xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e4aaac506c6d3496ae4120b68f03886402c0428c)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
71                              llvm::Module &M, const llvm::DataLayout &TD,
72                              DiagnosticsEngine &diags)
73     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
74       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
75       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
76       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
77       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
78       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
79       ConstantStringClassRef(0), NSConstantStringType(0),
80       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
81       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
82       LifetimeStartFn(0), LifetimeEndFn(0),
83       SanitizerBlacklist(
84           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
85       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
86                                           : LangOpts.Sanitize) {
87 
88   // Initialize the type cache.
89   llvm::LLVMContext &LLVMContext = M.getContext();
90   VoidTy = llvm::Type::getVoidTy(LLVMContext);
91   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
92   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
93   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
94   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
95   FloatTy = llvm::Type::getFloatTy(LLVMContext);
96   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
97   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
98   PointerAlignInBytes =
99   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
100   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
101   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
102   Int8PtrTy = Int8Ty->getPointerTo(0);
103   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
104 
105   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
106 
107   if (LangOpts.ObjC1)
108     createObjCRuntime();
109   if (LangOpts.OpenCL)
110     createOpenCLRuntime();
111   if (LangOpts.CUDA)
112     createCUDARuntime();
113 
114   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
115   if (SanOpts.Thread ||
116       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
117     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
118                            ABI.getMangleContext());
119 
120   // If debug info or coverage generation is enabled, create the CGDebugInfo
121   // object.
122   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
123       CodeGenOpts.EmitGcovArcs ||
124       CodeGenOpts.EmitGcovNotes)
125     DebugInfo = new CGDebugInfo(*this);
126 
127   Block.GlobalUniqueCount = 0;
128 
129   if (C.getLangOpts().ObjCAutoRefCount)
130     ARCData = new ARCEntrypoints();
131   RRData = new RREntrypoints();
132 }
133 
134 CodeGenModule::~CodeGenModule() {
135   delete ObjCRuntime;
136   delete OpenCLRuntime;
137   delete CUDARuntime;
138   delete TheTargetCodeGenInfo;
139   delete &ABI;
140   delete TBAA;
141   delete DebugInfo;
142   delete ARCData;
143   delete RRData;
144 }
145 
146 void CodeGenModule::createObjCRuntime() {
147   // This is just isGNUFamily(), but we want to force implementors of
148   // new ABIs to decide how best to do this.
149   switch (LangOpts.ObjCRuntime.getKind()) {
150   case ObjCRuntime::GNUstep:
151   case ObjCRuntime::GCC:
152   case ObjCRuntime::ObjFW:
153     ObjCRuntime = CreateGNUObjCRuntime(*this);
154     return;
155 
156   case ObjCRuntime::FragileMacOSX:
157   case ObjCRuntime::MacOSX:
158   case ObjCRuntime::iOS:
159     ObjCRuntime = CreateMacObjCRuntime(*this);
160     return;
161   }
162   llvm_unreachable("bad runtime kind");
163 }
164 
165 void CodeGenModule::createOpenCLRuntime() {
166   OpenCLRuntime = new CGOpenCLRuntime(*this);
167 }
168 
169 void CodeGenModule::createCUDARuntime() {
170   CUDARuntime = CreateNVCUDARuntime(*this);
171 }
172 
173 void CodeGenModule::Release() {
174   EmitDeferred();
175   EmitCXXGlobalInitFunc();
176   EmitCXXGlobalDtorFunc();
177   EmitCXXThreadLocalInitFunc();
178   if (ObjCRuntime)
179     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
180       AddGlobalCtor(ObjCInitFunction);
181   EmitCtorList(GlobalCtors, "llvm.global_ctors");
182   EmitCtorList(GlobalDtors, "llvm.global_dtors");
183   EmitGlobalAnnotations();
184   EmitStaticExternCAliases();
185   EmitLLVMUsed();
186 
187   if (CodeGenOpts.Autolink &&
188       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
189     EmitModuleLinkOptions();
190   }
191   if (CodeGenOpts.DwarfVersion)
192     // We actually want the latest version when there are conflicts.
193     // We can change from Warning to Latest if such mode is supported.
194     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
195                               CodeGenOpts.DwarfVersion);
196 
197   SimplifyPersonality();
198 
199   if (getCodeGenOpts().EmitDeclMetadata)
200     EmitDeclMetadata();
201 
202   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
203     EmitCoverageFile();
204 
205   if (DebugInfo)
206     DebugInfo->finalize();
207 }
208 
209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
210   // Make sure that this type is translated.
211   Types.UpdateCompletedType(TD);
212 }
213 
214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
215   if (!TBAA)
216     return 0;
217   return TBAA->getTBAAInfo(QTy);
218 }
219 
220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
221   if (!TBAA)
222     return 0;
223   return TBAA->getTBAAInfoForVTablePtr();
224 }
225 
226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
227   if (!TBAA)
228     return 0;
229   return TBAA->getTBAAStructInfo(QTy);
230 }
231 
232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
233   if (!TBAA)
234     return 0;
235   return TBAA->getTBAAStructTypeInfo(QTy);
236 }
237 
238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
239                                                   llvm::MDNode *AccessN,
240                                                   uint64_t O) {
241   if (!TBAA)
242     return 0;
243   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
244 }
245 
246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
247 /// is the same as the type. For struct-path aware TBAA, the tag
248 /// is different from the type: base type, access type and offset.
249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
251                                         llvm::MDNode *TBAAInfo,
252                                         bool ConvertTypeToTag) {
253   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
255                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
256   else
257     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
258 }
259 
260 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
261   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
262   getDiags().Report(Context.getFullLoc(loc), diagID);
263 }
264 
265 /// ErrorUnsupported - Print out an error that codegen doesn't support the
266 /// specified stmt yet.
267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
278   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
279                                                "cannot compile this %0 yet");
280   std::string Msg = Type;
281   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
282 }
283 
284 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
285   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
286 }
287 
288 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
289                                         const NamedDecl *D) const {
290   // Internal definitions always have default visibility.
291   if (GV->hasLocalLinkage()) {
292     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
293     return;
294   }
295 
296   // Set visibility for definitions.
297   LinkageInfo LV = D->getLinkageAndVisibility();
298   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
299     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
300 }
301 
302 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
303   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
304       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
305       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
306       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
307       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
311     CodeGenOptions::TLSModel M) {
312   switch (M) {
313   case CodeGenOptions::GeneralDynamicTLSModel:
314     return llvm::GlobalVariable::GeneralDynamicTLSModel;
315   case CodeGenOptions::LocalDynamicTLSModel:
316     return llvm::GlobalVariable::LocalDynamicTLSModel;
317   case CodeGenOptions::InitialExecTLSModel:
318     return llvm::GlobalVariable::InitialExecTLSModel;
319   case CodeGenOptions::LocalExecTLSModel:
320     return llvm::GlobalVariable::LocalExecTLSModel;
321   }
322   llvm_unreachable("Invalid TLS model!");
323 }
324 
325 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
326                                const VarDecl &D) const {
327   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
328 
329   llvm::GlobalVariable::ThreadLocalMode TLM;
330   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
331 
332   // Override the TLS model if it is explicitly specified.
333   if (D.hasAttr<TLSModelAttr>()) {
334     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
335     TLM = GetLLVMTLSModel(Attr->getModel());
336   }
337 
338   GV->setThreadLocalMode(TLM);
339 }
340 
341 /// Set the symbol visibility of type information (vtable and RTTI)
342 /// associated with the given type.
343 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
344                                       const CXXRecordDecl *RD,
345                                       TypeVisibilityKind TVK) const {
346   setGlobalVisibility(GV, RD);
347 
348   if (!CodeGenOpts.HiddenWeakVTables)
349     return;
350 
351   // We never want to drop the visibility for RTTI names.
352   if (TVK == TVK_ForRTTIName)
353     return;
354 
355   // We want to drop the visibility to hidden for weak type symbols.
356   // This isn't possible if there might be unresolved references
357   // elsewhere that rely on this symbol being visible.
358 
359   // This should be kept roughly in sync with setThunkVisibility
360   // in CGVTables.cpp.
361 
362   // Preconditions.
363   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
364       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
365     return;
366 
367   // Don't override an explicit visibility attribute.
368   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
369     return;
370 
371   switch (RD->getTemplateSpecializationKind()) {
372   // We have to disable the optimization if this is an EI definition
373   // because there might be EI declarations in other shared objects.
374   case TSK_ExplicitInstantiationDefinition:
375   case TSK_ExplicitInstantiationDeclaration:
376     return;
377 
378   // Every use of a non-template class's type information has to emit it.
379   case TSK_Undeclared:
380     break;
381 
382   // In theory, implicit instantiations can ignore the possibility of
383   // an explicit instantiation declaration because there necessarily
384   // must be an EI definition somewhere with default visibility.  In
385   // practice, it's possible to have an explicit instantiation for
386   // an arbitrary template class, and linkers aren't necessarily able
387   // to deal with mixed-visibility symbols.
388   case TSK_ExplicitSpecialization:
389   case TSK_ImplicitInstantiation:
390     return;
391   }
392 
393   // If there's a key function, there may be translation units
394   // that don't have the key function's definition.  But ignore
395   // this if we're emitting RTTI under -fno-rtti.
396   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
397     // FIXME: what should we do if we "lose" the key function during
398     // the emission of the file?
399     if (Context.getCurrentKeyFunction(RD))
400       return;
401   }
402 
403   // Otherwise, drop the visibility to hidden.
404   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
405   GV->setUnnamedAddr(true);
406 }
407 
408 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
409   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
410 
411   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
412   if (!Str.empty())
413     return Str;
414 
415   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
416     IdentifierInfo *II = ND->getIdentifier();
417     assert(II && "Attempt to mangle unnamed decl.");
418 
419     Str = II->getName();
420     return Str;
421   }
422 
423   SmallString<256> Buffer;
424   llvm::raw_svector_ostream Out(Buffer);
425   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
426     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
427   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
428     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
429   else
430     getCXXABI().getMangleContext().mangleName(ND, Out);
431 
432   // Allocate space for the mangled name.
433   Out.flush();
434   size_t Length = Buffer.size();
435   char *Name = MangledNamesAllocator.Allocate<char>(Length);
436   std::copy(Buffer.begin(), Buffer.end(), Name);
437 
438   Str = StringRef(Name, Length);
439 
440   return Str;
441 }
442 
443 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
444                                         const BlockDecl *BD) {
445   MangleContext &MangleCtx = getCXXABI().getMangleContext();
446   const Decl *D = GD.getDecl();
447   llvm::raw_svector_ostream Out(Buffer.getBuffer());
448   if (D == 0)
449     MangleCtx.mangleGlobalBlock(BD,
450       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
451   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
452     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
453   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
454     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
455   else
456     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
457 }
458 
459 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
460   return getModule().getNamedValue(Name);
461 }
462 
463 /// AddGlobalCtor - Add a function to the list that will be called before
464 /// main() runs.
465 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
466   // FIXME: Type coercion of void()* types.
467   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
468 }
469 
470 /// AddGlobalDtor - Add a function to the list that will be called
471 /// when the module is unloaded.
472 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
473   // FIXME: Type coercion of void()* types.
474   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
475 }
476 
477 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
478   // Ctor function type is void()*.
479   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
480   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
481 
482   // Get the type of a ctor entry, { i32, void ()* }.
483   llvm::StructType *CtorStructTy =
484     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
485 
486   // Construct the constructor and destructor arrays.
487   SmallVector<llvm::Constant*, 8> Ctors;
488   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
489     llvm::Constant *S[] = {
490       llvm::ConstantInt::get(Int32Ty, I->second, false),
491       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
492     };
493     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
494   }
495 
496   if (!Ctors.empty()) {
497     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
498     new llvm::GlobalVariable(TheModule, AT, false,
499                              llvm::GlobalValue::AppendingLinkage,
500                              llvm::ConstantArray::get(AT, Ctors),
501                              GlobalName);
502   }
503 }
504 
505 llvm::GlobalValue::LinkageTypes
506 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
507   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
508 
509   if (isa<CXXDestructorDecl>(D) &&
510       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
511                                          GD.getDtorType()))
512     return llvm::Function::LinkOnceODRLinkage;
513 
514   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
515 
516   if (Linkage == GVA_Internal)
517     return llvm::Function::InternalLinkage;
518 
519   if (D->hasAttr<DLLExportAttr>())
520     return llvm::Function::DLLExportLinkage;
521 
522   if (D->hasAttr<WeakAttr>())
523     return llvm::Function::WeakAnyLinkage;
524 
525   // In C99 mode, 'inline' functions are guaranteed to have a strong
526   // definition somewhere else, so we can use available_externally linkage.
527   if (Linkage == GVA_C99Inline)
528     return llvm::Function::AvailableExternallyLinkage;
529 
530   // Note that Apple's kernel linker doesn't support symbol
531   // coalescing, so we need to avoid linkonce and weak linkages there.
532   // Normally, this means we just map to internal, but for explicit
533   // instantiations we'll map to external.
534 
535   // In C++, the compiler has to emit a definition in every translation unit
536   // that references the function.  We should use linkonce_odr because
537   // a) if all references in this translation unit are optimized away, we
538   // don't need to codegen it.  b) if the function persists, it needs to be
539   // merged with other definitions. c) C++ has the ODR, so we know the
540   // definition is dependable.
541   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
542     return !Context.getLangOpts().AppleKext
543              ? llvm::Function::LinkOnceODRLinkage
544              : llvm::Function::InternalLinkage;
545 
546   // An explicit instantiation of a template has weak linkage, since
547   // explicit instantiations can occur in multiple translation units
548   // and must all be equivalent. However, we are not allowed to
549   // throw away these explicit instantiations.
550   if (Linkage == GVA_ExplicitTemplateInstantiation)
551     return !Context.getLangOpts().AppleKext
552              ? llvm::Function::WeakODRLinkage
553              : llvm::Function::ExternalLinkage;
554 
555   // Otherwise, we have strong external linkage.
556   assert(Linkage == GVA_StrongExternal);
557   return llvm::Function::ExternalLinkage;
558 }
559 
560 
561 /// SetFunctionDefinitionAttributes - Set attributes for a global.
562 ///
563 /// FIXME: This is currently only done for aliases and functions, but not for
564 /// variables (these details are set in EmitGlobalVarDefinition for variables).
565 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
566                                                     llvm::GlobalValue *GV) {
567   SetCommonAttributes(D, GV);
568 }
569 
570 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
571                                               const CGFunctionInfo &Info,
572                                               llvm::Function *F) {
573   unsigned CallingConv;
574   AttributeListType AttributeList;
575   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
576   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
577   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
578 }
579 
580 /// Determines whether the language options require us to model
581 /// unwind exceptions.  We treat -fexceptions as mandating this
582 /// except under the fragile ObjC ABI with only ObjC exceptions
583 /// enabled.  This means, for example, that C with -fexceptions
584 /// enables this.
585 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
586   // If exceptions are completely disabled, obviously this is false.
587   if (!LangOpts.Exceptions) return false;
588 
589   // If C++ exceptions are enabled, this is true.
590   if (LangOpts.CXXExceptions) return true;
591 
592   // If ObjC exceptions are enabled, this depends on the ABI.
593   if (LangOpts.ObjCExceptions) {
594     return LangOpts.ObjCRuntime.hasUnwindExceptions();
595   }
596 
597   return true;
598 }
599 
600 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
601                                                            llvm::Function *F) {
602   llvm::AttrBuilder B;
603 
604   if (CodeGenOpts.UnwindTables)
605     B.addAttribute(llvm::Attribute::UWTable);
606 
607   if (!hasUnwindExceptions(LangOpts))
608     B.addAttribute(llvm::Attribute::NoUnwind);
609 
610   if (D->hasAttr<NakedAttr>()) {
611     // Naked implies noinline: we should not be inlining such functions.
612     B.addAttribute(llvm::Attribute::Naked);
613     B.addAttribute(llvm::Attribute::NoInline);
614   } else if (D->hasAttr<NoInlineAttr>()) {
615     B.addAttribute(llvm::Attribute::NoInline);
616   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
617               D->hasAttr<ForceInlineAttr>()) &&
618              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
619                                               llvm::Attribute::NoInline)) {
620     // (noinline wins over always_inline, and we can't specify both in IR)
621     B.addAttribute(llvm::Attribute::AlwaysInline);
622   }
623 
624   if (D->hasAttr<ColdAttr>()) {
625     B.addAttribute(llvm::Attribute::OptimizeForSize);
626     B.addAttribute(llvm::Attribute::Cold);
627   }
628 
629   if (D->hasAttr<MinSizeAttr>())
630     B.addAttribute(llvm::Attribute::MinSize);
631 
632   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
633     B.addAttribute(llvm::Attribute::StackProtect);
634   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
635     B.addAttribute(llvm::Attribute::StackProtectReq);
636 
637   // Add sanitizer attributes if function is not blacklisted.
638   if (!SanitizerBlacklist->isIn(*F)) {
639     // When AddressSanitizer is enabled, set SanitizeAddress attribute
640     // unless __attribute__((no_sanitize_address)) is used.
641     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
642       B.addAttribute(llvm::Attribute::SanitizeAddress);
643     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
644     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
645       B.addAttribute(llvm::Attribute::SanitizeThread);
646     }
647     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
648     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
649       B.addAttribute(llvm::Attribute::SanitizeMemory);
650   }
651 
652   F->addAttributes(llvm::AttributeSet::FunctionIndex,
653                    llvm::AttributeSet::get(
654                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
655 
656   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
657     F->setUnnamedAddr(true);
658   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
659     if (MD->isVirtual())
660       F->setUnnamedAddr(true);
661 
662   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
663   if (alignment)
664     F->setAlignment(alignment);
665 
666   // C++ ABI requires 2-byte alignment for member functions.
667   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
668     F->setAlignment(2);
669 }
670 
671 void CodeGenModule::SetCommonAttributes(const Decl *D,
672                                         llvm::GlobalValue *GV) {
673   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
674     setGlobalVisibility(GV, ND);
675   else
676     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
677 
678   if (D->hasAttr<UsedAttr>())
679     AddUsedGlobal(GV);
680 
681   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
682     GV->setSection(SA->getName());
683 
684   // Alias cannot have attributes. Filter them here.
685   if (!isa<llvm::GlobalAlias>(GV))
686     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
687 }
688 
689 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
690                                                   llvm::Function *F,
691                                                   const CGFunctionInfo &FI) {
692   SetLLVMFunctionAttributes(D, FI, F);
693   SetLLVMFunctionAttributesForDefinition(D, F);
694 
695   F->setLinkage(llvm::Function::InternalLinkage);
696 
697   SetCommonAttributes(D, F);
698 }
699 
700 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
701                                           llvm::Function *F,
702                                           bool IsIncompleteFunction) {
703   if (unsigned IID = F->getIntrinsicID()) {
704     // If this is an intrinsic function, set the function's attributes
705     // to the intrinsic's attributes.
706     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
707                                                     (llvm::Intrinsic::ID)IID));
708     return;
709   }
710 
711   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
712 
713   if (!IsIncompleteFunction)
714     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
715 
716   if (getCXXABI().HasThisReturn(GD)) {
717     assert(!F->arg_empty() &&
718            F->arg_begin()->getType()
719              ->canLosslesslyBitCastTo(F->getReturnType()) &&
720            "unexpected this return");
721     F->addAttribute(1, llvm::Attribute::Returned);
722   }
723 
724   // Only a few attributes are set on declarations; these may later be
725   // overridden by a definition.
726 
727   if (FD->hasAttr<DLLImportAttr>()) {
728     F->setLinkage(llvm::Function::DLLImportLinkage);
729   } else if (FD->hasAttr<WeakAttr>() ||
730              FD->isWeakImported()) {
731     // "extern_weak" is overloaded in LLVM; we probably should have
732     // separate linkage types for this.
733     F->setLinkage(llvm::Function::ExternalWeakLinkage);
734   } else {
735     F->setLinkage(llvm::Function::ExternalLinkage);
736 
737     LinkageInfo LV = FD->getLinkageAndVisibility();
738     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
739       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
740     }
741   }
742 
743   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
744     F->setSection(SA->getName());
745 
746   // A replaceable global allocation function does not act like a builtin by
747   // default, only if it is invoked by a new-expression or delete-expression.
748   if (FD->isReplaceableGlobalAllocationFunction())
749     F->addAttribute(llvm::AttributeSet::FunctionIndex,
750                     llvm::Attribute::NoBuiltin);
751 }
752 
753 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
754   assert(!GV->isDeclaration() &&
755          "Only globals with definition can force usage.");
756   LLVMUsed.push_back(GV);
757 }
758 
759 void CodeGenModule::EmitLLVMUsed() {
760   // Don't create llvm.used if there is no need.
761   if (LLVMUsed.empty())
762     return;
763 
764   // Convert LLVMUsed to what ConstantArray needs.
765   SmallVector<llvm::Constant*, 8> UsedArray;
766   UsedArray.resize(LLVMUsed.size());
767   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
768     UsedArray[i] =
769      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
770                                     Int8PtrTy);
771   }
772 
773   if (UsedArray.empty())
774     return;
775   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
776 
777   llvm::GlobalVariable *GV =
778     new llvm::GlobalVariable(getModule(), ATy, false,
779                              llvm::GlobalValue::AppendingLinkage,
780                              llvm::ConstantArray::get(ATy, UsedArray),
781                              "llvm.used");
782 
783   GV->setSection("llvm.metadata");
784 }
785 
786 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
787   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
788   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
789 }
790 
791 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
792   llvm::SmallString<32> Opt;
793   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
794   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
795   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
796 }
797 
798 void CodeGenModule::AddDependentLib(StringRef Lib) {
799   llvm::SmallString<24> Opt;
800   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
801   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
802   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
803 }
804 
805 /// \brief Add link options implied by the given module, including modules
806 /// it depends on, using a postorder walk.
807 static void addLinkOptionsPostorder(CodeGenModule &CGM,
808                                     Module *Mod,
809                                     SmallVectorImpl<llvm::Value *> &Metadata,
810                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
811   // Import this module's parent.
812   if (Mod->Parent && Visited.insert(Mod->Parent)) {
813     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
814   }
815 
816   // Import this module's dependencies.
817   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
818     if (Visited.insert(Mod->Imports[I-1]))
819       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
820   }
821 
822   // Add linker options to link against the libraries/frameworks
823   // described by this module.
824   llvm::LLVMContext &Context = CGM.getLLVMContext();
825   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
826     // Link against a framework.  Frameworks are currently Darwin only, so we
827     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
828     if (Mod->LinkLibraries[I-1].IsFramework) {
829       llvm::Value *Args[2] = {
830         llvm::MDString::get(Context, "-framework"),
831         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
832       };
833 
834       Metadata.push_back(llvm::MDNode::get(Context, Args));
835       continue;
836     }
837 
838     // Link against a library.
839     llvm::SmallString<24> Opt;
840     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
841       Mod->LinkLibraries[I-1].Library, Opt);
842     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
843     Metadata.push_back(llvm::MDNode::get(Context, OptString));
844   }
845 }
846 
847 void CodeGenModule::EmitModuleLinkOptions() {
848   // Collect the set of all of the modules we want to visit to emit link
849   // options, which is essentially the imported modules and all of their
850   // non-explicit child modules.
851   llvm::SetVector<clang::Module *> LinkModules;
852   llvm::SmallPtrSet<clang::Module *, 16> Visited;
853   SmallVector<clang::Module *, 16> Stack;
854 
855   // Seed the stack with imported modules.
856   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
857                                                MEnd = ImportedModules.end();
858        M != MEnd; ++M) {
859     if (Visited.insert(*M))
860       Stack.push_back(*M);
861   }
862 
863   // Find all of the modules to import, making a little effort to prune
864   // non-leaf modules.
865   while (!Stack.empty()) {
866     clang::Module *Mod = Stack.pop_back_val();
867 
868     bool AnyChildren = false;
869 
870     // Visit the submodules of this module.
871     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
872                                         SubEnd = Mod->submodule_end();
873          Sub != SubEnd; ++Sub) {
874       // Skip explicit children; they need to be explicitly imported to be
875       // linked against.
876       if ((*Sub)->IsExplicit)
877         continue;
878 
879       if (Visited.insert(*Sub)) {
880         Stack.push_back(*Sub);
881         AnyChildren = true;
882       }
883     }
884 
885     // We didn't find any children, so add this module to the list of
886     // modules to link against.
887     if (!AnyChildren) {
888       LinkModules.insert(Mod);
889     }
890   }
891 
892   // Add link options for all of the imported modules in reverse topological
893   // order.  We don't do anything to try to order import link flags with respect
894   // to linker options inserted by things like #pragma comment().
895   SmallVector<llvm::Value *, 16> MetadataArgs;
896   Visited.clear();
897   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
898                                                MEnd = LinkModules.end();
899        M != MEnd; ++M) {
900     if (Visited.insert(*M))
901       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
902   }
903   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
904   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
905 
906   // Add the linker options metadata flag.
907   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
908                             llvm::MDNode::get(getLLVMContext(),
909                                               LinkerOptionsMetadata));
910 }
911 
912 void CodeGenModule::EmitDeferred() {
913   // Emit code for any potentially referenced deferred decls.  Since a
914   // previously unused static decl may become used during the generation of code
915   // for a static function, iterate until no changes are made.
916 
917   while (true) {
918     if (!DeferredVTables.empty()) {
919       EmitDeferredVTables();
920 
921       // Emitting a v-table doesn't directly cause more v-tables to
922       // become deferred, although it can cause functions to be
923       // emitted that then need those v-tables.
924       assert(DeferredVTables.empty());
925     }
926 
927     // Stop if we're out of both deferred v-tables and deferred declarations.
928     if (DeferredDeclsToEmit.empty()) break;
929 
930     GlobalDecl D = DeferredDeclsToEmit.back();
931     DeferredDeclsToEmit.pop_back();
932 
933     // Check to see if we've already emitted this.  This is necessary
934     // for a couple of reasons: first, decls can end up in the
935     // deferred-decls queue multiple times, and second, decls can end
936     // up with definitions in unusual ways (e.g. by an extern inline
937     // function acquiring a strong function redefinition).  Just
938     // ignore these cases.
939     //
940     // TODO: That said, looking this up multiple times is very wasteful.
941     StringRef Name = getMangledName(D);
942     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
943     assert(CGRef && "Deferred decl wasn't referenced?");
944 
945     if (!CGRef->isDeclaration())
946       continue;
947 
948     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
949     // purposes an alias counts as a definition.
950     if (isa<llvm::GlobalAlias>(CGRef))
951       continue;
952 
953     // Otherwise, emit the definition and move on to the next one.
954     EmitGlobalDefinition(D);
955   }
956 }
957 
958 void CodeGenModule::EmitGlobalAnnotations() {
959   if (Annotations.empty())
960     return;
961 
962   // Create a new global variable for the ConstantStruct in the Module.
963   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
964     Annotations[0]->getType(), Annotations.size()), Annotations);
965   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
966     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
967     "llvm.global.annotations");
968   gv->setSection(AnnotationSection);
969 }
970 
971 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
972   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
973   if (i != AnnotationStrings.end())
974     return i->second;
975 
976   // Not found yet, create a new global.
977   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
978   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
979     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
980   gv->setSection(AnnotationSection);
981   gv->setUnnamedAddr(true);
982   AnnotationStrings[Str] = gv;
983   return gv;
984 }
985 
986 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
987   SourceManager &SM = getContext().getSourceManager();
988   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
989   if (PLoc.isValid())
990     return EmitAnnotationString(PLoc.getFilename());
991   return EmitAnnotationString(SM.getBufferName(Loc));
992 }
993 
994 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
995   SourceManager &SM = getContext().getSourceManager();
996   PresumedLoc PLoc = SM.getPresumedLoc(L);
997   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
998     SM.getExpansionLineNumber(L);
999   return llvm::ConstantInt::get(Int32Ty, LineNo);
1000 }
1001 
1002 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1003                                                 const AnnotateAttr *AA,
1004                                                 SourceLocation L) {
1005   // Get the globals for file name, annotation, and the line number.
1006   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1007                  *UnitGV = EmitAnnotationUnit(L),
1008                  *LineNoCst = EmitAnnotationLineNo(L);
1009 
1010   // Create the ConstantStruct for the global annotation.
1011   llvm::Constant *Fields[4] = {
1012     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1013     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1014     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1015     LineNoCst
1016   };
1017   return llvm::ConstantStruct::getAnon(Fields);
1018 }
1019 
1020 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1021                                          llvm::GlobalValue *GV) {
1022   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1023   // Get the struct elements for these annotations.
1024   for (specific_attr_iterator<AnnotateAttr>
1025        ai = D->specific_attr_begin<AnnotateAttr>(),
1026        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1027     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1028 }
1029 
1030 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1031   // Never defer when EmitAllDecls is specified.
1032   if (LangOpts.EmitAllDecls)
1033     return false;
1034 
1035   return !getContext().DeclMustBeEmitted(Global);
1036 }
1037 
1038 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1039     const CXXUuidofExpr* E) {
1040   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1041   // well-formed.
1042   StringRef Uuid = E->getUuidAsStringRef(Context);
1043   std::string Name = "_GUID_" + Uuid.lower();
1044   std::replace(Name.begin(), Name.end(), '-', '_');
1045 
1046   // Look for an existing global.
1047   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1048     return GV;
1049 
1050   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1051   assert(Init && "failed to initialize as constant");
1052 
1053   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1054       getModule(), Init->getType(),
1055       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1056   return GV;
1057 }
1058 
1059 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1060   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1061   assert(AA && "No alias?");
1062 
1063   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1064 
1065   // See if there is already something with the target's name in the module.
1066   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1067   if (Entry) {
1068     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1069     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1070   }
1071 
1072   llvm::Constant *Aliasee;
1073   if (isa<llvm::FunctionType>(DeclTy))
1074     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1075                                       GlobalDecl(cast<FunctionDecl>(VD)),
1076                                       /*ForVTable=*/false);
1077   else
1078     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1079                                     llvm::PointerType::getUnqual(DeclTy), 0);
1080 
1081   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1082   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1083   WeakRefReferences.insert(F);
1084 
1085   return Aliasee;
1086 }
1087 
1088 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1089   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1090 
1091   // Weak references don't produce any output by themselves.
1092   if (Global->hasAttr<WeakRefAttr>())
1093     return;
1094 
1095   // If this is an alias definition (which otherwise looks like a declaration)
1096   // emit it now.
1097   if (Global->hasAttr<AliasAttr>())
1098     return EmitAliasDefinition(GD);
1099 
1100   // If this is CUDA, be selective about which declarations we emit.
1101   if (LangOpts.CUDA) {
1102     if (CodeGenOpts.CUDAIsDevice) {
1103       if (!Global->hasAttr<CUDADeviceAttr>() &&
1104           !Global->hasAttr<CUDAGlobalAttr>() &&
1105           !Global->hasAttr<CUDAConstantAttr>() &&
1106           !Global->hasAttr<CUDASharedAttr>())
1107         return;
1108     } else {
1109       if (!Global->hasAttr<CUDAHostAttr>() && (
1110             Global->hasAttr<CUDADeviceAttr>() ||
1111             Global->hasAttr<CUDAConstantAttr>() ||
1112             Global->hasAttr<CUDASharedAttr>()))
1113         return;
1114     }
1115   }
1116 
1117   // Ignore declarations, they will be emitted on their first use.
1118   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1119     // Forward declarations are emitted lazily on first use.
1120     if (!FD->doesThisDeclarationHaveABody()) {
1121       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1122         return;
1123 
1124       const FunctionDecl *InlineDefinition = 0;
1125       FD->getBody(InlineDefinition);
1126 
1127       StringRef MangledName = getMangledName(GD);
1128       DeferredDecls.erase(MangledName);
1129       EmitGlobalDefinition(InlineDefinition);
1130       return;
1131     }
1132   } else {
1133     const VarDecl *VD = cast<VarDecl>(Global);
1134     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1135 
1136     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1137       return;
1138   }
1139 
1140   // Defer code generation when possible if this is a static definition, inline
1141   // function etc.  These we only want to emit if they are used.
1142   if (!MayDeferGeneration(Global)) {
1143     // Emit the definition if it can't be deferred.
1144     EmitGlobalDefinition(GD);
1145     return;
1146   }
1147 
1148   // If we're deferring emission of a C++ variable with an
1149   // initializer, remember the order in which it appeared in the file.
1150   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1151       cast<VarDecl>(Global)->hasInit()) {
1152     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1153     CXXGlobalInits.push_back(0);
1154   }
1155 
1156   // If the value has already been used, add it directly to the
1157   // DeferredDeclsToEmit list.
1158   StringRef MangledName = getMangledName(GD);
1159   if (GetGlobalValue(MangledName))
1160     DeferredDeclsToEmit.push_back(GD);
1161   else {
1162     // Otherwise, remember that we saw a deferred decl with this name.  The
1163     // first use of the mangled name will cause it to move into
1164     // DeferredDeclsToEmit.
1165     DeferredDecls[MangledName] = GD;
1166   }
1167 }
1168 
1169 namespace {
1170   struct FunctionIsDirectlyRecursive :
1171     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1172     const StringRef Name;
1173     const Builtin::Context &BI;
1174     bool Result;
1175     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1176       Name(N), BI(C), Result(false) {
1177     }
1178     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1179 
1180     bool TraverseCallExpr(CallExpr *E) {
1181       const FunctionDecl *FD = E->getDirectCallee();
1182       if (!FD)
1183         return true;
1184       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1185       if (Attr && Name == Attr->getLabel()) {
1186         Result = true;
1187         return false;
1188       }
1189       unsigned BuiltinID = FD->getBuiltinID();
1190       if (!BuiltinID)
1191         return true;
1192       StringRef BuiltinName = BI.GetName(BuiltinID);
1193       if (BuiltinName.startswith("__builtin_") &&
1194           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1195         Result = true;
1196         return false;
1197       }
1198       return true;
1199     }
1200   };
1201 }
1202 
1203 // isTriviallyRecursive - Check if this function calls another
1204 // decl that, because of the asm attribute or the other decl being a builtin,
1205 // ends up pointing to itself.
1206 bool
1207 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1208   StringRef Name;
1209   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1210     // asm labels are a special kind of mangling we have to support.
1211     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1212     if (!Attr)
1213       return false;
1214     Name = Attr->getLabel();
1215   } else {
1216     Name = FD->getName();
1217   }
1218 
1219   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1220   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1221   return Walker.Result;
1222 }
1223 
1224 bool
1225 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1226   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1227     return true;
1228   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1229   if (CodeGenOpts.OptimizationLevel == 0 &&
1230       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1231     return false;
1232   // PR9614. Avoid cases where the source code is lying to us. An available
1233   // externally function should have an equivalent function somewhere else,
1234   // but a function that calls itself is clearly not equivalent to the real
1235   // implementation.
1236   // This happens in glibc's btowc and in some configure checks.
1237   return !isTriviallyRecursive(F);
1238 }
1239 
1240 /// If the type for the method's class was generated by
1241 /// CGDebugInfo::createContextChain(), the cache contains only a
1242 /// limited DIType without any declarations. Since EmitFunctionStart()
1243 /// needs to find the canonical declaration for each method, we need
1244 /// to construct the complete type prior to emitting the method.
1245 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1246   if (!D->isInstance())
1247     return;
1248 
1249   if (CGDebugInfo *DI = getModuleDebugInfo())
1250     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1251       const PointerType *ThisPtr =
1252         cast<PointerType>(D->getThisType(getContext()));
1253       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1254     }
1255 }
1256 
1257 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1258   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1259 
1260   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1261                                  Context.getSourceManager(),
1262                                  "Generating code for declaration");
1263 
1264   if (isa<FunctionDecl>(D)) {
1265     // At -O0, don't generate IR for functions with available_externally
1266     // linkage.
1267     if (!shouldEmitFunction(GD))
1268       return;
1269 
1270     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1271       CompleteDIClassType(Method);
1272       // Make sure to emit the definition(s) before we emit the thunks.
1273       // This is necessary for the generation of certain thunks.
1274       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1275         EmitCXXConstructor(CD, GD.getCtorType());
1276       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1277         EmitCXXDestructor(DD, GD.getDtorType());
1278       else
1279         EmitGlobalFunctionDefinition(GD);
1280 
1281       if (Method->isVirtual())
1282         getVTables().EmitThunks(GD);
1283 
1284       return;
1285     }
1286 
1287     return EmitGlobalFunctionDefinition(GD);
1288   }
1289 
1290   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1291     return EmitGlobalVarDefinition(VD);
1292 
1293   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1294 }
1295 
1296 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1297 /// module, create and return an llvm Function with the specified type. If there
1298 /// is something in the module with the specified name, return it potentially
1299 /// bitcasted to the right type.
1300 ///
1301 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1302 /// to set the attributes on the function when it is first created.
1303 llvm::Constant *
1304 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1305                                        llvm::Type *Ty,
1306                                        GlobalDecl GD, bool ForVTable,
1307                                        llvm::AttributeSet ExtraAttrs) {
1308   const Decl *D = GD.getDecl();
1309 
1310   // Lookup the entry, lazily creating it if necessary.
1311   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1312   if (Entry) {
1313     if (WeakRefReferences.erase(Entry)) {
1314       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1315       if (FD && !FD->hasAttr<WeakAttr>())
1316         Entry->setLinkage(llvm::Function::ExternalLinkage);
1317     }
1318 
1319     if (Entry->getType()->getElementType() == Ty)
1320       return Entry;
1321 
1322     // Make sure the result is of the correct type.
1323     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1324   }
1325 
1326   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1327   // each other bottoming out with the base dtor.  Therefore we emit non-base
1328   // dtors on usage, even if there is no dtor definition in the TU.
1329   if (D && isa<CXXDestructorDecl>(D) &&
1330       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1331                                          GD.getDtorType()))
1332     DeferredDeclsToEmit.push_back(GD);
1333 
1334   // This function doesn't have a complete type (for example, the return
1335   // type is an incomplete struct). Use a fake type instead, and make
1336   // sure not to try to set attributes.
1337   bool IsIncompleteFunction = false;
1338 
1339   llvm::FunctionType *FTy;
1340   if (isa<llvm::FunctionType>(Ty)) {
1341     FTy = cast<llvm::FunctionType>(Ty);
1342   } else {
1343     FTy = llvm::FunctionType::get(VoidTy, false);
1344     IsIncompleteFunction = true;
1345   }
1346 
1347   llvm::Function *F = llvm::Function::Create(FTy,
1348                                              llvm::Function::ExternalLinkage,
1349                                              MangledName, &getModule());
1350   assert(F->getName() == MangledName && "name was uniqued!");
1351   if (D)
1352     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1353   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1354     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1355     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1356                      llvm::AttributeSet::get(VMContext,
1357                                              llvm::AttributeSet::FunctionIndex,
1358                                              B));
1359   }
1360 
1361   // This is the first use or definition of a mangled name.  If there is a
1362   // deferred decl with this name, remember that we need to emit it at the end
1363   // of the file.
1364   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1365   if (DDI != DeferredDecls.end()) {
1366     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1367     // list, and remove it from DeferredDecls (since we don't need it anymore).
1368     DeferredDeclsToEmit.push_back(DDI->second);
1369     DeferredDecls.erase(DDI);
1370 
1371   // Otherwise, there are cases we have to worry about where we're
1372   // using a declaration for which we must emit a definition but where
1373   // we might not find a top-level definition:
1374   //   - member functions defined inline in their classes
1375   //   - friend functions defined inline in some class
1376   //   - special member functions with implicit definitions
1377   // If we ever change our AST traversal to walk into class methods,
1378   // this will be unnecessary.
1379   //
1380   // We also don't emit a definition for a function if it's going to be an entry
1381   // in a vtable, unless it's already marked as used.
1382   } else if (getLangOpts().CPlusPlus && D) {
1383     // Look for a declaration that's lexically in a record.
1384     const FunctionDecl *FD = cast<FunctionDecl>(D);
1385     FD = FD->getMostRecentDecl();
1386     do {
1387       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1388         if (FD->isImplicit() && !ForVTable) {
1389           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1390           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1391           break;
1392         } else if (FD->doesThisDeclarationHaveABody()) {
1393           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1394           break;
1395         }
1396       }
1397       FD = FD->getPreviousDecl();
1398     } while (FD);
1399   }
1400 
1401   // Make sure the result is of the requested type.
1402   if (!IsIncompleteFunction) {
1403     assert(F->getType()->getElementType() == Ty);
1404     return F;
1405   }
1406 
1407   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1408   return llvm::ConstantExpr::getBitCast(F, PTy);
1409 }
1410 
1411 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1412 /// non-null, then this function will use the specified type if it has to
1413 /// create it (this occurs when we see a definition of the function).
1414 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1415                                                  llvm::Type *Ty,
1416                                                  bool ForVTable) {
1417   // If there was no specific requested type, just convert it now.
1418   if (!Ty)
1419     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1420 
1421   StringRef MangledName = getMangledName(GD);
1422   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1423 }
1424 
1425 /// CreateRuntimeFunction - Create a new runtime function with the specified
1426 /// type and name.
1427 llvm::Constant *
1428 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1429                                      StringRef Name,
1430                                      llvm::AttributeSet ExtraAttrs) {
1431   llvm::Constant *C
1432     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1433                               ExtraAttrs);
1434   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1435     if (F->empty())
1436       F->setCallingConv(getRuntimeCC());
1437   return C;
1438 }
1439 
1440 /// isTypeConstant - Determine whether an object of this type can be emitted
1441 /// as a constant.
1442 ///
1443 /// If ExcludeCtor is true, the duration when the object's constructor runs
1444 /// will not be considered. The caller will need to verify that the object is
1445 /// not written to during its construction.
1446 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1447   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1448     return false;
1449 
1450   if (Context.getLangOpts().CPlusPlus) {
1451     if (const CXXRecordDecl *Record
1452           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1453       return ExcludeCtor && !Record->hasMutableFields() &&
1454              Record->hasTrivialDestructor();
1455   }
1456 
1457   return true;
1458 }
1459 
1460 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1461 /// create and return an llvm GlobalVariable with the specified type.  If there
1462 /// is something in the module with the specified name, return it potentially
1463 /// bitcasted to the right type.
1464 ///
1465 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1466 /// to set the attributes on the global when it is first created.
1467 llvm::Constant *
1468 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1469                                      llvm::PointerType *Ty,
1470                                      const VarDecl *D,
1471                                      bool UnnamedAddr) {
1472   // Lookup the entry, lazily creating it if necessary.
1473   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1474   if (Entry) {
1475     if (WeakRefReferences.erase(Entry)) {
1476       if (D && !D->hasAttr<WeakAttr>())
1477         Entry->setLinkage(llvm::Function::ExternalLinkage);
1478     }
1479 
1480     if (UnnamedAddr)
1481       Entry->setUnnamedAddr(true);
1482 
1483     if (Entry->getType() == Ty)
1484       return Entry;
1485 
1486     // Make sure the result is of the correct type.
1487     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1488   }
1489 
1490   // This is the first use or definition of a mangled name.  If there is a
1491   // deferred decl with this name, remember that we need to emit it at the end
1492   // of the file.
1493   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1494   if (DDI != DeferredDecls.end()) {
1495     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1496     // list, and remove it from DeferredDecls (since we don't need it anymore).
1497     DeferredDeclsToEmit.push_back(DDI->second);
1498     DeferredDecls.erase(DDI);
1499   }
1500 
1501   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1502   llvm::GlobalVariable *GV =
1503     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1504                              llvm::GlobalValue::ExternalLinkage,
1505                              0, MangledName, 0,
1506                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1507 
1508   // Handle things which are present even on external declarations.
1509   if (D) {
1510     // FIXME: This code is overly simple and should be merged with other global
1511     // handling.
1512     GV->setConstant(isTypeConstant(D->getType(), false));
1513 
1514     // Set linkage and visibility in case we never see a definition.
1515     LinkageInfo LV = D->getLinkageAndVisibility();
1516     if (LV.getLinkage() != ExternalLinkage) {
1517       // Don't set internal linkage on declarations.
1518     } else {
1519       if (D->hasAttr<DLLImportAttr>())
1520         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1521       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1522         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1523 
1524       // Set visibility on a declaration only if it's explicit.
1525       if (LV.isVisibilityExplicit())
1526         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1527     }
1528 
1529     if (D->getTLSKind()) {
1530       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1531         CXXThreadLocals.push_back(std::make_pair(D, GV));
1532       setTLSMode(GV, *D);
1533     }
1534   }
1535 
1536   if (AddrSpace != Ty->getAddressSpace())
1537     return llvm::ConstantExpr::getBitCast(GV, Ty);
1538   else
1539     return GV;
1540 }
1541 
1542 
1543 llvm::GlobalVariable *
1544 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1545                                       llvm::Type *Ty,
1546                                       llvm::GlobalValue::LinkageTypes Linkage) {
1547   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1548   llvm::GlobalVariable *OldGV = 0;
1549 
1550 
1551   if (GV) {
1552     // Check if the variable has the right type.
1553     if (GV->getType()->getElementType() == Ty)
1554       return GV;
1555 
1556     // Because C++ name mangling, the only way we can end up with an already
1557     // existing global with the same name is if it has been declared extern "C".
1558     assert(GV->isDeclaration() && "Declaration has wrong type!");
1559     OldGV = GV;
1560   }
1561 
1562   // Create a new variable.
1563   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1564                                 Linkage, 0, Name);
1565 
1566   if (OldGV) {
1567     // Replace occurrences of the old variable if needed.
1568     GV->takeName(OldGV);
1569 
1570     if (!OldGV->use_empty()) {
1571       llvm::Constant *NewPtrForOldDecl =
1572       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1573       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1574     }
1575 
1576     OldGV->eraseFromParent();
1577   }
1578 
1579   return GV;
1580 }
1581 
1582 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1583 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1584 /// then it will be created with the specified type instead of whatever the
1585 /// normal requested type would be.
1586 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1587                                                   llvm::Type *Ty) {
1588   assert(D->hasGlobalStorage() && "Not a global variable");
1589   QualType ASTTy = D->getType();
1590   if (Ty == 0)
1591     Ty = getTypes().ConvertTypeForMem(ASTTy);
1592 
1593   llvm::PointerType *PTy =
1594     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1595 
1596   StringRef MangledName = getMangledName(D);
1597   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1598 }
1599 
1600 /// CreateRuntimeVariable - Create a new runtime global variable with the
1601 /// specified type and name.
1602 llvm::Constant *
1603 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1604                                      StringRef Name) {
1605   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1606                                true);
1607 }
1608 
1609 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1610   assert(!D->getInit() && "Cannot emit definite definitions here!");
1611 
1612   if (MayDeferGeneration(D)) {
1613     // If we have not seen a reference to this variable yet, place it
1614     // into the deferred declarations table to be emitted if needed
1615     // later.
1616     StringRef MangledName = getMangledName(D);
1617     if (!GetGlobalValue(MangledName)) {
1618       DeferredDecls[MangledName] = D;
1619       return;
1620     }
1621   }
1622 
1623   // The tentative definition is the only definition.
1624   EmitGlobalVarDefinition(D);
1625 }
1626 
1627 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1628     return Context.toCharUnitsFromBits(
1629       TheDataLayout.getTypeStoreSizeInBits(Ty));
1630 }
1631 
1632 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1633                                                  unsigned AddrSpace) {
1634   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1635     if (D->hasAttr<CUDAConstantAttr>())
1636       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1637     else if (D->hasAttr<CUDASharedAttr>())
1638       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1639     else
1640       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1641   }
1642 
1643   return AddrSpace;
1644 }
1645 
1646 template<typename SomeDecl>
1647 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1648                                                llvm::GlobalValue *GV) {
1649   if (!getLangOpts().CPlusPlus)
1650     return;
1651 
1652   // Must have 'used' attribute, or else inline assembly can't rely on
1653   // the name existing.
1654   if (!D->template hasAttr<UsedAttr>())
1655     return;
1656 
1657   // Must have internal linkage and an ordinary name.
1658   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1659     return;
1660 
1661   // Must be in an extern "C" context. Entities declared directly within
1662   // a record are not extern "C" even if the record is in such a context.
1663   const SomeDecl *First = D->getFirstDeclaration();
1664   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1665     return;
1666 
1667   // OK, this is an internal linkage entity inside an extern "C" linkage
1668   // specification. Make a note of that so we can give it the "expected"
1669   // mangled name if nothing else is using that name.
1670   std::pair<StaticExternCMap::iterator, bool> R =
1671       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1672 
1673   // If we have multiple internal linkage entities with the same name
1674   // in extern "C" regions, none of them gets that name.
1675   if (!R.second)
1676     R.first->second = 0;
1677 }
1678 
1679 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1680   llvm::Constant *Init = 0;
1681   QualType ASTTy = D->getType();
1682   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1683   bool NeedsGlobalCtor = false;
1684   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1685 
1686   const VarDecl *InitDecl;
1687   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1688 
1689   if (!InitExpr) {
1690     // This is a tentative definition; tentative definitions are
1691     // implicitly initialized with { 0 }.
1692     //
1693     // Note that tentative definitions are only emitted at the end of
1694     // a translation unit, so they should never have incomplete
1695     // type. In addition, EmitTentativeDefinition makes sure that we
1696     // never attempt to emit a tentative definition if a real one
1697     // exists. A use may still exists, however, so we still may need
1698     // to do a RAUW.
1699     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1700     Init = EmitNullConstant(D->getType());
1701   } else {
1702     initializedGlobalDecl = GlobalDecl(D);
1703     Init = EmitConstantInit(*InitDecl);
1704 
1705     if (!Init) {
1706       QualType T = InitExpr->getType();
1707       if (D->getType()->isReferenceType())
1708         T = D->getType();
1709 
1710       if (getLangOpts().CPlusPlus) {
1711         Init = EmitNullConstant(T);
1712         NeedsGlobalCtor = true;
1713       } else {
1714         ErrorUnsupported(D, "static initializer");
1715         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1716       }
1717     } else {
1718       // We don't need an initializer, so remove the entry for the delayed
1719       // initializer position (just in case this entry was delayed) if we
1720       // also don't need to register a destructor.
1721       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1722         DelayedCXXInitPosition.erase(D);
1723     }
1724   }
1725 
1726   llvm::Type* InitType = Init->getType();
1727   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1728 
1729   // Strip off a bitcast if we got one back.
1730   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1731     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1732            // all zero index gep.
1733            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1734     Entry = CE->getOperand(0);
1735   }
1736 
1737   // Entry is now either a Function or GlobalVariable.
1738   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1739 
1740   // We have a definition after a declaration with the wrong type.
1741   // We must make a new GlobalVariable* and update everything that used OldGV
1742   // (a declaration or tentative definition) with the new GlobalVariable*
1743   // (which will be a definition).
1744   //
1745   // This happens if there is a prototype for a global (e.g.
1746   // "extern int x[];") and then a definition of a different type (e.g.
1747   // "int x[10];"). This also happens when an initializer has a different type
1748   // from the type of the global (this happens with unions).
1749   if (GV == 0 ||
1750       GV->getType()->getElementType() != InitType ||
1751       GV->getType()->getAddressSpace() !=
1752        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1753 
1754     // Move the old entry aside so that we'll create a new one.
1755     Entry->setName(StringRef());
1756 
1757     // Make a new global with the correct type, this is now guaranteed to work.
1758     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1759 
1760     // Replace all uses of the old global with the new global
1761     llvm::Constant *NewPtrForOldDecl =
1762         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1763     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1764 
1765     // Erase the old global, since it is no longer used.
1766     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1767   }
1768 
1769   MaybeHandleStaticInExternC(D, GV);
1770 
1771   if (D->hasAttr<AnnotateAttr>())
1772     AddGlobalAnnotations(D, GV);
1773 
1774   GV->setInitializer(Init);
1775 
1776   // If it is safe to mark the global 'constant', do so now.
1777   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1778                   isTypeConstant(D->getType(), true));
1779 
1780   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1781 
1782   // Set the llvm linkage type as appropriate.
1783   llvm::GlobalValue::LinkageTypes Linkage =
1784     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1785   GV->setLinkage(Linkage);
1786   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1787     // common vars aren't constant even if declared const.
1788     GV->setConstant(false);
1789 
1790   SetCommonAttributes(D, GV);
1791 
1792   // Emit the initializer function if necessary.
1793   if (NeedsGlobalCtor || NeedsGlobalDtor)
1794     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1795 
1796   // If we are compiling with ASan, add metadata indicating dynamically
1797   // initialized globals.
1798   if (SanOpts.Address && NeedsGlobalCtor) {
1799     llvm::Module &M = getModule();
1800 
1801     llvm::NamedMDNode *DynamicInitializers =
1802         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1803     llvm::Value *GlobalToAdd[] = { GV };
1804     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1805     DynamicInitializers->addOperand(ThisGlobal);
1806   }
1807 
1808   // Emit global variable debug information.
1809   if (CGDebugInfo *DI = getModuleDebugInfo())
1810     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1811       DI->EmitGlobalVariable(GV, D);
1812 }
1813 
1814 llvm::GlobalValue::LinkageTypes
1815 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1816   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1817   if (Linkage == GVA_Internal)
1818     return llvm::Function::InternalLinkage;
1819   else if (D->hasAttr<DLLImportAttr>())
1820     return llvm::Function::DLLImportLinkage;
1821   else if (D->hasAttr<DLLExportAttr>())
1822     return llvm::Function::DLLExportLinkage;
1823   else if (D->hasAttr<SelectAnyAttr>()) {
1824     // selectany symbols are externally visible, so use weak instead of
1825     // linkonce.  MSVC optimizes away references to const selectany globals, so
1826     // all definitions should be the same and ODR linkage should be used.
1827     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1828     return llvm::GlobalVariable::WeakODRLinkage;
1829   } else if (D->hasAttr<WeakAttr>()) {
1830     if (isConstant)
1831       return llvm::GlobalVariable::WeakODRLinkage;
1832     else
1833       return llvm::GlobalVariable::WeakAnyLinkage;
1834   } else if (Linkage == GVA_TemplateInstantiation ||
1835              Linkage == GVA_ExplicitTemplateInstantiation)
1836     return llvm::GlobalVariable::WeakODRLinkage;
1837   else if (!getLangOpts().CPlusPlus &&
1838            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1839              D->getAttr<CommonAttr>()) &&
1840            !D->hasExternalStorage() && !D->getInit() &&
1841            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1842            !D->getAttr<WeakImportAttr>()) {
1843     // Thread local vars aren't considered common linkage.
1844     return llvm::GlobalVariable::CommonLinkage;
1845   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1846              getTarget().getTriple().isMacOSX())
1847     // On Darwin, the backing variable for a C++11 thread_local variable always
1848     // has internal linkage; all accesses should just be calls to the
1849     // Itanium-specified entry point, which has the normal linkage of the
1850     // variable.
1851     return llvm::GlobalValue::InternalLinkage;
1852   return llvm::GlobalVariable::ExternalLinkage;
1853 }
1854 
1855 /// Replace the uses of a function that was declared with a non-proto type.
1856 /// We want to silently drop extra arguments from call sites
1857 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1858                                           llvm::Function *newFn) {
1859   // Fast path.
1860   if (old->use_empty()) return;
1861 
1862   llvm::Type *newRetTy = newFn->getReturnType();
1863   SmallVector<llvm::Value*, 4> newArgs;
1864 
1865   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1866          ui != ue; ) {
1867     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1868     llvm::User *user = *use;
1869 
1870     // Recognize and replace uses of bitcasts.  Most calls to
1871     // unprototyped functions will use bitcasts.
1872     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1873       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1874         replaceUsesOfNonProtoConstant(bitcast, newFn);
1875       continue;
1876     }
1877 
1878     // Recognize calls to the function.
1879     llvm::CallSite callSite(user);
1880     if (!callSite) continue;
1881     if (!callSite.isCallee(use)) continue;
1882 
1883     // If the return types don't match exactly, then we can't
1884     // transform this call unless it's dead.
1885     if (callSite->getType() != newRetTy && !callSite->use_empty())
1886       continue;
1887 
1888     // Get the call site's attribute list.
1889     SmallVector<llvm::AttributeSet, 8> newAttrs;
1890     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1891 
1892     // Collect any return attributes from the call.
1893     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1894       newAttrs.push_back(
1895         llvm::AttributeSet::get(newFn->getContext(),
1896                                 oldAttrs.getRetAttributes()));
1897 
1898     // If the function was passed too few arguments, don't transform.
1899     unsigned newNumArgs = newFn->arg_size();
1900     if (callSite.arg_size() < newNumArgs) continue;
1901 
1902     // If extra arguments were passed, we silently drop them.
1903     // If any of the types mismatch, we don't transform.
1904     unsigned argNo = 0;
1905     bool dontTransform = false;
1906     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1907            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1908       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1909         dontTransform = true;
1910         break;
1911       }
1912 
1913       // Add any parameter attributes.
1914       if (oldAttrs.hasAttributes(argNo + 1))
1915         newAttrs.
1916           push_back(llvm::
1917                     AttributeSet::get(newFn->getContext(),
1918                                       oldAttrs.getParamAttributes(argNo + 1)));
1919     }
1920     if (dontTransform)
1921       continue;
1922 
1923     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1924       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1925                                                  oldAttrs.getFnAttributes()));
1926 
1927     // Okay, we can transform this.  Create the new call instruction and copy
1928     // over the required information.
1929     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1930 
1931     llvm::CallSite newCall;
1932     if (callSite.isCall()) {
1933       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1934                                        callSite.getInstruction());
1935     } else {
1936       llvm::InvokeInst *oldInvoke =
1937         cast<llvm::InvokeInst>(callSite.getInstruction());
1938       newCall = llvm::InvokeInst::Create(newFn,
1939                                          oldInvoke->getNormalDest(),
1940                                          oldInvoke->getUnwindDest(),
1941                                          newArgs, "",
1942                                          callSite.getInstruction());
1943     }
1944     newArgs.clear(); // for the next iteration
1945 
1946     if (!newCall->getType()->isVoidTy())
1947       newCall->takeName(callSite.getInstruction());
1948     newCall.setAttributes(
1949                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1950     newCall.setCallingConv(callSite.getCallingConv());
1951 
1952     // Finally, remove the old call, replacing any uses with the new one.
1953     if (!callSite->use_empty())
1954       callSite->replaceAllUsesWith(newCall.getInstruction());
1955 
1956     // Copy debug location attached to CI.
1957     if (!callSite->getDebugLoc().isUnknown())
1958       newCall->setDebugLoc(callSite->getDebugLoc());
1959     callSite->eraseFromParent();
1960   }
1961 }
1962 
1963 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1964 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1965 /// existing call uses of the old function in the module, this adjusts them to
1966 /// call the new function directly.
1967 ///
1968 /// This is not just a cleanup: the always_inline pass requires direct calls to
1969 /// functions to be able to inline them.  If there is a bitcast in the way, it
1970 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1971 /// run at -O0.
1972 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1973                                                       llvm::Function *NewFn) {
1974   // If we're redefining a global as a function, don't transform it.
1975   if (!isa<llvm::Function>(Old)) return;
1976 
1977   replaceUsesOfNonProtoConstant(Old, NewFn);
1978 }
1979 
1980 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1981   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1982   // If we have a definition, this might be a deferred decl. If the
1983   // instantiation is explicit, make sure we emit it at the end.
1984   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1985     GetAddrOfGlobalVar(VD);
1986 
1987   EmitTopLevelDecl(VD);
1988 }
1989 
1990 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1991   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1992 
1993   // Compute the function info and LLVM type.
1994   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1995   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1996 
1997   // Get or create the prototype for the function.
1998   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1999 
2000   // Strip off a bitcast if we got one back.
2001   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2002     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2003     Entry = CE->getOperand(0);
2004   }
2005 
2006 
2007   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2008     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2009 
2010     // If the types mismatch then we have to rewrite the definition.
2011     assert(OldFn->isDeclaration() &&
2012            "Shouldn't replace non-declaration");
2013 
2014     // F is the Function* for the one with the wrong type, we must make a new
2015     // Function* and update everything that used F (a declaration) with the new
2016     // Function* (which will be a definition).
2017     //
2018     // This happens if there is a prototype for a function
2019     // (e.g. "int f()") and then a definition of a different type
2020     // (e.g. "int f(int x)").  Move the old function aside so that it
2021     // doesn't interfere with GetAddrOfFunction.
2022     OldFn->setName(StringRef());
2023     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2024 
2025     // This might be an implementation of a function without a
2026     // prototype, in which case, try to do special replacement of
2027     // calls which match the new prototype.  The really key thing here
2028     // is that we also potentially drop arguments from the call site
2029     // so as to make a direct call, which makes the inliner happier
2030     // and suppresses a number of optimizer warnings (!) about
2031     // dropping arguments.
2032     if (!OldFn->use_empty()) {
2033       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2034       OldFn->removeDeadConstantUsers();
2035     }
2036 
2037     // Replace uses of F with the Function we will endow with a body.
2038     if (!Entry->use_empty()) {
2039       llvm::Constant *NewPtrForOldDecl =
2040         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2041       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2042     }
2043 
2044     // Ok, delete the old function now, which is dead.
2045     OldFn->eraseFromParent();
2046 
2047     Entry = NewFn;
2048   }
2049 
2050   // We need to set linkage and visibility on the function before
2051   // generating code for it because various parts of IR generation
2052   // want to propagate this information down (e.g. to local static
2053   // declarations).
2054   llvm::Function *Fn = cast<llvm::Function>(Entry);
2055   setFunctionLinkage(GD, Fn);
2056 
2057   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2058   setGlobalVisibility(Fn, D);
2059 
2060   MaybeHandleStaticInExternC(D, Fn);
2061 
2062   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2063 
2064   SetFunctionDefinitionAttributes(D, Fn);
2065   SetLLVMFunctionAttributesForDefinition(D, Fn);
2066 
2067   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2068     AddGlobalCtor(Fn, CA->getPriority());
2069   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2070     AddGlobalDtor(Fn, DA->getPriority());
2071   if (D->hasAttr<AnnotateAttr>())
2072     AddGlobalAnnotations(D, Fn);
2073 }
2074 
2075 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2076   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2077   const AliasAttr *AA = D->getAttr<AliasAttr>();
2078   assert(AA && "Not an alias?");
2079 
2080   StringRef MangledName = getMangledName(GD);
2081 
2082   // If there is a definition in the module, then it wins over the alias.
2083   // This is dubious, but allow it to be safe.  Just ignore the alias.
2084   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2085   if (Entry && !Entry->isDeclaration())
2086     return;
2087 
2088   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2089 
2090   // Create a reference to the named value.  This ensures that it is emitted
2091   // if a deferred decl.
2092   llvm::Constant *Aliasee;
2093   if (isa<llvm::FunctionType>(DeclTy))
2094     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2095                                       /*ForVTable=*/false);
2096   else
2097     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2098                                     llvm::PointerType::getUnqual(DeclTy), 0);
2099 
2100   // Create the new alias itself, but don't set a name yet.
2101   llvm::GlobalValue *GA =
2102     new llvm::GlobalAlias(Aliasee->getType(),
2103                           llvm::Function::ExternalLinkage,
2104                           "", Aliasee, &getModule());
2105 
2106   if (Entry) {
2107     assert(Entry->isDeclaration());
2108 
2109     // If there is a declaration in the module, then we had an extern followed
2110     // by the alias, as in:
2111     //   extern int test6();
2112     //   ...
2113     //   int test6() __attribute__((alias("test7")));
2114     //
2115     // Remove it and replace uses of it with the alias.
2116     GA->takeName(Entry);
2117 
2118     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2119                                                           Entry->getType()));
2120     Entry->eraseFromParent();
2121   } else {
2122     GA->setName(MangledName);
2123   }
2124 
2125   // Set attributes which are particular to an alias; this is a
2126   // specialization of the attributes which may be set on a global
2127   // variable/function.
2128   if (D->hasAttr<DLLExportAttr>()) {
2129     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2130       // The dllexport attribute is ignored for undefined symbols.
2131       if (FD->hasBody())
2132         GA->setLinkage(llvm::Function::DLLExportLinkage);
2133     } else {
2134       GA->setLinkage(llvm::Function::DLLExportLinkage);
2135     }
2136   } else if (D->hasAttr<WeakAttr>() ||
2137              D->hasAttr<WeakRefAttr>() ||
2138              D->isWeakImported()) {
2139     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2140   }
2141 
2142   SetCommonAttributes(D, GA);
2143 }
2144 
2145 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2146                                             ArrayRef<llvm::Type*> Tys) {
2147   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2148                                          Tys);
2149 }
2150 
2151 static llvm::StringMapEntry<llvm::Constant*> &
2152 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2153                          const StringLiteral *Literal,
2154                          bool TargetIsLSB,
2155                          bool &IsUTF16,
2156                          unsigned &StringLength) {
2157   StringRef String = Literal->getString();
2158   unsigned NumBytes = String.size();
2159 
2160   // Check for simple case.
2161   if (!Literal->containsNonAsciiOrNull()) {
2162     StringLength = NumBytes;
2163     return Map.GetOrCreateValue(String);
2164   }
2165 
2166   // Otherwise, convert the UTF8 literals into a string of shorts.
2167   IsUTF16 = true;
2168 
2169   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2170   const UTF8 *FromPtr = (const UTF8 *)String.data();
2171   UTF16 *ToPtr = &ToBuf[0];
2172 
2173   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2174                            &ToPtr, ToPtr + NumBytes,
2175                            strictConversion);
2176 
2177   // ConvertUTF8toUTF16 returns the length in ToPtr.
2178   StringLength = ToPtr - &ToBuf[0];
2179 
2180   // Add an explicit null.
2181   *ToPtr = 0;
2182   return Map.
2183     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2184                                (StringLength + 1) * 2));
2185 }
2186 
2187 static llvm::StringMapEntry<llvm::Constant*> &
2188 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2189                        const StringLiteral *Literal,
2190                        unsigned &StringLength) {
2191   StringRef String = Literal->getString();
2192   StringLength = String.size();
2193   return Map.GetOrCreateValue(String);
2194 }
2195 
2196 llvm::Constant *
2197 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2198   unsigned StringLength = 0;
2199   bool isUTF16 = false;
2200   llvm::StringMapEntry<llvm::Constant*> &Entry =
2201     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2202                              getDataLayout().isLittleEndian(),
2203                              isUTF16, StringLength);
2204 
2205   if (llvm::Constant *C = Entry.getValue())
2206     return C;
2207 
2208   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2209   llvm::Constant *Zeros[] = { Zero, Zero };
2210   llvm::Value *V;
2211 
2212   // If we don't already have it, get __CFConstantStringClassReference.
2213   if (!CFConstantStringClassRef) {
2214     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2215     Ty = llvm::ArrayType::get(Ty, 0);
2216     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2217                                            "__CFConstantStringClassReference");
2218     // Decay array -> ptr
2219     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2220     CFConstantStringClassRef = V;
2221   }
2222   else
2223     V = CFConstantStringClassRef;
2224 
2225   QualType CFTy = getContext().getCFConstantStringType();
2226 
2227   llvm::StructType *STy =
2228     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2229 
2230   llvm::Constant *Fields[4];
2231 
2232   // Class pointer.
2233   Fields[0] = cast<llvm::ConstantExpr>(V);
2234 
2235   // Flags.
2236   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2237   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2238     llvm::ConstantInt::get(Ty, 0x07C8);
2239 
2240   // String pointer.
2241   llvm::Constant *C = 0;
2242   if (isUTF16) {
2243     ArrayRef<uint16_t> Arr =
2244       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2245                                      const_cast<char *>(Entry.getKey().data())),
2246                                    Entry.getKey().size() / 2);
2247     C = llvm::ConstantDataArray::get(VMContext, Arr);
2248   } else {
2249     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2250   }
2251 
2252   llvm::GlobalValue::LinkageTypes Linkage;
2253   if (isUTF16)
2254     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2255     Linkage = llvm::GlobalValue::InternalLinkage;
2256   else
2257     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2258     // when using private linkage. It is not clear if this is a bug in ld
2259     // or a reasonable new restriction.
2260     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2261 
2262   // Note: -fwritable-strings doesn't make the backing store strings of
2263   // CFStrings writable. (See <rdar://problem/10657500>)
2264   llvm::GlobalVariable *GV =
2265     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2266                              Linkage, C, ".str");
2267   GV->setUnnamedAddr(true);
2268   // Don't enforce the target's minimum global alignment, since the only use
2269   // of the string is via this class initializer.
2270   if (isUTF16) {
2271     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2272     GV->setAlignment(Align.getQuantity());
2273   } else {
2274     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2275     GV->setAlignment(Align.getQuantity());
2276   }
2277 
2278   // String.
2279   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2280 
2281   if (isUTF16)
2282     // Cast the UTF16 string to the correct type.
2283     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2284 
2285   // String length.
2286   Ty = getTypes().ConvertType(getContext().LongTy);
2287   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2288 
2289   // The struct.
2290   C = llvm::ConstantStruct::get(STy, Fields);
2291   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2292                                 llvm::GlobalVariable::PrivateLinkage, C,
2293                                 "_unnamed_cfstring_");
2294   if (const char *Sect = getTarget().getCFStringSection())
2295     GV->setSection(Sect);
2296   Entry.setValue(GV);
2297 
2298   return GV;
2299 }
2300 
2301 static RecordDecl *
2302 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2303                  DeclContext *DC, IdentifierInfo *Id) {
2304   SourceLocation Loc;
2305   if (Ctx.getLangOpts().CPlusPlus)
2306     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2307   else
2308     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2309 }
2310 
2311 llvm::Constant *
2312 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2313   unsigned StringLength = 0;
2314   llvm::StringMapEntry<llvm::Constant*> &Entry =
2315     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2316 
2317   if (llvm::Constant *C = Entry.getValue())
2318     return C;
2319 
2320   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2321   llvm::Constant *Zeros[] = { Zero, Zero };
2322   llvm::Value *V;
2323   // If we don't already have it, get _NSConstantStringClassReference.
2324   if (!ConstantStringClassRef) {
2325     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2326     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2327     llvm::Constant *GV;
2328     if (LangOpts.ObjCRuntime.isNonFragile()) {
2329       std::string str =
2330         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2331                             : "OBJC_CLASS_$_" + StringClass;
2332       GV = getObjCRuntime().GetClassGlobal(str);
2333       // Make sure the result is of the correct type.
2334       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2335       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2336       ConstantStringClassRef = V;
2337     } else {
2338       std::string str =
2339         StringClass.empty() ? "_NSConstantStringClassReference"
2340                             : "_" + StringClass + "ClassReference";
2341       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2342       GV = CreateRuntimeVariable(PTy, str);
2343       // Decay array -> ptr
2344       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2345       ConstantStringClassRef = V;
2346     }
2347   }
2348   else
2349     V = ConstantStringClassRef;
2350 
2351   if (!NSConstantStringType) {
2352     // Construct the type for a constant NSString.
2353     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2354                                      Context.getTranslationUnitDecl(),
2355                                    &Context.Idents.get("__builtin_NSString"));
2356     D->startDefinition();
2357 
2358     QualType FieldTypes[3];
2359 
2360     // const int *isa;
2361     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2362     // const char *str;
2363     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2364     // unsigned int length;
2365     FieldTypes[2] = Context.UnsignedIntTy;
2366 
2367     // Create fields
2368     for (unsigned i = 0; i < 3; ++i) {
2369       FieldDecl *Field = FieldDecl::Create(Context, D,
2370                                            SourceLocation(),
2371                                            SourceLocation(), 0,
2372                                            FieldTypes[i], /*TInfo=*/0,
2373                                            /*BitWidth=*/0,
2374                                            /*Mutable=*/false,
2375                                            ICIS_NoInit);
2376       Field->setAccess(AS_public);
2377       D->addDecl(Field);
2378     }
2379 
2380     D->completeDefinition();
2381     QualType NSTy = Context.getTagDeclType(D);
2382     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2383   }
2384 
2385   llvm::Constant *Fields[3];
2386 
2387   // Class pointer.
2388   Fields[0] = cast<llvm::ConstantExpr>(V);
2389 
2390   // String pointer.
2391   llvm::Constant *C =
2392     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2393 
2394   llvm::GlobalValue::LinkageTypes Linkage;
2395   bool isConstant;
2396   Linkage = llvm::GlobalValue::PrivateLinkage;
2397   isConstant = !LangOpts.WritableStrings;
2398 
2399   llvm::GlobalVariable *GV =
2400   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2401                            ".str");
2402   GV->setUnnamedAddr(true);
2403   // Don't enforce the target's minimum global alignment, since the only use
2404   // of the string is via this class initializer.
2405   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2406   GV->setAlignment(Align.getQuantity());
2407   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2408 
2409   // String length.
2410   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2411   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2412 
2413   // The struct.
2414   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2415   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2416                                 llvm::GlobalVariable::PrivateLinkage, C,
2417                                 "_unnamed_nsstring_");
2418   // FIXME. Fix section.
2419   if (const char *Sect =
2420         LangOpts.ObjCRuntime.isNonFragile()
2421           ? getTarget().getNSStringNonFragileABISection()
2422           : getTarget().getNSStringSection())
2423     GV->setSection(Sect);
2424   Entry.setValue(GV);
2425 
2426   return GV;
2427 }
2428 
2429 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2430   if (ObjCFastEnumerationStateType.isNull()) {
2431     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2432                                      Context.getTranslationUnitDecl(),
2433                       &Context.Idents.get("__objcFastEnumerationState"));
2434     D->startDefinition();
2435 
2436     QualType FieldTypes[] = {
2437       Context.UnsignedLongTy,
2438       Context.getPointerType(Context.getObjCIdType()),
2439       Context.getPointerType(Context.UnsignedLongTy),
2440       Context.getConstantArrayType(Context.UnsignedLongTy,
2441                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2442     };
2443 
2444     for (size_t i = 0; i < 4; ++i) {
2445       FieldDecl *Field = FieldDecl::Create(Context,
2446                                            D,
2447                                            SourceLocation(),
2448                                            SourceLocation(), 0,
2449                                            FieldTypes[i], /*TInfo=*/0,
2450                                            /*BitWidth=*/0,
2451                                            /*Mutable=*/false,
2452                                            ICIS_NoInit);
2453       Field->setAccess(AS_public);
2454       D->addDecl(Field);
2455     }
2456 
2457     D->completeDefinition();
2458     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2459   }
2460 
2461   return ObjCFastEnumerationStateType;
2462 }
2463 
2464 llvm::Constant *
2465 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2466   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2467 
2468   // Don't emit it as the address of the string, emit the string data itself
2469   // as an inline array.
2470   if (E->getCharByteWidth() == 1) {
2471     SmallString<64> Str(E->getString());
2472 
2473     // Resize the string to the right size, which is indicated by its type.
2474     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2475     Str.resize(CAT->getSize().getZExtValue());
2476     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2477   }
2478 
2479   llvm::ArrayType *AType =
2480     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2481   llvm::Type *ElemTy = AType->getElementType();
2482   unsigned NumElements = AType->getNumElements();
2483 
2484   // Wide strings have either 2-byte or 4-byte elements.
2485   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2486     SmallVector<uint16_t, 32> Elements;
2487     Elements.reserve(NumElements);
2488 
2489     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2490       Elements.push_back(E->getCodeUnit(i));
2491     Elements.resize(NumElements);
2492     return llvm::ConstantDataArray::get(VMContext, Elements);
2493   }
2494 
2495   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2496   SmallVector<uint32_t, 32> Elements;
2497   Elements.reserve(NumElements);
2498 
2499   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2500     Elements.push_back(E->getCodeUnit(i));
2501   Elements.resize(NumElements);
2502   return llvm::ConstantDataArray::get(VMContext, Elements);
2503 }
2504 
2505 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2506 /// constant array for the given string literal.
2507 llvm::Constant *
2508 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2509   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2510   if (S->isAscii() || S->isUTF8()) {
2511     SmallString<64> Str(S->getString());
2512 
2513     // Resize the string to the right size, which is indicated by its type.
2514     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2515     Str.resize(CAT->getSize().getZExtValue());
2516     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2517   }
2518 
2519   // FIXME: the following does not memoize wide strings.
2520   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2521   llvm::GlobalVariable *GV =
2522     new llvm::GlobalVariable(getModule(),C->getType(),
2523                              !LangOpts.WritableStrings,
2524                              llvm::GlobalValue::PrivateLinkage,
2525                              C,".str");
2526 
2527   GV->setAlignment(Align.getQuantity());
2528   GV->setUnnamedAddr(true);
2529   return GV;
2530 }
2531 
2532 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2533 /// array for the given ObjCEncodeExpr node.
2534 llvm::Constant *
2535 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2536   std::string Str;
2537   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2538 
2539   return GetAddrOfConstantCString(Str);
2540 }
2541 
2542 
2543 /// GenerateWritableString -- Creates storage for a string literal.
2544 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2545                                              bool constant,
2546                                              CodeGenModule &CGM,
2547                                              const char *GlobalName,
2548                                              unsigned Alignment) {
2549   // Create Constant for this string literal. Don't add a '\0'.
2550   llvm::Constant *C =
2551       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2552 
2553   // Create a global variable for this string
2554   llvm::GlobalVariable *GV =
2555     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2556                              llvm::GlobalValue::PrivateLinkage,
2557                              C, GlobalName);
2558   GV->setAlignment(Alignment);
2559   GV->setUnnamedAddr(true);
2560   return GV;
2561 }
2562 
2563 /// GetAddrOfConstantString - Returns a pointer to a character array
2564 /// containing the literal. This contents are exactly that of the
2565 /// given string, i.e. it will not be null terminated automatically;
2566 /// see GetAddrOfConstantCString. Note that whether the result is
2567 /// actually a pointer to an LLVM constant depends on
2568 /// Feature.WriteableStrings.
2569 ///
2570 /// The result has pointer to array type.
2571 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2572                                                        const char *GlobalName,
2573                                                        unsigned Alignment) {
2574   // Get the default prefix if a name wasn't specified.
2575   if (!GlobalName)
2576     GlobalName = ".str";
2577 
2578   if (Alignment == 0)
2579     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2580       .getQuantity();
2581 
2582   // Don't share any string literals if strings aren't constant.
2583   if (LangOpts.WritableStrings)
2584     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2585 
2586   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2587     ConstantStringMap.GetOrCreateValue(Str);
2588 
2589   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2590     if (Alignment > GV->getAlignment()) {
2591       GV->setAlignment(Alignment);
2592     }
2593     return GV;
2594   }
2595 
2596   // Create a global variable for this.
2597   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2598                                                    Alignment);
2599   Entry.setValue(GV);
2600   return GV;
2601 }
2602 
2603 /// GetAddrOfConstantCString - Returns a pointer to a character
2604 /// array containing the literal and a terminating '\0'
2605 /// character. The result has pointer to array type.
2606 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2607                                                         const char *GlobalName,
2608                                                         unsigned Alignment) {
2609   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2610   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2611 }
2612 
2613 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2614     const MaterializeTemporaryExpr *E, const Expr *Init) {
2615   assert((E->getStorageDuration() == SD_Static ||
2616           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2617   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2618 
2619   // If we're not materializing a subobject of the temporary, keep the
2620   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2621   QualType MaterializedType = Init->getType();
2622   if (Init == E->GetTemporaryExpr())
2623     MaterializedType = E->getType();
2624 
2625   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2626   if (Slot)
2627     return Slot;
2628 
2629   // FIXME: If an externally-visible declaration extends multiple temporaries,
2630   // we need to give each temporary the same name in every translation unit (and
2631   // we also need to make the temporaries externally-visible).
2632   SmallString<256> Name;
2633   llvm::raw_svector_ostream Out(Name);
2634   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2635   Out.flush();
2636 
2637   APValue *Value = 0;
2638   if (E->getStorageDuration() == SD_Static) {
2639     // We might have a cached constant initializer for this temporary. Note
2640     // that this might have a different value from the value computed by
2641     // evaluating the initializer if the surrounding constant expression
2642     // modifies the temporary.
2643     Value = getContext().getMaterializedTemporaryValue(E, false);
2644     if (Value && Value->isUninit())
2645       Value = 0;
2646   }
2647 
2648   // Try evaluating it now, it might have a constant initializer.
2649   Expr::EvalResult EvalResult;
2650   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2651       !EvalResult.hasSideEffects())
2652     Value = &EvalResult.Val;
2653 
2654   llvm::Constant *InitialValue = 0;
2655   bool Constant = false;
2656   llvm::Type *Type;
2657   if (Value) {
2658     // The temporary has a constant initializer, use it.
2659     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2660     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2661     Type = InitialValue->getType();
2662   } else {
2663     // No initializer, the initialization will be provided when we
2664     // initialize the declaration which performed lifetime extension.
2665     Type = getTypes().ConvertTypeForMem(MaterializedType);
2666   }
2667 
2668   // Create a global variable for this lifetime-extended temporary.
2669   llvm::GlobalVariable *GV =
2670     new llvm::GlobalVariable(getModule(), Type, Constant,
2671                              llvm::GlobalValue::PrivateLinkage,
2672                              InitialValue, Name.c_str());
2673   GV->setAlignment(
2674       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2675   if (VD->getTLSKind())
2676     setTLSMode(GV, *VD);
2677   Slot = GV;
2678   return GV;
2679 }
2680 
2681 /// EmitObjCPropertyImplementations - Emit information for synthesized
2682 /// properties for an implementation.
2683 void CodeGenModule::EmitObjCPropertyImplementations(const
2684                                                     ObjCImplementationDecl *D) {
2685   for (ObjCImplementationDecl::propimpl_iterator
2686          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2687     ObjCPropertyImplDecl *PID = *i;
2688 
2689     // Dynamic is just for type-checking.
2690     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2691       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2692 
2693       // Determine which methods need to be implemented, some may have
2694       // been overridden. Note that ::isPropertyAccessor is not the method
2695       // we want, that just indicates if the decl came from a
2696       // property. What we want to know is if the method is defined in
2697       // this implementation.
2698       if (!D->getInstanceMethod(PD->getGetterName()))
2699         CodeGenFunction(*this).GenerateObjCGetter(
2700                                  const_cast<ObjCImplementationDecl *>(D), PID);
2701       if (!PD->isReadOnly() &&
2702           !D->getInstanceMethod(PD->getSetterName()))
2703         CodeGenFunction(*this).GenerateObjCSetter(
2704                                  const_cast<ObjCImplementationDecl *>(D), PID);
2705     }
2706   }
2707 }
2708 
2709 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2710   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2711   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2712        ivar; ivar = ivar->getNextIvar())
2713     if (ivar->getType().isDestructedType())
2714       return true;
2715 
2716   return false;
2717 }
2718 
2719 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2720 /// for an implementation.
2721 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2722   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2723   if (needsDestructMethod(D)) {
2724     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2725     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2726     ObjCMethodDecl *DTORMethod =
2727       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2728                              cxxSelector, getContext().VoidTy, 0, D,
2729                              /*isInstance=*/true, /*isVariadic=*/false,
2730                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2731                              /*isDefined=*/false, ObjCMethodDecl::Required);
2732     D->addInstanceMethod(DTORMethod);
2733     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2734     D->setHasDestructors(true);
2735   }
2736 
2737   // If the implementation doesn't have any ivar initializers, we don't need
2738   // a .cxx_construct.
2739   if (D->getNumIvarInitializers() == 0)
2740     return;
2741 
2742   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2743   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2744   // The constructor returns 'self'.
2745   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2746                                                 D->getLocation(),
2747                                                 D->getLocation(),
2748                                                 cxxSelector,
2749                                                 getContext().getObjCIdType(), 0,
2750                                                 D, /*isInstance=*/true,
2751                                                 /*isVariadic=*/false,
2752                                                 /*isPropertyAccessor=*/true,
2753                                                 /*isImplicitlyDeclared=*/true,
2754                                                 /*isDefined=*/false,
2755                                                 ObjCMethodDecl::Required);
2756   D->addInstanceMethod(CTORMethod);
2757   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2758   D->setHasNonZeroConstructors(true);
2759 }
2760 
2761 /// EmitNamespace - Emit all declarations in a namespace.
2762 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2763   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2764        I != E; ++I) {
2765     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2766       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2767           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2768         continue;
2769     EmitTopLevelDecl(*I);
2770   }
2771 }
2772 
2773 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2774 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2775   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2776       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2777     ErrorUnsupported(LSD, "linkage spec");
2778     return;
2779   }
2780 
2781   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2782        I != E; ++I) {
2783     // Meta-data for ObjC class includes references to implemented methods.
2784     // Generate class's method definitions first.
2785     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2786       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2787            MEnd = OID->meth_end();
2788            M != MEnd; ++M)
2789         EmitTopLevelDecl(*M);
2790     }
2791     EmitTopLevelDecl(*I);
2792   }
2793 }
2794 
2795 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2796 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2797   // Ignore dependent declarations.
2798   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2799     return;
2800 
2801   switch (D->getKind()) {
2802   case Decl::CXXConversion:
2803   case Decl::CXXMethod:
2804   case Decl::Function:
2805     // Skip function templates
2806     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2807         cast<FunctionDecl>(D)->isLateTemplateParsed())
2808       return;
2809 
2810     EmitGlobal(cast<FunctionDecl>(D));
2811     break;
2812 
2813   case Decl::Var:
2814     // Skip variable templates
2815     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2816       return;
2817   case Decl::VarTemplateSpecialization:
2818     EmitGlobal(cast<VarDecl>(D));
2819     break;
2820 
2821   // Indirect fields from global anonymous structs and unions can be
2822   // ignored; only the actual variable requires IR gen support.
2823   case Decl::IndirectField:
2824     break;
2825 
2826   // C++ Decls
2827   case Decl::Namespace:
2828     EmitNamespace(cast<NamespaceDecl>(D));
2829     break;
2830     // No code generation needed.
2831   case Decl::UsingShadow:
2832   case Decl::Using:
2833   case Decl::ClassTemplate:
2834   case Decl::VarTemplate:
2835   case Decl::VarTemplatePartialSpecialization:
2836   case Decl::FunctionTemplate:
2837   case Decl::TypeAliasTemplate:
2838   case Decl::Block:
2839   case Decl::Empty:
2840     break;
2841   case Decl::NamespaceAlias:
2842     if (CGDebugInfo *DI = getModuleDebugInfo())
2843         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2844     return;
2845   case Decl::UsingDirective: // using namespace X; [C++]
2846     if (CGDebugInfo *DI = getModuleDebugInfo())
2847       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2848     return;
2849   case Decl::CXXConstructor:
2850     // Skip function templates
2851     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2852         cast<FunctionDecl>(D)->isLateTemplateParsed())
2853       return;
2854 
2855     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2856     break;
2857   case Decl::CXXDestructor:
2858     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2859       return;
2860     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2861     break;
2862 
2863   case Decl::StaticAssert:
2864     // Nothing to do.
2865     break;
2866 
2867   // Objective-C Decls
2868 
2869   // Forward declarations, no (immediate) code generation.
2870   case Decl::ObjCInterface:
2871   case Decl::ObjCCategory:
2872     break;
2873 
2874   case Decl::ObjCProtocol: {
2875     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2876     if (Proto->isThisDeclarationADefinition())
2877       ObjCRuntime->GenerateProtocol(Proto);
2878     break;
2879   }
2880 
2881   case Decl::ObjCCategoryImpl:
2882     // Categories have properties but don't support synthesize so we
2883     // can ignore them here.
2884     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2885     break;
2886 
2887   case Decl::ObjCImplementation: {
2888     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2889     EmitObjCPropertyImplementations(OMD);
2890     EmitObjCIvarInitializations(OMD);
2891     ObjCRuntime->GenerateClass(OMD);
2892     // Emit global variable debug information.
2893     if (CGDebugInfo *DI = getModuleDebugInfo())
2894       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2895         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2896             OMD->getClassInterface()), OMD->getLocation());
2897     break;
2898   }
2899   case Decl::ObjCMethod: {
2900     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2901     // If this is not a prototype, emit the body.
2902     if (OMD->getBody())
2903       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2904     break;
2905   }
2906   case Decl::ObjCCompatibleAlias:
2907     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2908     break;
2909 
2910   case Decl::LinkageSpec:
2911     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2912     break;
2913 
2914   case Decl::FileScopeAsm: {
2915     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2916     StringRef AsmString = AD->getAsmString()->getString();
2917 
2918     const std::string &S = getModule().getModuleInlineAsm();
2919     if (S.empty())
2920       getModule().setModuleInlineAsm(AsmString);
2921     else if (S.end()[-1] == '\n')
2922       getModule().setModuleInlineAsm(S + AsmString.str());
2923     else
2924       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2925     break;
2926   }
2927 
2928   case Decl::Import: {
2929     ImportDecl *Import = cast<ImportDecl>(D);
2930 
2931     // Ignore import declarations that come from imported modules.
2932     if (clang::Module *Owner = Import->getOwningModule()) {
2933       if (getLangOpts().CurrentModule.empty() ||
2934           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2935         break;
2936     }
2937 
2938     ImportedModules.insert(Import->getImportedModule());
2939     break;
2940  }
2941 
2942   default:
2943     // Make sure we handled everything we should, every other kind is a
2944     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2945     // function. Need to recode Decl::Kind to do that easily.
2946     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2947   }
2948 }
2949 
2950 /// Turns the given pointer into a constant.
2951 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2952                                           const void *Ptr) {
2953   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2954   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2955   return llvm::ConstantInt::get(i64, PtrInt);
2956 }
2957 
2958 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2959                                    llvm::NamedMDNode *&GlobalMetadata,
2960                                    GlobalDecl D,
2961                                    llvm::GlobalValue *Addr) {
2962   if (!GlobalMetadata)
2963     GlobalMetadata =
2964       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2965 
2966   // TODO: should we report variant information for ctors/dtors?
2967   llvm::Value *Ops[] = {
2968     Addr,
2969     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2970   };
2971   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2972 }
2973 
2974 /// For each function which is declared within an extern "C" region and marked
2975 /// as 'used', but has internal linkage, create an alias from the unmangled
2976 /// name to the mangled name if possible. People expect to be able to refer
2977 /// to such functions with an unmangled name from inline assembly within the
2978 /// same translation unit.
2979 void CodeGenModule::EmitStaticExternCAliases() {
2980   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2981                                   E = StaticExternCValues.end();
2982        I != E; ++I) {
2983     IdentifierInfo *Name = I->first;
2984     llvm::GlobalValue *Val = I->second;
2985     if (Val && !getModule().getNamedValue(Name->getName()))
2986       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2987                                           Name->getName(), Val, &getModule()));
2988   }
2989 }
2990 
2991 /// Emits metadata nodes associating all the global values in the
2992 /// current module with the Decls they came from.  This is useful for
2993 /// projects using IR gen as a subroutine.
2994 ///
2995 /// Since there's currently no way to associate an MDNode directly
2996 /// with an llvm::GlobalValue, we create a global named metadata
2997 /// with the name 'clang.global.decl.ptrs'.
2998 void CodeGenModule::EmitDeclMetadata() {
2999   llvm::NamedMDNode *GlobalMetadata = 0;
3000 
3001   // StaticLocalDeclMap
3002   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3003          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3004        I != E; ++I) {
3005     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3006     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3007   }
3008 }
3009 
3010 /// Emits metadata nodes for all the local variables in the current
3011 /// function.
3012 void CodeGenFunction::EmitDeclMetadata() {
3013   if (LocalDeclMap.empty()) return;
3014 
3015   llvm::LLVMContext &Context = getLLVMContext();
3016 
3017   // Find the unique metadata ID for this name.
3018   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3019 
3020   llvm::NamedMDNode *GlobalMetadata = 0;
3021 
3022   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3023          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3024     const Decl *D = I->first;
3025     llvm::Value *Addr = I->second;
3026 
3027     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3028       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3029       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3030     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3031       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3032       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3033     }
3034   }
3035 }
3036 
3037 void CodeGenModule::EmitCoverageFile() {
3038   if (!getCodeGenOpts().CoverageFile.empty()) {
3039     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3040       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3041       llvm::LLVMContext &Ctx = TheModule.getContext();
3042       llvm::MDString *CoverageFile =
3043           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3044       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3045         llvm::MDNode *CU = CUNode->getOperand(i);
3046         llvm::Value *node[] = { CoverageFile, CU };
3047         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3048         GCov->addOperand(N);
3049       }
3050     }
3051   }
3052 }
3053 
3054 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3055                                                      QualType GuidType) {
3056   // Sema has checked that all uuid strings are of the form
3057   // "12345678-1234-1234-1234-1234567890ab".
3058   assert(Uuid.size() == 36);
3059   for (unsigned i = 0; i < 36; ++i) {
3060     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3061     else                                         assert(isHexDigit(Uuid[i]));
3062   }
3063 
3064   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3065 
3066   llvm::Constant *Field3[8];
3067   for (unsigned Idx = 0; Idx < 8; ++Idx)
3068     Field3[Idx] = llvm::ConstantInt::get(
3069         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3070 
3071   llvm::Constant *Fields[4] = {
3072     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3073     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3074     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3075     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3076   };
3077 
3078   return llvm::ConstantStruct::getAnon(Fields);
3079 }
3080