xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e44acadf6ab0ec228dcba2e02b495c1dfe7338dd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/IR/CallSite.h"
50 #include "llvm/IR/CallingConv.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/ProfileData/InstrProfReader.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MD5.h"
59 
60 using namespace clang;
61 using namespace CodeGen;
62 
63 static llvm::cl::opt<bool> LimitedCoverage(
64     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
65     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
66     llvm::cl::init(false));
67 
68 static const char AnnotationSection[] = "llvm.metadata";
69 
70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
71   switch (CGM.getTarget().getCXXABI().getKind()) {
72   case TargetCXXABI::GenericAArch64:
73   case TargetCXXABI::GenericARM:
74   case TargetCXXABI::iOS:
75   case TargetCXXABI::iOS64:
76   case TargetCXXABI::WatchOS:
77   case TargetCXXABI::GenericMIPS:
78   case TargetCXXABI::GenericItanium:
79   case TargetCXXABI::WebAssembly:
80     return CreateItaniumCXXABI(CGM);
81   case TargetCXXABI::Microsoft:
82     return CreateMicrosoftCXXABI(CGM);
83   }
84 
85   llvm_unreachable("invalid C++ ABI kind");
86 }
87 
88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
89                              const PreprocessorOptions &PPO,
90                              const CodeGenOptions &CGO, llvm::Module &M,
91                              DiagnosticsEngine &diags,
92                              CoverageSourceInfo *CoverageInfo)
93     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
94       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
95       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
96       VMContext(M.getContext()), Types(*this), VTables(*this),
97       SanitizerMD(new SanitizerMetadata(*this)) {
98 
99   // Initialize the type cache.
100   llvm::LLVMContext &LLVMContext = M.getContext();
101   VoidTy = llvm::Type::getVoidTy(LLVMContext);
102   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
103   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
104   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
105   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
106   HalfTy = llvm::Type::getHalfTy(LLVMContext);
107   FloatTy = llvm::Type::getFloatTy(LLVMContext);
108   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
109   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
110   PointerAlignInBytes =
111     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
112   SizeSizeInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
114   IntAlignInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
116   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
117   IntPtrTy = llvm::IntegerType::get(LLVMContext,
118     C.getTargetInfo().getMaxPointerWidth());
119   Int8PtrTy = Int8Ty->getPointerTo(0);
120   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
121   AllocaInt8PtrTy = Int8Ty->getPointerTo(
122       M.getDataLayout().getAllocaAddrSpace());
123   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
124 
125   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
126 
127   if (LangOpts.ObjC1)
128     createObjCRuntime();
129   if (LangOpts.OpenCL)
130     createOpenCLRuntime();
131   if (LangOpts.OpenMP)
132     createOpenMPRuntime();
133   if (LangOpts.CUDA)
134     createCUDARuntime();
135 
136   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
137   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
138       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
139     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
140                                getCXXABI().getMangleContext()));
141 
142   // If debug info or coverage generation is enabled, create the CGDebugInfo
143   // object.
144   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
145       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
146     DebugInfo.reset(new CGDebugInfo(*this));
147 
148   Block.GlobalUniqueCount = 0;
149 
150   if (C.getLangOpts().ObjC1)
151     ObjCData.reset(new ObjCEntrypoints());
152 
153   if (CodeGenOpts.hasProfileClangUse()) {
154     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
155         CodeGenOpts.ProfileInstrumentUsePath);
156     if (auto E = ReaderOrErr.takeError()) {
157       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
158                                               "Could not read profile %0: %1");
159       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
160         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
161                                   << EI.message();
162       });
163     } else
164       PGOReader = std::move(ReaderOrErr.get());
165   }
166 
167   // If coverage mapping generation is enabled, create the
168   // CoverageMappingModuleGen object.
169   if (CodeGenOpts.CoverageMapping)
170     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
171 }
172 
173 CodeGenModule::~CodeGenModule() {}
174 
175 void CodeGenModule::createObjCRuntime() {
176   // This is just isGNUFamily(), but we want to force implementors of
177   // new ABIs to decide how best to do this.
178   switch (LangOpts.ObjCRuntime.getKind()) {
179   case ObjCRuntime::GNUstep:
180   case ObjCRuntime::GCC:
181   case ObjCRuntime::ObjFW:
182     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
183     return;
184 
185   case ObjCRuntime::FragileMacOSX:
186   case ObjCRuntime::MacOSX:
187   case ObjCRuntime::iOS:
188   case ObjCRuntime::WatchOS:
189     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
190     return;
191   }
192   llvm_unreachable("bad runtime kind");
193 }
194 
195 void CodeGenModule::createOpenCLRuntime() {
196   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
197 }
198 
199 void CodeGenModule::createOpenMPRuntime() {
200   // Select a specialized code generation class based on the target, if any.
201   // If it does not exist use the default implementation.
202   switch (getTriple().getArch()) {
203   case llvm::Triple::nvptx:
204   case llvm::Triple::nvptx64:
205     assert(getLangOpts().OpenMPIsDevice &&
206            "OpenMP NVPTX is only prepared to deal with device code.");
207     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
208     break;
209   default:
210     if (LangOpts.OpenMPSimd)
211       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
212     else
213       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
214     break;
215   }
216 }
217 
218 void CodeGenModule::createCUDARuntime() {
219   CUDARuntime.reset(CreateNVCUDARuntime(*this));
220 }
221 
222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
223   Replacements[Name] = C;
224 }
225 
226 void CodeGenModule::applyReplacements() {
227   for (auto &I : Replacements) {
228     StringRef MangledName = I.first();
229     llvm::Constant *Replacement = I.second;
230     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
231     if (!Entry)
232       continue;
233     auto *OldF = cast<llvm::Function>(Entry);
234     auto *NewF = dyn_cast<llvm::Function>(Replacement);
235     if (!NewF) {
236       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
237         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
238       } else {
239         auto *CE = cast<llvm::ConstantExpr>(Replacement);
240         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
241                CE->getOpcode() == llvm::Instruction::GetElementPtr);
242         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
243       }
244     }
245 
246     // Replace old with new, but keep the old order.
247     OldF->replaceAllUsesWith(Replacement);
248     if (NewF) {
249       NewF->removeFromParent();
250       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
251                                                        NewF);
252     }
253     OldF->eraseFromParent();
254   }
255 }
256 
257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
258   GlobalValReplacements.push_back(std::make_pair(GV, C));
259 }
260 
261 void CodeGenModule::applyGlobalValReplacements() {
262   for (auto &I : GlobalValReplacements) {
263     llvm::GlobalValue *GV = I.first;
264     llvm::Constant *C = I.second;
265 
266     GV->replaceAllUsesWith(C);
267     GV->eraseFromParent();
268   }
269 }
270 
271 // This is only used in aliases that we created and we know they have a
272 // linear structure.
273 static const llvm::GlobalObject *getAliasedGlobal(
274     const llvm::GlobalIndirectSymbol &GIS) {
275   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
276   const llvm::Constant *C = &GIS;
277   for (;;) {
278     C = C->stripPointerCasts();
279     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
280       return GO;
281     // stripPointerCasts will not walk over weak aliases.
282     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
283     if (!GIS2)
284       return nullptr;
285     if (!Visited.insert(GIS2).second)
286       return nullptr;
287     C = GIS2->getIndirectSymbol();
288   }
289 }
290 
291 void CodeGenModule::checkAliases() {
292   // Check if the constructed aliases are well formed. It is really unfortunate
293   // that we have to do this in CodeGen, but we only construct mangled names
294   // and aliases during codegen.
295   bool Error = false;
296   DiagnosticsEngine &Diags = getDiags();
297   for (const GlobalDecl &GD : Aliases) {
298     const auto *D = cast<ValueDecl>(GD.getDecl());
299     SourceLocation Location;
300     bool IsIFunc = D->hasAttr<IFuncAttr>();
301     if (const Attr *A = D->getDefiningAttr())
302       Location = A->getLocation();
303     else
304       llvm_unreachable("Not an alias or ifunc?");
305     StringRef MangledName = getMangledName(GD);
306     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
307     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
308     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
309     if (!GV) {
310       Error = true;
311       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
312     } else if (GV->isDeclaration()) {
313       Error = true;
314       Diags.Report(Location, diag::err_alias_to_undefined)
315           << IsIFunc << IsIFunc;
316     } else if (IsIFunc) {
317       // Check resolver function type.
318       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
319           GV->getType()->getPointerElementType());
320       assert(FTy);
321       if (!FTy->getReturnType()->isPointerTy())
322         Diags.Report(Location, diag::err_ifunc_resolver_return);
323       if (FTy->getNumParams())
324         Diags.Report(Location, diag::err_ifunc_resolver_params);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
408       AddGlobalCtor(CudaCtorFunction);
409     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
410       AddGlobalDtor(CudaDtorFunction);
411   }
412   if (OpenMPRuntime) {
413     if (llvm::Function *OpenMPRegistrationFunction =
414             OpenMPRuntime->emitRegistrationFunction()) {
415       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
416         OpenMPRegistrationFunction : nullptr;
417       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
418     }
419     OpenMPRuntime->clear();
420   }
421   if (PGOReader) {
422     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
423     if (PGOStats.hasDiagnostics())
424       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
425   }
426   EmitCtorList(GlobalCtors, "llvm.global_ctors");
427   EmitCtorList(GlobalDtors, "llvm.global_dtors");
428   EmitGlobalAnnotations();
429   EmitStaticExternCAliases();
430   EmitDeferredUnusedCoverageMappings();
431   if (CoverageMapping)
432     CoverageMapping->emit();
433   if (CodeGenOpts.SanitizeCfiCrossDso) {
434     CodeGenFunction(*this).EmitCfiCheckFail();
435     CodeGenFunction(*this).EmitCfiCheckStub();
436   }
437   emitAtAvailableLinkGuard();
438   emitLLVMUsed();
439   if (SanStats)
440     SanStats->finish();
441 
442   if (CodeGenOpts.Autolink &&
443       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
444     EmitModuleLinkOptions();
445   }
446 
447   // Record mregparm value now so it is visible through rest of codegen.
448   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450                               CodeGenOpts.NumRegisterParameters);
451 
452   if (CodeGenOpts.DwarfVersion) {
453     // We actually want the latest version when there are conflicts.
454     // We can change from Warning to Latest if such mode is supported.
455     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
456                               CodeGenOpts.DwarfVersion);
457   }
458   if (CodeGenOpts.EmitCodeView) {
459     // Indicate that we want CodeView in the metadata.
460     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
461   }
462   if (CodeGenOpts.ControlFlowGuard) {
463     // We want function ID tables for Control Flow Guard.
464     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
465   }
466   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
467     // We don't support LTO with 2 with different StrictVTablePointers
468     // FIXME: we could support it by stripping all the information introduced
469     // by StrictVTablePointers.
470 
471     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
472 
473     llvm::Metadata *Ops[2] = {
474               llvm::MDString::get(VMContext, "StrictVTablePointers"),
475               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
476                   llvm::Type::getInt32Ty(VMContext), 1))};
477 
478     getModule().addModuleFlag(llvm::Module::Require,
479                               "StrictVTablePointersRequirement",
480                               llvm::MDNode::get(VMContext, Ops));
481   }
482   if (DebugInfo)
483     // We support a single version in the linked module. The LLVM
484     // parser will drop debug info with a different version number
485     // (and warn about it, too).
486     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
487                               llvm::DEBUG_METADATA_VERSION);
488 
489   // We need to record the widths of enums and wchar_t, so that we can generate
490   // the correct build attributes in the ARM backend. wchar_size is also used by
491   // TargetLibraryInfo.
492   uint64_t WCharWidth =
493       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
494   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
495 
496   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
497   if (   Arch == llvm::Triple::arm
498       || Arch == llvm::Triple::armeb
499       || Arch == llvm::Triple::thumb
500       || Arch == llvm::Triple::thumbeb) {
501     // The minimum width of an enum in bytes
502     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
503     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
504   }
505 
506   if (CodeGenOpts.SanitizeCfiCrossDso) {
507     // Indicate that we want cross-DSO control flow integrity checks.
508     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
509   }
510 
511   if (CodeGenOpts.CFProtectionReturn &&
512       Target.checkCFProtectionReturnSupported(getDiags())) {
513     // Indicate that we want to instrument return control flow protection.
514     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
515                               1);
516   }
517 
518   if (CodeGenOpts.CFProtectionBranch &&
519       Target.checkCFProtectionBranchSupported(getDiags())) {
520     // Indicate that we want to instrument branch control flow protection.
521     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
522                               1);
523   }
524 
525   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
526     // Indicate whether __nvvm_reflect should be configured to flush denormal
527     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
528     // property.)
529     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
530                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
531   }
532 
533   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
534   if (LangOpts.OpenCL) {
535     EmitOpenCLMetadata();
536     // Emit SPIR version.
537     if (getTriple().getArch() == llvm::Triple::spir ||
538         getTriple().getArch() == llvm::Triple::spir64) {
539       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
540       // opencl.spir.version named metadata.
541       llvm::Metadata *SPIRVerElts[] = {
542           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
543               Int32Ty, LangOpts.OpenCLVersion / 100)),
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
546       llvm::NamedMDNode *SPIRVerMD =
547           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
548       llvm::LLVMContext &Ctx = TheModule.getContext();
549       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
550     }
551   }
552 
553   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
554     assert(PLevel < 3 && "Invalid PIC Level");
555     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
556     if (Context.getLangOpts().PIE)
557       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
558   }
559 
560   if (CodeGenOpts.NoPLT)
561     getModule().setRtLibUseGOT();
562 
563   SimplifyPersonality();
564 
565   if (getCodeGenOpts().EmitDeclMetadata)
566     EmitDeclMetadata();
567 
568   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
569     EmitCoverageFile();
570 
571   if (DebugInfo)
572     DebugInfo->finalize();
573 
574   if (getCodeGenOpts().EmitVersionIdentMetadata)
575     EmitVersionIdentMetadata();
576 
577   EmitTargetMetadata();
578 }
579 
580 void CodeGenModule::EmitOpenCLMetadata() {
581   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
582   // opencl.ocl.version named metadata node.
583   llvm::Metadata *OCLVerElts[] = {
584       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
585           Int32Ty, LangOpts.OpenCLVersion / 100)),
586       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
587           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
588   llvm::NamedMDNode *OCLVerMD =
589       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
590   llvm::LLVMContext &Ctx = TheModule.getContext();
591   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
592 }
593 
594 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
595   // Make sure that this type is translated.
596   Types.UpdateCompletedType(TD);
597 }
598 
599 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
600   // Make sure that this type is translated.
601   Types.RefreshTypeCacheForClass(RD);
602 }
603 
604 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
605   if (!TBAA)
606     return nullptr;
607   return TBAA->getTypeInfo(QTy);
608 }
609 
610 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
611   if (!TBAA)
612     return TBAAAccessInfo();
613   return TBAA->getAccessInfo(AccessType);
614 }
615 
616 TBAAAccessInfo
617 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
618   if (!TBAA)
619     return TBAAAccessInfo();
620   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTBAAStructInfo(QTy);
627 }
628 
629 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
630   if (!TBAA)
631     return nullptr;
632   return TBAA->getBaseTypeInfo(QTy);
633 }
634 
635 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
636   if (!TBAA)
637     return nullptr;
638   return TBAA->getAccessTagInfo(Info);
639 }
640 
641 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
642                                                    TBAAAccessInfo TargetInfo) {
643   if (!TBAA)
644     return TBAAAccessInfo();
645   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
646 }
647 
648 TBAAAccessInfo
649 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
650                                                    TBAAAccessInfo InfoB) {
651   if (!TBAA)
652     return TBAAAccessInfo();
653   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
654 }
655 
656 TBAAAccessInfo
657 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
658                                               TBAAAccessInfo SrcInfo) {
659   if (!TBAA)
660     return TBAAAccessInfo();
661   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
662 }
663 
664 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
665                                                 TBAAAccessInfo TBAAInfo) {
666   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
667     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
668 }
669 
670 void CodeGenModule::DecorateInstructionWithInvariantGroup(
671     llvm::Instruction *I, const CXXRecordDecl *RD) {
672   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
673                  llvm::MDNode::get(getLLVMContext(), {}));
674 }
675 
676 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
677   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
678   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
679 }
680 
681 /// ErrorUnsupported - Print out an error that codegen doesn't support the
682 /// specified stmt yet.
683 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
684   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
685                                                "cannot compile this %0 yet");
686   std::string Msg = Type;
687   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
688     << Msg << S->getSourceRange();
689 }
690 
691 /// ErrorUnsupported - Print out an error that codegen doesn't support the
692 /// specified decl yet.
693 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
694   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
695                                                "cannot compile this %0 yet");
696   std::string Msg = Type;
697   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
698 }
699 
700 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
701   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
702 }
703 
704 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
705                                         const NamedDecl *D) const {
706   if (GV->hasDLLImportStorageClass())
707     return;
708   // Internal definitions always have default visibility.
709   if (GV->hasLocalLinkage()) {
710     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
711     return;
712   }
713   if (!D)
714     return;
715   // Set visibility for definitions.
716   LinkageInfo LV = D->getLinkageAndVisibility();
717   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
718     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
719 }
720 
721 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
722                                  llvm::GlobalValue *GV) {
723   if (GV->hasLocalLinkage())
724     return true;
725 
726   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
727     return true;
728 
729   // DLLImport explicitly marks the GV as external.
730   if (GV->hasDLLImportStorageClass())
731     return false;
732 
733   const llvm::Triple &TT = CGM.getTriple();
734   // Every other GV is local on COFF.
735   // Make an exception for windows OS in the triple: Some firmware builds use
736   // *-win32-macho triples. This (accidentally?) produced windows relocations
737   // without GOT tables in older clang versions; Keep this behaviour.
738   // FIXME: even thread local variables?
739   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
740     return true;
741 
742   // Only handle COFF and ELF for now.
743   if (!TT.isOSBinFormatELF())
744     return false;
745 
746   // If this is not an executable, don't assume anything is local.
747   const auto &CGOpts = CGM.getCodeGenOpts();
748   llvm::Reloc::Model RM = CGOpts.RelocationModel;
749   const auto &LOpts = CGM.getLangOpts();
750   if (RM != llvm::Reloc::Static && !LOpts.PIE)
751     return false;
752 
753   // A definition cannot be preempted from an executable.
754   if (!GV->isDeclarationForLinker())
755     return true;
756 
757   // Most PIC code sequences that assume that a symbol is local cannot produce a
758   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
759   // depended, it seems worth it to handle it here.
760   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
761     return false;
762 
763   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
764   llvm::Triple::ArchType Arch = TT.getArch();
765   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
766       Arch == llvm::Triple::ppc64le)
767     return false;
768 
769   // If we can use copy relocations we can assume it is local.
770   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
771     if (!Var->isThreadLocal() &&
772         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
773       return true;
774 
775   // If we can use a plt entry as the symbol address we can assume it
776   // is local.
777   // FIXME: This should work for PIE, but the gold linker doesn't support it.
778   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
779     return true;
780 
781   // Otherwise don't assue it is local.
782   return false;
783 }
784 
785 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
786   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
787 }
788 
789 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
790                                           GlobalDecl GD) const {
791   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
792   // C++ destructors have a few C++ ABI specific special cases.
793   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
794     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
795     return;
796   }
797   setDLLImportDLLExport(GV, D);
798 }
799 
800 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
801                                           const NamedDecl *D) const {
802   if (D && D->isExternallyVisible()) {
803     if (D->hasAttr<DLLImportAttr>())
804       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
805     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
806       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
807   }
808 }
809 
810 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
811                                     GlobalDecl GD) const {
812   setDLLImportDLLExport(GV, GD);
813   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
814 }
815 
816 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
817                                     const NamedDecl *D) const {
818   setDLLImportDLLExport(GV, D);
819   setGlobalVisibilityAndLocal(GV, D);
820 }
821 
822 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
823                                                 const NamedDecl *D) const {
824   setGlobalVisibility(GV, D);
825   setDSOLocal(GV);
826 }
827 
828 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
829   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
830       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
831       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
832       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
833       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
834 }
835 
836 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
837     CodeGenOptions::TLSModel M) {
838   switch (M) {
839   case CodeGenOptions::GeneralDynamicTLSModel:
840     return llvm::GlobalVariable::GeneralDynamicTLSModel;
841   case CodeGenOptions::LocalDynamicTLSModel:
842     return llvm::GlobalVariable::LocalDynamicTLSModel;
843   case CodeGenOptions::InitialExecTLSModel:
844     return llvm::GlobalVariable::InitialExecTLSModel;
845   case CodeGenOptions::LocalExecTLSModel:
846     return llvm::GlobalVariable::LocalExecTLSModel;
847   }
848   llvm_unreachable("Invalid TLS model!");
849 }
850 
851 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
852   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
853 
854   llvm::GlobalValue::ThreadLocalMode TLM;
855   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
856 
857   // Override the TLS model if it is explicitly specified.
858   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
859     TLM = GetLLVMTLSModel(Attr->getModel());
860   }
861 
862   GV->setThreadLocalMode(TLM);
863 }
864 
865 static void AppendTargetMangling(const CodeGenModule &CGM,
866                                  const TargetAttr *Attr, raw_ostream &Out) {
867   if (Attr->isDefaultVersion())
868     return;
869 
870   Out << '.';
871   const auto &Target = CGM.getTarget();
872   TargetAttr::ParsedTargetAttr Info =
873       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
874                     // Multiversioning doesn't allow "no-${feature}", so we can
875                     // only have "+" prefixes here.
876                     assert(LHS.startswith("+") && RHS.startswith("+") &&
877                            "Features should always have a prefix.");
878                     return Target.multiVersionSortPriority(LHS.substr(1)) >
879                            Target.multiVersionSortPriority(RHS.substr(1));
880                   });
881 
882   bool IsFirst = true;
883 
884   if (!Info.Architecture.empty()) {
885     IsFirst = false;
886     Out << "arch_" << Info.Architecture;
887   }
888 
889   for (StringRef Feat : Info.Features) {
890     if (!IsFirst)
891       Out << '_';
892     IsFirst = false;
893     Out << Feat.substr(1);
894   }
895 }
896 
897 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
898                                       const NamedDecl *ND,
899                                       bool OmitTargetMangling = false) {
900   SmallString<256> Buffer;
901   llvm::raw_svector_ostream Out(Buffer);
902   MangleContext &MC = CGM.getCXXABI().getMangleContext();
903   if (MC.shouldMangleDeclName(ND)) {
904     llvm::raw_svector_ostream Out(Buffer);
905     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
906       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
907     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
908       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
909     else
910       MC.mangleName(ND, Out);
911   } else {
912     IdentifierInfo *II = ND->getIdentifier();
913     assert(II && "Attempt to mangle unnamed decl.");
914     const auto *FD = dyn_cast<FunctionDecl>(ND);
915 
916     if (FD &&
917         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
918       llvm::raw_svector_ostream Out(Buffer);
919       Out << "__regcall3__" << II->getName();
920     } else {
921       Out << II->getName();
922     }
923   }
924 
925   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
926     if (FD->isMultiVersion() && !OmitTargetMangling)
927       AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
928   return Out.str();
929 }
930 
931 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
932                                             const FunctionDecl *FD) {
933   if (!FD->isMultiVersion())
934     return;
935 
936   // Get the name of what this would be without the 'target' attribute.  This
937   // allows us to lookup the version that was emitted when this wasn't a
938   // multiversion function.
939   std::string NonTargetName =
940       getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true);
941   GlobalDecl OtherGD;
942   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
943     assert(OtherGD.getCanonicalDecl()
944                .getDecl()
945                ->getAsFunction()
946                ->isMultiVersion() &&
947            "Other GD should now be a multiversioned function");
948     // OtherFD is the version of this function that was mangled BEFORE
949     // becoming a MultiVersion function.  It potentially needs to be updated.
950     const FunctionDecl *OtherFD =
951         OtherGD.getCanonicalDecl().getDecl()->getAsFunction();
952     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
953     // This is so that if the initial version was already the 'default'
954     // version, we don't try to update it.
955     if (OtherName != NonTargetName) {
956       // Remove instead of erase, since others may have stored the StringRef
957       // to this.
958       const auto ExistingRecord = Manglings.find(NonTargetName);
959       if (ExistingRecord != std::end(Manglings))
960         Manglings.remove(&(*ExistingRecord));
961       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
962       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
963       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
964         Entry->setName(OtherName);
965     }
966   }
967 }
968 
969 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
970   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
971 
972   // Some ABIs don't have constructor variants.  Make sure that base and
973   // complete constructors get mangled the same.
974   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
975     if (!getTarget().getCXXABI().hasConstructorVariants()) {
976       CXXCtorType OrigCtorType = GD.getCtorType();
977       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
978       if (OrigCtorType == Ctor_Base)
979         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
980     }
981   }
982 
983   auto FoundName = MangledDeclNames.find(CanonicalGD);
984   if (FoundName != MangledDeclNames.end())
985     return FoundName->second;
986 
987 
988   // Keep the first result in the case of a mangling collision.
989   const auto *ND = cast<NamedDecl>(GD.getDecl());
990   auto Result =
991       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
992   return MangledDeclNames[CanonicalGD] = Result.first->first();
993 }
994 
995 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
996                                              const BlockDecl *BD) {
997   MangleContext &MangleCtx = getCXXABI().getMangleContext();
998   const Decl *D = GD.getDecl();
999 
1000   SmallString<256> Buffer;
1001   llvm::raw_svector_ostream Out(Buffer);
1002   if (!D)
1003     MangleCtx.mangleGlobalBlock(BD,
1004       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1005   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1006     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1007   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1008     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1009   else
1010     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1011 
1012   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1013   return Result.first->first();
1014 }
1015 
1016 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1017   return getModule().getNamedValue(Name);
1018 }
1019 
1020 /// AddGlobalCtor - Add a function to the list that will be called before
1021 /// main() runs.
1022 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1023                                   llvm::Constant *AssociatedData) {
1024   // FIXME: Type coercion of void()* types.
1025   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1026 }
1027 
1028 /// AddGlobalDtor - Add a function to the list that will be called
1029 /// when the module is unloaded.
1030 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1031   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1032     DtorsUsingAtExit[Priority].push_back(Dtor);
1033     return;
1034   }
1035 
1036   // FIXME: Type coercion of void()* types.
1037   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1038 }
1039 
1040 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1041   if (Fns.empty()) return;
1042 
1043   // Ctor function type is void()*.
1044   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1045   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
1046 
1047   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1048   llvm::StructType *CtorStructTy = llvm::StructType::get(
1049       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy);
1050 
1051   // Construct the constructor and destructor arrays.
1052   ConstantInitBuilder builder(*this);
1053   auto ctors = builder.beginArray(CtorStructTy);
1054   for (const auto &I : Fns) {
1055     auto ctor = ctors.beginStruct(CtorStructTy);
1056     ctor.addInt(Int32Ty, I.Priority);
1057     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1058     if (I.AssociatedData)
1059       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1060     else
1061       ctor.addNullPointer(VoidPtrTy);
1062     ctor.finishAndAddTo(ctors);
1063   }
1064 
1065   auto list =
1066     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1067                                 /*constant*/ false,
1068                                 llvm::GlobalValue::AppendingLinkage);
1069 
1070   // The LTO linker doesn't seem to like it when we set an alignment
1071   // on appending variables.  Take it off as a workaround.
1072   list->setAlignment(0);
1073 
1074   Fns.clear();
1075 }
1076 
1077 llvm::GlobalValue::LinkageTypes
1078 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1079   const auto *D = cast<FunctionDecl>(GD.getDecl());
1080 
1081   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1082 
1083   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1084     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1085 
1086   if (isa<CXXConstructorDecl>(D) &&
1087       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1088       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1089     // Our approach to inheriting constructors is fundamentally different from
1090     // that used by the MS ABI, so keep our inheriting constructor thunks
1091     // internal rather than trying to pick an unambiguous mangling for them.
1092     return llvm::GlobalValue::InternalLinkage;
1093   }
1094 
1095   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1096 }
1097 
1098 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1099   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1100   if (!MDS) return nullptr;
1101 
1102   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1103 }
1104 
1105 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
1106                                               const CGFunctionInfo &Info,
1107                                               llvm::Function *F) {
1108   unsigned CallingConv;
1109   llvm::AttributeList PAL;
1110   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
1111   F->setAttributes(PAL);
1112   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1113 }
1114 
1115 /// Determines whether the language options require us to model
1116 /// unwind exceptions.  We treat -fexceptions as mandating this
1117 /// except under the fragile ObjC ABI with only ObjC exceptions
1118 /// enabled.  This means, for example, that C with -fexceptions
1119 /// enables this.
1120 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1121   // If exceptions are completely disabled, obviously this is false.
1122   if (!LangOpts.Exceptions) return false;
1123 
1124   // If C++ exceptions are enabled, this is true.
1125   if (LangOpts.CXXExceptions) return true;
1126 
1127   // If ObjC exceptions are enabled, this depends on the ABI.
1128   if (LangOpts.ObjCExceptions) {
1129     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1130   }
1131 
1132   return true;
1133 }
1134 
1135 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1136                                                       const CXXMethodDecl *MD) {
1137   // Check that the type metadata can ever actually be used by a call.
1138   if (!CGM.getCodeGenOpts().LTOUnit ||
1139       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1140     return false;
1141 
1142   // Only functions whose address can be taken with a member function pointer
1143   // need this sort of type metadata.
1144   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1145          !isa<CXXDestructorDecl>(MD);
1146 }
1147 
1148 std::vector<const CXXRecordDecl *>
1149 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1150   llvm::SetVector<const CXXRecordDecl *> MostBases;
1151 
1152   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1153   CollectMostBases = [&](const CXXRecordDecl *RD) {
1154     if (RD->getNumBases() == 0)
1155       MostBases.insert(RD);
1156     for (const CXXBaseSpecifier &B : RD->bases())
1157       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1158   };
1159   CollectMostBases(RD);
1160   return MostBases.takeVector();
1161 }
1162 
1163 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1164                                                            llvm::Function *F) {
1165   llvm::AttrBuilder B;
1166 
1167   if (CodeGenOpts.UnwindTables)
1168     B.addAttribute(llvm::Attribute::UWTable);
1169 
1170   if (!hasUnwindExceptions(LangOpts))
1171     B.addAttribute(llvm::Attribute::NoUnwind);
1172 
1173   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1174     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1175       B.addAttribute(llvm::Attribute::StackProtect);
1176     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1177       B.addAttribute(llvm::Attribute::StackProtectStrong);
1178     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1179       B.addAttribute(llvm::Attribute::StackProtectReq);
1180   }
1181 
1182   if (!D) {
1183     // If we don't have a declaration to control inlining, the function isn't
1184     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1185     // disabled, mark the function as noinline.
1186     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1187         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1188       B.addAttribute(llvm::Attribute::NoInline);
1189 
1190     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1191     return;
1192   }
1193 
1194   // Track whether we need to add the optnone LLVM attribute,
1195   // starting with the default for this optimization level.
1196   bool ShouldAddOptNone =
1197       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1198   // We can't add optnone in the following cases, it won't pass the verifier.
1199   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1200   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1201   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1202 
1203   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1204     B.addAttribute(llvm::Attribute::OptimizeNone);
1205 
1206     // OptimizeNone implies noinline; we should not be inlining such functions.
1207     B.addAttribute(llvm::Attribute::NoInline);
1208     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1209            "OptimizeNone and AlwaysInline on same function!");
1210 
1211     // We still need to handle naked functions even though optnone subsumes
1212     // much of their semantics.
1213     if (D->hasAttr<NakedAttr>())
1214       B.addAttribute(llvm::Attribute::Naked);
1215 
1216     // OptimizeNone wins over OptimizeForSize and MinSize.
1217     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1218     F->removeFnAttr(llvm::Attribute::MinSize);
1219   } else if (D->hasAttr<NakedAttr>()) {
1220     // Naked implies noinline: we should not be inlining such functions.
1221     B.addAttribute(llvm::Attribute::Naked);
1222     B.addAttribute(llvm::Attribute::NoInline);
1223   } else if (D->hasAttr<NoDuplicateAttr>()) {
1224     B.addAttribute(llvm::Attribute::NoDuplicate);
1225   } else if (D->hasAttr<NoInlineAttr>()) {
1226     B.addAttribute(llvm::Attribute::NoInline);
1227   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1228              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1229     // (noinline wins over always_inline, and we can't specify both in IR)
1230     B.addAttribute(llvm::Attribute::AlwaysInline);
1231   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1232     // If we're not inlining, then force everything that isn't always_inline to
1233     // carry an explicit noinline attribute.
1234     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1235       B.addAttribute(llvm::Attribute::NoInline);
1236   } else {
1237     // Otherwise, propagate the inline hint attribute and potentially use its
1238     // absence to mark things as noinline.
1239     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1240       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
1241             return Redecl->isInlineSpecified();
1242           })) {
1243         B.addAttribute(llvm::Attribute::InlineHint);
1244       } else if (CodeGenOpts.getInlining() ==
1245                      CodeGenOptions::OnlyHintInlining &&
1246                  !FD->isInlined() &&
1247                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1248         B.addAttribute(llvm::Attribute::NoInline);
1249       }
1250     }
1251   }
1252 
1253   // Add other optimization related attributes if we are optimizing this
1254   // function.
1255   if (!D->hasAttr<OptimizeNoneAttr>()) {
1256     if (D->hasAttr<ColdAttr>()) {
1257       if (!ShouldAddOptNone)
1258         B.addAttribute(llvm::Attribute::OptimizeForSize);
1259       B.addAttribute(llvm::Attribute::Cold);
1260     }
1261 
1262     if (D->hasAttr<MinSizeAttr>())
1263       B.addAttribute(llvm::Attribute::MinSize);
1264   }
1265 
1266   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1267 
1268   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1269   if (alignment)
1270     F->setAlignment(alignment);
1271 
1272   if (!D->hasAttr<AlignedAttr>())
1273     if (LangOpts.FunctionAlignment)
1274       F->setAlignment(1 << LangOpts.FunctionAlignment);
1275 
1276   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1277   // reserve a bit for differentiating between virtual and non-virtual member
1278   // functions. If the current target's C++ ABI requires this and this is a
1279   // member function, set its alignment accordingly.
1280   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1281     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1282       F->setAlignment(2);
1283   }
1284 
1285   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1286   if (CodeGenOpts.SanitizeCfiCrossDso)
1287     if (auto *FD = dyn_cast<FunctionDecl>(D))
1288       CreateFunctionTypeMetadataForIcall(FD, F);
1289 
1290   // Emit type metadata on member functions for member function pointer checks.
1291   // These are only ever necessary on definitions; we're guaranteed that the
1292   // definition will be present in the LTO unit as a result of LTO visibility.
1293   auto *MD = dyn_cast<CXXMethodDecl>(D);
1294   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1295     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1296       llvm::Metadata *Id =
1297           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1298               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1299       F->addTypeMetadata(0, Id);
1300     }
1301   }
1302 }
1303 
1304 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1305   const Decl *D = GD.getDecl();
1306   if (dyn_cast_or_null<NamedDecl>(D))
1307     setGVProperties(GV, GD);
1308   else
1309     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1310 
1311   if (D && D->hasAttr<UsedAttr>())
1312     addUsedGlobal(GV);
1313 }
1314 
1315 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D,
1316                                                 llvm::AttrBuilder &Attrs) {
1317   // Add target-cpu and target-features attributes to functions. If
1318   // we have a decl for the function and it has a target attribute then
1319   // parse that and add it to the feature set.
1320   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1321   std::vector<std::string> Features;
1322   const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
1323   FD = FD ? FD->getMostRecentDecl() : FD;
1324   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1325   bool AddedAttr = false;
1326   if (TD) {
1327     llvm::StringMap<bool> FeatureMap;
1328     getFunctionFeatureMap(FeatureMap, FD);
1329 
1330     // Produce the canonical string for this set of features.
1331     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1332       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1333 
1334     // Now add the target-cpu and target-features to the function.
1335     // While we populated the feature map above, we still need to
1336     // get and parse the target attribute so we can get the cpu for
1337     // the function.
1338     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1339     if (ParsedAttr.Architecture != "" &&
1340         getTarget().isValidCPUName(ParsedAttr.Architecture))
1341       TargetCPU = ParsedAttr.Architecture;
1342   } else {
1343     // Otherwise just add the existing target cpu and target features to the
1344     // function.
1345     Features = getTarget().getTargetOpts().Features;
1346   }
1347 
1348   if (TargetCPU != "") {
1349     Attrs.addAttribute("target-cpu", TargetCPU);
1350     AddedAttr = true;
1351   }
1352   if (!Features.empty()) {
1353     llvm::sort(Features.begin(), Features.end());
1354     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1355     AddedAttr = true;
1356   }
1357 
1358   return AddedAttr;
1359 }
1360 
1361 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1362                                           llvm::GlobalObject *GO) {
1363   const Decl *D = GD.getDecl();
1364   SetCommonAttributes(GD, GO);
1365 
1366   if (D) {
1367     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1368       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1369         GV->addAttribute("bss-section", SA->getName());
1370       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1371         GV->addAttribute("data-section", SA->getName());
1372       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1373         GV->addAttribute("rodata-section", SA->getName());
1374     }
1375 
1376     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1377       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1378         if (!D->getAttr<SectionAttr>())
1379           F->addFnAttr("implicit-section-name", SA->getName());
1380 
1381       llvm::AttrBuilder Attrs;
1382       if (GetCPUAndFeaturesAttributes(D, Attrs)) {
1383         // We know that GetCPUAndFeaturesAttributes will always have the
1384         // newest set, since it has the newest possible FunctionDecl, so the
1385         // new ones should replace the old.
1386         F->removeFnAttr("target-cpu");
1387         F->removeFnAttr("target-features");
1388         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1389       }
1390     }
1391 
1392     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1393       GO->setSection(SA->getName());
1394   }
1395 
1396   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1397 }
1398 
1399 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1400                                                   llvm::Function *F,
1401                                                   const CGFunctionInfo &FI) {
1402   const Decl *D = GD.getDecl();
1403   SetLLVMFunctionAttributes(D, FI, F);
1404   SetLLVMFunctionAttributesForDefinition(D, F);
1405 
1406   F->setLinkage(llvm::Function::InternalLinkage);
1407 
1408   setNonAliasAttributes(GD, F);
1409 }
1410 
1411 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1412   // Set linkage and visibility in case we never see a definition.
1413   LinkageInfo LV = ND->getLinkageAndVisibility();
1414   // Don't set internal linkage on declarations.
1415   // "extern_weak" is overloaded in LLVM; we probably should have
1416   // separate linkage types for this.
1417   if (isExternallyVisible(LV.getLinkage()) &&
1418       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1419     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1420 }
1421 
1422 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1423                                                        llvm::Function *F) {
1424   // Only if we are checking indirect calls.
1425   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1426     return;
1427 
1428   // Non-static class methods are handled via vtable or member function pointer
1429   // checks elsewhere.
1430   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1431     return;
1432 
1433   // Additionally, if building with cross-DSO support...
1434   if (CodeGenOpts.SanitizeCfiCrossDso) {
1435     // Skip available_externally functions. They won't be codegen'ed in the
1436     // current module anyway.
1437     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1438       return;
1439   }
1440 
1441   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1442   F->addTypeMetadata(0, MD);
1443   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1444 
1445   // Emit a hash-based bit set entry for cross-DSO calls.
1446   if (CodeGenOpts.SanitizeCfiCrossDso)
1447     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1448       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1449 }
1450 
1451 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1452                                           bool IsIncompleteFunction,
1453                                           bool IsThunk) {
1454 
1455   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1456     // If this is an intrinsic function, set the function's attributes
1457     // to the intrinsic's attributes.
1458     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1459     return;
1460   }
1461 
1462   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1463 
1464   if (!IsIncompleteFunction) {
1465     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1466     // Setup target-specific attributes.
1467     if (F->isDeclaration())
1468       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1469   }
1470 
1471   // Add the Returned attribute for "this", except for iOS 5 and earlier
1472   // where substantial code, including the libstdc++ dylib, was compiled with
1473   // GCC and does not actually return "this".
1474   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1475       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1476     assert(!F->arg_empty() &&
1477            F->arg_begin()->getType()
1478              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1479            "unexpected this return");
1480     F->addAttribute(1, llvm::Attribute::Returned);
1481   }
1482 
1483   // Only a few attributes are set on declarations; these may later be
1484   // overridden by a definition.
1485 
1486   setLinkageForGV(F, FD);
1487   setGVProperties(F, FD);
1488 
1489   if (FD->getAttr<PragmaClangTextSectionAttr>()) {
1490     F->addFnAttr("implicit-section-name");
1491   }
1492 
1493   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1494     F->setSection(SA->getName());
1495 
1496   if (FD->isReplaceableGlobalAllocationFunction()) {
1497     // A replaceable global allocation function does not act like a builtin by
1498     // default, only if it is invoked by a new-expression or delete-expression.
1499     F->addAttribute(llvm::AttributeList::FunctionIndex,
1500                     llvm::Attribute::NoBuiltin);
1501 
1502     // A sane operator new returns a non-aliasing pointer.
1503     // FIXME: Also add NonNull attribute to the return value
1504     // for the non-nothrow forms?
1505     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1506     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1507         (Kind == OO_New || Kind == OO_Array_New))
1508       F->addAttribute(llvm::AttributeList::ReturnIndex,
1509                       llvm::Attribute::NoAlias);
1510   }
1511 
1512   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1513     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1514   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1515     if (MD->isVirtual())
1516       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1517 
1518   // Don't emit entries for function declarations in the cross-DSO mode. This
1519   // is handled with better precision by the receiving DSO.
1520   if (!CodeGenOpts.SanitizeCfiCrossDso)
1521     CreateFunctionTypeMetadataForIcall(FD, F);
1522 
1523   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1524     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1525 }
1526 
1527 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1528   assert(!GV->isDeclaration() &&
1529          "Only globals with definition can force usage.");
1530   LLVMUsed.emplace_back(GV);
1531 }
1532 
1533 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1534   assert(!GV->isDeclaration() &&
1535          "Only globals with definition can force usage.");
1536   LLVMCompilerUsed.emplace_back(GV);
1537 }
1538 
1539 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1540                      std::vector<llvm::WeakTrackingVH> &List) {
1541   // Don't create llvm.used if there is no need.
1542   if (List.empty())
1543     return;
1544 
1545   // Convert List to what ConstantArray needs.
1546   SmallVector<llvm::Constant*, 8> UsedArray;
1547   UsedArray.resize(List.size());
1548   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1549     UsedArray[i] =
1550         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1551             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1552   }
1553 
1554   if (UsedArray.empty())
1555     return;
1556   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1557 
1558   auto *GV = new llvm::GlobalVariable(
1559       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1560       llvm::ConstantArray::get(ATy, UsedArray), Name);
1561 
1562   GV->setSection("llvm.metadata");
1563 }
1564 
1565 void CodeGenModule::emitLLVMUsed() {
1566   emitUsed(*this, "llvm.used", LLVMUsed);
1567   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1568 }
1569 
1570 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1571   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1572   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1573 }
1574 
1575 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1576   llvm::SmallString<32> Opt;
1577   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1578   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1579   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1580 }
1581 
1582 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1583   auto &C = getLLVMContext();
1584   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1585       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1586 }
1587 
1588 void CodeGenModule::AddDependentLib(StringRef Lib) {
1589   llvm::SmallString<24> Opt;
1590   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1591   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1592   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1593 }
1594 
1595 /// Add link options implied by the given module, including modules
1596 /// it depends on, using a postorder walk.
1597 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1598                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1599                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1600   // Import this module's parent.
1601   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1602     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1603   }
1604 
1605   // Import this module's dependencies.
1606   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1607     if (Visited.insert(Mod->Imports[I - 1]).second)
1608       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1609   }
1610 
1611   // Add linker options to link against the libraries/frameworks
1612   // described by this module.
1613   llvm::LLVMContext &Context = CGM.getLLVMContext();
1614 
1615   // For modules that use export_as for linking, use that module
1616   // name instead.
1617   if (Mod->UseExportAsModuleLinkName)
1618     return;
1619 
1620   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1621     // Link against a framework.  Frameworks are currently Darwin only, so we
1622     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1623     if (Mod->LinkLibraries[I-1].IsFramework) {
1624       llvm::Metadata *Args[2] = {
1625           llvm::MDString::get(Context, "-framework"),
1626           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1627 
1628       Metadata.push_back(llvm::MDNode::get(Context, Args));
1629       continue;
1630     }
1631 
1632     // Link against a library.
1633     llvm::SmallString<24> Opt;
1634     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1635       Mod->LinkLibraries[I-1].Library, Opt);
1636     auto *OptString = llvm::MDString::get(Context, Opt);
1637     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1638   }
1639 }
1640 
1641 void CodeGenModule::EmitModuleLinkOptions() {
1642   // Collect the set of all of the modules we want to visit to emit link
1643   // options, which is essentially the imported modules and all of their
1644   // non-explicit child modules.
1645   llvm::SetVector<clang::Module *> LinkModules;
1646   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1647   SmallVector<clang::Module *, 16> Stack;
1648 
1649   // Seed the stack with imported modules.
1650   for (Module *M : ImportedModules) {
1651     // Do not add any link flags when an implementation TU of a module imports
1652     // a header of that same module.
1653     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1654         !getLangOpts().isCompilingModule())
1655       continue;
1656     if (Visited.insert(M).second)
1657       Stack.push_back(M);
1658   }
1659 
1660   // Find all of the modules to import, making a little effort to prune
1661   // non-leaf modules.
1662   while (!Stack.empty()) {
1663     clang::Module *Mod = Stack.pop_back_val();
1664 
1665     bool AnyChildren = false;
1666 
1667     // Visit the submodules of this module.
1668     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1669                                         SubEnd = Mod->submodule_end();
1670          Sub != SubEnd; ++Sub) {
1671       // Skip explicit children; they need to be explicitly imported to be
1672       // linked against.
1673       if ((*Sub)->IsExplicit)
1674         continue;
1675 
1676       if (Visited.insert(*Sub).second) {
1677         Stack.push_back(*Sub);
1678         AnyChildren = true;
1679       }
1680     }
1681 
1682     // We didn't find any children, so add this module to the list of
1683     // modules to link against.
1684     if (!AnyChildren) {
1685       LinkModules.insert(Mod);
1686     }
1687   }
1688 
1689   // Add link options for all of the imported modules in reverse topological
1690   // order.  We don't do anything to try to order import link flags with respect
1691   // to linker options inserted by things like #pragma comment().
1692   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1693   Visited.clear();
1694   for (Module *M : LinkModules)
1695     if (Visited.insert(M).second)
1696       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1697   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1698   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1699 
1700   // Add the linker options metadata flag.
1701   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1702   for (auto *MD : LinkerOptionsMetadata)
1703     NMD->addOperand(MD);
1704 }
1705 
1706 void CodeGenModule::EmitDeferred() {
1707   // Emit code for any potentially referenced deferred decls.  Since a
1708   // previously unused static decl may become used during the generation of code
1709   // for a static function, iterate until no changes are made.
1710 
1711   if (!DeferredVTables.empty()) {
1712     EmitDeferredVTables();
1713 
1714     // Emitting a vtable doesn't directly cause more vtables to
1715     // become deferred, although it can cause functions to be
1716     // emitted that then need those vtables.
1717     assert(DeferredVTables.empty());
1718   }
1719 
1720   // Stop if we're out of both deferred vtables and deferred declarations.
1721   if (DeferredDeclsToEmit.empty())
1722     return;
1723 
1724   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1725   // work, it will not interfere with this.
1726   std::vector<GlobalDecl> CurDeclsToEmit;
1727   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1728 
1729   for (GlobalDecl &D : CurDeclsToEmit) {
1730     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1731     // to get GlobalValue with exactly the type we need, not something that
1732     // might had been created for another decl with the same mangled name but
1733     // different type.
1734     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1735         GetAddrOfGlobal(D, ForDefinition));
1736 
1737     // In case of different address spaces, we may still get a cast, even with
1738     // IsForDefinition equal to true. Query mangled names table to get
1739     // GlobalValue.
1740     if (!GV)
1741       GV = GetGlobalValue(getMangledName(D));
1742 
1743     // Make sure GetGlobalValue returned non-null.
1744     assert(GV);
1745 
1746     // Check to see if we've already emitted this.  This is necessary
1747     // for a couple of reasons: first, decls can end up in the
1748     // deferred-decls queue multiple times, and second, decls can end
1749     // up with definitions in unusual ways (e.g. by an extern inline
1750     // function acquiring a strong function redefinition).  Just
1751     // ignore these cases.
1752     if (!GV->isDeclaration())
1753       continue;
1754 
1755     // Otherwise, emit the definition and move on to the next one.
1756     EmitGlobalDefinition(D, GV);
1757 
1758     // If we found out that we need to emit more decls, do that recursively.
1759     // This has the advantage that the decls are emitted in a DFS and related
1760     // ones are close together, which is convenient for testing.
1761     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1762       EmitDeferred();
1763       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1764     }
1765   }
1766 }
1767 
1768 void CodeGenModule::EmitVTablesOpportunistically() {
1769   // Try to emit external vtables as available_externally if they have emitted
1770   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1771   // is not allowed to create new references to things that need to be emitted
1772   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1773 
1774   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1775          && "Only emit opportunistic vtables with optimizations");
1776 
1777   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1778     assert(getVTables().isVTableExternal(RD) &&
1779            "This queue should only contain external vtables");
1780     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1781       VTables.GenerateClassData(RD);
1782   }
1783   OpportunisticVTables.clear();
1784 }
1785 
1786 void CodeGenModule::EmitGlobalAnnotations() {
1787   if (Annotations.empty())
1788     return;
1789 
1790   // Create a new global variable for the ConstantStruct in the Module.
1791   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1792     Annotations[0]->getType(), Annotations.size()), Annotations);
1793   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1794                                       llvm::GlobalValue::AppendingLinkage,
1795                                       Array, "llvm.global.annotations");
1796   gv->setSection(AnnotationSection);
1797 }
1798 
1799 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1800   llvm::Constant *&AStr = AnnotationStrings[Str];
1801   if (AStr)
1802     return AStr;
1803 
1804   // Not found yet, create a new global.
1805   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1806   auto *gv =
1807       new llvm::GlobalVariable(getModule(), s->getType(), true,
1808                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1809   gv->setSection(AnnotationSection);
1810   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1811   AStr = gv;
1812   return gv;
1813 }
1814 
1815 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1816   SourceManager &SM = getContext().getSourceManager();
1817   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1818   if (PLoc.isValid())
1819     return EmitAnnotationString(PLoc.getFilename());
1820   return EmitAnnotationString(SM.getBufferName(Loc));
1821 }
1822 
1823 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1824   SourceManager &SM = getContext().getSourceManager();
1825   PresumedLoc PLoc = SM.getPresumedLoc(L);
1826   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1827     SM.getExpansionLineNumber(L);
1828   return llvm::ConstantInt::get(Int32Ty, LineNo);
1829 }
1830 
1831 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1832                                                 const AnnotateAttr *AA,
1833                                                 SourceLocation L) {
1834   // Get the globals for file name, annotation, and the line number.
1835   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1836                  *UnitGV = EmitAnnotationUnit(L),
1837                  *LineNoCst = EmitAnnotationLineNo(L);
1838 
1839   // Create the ConstantStruct for the global annotation.
1840   llvm::Constant *Fields[4] = {
1841     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1842     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1843     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1844     LineNoCst
1845   };
1846   return llvm::ConstantStruct::getAnon(Fields);
1847 }
1848 
1849 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1850                                          llvm::GlobalValue *GV) {
1851   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1852   // Get the struct elements for these annotations.
1853   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1854     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1855 }
1856 
1857 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1858                                            llvm::Function *Fn,
1859                                            SourceLocation Loc) const {
1860   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1861   // Blacklist by function name.
1862   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1863     return true;
1864   // Blacklist by location.
1865   if (Loc.isValid())
1866     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1867   // If location is unknown, this may be a compiler-generated function. Assume
1868   // it's located in the main file.
1869   auto &SM = Context.getSourceManager();
1870   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1871     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1872   }
1873   return false;
1874 }
1875 
1876 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1877                                            SourceLocation Loc, QualType Ty,
1878                                            StringRef Category) const {
1879   // For now globals can be blacklisted only in ASan and KASan.
1880   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1881       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1882        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1883   if (!EnabledAsanMask)
1884     return false;
1885   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1886   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1887     return true;
1888   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1889     return true;
1890   // Check global type.
1891   if (!Ty.isNull()) {
1892     // Drill down the array types: if global variable of a fixed type is
1893     // blacklisted, we also don't instrument arrays of them.
1894     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1895       Ty = AT->getElementType();
1896     Ty = Ty.getCanonicalType().getUnqualifiedType();
1897     // We allow to blacklist only record types (classes, structs etc.)
1898     if (Ty->isRecordType()) {
1899       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1900       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1901         return true;
1902     }
1903   }
1904   return false;
1905 }
1906 
1907 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1908                                    StringRef Category) const {
1909   if (!LangOpts.XRayInstrument)
1910     return false;
1911 
1912   const auto &XRayFilter = getContext().getXRayFilter();
1913   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1914   auto Attr = ImbueAttr::NONE;
1915   if (Loc.isValid())
1916     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1917   if (Attr == ImbueAttr::NONE)
1918     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1919   switch (Attr) {
1920   case ImbueAttr::NONE:
1921     return false;
1922   case ImbueAttr::ALWAYS:
1923     Fn->addFnAttr("function-instrument", "xray-always");
1924     break;
1925   case ImbueAttr::ALWAYS_ARG1:
1926     Fn->addFnAttr("function-instrument", "xray-always");
1927     Fn->addFnAttr("xray-log-args", "1");
1928     break;
1929   case ImbueAttr::NEVER:
1930     Fn->addFnAttr("function-instrument", "xray-never");
1931     break;
1932   }
1933   return true;
1934 }
1935 
1936 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1937   // Never defer when EmitAllDecls is specified.
1938   if (LangOpts.EmitAllDecls)
1939     return true;
1940 
1941   return getContext().DeclMustBeEmitted(Global);
1942 }
1943 
1944 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1945   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1946     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1947       // Implicit template instantiations may change linkage if they are later
1948       // explicitly instantiated, so they should not be emitted eagerly.
1949       return false;
1950   if (const auto *VD = dyn_cast<VarDecl>(Global))
1951     if (Context.getInlineVariableDefinitionKind(VD) ==
1952         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1953       // A definition of an inline constexpr static data member may change
1954       // linkage later if it's redeclared outside the class.
1955       return false;
1956   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1957   // codegen for global variables, because they may be marked as threadprivate.
1958   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1959       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
1960       !isTypeConstant(Global->getType(), false))
1961     return false;
1962 
1963   return true;
1964 }
1965 
1966 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1967     const CXXUuidofExpr* E) {
1968   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1969   // well-formed.
1970   StringRef Uuid = E->getUuidStr();
1971   std::string Name = "_GUID_" + Uuid.lower();
1972   std::replace(Name.begin(), Name.end(), '-', '_');
1973 
1974   // The UUID descriptor should be pointer aligned.
1975   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1976 
1977   // Look for an existing global.
1978   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1979     return ConstantAddress(GV, Alignment);
1980 
1981   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1982   assert(Init && "failed to initialize as constant");
1983 
1984   auto *GV = new llvm::GlobalVariable(
1985       getModule(), Init->getType(),
1986       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1987   if (supportsCOMDAT())
1988     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1989   setDSOLocal(GV);
1990   return ConstantAddress(GV, Alignment);
1991 }
1992 
1993 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1994   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1995   assert(AA && "No alias?");
1996 
1997   CharUnits Alignment = getContext().getDeclAlign(VD);
1998   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1999 
2000   // See if there is already something with the target's name in the module.
2001   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2002   if (Entry) {
2003     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2004     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2005     return ConstantAddress(Ptr, Alignment);
2006   }
2007 
2008   llvm::Constant *Aliasee;
2009   if (isa<llvm::FunctionType>(DeclTy))
2010     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2011                                       GlobalDecl(cast<FunctionDecl>(VD)),
2012                                       /*ForVTable=*/false);
2013   else
2014     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2015                                     llvm::PointerType::getUnqual(DeclTy),
2016                                     nullptr);
2017 
2018   auto *F = cast<llvm::GlobalValue>(Aliasee);
2019   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2020   WeakRefReferences.insert(F);
2021 
2022   return ConstantAddress(Aliasee, Alignment);
2023 }
2024 
2025 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2026   const auto *Global = cast<ValueDecl>(GD.getDecl());
2027 
2028   // Weak references don't produce any output by themselves.
2029   if (Global->hasAttr<WeakRefAttr>())
2030     return;
2031 
2032   // If this is an alias definition (which otherwise looks like a declaration)
2033   // emit it now.
2034   if (Global->hasAttr<AliasAttr>())
2035     return EmitAliasDefinition(GD);
2036 
2037   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2038   if (Global->hasAttr<IFuncAttr>())
2039     return emitIFuncDefinition(GD);
2040 
2041   // If this is CUDA, be selective about which declarations we emit.
2042   if (LangOpts.CUDA) {
2043     if (LangOpts.CUDAIsDevice) {
2044       if (!Global->hasAttr<CUDADeviceAttr>() &&
2045           !Global->hasAttr<CUDAGlobalAttr>() &&
2046           !Global->hasAttr<CUDAConstantAttr>() &&
2047           !Global->hasAttr<CUDASharedAttr>())
2048         return;
2049     } else {
2050       // We need to emit host-side 'shadows' for all global
2051       // device-side variables because the CUDA runtime needs their
2052       // size and host-side address in order to provide access to
2053       // their device-side incarnations.
2054 
2055       // So device-only functions are the only things we skip.
2056       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2057           Global->hasAttr<CUDADeviceAttr>())
2058         return;
2059 
2060       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2061              "Expected Variable or Function");
2062     }
2063   }
2064 
2065   if (LangOpts.OpenMP) {
2066     // If this is OpenMP device, check if it is legal to emit this global
2067     // normally.
2068     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2069       return;
2070     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2071       if (MustBeEmitted(Global))
2072         EmitOMPDeclareReduction(DRD);
2073       return;
2074     }
2075   }
2076 
2077   // Ignore declarations, they will be emitted on their first use.
2078   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2079     // Forward declarations are emitted lazily on first use.
2080     if (!FD->doesThisDeclarationHaveABody()) {
2081       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2082         return;
2083 
2084       StringRef MangledName = getMangledName(GD);
2085 
2086       // Compute the function info and LLVM type.
2087       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2088       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2089 
2090       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2091                               /*DontDefer=*/false);
2092       return;
2093     }
2094   } else {
2095     const auto *VD = cast<VarDecl>(Global);
2096     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2097     // We need to emit device-side global CUDA variables even if a
2098     // variable does not have a definition -- we still need to define
2099     // host-side shadow for it.
2100     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2101                            !VD->hasDefinition() &&
2102                            (VD->hasAttr<CUDAConstantAttr>() ||
2103                             VD->hasAttr<CUDADeviceAttr>());
2104     if (!MustEmitForCuda &&
2105         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2106         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2107       // If this declaration may have caused an inline variable definition to
2108       // change linkage, make sure that it's emitted.
2109       if (Context.getInlineVariableDefinitionKind(VD) ==
2110           ASTContext::InlineVariableDefinitionKind::Strong)
2111         GetAddrOfGlobalVar(VD);
2112       return;
2113     }
2114   }
2115 
2116   // Defer code generation to first use when possible, e.g. if this is an inline
2117   // function. If the global must always be emitted, do it eagerly if possible
2118   // to benefit from cache locality.
2119   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2120     // Emit the definition if it can't be deferred.
2121     EmitGlobalDefinition(GD);
2122     return;
2123   }
2124 
2125   // If we're deferring emission of a C++ variable with an
2126   // initializer, remember the order in which it appeared in the file.
2127   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2128       cast<VarDecl>(Global)->hasInit()) {
2129     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2130     CXXGlobalInits.push_back(nullptr);
2131   }
2132 
2133   StringRef MangledName = getMangledName(GD);
2134   if (GetGlobalValue(MangledName) != nullptr) {
2135     // The value has already been used and should therefore be emitted.
2136     addDeferredDeclToEmit(GD);
2137   } else if (MustBeEmitted(Global)) {
2138     // The value must be emitted, but cannot be emitted eagerly.
2139     assert(!MayBeEmittedEagerly(Global));
2140     addDeferredDeclToEmit(GD);
2141   } else {
2142     // Otherwise, remember that we saw a deferred decl with this name.  The
2143     // first use of the mangled name will cause it to move into
2144     // DeferredDeclsToEmit.
2145     DeferredDecls[MangledName] = GD;
2146   }
2147 }
2148 
2149 // Check if T is a class type with a destructor that's not dllimport.
2150 static bool HasNonDllImportDtor(QualType T) {
2151   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2152     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2153       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2154         return true;
2155 
2156   return false;
2157 }
2158 
2159 namespace {
2160   struct FunctionIsDirectlyRecursive :
2161     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2162     const StringRef Name;
2163     const Builtin::Context &BI;
2164     bool Result;
2165     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2166       Name(N), BI(C), Result(false) {
2167     }
2168     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2169 
2170     bool TraverseCallExpr(CallExpr *E) {
2171       const FunctionDecl *FD = E->getDirectCallee();
2172       if (!FD)
2173         return true;
2174       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2175       if (Attr && Name == Attr->getLabel()) {
2176         Result = true;
2177         return false;
2178       }
2179       unsigned BuiltinID = FD->getBuiltinID();
2180       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2181         return true;
2182       StringRef BuiltinName = BI.getName(BuiltinID);
2183       if (BuiltinName.startswith("__builtin_") &&
2184           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2185         Result = true;
2186         return false;
2187       }
2188       return true;
2189     }
2190   };
2191 
2192   // Make sure we're not referencing non-imported vars or functions.
2193   struct DLLImportFunctionVisitor
2194       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2195     bool SafeToInline = true;
2196 
2197     bool shouldVisitImplicitCode() const { return true; }
2198 
2199     bool VisitVarDecl(VarDecl *VD) {
2200       if (VD->getTLSKind()) {
2201         // A thread-local variable cannot be imported.
2202         SafeToInline = false;
2203         return SafeToInline;
2204       }
2205 
2206       // A variable definition might imply a destructor call.
2207       if (VD->isThisDeclarationADefinition())
2208         SafeToInline = !HasNonDllImportDtor(VD->getType());
2209 
2210       return SafeToInline;
2211     }
2212 
2213     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2214       if (const auto *D = E->getTemporary()->getDestructor())
2215         SafeToInline = D->hasAttr<DLLImportAttr>();
2216       return SafeToInline;
2217     }
2218 
2219     bool VisitDeclRefExpr(DeclRefExpr *E) {
2220       ValueDecl *VD = E->getDecl();
2221       if (isa<FunctionDecl>(VD))
2222         SafeToInline = VD->hasAttr<DLLImportAttr>();
2223       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2224         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2225       return SafeToInline;
2226     }
2227 
2228     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2229       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2230       return SafeToInline;
2231     }
2232 
2233     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2234       CXXMethodDecl *M = E->getMethodDecl();
2235       if (!M) {
2236         // Call through a pointer to member function. This is safe to inline.
2237         SafeToInline = true;
2238       } else {
2239         SafeToInline = M->hasAttr<DLLImportAttr>();
2240       }
2241       return SafeToInline;
2242     }
2243 
2244     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2245       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2246       return SafeToInline;
2247     }
2248 
2249     bool VisitCXXNewExpr(CXXNewExpr *E) {
2250       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2251       return SafeToInline;
2252     }
2253   };
2254 }
2255 
2256 // isTriviallyRecursive - Check if this function calls another
2257 // decl that, because of the asm attribute or the other decl being a builtin,
2258 // ends up pointing to itself.
2259 bool
2260 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2261   StringRef Name;
2262   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2263     // asm labels are a special kind of mangling we have to support.
2264     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2265     if (!Attr)
2266       return false;
2267     Name = Attr->getLabel();
2268   } else {
2269     Name = FD->getName();
2270   }
2271 
2272   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2273   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2274   return Walker.Result;
2275 }
2276 
2277 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2278   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2279     return true;
2280   const auto *F = cast<FunctionDecl>(GD.getDecl());
2281   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2282     return false;
2283 
2284   if (F->hasAttr<DLLImportAttr>()) {
2285     // Check whether it would be safe to inline this dllimport function.
2286     DLLImportFunctionVisitor Visitor;
2287     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2288     if (!Visitor.SafeToInline)
2289       return false;
2290 
2291     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2292       // Implicit destructor invocations aren't captured in the AST, so the
2293       // check above can't see them. Check for them manually here.
2294       for (const Decl *Member : Dtor->getParent()->decls())
2295         if (isa<FieldDecl>(Member))
2296           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2297             return false;
2298       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2299         if (HasNonDllImportDtor(B.getType()))
2300           return false;
2301     }
2302   }
2303 
2304   // PR9614. Avoid cases where the source code is lying to us. An available
2305   // externally function should have an equivalent function somewhere else,
2306   // but a function that calls itself is clearly not equivalent to the real
2307   // implementation.
2308   // This happens in glibc's btowc and in some configure checks.
2309   return !isTriviallyRecursive(F);
2310 }
2311 
2312 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2313   return CodeGenOpts.OptimizationLevel > 0;
2314 }
2315 
2316 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2317   const auto *D = cast<ValueDecl>(GD.getDecl());
2318 
2319   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2320                                  Context.getSourceManager(),
2321                                  "Generating code for declaration");
2322 
2323   if (isa<FunctionDecl>(D)) {
2324     // At -O0, don't generate IR for functions with available_externally
2325     // linkage.
2326     if (!shouldEmitFunction(GD))
2327       return;
2328 
2329     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2330       // Make sure to emit the definition(s) before we emit the thunks.
2331       // This is necessary for the generation of certain thunks.
2332       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2333         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2334       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2335         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2336       else
2337         EmitGlobalFunctionDefinition(GD, GV);
2338 
2339       if (Method->isVirtual())
2340         getVTables().EmitThunks(GD);
2341 
2342       return;
2343     }
2344 
2345     return EmitGlobalFunctionDefinition(GD, GV);
2346   }
2347 
2348   if (const auto *VD = dyn_cast<VarDecl>(D))
2349     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2350 
2351   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2352 }
2353 
2354 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2355                                                       llvm::Function *NewFn);
2356 
2357 void CodeGenModule::emitMultiVersionFunctions() {
2358   for (GlobalDecl GD : MultiVersionFuncs) {
2359     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2360     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2361     getContext().forEachMultiversionedFunctionVersion(
2362         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2363           GlobalDecl CurGD{
2364               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2365           StringRef MangledName = getMangledName(CurGD);
2366           llvm::Constant *Func = GetGlobalValue(MangledName);
2367           if (!Func) {
2368             if (CurFD->isDefined()) {
2369               EmitGlobalFunctionDefinition(CurGD, nullptr);
2370               Func = GetGlobalValue(MangledName);
2371             } else {
2372               const CGFunctionInfo &FI =
2373                   getTypes().arrangeGlobalDeclaration(GD);
2374               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2375               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2376                                        /*DontDefer=*/false, ForDefinition);
2377             }
2378             assert(Func && "This should have just been created");
2379           }
2380           Options.emplace_back(getTarget(), cast<llvm::Function>(Func),
2381                                CurFD->getAttr<TargetAttr>()->parse());
2382         });
2383 
2384     llvm::Function *ResolverFunc = cast<llvm::Function>(
2385         GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2386     if (supportsCOMDAT())
2387       ResolverFunc->setComdat(
2388           getModule().getOrInsertComdat(ResolverFunc->getName()));
2389     std::stable_sort(
2390         Options.begin(), Options.end(),
2391         std::greater<CodeGenFunction::MultiVersionResolverOption>());
2392     CodeGenFunction CGF(*this);
2393     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2394   }
2395 }
2396 
2397 /// If an ifunc for the specified mangled name is not in the module, create and
2398 /// return an llvm IFunc Function with the specified type.
2399 llvm::Constant *
2400 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy,
2401                                             StringRef MangledName,
2402                                             const FunctionDecl *FD) {
2403   std::string IFuncName = (MangledName + ".ifunc").str();
2404   if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName))
2405     return IFuncGV;
2406 
2407   // Since this is the first time we've created this IFunc, make sure
2408   // that we put this multiversioned function into the list to be
2409   // replaced later.
2410   MultiVersionFuncs.push_back(GD);
2411 
2412   std::string ResolverName = (MangledName + ".resolver").str();
2413   llvm::Type *ResolverType = llvm::FunctionType::get(
2414       llvm::PointerType::get(DeclTy,
2415                              Context.getTargetAddressSpace(FD->getType())),
2416       false);
2417   llvm::Constant *Resolver =
2418       GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{},
2419                               /*ForVTable=*/false);
2420   llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2421       DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2422   GIF->setName(IFuncName);
2423   SetCommonAttributes(FD, GIF);
2424 
2425   return GIF;
2426 }
2427 
2428 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2429 /// module, create and return an llvm Function with the specified type. If there
2430 /// is something in the module with the specified name, return it potentially
2431 /// bitcasted to the right type.
2432 ///
2433 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2434 /// to set the attributes on the function when it is first created.
2435 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2436     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2437     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2438     ForDefinition_t IsForDefinition) {
2439   const Decl *D = GD.getDecl();
2440 
2441   // Any attempts to use a MultiVersion function should result in retrieving
2442   // the iFunc instead. Name Mangling will handle the rest of the changes.
2443   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2444     // For the device mark the function as one that should be emitted.
2445     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2446         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2447         !DontDefer && !IsForDefinition) {
2448       const FunctionDecl *FDDef = FD->getDefinition();
2449       GlobalDecl GDDef;
2450       if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2451         GDDef = GlobalDecl(CD, GD.getCtorType());
2452       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2453         GDDef = GlobalDecl(DD, GD.getDtorType());
2454       else
2455         GDDef = GlobalDecl(FDDef);
2456       addDeferredDeclToEmit(GDDef);
2457     }
2458 
2459     if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) {
2460       UpdateMultiVersionNames(GD, FD);
2461       if (!IsForDefinition)
2462         return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD);
2463     }
2464   }
2465 
2466   // Lookup the entry, lazily creating it if necessary.
2467   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2468   if (Entry) {
2469     if (WeakRefReferences.erase(Entry)) {
2470       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2471       if (FD && !FD->hasAttr<WeakAttr>())
2472         Entry->setLinkage(llvm::Function::ExternalLinkage);
2473     }
2474 
2475     // Handle dropped DLL attributes.
2476     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2477       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2478       setDSOLocal(Entry);
2479     }
2480 
2481     // If there are two attempts to define the same mangled name, issue an
2482     // error.
2483     if (IsForDefinition && !Entry->isDeclaration()) {
2484       GlobalDecl OtherGD;
2485       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2486       // to make sure that we issue an error only once.
2487       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2488           (GD.getCanonicalDecl().getDecl() !=
2489            OtherGD.getCanonicalDecl().getDecl()) &&
2490           DiagnosedConflictingDefinitions.insert(GD).second) {
2491         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2492             << MangledName;
2493         getDiags().Report(OtherGD.getDecl()->getLocation(),
2494                           diag::note_previous_definition);
2495       }
2496     }
2497 
2498     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2499         (Entry->getType()->getElementType() == Ty)) {
2500       return Entry;
2501     }
2502 
2503     // Make sure the result is of the correct type.
2504     // (If function is requested for a definition, we always need to create a new
2505     // function, not just return a bitcast.)
2506     if (!IsForDefinition)
2507       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2508   }
2509 
2510   // This function doesn't have a complete type (for example, the return
2511   // type is an incomplete struct). Use a fake type instead, and make
2512   // sure not to try to set attributes.
2513   bool IsIncompleteFunction = false;
2514 
2515   llvm::FunctionType *FTy;
2516   if (isa<llvm::FunctionType>(Ty)) {
2517     FTy = cast<llvm::FunctionType>(Ty);
2518   } else {
2519     FTy = llvm::FunctionType::get(VoidTy, false);
2520     IsIncompleteFunction = true;
2521   }
2522 
2523   llvm::Function *F =
2524       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2525                              Entry ? StringRef() : MangledName, &getModule());
2526 
2527   // If we already created a function with the same mangled name (but different
2528   // type) before, take its name and add it to the list of functions to be
2529   // replaced with F at the end of CodeGen.
2530   //
2531   // This happens if there is a prototype for a function (e.g. "int f()") and
2532   // then a definition of a different type (e.g. "int f(int x)").
2533   if (Entry) {
2534     F->takeName(Entry);
2535 
2536     // This might be an implementation of a function without a prototype, in
2537     // which case, try to do special replacement of calls which match the new
2538     // prototype.  The really key thing here is that we also potentially drop
2539     // arguments from the call site so as to make a direct call, which makes the
2540     // inliner happier and suppresses a number of optimizer warnings (!) about
2541     // dropping arguments.
2542     if (!Entry->use_empty()) {
2543       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2544       Entry->removeDeadConstantUsers();
2545     }
2546 
2547     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2548         F, Entry->getType()->getElementType()->getPointerTo());
2549     addGlobalValReplacement(Entry, BC);
2550   }
2551 
2552   assert(F->getName() == MangledName && "name was uniqued!");
2553   if (D)
2554     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2555   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2556     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2557     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2558   }
2559 
2560   if (!DontDefer) {
2561     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2562     // each other bottoming out with the base dtor.  Therefore we emit non-base
2563     // dtors on usage, even if there is no dtor definition in the TU.
2564     if (D && isa<CXXDestructorDecl>(D) &&
2565         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2566                                            GD.getDtorType()))
2567       addDeferredDeclToEmit(GD);
2568 
2569     // This is the first use or definition of a mangled name.  If there is a
2570     // deferred decl with this name, remember that we need to emit it at the end
2571     // of the file.
2572     auto DDI = DeferredDecls.find(MangledName);
2573     if (DDI != DeferredDecls.end()) {
2574       // Move the potentially referenced deferred decl to the
2575       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2576       // don't need it anymore).
2577       addDeferredDeclToEmit(DDI->second);
2578       DeferredDecls.erase(DDI);
2579 
2580       // Otherwise, there are cases we have to worry about where we're
2581       // using a declaration for which we must emit a definition but where
2582       // we might not find a top-level definition:
2583       //   - member functions defined inline in their classes
2584       //   - friend functions defined inline in some class
2585       //   - special member functions with implicit definitions
2586       // If we ever change our AST traversal to walk into class methods,
2587       // this will be unnecessary.
2588       //
2589       // We also don't emit a definition for a function if it's going to be an
2590       // entry in a vtable, unless it's already marked as used.
2591     } else if (getLangOpts().CPlusPlus && D) {
2592       // Look for a declaration that's lexically in a record.
2593       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2594            FD = FD->getPreviousDecl()) {
2595         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2596           if (FD->doesThisDeclarationHaveABody()) {
2597             addDeferredDeclToEmit(GD.getWithDecl(FD));
2598             break;
2599           }
2600         }
2601       }
2602     }
2603   }
2604 
2605   // Make sure the result is of the requested type.
2606   if (!IsIncompleteFunction) {
2607     assert(F->getType()->getElementType() == Ty);
2608     return F;
2609   }
2610 
2611   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2612   return llvm::ConstantExpr::getBitCast(F, PTy);
2613 }
2614 
2615 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2616 /// non-null, then this function will use the specified type if it has to
2617 /// create it (this occurs when we see a definition of the function).
2618 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2619                                                  llvm::Type *Ty,
2620                                                  bool ForVTable,
2621                                                  bool DontDefer,
2622                                               ForDefinition_t IsForDefinition) {
2623   // If there was no specific requested type, just convert it now.
2624   if (!Ty) {
2625     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2626     auto CanonTy = Context.getCanonicalType(FD->getType());
2627     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2628   }
2629 
2630   // Devirtualized destructor calls may come through here instead of via
2631   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2632   // of the complete destructor when necessary.
2633   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2634     if (getTarget().getCXXABI().isMicrosoft() &&
2635         GD.getDtorType() == Dtor_Complete &&
2636         DD->getParent()->getNumVBases() == 0)
2637       GD = GlobalDecl(DD, Dtor_Base);
2638   }
2639 
2640   StringRef MangledName = getMangledName(GD);
2641   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2642                                  /*IsThunk=*/false, llvm::AttributeList(),
2643                                  IsForDefinition);
2644 }
2645 
2646 static const FunctionDecl *
2647 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2648   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2649   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2650 
2651   IdentifierInfo &CII = C.Idents.get(Name);
2652   for (const auto &Result : DC->lookup(&CII))
2653     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2654       return FD;
2655 
2656   if (!C.getLangOpts().CPlusPlus)
2657     return nullptr;
2658 
2659   // Demangle the premangled name from getTerminateFn()
2660   IdentifierInfo &CXXII =
2661       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2662           ? C.Idents.get("terminate")
2663           : C.Idents.get(Name);
2664 
2665   for (const auto &N : {"__cxxabiv1", "std"}) {
2666     IdentifierInfo &NS = C.Idents.get(N);
2667     for (const auto &Result : DC->lookup(&NS)) {
2668       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2669       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2670         for (const auto &Result : LSD->lookup(&NS))
2671           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2672             break;
2673 
2674       if (ND)
2675         for (const auto &Result : ND->lookup(&CXXII))
2676           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2677             return FD;
2678     }
2679   }
2680 
2681   return nullptr;
2682 }
2683 
2684 /// CreateRuntimeFunction - Create a new runtime function with the specified
2685 /// type and name.
2686 llvm::Constant *
2687 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2688                                      llvm::AttributeList ExtraAttrs,
2689                                      bool Local) {
2690   llvm::Constant *C =
2691       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2692                               /*DontDefer=*/false, /*IsThunk=*/false,
2693                               ExtraAttrs);
2694 
2695   if (auto *F = dyn_cast<llvm::Function>(C)) {
2696     if (F->empty()) {
2697       F->setCallingConv(getRuntimeCC());
2698 
2699       if (!Local && getTriple().isOSBinFormatCOFF() &&
2700           !getCodeGenOpts().LTOVisibilityPublicStd &&
2701           !getTriple().isWindowsGNUEnvironment()) {
2702         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2703         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2704           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2705           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2706         }
2707       }
2708       setDSOLocal(F);
2709     }
2710   }
2711 
2712   return C;
2713 }
2714 
2715 /// CreateBuiltinFunction - Create a new builtin function with the specified
2716 /// type and name.
2717 llvm::Constant *
2718 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2719                                      llvm::AttributeList ExtraAttrs) {
2720   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2721 }
2722 
2723 /// isTypeConstant - Determine whether an object of this type can be emitted
2724 /// as a constant.
2725 ///
2726 /// If ExcludeCtor is true, the duration when the object's constructor runs
2727 /// will not be considered. The caller will need to verify that the object is
2728 /// not written to during its construction.
2729 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2730   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2731     return false;
2732 
2733   if (Context.getLangOpts().CPlusPlus) {
2734     if (const CXXRecordDecl *Record
2735           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2736       return ExcludeCtor && !Record->hasMutableFields() &&
2737              Record->hasTrivialDestructor();
2738   }
2739 
2740   return true;
2741 }
2742 
2743 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2744 /// create and return an llvm GlobalVariable with the specified type.  If there
2745 /// is something in the module with the specified name, return it potentially
2746 /// bitcasted to the right type.
2747 ///
2748 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2749 /// to set the attributes on the global when it is first created.
2750 ///
2751 /// If IsForDefinition is true, it is guaranteed that an actual global with
2752 /// type Ty will be returned, not conversion of a variable with the same
2753 /// mangled name but some other type.
2754 llvm::Constant *
2755 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2756                                      llvm::PointerType *Ty,
2757                                      const VarDecl *D,
2758                                      ForDefinition_t IsForDefinition) {
2759   // Lookup the entry, lazily creating it if necessary.
2760   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2761   if (Entry) {
2762     if (WeakRefReferences.erase(Entry)) {
2763       if (D && !D->hasAttr<WeakAttr>())
2764         Entry->setLinkage(llvm::Function::ExternalLinkage);
2765     }
2766 
2767     // Handle dropped DLL attributes.
2768     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2769       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2770 
2771     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
2772       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
2773 
2774     if (Entry->getType() == Ty)
2775       return Entry;
2776 
2777     // If there are two attempts to define the same mangled name, issue an
2778     // error.
2779     if (IsForDefinition && !Entry->isDeclaration()) {
2780       GlobalDecl OtherGD;
2781       const VarDecl *OtherD;
2782 
2783       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2784       // to make sure that we issue an error only once.
2785       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2786           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2787           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2788           OtherD->hasInit() &&
2789           DiagnosedConflictingDefinitions.insert(D).second) {
2790         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2791             << MangledName;
2792         getDiags().Report(OtherGD.getDecl()->getLocation(),
2793                           diag::note_previous_definition);
2794       }
2795     }
2796 
2797     // Make sure the result is of the correct type.
2798     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2799       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2800 
2801     // (If global is requested for a definition, we always need to create a new
2802     // global, not just return a bitcast.)
2803     if (!IsForDefinition)
2804       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2805   }
2806 
2807   auto AddrSpace = GetGlobalVarAddressSpace(D);
2808   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
2809 
2810   auto *GV = new llvm::GlobalVariable(
2811       getModule(), Ty->getElementType(), false,
2812       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2813       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
2814 
2815   // If we already created a global with the same mangled name (but different
2816   // type) before, take its name and remove it from its parent.
2817   if (Entry) {
2818     GV->takeName(Entry);
2819 
2820     if (!Entry->use_empty()) {
2821       llvm::Constant *NewPtrForOldDecl =
2822           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2823       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2824     }
2825 
2826     Entry->eraseFromParent();
2827   }
2828 
2829   // This is the first use or definition of a mangled name.  If there is a
2830   // deferred decl with this name, remember that we need to emit it at the end
2831   // of the file.
2832   auto DDI = DeferredDecls.find(MangledName);
2833   if (DDI != DeferredDecls.end()) {
2834     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2835     // list, and remove it from DeferredDecls (since we don't need it anymore).
2836     addDeferredDeclToEmit(DDI->second);
2837     DeferredDecls.erase(DDI);
2838   }
2839 
2840   // Handle things which are present even on external declarations.
2841   if (D) {
2842     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
2843       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
2844 
2845     // FIXME: This code is overly simple and should be merged with other global
2846     // handling.
2847     GV->setConstant(isTypeConstant(D->getType(), false));
2848 
2849     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2850 
2851     setLinkageForGV(GV, D);
2852 
2853     if (D->getTLSKind()) {
2854       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2855         CXXThreadLocals.push_back(D);
2856       setTLSMode(GV, *D);
2857     }
2858 
2859     setGVProperties(GV, D);
2860 
2861     // If required by the ABI, treat declarations of static data members with
2862     // inline initializers as definitions.
2863     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2864       EmitGlobalVarDefinition(D);
2865     }
2866 
2867     // Emit section information for extern variables.
2868     if (D->hasExternalStorage()) {
2869       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
2870         GV->setSection(SA->getName());
2871     }
2872 
2873     // Handle XCore specific ABI requirements.
2874     if (getTriple().getArch() == llvm::Triple::xcore &&
2875         D->getLanguageLinkage() == CLanguageLinkage &&
2876         D->getType().isConstant(Context) &&
2877         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2878       GV->setSection(".cp.rodata");
2879 
2880     // Check if we a have a const declaration with an initializer, we may be
2881     // able to emit it as available_externally to expose it's value to the
2882     // optimizer.
2883     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
2884         D->getType().isConstQualified() && !GV->hasInitializer() &&
2885         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
2886       const auto *Record =
2887           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
2888       bool HasMutableFields = Record && Record->hasMutableFields();
2889       if (!HasMutableFields) {
2890         const VarDecl *InitDecl;
2891         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2892         if (InitExpr) {
2893           ConstantEmitter emitter(*this);
2894           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
2895           if (Init) {
2896             auto *InitType = Init->getType();
2897             if (GV->getType()->getElementType() != InitType) {
2898               // The type of the initializer does not match the definition.
2899               // This happens when an initializer has a different type from
2900               // the type of the global (because of padding at the end of a
2901               // structure for instance).
2902               GV->setName(StringRef());
2903               // Make a new global with the correct type, this is now guaranteed
2904               // to work.
2905               auto *NewGV = cast<llvm::GlobalVariable>(
2906                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
2907 
2908               // Erase the old global, since it is no longer used.
2909               GV->eraseFromParent();
2910               GV = NewGV;
2911             } else {
2912               GV->setInitializer(Init);
2913               GV->setConstant(true);
2914               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
2915             }
2916             emitter.finalize(GV);
2917           }
2918         }
2919       }
2920     }
2921   }
2922 
2923   LangAS ExpectedAS =
2924       D ? D->getType().getAddressSpace()
2925         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
2926   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
2927          Ty->getPointerAddressSpace());
2928   if (AddrSpace != ExpectedAS)
2929     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
2930                                                        ExpectedAS, Ty);
2931 
2932   return GV;
2933 }
2934 
2935 llvm::Constant *
2936 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2937                                ForDefinition_t IsForDefinition) {
2938   const Decl *D = GD.getDecl();
2939   if (isa<CXXConstructorDecl>(D))
2940     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2941                                 getFromCtorType(GD.getCtorType()),
2942                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2943                                 /*DontDefer=*/false, IsForDefinition);
2944   else if (isa<CXXDestructorDecl>(D))
2945     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2946                                 getFromDtorType(GD.getDtorType()),
2947                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2948                                 /*DontDefer=*/false, IsForDefinition);
2949   else if (isa<CXXMethodDecl>(D)) {
2950     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2951         cast<CXXMethodDecl>(D));
2952     auto Ty = getTypes().GetFunctionType(*FInfo);
2953     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2954                              IsForDefinition);
2955   } else if (isa<FunctionDecl>(D)) {
2956     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2957     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2958     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2959                              IsForDefinition);
2960   } else
2961     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2962                               IsForDefinition);
2963 }
2964 
2965 llvm::GlobalVariable *
2966 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2967                                       llvm::Type *Ty,
2968                                       llvm::GlobalValue::LinkageTypes Linkage) {
2969   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2970   llvm::GlobalVariable *OldGV = nullptr;
2971 
2972   if (GV) {
2973     // Check if the variable has the right type.
2974     if (GV->getType()->getElementType() == Ty)
2975       return GV;
2976 
2977     // Because C++ name mangling, the only way we can end up with an already
2978     // existing global with the same name is if it has been declared extern "C".
2979     assert(GV->isDeclaration() && "Declaration has wrong type!");
2980     OldGV = GV;
2981   }
2982 
2983   // Create a new variable.
2984   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2985                                 Linkage, nullptr, Name);
2986 
2987   if (OldGV) {
2988     // Replace occurrences of the old variable if needed.
2989     GV->takeName(OldGV);
2990 
2991     if (!OldGV->use_empty()) {
2992       llvm::Constant *NewPtrForOldDecl =
2993       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2994       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2995     }
2996 
2997     OldGV->eraseFromParent();
2998   }
2999 
3000   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3001       !GV->hasAvailableExternallyLinkage())
3002     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3003 
3004   return GV;
3005 }
3006 
3007 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3008 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3009 /// then it will be created with the specified type instead of whatever the
3010 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3011 /// that an actual global with type Ty will be returned, not conversion of a
3012 /// variable with the same mangled name but some other type.
3013 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3014                                                   llvm::Type *Ty,
3015                                            ForDefinition_t IsForDefinition) {
3016   assert(D->hasGlobalStorage() && "Not a global variable");
3017   QualType ASTTy = D->getType();
3018   if (!Ty)
3019     Ty = getTypes().ConvertTypeForMem(ASTTy);
3020 
3021   llvm::PointerType *PTy =
3022     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3023 
3024   StringRef MangledName = getMangledName(D);
3025   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3026 }
3027 
3028 /// CreateRuntimeVariable - Create a new runtime global variable with the
3029 /// specified type and name.
3030 llvm::Constant *
3031 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3032                                      StringRef Name) {
3033   auto *Ret =
3034       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3035   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3036   return Ret;
3037 }
3038 
3039 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3040   assert(!D->getInit() && "Cannot emit definite definitions here!");
3041 
3042   StringRef MangledName = getMangledName(D);
3043   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3044 
3045   // We already have a definition, not declaration, with the same mangled name.
3046   // Emitting of declaration is not required (and actually overwrites emitted
3047   // definition).
3048   if (GV && !GV->isDeclaration())
3049     return;
3050 
3051   // If we have not seen a reference to this variable yet, place it into the
3052   // deferred declarations table to be emitted if needed later.
3053   if (!MustBeEmitted(D) && !GV) {
3054       DeferredDecls[MangledName] = D;
3055       return;
3056   }
3057 
3058   // The tentative definition is the only definition.
3059   EmitGlobalVarDefinition(D);
3060 }
3061 
3062 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3063   return Context.toCharUnitsFromBits(
3064       getDataLayout().getTypeStoreSizeInBits(Ty));
3065 }
3066 
3067 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3068   LangAS AddrSpace = LangAS::Default;
3069   if (LangOpts.OpenCL) {
3070     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3071     assert(AddrSpace == LangAS::opencl_global ||
3072            AddrSpace == LangAS::opencl_constant ||
3073            AddrSpace == LangAS::opencl_local ||
3074            AddrSpace >= LangAS::FirstTargetAddressSpace);
3075     return AddrSpace;
3076   }
3077 
3078   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3079     if (D && D->hasAttr<CUDAConstantAttr>())
3080       return LangAS::cuda_constant;
3081     else if (D && D->hasAttr<CUDASharedAttr>())
3082       return LangAS::cuda_shared;
3083     else
3084       return LangAS::cuda_device;
3085   }
3086 
3087   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3088 }
3089 
3090 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3091   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3092   if (LangOpts.OpenCL)
3093     return LangAS::opencl_constant;
3094   if (auto AS = getTarget().getConstantAddressSpace())
3095     return AS.getValue();
3096   return LangAS::Default;
3097 }
3098 
3099 // In address space agnostic languages, string literals are in default address
3100 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3101 // emitted in constant address space in LLVM IR. To be consistent with other
3102 // parts of AST, string literal global variables in constant address space
3103 // need to be casted to default address space before being put into address
3104 // map and referenced by other part of CodeGen.
3105 // In OpenCL, string literals are in constant address space in AST, therefore
3106 // they should not be casted to default address space.
3107 static llvm::Constant *
3108 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3109                                        llvm::GlobalVariable *GV) {
3110   llvm::Constant *Cast = GV;
3111   if (!CGM.getLangOpts().OpenCL) {
3112     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3113       if (AS != LangAS::Default)
3114         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3115             CGM, GV, AS.getValue(), LangAS::Default,
3116             GV->getValueType()->getPointerTo(
3117                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3118     }
3119   }
3120   return Cast;
3121 }
3122 
3123 template<typename SomeDecl>
3124 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3125                                                llvm::GlobalValue *GV) {
3126   if (!getLangOpts().CPlusPlus)
3127     return;
3128 
3129   // Must have 'used' attribute, or else inline assembly can't rely on
3130   // the name existing.
3131   if (!D->template hasAttr<UsedAttr>())
3132     return;
3133 
3134   // Must have internal linkage and an ordinary name.
3135   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3136     return;
3137 
3138   // Must be in an extern "C" context. Entities declared directly within
3139   // a record are not extern "C" even if the record is in such a context.
3140   const SomeDecl *First = D->getFirstDecl();
3141   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3142     return;
3143 
3144   // OK, this is an internal linkage entity inside an extern "C" linkage
3145   // specification. Make a note of that so we can give it the "expected"
3146   // mangled name if nothing else is using that name.
3147   std::pair<StaticExternCMap::iterator, bool> R =
3148       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3149 
3150   // If we have multiple internal linkage entities with the same name
3151   // in extern "C" regions, none of them gets that name.
3152   if (!R.second)
3153     R.first->second = nullptr;
3154 }
3155 
3156 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3157   if (!CGM.supportsCOMDAT())
3158     return false;
3159 
3160   if (D.hasAttr<SelectAnyAttr>())
3161     return true;
3162 
3163   GVALinkage Linkage;
3164   if (auto *VD = dyn_cast<VarDecl>(&D))
3165     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3166   else
3167     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3168 
3169   switch (Linkage) {
3170   case GVA_Internal:
3171   case GVA_AvailableExternally:
3172   case GVA_StrongExternal:
3173     return false;
3174   case GVA_DiscardableODR:
3175   case GVA_StrongODR:
3176     return true;
3177   }
3178   llvm_unreachable("No such linkage");
3179 }
3180 
3181 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3182                                           llvm::GlobalObject &GO) {
3183   if (!shouldBeInCOMDAT(*this, D))
3184     return;
3185   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3186 }
3187 
3188 /// Pass IsTentative as true if you want to create a tentative definition.
3189 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3190                                             bool IsTentative) {
3191   // OpenCL global variables of sampler type are translated to function calls,
3192   // therefore no need to be translated.
3193   QualType ASTTy = D->getType();
3194   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3195     return;
3196 
3197   // If this is OpenMP device, check if it is legal to emit this global
3198   // normally.
3199   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3200       OpenMPRuntime->emitTargetGlobalVariable(D))
3201     return;
3202 
3203   llvm::Constant *Init = nullptr;
3204   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3205   bool NeedsGlobalCtor = false;
3206   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3207 
3208   const VarDecl *InitDecl;
3209   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3210 
3211   Optional<ConstantEmitter> emitter;
3212 
3213   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3214   // as part of their declaration."  Sema has already checked for
3215   // error cases, so we just need to set Init to UndefValue.
3216   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
3217       D->hasAttr<CUDASharedAttr>())
3218     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3219   else if (!InitExpr) {
3220     // This is a tentative definition; tentative definitions are
3221     // implicitly initialized with { 0 }.
3222     //
3223     // Note that tentative definitions are only emitted at the end of
3224     // a translation unit, so they should never have incomplete
3225     // type. In addition, EmitTentativeDefinition makes sure that we
3226     // never attempt to emit a tentative definition if a real one
3227     // exists. A use may still exists, however, so we still may need
3228     // to do a RAUW.
3229     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3230     Init = EmitNullConstant(D->getType());
3231   } else {
3232     initializedGlobalDecl = GlobalDecl(D);
3233     emitter.emplace(*this);
3234     Init = emitter->tryEmitForInitializer(*InitDecl);
3235 
3236     if (!Init) {
3237       QualType T = InitExpr->getType();
3238       if (D->getType()->isReferenceType())
3239         T = D->getType();
3240 
3241       if (getLangOpts().CPlusPlus) {
3242         Init = EmitNullConstant(T);
3243         NeedsGlobalCtor = true;
3244       } else {
3245         ErrorUnsupported(D, "static initializer");
3246         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3247       }
3248     } else {
3249       // We don't need an initializer, so remove the entry for the delayed
3250       // initializer position (just in case this entry was delayed) if we
3251       // also don't need to register a destructor.
3252       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3253         DelayedCXXInitPosition.erase(D);
3254     }
3255   }
3256 
3257   llvm::Type* InitType = Init->getType();
3258   llvm::Constant *Entry =
3259       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3260 
3261   // Strip off a bitcast if we got one back.
3262   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3263     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3264            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3265            // All zero index gep.
3266            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3267     Entry = CE->getOperand(0);
3268   }
3269 
3270   // Entry is now either a Function or GlobalVariable.
3271   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3272 
3273   // We have a definition after a declaration with the wrong type.
3274   // We must make a new GlobalVariable* and update everything that used OldGV
3275   // (a declaration or tentative definition) with the new GlobalVariable*
3276   // (which will be a definition).
3277   //
3278   // This happens if there is a prototype for a global (e.g.
3279   // "extern int x[];") and then a definition of a different type (e.g.
3280   // "int x[10];"). This also happens when an initializer has a different type
3281   // from the type of the global (this happens with unions).
3282   if (!GV || GV->getType()->getElementType() != InitType ||
3283       GV->getType()->getAddressSpace() !=
3284           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3285 
3286     // Move the old entry aside so that we'll create a new one.
3287     Entry->setName(StringRef());
3288 
3289     // Make a new global with the correct type, this is now guaranteed to work.
3290     GV = cast<llvm::GlobalVariable>(
3291         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3292 
3293     // Replace all uses of the old global with the new global
3294     llvm::Constant *NewPtrForOldDecl =
3295         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3296     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3297 
3298     // Erase the old global, since it is no longer used.
3299     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3300   }
3301 
3302   MaybeHandleStaticInExternC(D, GV);
3303 
3304   if (D->hasAttr<AnnotateAttr>())
3305     AddGlobalAnnotations(D, GV);
3306 
3307   // Set the llvm linkage type as appropriate.
3308   llvm::GlobalValue::LinkageTypes Linkage =
3309       getLLVMLinkageVarDefinition(D, GV->isConstant());
3310 
3311   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3312   // the device. [...]"
3313   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3314   // __device__, declares a variable that: [...]
3315   // Is accessible from all the threads within the grid and from the host
3316   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3317   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3318   if (GV && LangOpts.CUDA) {
3319     if (LangOpts.CUDAIsDevice) {
3320       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3321         GV->setExternallyInitialized(true);
3322     } else {
3323       // Host-side shadows of external declarations of device-side
3324       // global variables become internal definitions. These have to
3325       // be internal in order to prevent name conflicts with global
3326       // host variables with the same name in a different TUs.
3327       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3328         Linkage = llvm::GlobalValue::InternalLinkage;
3329 
3330         // Shadow variables and their properties must be registered
3331         // with CUDA runtime.
3332         unsigned Flags = 0;
3333         if (!D->hasDefinition())
3334           Flags |= CGCUDARuntime::ExternDeviceVar;
3335         if (D->hasAttr<CUDAConstantAttr>())
3336           Flags |= CGCUDARuntime::ConstantDeviceVar;
3337         getCUDARuntime().registerDeviceVar(*GV, Flags);
3338       } else if (D->hasAttr<CUDASharedAttr>())
3339         // __shared__ variables are odd. Shadows do get created, but
3340         // they are not registered with the CUDA runtime, so they
3341         // can't really be used to access their device-side
3342         // counterparts. It's not clear yet whether it's nvcc's bug or
3343         // a feature, but we've got to do the same for compatibility.
3344         Linkage = llvm::GlobalValue::InternalLinkage;
3345     }
3346   }
3347 
3348   GV->setInitializer(Init);
3349   if (emitter) emitter->finalize(GV);
3350 
3351   // If it is safe to mark the global 'constant', do so now.
3352   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3353                   isTypeConstant(D->getType(), true));
3354 
3355   // If it is in a read-only section, mark it 'constant'.
3356   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3357     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3358     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3359       GV->setConstant(true);
3360   }
3361 
3362   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3363 
3364 
3365   // On Darwin, if the normal linkage of a C++ thread_local variable is
3366   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3367   // copies within a linkage unit; otherwise, the backing variable has
3368   // internal linkage and all accesses should just be calls to the
3369   // Itanium-specified entry point, which has the normal linkage of the
3370   // variable. This is to preserve the ability to change the implementation
3371   // behind the scenes.
3372   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3373       Context.getTargetInfo().getTriple().isOSDarwin() &&
3374       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3375       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3376     Linkage = llvm::GlobalValue::InternalLinkage;
3377 
3378   GV->setLinkage(Linkage);
3379   if (D->hasAttr<DLLImportAttr>())
3380     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3381   else if (D->hasAttr<DLLExportAttr>())
3382     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3383   else
3384     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3385 
3386   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3387     // common vars aren't constant even if declared const.
3388     GV->setConstant(false);
3389     // Tentative definition of global variables may be initialized with
3390     // non-zero null pointers. In this case they should have weak linkage
3391     // since common linkage must have zero initializer and must not have
3392     // explicit section therefore cannot have non-zero initial value.
3393     if (!GV->getInitializer()->isNullValue())
3394       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3395   }
3396 
3397   setNonAliasAttributes(D, GV);
3398 
3399   if (D->getTLSKind() && !GV->isThreadLocal()) {
3400     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3401       CXXThreadLocals.push_back(D);
3402     setTLSMode(GV, *D);
3403   }
3404 
3405   maybeSetTrivialComdat(*D, *GV);
3406 
3407   // Emit the initializer function if necessary.
3408   if (NeedsGlobalCtor || NeedsGlobalDtor)
3409     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3410 
3411   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3412 
3413   // Emit global variable debug information.
3414   if (CGDebugInfo *DI = getModuleDebugInfo())
3415     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3416       DI->EmitGlobalVariable(GV, D);
3417 }
3418 
3419 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3420                                       CodeGenModule &CGM, const VarDecl *D,
3421                                       bool NoCommon) {
3422   // Don't give variables common linkage if -fno-common was specified unless it
3423   // was overridden by a NoCommon attribute.
3424   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3425     return true;
3426 
3427   // C11 6.9.2/2:
3428   //   A declaration of an identifier for an object that has file scope without
3429   //   an initializer, and without a storage-class specifier or with the
3430   //   storage-class specifier static, constitutes a tentative definition.
3431   if (D->getInit() || D->hasExternalStorage())
3432     return true;
3433 
3434   // A variable cannot be both common and exist in a section.
3435   if (D->hasAttr<SectionAttr>())
3436     return true;
3437 
3438   // A variable cannot be both common and exist in a section.
3439   // We don't try to determine which is the right section in the front-end.
3440   // If no specialized section name is applicable, it will resort to default.
3441   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3442       D->hasAttr<PragmaClangDataSectionAttr>() ||
3443       D->hasAttr<PragmaClangRodataSectionAttr>())
3444     return true;
3445 
3446   // Thread local vars aren't considered common linkage.
3447   if (D->getTLSKind())
3448     return true;
3449 
3450   // Tentative definitions marked with WeakImportAttr are true definitions.
3451   if (D->hasAttr<WeakImportAttr>())
3452     return true;
3453 
3454   // A variable cannot be both common and exist in a comdat.
3455   if (shouldBeInCOMDAT(CGM, *D))
3456     return true;
3457 
3458   // Declarations with a required alignment do not have common linkage in MSVC
3459   // mode.
3460   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3461     if (D->hasAttr<AlignedAttr>())
3462       return true;
3463     QualType VarType = D->getType();
3464     if (Context.isAlignmentRequired(VarType))
3465       return true;
3466 
3467     if (const auto *RT = VarType->getAs<RecordType>()) {
3468       const RecordDecl *RD = RT->getDecl();
3469       for (const FieldDecl *FD : RD->fields()) {
3470         if (FD->isBitField())
3471           continue;
3472         if (FD->hasAttr<AlignedAttr>())
3473           return true;
3474         if (Context.isAlignmentRequired(FD->getType()))
3475           return true;
3476       }
3477     }
3478   }
3479 
3480   return false;
3481 }
3482 
3483 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3484     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3485   if (Linkage == GVA_Internal)
3486     return llvm::Function::InternalLinkage;
3487 
3488   if (D->hasAttr<WeakAttr>()) {
3489     if (IsConstantVariable)
3490       return llvm::GlobalVariable::WeakODRLinkage;
3491     else
3492       return llvm::GlobalVariable::WeakAnyLinkage;
3493   }
3494 
3495   // We are guaranteed to have a strong definition somewhere else,
3496   // so we can use available_externally linkage.
3497   if (Linkage == GVA_AvailableExternally)
3498     return llvm::GlobalValue::AvailableExternallyLinkage;
3499 
3500   // Note that Apple's kernel linker doesn't support symbol
3501   // coalescing, so we need to avoid linkonce and weak linkages there.
3502   // Normally, this means we just map to internal, but for explicit
3503   // instantiations we'll map to external.
3504 
3505   // In C++, the compiler has to emit a definition in every translation unit
3506   // that references the function.  We should use linkonce_odr because
3507   // a) if all references in this translation unit are optimized away, we
3508   // don't need to codegen it.  b) if the function persists, it needs to be
3509   // merged with other definitions. c) C++ has the ODR, so we know the
3510   // definition is dependable.
3511   if (Linkage == GVA_DiscardableODR)
3512     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3513                                             : llvm::Function::InternalLinkage;
3514 
3515   // An explicit instantiation of a template has weak linkage, since
3516   // explicit instantiations can occur in multiple translation units
3517   // and must all be equivalent. However, we are not allowed to
3518   // throw away these explicit instantiations.
3519   //
3520   // We don't currently support CUDA device code spread out across multiple TUs,
3521   // so say that CUDA templates are either external (for kernels) or internal.
3522   // This lets llvm perform aggressive inter-procedural optimizations.
3523   if (Linkage == GVA_StrongODR) {
3524     if (Context.getLangOpts().AppleKext)
3525       return llvm::Function::ExternalLinkage;
3526     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3527       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3528                                           : llvm::Function::InternalLinkage;
3529     return llvm::Function::WeakODRLinkage;
3530   }
3531 
3532   // C++ doesn't have tentative definitions and thus cannot have common
3533   // linkage.
3534   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3535       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3536                                  CodeGenOpts.NoCommon))
3537     return llvm::GlobalVariable::CommonLinkage;
3538 
3539   // selectany symbols are externally visible, so use weak instead of
3540   // linkonce.  MSVC optimizes away references to const selectany globals, so
3541   // all definitions should be the same and ODR linkage should be used.
3542   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3543   if (D->hasAttr<SelectAnyAttr>())
3544     return llvm::GlobalVariable::WeakODRLinkage;
3545 
3546   // Otherwise, we have strong external linkage.
3547   assert(Linkage == GVA_StrongExternal);
3548   return llvm::GlobalVariable::ExternalLinkage;
3549 }
3550 
3551 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3552     const VarDecl *VD, bool IsConstant) {
3553   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3554   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3555 }
3556 
3557 /// Replace the uses of a function that was declared with a non-proto type.
3558 /// We want to silently drop extra arguments from call sites
3559 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3560                                           llvm::Function *newFn) {
3561   // Fast path.
3562   if (old->use_empty()) return;
3563 
3564   llvm::Type *newRetTy = newFn->getReturnType();
3565   SmallVector<llvm::Value*, 4> newArgs;
3566   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3567 
3568   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3569          ui != ue; ) {
3570     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3571     llvm::User *user = use->getUser();
3572 
3573     // Recognize and replace uses of bitcasts.  Most calls to
3574     // unprototyped functions will use bitcasts.
3575     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3576       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3577         replaceUsesOfNonProtoConstant(bitcast, newFn);
3578       continue;
3579     }
3580 
3581     // Recognize calls to the function.
3582     llvm::CallSite callSite(user);
3583     if (!callSite) continue;
3584     if (!callSite.isCallee(&*use)) continue;
3585 
3586     // If the return types don't match exactly, then we can't
3587     // transform this call unless it's dead.
3588     if (callSite->getType() != newRetTy && !callSite->use_empty())
3589       continue;
3590 
3591     // Get the call site's attribute list.
3592     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3593     llvm::AttributeList oldAttrs = callSite.getAttributes();
3594 
3595     // If the function was passed too few arguments, don't transform.
3596     unsigned newNumArgs = newFn->arg_size();
3597     if (callSite.arg_size() < newNumArgs) continue;
3598 
3599     // If extra arguments were passed, we silently drop them.
3600     // If any of the types mismatch, we don't transform.
3601     unsigned argNo = 0;
3602     bool dontTransform = false;
3603     for (llvm::Argument &A : newFn->args()) {
3604       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3605         dontTransform = true;
3606         break;
3607       }
3608 
3609       // Add any parameter attributes.
3610       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3611       argNo++;
3612     }
3613     if (dontTransform)
3614       continue;
3615 
3616     // Okay, we can transform this.  Create the new call instruction and copy
3617     // over the required information.
3618     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3619 
3620     // Copy over any operand bundles.
3621     callSite.getOperandBundlesAsDefs(newBundles);
3622 
3623     llvm::CallSite newCall;
3624     if (callSite.isCall()) {
3625       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3626                                        callSite.getInstruction());
3627     } else {
3628       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3629       newCall = llvm::InvokeInst::Create(newFn,
3630                                          oldInvoke->getNormalDest(),
3631                                          oldInvoke->getUnwindDest(),
3632                                          newArgs, newBundles, "",
3633                                          callSite.getInstruction());
3634     }
3635     newArgs.clear(); // for the next iteration
3636 
3637     if (!newCall->getType()->isVoidTy())
3638       newCall->takeName(callSite.getInstruction());
3639     newCall.setAttributes(llvm::AttributeList::get(
3640         newFn->getContext(), oldAttrs.getFnAttributes(),
3641         oldAttrs.getRetAttributes(), newArgAttrs));
3642     newCall.setCallingConv(callSite.getCallingConv());
3643 
3644     // Finally, remove the old call, replacing any uses with the new one.
3645     if (!callSite->use_empty())
3646       callSite->replaceAllUsesWith(newCall.getInstruction());
3647 
3648     // Copy debug location attached to CI.
3649     if (callSite->getDebugLoc())
3650       newCall->setDebugLoc(callSite->getDebugLoc());
3651 
3652     callSite->eraseFromParent();
3653   }
3654 }
3655 
3656 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3657 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3658 /// existing call uses of the old function in the module, this adjusts them to
3659 /// call the new function directly.
3660 ///
3661 /// This is not just a cleanup: the always_inline pass requires direct calls to
3662 /// functions to be able to inline them.  If there is a bitcast in the way, it
3663 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3664 /// run at -O0.
3665 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3666                                                       llvm::Function *NewFn) {
3667   // If we're redefining a global as a function, don't transform it.
3668   if (!isa<llvm::Function>(Old)) return;
3669 
3670   replaceUsesOfNonProtoConstant(Old, NewFn);
3671 }
3672 
3673 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3674   auto DK = VD->isThisDeclarationADefinition();
3675   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3676     return;
3677 
3678   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3679   // If we have a definition, this might be a deferred decl. If the
3680   // instantiation is explicit, make sure we emit it at the end.
3681   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3682     GetAddrOfGlobalVar(VD);
3683 
3684   EmitTopLevelDecl(VD);
3685 }
3686 
3687 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3688                                                  llvm::GlobalValue *GV) {
3689   const auto *D = cast<FunctionDecl>(GD.getDecl());
3690 
3691   // Compute the function info and LLVM type.
3692   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3693   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3694 
3695   // Get or create the prototype for the function.
3696   if (!GV || (GV->getType()->getElementType() != Ty))
3697     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3698                                                    /*DontDefer=*/true,
3699                                                    ForDefinition));
3700 
3701   // Already emitted.
3702   if (!GV->isDeclaration())
3703     return;
3704 
3705   // We need to set linkage and visibility on the function before
3706   // generating code for it because various parts of IR generation
3707   // want to propagate this information down (e.g. to local static
3708   // declarations).
3709   auto *Fn = cast<llvm::Function>(GV);
3710   setFunctionLinkage(GD, Fn);
3711 
3712   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3713   setGVProperties(Fn, GD);
3714 
3715   MaybeHandleStaticInExternC(D, Fn);
3716 
3717 
3718   maybeSetTrivialComdat(*D, *Fn);
3719 
3720   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3721 
3722   setNonAliasAttributes(GD, Fn);
3723   SetLLVMFunctionAttributesForDefinition(D, Fn);
3724 
3725   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3726     AddGlobalCtor(Fn, CA->getPriority());
3727   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3728     AddGlobalDtor(Fn, DA->getPriority());
3729   if (D->hasAttr<AnnotateAttr>())
3730     AddGlobalAnnotations(D, Fn);
3731 }
3732 
3733 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3734   const auto *D = cast<ValueDecl>(GD.getDecl());
3735   const AliasAttr *AA = D->getAttr<AliasAttr>();
3736   assert(AA && "Not an alias?");
3737 
3738   StringRef MangledName = getMangledName(GD);
3739 
3740   if (AA->getAliasee() == MangledName) {
3741     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3742     return;
3743   }
3744 
3745   // If there is a definition in the module, then it wins over the alias.
3746   // This is dubious, but allow it to be safe.  Just ignore the alias.
3747   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3748   if (Entry && !Entry->isDeclaration())
3749     return;
3750 
3751   Aliases.push_back(GD);
3752 
3753   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3754 
3755   // Create a reference to the named value.  This ensures that it is emitted
3756   // if a deferred decl.
3757   llvm::Constant *Aliasee;
3758   if (isa<llvm::FunctionType>(DeclTy))
3759     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3760                                       /*ForVTable=*/false);
3761   else
3762     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3763                                     llvm::PointerType::getUnqual(DeclTy),
3764                                     /*D=*/nullptr);
3765 
3766   // Create the new alias itself, but don't set a name yet.
3767   auto *GA = llvm::GlobalAlias::create(
3768       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3769 
3770   if (Entry) {
3771     if (GA->getAliasee() == Entry) {
3772       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3773       return;
3774     }
3775 
3776     assert(Entry->isDeclaration());
3777 
3778     // If there is a declaration in the module, then we had an extern followed
3779     // by the alias, as in:
3780     //   extern int test6();
3781     //   ...
3782     //   int test6() __attribute__((alias("test7")));
3783     //
3784     // Remove it and replace uses of it with the alias.
3785     GA->takeName(Entry);
3786 
3787     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3788                                                           Entry->getType()));
3789     Entry->eraseFromParent();
3790   } else {
3791     GA->setName(MangledName);
3792   }
3793 
3794   // Set attributes which are particular to an alias; this is a
3795   // specialization of the attributes which may be set on a global
3796   // variable/function.
3797   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3798       D->isWeakImported()) {
3799     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3800   }
3801 
3802   if (const auto *VD = dyn_cast<VarDecl>(D))
3803     if (VD->getTLSKind())
3804       setTLSMode(GA, *VD);
3805 
3806   SetCommonAttributes(GD, GA);
3807 }
3808 
3809 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3810   const auto *D = cast<ValueDecl>(GD.getDecl());
3811   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3812   assert(IFA && "Not an ifunc?");
3813 
3814   StringRef MangledName = getMangledName(GD);
3815 
3816   if (IFA->getResolver() == MangledName) {
3817     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3818     return;
3819   }
3820 
3821   // Report an error if some definition overrides ifunc.
3822   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3823   if (Entry && !Entry->isDeclaration()) {
3824     GlobalDecl OtherGD;
3825     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3826         DiagnosedConflictingDefinitions.insert(GD).second) {
3827       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
3828           << MangledName;
3829       Diags.Report(OtherGD.getDecl()->getLocation(),
3830                    diag::note_previous_definition);
3831     }
3832     return;
3833   }
3834 
3835   Aliases.push_back(GD);
3836 
3837   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3838   llvm::Constant *Resolver =
3839       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3840                               /*ForVTable=*/false);
3841   llvm::GlobalIFunc *GIF =
3842       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3843                                 "", Resolver, &getModule());
3844   if (Entry) {
3845     if (GIF->getResolver() == Entry) {
3846       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3847       return;
3848     }
3849     assert(Entry->isDeclaration());
3850 
3851     // If there is a declaration in the module, then we had an extern followed
3852     // by the ifunc, as in:
3853     //   extern int test();
3854     //   ...
3855     //   int test() __attribute__((ifunc("resolver")));
3856     //
3857     // Remove it and replace uses of it with the ifunc.
3858     GIF->takeName(Entry);
3859 
3860     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3861                                                           Entry->getType()));
3862     Entry->eraseFromParent();
3863   } else
3864     GIF->setName(MangledName);
3865 
3866   SetCommonAttributes(GD, GIF);
3867 }
3868 
3869 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3870                                             ArrayRef<llvm::Type*> Tys) {
3871   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3872                                          Tys);
3873 }
3874 
3875 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3876 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3877                          const StringLiteral *Literal, bool TargetIsLSB,
3878                          bool &IsUTF16, unsigned &StringLength) {
3879   StringRef String = Literal->getString();
3880   unsigned NumBytes = String.size();
3881 
3882   // Check for simple case.
3883   if (!Literal->containsNonAsciiOrNull()) {
3884     StringLength = NumBytes;
3885     return *Map.insert(std::make_pair(String, nullptr)).first;
3886   }
3887 
3888   // Otherwise, convert the UTF8 literals into a string of shorts.
3889   IsUTF16 = true;
3890 
3891   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3892   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3893   llvm::UTF16 *ToPtr = &ToBuf[0];
3894 
3895   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3896                                  ToPtr + NumBytes, llvm::strictConversion);
3897 
3898   // ConvertUTF8toUTF16 returns the length in ToPtr.
3899   StringLength = ToPtr - &ToBuf[0];
3900 
3901   // Add an explicit null.
3902   *ToPtr = 0;
3903   return *Map.insert(std::make_pair(
3904                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3905                                    (StringLength + 1) * 2),
3906                          nullptr)).first;
3907 }
3908 
3909 ConstantAddress
3910 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3911   unsigned StringLength = 0;
3912   bool isUTF16 = false;
3913   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3914       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3915                                getDataLayout().isLittleEndian(), isUTF16,
3916                                StringLength);
3917 
3918   if (auto *C = Entry.second)
3919     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3920 
3921   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3922   llvm::Constant *Zeros[] = { Zero, Zero };
3923 
3924   // If we don't already have it, get __CFConstantStringClassReference.
3925   if (!CFConstantStringClassRef) {
3926     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3927     Ty = llvm::ArrayType::get(Ty, 0);
3928     llvm::GlobalValue *GV = cast<llvm::GlobalValue>(
3929         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"));
3930 
3931     if (getTriple().isOSBinFormatCOFF()) {
3932       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3933       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3934       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3935 
3936       const VarDecl *VD = nullptr;
3937       for (const auto &Result : DC->lookup(&II))
3938         if ((VD = dyn_cast<VarDecl>(Result)))
3939           break;
3940 
3941       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3942         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3943         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3944       } else {
3945         GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3946         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3947       }
3948     }
3949     setDSOLocal(GV);
3950 
3951     // Decay array -> ptr
3952     CFConstantStringClassRef =
3953         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3954   }
3955 
3956   QualType CFTy = getContext().getCFConstantStringType();
3957 
3958   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3959 
3960   ConstantInitBuilder Builder(*this);
3961   auto Fields = Builder.beginStruct(STy);
3962 
3963   // Class pointer.
3964   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3965 
3966   // Flags.
3967   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3968 
3969   // String pointer.
3970   llvm::Constant *C = nullptr;
3971   if (isUTF16) {
3972     auto Arr = llvm::makeArrayRef(
3973         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3974         Entry.first().size() / 2);
3975     C = llvm::ConstantDataArray::get(VMContext, Arr);
3976   } else {
3977     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3978   }
3979 
3980   // Note: -fwritable-strings doesn't make the backing store strings of
3981   // CFStrings writable. (See <rdar://problem/10657500>)
3982   auto *GV =
3983       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3984                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3985   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3986   // Don't enforce the target's minimum global alignment, since the only use
3987   // of the string is via this class initializer.
3988   CharUnits Align = isUTF16
3989                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3990                         : getContext().getTypeAlignInChars(getContext().CharTy);
3991   GV->setAlignment(Align.getQuantity());
3992 
3993   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3994   // Without it LLVM can merge the string with a non unnamed_addr one during
3995   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3996   if (getTriple().isOSBinFormatMachO())
3997     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3998                            : "__TEXT,__cstring,cstring_literals");
3999 
4000   // String.
4001   llvm::Constant *Str =
4002       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4003 
4004   if (isUTF16)
4005     // Cast the UTF16 string to the correct type.
4006     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4007   Fields.add(Str);
4008 
4009   // String length.
4010   auto Ty = getTypes().ConvertType(getContext().LongTy);
4011   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
4012 
4013   CharUnits Alignment = getPointerAlign();
4014 
4015   // The struct.
4016   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4017                                     /*isConstant=*/false,
4018                                     llvm::GlobalVariable::PrivateLinkage);
4019   switch (getTriple().getObjectFormat()) {
4020   case llvm::Triple::UnknownObjectFormat:
4021     llvm_unreachable("unknown file format");
4022   case llvm::Triple::COFF:
4023   case llvm::Triple::ELF:
4024   case llvm::Triple::Wasm:
4025     GV->setSection("cfstring");
4026     break;
4027   case llvm::Triple::MachO:
4028     GV->setSection("__DATA,__cfstring");
4029     break;
4030   }
4031   Entry.second = GV;
4032 
4033   return ConstantAddress(GV, Alignment);
4034 }
4035 
4036 bool CodeGenModule::getExpressionLocationsEnabled() const {
4037   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4038 }
4039 
4040 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4041   if (ObjCFastEnumerationStateType.isNull()) {
4042     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4043     D->startDefinition();
4044 
4045     QualType FieldTypes[] = {
4046       Context.UnsignedLongTy,
4047       Context.getPointerType(Context.getObjCIdType()),
4048       Context.getPointerType(Context.UnsignedLongTy),
4049       Context.getConstantArrayType(Context.UnsignedLongTy,
4050                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4051     };
4052 
4053     for (size_t i = 0; i < 4; ++i) {
4054       FieldDecl *Field = FieldDecl::Create(Context,
4055                                            D,
4056                                            SourceLocation(),
4057                                            SourceLocation(), nullptr,
4058                                            FieldTypes[i], /*TInfo=*/nullptr,
4059                                            /*BitWidth=*/nullptr,
4060                                            /*Mutable=*/false,
4061                                            ICIS_NoInit);
4062       Field->setAccess(AS_public);
4063       D->addDecl(Field);
4064     }
4065 
4066     D->completeDefinition();
4067     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4068   }
4069 
4070   return ObjCFastEnumerationStateType;
4071 }
4072 
4073 llvm::Constant *
4074 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4075   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4076 
4077   // Don't emit it as the address of the string, emit the string data itself
4078   // as an inline array.
4079   if (E->getCharByteWidth() == 1) {
4080     SmallString<64> Str(E->getString());
4081 
4082     // Resize the string to the right size, which is indicated by its type.
4083     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4084     Str.resize(CAT->getSize().getZExtValue());
4085     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4086   }
4087 
4088   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4089   llvm::Type *ElemTy = AType->getElementType();
4090   unsigned NumElements = AType->getNumElements();
4091 
4092   // Wide strings have either 2-byte or 4-byte elements.
4093   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4094     SmallVector<uint16_t, 32> Elements;
4095     Elements.reserve(NumElements);
4096 
4097     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4098       Elements.push_back(E->getCodeUnit(i));
4099     Elements.resize(NumElements);
4100     return llvm::ConstantDataArray::get(VMContext, Elements);
4101   }
4102 
4103   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4104   SmallVector<uint32_t, 32> Elements;
4105   Elements.reserve(NumElements);
4106 
4107   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4108     Elements.push_back(E->getCodeUnit(i));
4109   Elements.resize(NumElements);
4110   return llvm::ConstantDataArray::get(VMContext, Elements);
4111 }
4112 
4113 static llvm::GlobalVariable *
4114 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4115                       CodeGenModule &CGM, StringRef GlobalName,
4116                       CharUnits Alignment) {
4117   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4118       CGM.getStringLiteralAddressSpace());
4119 
4120   llvm::Module &M = CGM.getModule();
4121   // Create a global variable for this string
4122   auto *GV = new llvm::GlobalVariable(
4123       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4124       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4125   GV->setAlignment(Alignment.getQuantity());
4126   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4127   if (GV->isWeakForLinker()) {
4128     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4129     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4130   }
4131   CGM.setDSOLocal(GV);
4132 
4133   return GV;
4134 }
4135 
4136 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4137 /// constant array for the given string literal.
4138 ConstantAddress
4139 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4140                                                   StringRef Name) {
4141   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4142 
4143   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4144   llvm::GlobalVariable **Entry = nullptr;
4145   if (!LangOpts.WritableStrings) {
4146     Entry = &ConstantStringMap[C];
4147     if (auto GV = *Entry) {
4148       if (Alignment.getQuantity() > GV->getAlignment())
4149         GV->setAlignment(Alignment.getQuantity());
4150       return ConstantAddress(GV, Alignment);
4151     }
4152   }
4153 
4154   SmallString<256> MangledNameBuffer;
4155   StringRef GlobalVariableName;
4156   llvm::GlobalValue::LinkageTypes LT;
4157 
4158   // Mangle the string literal if that's how the ABI merges duplicate strings.
4159   // Don't do it if they are writable, since we don't want writes in one TU to
4160   // affect strings in another.
4161   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4162       !LangOpts.WritableStrings) {
4163     llvm::raw_svector_ostream Out(MangledNameBuffer);
4164     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4165     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4166     GlobalVariableName = MangledNameBuffer;
4167   } else {
4168     LT = llvm::GlobalValue::PrivateLinkage;
4169     GlobalVariableName = Name;
4170   }
4171 
4172   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4173   if (Entry)
4174     *Entry = GV;
4175 
4176   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4177                                   QualType());
4178 
4179   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4180                          Alignment);
4181 }
4182 
4183 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4184 /// array for the given ObjCEncodeExpr node.
4185 ConstantAddress
4186 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4187   std::string Str;
4188   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4189 
4190   return GetAddrOfConstantCString(Str);
4191 }
4192 
4193 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4194 /// the literal and a terminating '\0' character.
4195 /// The result has pointer to array type.
4196 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4197     const std::string &Str, const char *GlobalName) {
4198   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4199   CharUnits Alignment =
4200     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4201 
4202   llvm::Constant *C =
4203       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4204 
4205   // Don't share any string literals if strings aren't constant.
4206   llvm::GlobalVariable **Entry = nullptr;
4207   if (!LangOpts.WritableStrings) {
4208     Entry = &ConstantStringMap[C];
4209     if (auto GV = *Entry) {
4210       if (Alignment.getQuantity() > GV->getAlignment())
4211         GV->setAlignment(Alignment.getQuantity());
4212       return ConstantAddress(GV, Alignment);
4213     }
4214   }
4215 
4216   // Get the default prefix if a name wasn't specified.
4217   if (!GlobalName)
4218     GlobalName = ".str";
4219   // Create a global variable for this.
4220   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4221                                   GlobalName, Alignment);
4222   if (Entry)
4223     *Entry = GV;
4224 
4225   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4226                          Alignment);
4227 }
4228 
4229 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4230     const MaterializeTemporaryExpr *E, const Expr *Init) {
4231   assert((E->getStorageDuration() == SD_Static ||
4232           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4233   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4234 
4235   // If we're not materializing a subobject of the temporary, keep the
4236   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4237   QualType MaterializedType = Init->getType();
4238   if (Init == E->GetTemporaryExpr())
4239     MaterializedType = E->getType();
4240 
4241   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4242 
4243   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4244     return ConstantAddress(Slot, Align);
4245 
4246   // FIXME: If an externally-visible declaration extends multiple temporaries,
4247   // we need to give each temporary the same name in every translation unit (and
4248   // we also need to make the temporaries externally-visible).
4249   SmallString<256> Name;
4250   llvm::raw_svector_ostream Out(Name);
4251   getCXXABI().getMangleContext().mangleReferenceTemporary(
4252       VD, E->getManglingNumber(), Out);
4253 
4254   APValue *Value = nullptr;
4255   if (E->getStorageDuration() == SD_Static) {
4256     // We might have a cached constant initializer for this temporary. Note
4257     // that this might have a different value from the value computed by
4258     // evaluating the initializer if the surrounding constant expression
4259     // modifies the temporary.
4260     Value = getContext().getMaterializedTemporaryValue(E, false);
4261     if (Value && Value->isUninit())
4262       Value = nullptr;
4263   }
4264 
4265   // Try evaluating it now, it might have a constant initializer.
4266   Expr::EvalResult EvalResult;
4267   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4268       !EvalResult.hasSideEffects())
4269     Value = &EvalResult.Val;
4270 
4271   LangAS AddrSpace =
4272       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4273 
4274   Optional<ConstantEmitter> emitter;
4275   llvm::Constant *InitialValue = nullptr;
4276   bool Constant = false;
4277   llvm::Type *Type;
4278   if (Value) {
4279     // The temporary has a constant initializer, use it.
4280     emitter.emplace(*this);
4281     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4282                                                MaterializedType);
4283     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4284     Type = InitialValue->getType();
4285   } else {
4286     // No initializer, the initialization will be provided when we
4287     // initialize the declaration which performed lifetime extension.
4288     Type = getTypes().ConvertTypeForMem(MaterializedType);
4289   }
4290 
4291   // Create a global variable for this lifetime-extended temporary.
4292   llvm::GlobalValue::LinkageTypes Linkage =
4293       getLLVMLinkageVarDefinition(VD, Constant);
4294   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4295     const VarDecl *InitVD;
4296     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4297         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4298       // Temporaries defined inside a class get linkonce_odr linkage because the
4299       // class can be defined in multiple translation units.
4300       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4301     } else {
4302       // There is no need for this temporary to have external linkage if the
4303       // VarDecl has external linkage.
4304       Linkage = llvm::GlobalVariable::InternalLinkage;
4305     }
4306   }
4307   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4308   auto *GV = new llvm::GlobalVariable(
4309       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4310       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4311   if (emitter) emitter->finalize(GV);
4312   setGVProperties(GV, VD);
4313   GV->setAlignment(Align.getQuantity());
4314   if (supportsCOMDAT() && GV->isWeakForLinker())
4315     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4316   if (VD->getTLSKind())
4317     setTLSMode(GV, *VD);
4318   llvm::Constant *CV = GV;
4319   if (AddrSpace != LangAS::Default)
4320     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4321         *this, GV, AddrSpace, LangAS::Default,
4322         Type->getPointerTo(
4323             getContext().getTargetAddressSpace(LangAS::Default)));
4324   MaterializedGlobalTemporaryMap[E] = CV;
4325   return ConstantAddress(CV, Align);
4326 }
4327 
4328 /// EmitObjCPropertyImplementations - Emit information for synthesized
4329 /// properties for an implementation.
4330 void CodeGenModule::EmitObjCPropertyImplementations(const
4331                                                     ObjCImplementationDecl *D) {
4332   for (const auto *PID : D->property_impls()) {
4333     // Dynamic is just for type-checking.
4334     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4335       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4336 
4337       // Determine which methods need to be implemented, some may have
4338       // been overridden. Note that ::isPropertyAccessor is not the method
4339       // we want, that just indicates if the decl came from a
4340       // property. What we want to know is if the method is defined in
4341       // this implementation.
4342       if (!D->getInstanceMethod(PD->getGetterName()))
4343         CodeGenFunction(*this).GenerateObjCGetter(
4344                                  const_cast<ObjCImplementationDecl *>(D), PID);
4345       if (!PD->isReadOnly() &&
4346           !D->getInstanceMethod(PD->getSetterName()))
4347         CodeGenFunction(*this).GenerateObjCSetter(
4348                                  const_cast<ObjCImplementationDecl *>(D), PID);
4349     }
4350   }
4351 }
4352 
4353 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4354   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4355   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4356        ivar; ivar = ivar->getNextIvar())
4357     if (ivar->getType().isDestructedType())
4358       return true;
4359 
4360   return false;
4361 }
4362 
4363 static bool AllTrivialInitializers(CodeGenModule &CGM,
4364                                    ObjCImplementationDecl *D) {
4365   CodeGenFunction CGF(CGM);
4366   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4367        E = D->init_end(); B != E; ++B) {
4368     CXXCtorInitializer *CtorInitExp = *B;
4369     Expr *Init = CtorInitExp->getInit();
4370     if (!CGF.isTrivialInitializer(Init))
4371       return false;
4372   }
4373   return true;
4374 }
4375 
4376 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4377 /// for an implementation.
4378 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4379   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4380   if (needsDestructMethod(D)) {
4381     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4382     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4383     ObjCMethodDecl *DTORMethod =
4384       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4385                              cxxSelector, getContext().VoidTy, nullptr, D,
4386                              /*isInstance=*/true, /*isVariadic=*/false,
4387                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4388                              /*isDefined=*/false, ObjCMethodDecl::Required);
4389     D->addInstanceMethod(DTORMethod);
4390     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4391     D->setHasDestructors(true);
4392   }
4393 
4394   // If the implementation doesn't have any ivar initializers, we don't need
4395   // a .cxx_construct.
4396   if (D->getNumIvarInitializers() == 0 ||
4397       AllTrivialInitializers(*this, D))
4398     return;
4399 
4400   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4401   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4402   // The constructor returns 'self'.
4403   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4404                                                 D->getLocation(),
4405                                                 D->getLocation(),
4406                                                 cxxSelector,
4407                                                 getContext().getObjCIdType(),
4408                                                 nullptr, D, /*isInstance=*/true,
4409                                                 /*isVariadic=*/false,
4410                                                 /*isPropertyAccessor=*/true,
4411                                                 /*isImplicitlyDeclared=*/true,
4412                                                 /*isDefined=*/false,
4413                                                 ObjCMethodDecl::Required);
4414   D->addInstanceMethod(CTORMethod);
4415   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4416   D->setHasNonZeroConstructors(true);
4417 }
4418 
4419 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4420 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4421   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4422       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4423     ErrorUnsupported(LSD, "linkage spec");
4424     return;
4425   }
4426 
4427   EmitDeclContext(LSD);
4428 }
4429 
4430 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4431   for (auto *I : DC->decls()) {
4432     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4433     // are themselves considered "top-level", so EmitTopLevelDecl on an
4434     // ObjCImplDecl does not recursively visit them. We need to do that in
4435     // case they're nested inside another construct (LinkageSpecDecl /
4436     // ExportDecl) that does stop them from being considered "top-level".
4437     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4438       for (auto *M : OID->methods())
4439         EmitTopLevelDecl(M);
4440     }
4441 
4442     EmitTopLevelDecl(I);
4443   }
4444 }
4445 
4446 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4447 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4448   // Ignore dependent declarations.
4449   if (D->isTemplated())
4450     return;
4451 
4452   switch (D->getKind()) {
4453   case Decl::CXXConversion:
4454   case Decl::CXXMethod:
4455   case Decl::Function:
4456     EmitGlobal(cast<FunctionDecl>(D));
4457     // Always provide some coverage mapping
4458     // even for the functions that aren't emitted.
4459     AddDeferredUnusedCoverageMapping(D);
4460     break;
4461 
4462   case Decl::CXXDeductionGuide:
4463     // Function-like, but does not result in code emission.
4464     break;
4465 
4466   case Decl::Var:
4467   case Decl::Decomposition:
4468   case Decl::VarTemplateSpecialization:
4469     EmitGlobal(cast<VarDecl>(D));
4470     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4471       for (auto *B : DD->bindings())
4472         if (auto *HD = B->getHoldingVar())
4473           EmitGlobal(HD);
4474     break;
4475 
4476   // Indirect fields from global anonymous structs and unions can be
4477   // ignored; only the actual variable requires IR gen support.
4478   case Decl::IndirectField:
4479     break;
4480 
4481   // C++ Decls
4482   case Decl::Namespace:
4483     EmitDeclContext(cast<NamespaceDecl>(D));
4484     break;
4485   case Decl::ClassTemplateSpecialization: {
4486     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4487     if (DebugInfo &&
4488         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4489         Spec->hasDefinition())
4490       DebugInfo->completeTemplateDefinition(*Spec);
4491   } LLVM_FALLTHROUGH;
4492   case Decl::CXXRecord:
4493     if (DebugInfo) {
4494       if (auto *ES = D->getASTContext().getExternalSource())
4495         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4496           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4497     }
4498     // Emit any static data members, they may be definitions.
4499     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4500       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4501         EmitTopLevelDecl(I);
4502     break;
4503     // No code generation needed.
4504   case Decl::UsingShadow:
4505   case Decl::ClassTemplate:
4506   case Decl::VarTemplate:
4507   case Decl::VarTemplatePartialSpecialization:
4508   case Decl::FunctionTemplate:
4509   case Decl::TypeAliasTemplate:
4510   case Decl::Block:
4511   case Decl::Empty:
4512     break;
4513   case Decl::Using:          // using X; [C++]
4514     if (CGDebugInfo *DI = getModuleDebugInfo())
4515         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4516     return;
4517   case Decl::NamespaceAlias:
4518     if (CGDebugInfo *DI = getModuleDebugInfo())
4519         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4520     return;
4521   case Decl::UsingDirective: // using namespace X; [C++]
4522     if (CGDebugInfo *DI = getModuleDebugInfo())
4523       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4524     return;
4525   case Decl::CXXConstructor:
4526     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4527     break;
4528   case Decl::CXXDestructor:
4529     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4530     break;
4531 
4532   case Decl::StaticAssert:
4533     // Nothing to do.
4534     break;
4535 
4536   // Objective-C Decls
4537 
4538   // Forward declarations, no (immediate) code generation.
4539   case Decl::ObjCInterface:
4540   case Decl::ObjCCategory:
4541     break;
4542 
4543   case Decl::ObjCProtocol: {
4544     auto *Proto = cast<ObjCProtocolDecl>(D);
4545     if (Proto->isThisDeclarationADefinition())
4546       ObjCRuntime->GenerateProtocol(Proto);
4547     break;
4548   }
4549 
4550   case Decl::ObjCCategoryImpl:
4551     // Categories have properties but don't support synthesize so we
4552     // can ignore them here.
4553     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4554     break;
4555 
4556   case Decl::ObjCImplementation: {
4557     auto *OMD = cast<ObjCImplementationDecl>(D);
4558     EmitObjCPropertyImplementations(OMD);
4559     EmitObjCIvarInitializations(OMD);
4560     ObjCRuntime->GenerateClass(OMD);
4561     // Emit global variable debug information.
4562     if (CGDebugInfo *DI = getModuleDebugInfo())
4563       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4564         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4565             OMD->getClassInterface()), OMD->getLocation());
4566     break;
4567   }
4568   case Decl::ObjCMethod: {
4569     auto *OMD = cast<ObjCMethodDecl>(D);
4570     // If this is not a prototype, emit the body.
4571     if (OMD->getBody())
4572       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4573     break;
4574   }
4575   case Decl::ObjCCompatibleAlias:
4576     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4577     break;
4578 
4579   case Decl::PragmaComment: {
4580     const auto *PCD = cast<PragmaCommentDecl>(D);
4581     switch (PCD->getCommentKind()) {
4582     case PCK_Unknown:
4583       llvm_unreachable("unexpected pragma comment kind");
4584     case PCK_Linker:
4585       AppendLinkerOptions(PCD->getArg());
4586       break;
4587     case PCK_Lib:
4588       if (getTarget().getTriple().isOSBinFormatELF() &&
4589           !getTarget().getTriple().isPS4())
4590         AddELFLibDirective(PCD->getArg());
4591       else
4592         AddDependentLib(PCD->getArg());
4593       break;
4594     case PCK_Compiler:
4595     case PCK_ExeStr:
4596     case PCK_User:
4597       break; // We ignore all of these.
4598     }
4599     break;
4600   }
4601 
4602   case Decl::PragmaDetectMismatch: {
4603     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4604     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4605     break;
4606   }
4607 
4608   case Decl::LinkageSpec:
4609     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4610     break;
4611 
4612   case Decl::FileScopeAsm: {
4613     // File-scope asm is ignored during device-side CUDA compilation.
4614     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4615       break;
4616     // File-scope asm is ignored during device-side OpenMP compilation.
4617     if (LangOpts.OpenMPIsDevice)
4618       break;
4619     auto *AD = cast<FileScopeAsmDecl>(D);
4620     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4621     break;
4622   }
4623 
4624   case Decl::Import: {
4625     auto *Import = cast<ImportDecl>(D);
4626 
4627     // If we've already imported this module, we're done.
4628     if (!ImportedModules.insert(Import->getImportedModule()))
4629       break;
4630 
4631     // Emit debug information for direct imports.
4632     if (!Import->getImportedOwningModule()) {
4633       if (CGDebugInfo *DI = getModuleDebugInfo())
4634         DI->EmitImportDecl(*Import);
4635     }
4636 
4637     // Find all of the submodules and emit the module initializers.
4638     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4639     SmallVector<clang::Module *, 16> Stack;
4640     Visited.insert(Import->getImportedModule());
4641     Stack.push_back(Import->getImportedModule());
4642 
4643     while (!Stack.empty()) {
4644       clang::Module *Mod = Stack.pop_back_val();
4645       if (!EmittedModuleInitializers.insert(Mod).second)
4646         continue;
4647 
4648       for (auto *D : Context.getModuleInitializers(Mod))
4649         EmitTopLevelDecl(D);
4650 
4651       // Visit the submodules of this module.
4652       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4653                                              SubEnd = Mod->submodule_end();
4654            Sub != SubEnd; ++Sub) {
4655         // Skip explicit children; they need to be explicitly imported to emit
4656         // the initializers.
4657         if ((*Sub)->IsExplicit)
4658           continue;
4659 
4660         if (Visited.insert(*Sub).second)
4661           Stack.push_back(*Sub);
4662       }
4663     }
4664     break;
4665   }
4666 
4667   case Decl::Export:
4668     EmitDeclContext(cast<ExportDecl>(D));
4669     break;
4670 
4671   case Decl::OMPThreadPrivate:
4672     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4673     break;
4674 
4675   case Decl::OMPDeclareReduction:
4676     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4677     break;
4678 
4679   default:
4680     // Make sure we handled everything we should, every other kind is a
4681     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4682     // function. Need to recode Decl::Kind to do that easily.
4683     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4684     break;
4685   }
4686 }
4687 
4688 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4689   // Do we need to generate coverage mapping?
4690   if (!CodeGenOpts.CoverageMapping)
4691     return;
4692   switch (D->getKind()) {
4693   case Decl::CXXConversion:
4694   case Decl::CXXMethod:
4695   case Decl::Function:
4696   case Decl::ObjCMethod:
4697   case Decl::CXXConstructor:
4698   case Decl::CXXDestructor: {
4699     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4700       return;
4701     SourceManager &SM = getContext().getSourceManager();
4702     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart()))
4703       return;
4704     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4705     if (I == DeferredEmptyCoverageMappingDecls.end())
4706       DeferredEmptyCoverageMappingDecls[D] = true;
4707     break;
4708   }
4709   default:
4710     break;
4711   };
4712 }
4713 
4714 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4715   // Do we need to generate coverage mapping?
4716   if (!CodeGenOpts.CoverageMapping)
4717     return;
4718   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4719     if (Fn->isTemplateInstantiation())
4720       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4721   }
4722   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4723   if (I == DeferredEmptyCoverageMappingDecls.end())
4724     DeferredEmptyCoverageMappingDecls[D] = false;
4725   else
4726     I->second = false;
4727 }
4728 
4729 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4730   // We call takeVector() here to avoid use-after-free.
4731   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
4732   // we deserialize function bodies to emit coverage info for them, and that
4733   // deserializes more declarations. How should we handle that case?
4734   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
4735     if (!Entry.second)
4736       continue;
4737     const Decl *D = Entry.first;
4738     switch (D->getKind()) {
4739     case Decl::CXXConversion:
4740     case Decl::CXXMethod:
4741     case Decl::Function:
4742     case Decl::ObjCMethod: {
4743       CodeGenPGO PGO(*this);
4744       GlobalDecl GD(cast<FunctionDecl>(D));
4745       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4746                                   getFunctionLinkage(GD));
4747       break;
4748     }
4749     case Decl::CXXConstructor: {
4750       CodeGenPGO PGO(*this);
4751       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4752       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4753                                   getFunctionLinkage(GD));
4754       break;
4755     }
4756     case Decl::CXXDestructor: {
4757       CodeGenPGO PGO(*this);
4758       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4759       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4760                                   getFunctionLinkage(GD));
4761       break;
4762     }
4763     default:
4764       break;
4765     };
4766   }
4767 }
4768 
4769 /// Turns the given pointer into a constant.
4770 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4771                                           const void *Ptr) {
4772   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4773   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4774   return llvm::ConstantInt::get(i64, PtrInt);
4775 }
4776 
4777 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4778                                    llvm::NamedMDNode *&GlobalMetadata,
4779                                    GlobalDecl D,
4780                                    llvm::GlobalValue *Addr) {
4781   if (!GlobalMetadata)
4782     GlobalMetadata =
4783       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4784 
4785   // TODO: should we report variant information for ctors/dtors?
4786   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4787                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4788                                CGM.getLLVMContext(), D.getDecl()))};
4789   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4790 }
4791 
4792 /// For each function which is declared within an extern "C" region and marked
4793 /// as 'used', but has internal linkage, create an alias from the unmangled
4794 /// name to the mangled name if possible. People expect to be able to refer
4795 /// to such functions with an unmangled name from inline assembly within the
4796 /// same translation unit.
4797 void CodeGenModule::EmitStaticExternCAliases() {
4798   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
4799     return;
4800   for (auto &I : StaticExternCValues) {
4801     IdentifierInfo *Name = I.first;
4802     llvm::GlobalValue *Val = I.second;
4803     if (Val && !getModule().getNamedValue(Name->getName()))
4804       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4805   }
4806 }
4807 
4808 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4809                                              GlobalDecl &Result) const {
4810   auto Res = Manglings.find(MangledName);
4811   if (Res == Manglings.end())
4812     return false;
4813   Result = Res->getValue();
4814   return true;
4815 }
4816 
4817 /// Emits metadata nodes associating all the global values in the
4818 /// current module with the Decls they came from.  This is useful for
4819 /// projects using IR gen as a subroutine.
4820 ///
4821 /// Since there's currently no way to associate an MDNode directly
4822 /// with an llvm::GlobalValue, we create a global named metadata
4823 /// with the name 'clang.global.decl.ptrs'.
4824 void CodeGenModule::EmitDeclMetadata() {
4825   llvm::NamedMDNode *GlobalMetadata = nullptr;
4826 
4827   for (auto &I : MangledDeclNames) {
4828     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4829     // Some mangled names don't necessarily have an associated GlobalValue
4830     // in this module, e.g. if we mangled it for DebugInfo.
4831     if (Addr)
4832       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4833   }
4834 }
4835 
4836 /// Emits metadata nodes for all the local variables in the current
4837 /// function.
4838 void CodeGenFunction::EmitDeclMetadata() {
4839   if (LocalDeclMap.empty()) return;
4840 
4841   llvm::LLVMContext &Context = getLLVMContext();
4842 
4843   // Find the unique metadata ID for this name.
4844   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4845 
4846   llvm::NamedMDNode *GlobalMetadata = nullptr;
4847 
4848   for (auto &I : LocalDeclMap) {
4849     const Decl *D = I.first;
4850     llvm::Value *Addr = I.second.getPointer();
4851     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4852       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4853       Alloca->setMetadata(
4854           DeclPtrKind, llvm::MDNode::get(
4855                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4856     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4857       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4858       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4859     }
4860   }
4861 }
4862 
4863 void CodeGenModule::EmitVersionIdentMetadata() {
4864   llvm::NamedMDNode *IdentMetadata =
4865     TheModule.getOrInsertNamedMetadata("llvm.ident");
4866   std::string Version = getClangFullVersion();
4867   llvm::LLVMContext &Ctx = TheModule.getContext();
4868 
4869   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4870   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4871 }
4872 
4873 void CodeGenModule::EmitTargetMetadata() {
4874   // Warning, new MangledDeclNames may be appended within this loop.
4875   // We rely on MapVector insertions adding new elements to the end
4876   // of the container.
4877   // FIXME: Move this loop into the one target that needs it, and only
4878   // loop over those declarations for which we couldn't emit the target
4879   // metadata when we emitted the declaration.
4880   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4881     auto Val = *(MangledDeclNames.begin() + I);
4882     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4883     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4884     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4885   }
4886 }
4887 
4888 void CodeGenModule::EmitCoverageFile() {
4889   if (getCodeGenOpts().CoverageDataFile.empty() &&
4890       getCodeGenOpts().CoverageNotesFile.empty())
4891     return;
4892 
4893   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4894   if (!CUNode)
4895     return;
4896 
4897   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4898   llvm::LLVMContext &Ctx = TheModule.getContext();
4899   auto *CoverageDataFile =
4900       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4901   auto *CoverageNotesFile =
4902       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4903   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4904     llvm::MDNode *CU = CUNode->getOperand(i);
4905     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4906     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4907   }
4908 }
4909 
4910 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4911   // Sema has checked that all uuid strings are of the form
4912   // "12345678-1234-1234-1234-1234567890ab".
4913   assert(Uuid.size() == 36);
4914   for (unsigned i = 0; i < 36; ++i) {
4915     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4916     else                                         assert(isHexDigit(Uuid[i]));
4917   }
4918 
4919   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4920   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4921 
4922   llvm::Constant *Field3[8];
4923   for (unsigned Idx = 0; Idx < 8; ++Idx)
4924     Field3[Idx] = llvm::ConstantInt::get(
4925         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4926 
4927   llvm::Constant *Fields[4] = {
4928     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4929     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4930     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4931     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4932   };
4933 
4934   return llvm::ConstantStruct::getAnon(Fields);
4935 }
4936 
4937 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4938                                                        bool ForEH) {
4939   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4940   // FIXME: should we even be calling this method if RTTI is disabled
4941   // and it's not for EH?
4942   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
4943     return llvm::Constant::getNullValue(Int8PtrTy);
4944 
4945   if (ForEH && Ty->isObjCObjectPointerType() &&
4946       LangOpts.ObjCRuntime.isGNUFamily())
4947     return ObjCRuntime->GetEHType(Ty);
4948 
4949   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4950 }
4951 
4952 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4953   // Do not emit threadprivates in simd-only mode.
4954   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
4955     return;
4956   for (auto RefExpr : D->varlists()) {
4957     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4958     bool PerformInit =
4959         VD->getAnyInitializer() &&
4960         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4961                                                         /*ForRef=*/false);
4962 
4963     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4964     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4965             VD, Addr, RefExpr->getLocStart(), PerformInit))
4966       CXXGlobalInits.push_back(InitFunction);
4967   }
4968 }
4969 
4970 llvm::Metadata *
4971 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
4972                                             StringRef Suffix) {
4973   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
4974   if (InternalId)
4975     return InternalId;
4976 
4977   if (isExternallyVisible(T->getLinkage())) {
4978     std::string OutName;
4979     llvm::raw_string_ostream Out(OutName);
4980     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4981     Out << Suffix;
4982 
4983     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4984   } else {
4985     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4986                                            llvm::ArrayRef<llvm::Metadata *>());
4987   }
4988 
4989   return InternalId;
4990 }
4991 
4992 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4993   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
4994 }
4995 
4996 llvm::Metadata *
4997 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
4998   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
4999 }
5000 
5001 // Generalize pointer types to a void pointer with the qualifiers of the
5002 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5003 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5004 // 'void *'.
5005 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5006   if (!Ty->isPointerType())
5007     return Ty;
5008 
5009   return Ctx.getPointerType(
5010       QualType(Ctx.VoidTy).withCVRQualifiers(
5011           Ty->getPointeeType().getCVRQualifiers()));
5012 }
5013 
5014 // Apply type generalization to a FunctionType's return and argument types
5015 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5016   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5017     SmallVector<QualType, 8> GeneralizedParams;
5018     for (auto &Param : FnType->param_types())
5019       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5020 
5021     return Ctx.getFunctionType(
5022         GeneralizeType(Ctx, FnType->getReturnType()),
5023         GeneralizedParams, FnType->getExtProtoInfo());
5024   }
5025 
5026   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5027     return Ctx.getFunctionNoProtoType(
5028         GeneralizeType(Ctx, FnType->getReturnType()));
5029 
5030   llvm_unreachable("Encountered unknown FunctionType");
5031 }
5032 
5033 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5034   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5035                                       GeneralizedMetadataIdMap, ".generalized");
5036 }
5037 
5038 /// Returns whether this module needs the "all-vtables" type identifier.
5039 bool CodeGenModule::NeedAllVtablesTypeId() const {
5040   // Returns true if at least one of vtable-based CFI checkers is enabled and
5041   // is not in the trapping mode.
5042   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5043            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5044           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5045            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5046           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5047            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5048           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5049            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5050 }
5051 
5052 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5053                                           CharUnits Offset,
5054                                           const CXXRecordDecl *RD) {
5055   llvm::Metadata *MD =
5056       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5057   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5058 
5059   if (CodeGenOpts.SanitizeCfiCrossDso)
5060     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5061       VTable->addTypeMetadata(Offset.getQuantity(),
5062                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5063 
5064   if (NeedAllVtablesTypeId()) {
5065     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5066     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5067   }
5068 }
5069 
5070 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5071   assert(TD != nullptr);
5072   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5073 
5074   ParsedAttr.Features.erase(
5075       llvm::remove_if(ParsedAttr.Features,
5076                       [&](const std::string &Feat) {
5077                         return !Target.isValidFeatureName(
5078                             StringRef{Feat}.substr(1));
5079                       }),
5080       ParsedAttr.Features.end());
5081   return ParsedAttr;
5082 }
5083 
5084 
5085 // Fills in the supplied string map with the set of target features for the
5086 // passed in function.
5087 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5088                                           const FunctionDecl *FD) {
5089   StringRef TargetCPU = Target.getTargetOpts().CPU;
5090   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5091     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5092 
5093     // Make a copy of the features as passed on the command line into the
5094     // beginning of the additional features from the function to override.
5095     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5096                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5097                             Target.getTargetOpts().FeaturesAsWritten.end());
5098 
5099     if (ParsedAttr.Architecture != "" &&
5100         Target.isValidCPUName(ParsedAttr.Architecture))
5101       TargetCPU = ParsedAttr.Architecture;
5102 
5103     // Now populate the feature map, first with the TargetCPU which is either
5104     // the default or a new one from the target attribute string. Then we'll use
5105     // the passed in features (FeaturesAsWritten) along with the new ones from
5106     // the attribute.
5107     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5108                           ParsedAttr.Features);
5109   } else {
5110     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5111                           Target.getTargetOpts().Features);
5112   }
5113 }
5114 
5115 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5116   if (!SanStats)
5117     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5118 
5119   return *SanStats;
5120 }
5121 llvm::Value *
5122 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5123                                                   CodeGenFunction &CGF) {
5124   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5125   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5126   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5127   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5128                                 "__translate_sampler_initializer"),
5129                                 {C});
5130 }
5131