<ConstantEmitter> emitter; 4146 4147 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4148 // as part of their declaration." Sema has already checked for 4149 // error cases, so we just need to set Init to UndefValue. 4150 bool IsCUDASharedVar = 4151 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4152 // Shadows of initialized device-side global variables are also left 4153 // undefined. 4154 bool IsCUDAShadowVar = 4155 !getLangOpts().CUDAIsDevice && 4156 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4157 D->hasAttr<CUDASharedAttr>()); 4158 bool IsCUDADeviceShadowVar = 4159 getLangOpts().CUDAIsDevice && 4160 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4161 D->getType()->isCUDADeviceBuiltinTextureType()); 4162 // HIP pinned shadow of initialized host-side global variables are also 4163 // left undefined. 4164 if (getLangOpts().CUDA && 4165 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4166 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4167 else if (D->hasAttr<LoaderUninitializedAttr>()) 4168 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4169 else if (!InitExpr) { 4170 // This is a tentative definition; tentative definitions are 4171 // implicitly initialized with { 0 }. 4172 // 4173 // Note that tentative definitions are only emitted at the end of 4174 // a translation unit, so they should never have incomplete 4175 // type. In addition, EmitTentativeDefinition makes sure that we 4176 // never attempt to emit a tentative definition if a real one 4177 // exists. A use may still exists, however, so we still may need 4178 // to do a RAUW. 4179 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4180 Init = EmitNullConstant(D->getType()); 4181 } else { 4182 initializedGlobalDecl = GlobalDecl(D); 4183 emitter.emplace(*this); 4184 Init = emitter->tryEmitForInitializer(*InitDecl); 4185 4186 if (!Init) { 4187 QualType T = InitExpr->getType(); 4188 if (D->getType()->isReferenceType()) 4189 T = D->getType(); 4190 4191 if (getLangOpts().CPlusPlus) { 4192 Init = EmitNullConstant(T); 4193 NeedsGlobalCtor = true; 4194 } else { 4195 ErrorUnsupported(D, "static initializer"); 4196 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4197 } 4198 } else { 4199 // We don't need an initializer, so remove the entry for the delayed 4200 // initializer position (just in case this entry was delayed) if we 4201 // also don't need to register a destructor. 4202 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4203 DelayedCXXInitPosition.erase(D); 4204 } 4205 } 4206 4207 llvm::Type* InitType = Init->getType(); 4208 llvm::Constant *Entry = 4209 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4210 4211 // Strip off pointer casts if we got them. 4212 Entry = Entry->stripPointerCasts(); 4213 4214 // Entry is now either a Function or GlobalVariable. 4215 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4216 4217 // We have a definition after a declaration with the wrong type. 4218 // We must make a new GlobalVariable* and update everything that used OldGV 4219 // (a declaration or tentative definition) with the new GlobalVariable* 4220 // (which will be a definition). 4221 // 4222 // This happens if there is a prototype for a global (e.g. 4223 // "extern int x[];") and then a definition of a different type (e.g. 4224 // "int x[10];"). This also happens when an initializer has a different type 4225 // from the type of the global (this happens with unions). 4226 if (!GV || GV->getValueType() != InitType || 4227 GV->getType()->getAddressSpace() != 4228 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4229 4230 // Move the old entry aside so that we'll create a new one. 4231 Entry->setName(StringRef()); 4232 4233 // Make a new global with the correct type, this is now guaranteed to work. 4234 GV = cast<llvm::GlobalVariable>( 4235 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4236 ->stripPointerCasts()); 4237 4238 // Replace all uses of the old global with the new global 4239 llvm::Constant *NewPtrForOldDecl = 4240 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4241 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4242 4243 // Erase the old global, since it is no longer used. 4244 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4245 } 4246 4247 MaybeHandleStaticInExternC(D, GV); 4248 4249 if (D->hasAttr<AnnotateAttr>()) 4250 AddGlobalAnnotations(D, GV); 4251 4252 // Set the llvm linkage type as appropriate. 4253 llvm::GlobalValue::LinkageTypes Linkage = 4254 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4255 4256 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4257 // the device. [...]" 4258 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4259 // __device__, declares a variable that: [...] 4260 // Is accessible from all the threads within the grid and from the host 4261 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4262 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4263 if (GV && LangOpts.CUDA) { 4264 if (LangOpts.CUDAIsDevice) { 4265 if (Linkage != llvm::GlobalValue::InternalLinkage && 4266 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4267 GV->setExternallyInitialized(true); 4268 } else { 4269 // Host-side shadows of external declarations of device-side 4270 // global variables become internal definitions. These have to 4271 // be internal in order to prevent name conflicts with global 4272 // host variables with the same name in a different TUs. 4273 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4274 Linkage = llvm::GlobalValue::InternalLinkage; 4275 // Shadow variables and their properties must be registered with CUDA 4276 // runtime. Skip Extern global variables, which will be registered in 4277 // the TU where they are defined. 4278 // 4279 // Don't register a C++17 inline variable. The local symbol can be 4280 // discarded and referencing a discarded local symbol from outside the 4281 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4282 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4283 if (!D->hasExternalStorage() && !D->isInline()) 4284 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4285 D->hasAttr<CUDAConstantAttr>()); 4286 } else if (D->hasAttr<CUDASharedAttr>()) { 4287 // __shared__ variables are odd. Shadows do get created, but 4288 // they are not registered with the CUDA runtime, so they 4289 // can't really be used to access their device-side 4290 // counterparts. It's not clear yet whether it's nvcc's bug or 4291 // a feature, but we've got to do the same for compatibility. 4292 Linkage = llvm::GlobalValue::InternalLinkage; 4293 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4294 D->getType()->isCUDADeviceBuiltinTextureType()) { 4295 // Builtin surfaces and textures and their template arguments are 4296 // also registered with CUDA runtime. 4297 Linkage = llvm::GlobalValue::InternalLinkage; 4298 const ClassTemplateSpecializationDecl *TD = 4299 cast<ClassTemplateSpecializationDecl>( 4300 D->getType()->getAs<RecordType>()->getDecl()); 4301 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4302 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4303 assert(Args.size() == 2 && 4304 "Unexpected number of template arguments of CUDA device " 4305 "builtin surface type."); 4306 auto SurfType = Args[1].getAsIntegral(); 4307 if (!D->hasExternalStorage()) 4308 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4309 SurfType.getSExtValue()); 4310 } else { 4311 assert(Args.size() == 3 && 4312 "Unexpected number of template arguments of CUDA device " 4313 "builtin texture type."); 4314 auto TexType = Args[1].getAsIntegral(); 4315 auto Normalized = Args[2].getAsIntegral(); 4316 if (!D->hasExternalStorage()) 4317 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4318 TexType.getSExtValue(), 4319 Normalized.getZExtValue()); 4320 } 4321 } 4322 } 4323 } 4324 4325 GV->setInitializer(Init); 4326 if (emitter) 4327 emitter->finalize(GV); 4328 4329 // If it is safe to mark the global 'constant', do so now. 4330 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4331 isTypeConstant(D->getType(), true)); 4332 4333 // If it is in a read-only section, mark it 'constant'. 4334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4335 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4336 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4337 GV->setConstant(true); 4338 } 4339 4340 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4341 4342 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4343 // function is only defined alongside the variable, not also alongside 4344 // callers. Normally, all accesses to a thread_local go through the 4345 // thread-wrapper in order to ensure initialization has occurred, underlying 4346 // variable will never be used other than the thread-wrapper, so it can be 4347 // converted to internal linkage. 4348 // 4349 // However, if the variable has the 'constinit' attribute, it _can_ be 4350 // referenced directly, without calling the thread-wrapper, so the linkage 4351 // must not be changed. 4352 // 4353 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4354 // weak or linkonce, the de-duplication semantics are important to preserve, 4355 // so we don't change the linkage. 4356 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4357 Linkage == llvm::GlobalValue::ExternalLinkage && 4358 Context.getTargetInfo().getTriple().isOSDarwin() && 4359 !D->hasAttr<ConstInitAttr>()) 4360 Linkage = llvm::GlobalValue::InternalLinkage; 4361 4362 GV->setLinkage(Linkage); 4363 if (D->hasAttr<DLLImportAttr>()) 4364 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4365 else if (D->hasAttr<DLLExportAttr>()) 4366 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4367 else 4368 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4369 4370 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4371 // common vars aren't constant even if declared const. 4372 GV->setConstant(false); 4373 // Tentative definition of global variables may be initialized with 4374 // non-zero null pointers. In this case they should have weak linkage 4375 // since common linkage must have zero initializer and must not have 4376 // explicit section therefore cannot have non-zero initial value. 4377 if (!GV->getInitializer()->isNullValue()) 4378 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4379 } 4380 4381 setNonAliasAttributes(D, GV); 4382 4383 if (D->getTLSKind() && !GV->isThreadLocal()) { 4384 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4385 CXXThreadLocals.push_back(D); 4386 setTLSMode(GV, *D); 4387 } 4388 4389 maybeSetTrivialComdat(*D, *GV); 4390 4391 // Emit the initializer function if necessary. 4392 if (NeedsGlobalCtor || NeedsGlobalDtor) 4393 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4394 4395 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4396 4397 // Emit global variable debug information. 4398 if (CGDebugInfo *DI = getModuleDebugInfo()) 4399 if (getCodeGenOpts().hasReducedDebugInfo()) 4400 DI->EmitGlobalVariable(GV, D); 4401 } 4402 4403 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4404 if (CGDebugInfo *DI = getModuleDebugInfo()) 4405 if (getCodeGenOpts().hasReducedDebugInfo()) { 4406 QualType ASTTy = D->getType(); 4407 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4408 llvm::PointerType *PTy = 4409 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4410 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4411 DI->EmitExternalVariable( 4412 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4413 } 4414 } 4415 4416 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4417 CodeGenModule &CGM, const VarDecl *D, 4418 bool NoCommon) { 4419 // Don't give variables common linkage if -fno-common was specified unless it 4420 // was overridden by a NoCommon attribute. 4421 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4422 return true; 4423 4424 // C11 6.9.2/2: 4425 // A declaration of an identifier for an object that has file scope without 4426 // an initializer, and without a storage-class specifier or with the 4427 // storage-class specifier static, constitutes a tentative definition. 4428 if (D->getInit() || D->hasExternalStorage()) 4429 return true; 4430 4431 // A variable cannot be both common and exist in a section. 4432 if (D->hasAttr<SectionAttr>()) 4433 return true; 4434 4435 // A variable cannot be both common and exist in a section. 4436 // We don't try to determine which is the right section in the front-end. 4437 // If no specialized section name is applicable, it will resort to default. 4438 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4439 D->hasAttr<PragmaClangDataSectionAttr>() || 4440 D->hasAttr<PragmaClangRelroSectionAttr>() || 4441 D->hasAttr<PragmaClangRodataSectionAttr>()) 4442 return true; 4443 4444 // Thread local vars aren't considered common linkage. 4445 if (D->getTLSKind()) 4446 return true; 4447 4448 // Tentative definitions marked with WeakImportAttr are true definitions. 4449 if (D->hasAttr<WeakImportAttr>()) 4450 return true; 4451 4452 // A variable cannot be both common and exist in a comdat. 4453 if (shouldBeInCOMDAT(CGM, *D)) 4454 return true; 4455 4456 // Declarations with a required alignment do not have common linkage in MSVC 4457 // mode. 4458 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4459 if (D->hasAttr<AlignedAttr>()) 4460 return true; 4461 QualType VarType = D->getType(); 4462 if (Context.isAlignmentRequired(VarType)) 4463 return true; 4464 4465 if (const auto *RT = VarType->getAs<RecordType>()) { 4466 const RecordDecl *RD = RT->getDecl(); 4467 for (const FieldDecl *FD : RD->fields()) { 4468 if (FD->isBitField()) 4469 continue; 4470 if (FD->hasAttr<AlignedAttr>()) 4471 return true; 4472 if (Context.isAlignmentRequired(FD->getType())) 4473 return true; 4474 } 4475 } 4476 } 4477 4478 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4479 // common symbols, so symbols with greater alignment requirements cannot be 4480 // common. 4481 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4482 // alignments for common symbols via the aligncomm directive, so this 4483 // restriction only applies to MSVC environments. 4484 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4485 Context.getTypeAlignIfKnown(D->getType()) > 4486 Context.toBits(CharUnits::fromQuantity(32))) 4487 return true; 4488 4489 return false; 4490 } 4491 4492 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4493 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4494 if (Linkage == GVA_Internal) 4495 return llvm::Function::InternalLinkage; 4496 4497 if (D->hasAttr<WeakAttr>()) { 4498 if (IsConstantVariable) 4499 return llvm::GlobalVariable::WeakODRLinkage; 4500 else 4501 return llvm::GlobalVariable::WeakAnyLinkage; 4502 } 4503 4504 if (const auto *FD = D->getAsFunction()) 4505 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4506 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4507 4508 // We are guaranteed to have a strong definition somewhere else, 4509 // so we can use available_externally linkage. 4510 if (Linkage == GVA_AvailableExternally) 4511 return llvm::GlobalValue::AvailableExternallyLinkage; 4512 4513 // Note that Apple's kernel linker doesn't support symbol 4514 // coalescing, so we need to avoid linkonce and weak linkages there. 4515 // Normally, this means we just map to internal, but for explicit 4516 // instantiations we'll map to external. 4517 4518 // In C++, the compiler has to emit a definition in every translation unit 4519 // that references the function. We should use linkonce_odr because 4520 // a) if all references in this translation unit are optimized away, we 4521 // don't need to codegen it. b) if the function persists, it needs to be 4522 // merged with other definitions. c) C++ has the ODR, so we know the 4523 // definition is dependable. 4524 if (Linkage == GVA_DiscardableODR) 4525 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4526 : llvm::Function::InternalLinkage; 4527 4528 // An explicit instantiation of a template has weak linkage, since 4529 // explicit instantiations can occur in multiple translation units 4530 // and must all be equivalent. However, we are not allowed to 4531 // throw away these explicit instantiations. 4532 // 4533 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 4534 // so say that CUDA templates are either external (for kernels) or internal. 4535 // This lets llvm perform aggressive inter-procedural optimizations. For 4536 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 4537 // therefore we need to follow the normal linkage paradigm. 4538 if (Linkage == GVA_StrongODR) { 4539 if (getLangOpts().AppleKext) 4540 return llvm::Function::ExternalLinkage; 4541 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 4542 !getLangOpts().GPURelocatableDeviceCode) 4543 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4544 : llvm::Function::InternalLinkage; 4545 return llvm::Function::WeakODRLinkage; 4546 } 4547 4548 // C++ doesn't have tentative definitions and thus cannot have common 4549 // linkage. 4550 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4551 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4552 CodeGenOpts.NoCommon)) 4553 return llvm::GlobalVariable::CommonLinkage; 4554 4555 // selectany symbols are externally visible, so use weak instead of 4556 // linkonce. MSVC optimizes away references to const selectany globals, so 4557 // all definitions should be the same and ODR linkage should be used. 4558 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4559 if (D->hasAttr<SelectAnyAttr>()) 4560 return llvm::GlobalVariable::WeakODRLinkage; 4561 4562 // Otherwise, we have strong external linkage. 4563 assert(Linkage == GVA_StrongExternal); 4564 return llvm::GlobalVariable::ExternalLinkage; 4565 } 4566 4567 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4568 const VarDecl *VD, bool IsConstant) { 4569 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4570 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4571 } 4572 4573 /// Replace the uses of a function that was declared with a non-proto type. 4574 /// We want to silently drop extra arguments from call sites 4575 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4576 llvm::Function *newFn) { 4577 // Fast path. 4578 if (old->use_empty()) return; 4579 4580 llvm::Type *newRetTy = newFn->getReturnType(); 4581 SmallVector<llvm::Value*, 4> newArgs; 4582 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4583 4584 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4585 ui != ue; ) { 4586 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4587 llvm::User *user = use->getUser(); 4588 4589 // Recognize and replace uses of bitcasts. Most calls to 4590 // unprototyped functions will use bitcasts. 4591 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4592 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4593 replaceUsesOfNonProtoConstant(bitcast, newFn); 4594 continue; 4595 } 4596 4597 // Recognize calls to the function. 4598 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4599 if (!callSite) continue; 4600 if (!callSite->isCallee(&*use)) 4601 continue; 4602 4603 // If the return types don't match exactly, then we can't 4604 // transform this call unless it's dead. 4605 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4606 continue; 4607 4608 // Get the call site's attribute list. 4609 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4610 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4611 4612 // If the function was passed too few arguments, don't transform. 4613 unsigned newNumArgs = newFn->arg_size(); 4614 if (callSite->arg_size() < newNumArgs) 4615 continue; 4616 4617 // If extra arguments were passed, we silently drop them. 4618 // If any of the types mismatch, we don't transform. 4619 unsigned argNo = 0; 4620 bool dontTransform = false; 4621 for (llvm::Argument &A : newFn->args()) { 4622 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4623 dontTransform = true; 4624 break; 4625 } 4626 4627 // Add any parameter attributes. 4628 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4629 argNo++; 4630 } 4631 if (dontTransform) 4632 continue; 4633 4634 // Okay, we can transform this. Create the new call instruction and copy 4635 // over the required information. 4636 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4637 4638 // Copy over any operand bundles. 4639 callSite->getOperandBundlesAsDefs(newBundles); 4640 4641 llvm::CallBase *newCall; 4642 if (dyn_cast<llvm::CallInst>(callSite)) { 4643 newCall = 4644 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4645 } else { 4646 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4647 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4648 oldInvoke->getUnwindDest(), newArgs, 4649 newBundles, "", callSite); 4650 } 4651 newArgs.clear(); // for the next iteration 4652 4653 if (!newCall->getType()->isVoidTy()) 4654 newCall->takeName(callSite); 4655 newCall->setAttributes(llvm::AttributeList::get( 4656 newFn->getContext(), oldAttrs.getFnAttributes(), 4657 oldAttrs.getRetAttributes(), newArgAttrs)); 4658 newCall->setCallingConv(callSite->getCallingConv()); 4659 4660 // Finally, remove the old call, replacing any uses with the new one. 4661 if (!callSite->use_empty()) 4662 callSite->replaceAllUsesWith(newCall); 4663 4664 // Copy debug location attached to CI. 4665 if (callSite->getDebugLoc()) 4666 newCall->setDebugLoc(callSite->getDebugLoc()); 4667 4668 callSite->eraseFromParent(); 4669 } 4670 } 4671 4672 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4673 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4674 /// existing call uses of the old function in the module, this adjusts them to 4675 /// call the new function directly. 4676 /// 4677 /// This is not just a cleanup: the always_inline pass requires direct calls to 4678 /// functions to be able to inline them. If there is a bitcast in the way, it 4679 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4680 /// run at -O0. 4681 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4682 llvm::Function *NewFn) { 4683 // If we're redefining a global as a function, don't transform it. 4684 if (!isa<llvm::Function>(Old)) return; 4685 4686 replaceUsesOfNonProtoConstant(Old, NewFn); 4687 } 4688 4689 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4690 auto DK = VD->isThisDeclarationADefinition(); 4691 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4692 return; 4693 4694 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4695 // If we have a definition, this might be a deferred decl. If the 4696 // instantiation is explicit, make sure we emit it at the end. 4697 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4698 GetAddrOfGlobalVar(VD); 4699 4700 EmitTopLevelDecl(VD); 4701 } 4702 4703 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4704 llvm::GlobalValue *GV) { 4705 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4706 4707 // Compute the function info and LLVM type. 4708 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4709 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4710 4711 // Get or create the prototype for the function. 4712 if (!GV || (GV->getValueType() != Ty)) 4713 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4714 /*DontDefer=*/true, 4715 ForDefinition)); 4716 4717 // Already emitted. 4718 if (!GV->isDeclaration()) 4719 return; 4720 4721 // We need to set linkage and visibility on the function before 4722 // generating code for it because various parts of IR generation 4723 // want to propagate this information down (e.g. to local static 4724 // declarations). 4725 auto *Fn = cast<llvm::Function>(GV); 4726 setFunctionLinkage(GD, Fn); 4727 4728 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4729 setGVProperties(Fn, GD); 4730 4731 MaybeHandleStaticInExternC(D, Fn); 4732 4733 maybeSetTrivialComdat(*D, *Fn); 4734 4735 // Set CodeGen attributes that represent floating point environment. 4736 setLLVMFunctionFEnvAttributes(D, Fn); 4737 4738 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4739 4740 setNonAliasAttributes(GD, Fn); 4741 SetLLVMFunctionAttributesForDefinition(D, Fn); 4742 4743 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4744 AddGlobalCtor(Fn, CA->getPriority()); 4745 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4746 AddGlobalDtor(Fn, DA->getPriority(), true); 4747 if (D->hasAttr<AnnotateAttr>()) 4748 AddGlobalAnnotations(D, Fn); 4749 } 4750 4751 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4752 const auto *D = cast<ValueDecl>(GD.getDecl()); 4753 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4754 assert(AA && "Not an alias?"); 4755 4756 StringRef MangledName = getMangledName(GD); 4757 4758 if (AA->getAliasee() == MangledName) { 4759 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4760 return; 4761 } 4762 4763 // If there is a definition in the module, then it wins over the alias. 4764 // This is dubious, but allow it to be safe. Just ignore the alias. 4765 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4766 if (Entry && !Entry->isDeclaration()) 4767 return; 4768 4769 Aliases.push_back(GD); 4770 4771 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4772 4773 // Create a reference to the named value. This ensures that it is emitted 4774 // if a deferred decl. 4775 llvm::Constant *Aliasee; 4776 llvm::GlobalValue::LinkageTypes LT; 4777 if (isa<llvm::FunctionType>(DeclTy)) { 4778 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4779 /*ForVTable=*/false); 4780 LT = getFunctionLinkage(GD); 4781 } else { 4782 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4783 llvm::PointerType::getUnqual(DeclTy), 4784 /*D=*/nullptr); 4785 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 4786 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 4787 else 4788 LT = getFunctionLinkage(GD); 4789 } 4790 4791 // Create the new alias itself, but don't set a name yet. 4792 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4793 auto *GA = 4794 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4795 4796 if (Entry) { 4797 if (GA->getAliasee() == Entry) { 4798 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4799 return; 4800 } 4801 4802 assert(Entry->isDeclaration()); 4803 4804 // If there is a declaration in the module, then we had an extern followed 4805 // by the alias, as in: 4806 // extern int test6(); 4807 // ... 4808 // int test6() __attribute__((alias("test7"))); 4809 // 4810 // Remove it and replace uses of it with the alias. 4811 GA->takeName(Entry); 4812 4813 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4814 Entry->getType())); 4815 Entry->eraseFromParent(); 4816 } else { 4817 GA->setName(MangledName); 4818 } 4819 4820 // Set attributes which are particular to an alias; this is a 4821 // specialization of the attributes which may be set on a global 4822 // variable/function. 4823 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4824 D->isWeakImported()) { 4825 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4826 } 4827 4828 if (const auto *VD = dyn_cast<VarDecl>(D)) 4829 if (VD->getTLSKind()) 4830 setTLSMode(GA, *VD); 4831 4832 SetCommonAttributes(GD, GA); 4833 } 4834 4835 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4836 const auto *D = cast<ValueDecl>(GD.getDecl()); 4837 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4838 assert(IFA && "Not an ifunc?"); 4839 4840 StringRef MangledName = getMangledName(GD); 4841 4842 if (IFA->getResolver() == MangledName) { 4843 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4844 return; 4845 } 4846 4847 // Report an error if some definition overrides ifunc. 4848 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4849 if (Entry && !Entry->isDeclaration()) { 4850 GlobalDecl OtherGD; 4851 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4852 DiagnosedConflictingDefinitions.insert(GD).second) { 4853 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4854 << MangledName; 4855 Diags.Report(OtherGD.getDecl()->getLocation(), 4856 diag::note_previous_definition); 4857 } 4858 return; 4859 } 4860 4861 Aliases.push_back(GD); 4862 4863 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4864 llvm::Constant *Resolver = 4865 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4866 /*ForVTable=*/false); 4867 llvm::GlobalIFunc *GIF = 4868 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4869 "", Resolver, &getModule()); 4870 if (Entry) { 4871 if (GIF->getResolver() == Entry) { 4872 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4873 return; 4874 } 4875 assert(Entry->isDeclaration()); 4876 4877 // If there is a declaration in the module, then we had an extern followed 4878 // by the ifunc, as in: 4879 // extern int test(); 4880 // ... 4881 // int test() __attribute__((ifunc("resolver"))); 4882 // 4883 // Remove it and replace uses of it with the ifunc. 4884 GIF->takeName(Entry); 4885 4886 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4887 Entry->getType())); 4888 Entry->eraseFromParent(); 4889 } else 4890 GIF->setName(MangledName); 4891 4892 SetCommonAttributes(GD, GIF); 4893 } 4894 4895 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4896 ArrayRef<llvm::Type*> Tys) { 4897 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4898 Tys); 4899 } 4900 4901 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4902 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4903 const StringLiteral *Literal, bool TargetIsLSB, 4904 bool &IsUTF16, unsigned &StringLength) { 4905 StringRef String = Literal->getString(); 4906 unsigned NumBytes = String.size(); 4907 4908 // Check for simple case. 4909 if (!Literal->containsNonAsciiOrNull()) { 4910 StringLength = NumBytes; 4911 return *Map.insert(std::make_pair(String, nullptr)).first; 4912 } 4913 4914 // Otherwise, convert the UTF8 literals into a string of shorts. 4915 IsUTF16 = true; 4916 4917 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4918 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4919 llvm::UTF16 *ToPtr = &ToBuf[0]; 4920 4921 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4922 ToPtr + NumBytes, llvm::strictConversion); 4923 4924 // ConvertUTF8toUTF16 returns the length in ToPtr. 4925 StringLength = ToPtr - &ToBuf[0]; 4926 4927 // Add an explicit null. 4928 *ToPtr = 0; 4929 return *Map.insert(std::make_pair( 4930 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4931 (StringLength + 1) * 2), 4932 nullptr)).first; 4933 } 4934 4935 ConstantAddress 4936 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4937 unsigned StringLength = 0; 4938 bool isUTF16 = false; 4939 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4940 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4941 getDataLayout().isLittleEndian(), isUTF16, 4942 StringLength); 4943 4944 if (auto *C = Entry.second) 4945 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4946 4947 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4948 llvm::Constant *Zeros[] = { Zero, Zero }; 4949 4950 const ASTContext &Context = getContext(); 4951 const llvm::Triple &Triple = getTriple(); 4952 4953 const auto CFRuntime = getLangOpts().CFRuntime; 4954 const bool IsSwiftABI = 4955 static_cast<unsigned>(CFRuntime) >= 4956 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4957 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4958 4959 // If we don't already have it, get __CFConstantStringClassReference. 4960 if (!CFConstantStringClassRef) { 4961 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4962 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4963 Ty = llvm::ArrayType::get(Ty, 0); 4964 4965 switch (CFRuntime) { 4966 default: break; 4967 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4968 case LangOptions::CoreFoundationABI::Swift5_0: 4969 CFConstantStringClassName = 4970 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4971 : "$s10Foundation19_NSCFConstantStringCN"; 4972 Ty = IntPtrTy; 4973 break; 4974 case LangOptions::CoreFoundationABI::Swift4_2: 4975 CFConstantStringClassName = 4976 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4977 : "$S10Foundation19_NSCFConstantStringCN"; 4978 Ty = IntPtrTy; 4979 break; 4980 case LangOptions::CoreFoundationABI::Swift4_1: 4981 CFConstantStringClassName = 4982 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4983 : "__T010Foundation19_NSCFConstantStringCN"; 4984 Ty = IntPtrTy; 4985 break; 4986 } 4987 4988 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4989 4990 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4991 llvm::GlobalValue *GV = nullptr; 4992 4993 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4994 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4995 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4996 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4997 4998 const VarDecl *VD = nullptr; 4999 for (const auto &Result : DC->lookup(&II)) 5000 if ((VD = dyn_cast<VarDecl>(Result))) 5001 break; 5002 5003 if (Triple.isOSBinFormatELF()) { 5004 if (!VD) 5005 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5006 } else { 5007 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5008 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5009 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5010 else 5011 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5012 } 5013 5014 setDSOLocal(GV); 5015 } 5016 } 5017 5018 // Decay array -> ptr 5019 CFConstantStringClassRef = 5020 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5021 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5022 } 5023 5024 QualType CFTy = Context.getCFConstantStringType(); 5025 5026 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5027 5028 ConstantInitBuilder Builder(*this); 5029 auto Fields = Builder.beginStruct(STy); 5030 5031 // Class pointer. 5032 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 5033 5034 // Flags. 5035 if (IsSwiftABI) { 5036 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5037 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5038 } else { 5039 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5040 } 5041 5042 // String pointer. 5043 llvm::Constant *C = nullptr; 5044 if (isUTF16) { 5045 auto Arr = llvm::makeArrayRef( 5046 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5047 Entry.first().size() / 2); 5048 C = llvm::ConstantDataArray::get(VMContext, Arr); 5049 } else { 5050 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5051 } 5052 5053 // Note: -fwritable-strings doesn't make the backing store strings of 5054 // CFStrings writable. (See <rdar://problem/10657500>) 5055 auto *GV = 5056 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5057 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5058 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5059 // Don't enforce the target's minimum global alignment, since the only use 5060 // of the string is via this class initializer. 5061 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5062 : Context.getTypeAlignInChars(Context.CharTy); 5063 GV->setAlignment(Align.getAsAlign()); 5064 5065 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5066 // Without it LLVM can merge the string with a non unnamed_addr one during 5067 // LTO. Doing that changes the section it ends in, which surprises ld64. 5068 if (Triple.isOSBinFormatMachO()) 5069 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5070 : "__TEXT,__cstring,cstring_literals"); 5071 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5072 // the static linker to adjust permissions to read-only later on. 5073 else if (Triple.isOSBinFormatELF()) 5074 GV->setSection(".rodata"); 5075 5076 // String. 5077 llvm::Constant *Str = 5078 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5079 5080 if (isUTF16) 5081 // Cast the UTF16 string to the correct type. 5082 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5083 Fields.add(Str); 5084 5085 // String length. 5086 llvm::IntegerType *LengthTy = 5087 llvm::IntegerType::get(getModule().getContext(), 5088 Context.getTargetInfo().getLongWidth()); 5089 if (IsSwiftABI) { 5090 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5091 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5092 LengthTy = Int32Ty; 5093 else 5094 LengthTy = IntPtrTy; 5095 } 5096 Fields.addInt(LengthTy, StringLength); 5097 5098 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5099 // properly aligned on 32-bit platforms. 5100 CharUnits Alignment = 5101 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5102 5103 // The struct. 5104 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5105 /*isConstant=*/false, 5106 llvm::GlobalVariable::PrivateLinkage); 5107 GV->addAttribute("objc_arc_inert"); 5108 switch (Triple.getObjectFormat()) { 5109 case llvm::Triple::UnknownObjectFormat: 5110 llvm_unreachable("unknown file format"); 5111 case llvm::Triple::GOFF: 5112 llvm_unreachable("GOFF is not yet implemented"); 5113 case llvm::Triple::XCOFF: 5114 llvm_unreachable("XCOFF is not yet implemented"); 5115 case llvm::Triple::COFF: 5116 case llvm::Triple::ELF: 5117 case llvm::Triple::Wasm: 5118 GV->setSection("cfstring"); 5119 break; 5120 case llvm::Triple::MachO: 5121 GV->setSection("__DATA,__cfstring"); 5122 break; 5123 } 5124 Entry.second = GV; 5125 5126 return ConstantAddress(GV, Alignment); 5127 } 5128 5129 bool CodeGenModule::getExpressionLocationsEnabled() const { 5130 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5131 } 5132 5133 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5134 if (ObjCFastEnumerationStateType.isNull()) { 5135 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5136 D->startDefinition(); 5137 5138 QualType FieldTypes[] = { 5139 Context.UnsignedLongTy, 5140 Context.getPointerType(Context.getObjCIdType()), 5141 Context.getPointerType(Context.UnsignedLongTy), 5142 Context.getConstantArrayType(Context.UnsignedLongTy, 5143 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5144 }; 5145 5146 for (size_t i = 0; i < 4; ++i) { 5147 FieldDecl *Field = FieldDecl::Create(Context, 5148 D, 5149 SourceLocation(), 5150 SourceLocation(), nullptr, 5151 FieldTypes[i], /*TInfo=*/nullptr, 5152 /*BitWidth=*/nullptr, 5153 /*Mutable=*/false, 5154 ICIS_NoInit); 5155 Field->setAccess(AS_public); 5156 D->addDecl(Field); 5157 } 5158 5159 D->completeDefinition(); 5160 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5161 } 5162 5163 return ObjCFastEnumerationStateType; 5164 } 5165 5166 llvm::Constant * 5167 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5168 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5169 5170 // Don't emit it as the address of the string, emit the string data itself 5171 // as an inline array. 5172 if (E->getCharByteWidth() == 1) { 5173 SmallString<64> Str(E->getString()); 5174 5175 // Resize the string to the right size, which is indicated by its type. 5176 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5177 Str.resize(CAT->getSize().getZExtValue()); 5178 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5179 } 5180 5181 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5182 llvm::Type *ElemTy = AType->getElementType(); 5183 unsigned NumElements = AType->getNumElements(); 5184 5185 // Wide strings have either 2-byte or 4-byte elements. 5186 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5187 SmallVector<uint16_t, 32> Elements; 5188 Elements.reserve(NumElements); 5189 5190 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5191 Elements.push_back(E->getCodeUnit(i)); 5192 Elements.resize(NumElements); 5193 return llvm::ConstantDataArray::get(VMContext, Elements); 5194 } 5195 5196 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5197 SmallVector<uint32_t, 32> Elements; 5198 Elements.reserve(NumElements); 5199 5200 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5201 Elements.push_back(E->getCodeUnit(i)); 5202 Elements.resize(NumElements); 5203 return llvm::ConstantDataArray::get(VMContext, Elements); 5204 } 5205 5206 static llvm::GlobalVariable * 5207 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5208 CodeGenModule &CGM, StringRef GlobalName, 5209 CharUnits Alignment) { 5210 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5211 CGM.getStringLiteralAddressSpace()); 5212 5213 llvm::Module &M = CGM.getModule(); 5214 // Create a global variable for this string 5215 auto *GV = new llvm::GlobalVariable( 5216 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5217 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5218 GV->setAlignment(Alignment.getAsAlign()); 5219 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5220 if (GV->isWeakForLinker()) { 5221 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5222 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5223 } 5224 CGM.setDSOLocal(GV); 5225 5226 return GV; 5227 } 5228 5229 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5230 /// constant array for the given string literal. 5231 ConstantAddress 5232 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5233 StringRef Name) { 5234 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5235 5236 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5237 llvm::GlobalVariable **Entry = nullptr; 5238 if (!LangOpts.WritableStrings) { 5239 Entry = &ConstantStringMap[C]; 5240 if (auto GV = *Entry) { 5241 if (Alignment.getQuantity() > GV->getAlignment()) 5242 GV->setAlignment(Alignment.getAsAlign()); 5243 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5244 Alignment); 5245 } 5246 } 5247 5248 SmallString<256> MangledNameBuffer; 5249 StringRef GlobalVariableName; 5250 llvm::GlobalValue::LinkageTypes LT; 5251 5252 // Mangle the string literal if that's how the ABI merges duplicate strings. 5253 // Don't do it if they are writable, since we don't want writes in one TU to 5254 // affect strings in another. 5255 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5256 !LangOpts.WritableStrings) { 5257 llvm::raw_svector_ostream Out(MangledNameBuffer); 5258 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5259 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5260 GlobalVariableName = MangledNameBuffer; 5261 } else { 5262 LT = llvm::GlobalValue::PrivateLinkage; 5263 GlobalVariableName = Name; 5264 } 5265 5266 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5267 if (Entry) 5268 *Entry = GV; 5269 5270 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5271 QualType()); 5272 5273 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5274 Alignment); 5275 } 5276 5277 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5278 /// array for the given ObjCEncodeExpr node. 5279 ConstantAddress 5280 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5281 std::string Str; 5282 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5283 5284 return GetAddrOfConstantCString(Str); 5285 } 5286 5287 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5288 /// the literal and a terminating '\0' character. 5289 /// The result has pointer to array type. 5290 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5291 const std::string &Str, const char *GlobalName) { 5292 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5293 CharUnits Alignment = 5294 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5295 5296 llvm::Constant *C = 5297 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5298 5299 // Don't share any string literals if strings aren't constant. 5300 llvm::GlobalVariable **Entry = nullptr; 5301 if (!LangOpts.WritableStrings) { 5302 Entry = &ConstantStringMap[C]; 5303 if (auto GV = *Entry) { 5304 if (Alignment.getQuantity() > GV->getAlignment()) 5305 GV->setAlignment(Alignment.getAsAlign()); 5306 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5307 Alignment); 5308 } 5309 } 5310 5311 // Get the default prefix if a name wasn't specified. 5312 if (!GlobalName) 5313 GlobalName = ".str"; 5314 // Create a global variable for this. 5315 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5316 GlobalName, Alignment); 5317 if (Entry) 5318 *Entry = GV; 5319 5320 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5321 Alignment); 5322 } 5323 5324 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5325 const MaterializeTemporaryExpr *E, const Expr *Init) { 5326 assert((E->getStorageDuration() == SD_Static || 5327 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5328 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5329 5330 // If we're not materializing a subobject of the temporary, keep the 5331 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5332 QualType MaterializedType = Init->getType(); 5333 if (Init == E->getSubExpr()) 5334 MaterializedType = E->getType(); 5335 5336 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5337 5338 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5339 return ConstantAddress(Slot, Align); 5340 5341 // FIXME: If an externally-visible declaration extends multiple temporaries, 5342 // we need to give each temporary the same name in every translation unit (and 5343 // we also need to make the temporaries externally-visible). 5344 SmallString<256> Name; 5345 llvm::raw_svector_ostream Out(Name); 5346 getCXXABI().getMangleContext().mangleReferenceTemporary( 5347 VD, E->getManglingNumber(), Out); 5348 5349 APValue *Value = nullptr; 5350 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5351 // If the initializer of the extending declaration is a constant 5352 // initializer, we should have a cached constant initializer for this 5353 // temporary. Note that this might have a different value from the value 5354 // computed by evaluating the initializer if the surrounding constant 5355 // expression modifies the temporary. 5356 Value = E->getOrCreateValue(false); 5357 } 5358 5359 // Try evaluating it now, it might have a constant initializer. 5360 Expr::EvalResult EvalResult; 5361 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5362 !EvalResult.hasSideEffects()) 5363 Value = &EvalResult.Val; 5364 5365 LangAS AddrSpace = 5366 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5367 5368 Optional<ConstantEmitter> emitter; 5369 llvm::Constant *InitialValue = nullptr; 5370 bool Constant = false; 5371 llvm::Type *Type; 5372 if (Value) { 5373 // The temporary has a constant initializer, use it. 5374 emitter.emplace(*this); 5375 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5376 MaterializedType); 5377 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5378 Type = InitialValue->getType(); 5379 } else { 5380 // No initializer, the initialization will be provided when we 5381 // initialize the declaration which performed lifetime extension. 5382 Type = getTypes().ConvertTypeForMem(MaterializedType); 5383 } 5384 5385 // Create a global variable for this lifetime-extended temporary. 5386 llvm::GlobalValue::LinkageTypes Linkage = 5387 getLLVMLinkageVarDefinition(VD, Constant); 5388 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5389 const VarDecl *InitVD; 5390 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5391 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5392 // Temporaries defined inside a class get linkonce_odr linkage because the 5393 // class can be defined in multiple translation units. 5394 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5395 } else { 5396 // There is no need for this temporary to have external linkage if the 5397 // VarDecl has external linkage. 5398 Linkage = llvm::GlobalVariable::InternalLinkage; 5399 } 5400 } 5401 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5402 auto *GV = new llvm::GlobalVariable( 5403 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5404 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5405 if (emitter) emitter->finalize(GV); 5406 setGVProperties(GV, VD); 5407 GV->setAlignment(Align.getAsAlign()); 5408 if (supportsCOMDAT() && GV->isWeakForLinker()) 5409 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5410 if (VD->getTLSKind()) 5411 setTLSMode(GV, *VD); 5412 llvm::Constant *CV = GV; 5413 if (AddrSpace != LangAS::Default) 5414 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5415 *this, GV, AddrSpace, LangAS::Default, 5416 Type->getPointerTo( 5417 getContext().getTargetAddressSpace(LangAS::Default))); 5418 MaterializedGlobalTemporaryMap[E] = CV; 5419 return ConstantAddress(CV, Align); 5420 } 5421 5422 /// EmitObjCPropertyImplementations - Emit information for synthesized 5423 /// properties for an implementation. 5424 void CodeGenModule::EmitObjCPropertyImplementations(const 5425 ObjCImplementationDecl *D) { 5426 for (const auto *PID : D->property_impls()) { 5427 // Dynamic is just for type-checking. 5428 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5429 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5430 5431 // Determine which methods need to be implemented, some may have 5432 // been overridden. Note that ::isPropertyAccessor is not the method 5433 // we want, that just indicates if the decl came from a 5434 // property. What we want to know is if the method is defined in 5435 // this implementation. 5436 auto *Getter = PID->getGetterMethodDecl(); 5437 if (!Getter || Getter->isSynthesizedAccessorStub()) 5438 CodeGenFunction(*this).GenerateObjCGetter( 5439 const_cast<ObjCImplementationDecl *>(D), PID); 5440 auto *Setter = PID->getSetterMethodDecl(); 5441 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5442 CodeGenFunction(*this).GenerateObjCSetter( 5443 const_cast<ObjCImplementationDecl *>(D), PID); 5444 } 5445 } 5446 } 5447 5448 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5449 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5450 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5451 ivar; ivar = ivar->getNextIvar()) 5452 if (ivar->getType().isDestructedType()) 5453 return true; 5454 5455 return false; 5456 } 5457 5458 static bool AllTrivialInitializers(CodeGenModule &CGM, 5459 ObjCImplementationDecl *D) { 5460 CodeGenFunction CGF(CGM); 5461 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5462 E = D->init_end(); B != E; ++B) { 5463 CXXCtorInitializer *CtorInitExp = *B; 5464 Expr *Init = CtorInitExp->getInit(); 5465 if (!CGF.isTrivialInitializer(Init)) 5466 return false; 5467 } 5468 return true; 5469 } 5470 5471 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5472 /// for an implementation. 5473 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5474 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5475 if (needsDestructMethod(D)) { 5476 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5477 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5478 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5479 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5480 getContext().VoidTy, nullptr, D, 5481 /*isInstance=*/true, /*isVariadic=*/false, 5482 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5483 /*isImplicitlyDeclared=*/true, 5484 /*isDefined=*/false, ObjCMethodDecl::Required); 5485 D->addInstanceMethod(DTORMethod); 5486 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5487 D->setHasDestructors(true); 5488 } 5489 5490 // If the implementation doesn't have any ivar initializers, we don't need 5491 // a .cxx_construct. 5492 if (D->getNumIvarInitializers() == 0 || 5493 AllTrivialInitializers(*this, D)) 5494 return; 5495 5496 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5497 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5498 // The constructor returns 'self'. 5499 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5500 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5501 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5502 /*isVariadic=*/false, 5503 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5504 /*isImplicitlyDeclared=*/true, 5505 /*isDefined=*/false, ObjCMethodDecl::Required); 5506 D->addInstanceMethod(CTORMethod); 5507 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5508 D->setHasNonZeroConstructors(true); 5509 } 5510 5511 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5512 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5513 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5514 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5515 ErrorUnsupported(LSD, "linkage spec"); 5516 return; 5517 } 5518 5519 EmitDeclContext(LSD); 5520 } 5521 5522 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5523 for (auto *I : DC->decls()) { 5524 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5525 // are themselves considered "top-level", so EmitTopLevelDecl on an 5526 // ObjCImplDecl does not recursively visit them. We need to do that in 5527 // case they're nested inside another construct (LinkageSpecDecl / 5528 // ExportDecl) that does stop them from being considered "top-level". 5529 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5530 for (auto *M : OID->methods()) 5531 EmitTopLevelDecl(M); 5532 } 5533 5534 EmitTopLevelDecl(I); 5535 } 5536 } 5537 5538 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5539 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5540 // Ignore dependent declarations. 5541 if (D->isTemplated()) 5542 return; 5543 5544 // Consteval function shouldn't be emitted. 5545 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5546 if (FD->isConsteval()) 5547 return; 5548 5549 switch (D->getKind()) { 5550 case Decl::CXXConversion: 5551 case Decl::CXXMethod: 5552 case Decl::Function: 5553 EmitGlobal(cast<FunctionDecl>(D)); 5554 // Always provide some coverage mapping 5555 // even for the functions that aren't emitted. 5556 AddDeferredUnusedCoverageMapping(D); 5557 break; 5558 5559 case Decl::CXXDeductionGuide: 5560 // Function-like, but does not result in code emission. 5561 break; 5562 5563 case Decl::Var: 5564 case Decl::Decomposition: 5565 case Decl::VarTemplateSpecialization: 5566 EmitGlobal(cast<VarDecl>(D)); 5567 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5568 for (auto *B : DD->bindings()) 5569 if (auto *HD = B->getHoldingVar()) 5570 EmitGlobal(HD); 5571 break; 5572 5573 // Indirect fields from global anonymous structs and unions can be 5574 // ignored; only the actual variable requires IR gen support. 5575 case Decl::IndirectField: 5576 break; 5577 5578 // C++ Decls 5579 case Decl::Namespace: 5580 EmitDeclContext(cast<NamespaceDecl>(D)); 5581 break; 5582 case Decl::ClassTemplateSpecialization: { 5583 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5584 if (CGDebugInfo *DI = getModuleDebugInfo()) 5585 if (Spec->getSpecializationKind() == 5586 TSK_ExplicitInstantiationDefinition && 5587 Spec->hasDefinition()) 5588 DI->completeTemplateDefinition(*Spec); 5589 } LLVM_FALLTHROUGH; 5590 case Decl::CXXRecord: { 5591 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5592 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5593 if (CRD->hasDefinition()) 5594 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5595 if (auto *ES = D->getASTContext().getExternalSource()) 5596 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5597 DI->completeUnusedClass(*CRD); 5598 } 5599 // Emit any static data members, they may be definitions. 5600 for (auto *I : CRD->decls()) 5601 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5602 EmitTopLevelDecl(I); 5603 break; 5604 } 5605 // No code generation needed. 5606 case Decl::UsingShadow: 5607 case Decl::ClassTemplate: 5608 case Decl::VarTemplate: 5609 case Decl::Concept: 5610 case Decl::VarTemplatePartialSpecialization: 5611 case Decl::FunctionTemplate: 5612 case Decl::TypeAliasTemplate: 5613 case Decl::Block: 5614 case Decl::Empty: 5615 case Decl::Binding: 5616 break; 5617 case Decl::Using: // using X; [C++] 5618 if (CGDebugInfo *DI = getModuleDebugInfo()) 5619 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5620 break; 5621 case Decl::NamespaceAlias: 5622 if (CGDebugInfo *DI = getModuleDebugInfo()) 5623 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5624 break; 5625 case Decl::UsingDirective: // using namespace X; [C++] 5626 if (CGDebugInfo *DI = getModuleDebugInfo()) 5627 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5628 break; 5629 case Decl::CXXConstructor: 5630 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5631 break; 5632 case Decl::CXXDestructor: 5633 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5634 break; 5635 5636 case Decl::StaticAssert: 5637 // Nothing to do. 5638 break; 5639 5640 // Objective-C Decls 5641 5642 // Forward declarations, no (immediate) code generation. 5643 case Decl::ObjCInterface: 5644 case Decl::ObjCCategory: 5645 break; 5646 5647 case Decl::ObjCProtocol: { 5648 auto *Proto = cast<ObjCProtocolDecl>(D); 5649 if (Proto->isThisDeclarationADefinition()) 5650 ObjCRuntime->GenerateProtocol(Proto); 5651 break; 5652 } 5653 5654 case Decl::ObjCCategoryImpl: 5655 // Categories have properties but don't support synthesize so we 5656 // can ignore them here. 5657 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5658 break; 5659 5660 case Decl::ObjCImplementation: { 5661 auto *OMD = cast<ObjCImplementationDecl>(D); 5662 EmitObjCPropertyImplementations(OMD); 5663 EmitObjCIvarInitializations(OMD); 5664 ObjCRuntime->GenerateClass(OMD); 5665 // Emit global variable debug information. 5666 if (CGDebugInfo *DI = getModuleDebugInfo()) 5667 if (getCodeGenOpts().hasReducedDebugInfo()) 5668 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5669 OMD->getClassInterface()), OMD->getLocation()); 5670 break; 5671 } 5672 case Decl::ObjCMethod: { 5673 auto *OMD = cast<ObjCMethodDecl>(D); 5674 // If this is not a prototype, emit the body. 5675 if (OMD->getBody()) 5676 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5677 break; 5678 } 5679 case Decl::ObjCCompatibleAlias: 5680 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5681 break; 5682 5683 case Decl::PragmaComment: { 5684 const auto *PCD = cast<PragmaCommentDecl>(D); 5685 switch (PCD->getCommentKind()) { 5686 case PCK_Unknown: 5687 llvm_unreachable("unexpected pragma comment kind"); 5688 case PCK_Linker: 5689 AppendLinkerOptions(PCD->getArg()); 5690 break; 5691 case PCK_Lib: 5692 AddDependentLib(PCD->getArg()); 5693 break; 5694 case PCK_Compiler: 5695 case PCK_ExeStr: 5696 case PCK_User: 5697 break; // We ignore all of these. 5698 } 5699 break; 5700 } 5701 5702 case Decl::PragmaDetectMismatch: { 5703 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5704 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5705 break; 5706 } 5707 5708 case Decl::LinkageSpec: 5709 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5710 break; 5711 5712 case Decl::FileScopeAsm: { 5713 // File-scope asm is ignored during device-side CUDA compilation. 5714 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5715 break; 5716 // File-scope asm is ignored during device-side OpenMP compilation. 5717 if (LangOpts.OpenMPIsDevice) 5718 break; 5719 auto *AD = cast<FileScopeAsmDecl>(D); 5720 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5721 break; 5722 } 5723 5724 case Decl::Import: { 5725 auto *Import = cast<ImportDecl>(D); 5726 5727 // If we've already imported this module, we're done. 5728 if (!ImportedModules.insert(Import->getImportedModule())) 5729 break; 5730 5731 // Emit debug information for direct imports. 5732 if (!Import->getImportedOwningModule()) { 5733 if (CGDebugInfo *DI = getModuleDebugInfo()) 5734 DI->EmitImportDecl(*Import); 5735 } 5736 5737 // Find all of the submodules and emit the module initializers. 5738 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5739 SmallVector<clang::Module *, 16> Stack; 5740 Visited.insert(Import->getImportedModule()); 5741 Stack.push_back(Import->getImportedModule()); 5742 5743 while (!Stack.empty()) { 5744 clang::Module *Mod = Stack.pop_back_val(); 5745 if (!EmittedModuleInitializers.insert(Mod).second) 5746 continue; 5747 5748 for (auto *D : Context.getModuleInitializers(Mod)) 5749 EmitTopLevelDecl(D); 5750 5751 // Visit the submodules of this module. 5752 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5753 SubEnd = Mod->submodule_end(); 5754 Sub != SubEnd; ++Sub) { 5755 // Skip explicit children; they need to be explicitly imported to emit 5756 // the initializers. 5757 if ((*Sub)->IsExplicit) 5758 continue; 5759 5760 if (Visited.insert(*Sub).second) 5761 Stack.push_back(*Sub); 5762 } 5763 } 5764 break; 5765 } 5766 5767 case Decl::Export: 5768 EmitDeclContext(cast<ExportDecl>(D)); 5769 break; 5770 5771 case Decl::OMPThreadPrivate: 5772 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5773 break; 5774 5775 case Decl::OMPAllocate: 5776 break; 5777 5778 case Decl::OMPDeclareReduction: 5779 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5780 break; 5781 5782 case Decl::OMPDeclareMapper: 5783 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5784 break; 5785 5786 case Decl::OMPRequires: 5787 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5788 break; 5789 5790 case Decl::Typedef: 5791 case Decl::TypeAlias: // using foo = bar; [C++11] 5792 if (CGDebugInfo *DI = getModuleDebugInfo()) 5793 DI->EmitAndRetainType( 5794 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5795 break; 5796 5797 case Decl::Record: 5798 if (CGDebugInfo *DI = getModuleDebugInfo()) 5799 if (cast<RecordDecl>(D)->getDefinition()) 5800 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5801 break; 5802 5803 case Decl::Enum: 5804 if (CGDebugInfo *DI = getModuleDebugInfo()) 5805 if (cast<EnumDecl>(D)->getDefinition()) 5806 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5807 break; 5808 5809 default: 5810 // Make sure we handled everything we should, every other kind is a 5811 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5812 // function. Need to recode Decl::Kind to do that easily. 5813 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5814 break; 5815 } 5816 } 5817 5818 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5819 // Do we need to generate coverage mapping? 5820 if (!CodeGenOpts.CoverageMapping) 5821 return; 5822 switch (D->getKind()) { 5823 case Decl::CXXConversion: 5824 case Decl::CXXMethod: 5825 case Decl::Function: 5826 case Decl::ObjCMethod: 5827 case Decl::CXXConstructor: 5828 case Decl::CXXDestructor: { 5829 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5830 break; 5831 SourceManager &SM = getContext().getSourceManager(); 5832 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5833 break; 5834 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5835 if (I == DeferredEmptyCoverageMappingDecls.end()) 5836 DeferredEmptyCoverageMappingDecls[D] = true; 5837 break; 5838 } 5839 default: 5840 break; 5841 }; 5842 } 5843 5844 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5845 // Do we need to generate coverage mapping? 5846 if (!CodeGenOpts.CoverageMapping) 5847 return; 5848 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5849 if (Fn->isTemplateInstantiation()) 5850 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5851 } 5852 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5853 if (I == DeferredEmptyCoverageMappingDecls.end()) 5854 DeferredEmptyCoverageMappingDecls[D] = false; 5855 else 5856 I->second = false; 5857 } 5858 5859 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5860 // We call takeVector() here to avoid use-after-free. 5861 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5862 // we deserialize function bodies to emit coverage info for them, and that 5863 // deserializes more declarations. How should we handle that case? 5864 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5865 if (!Entry.second) 5866 continue; 5867 const Decl *D = Entry.first; 5868 switch (D->getKind()) { 5869 case Decl::CXXConversion: 5870 case Decl::CXXMethod: 5871 case Decl::Function: 5872 case Decl::ObjCMethod: { 5873 CodeGenPGO PGO(*this); 5874 GlobalDecl GD(cast<FunctionDecl>(D)); 5875 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5876 getFunctionLinkage(GD)); 5877 break; 5878 } 5879 case Decl::CXXConstructor: { 5880 CodeGenPGO PGO(*this); 5881 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5882 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5883 getFunctionLinkage(GD)); 5884 break; 5885 } 5886 case Decl::CXXDestructor: { 5887 CodeGenPGO PGO(*this); 5888 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5889 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5890 getFunctionLinkage(GD)); 5891 break; 5892 } 5893 default: 5894 break; 5895 }; 5896 } 5897 } 5898 5899 void CodeGenModule::EmitMainVoidAlias() { 5900 // In order to transition away from "__original_main" gracefully, emit an 5901 // alias for "main" in the no-argument case so that libc can detect when 5902 // new-style no-argument main is in used. 5903 if (llvm::Function *F = getModule().getFunction("main")) { 5904 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5905 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5906 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5907 } 5908 } 5909 5910 /// Turns the given pointer into a constant. 5911 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5912 const void *Ptr) { 5913 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5914 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5915 return llvm::ConstantInt::get(i64, PtrInt); 5916 } 5917 5918 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5919 llvm::NamedMDNode *&GlobalMetadata, 5920 GlobalDecl D, 5921 llvm::GlobalValue *Addr) { 5922 if (!GlobalMetadata) 5923 GlobalMetadata = 5924 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5925 5926 // TODO: should we report variant information for ctors/dtors? 5927 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5928 llvm::ConstantAsMetadata::get(GetPointerConstant( 5929 CGM.getLLVMContext(), D.getDecl()))}; 5930 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5931 } 5932 5933 /// For each function which is declared within an extern "C" region and marked 5934 /// as 'used', but has internal linkage, create an alias from the unmangled 5935 /// name to the mangled name if possible. People expect to be able to refer 5936 /// to such functions with an unmangled name from inline assembly within the 5937 /// same translation unit. 5938 void CodeGenModule::EmitStaticExternCAliases() { 5939 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5940 return; 5941 for (auto &I : StaticExternCValues) { 5942 IdentifierInfo *Name = I.first; 5943 llvm::GlobalValue *Val = I.second; 5944 if (Val && !getModule().getNamedValue(Name->getName())) 5945 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5946 } 5947 } 5948 5949 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5950 GlobalDecl &Result) const { 5951 auto Res = Manglings.find(MangledName); 5952 if (Res == Manglings.end()) 5953 return false; 5954 Result = Res->getValue(); 5955 return true; 5956 } 5957 5958 /// Emits metadata nodes associating all the global values in the 5959 /// current module with the Decls they came from. This is useful for 5960 /// projects using IR gen as a subroutine. 5961 /// 5962 /// Since there's currently no way to associate an MDNode directly 5963 /// with an llvm::GlobalValue, we create a global named metadata 5964 /// with the name 'clang.global.decl.ptrs'. 5965 void CodeGenModule::EmitDeclMetadata() { 5966 llvm::NamedMDNode *GlobalMetadata = nullptr; 5967 5968 for (auto &I : MangledDeclNames) { 5969 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5970 // Some mangled names don't necessarily have an associated GlobalValue 5971 // in this module, e.g. if we mangled it for DebugInfo. 5972 if (Addr) 5973 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5974 } 5975 } 5976 5977 /// Emits metadata nodes for all the local variables in the current 5978 /// function. 5979 void CodeGenFunction::EmitDeclMetadata() { 5980 if (LocalDeclMap.empty()) return; 5981 5982 llvm::LLVMContext &Context = getLLVMContext(); 5983 5984 // Find the unique metadata ID for this name. 5985 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5986 5987 llvm::NamedMDNode *GlobalMetadata = nullptr; 5988 5989 for (auto &I : LocalDeclMap) { 5990 const Decl *D = I.first; 5991 llvm::Value *Addr = I.second.getPointer(); 5992 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5993 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5994 Alloca->setMetadata( 5995 DeclPtrKind, llvm::MDNode::get( 5996 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5997 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5998 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5999 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6000 } 6001 } 6002 } 6003 6004 void CodeGenModule::EmitVersionIdentMetadata() { 6005 llvm::NamedMDNode *IdentMetadata = 6006 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6007 std::string Version = getClangFullVersion(); 6008 llvm::LLVMContext &Ctx = TheModule.getContext(); 6009 6010 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6011 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6012 } 6013 6014 void CodeGenModule::EmitCommandLineMetadata() { 6015 llvm::NamedMDNode *CommandLineMetadata = 6016 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6017 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6018 llvm::LLVMContext &Ctx = TheModule.getContext(); 6019 6020 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6021 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6022 } 6023 6024 void CodeGenModule::EmitCoverageFile() { 6025 if (getCodeGenOpts().CoverageDataFile.empty() && 6026 getCodeGenOpts().CoverageNotesFile.empty()) 6027 return; 6028 6029 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6030 if (!CUNode) 6031 return; 6032 6033 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6034 llvm::LLVMContext &Ctx = TheModule.getContext(); 6035 auto *CoverageDataFile = 6036 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6037 auto *CoverageNotesFile = 6038 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6039 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6040 llvm::MDNode *CU = CUNode->getOperand(i); 6041 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6042 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6043 } 6044 } 6045 6046 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6047 bool ForEH) { 6048 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6049 // FIXME: should we even be calling this method if RTTI is disabled 6050 // and it's not for EH? 6051 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6052 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6053 getTriple().isNVPTX())) 6054 return llvm::Constant::getNullValue(Int8PtrTy); 6055 6056 if (ForEH && Ty->isObjCObjectPointerType() && 6057 LangOpts.ObjCRuntime.isGNUFamily()) 6058 return ObjCRuntime->GetEHType(Ty); 6059 6060 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6061 } 6062 6063 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6064 // Do not emit threadprivates in simd-only mode. 6065 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6066 return; 6067 for (auto RefExpr : D->varlists()) { 6068 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6069 bool PerformInit = 6070 VD->getAnyInitializer() && 6071 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6072 /*ForRef=*/false); 6073 6074 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 6075 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6076 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6077 CXXGlobalInits.push_back(InitFunction); 6078 } 6079 } 6080 6081 llvm::Metadata * 6082 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6083 StringRef Suffix) { 6084 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6085 if (InternalId) 6086 return InternalId; 6087 6088 if (isExternallyVisible(T->getLinkage())) { 6089 std::string OutName; 6090 llvm::raw_string_ostream Out(OutName); 6091 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6092 Out << Suffix; 6093 6094 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6095 } else { 6096 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6097 llvm::ArrayRef<llvm::Metadata *>()); 6098 } 6099 6100 return InternalId; 6101 } 6102 6103 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6104 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6105 } 6106 6107 llvm::Metadata * 6108 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6109 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6110 } 6111 6112 // Generalize pointer types to a void pointer with the qualifiers of the 6113 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6114 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6115 // 'void *'. 6116 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6117 if (!Ty->isPointerType()) 6118 return Ty; 6119 6120 return Ctx.getPointerType( 6121 QualType(Ctx.VoidTy).withCVRQualifiers( 6122 Ty->getPointeeType().getCVRQualifiers())); 6123 } 6124 6125 // Apply type generalization to a FunctionType's return and argument types 6126 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6127 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6128 SmallVector<QualType, 8> GeneralizedParams; 6129 for (auto &Param : FnType->param_types()) 6130 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6131 6132 return Ctx.getFunctionType( 6133 GeneralizeType(Ctx, FnType->getReturnType()), 6134 GeneralizedParams, FnType->getExtProtoInfo()); 6135 } 6136 6137 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6138 return Ctx.getFunctionNoProtoType( 6139 GeneralizeType(Ctx, FnType->getReturnType())); 6140 6141 llvm_unreachable("Encountered unknown FunctionType"); 6142 } 6143 6144 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6145 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6146 GeneralizedMetadataIdMap, ".generalized"); 6147 } 6148 6149 /// Returns whether this module needs the "all-vtables" type identifier. 6150 bool CodeGenModule::NeedAllVtablesTypeId() const { 6151 // Returns true if at least one of vtable-based CFI checkers is enabled and 6152 // is not in the trapping mode. 6153 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6154 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6155 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6156 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6157 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6158 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6159 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6160 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6161 } 6162 6163 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6164 CharUnits Offset, 6165 const CXXRecordDecl *RD) { 6166 llvm::Metadata *MD = 6167 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6168 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6169 6170 if (CodeGenOpts.SanitizeCfiCrossDso) 6171 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6172 VTable->addTypeMetadata(Offset.getQuantity(), 6173 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6174 6175 if (NeedAllVtablesTypeId()) { 6176 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6177 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6178 } 6179 } 6180 6181 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6182 if (!SanStats) 6183 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6184 6185 return *SanStats; 6186 } 6187 llvm::Value * 6188 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6189 CodeGenFunction &CGF) { 6190 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6191 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6192 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6193 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6194 "__translate_sampler_initializer"), 6195 {C}); 6196 } 6197 6198 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6199 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6200 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6201 /* forPointeeType= */ true); 6202 } 6203 6204 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6205 LValueBaseInfo *BaseInfo, 6206 TBAAAccessInfo *TBAAInfo, 6207 bool forPointeeType) { 6208 if (TBAAInfo) 6209 *TBAAInfo = getTBAAAccessInfo(T); 6210 6211 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6212 // that doesn't return the information we need to compute BaseInfo. 6213 6214 // Honor alignment typedef attributes even on incomplete types. 6215 // We also honor them straight for C++ class types, even as pointees; 6216 // there's an expressivity gap here. 6217 if (auto TT = T->getAs<TypedefType>()) { 6218 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6219 if (BaseInfo) 6220 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6221 return getContext().toCharUnitsFromBits(Align); 6222 } 6223 } 6224 6225 bool AlignForArray = T->isArrayType(); 6226 6227 // Analyze the base element type, so we don't get confused by incomplete 6228 // array types. 6229 T = getContext().getBaseElementType(T); 6230 6231 if (T->isIncompleteType()) { 6232 // We could try to replicate the logic from 6233 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6234 // type is incomplete, so it's impossible to test. We could try to reuse 6235 // getTypeAlignIfKnown, but that doesn't return the information we need 6236 // to set BaseInfo. So just ignore the possibility that the alignment is 6237 // greater than one. 6238 if (BaseInfo) 6239 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6240 return CharUnits::One(); 6241 } 6242 6243 if (BaseInfo) 6244 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6245 6246 CharUnits Alignment; 6247 const CXXRecordDecl *RD; 6248 if (T.getQualifiers().hasUnaligned()) { 6249 Alignment = CharUnits::One(); 6250 } else if (forPointeeType && !AlignForArray && 6251 (RD = T->getAsCXXRecordDecl())) { 6252 // For C++ class pointees, we don't know whether we're pointing at a 6253 // base or a complete object, so we generally need to use the 6254 // non-virtual alignment. 6255 Alignment = getClassPointerAlignment(RD); 6256 } else { 6257 Alignment = getContext().getTypeAlignInChars(T); 6258 } 6259 6260 // Cap to the global maximum type alignment unless the alignment 6261 // was somehow explicit on the type. 6262 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6263 if (Alignment.getQuantity() > MaxAlign && 6264 !getContext().isAlignmentRequired(T)) 6265 Alignment = CharUnits::fromQuantity(MaxAlign); 6266 } 6267 return Alignment; 6268 } 6269 6270 bool CodeGenModule::stopAutoInit() { 6271 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6272 if (StopAfter) { 6273 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6274 // used 6275 if (NumAutoVarInit >= StopAfter) { 6276 return true; 6277 } 6278 if (!NumAutoVarInit) { 6279 unsigned DiagID = getDiags().getCustomDiagID( 6280 DiagnosticsEngine::Warning, 6281 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6282 "number of times ftrivial-auto-var-init=%1 gets applied."); 6283 getDiags().Report(DiagID) 6284 << StopAfter 6285 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6286 LangOptions::TrivialAutoVarInitKind::Zero 6287 ? "zero" 6288 : "pattern"); 6289 } 6290 ++NumAutoVarInit; 6291 } 6292 return false; 6293 } 6294