xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e43f0fea153bd67e39f085d92d9e12ada915bb99)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 
71 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                              llvm::Module &M, const llvm::DataLayout &TD,
73                              DiagnosticsEngine &diags)
74   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75     Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76     ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77     TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78     ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80     RRData(0), CFConstantStringClassRef(0),
81     ConstantStringClassRef(0), NSConstantStringType(0),
82     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83     BlockObjectAssign(0), BlockObjectDispose(0),
84     BlockDescriptorType(0), GenericBlockLiteralType(0),
85     LifetimeStartFn(0), LifetimeEndFn(0),
86     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87     SanOpts(SanitizerBlacklist.isIn(M) ?
88             SanitizerOptions::Disabled : LangOpts.Sanitize) {
89 
90   // Initialize the type cache.
91   llvm::LLVMContext &LLVMContext = M.getContext();
92   VoidTy = llvm::Type::getVoidTy(LLVMContext);
93   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97   FloatTy = llvm::Type::getFloatTy(LLVMContext);
98   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100   PointerAlignInBytes =
101   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104   Int8PtrTy = Int8Ty->getPointerTo(0);
105   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106 
107   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108 
109   if (LangOpts.ObjC1)
110     createObjCRuntime();
111   if (LangOpts.OpenCL)
112     createOpenCLRuntime();
113   if (LangOpts.CUDA)
114     createCUDARuntime();
115 
116   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117   if (SanOpts.Thread ||
118       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                            ABI.getMangleContext());
121 
122   // If debug info or coverage generation is enabled, create the CGDebugInfo
123   // object.
124   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125       CodeGenOpts.EmitGcovArcs ||
126       CodeGenOpts.EmitGcovNotes)
127     DebugInfo = new CGDebugInfo(*this);
128 
129   Block.GlobalUniqueCount = 0;
130 
131   if (C.getLangOpts().ObjCAutoRefCount)
132     ARCData = new ARCEntrypoints();
133   RRData = new RREntrypoints();
134 }
135 
136 CodeGenModule::~CodeGenModule() {
137   delete ObjCRuntime;
138   delete OpenCLRuntime;
139   delete CUDARuntime;
140   delete TheTargetCodeGenInfo;
141   delete &ABI;
142   delete TBAA;
143   delete DebugInfo;
144   delete ARCData;
145   delete RRData;
146 }
147 
148 void CodeGenModule::createObjCRuntime() {
149   // This is just isGNUFamily(), but we want to force implementors of
150   // new ABIs to decide how best to do this.
151   switch (LangOpts.ObjCRuntime.getKind()) {
152   case ObjCRuntime::GNUstep:
153   case ObjCRuntime::GCC:
154   case ObjCRuntime::ObjFW:
155     ObjCRuntime = CreateGNUObjCRuntime(*this);
156     return;
157 
158   case ObjCRuntime::FragileMacOSX:
159   case ObjCRuntime::MacOSX:
160   case ObjCRuntime::iOS:
161     ObjCRuntime = CreateMacObjCRuntime(*this);
162     return;
163   }
164   llvm_unreachable("bad runtime kind");
165 }
166 
167 void CodeGenModule::createOpenCLRuntime() {
168   OpenCLRuntime = new CGOpenCLRuntime(*this);
169 }
170 
171 void CodeGenModule::createCUDARuntime() {
172   CUDARuntime = CreateNVCUDARuntime(*this);
173 }
174 
175 void CodeGenModule::Release() {
176   EmitDeferred();
177   EmitCXXGlobalInitFunc();
178   EmitCXXGlobalDtorFunc();
179   EmitCXXThreadLocalInitFunc();
180   if (ObjCRuntime)
181     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182       AddGlobalCtor(ObjCInitFunction);
183   EmitCtorList(GlobalCtors, "llvm.global_ctors");
184   EmitCtorList(GlobalDtors, "llvm.global_dtors");
185   EmitGlobalAnnotations();
186   EmitStaticExternCAliases();
187   EmitLLVMUsed();
188 
189   if (CodeGenOpts.Autolink &&
190       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191     EmitModuleLinkOptions();
192   }
193 
194   SimplifyPersonality();
195 
196   if (getCodeGenOpts().EmitDeclMetadata)
197     EmitDeclMetadata();
198 
199   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200     EmitCoverageFile();
201 
202   if (DebugInfo)
203     DebugInfo->finalize();
204 }
205 
206 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207   // Make sure that this type is translated.
208   Types.UpdateCompletedType(TD);
209 }
210 
211 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212   if (!TBAA)
213     return 0;
214   return TBAA->getTBAAInfo(QTy);
215 }
216 
217 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218   if (!TBAA)
219     return 0;
220   return TBAA->getTBAAInfoForVTablePtr();
221 }
222 
223 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224   if (!TBAA)
225     return 0;
226   return TBAA->getTBAAStructInfo(QTy);
227 }
228 
229 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230   if (!TBAA)
231     return 0;
232   return TBAA->getTBAAStructTypeInfo(QTy);
233 }
234 
235 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                   llvm::MDNode *AccessN,
237                                                   uint64_t O) {
238   if (!TBAA)
239     return 0;
240   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241 }
242 
243 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244 /// is the same as the type. For struct-path aware TBAA, the tag
245 /// is different from the type: base type, access type and offset.
246 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                         llvm::MDNode *TBAAInfo,
249                                         bool ConvertTypeToTag) {
250   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
253   else
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255 }
256 
257 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259   getDiags().Report(Context.getFullLoc(loc), diagID);
260 }
261 
262 /// ErrorUnsupported - Print out an error that codegen doesn't support the
263 /// specified stmt yet.
264 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                      bool OmitOnError) {
266   if (OmitOnError && getDiags().hasErrorOccurred())
267     return;
268   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                                "cannot compile this %0 yet");
270   std::string Msg = Type;
271   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272     << Msg << S->getSourceRange();
273 }
274 
275 /// ErrorUnsupported - Print out an error that codegen doesn't support the
276 /// specified decl yet.
277 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                      bool OmitOnError) {
279   if (OmitOnError && getDiags().hasErrorOccurred())
280     return;
281   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                                "cannot compile this %0 yet");
283   std::string Msg = Type;
284   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285 }
286 
287 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289 }
290 
291 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                         const NamedDecl *D) const {
293   // Internal definitions always have default visibility.
294   if (GV->hasLocalLinkage()) {
295     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296     return;
297   }
298 
299   // Set visibility for definitions.
300   LinkageInfo LV = D->getLinkageAndVisibility();
301   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303 }
304 
305 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311 }
312 
313 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314     CodeGenOptions::TLSModel M) {
315   switch (M) {
316   case CodeGenOptions::GeneralDynamicTLSModel:
317     return llvm::GlobalVariable::GeneralDynamicTLSModel;
318   case CodeGenOptions::LocalDynamicTLSModel:
319     return llvm::GlobalVariable::LocalDynamicTLSModel;
320   case CodeGenOptions::InitialExecTLSModel:
321     return llvm::GlobalVariable::InitialExecTLSModel;
322   case CodeGenOptions::LocalExecTLSModel:
323     return llvm::GlobalVariable::LocalExecTLSModel;
324   }
325   llvm_unreachable("Invalid TLS model!");
326 }
327 
328 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                                const VarDecl &D) const {
330   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331 
332   llvm::GlobalVariable::ThreadLocalMode TLM;
333   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334 
335   // Override the TLS model if it is explicitly specified.
336   if (D.hasAttr<TLSModelAttr>()) {
337     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338     TLM = GetLLVMTLSModel(Attr->getModel());
339   }
340 
341   GV->setThreadLocalMode(TLM);
342 }
343 
344 /// Set the symbol visibility of type information (vtable and RTTI)
345 /// associated with the given type.
346 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                       const CXXRecordDecl *RD,
348                                       TypeVisibilityKind TVK) const {
349   setGlobalVisibility(GV, RD);
350 
351   if (!CodeGenOpts.HiddenWeakVTables)
352     return;
353 
354   // We never want to drop the visibility for RTTI names.
355   if (TVK == TVK_ForRTTIName)
356     return;
357 
358   // We want to drop the visibility to hidden for weak type symbols.
359   // This isn't possible if there might be unresolved references
360   // elsewhere that rely on this symbol being visible.
361 
362   // This should be kept roughly in sync with setThunkVisibility
363   // in CGVTables.cpp.
364 
365   // Preconditions.
366   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368     return;
369 
370   // Don't override an explicit visibility attribute.
371   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372     return;
373 
374   switch (RD->getTemplateSpecializationKind()) {
375   // We have to disable the optimization if this is an EI definition
376   // because there might be EI declarations in other shared objects.
377   case TSK_ExplicitInstantiationDefinition:
378   case TSK_ExplicitInstantiationDeclaration:
379     return;
380 
381   // Every use of a non-template class's type information has to emit it.
382   case TSK_Undeclared:
383     break;
384 
385   // In theory, implicit instantiations can ignore the possibility of
386   // an explicit instantiation declaration because there necessarily
387   // must be an EI definition somewhere with default visibility.  In
388   // practice, it's possible to have an explicit instantiation for
389   // an arbitrary template class, and linkers aren't necessarily able
390   // to deal with mixed-visibility symbols.
391   case TSK_ExplicitSpecialization:
392   case TSK_ImplicitInstantiation:
393     return;
394   }
395 
396   // If there's a key function, there may be translation units
397   // that don't have the key function's definition.  But ignore
398   // this if we're emitting RTTI under -fno-rtti.
399   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400     // FIXME: what should we do if we "lose" the key function during
401     // the emission of the file?
402     if (Context.getCurrentKeyFunction(RD))
403       return;
404   }
405 
406   // Otherwise, drop the visibility to hidden.
407   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408   GV->setUnnamedAddr(true);
409 }
410 
411 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413 
414   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415   if (!Str.empty())
416     return Str;
417 
418   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419     IdentifierInfo *II = ND->getIdentifier();
420     assert(II && "Attempt to mangle unnamed decl.");
421 
422     Str = II->getName();
423     return Str;
424   }
425 
426   SmallString<256> Buffer;
427   llvm::raw_svector_ostream Out(Buffer);
428   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433     getCXXABI().getMangleContext().mangleBlock(BD, Out,
434       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
513   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
514 
515   if (Linkage == GVA_Internal)
516     return llvm::Function::InternalLinkage;
517 
518   if (D->hasAttr<DLLExportAttr>())
519     return llvm::Function::DLLExportLinkage;
520 
521   if (D->hasAttr<WeakAttr>())
522     return llvm::Function::WeakAnyLinkage;
523 
524   // In C99 mode, 'inline' functions are guaranteed to have a strong
525   // definition somewhere else, so we can use available_externally linkage.
526   if (Linkage == GVA_C99Inline)
527     return llvm::Function::AvailableExternallyLinkage;
528 
529   // Note that Apple's kernel linker doesn't support symbol
530   // coalescing, so we need to avoid linkonce and weak linkages there.
531   // Normally, this means we just map to internal, but for explicit
532   // instantiations we'll map to external.
533 
534   // In C++, the compiler has to emit a definition in every translation unit
535   // that references the function.  We should use linkonce_odr because
536   // a) if all references in this translation unit are optimized away, we
537   // don't need to codegen it.  b) if the function persists, it needs to be
538   // merged with other definitions. c) C++ has the ODR, so we know the
539   // definition is dependable.
540   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
541     return !Context.getLangOpts().AppleKext
542              ? llvm::Function::LinkOnceODRLinkage
543              : llvm::Function::InternalLinkage;
544 
545   // An explicit instantiation of a template has weak linkage, since
546   // explicit instantiations can occur in multiple translation units
547   // and must all be equivalent. However, we are not allowed to
548   // throw away these explicit instantiations.
549   if (Linkage == GVA_ExplicitTemplateInstantiation)
550     return !Context.getLangOpts().AppleKext
551              ? llvm::Function::WeakODRLinkage
552              : llvm::Function::ExternalLinkage;
553 
554   // Otherwise, we have strong external linkage.
555   assert(Linkage == GVA_StrongExternal);
556   return llvm::Function::ExternalLinkage;
557 }
558 
559 
560 /// SetFunctionDefinitionAttributes - Set attributes for a global.
561 ///
562 /// FIXME: This is currently only done for aliases and functions, but not for
563 /// variables (these details are set in EmitGlobalVarDefinition for variables).
564 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
565                                                     llvm::GlobalValue *GV) {
566   SetCommonAttributes(D, GV);
567 }
568 
569 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
570                                               const CGFunctionInfo &Info,
571                                               llvm::Function *F) {
572   unsigned CallingConv;
573   AttributeListType AttributeList;
574   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
575   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
576   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
577 }
578 
579 /// Determines whether the language options require us to model
580 /// unwind exceptions.  We treat -fexceptions as mandating this
581 /// except under the fragile ObjC ABI with only ObjC exceptions
582 /// enabled.  This means, for example, that C with -fexceptions
583 /// enables this.
584 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
585   // If exceptions are completely disabled, obviously this is false.
586   if (!LangOpts.Exceptions) return false;
587 
588   // If C++ exceptions are enabled, this is true.
589   if (LangOpts.CXXExceptions) return true;
590 
591   // If ObjC exceptions are enabled, this depends on the ABI.
592   if (LangOpts.ObjCExceptions) {
593     return LangOpts.ObjCRuntime.hasUnwindExceptions();
594   }
595 
596   return true;
597 }
598 
599 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
600                                                            llvm::Function *F) {
601   if (CodeGenOpts.UnwindTables)
602     F->setHasUWTable();
603 
604   if (!hasUnwindExceptions(LangOpts))
605     F->addFnAttr(llvm::Attribute::NoUnwind);
606 
607   if (D->hasAttr<NakedAttr>()) {
608     // Naked implies noinline: we should not be inlining such functions.
609     F->addFnAttr(llvm::Attribute::Naked);
610     F->addFnAttr(llvm::Attribute::NoInline);
611   }
612 
613   if (D->hasAttr<NoInlineAttr>())
614     F->addFnAttr(llvm::Attribute::NoInline);
615 
616   // (noinline wins over always_inline, and we can't specify both in IR)
617   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
618       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
619                                        llvm::Attribute::NoInline))
620     F->addFnAttr(llvm::Attribute::AlwaysInline);
621 
622   // FIXME: Communicate hot and cold attributes to LLVM more directly.
623   if (D->hasAttr<ColdAttr>())
624     F->addFnAttr(llvm::Attribute::OptimizeForSize);
625 
626   if (D->hasAttr<MinSizeAttr>())
627     F->addFnAttr(llvm::Attribute::MinSize);
628 
629   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
630     F->setUnnamedAddr(true);
631 
632   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
633     if (MD->isVirtual())
634       F->setUnnamedAddr(true);
635 
636   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
637     F->addFnAttr(llvm::Attribute::StackProtect);
638   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
639     F->addFnAttr(llvm::Attribute::StackProtectReq);
640 
641   // Add sanitizer attributes if function is not blacklisted.
642   if (!SanitizerBlacklist.isIn(*F)) {
643     // When AddressSanitizer is enabled, set SanitizeAddress attribute
644     // unless __attribute__((no_sanitize_address)) is used.
645     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
646       F->addFnAttr(llvm::Attribute::SanitizeAddress);
647     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
648     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
649       F->addFnAttr(llvm::Attribute::SanitizeThread);
650     }
651     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
652     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
653       F->addFnAttr(llvm::Attribute::SanitizeMemory);
654   }
655 
656   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
657   if (alignment)
658     F->setAlignment(alignment);
659 
660   // C++ ABI requires 2-byte alignment for member functions.
661   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
662     F->setAlignment(2);
663 }
664 
665 void CodeGenModule::SetCommonAttributes(const Decl *D,
666                                         llvm::GlobalValue *GV) {
667   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
668     setGlobalVisibility(GV, ND);
669   else
670     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
671 
672   if (D->hasAttr<UsedAttr>())
673     AddUsedGlobal(GV);
674 
675   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
676     GV->setSection(SA->getName());
677 
678   // Alias cannot have attributes. Filter them here.
679   if (!isa<llvm::GlobalAlias>(GV))
680     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
681 }
682 
683 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
684                                                   llvm::Function *F,
685                                                   const CGFunctionInfo &FI) {
686   SetLLVMFunctionAttributes(D, FI, F);
687   SetLLVMFunctionAttributesForDefinition(D, F);
688 
689   F->setLinkage(llvm::Function::InternalLinkage);
690 
691   SetCommonAttributes(D, F);
692 }
693 
694 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
695                                           llvm::Function *F,
696                                           bool IsIncompleteFunction) {
697   if (unsigned IID = F->getIntrinsicID()) {
698     // If this is an intrinsic function, set the function's attributes
699     // to the intrinsic's attributes.
700     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
701                                                     (llvm::Intrinsic::ID)IID));
702     return;
703   }
704 
705   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
706 
707   if (!IsIncompleteFunction)
708     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
709 
710   // Only a few attributes are set on declarations; these may later be
711   // overridden by a definition.
712 
713   if (FD->hasAttr<DLLImportAttr>()) {
714     F->setLinkage(llvm::Function::DLLImportLinkage);
715   } else if (FD->hasAttr<WeakAttr>() ||
716              FD->isWeakImported()) {
717     // "extern_weak" is overloaded in LLVM; we probably should have
718     // separate linkage types for this.
719     F->setLinkage(llvm::Function::ExternalWeakLinkage);
720   } else {
721     F->setLinkage(llvm::Function::ExternalLinkage);
722 
723     LinkageInfo LV = FD->getLinkageAndVisibility();
724     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
725       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
726     }
727   }
728 
729   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
730     F->setSection(SA->getName());
731 }
732 
733 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
734   assert(!GV->isDeclaration() &&
735          "Only globals with definition can force usage.");
736   LLVMUsed.push_back(GV);
737 }
738 
739 void CodeGenModule::EmitLLVMUsed() {
740   // Don't create llvm.used if there is no need.
741   if (LLVMUsed.empty())
742     return;
743 
744   // Convert LLVMUsed to what ConstantArray needs.
745   SmallVector<llvm::Constant*, 8> UsedArray;
746   UsedArray.resize(LLVMUsed.size());
747   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
748     UsedArray[i] =
749      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
750                                     Int8PtrTy);
751   }
752 
753   if (UsedArray.empty())
754     return;
755   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
756 
757   llvm::GlobalVariable *GV =
758     new llvm::GlobalVariable(getModule(), ATy, false,
759                              llvm::GlobalValue::AppendingLinkage,
760                              llvm::ConstantArray::get(ATy, UsedArray),
761                              "llvm.used");
762 
763   GV->setSection("llvm.metadata");
764 }
765 
766 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
767   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
768   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
769 }
770 
771 void CodeGenModule::AddDependentLib(StringRef Lib) {
772   llvm::SmallString<24> Opt;
773   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
774   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
775   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
776 }
777 
778 /// \brief Add link options implied by the given module, including modules
779 /// it depends on, using a postorder walk.
780 static void addLinkOptionsPostorder(CodeGenModule &CGM,
781                                     Module *Mod,
782                                     SmallVectorImpl<llvm::Value *> &Metadata,
783                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
784   // Import this module's parent.
785   if (Mod->Parent && Visited.insert(Mod->Parent)) {
786     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
787   }
788 
789   // Import this module's dependencies.
790   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
791     if (Visited.insert(Mod->Imports[I-1]))
792       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
793   }
794 
795   // Add linker options to link against the libraries/frameworks
796   // described by this module.
797   llvm::LLVMContext &Context = CGM.getLLVMContext();
798   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
799     // Link against a framework.  Frameworks are currently Darwin only, so we
800     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
801     if (Mod->LinkLibraries[I-1].IsFramework) {
802       llvm::Value *Args[2] = {
803         llvm::MDString::get(Context, "-framework"),
804         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
805       };
806 
807       Metadata.push_back(llvm::MDNode::get(Context, Args));
808       continue;
809     }
810 
811     // Link against a library.
812     llvm::SmallString<24> Opt;
813     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
814       Mod->LinkLibraries[I-1].Library, Opt);
815     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
816     Metadata.push_back(llvm::MDNode::get(Context, OptString));
817   }
818 }
819 
820 void CodeGenModule::EmitModuleLinkOptions() {
821   // Collect the set of all of the modules we want to visit to emit link
822   // options, which is essentially the imported modules and all of their
823   // non-explicit child modules.
824   llvm::SetVector<clang::Module *> LinkModules;
825   llvm::SmallPtrSet<clang::Module *, 16> Visited;
826   SmallVector<clang::Module *, 16> Stack;
827 
828   // Seed the stack with imported modules.
829   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
830                                                MEnd = ImportedModules.end();
831        M != MEnd; ++M) {
832     if (Visited.insert(*M))
833       Stack.push_back(*M);
834   }
835 
836   // Find all of the modules to import, making a little effort to prune
837   // non-leaf modules.
838   while (!Stack.empty()) {
839     clang::Module *Mod = Stack.back();
840     Stack.pop_back();
841 
842     bool AnyChildren = false;
843 
844     // Visit the submodules of this module.
845     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
846                                         SubEnd = Mod->submodule_end();
847          Sub != SubEnd; ++Sub) {
848       // Skip explicit children; they need to be explicitly imported to be
849       // linked against.
850       if ((*Sub)->IsExplicit)
851         continue;
852 
853       if (Visited.insert(*Sub)) {
854         Stack.push_back(*Sub);
855         AnyChildren = true;
856       }
857     }
858 
859     // We didn't find any children, so add this module to the list of
860     // modules to link against.
861     if (!AnyChildren) {
862       LinkModules.insert(Mod);
863     }
864   }
865 
866   // Add link options for all of the imported modules in reverse topological
867   // order.  We don't do anything to try to order import link flags with respect
868   // to linker options inserted by things like #pragma comment().
869   SmallVector<llvm::Value *, 16> MetadataArgs;
870   Visited.clear();
871   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
872                                                MEnd = LinkModules.end();
873        M != MEnd; ++M) {
874     if (Visited.insert(*M))
875       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
876   }
877   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
878   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
879 
880   // Add the linker options metadata flag.
881   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
882                             llvm::MDNode::get(getLLVMContext(),
883                                               LinkerOptionsMetadata));
884 }
885 
886 void CodeGenModule::EmitDeferred() {
887   // Emit code for any potentially referenced deferred decls.  Since a
888   // previously unused static decl may become used during the generation of code
889   // for a static function, iterate until no changes are made.
890 
891   while (true) {
892     if (!DeferredVTables.empty()) {
893       EmitDeferredVTables();
894 
895       // Emitting a v-table doesn't directly cause more v-tables to
896       // become deferred, although it can cause functions to be
897       // emitted that then need those v-tables.
898       assert(DeferredVTables.empty());
899     }
900 
901     // Stop if we're out of both deferred v-tables and deferred declarations.
902     if (DeferredDeclsToEmit.empty()) break;
903 
904     GlobalDecl D = DeferredDeclsToEmit.back();
905     DeferredDeclsToEmit.pop_back();
906 
907     // Check to see if we've already emitted this.  This is necessary
908     // for a couple of reasons: first, decls can end up in the
909     // deferred-decls queue multiple times, and second, decls can end
910     // up with definitions in unusual ways (e.g. by an extern inline
911     // function acquiring a strong function redefinition).  Just
912     // ignore these cases.
913     //
914     // TODO: That said, looking this up multiple times is very wasteful.
915     StringRef Name = getMangledName(D);
916     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
917     assert(CGRef && "Deferred decl wasn't referenced?");
918 
919     if (!CGRef->isDeclaration())
920       continue;
921 
922     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
923     // purposes an alias counts as a definition.
924     if (isa<llvm::GlobalAlias>(CGRef))
925       continue;
926 
927     // Otherwise, emit the definition and move on to the next one.
928     EmitGlobalDefinition(D);
929   }
930 }
931 
932 void CodeGenModule::EmitGlobalAnnotations() {
933   if (Annotations.empty())
934     return;
935 
936   // Create a new global variable for the ConstantStruct in the Module.
937   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
938     Annotations[0]->getType(), Annotations.size()), Annotations);
939   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
940     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
941     "llvm.global.annotations");
942   gv->setSection(AnnotationSection);
943 }
944 
945 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
946   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
947   if (i != AnnotationStrings.end())
948     return i->second;
949 
950   // Not found yet, create a new global.
951   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
952   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
953     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
954   gv->setSection(AnnotationSection);
955   gv->setUnnamedAddr(true);
956   AnnotationStrings[Str] = gv;
957   return gv;
958 }
959 
960 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
961   SourceManager &SM = getContext().getSourceManager();
962   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
963   if (PLoc.isValid())
964     return EmitAnnotationString(PLoc.getFilename());
965   return EmitAnnotationString(SM.getBufferName(Loc));
966 }
967 
968 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
969   SourceManager &SM = getContext().getSourceManager();
970   PresumedLoc PLoc = SM.getPresumedLoc(L);
971   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
972     SM.getExpansionLineNumber(L);
973   return llvm::ConstantInt::get(Int32Ty, LineNo);
974 }
975 
976 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
977                                                 const AnnotateAttr *AA,
978                                                 SourceLocation L) {
979   // Get the globals for file name, annotation, and the line number.
980   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
981                  *UnitGV = EmitAnnotationUnit(L),
982                  *LineNoCst = EmitAnnotationLineNo(L);
983 
984   // Create the ConstantStruct for the global annotation.
985   llvm::Constant *Fields[4] = {
986     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
987     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
988     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
989     LineNoCst
990   };
991   return llvm::ConstantStruct::getAnon(Fields);
992 }
993 
994 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
995                                          llvm::GlobalValue *GV) {
996   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
997   // Get the struct elements for these annotations.
998   for (specific_attr_iterator<AnnotateAttr>
999        ai = D->specific_attr_begin<AnnotateAttr>(),
1000        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1001     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1002 }
1003 
1004 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1005   // Never defer when EmitAllDecls is specified.
1006   if (LangOpts.EmitAllDecls)
1007     return false;
1008 
1009   return !getContext().DeclMustBeEmitted(Global);
1010 }
1011 
1012 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1013     const CXXUuidofExpr* E) {
1014   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1015   // well-formed.
1016   StringRef Uuid;
1017   if (E->isTypeOperand())
1018     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1019   else {
1020     // Special case: __uuidof(0) means an all-zero GUID.
1021     Expr *Op = E->getExprOperand();
1022     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1023       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1024     else
1025       Uuid = "00000000-0000-0000-0000-000000000000";
1026   }
1027   std::string Name = "__uuid_" + Uuid.str();
1028 
1029   // Look for an existing global.
1030   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1031     return GV;
1032 
1033   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1034   assert(Init && "failed to initialize as constant");
1035 
1036   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1037   // first field is declared as "long", which for many targets is 8 bytes.
1038   // Those architectures are not supported. (With the MS abi, long is always 4
1039   // bytes.)
1040   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1041   if (Init->getType() != GuidType) {
1042     DiagnosticsEngine &Diags = getDiags();
1043     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1044         "__uuidof codegen is not supported on this architecture");
1045     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1046     Init = llvm::UndefValue::get(GuidType);
1047   }
1048 
1049   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1050       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1051   GV->setUnnamedAddr(true);
1052   return GV;
1053 }
1054 
1055 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1056   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1057   assert(AA && "No alias?");
1058 
1059   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1060 
1061   // See if there is already something with the target's name in the module.
1062   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1063   if (Entry) {
1064     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1065     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1066   }
1067 
1068   llvm::Constant *Aliasee;
1069   if (isa<llvm::FunctionType>(DeclTy))
1070     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1071                                       GlobalDecl(cast<FunctionDecl>(VD)),
1072                                       /*ForVTable=*/false);
1073   else
1074     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1075                                     llvm::PointerType::getUnqual(DeclTy), 0);
1076 
1077   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1078   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1079   WeakRefReferences.insert(F);
1080 
1081   return Aliasee;
1082 }
1083 
1084 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1085   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1086 
1087   // Weak references don't produce any output by themselves.
1088   if (Global->hasAttr<WeakRefAttr>())
1089     return;
1090 
1091   // If this is an alias definition (which otherwise looks like a declaration)
1092   // emit it now.
1093   if (Global->hasAttr<AliasAttr>())
1094     return EmitAliasDefinition(GD);
1095 
1096   // If this is CUDA, be selective about which declarations we emit.
1097   if (LangOpts.CUDA) {
1098     if (CodeGenOpts.CUDAIsDevice) {
1099       if (!Global->hasAttr<CUDADeviceAttr>() &&
1100           !Global->hasAttr<CUDAGlobalAttr>() &&
1101           !Global->hasAttr<CUDAConstantAttr>() &&
1102           !Global->hasAttr<CUDASharedAttr>())
1103         return;
1104     } else {
1105       if (!Global->hasAttr<CUDAHostAttr>() && (
1106             Global->hasAttr<CUDADeviceAttr>() ||
1107             Global->hasAttr<CUDAConstantAttr>() ||
1108             Global->hasAttr<CUDASharedAttr>()))
1109         return;
1110     }
1111   }
1112 
1113   // Ignore declarations, they will be emitted on their first use.
1114   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1115     // Forward declarations are emitted lazily on first use.
1116     if (!FD->doesThisDeclarationHaveABody()) {
1117       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1118         return;
1119 
1120       const FunctionDecl *InlineDefinition = 0;
1121       FD->getBody(InlineDefinition);
1122 
1123       StringRef MangledName = getMangledName(GD);
1124       DeferredDecls.erase(MangledName);
1125       EmitGlobalDefinition(InlineDefinition);
1126       return;
1127     }
1128   } else {
1129     const VarDecl *VD = cast<VarDecl>(Global);
1130     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1131 
1132     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1133       return;
1134   }
1135 
1136   // Defer code generation when possible if this is a static definition, inline
1137   // function etc.  These we only want to emit if they are used.
1138   if (!MayDeferGeneration(Global)) {
1139     // Emit the definition if it can't be deferred.
1140     EmitGlobalDefinition(GD);
1141     return;
1142   }
1143 
1144   // If we're deferring emission of a C++ variable with an
1145   // initializer, remember the order in which it appeared in the file.
1146   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1147       cast<VarDecl>(Global)->hasInit()) {
1148     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1149     CXXGlobalInits.push_back(0);
1150   }
1151 
1152   // If the value has already been used, add it directly to the
1153   // DeferredDeclsToEmit list.
1154   StringRef MangledName = getMangledName(GD);
1155   if (GetGlobalValue(MangledName))
1156     DeferredDeclsToEmit.push_back(GD);
1157   else {
1158     // Otherwise, remember that we saw a deferred decl with this name.  The
1159     // first use of the mangled name will cause it to move into
1160     // DeferredDeclsToEmit.
1161     DeferredDecls[MangledName] = GD;
1162   }
1163 }
1164 
1165 namespace {
1166   struct FunctionIsDirectlyRecursive :
1167     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1168     const StringRef Name;
1169     const Builtin::Context &BI;
1170     bool Result;
1171     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1172       Name(N), BI(C), Result(false) {
1173     }
1174     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1175 
1176     bool TraverseCallExpr(CallExpr *E) {
1177       const FunctionDecl *FD = E->getDirectCallee();
1178       if (!FD)
1179         return true;
1180       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1181       if (Attr && Name == Attr->getLabel()) {
1182         Result = true;
1183         return false;
1184       }
1185       unsigned BuiltinID = FD->getBuiltinID();
1186       if (!BuiltinID)
1187         return true;
1188       StringRef BuiltinName = BI.GetName(BuiltinID);
1189       if (BuiltinName.startswith("__builtin_") &&
1190           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1191         Result = true;
1192         return false;
1193       }
1194       return true;
1195     }
1196   };
1197 }
1198 
1199 // isTriviallyRecursive - Check if this function calls another
1200 // decl that, because of the asm attribute or the other decl being a builtin,
1201 // ends up pointing to itself.
1202 bool
1203 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1204   StringRef Name;
1205   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1206     // asm labels are a special kind of mangling we have to support.
1207     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1208     if (!Attr)
1209       return false;
1210     Name = Attr->getLabel();
1211   } else {
1212     Name = FD->getName();
1213   }
1214 
1215   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1216   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1217   return Walker.Result;
1218 }
1219 
1220 bool
1221 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1222   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1223     return true;
1224   if (CodeGenOpts.OptimizationLevel == 0 &&
1225       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1226     return false;
1227   // PR9614. Avoid cases where the source code is lying to us. An available
1228   // externally function should have an equivalent function somewhere else,
1229   // but a function that calls itself is clearly not equivalent to the real
1230   // implementation.
1231   // This happens in glibc's btowc and in some configure checks.
1232   return !isTriviallyRecursive(F);
1233 }
1234 
1235 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1236   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1237 
1238   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1239                                  Context.getSourceManager(),
1240                                  "Generating code for declaration");
1241 
1242   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1243     // At -O0, don't generate IR for functions with available_externally
1244     // linkage.
1245     if (!shouldEmitFunction(Function))
1246       return;
1247 
1248     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1249       // Make sure to emit the definition(s) before we emit the thunks.
1250       // This is necessary for the generation of certain thunks.
1251       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1252         EmitCXXConstructor(CD, GD.getCtorType());
1253       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1254         EmitCXXDestructor(DD, GD.getDtorType());
1255       else
1256         EmitGlobalFunctionDefinition(GD);
1257 
1258       if (Method->isVirtual())
1259         getVTables().EmitThunks(GD);
1260 
1261       return;
1262     }
1263 
1264     return EmitGlobalFunctionDefinition(GD);
1265   }
1266 
1267   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1268     return EmitGlobalVarDefinition(VD);
1269 
1270   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1271 }
1272 
1273 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1274 /// module, create and return an llvm Function with the specified type. If there
1275 /// is something in the module with the specified name, return it potentially
1276 /// bitcasted to the right type.
1277 ///
1278 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1279 /// to set the attributes on the function when it is first created.
1280 llvm::Constant *
1281 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1282                                        llvm::Type *Ty,
1283                                        GlobalDecl D, bool ForVTable,
1284                                        llvm::AttributeSet ExtraAttrs) {
1285   // Lookup the entry, lazily creating it if necessary.
1286   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1287   if (Entry) {
1288     if (WeakRefReferences.erase(Entry)) {
1289       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1290       if (FD && !FD->hasAttr<WeakAttr>())
1291         Entry->setLinkage(llvm::Function::ExternalLinkage);
1292     }
1293 
1294     if (Entry->getType()->getElementType() == Ty)
1295       return Entry;
1296 
1297     // Make sure the result is of the correct type.
1298     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1299   }
1300 
1301   // This function doesn't have a complete type (for example, the return
1302   // type is an incomplete struct). Use a fake type instead, and make
1303   // sure not to try to set attributes.
1304   bool IsIncompleteFunction = false;
1305 
1306   llvm::FunctionType *FTy;
1307   if (isa<llvm::FunctionType>(Ty)) {
1308     FTy = cast<llvm::FunctionType>(Ty);
1309   } else {
1310     FTy = llvm::FunctionType::get(VoidTy, false);
1311     IsIncompleteFunction = true;
1312   }
1313 
1314   llvm::Function *F = llvm::Function::Create(FTy,
1315                                              llvm::Function::ExternalLinkage,
1316                                              MangledName, &getModule());
1317   assert(F->getName() == MangledName && "name was uniqued!");
1318   if (D.getDecl())
1319     SetFunctionAttributes(D, F, IsIncompleteFunction);
1320   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1321     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1322     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1323                      llvm::AttributeSet::get(VMContext,
1324                                              llvm::AttributeSet::FunctionIndex,
1325                                              B));
1326   }
1327 
1328   // This is the first use or definition of a mangled name.  If there is a
1329   // deferred decl with this name, remember that we need to emit it at the end
1330   // of the file.
1331   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1332   if (DDI != DeferredDecls.end()) {
1333     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1334     // list, and remove it from DeferredDecls (since we don't need it anymore).
1335     DeferredDeclsToEmit.push_back(DDI->second);
1336     DeferredDecls.erase(DDI);
1337 
1338   // Otherwise, there are cases we have to worry about where we're
1339   // using a declaration for which we must emit a definition but where
1340   // we might not find a top-level definition:
1341   //   - member functions defined inline in their classes
1342   //   - friend functions defined inline in some class
1343   //   - special member functions with implicit definitions
1344   // If we ever change our AST traversal to walk into class methods,
1345   // this will be unnecessary.
1346   //
1347   // We also don't emit a definition for a function if it's going to be an entry
1348   // in a vtable, unless it's already marked as used.
1349   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1350     // Look for a declaration that's lexically in a record.
1351     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1352     FD = FD->getMostRecentDecl();
1353     do {
1354       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1355         if (FD->isImplicit() && !ForVTable) {
1356           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1357           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1358           break;
1359         } else if (FD->doesThisDeclarationHaveABody()) {
1360           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1361           break;
1362         }
1363       }
1364       FD = FD->getPreviousDecl();
1365     } while (FD);
1366   }
1367 
1368   // Make sure the result is of the requested type.
1369   if (!IsIncompleteFunction) {
1370     assert(F->getType()->getElementType() == Ty);
1371     return F;
1372   }
1373 
1374   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1375   return llvm::ConstantExpr::getBitCast(F, PTy);
1376 }
1377 
1378 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1379 /// non-null, then this function will use the specified type if it has to
1380 /// create it (this occurs when we see a definition of the function).
1381 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1382                                                  llvm::Type *Ty,
1383                                                  bool ForVTable) {
1384   // If there was no specific requested type, just convert it now.
1385   if (!Ty)
1386     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1387 
1388   StringRef MangledName = getMangledName(GD);
1389   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1390 }
1391 
1392 /// CreateRuntimeFunction - Create a new runtime function with the specified
1393 /// type and name.
1394 llvm::Constant *
1395 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1396                                      StringRef Name,
1397                                      llvm::AttributeSet ExtraAttrs) {
1398   llvm::Constant *C
1399     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1400                               ExtraAttrs);
1401   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1402     if (F->empty())
1403       F->setCallingConv(getRuntimeCC());
1404   return C;
1405 }
1406 
1407 /// isTypeConstant - Determine whether an object of this type can be emitted
1408 /// as a constant.
1409 ///
1410 /// If ExcludeCtor is true, the duration when the object's constructor runs
1411 /// will not be considered. The caller will need to verify that the object is
1412 /// not written to during its construction.
1413 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1414   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1415     return false;
1416 
1417   if (Context.getLangOpts().CPlusPlus) {
1418     if (const CXXRecordDecl *Record
1419           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1420       return ExcludeCtor && !Record->hasMutableFields() &&
1421              Record->hasTrivialDestructor();
1422   }
1423 
1424   return true;
1425 }
1426 
1427 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1428 /// create and return an llvm GlobalVariable with the specified type.  If there
1429 /// is something in the module with the specified name, return it potentially
1430 /// bitcasted to the right type.
1431 ///
1432 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1433 /// to set the attributes on the global when it is first created.
1434 llvm::Constant *
1435 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1436                                      llvm::PointerType *Ty,
1437                                      const VarDecl *D,
1438                                      bool UnnamedAddr) {
1439   // Lookup the entry, lazily creating it if necessary.
1440   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1441   if (Entry) {
1442     if (WeakRefReferences.erase(Entry)) {
1443       if (D && !D->hasAttr<WeakAttr>())
1444         Entry->setLinkage(llvm::Function::ExternalLinkage);
1445     }
1446 
1447     if (UnnamedAddr)
1448       Entry->setUnnamedAddr(true);
1449 
1450     if (Entry->getType() == Ty)
1451       return Entry;
1452 
1453     // Make sure the result is of the correct type.
1454     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1455   }
1456 
1457   // This is the first use or definition of a mangled name.  If there is a
1458   // deferred decl with this name, remember that we need to emit it at the end
1459   // of the file.
1460   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1461   if (DDI != DeferredDecls.end()) {
1462     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1463     // list, and remove it from DeferredDecls (since we don't need it anymore).
1464     DeferredDeclsToEmit.push_back(DDI->second);
1465     DeferredDecls.erase(DDI);
1466   }
1467 
1468   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1469   llvm::GlobalVariable *GV =
1470     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1471                              llvm::GlobalValue::ExternalLinkage,
1472                              0, MangledName, 0,
1473                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1474 
1475   // Handle things which are present even on external declarations.
1476   if (D) {
1477     // FIXME: This code is overly simple and should be merged with other global
1478     // handling.
1479     GV->setConstant(isTypeConstant(D->getType(), false));
1480 
1481     // Set linkage and visibility in case we never see a definition.
1482     LinkageInfo LV = D->getLinkageAndVisibility();
1483     if (LV.getLinkage() != ExternalLinkage) {
1484       // Don't set internal linkage on declarations.
1485     } else {
1486       if (D->hasAttr<DLLImportAttr>())
1487         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1488       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1489         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1490 
1491       // Set visibility on a declaration only if it's explicit.
1492       if (LV.isVisibilityExplicit())
1493         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1494     }
1495 
1496     if (D->getTLSKind()) {
1497       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1498         CXXThreadLocals.push_back(std::make_pair(D, GV));
1499       setTLSMode(GV, *D);
1500     }
1501   }
1502 
1503   if (AddrSpace != Ty->getAddressSpace())
1504     return llvm::ConstantExpr::getBitCast(GV, Ty);
1505   else
1506     return GV;
1507 }
1508 
1509 
1510 llvm::GlobalVariable *
1511 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1512                                       llvm::Type *Ty,
1513                                       llvm::GlobalValue::LinkageTypes Linkage) {
1514   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1515   llvm::GlobalVariable *OldGV = 0;
1516 
1517 
1518   if (GV) {
1519     // Check if the variable has the right type.
1520     if (GV->getType()->getElementType() == Ty)
1521       return GV;
1522 
1523     // Because C++ name mangling, the only way we can end up with an already
1524     // existing global with the same name is if it has been declared extern "C".
1525     assert(GV->isDeclaration() && "Declaration has wrong type!");
1526     OldGV = GV;
1527   }
1528 
1529   // Create a new variable.
1530   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1531                                 Linkage, 0, Name);
1532 
1533   if (OldGV) {
1534     // Replace occurrences of the old variable if needed.
1535     GV->takeName(OldGV);
1536 
1537     if (!OldGV->use_empty()) {
1538       llvm::Constant *NewPtrForOldDecl =
1539       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1540       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1541     }
1542 
1543     OldGV->eraseFromParent();
1544   }
1545 
1546   return GV;
1547 }
1548 
1549 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1550 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1551 /// then it will be created with the specified type instead of whatever the
1552 /// normal requested type would be.
1553 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1554                                                   llvm::Type *Ty) {
1555   assert(D->hasGlobalStorage() && "Not a global variable");
1556   QualType ASTTy = D->getType();
1557   if (Ty == 0)
1558     Ty = getTypes().ConvertTypeForMem(ASTTy);
1559 
1560   llvm::PointerType *PTy =
1561     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1562 
1563   StringRef MangledName = getMangledName(D);
1564   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1565 }
1566 
1567 /// CreateRuntimeVariable - Create a new runtime global variable with the
1568 /// specified type and name.
1569 llvm::Constant *
1570 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1571                                      StringRef Name) {
1572   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1573                                true);
1574 }
1575 
1576 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1577   assert(!D->getInit() && "Cannot emit definite definitions here!");
1578 
1579   if (MayDeferGeneration(D)) {
1580     // If we have not seen a reference to this variable yet, place it
1581     // into the deferred declarations table to be emitted if needed
1582     // later.
1583     StringRef MangledName = getMangledName(D);
1584     if (!GetGlobalValue(MangledName)) {
1585       DeferredDecls[MangledName] = D;
1586       return;
1587     }
1588   }
1589 
1590   // The tentative definition is the only definition.
1591   EmitGlobalVarDefinition(D);
1592 }
1593 
1594 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1595     return Context.toCharUnitsFromBits(
1596       TheDataLayout.getTypeStoreSizeInBits(Ty));
1597 }
1598 
1599 llvm::Constant *
1600 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1601                                                        const Expr *rawInit) {
1602   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1603   if (const ExprWithCleanups *withCleanups =
1604           dyn_cast<ExprWithCleanups>(rawInit)) {
1605     cleanups = withCleanups->getObjects();
1606     rawInit = withCleanups->getSubExpr();
1607   }
1608 
1609   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1610   if (!init || !init->initializesStdInitializerList() ||
1611       init->getNumInits() == 0)
1612     return 0;
1613 
1614   ASTContext &ctx = getContext();
1615   unsigned numInits = init->getNumInits();
1616   // FIXME: This check is here because we would otherwise silently miscompile
1617   // nested global std::initializer_lists. Better would be to have a real
1618   // implementation.
1619   for (unsigned i = 0; i < numInits; ++i) {
1620     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1621     if (inner && inner->initializesStdInitializerList()) {
1622       ErrorUnsupported(inner, "nested global std::initializer_list");
1623       return 0;
1624     }
1625   }
1626 
1627   // Synthesize a fake VarDecl for the array and initialize that.
1628   QualType elementType = init->getInit(0)->getType();
1629   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1630   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1631                                                 ArrayType::Normal, 0);
1632 
1633   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1634   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1635                                               arrayType, D->getLocation());
1636   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1637                                                           D->getDeclContext()),
1638                                           D->getLocStart(), D->getLocation(),
1639                                           name, arrayType, sourceInfo,
1640                                           SC_Static);
1641   backingArray->setTSCSpec(D->getTSCSpec());
1642 
1643   // Now clone the InitListExpr to initialize the array instead.
1644   // Incredible hack: we want to use the existing InitListExpr here, so we need
1645   // to tell it that it no longer initializes a std::initializer_list.
1646   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1647                         init->getNumInits());
1648   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1649                                            init->getRBraceLoc());
1650   arrayInit->setType(arrayType);
1651 
1652   if (!cleanups.empty())
1653     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1654 
1655   backingArray->setInit(arrayInit);
1656 
1657   // Emit the definition of the array.
1658   EmitGlobalVarDefinition(backingArray);
1659 
1660   // Inspect the initializer list to validate it and determine its type.
1661   // FIXME: doing this every time is probably inefficient; caching would be nice
1662   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1663   RecordDecl::field_iterator field = record->field_begin();
1664   if (field == record->field_end()) {
1665     ErrorUnsupported(D, "weird std::initializer_list");
1666     return 0;
1667   }
1668   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1669   // Start pointer.
1670   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1671     ErrorUnsupported(D, "weird std::initializer_list");
1672     return 0;
1673   }
1674   ++field;
1675   if (field == record->field_end()) {
1676     ErrorUnsupported(D, "weird std::initializer_list");
1677     return 0;
1678   }
1679   bool isStartEnd = false;
1680   if (ctx.hasSameType(field->getType(), elementPtr)) {
1681     // End pointer.
1682     isStartEnd = true;
1683   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1684     ErrorUnsupported(D, "weird std::initializer_list");
1685     return 0;
1686   }
1687 
1688   // Now build an APValue representing the std::initializer_list.
1689   APValue initListValue(APValue::UninitStruct(), 0, 2);
1690   APValue &startField = initListValue.getStructField(0);
1691   APValue::LValuePathEntry startOffsetPathEntry;
1692   startOffsetPathEntry.ArrayIndex = 0;
1693   startField = APValue(APValue::LValueBase(backingArray),
1694                        CharUnits::fromQuantity(0),
1695                        llvm::makeArrayRef(startOffsetPathEntry),
1696                        /*IsOnePastTheEnd=*/false, 0);
1697 
1698   if (isStartEnd) {
1699     APValue &endField = initListValue.getStructField(1);
1700     APValue::LValuePathEntry endOffsetPathEntry;
1701     endOffsetPathEntry.ArrayIndex = numInits;
1702     endField = APValue(APValue::LValueBase(backingArray),
1703                        ctx.getTypeSizeInChars(elementType) * numInits,
1704                        llvm::makeArrayRef(endOffsetPathEntry),
1705                        /*IsOnePastTheEnd=*/true, 0);
1706   } else {
1707     APValue &sizeField = initListValue.getStructField(1);
1708     sizeField = APValue(llvm::APSInt(numElements));
1709   }
1710 
1711   // Emit the constant for the initializer_list.
1712   llvm::Constant *llvmInit =
1713       EmitConstantValueForMemory(initListValue, D->getType());
1714   assert(llvmInit && "failed to initialize as constant");
1715   return llvmInit;
1716 }
1717 
1718 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1719                                                  unsigned AddrSpace) {
1720   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1721     if (D->hasAttr<CUDAConstantAttr>())
1722       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1723     else if (D->hasAttr<CUDASharedAttr>())
1724       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1725     else
1726       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1727   }
1728 
1729   return AddrSpace;
1730 }
1731 
1732 template<typename SomeDecl>
1733 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1734                                                llvm::GlobalValue *GV) {
1735   if (!getLangOpts().CPlusPlus)
1736     return;
1737 
1738   // Must have 'used' attribute, or else inline assembly can't rely on
1739   // the name existing.
1740   if (!D->template hasAttr<UsedAttr>())
1741     return;
1742 
1743   // Must have internal linkage and an ordinary name.
1744   if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1745     return;
1746 
1747   // Must be in an extern "C" context. Entities declared directly within
1748   // a record are not extern "C" even if the record is in such a context.
1749   const SomeDecl *First = D->getFirstDeclaration();
1750   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1751     return;
1752 
1753   // OK, this is an internal linkage entity inside an extern "C" linkage
1754   // specification. Make a note of that so we can give it the "expected"
1755   // mangled name if nothing else is using that name.
1756   std::pair<StaticExternCMap::iterator, bool> R =
1757       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1758 
1759   // If we have multiple internal linkage entities with the same name
1760   // in extern "C" regions, none of them gets that name.
1761   if (!R.second)
1762     R.first->second = 0;
1763 }
1764 
1765 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1766   llvm::Constant *Init = 0;
1767   QualType ASTTy = D->getType();
1768   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1769   bool NeedsGlobalCtor = false;
1770   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1771 
1772   const VarDecl *InitDecl;
1773   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1774 
1775   if (!InitExpr) {
1776     // This is a tentative definition; tentative definitions are
1777     // implicitly initialized with { 0 }.
1778     //
1779     // Note that tentative definitions are only emitted at the end of
1780     // a translation unit, so they should never have incomplete
1781     // type. In addition, EmitTentativeDefinition makes sure that we
1782     // never attempt to emit a tentative definition if a real one
1783     // exists. A use may still exists, however, so we still may need
1784     // to do a RAUW.
1785     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1786     Init = EmitNullConstant(D->getType());
1787   } else {
1788     // If this is a std::initializer_list, emit the special initializer.
1789     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1790     // An empty init list will perform zero-initialization, which happens
1791     // to be exactly what we want.
1792     // FIXME: It does so in a global constructor, which is *not* what we
1793     // want.
1794 
1795     if (!Init) {
1796       initializedGlobalDecl = GlobalDecl(D);
1797       Init = EmitConstantInit(*InitDecl);
1798     }
1799     if (!Init) {
1800       QualType T = InitExpr->getType();
1801       if (D->getType()->isReferenceType())
1802         T = D->getType();
1803 
1804       if (getLangOpts().CPlusPlus) {
1805         Init = EmitNullConstant(T);
1806         NeedsGlobalCtor = true;
1807       } else {
1808         ErrorUnsupported(D, "static initializer");
1809         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1810       }
1811     } else {
1812       // We don't need an initializer, so remove the entry for the delayed
1813       // initializer position (just in case this entry was delayed) if we
1814       // also don't need to register a destructor.
1815       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1816         DelayedCXXInitPosition.erase(D);
1817     }
1818   }
1819 
1820   llvm::Type* InitType = Init->getType();
1821   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1822 
1823   // Strip off a bitcast if we got one back.
1824   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1825     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1826            // all zero index gep.
1827            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1828     Entry = CE->getOperand(0);
1829   }
1830 
1831   // Entry is now either a Function or GlobalVariable.
1832   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1833 
1834   // We have a definition after a declaration with the wrong type.
1835   // We must make a new GlobalVariable* and update everything that used OldGV
1836   // (a declaration or tentative definition) with the new GlobalVariable*
1837   // (which will be a definition).
1838   //
1839   // This happens if there is a prototype for a global (e.g.
1840   // "extern int x[];") and then a definition of a different type (e.g.
1841   // "int x[10];"). This also happens when an initializer has a different type
1842   // from the type of the global (this happens with unions).
1843   if (GV == 0 ||
1844       GV->getType()->getElementType() != InitType ||
1845       GV->getType()->getAddressSpace() !=
1846        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1847 
1848     // Move the old entry aside so that we'll create a new one.
1849     Entry->setName(StringRef());
1850 
1851     // Make a new global with the correct type, this is now guaranteed to work.
1852     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1853 
1854     // Replace all uses of the old global with the new global
1855     llvm::Constant *NewPtrForOldDecl =
1856         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1857     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1858 
1859     // Erase the old global, since it is no longer used.
1860     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1861   }
1862 
1863   MaybeHandleStaticInExternC(D, GV);
1864 
1865   if (D->hasAttr<AnnotateAttr>())
1866     AddGlobalAnnotations(D, GV);
1867 
1868   GV->setInitializer(Init);
1869 
1870   // If it is safe to mark the global 'constant', do so now.
1871   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1872                   isTypeConstant(D->getType(), true));
1873 
1874   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1875 
1876   // Set the llvm linkage type as appropriate.
1877   llvm::GlobalValue::LinkageTypes Linkage =
1878     GetLLVMLinkageVarDefinition(D, GV);
1879   GV->setLinkage(Linkage);
1880   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1881     // common vars aren't constant even if declared const.
1882     GV->setConstant(false);
1883 
1884   SetCommonAttributes(D, GV);
1885 
1886   // Emit the initializer function if necessary.
1887   if (NeedsGlobalCtor || NeedsGlobalDtor)
1888     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1889 
1890   // If we are compiling with ASan, add metadata indicating dynamically
1891   // initialized globals.
1892   if (SanOpts.Address && NeedsGlobalCtor) {
1893     llvm::Module &M = getModule();
1894 
1895     llvm::NamedMDNode *DynamicInitializers =
1896         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1897     llvm::Value *GlobalToAdd[] = { GV };
1898     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1899     DynamicInitializers->addOperand(ThisGlobal);
1900   }
1901 
1902   // Emit global variable debug information.
1903   if (CGDebugInfo *DI = getModuleDebugInfo())
1904     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1905       DI->EmitGlobalVariable(GV, D);
1906 }
1907 
1908 llvm::GlobalValue::LinkageTypes
1909 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1910                                            llvm::GlobalVariable *GV) {
1911   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1912   if (Linkage == GVA_Internal)
1913     return llvm::Function::InternalLinkage;
1914   else if (D->hasAttr<DLLImportAttr>())
1915     return llvm::Function::DLLImportLinkage;
1916   else if (D->hasAttr<DLLExportAttr>())
1917     return llvm::Function::DLLExportLinkage;
1918   else if (D->hasAttr<WeakAttr>()) {
1919     if (GV->isConstant())
1920       return llvm::GlobalVariable::WeakODRLinkage;
1921     else
1922       return llvm::GlobalVariable::WeakAnyLinkage;
1923   } else if (Linkage == GVA_TemplateInstantiation ||
1924              Linkage == GVA_ExplicitTemplateInstantiation)
1925     return llvm::GlobalVariable::WeakODRLinkage;
1926   else if (!getLangOpts().CPlusPlus &&
1927            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1928              D->getAttr<CommonAttr>()) &&
1929            !D->hasExternalStorage() && !D->getInit() &&
1930            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1931            !D->getAttr<WeakImportAttr>()) {
1932     // Thread local vars aren't considered common linkage.
1933     return llvm::GlobalVariable::CommonLinkage;
1934   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1935              getTarget().getTriple().isMacOSX())
1936     // On Darwin, the backing variable for a C++11 thread_local variable always
1937     // has internal linkage; all accesses should just be calls to the
1938     // Itanium-specified entry point, which has the normal linkage of the
1939     // variable.
1940     return llvm::GlobalValue::InternalLinkage;
1941   return llvm::GlobalVariable::ExternalLinkage;
1942 }
1943 
1944 /// Replace the uses of a function that was declared with a non-proto type.
1945 /// We want to silently drop extra arguments from call sites
1946 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1947                                           llvm::Function *newFn) {
1948   // Fast path.
1949   if (old->use_empty()) return;
1950 
1951   llvm::Type *newRetTy = newFn->getReturnType();
1952   SmallVector<llvm::Value*, 4> newArgs;
1953 
1954   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1955          ui != ue; ) {
1956     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1957     llvm::User *user = *use;
1958 
1959     // Recognize and replace uses of bitcasts.  Most calls to
1960     // unprototyped functions will use bitcasts.
1961     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1962       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1963         replaceUsesOfNonProtoConstant(bitcast, newFn);
1964       continue;
1965     }
1966 
1967     // Recognize calls to the function.
1968     llvm::CallSite callSite(user);
1969     if (!callSite) continue;
1970     if (!callSite.isCallee(use)) continue;
1971 
1972     // If the return types don't match exactly, then we can't
1973     // transform this call unless it's dead.
1974     if (callSite->getType() != newRetTy && !callSite->use_empty())
1975       continue;
1976 
1977     // Get the call site's attribute list.
1978     SmallVector<llvm::AttributeSet, 8> newAttrs;
1979     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1980 
1981     // Collect any return attributes from the call.
1982     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1983       newAttrs.push_back(
1984         llvm::AttributeSet::get(newFn->getContext(),
1985                                 oldAttrs.getRetAttributes()));
1986 
1987     // If the function was passed too few arguments, don't transform.
1988     unsigned newNumArgs = newFn->arg_size();
1989     if (callSite.arg_size() < newNumArgs) continue;
1990 
1991     // If extra arguments were passed, we silently drop them.
1992     // If any of the types mismatch, we don't transform.
1993     unsigned argNo = 0;
1994     bool dontTransform = false;
1995     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1996            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1997       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1998         dontTransform = true;
1999         break;
2000       }
2001 
2002       // Add any parameter attributes.
2003       if (oldAttrs.hasAttributes(argNo + 1))
2004         newAttrs.
2005           push_back(llvm::
2006                     AttributeSet::get(newFn->getContext(),
2007                                       oldAttrs.getParamAttributes(argNo + 1)));
2008     }
2009     if (dontTransform)
2010       continue;
2011 
2012     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2013       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2014                                                  oldAttrs.getFnAttributes()));
2015 
2016     // Okay, we can transform this.  Create the new call instruction and copy
2017     // over the required information.
2018     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2019 
2020     llvm::CallSite newCall;
2021     if (callSite.isCall()) {
2022       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2023                                        callSite.getInstruction());
2024     } else {
2025       llvm::InvokeInst *oldInvoke =
2026         cast<llvm::InvokeInst>(callSite.getInstruction());
2027       newCall = llvm::InvokeInst::Create(newFn,
2028                                          oldInvoke->getNormalDest(),
2029                                          oldInvoke->getUnwindDest(),
2030                                          newArgs, "",
2031                                          callSite.getInstruction());
2032     }
2033     newArgs.clear(); // for the next iteration
2034 
2035     if (!newCall->getType()->isVoidTy())
2036       newCall->takeName(callSite.getInstruction());
2037     newCall.setAttributes(
2038                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2039     newCall.setCallingConv(callSite.getCallingConv());
2040 
2041     // Finally, remove the old call, replacing any uses with the new one.
2042     if (!callSite->use_empty())
2043       callSite->replaceAllUsesWith(newCall.getInstruction());
2044 
2045     // Copy debug location attached to CI.
2046     if (!callSite->getDebugLoc().isUnknown())
2047       newCall->setDebugLoc(callSite->getDebugLoc());
2048     callSite->eraseFromParent();
2049   }
2050 }
2051 
2052 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2053 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2054 /// existing call uses of the old function in the module, this adjusts them to
2055 /// call the new function directly.
2056 ///
2057 /// This is not just a cleanup: the always_inline pass requires direct calls to
2058 /// functions to be able to inline them.  If there is a bitcast in the way, it
2059 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2060 /// run at -O0.
2061 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2062                                                       llvm::Function *NewFn) {
2063   // If we're redefining a global as a function, don't transform it.
2064   if (!isa<llvm::Function>(Old)) return;
2065 
2066   replaceUsesOfNonProtoConstant(Old, NewFn);
2067 }
2068 
2069 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2070   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2071   // If we have a definition, this might be a deferred decl. If the
2072   // instantiation is explicit, make sure we emit it at the end.
2073   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2074     GetAddrOfGlobalVar(VD);
2075 
2076   EmitTopLevelDecl(VD);
2077 }
2078 
2079 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2080   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2081 
2082   // Compute the function info and LLVM type.
2083   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2084   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2085 
2086   // Get or create the prototype for the function.
2087   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2088 
2089   // Strip off a bitcast if we got one back.
2090   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2091     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2092     Entry = CE->getOperand(0);
2093   }
2094 
2095 
2096   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2097     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2098 
2099     // If the types mismatch then we have to rewrite the definition.
2100     assert(OldFn->isDeclaration() &&
2101            "Shouldn't replace non-declaration");
2102 
2103     // F is the Function* for the one with the wrong type, we must make a new
2104     // Function* and update everything that used F (a declaration) with the new
2105     // Function* (which will be a definition).
2106     //
2107     // This happens if there is a prototype for a function
2108     // (e.g. "int f()") and then a definition of a different type
2109     // (e.g. "int f(int x)").  Move the old function aside so that it
2110     // doesn't interfere with GetAddrOfFunction.
2111     OldFn->setName(StringRef());
2112     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2113 
2114     // This might be an implementation of a function without a
2115     // prototype, in which case, try to do special replacement of
2116     // calls which match the new prototype.  The really key thing here
2117     // is that we also potentially drop arguments from the call site
2118     // so as to make a direct call, which makes the inliner happier
2119     // and suppresses a number of optimizer warnings (!) about
2120     // dropping arguments.
2121     if (!OldFn->use_empty()) {
2122       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2123       OldFn->removeDeadConstantUsers();
2124     }
2125 
2126     // Replace uses of F with the Function we will endow with a body.
2127     if (!Entry->use_empty()) {
2128       llvm::Constant *NewPtrForOldDecl =
2129         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2130       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2131     }
2132 
2133     // Ok, delete the old function now, which is dead.
2134     OldFn->eraseFromParent();
2135 
2136     Entry = NewFn;
2137   }
2138 
2139   // We need to set linkage and visibility on the function before
2140   // generating code for it because various parts of IR generation
2141   // want to propagate this information down (e.g. to local static
2142   // declarations).
2143   llvm::Function *Fn = cast<llvm::Function>(Entry);
2144   setFunctionLinkage(D, Fn);
2145 
2146   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2147   setGlobalVisibility(Fn, D);
2148 
2149   MaybeHandleStaticInExternC(D, Fn);
2150 
2151   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2152 
2153   SetFunctionDefinitionAttributes(D, Fn);
2154   SetLLVMFunctionAttributesForDefinition(D, Fn);
2155 
2156   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2157     AddGlobalCtor(Fn, CA->getPriority());
2158   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2159     AddGlobalDtor(Fn, DA->getPriority());
2160   if (D->hasAttr<AnnotateAttr>())
2161     AddGlobalAnnotations(D, Fn);
2162 }
2163 
2164 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2165   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2166   const AliasAttr *AA = D->getAttr<AliasAttr>();
2167   assert(AA && "Not an alias?");
2168 
2169   StringRef MangledName = getMangledName(GD);
2170 
2171   // If there is a definition in the module, then it wins over the alias.
2172   // This is dubious, but allow it to be safe.  Just ignore the alias.
2173   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2174   if (Entry && !Entry->isDeclaration())
2175     return;
2176 
2177   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2178 
2179   // Create a reference to the named value.  This ensures that it is emitted
2180   // if a deferred decl.
2181   llvm::Constant *Aliasee;
2182   if (isa<llvm::FunctionType>(DeclTy))
2183     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2184                                       /*ForVTable=*/false);
2185   else
2186     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2187                                     llvm::PointerType::getUnqual(DeclTy), 0);
2188 
2189   // Create the new alias itself, but don't set a name yet.
2190   llvm::GlobalValue *GA =
2191     new llvm::GlobalAlias(Aliasee->getType(),
2192                           llvm::Function::ExternalLinkage,
2193                           "", Aliasee, &getModule());
2194 
2195   if (Entry) {
2196     assert(Entry->isDeclaration());
2197 
2198     // If there is a declaration in the module, then we had an extern followed
2199     // by the alias, as in:
2200     //   extern int test6();
2201     //   ...
2202     //   int test6() __attribute__((alias("test7")));
2203     //
2204     // Remove it and replace uses of it with the alias.
2205     GA->takeName(Entry);
2206 
2207     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2208                                                           Entry->getType()));
2209     Entry->eraseFromParent();
2210   } else {
2211     GA->setName(MangledName);
2212   }
2213 
2214   // Set attributes which are particular to an alias; this is a
2215   // specialization of the attributes which may be set on a global
2216   // variable/function.
2217   if (D->hasAttr<DLLExportAttr>()) {
2218     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2219       // The dllexport attribute is ignored for undefined symbols.
2220       if (FD->hasBody())
2221         GA->setLinkage(llvm::Function::DLLExportLinkage);
2222     } else {
2223       GA->setLinkage(llvm::Function::DLLExportLinkage);
2224     }
2225   } else if (D->hasAttr<WeakAttr>() ||
2226              D->hasAttr<WeakRefAttr>() ||
2227              D->isWeakImported()) {
2228     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2229   }
2230 
2231   SetCommonAttributes(D, GA);
2232 }
2233 
2234 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2235                                             ArrayRef<llvm::Type*> Tys) {
2236   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2237                                          Tys);
2238 }
2239 
2240 static llvm::StringMapEntry<llvm::Constant*> &
2241 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2242                          const StringLiteral *Literal,
2243                          bool TargetIsLSB,
2244                          bool &IsUTF16,
2245                          unsigned &StringLength) {
2246   StringRef String = Literal->getString();
2247   unsigned NumBytes = String.size();
2248 
2249   // Check for simple case.
2250   if (!Literal->containsNonAsciiOrNull()) {
2251     StringLength = NumBytes;
2252     return Map.GetOrCreateValue(String);
2253   }
2254 
2255   // Otherwise, convert the UTF8 literals into a string of shorts.
2256   IsUTF16 = true;
2257 
2258   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2259   const UTF8 *FromPtr = (const UTF8 *)String.data();
2260   UTF16 *ToPtr = &ToBuf[0];
2261 
2262   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2263                            &ToPtr, ToPtr + NumBytes,
2264                            strictConversion);
2265 
2266   // ConvertUTF8toUTF16 returns the length in ToPtr.
2267   StringLength = ToPtr - &ToBuf[0];
2268 
2269   // Add an explicit null.
2270   *ToPtr = 0;
2271   return Map.
2272     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2273                                (StringLength + 1) * 2));
2274 }
2275 
2276 static llvm::StringMapEntry<llvm::Constant*> &
2277 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2278                        const StringLiteral *Literal,
2279                        unsigned &StringLength) {
2280   StringRef String = Literal->getString();
2281   StringLength = String.size();
2282   return Map.GetOrCreateValue(String);
2283 }
2284 
2285 llvm::Constant *
2286 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2287   unsigned StringLength = 0;
2288   bool isUTF16 = false;
2289   llvm::StringMapEntry<llvm::Constant*> &Entry =
2290     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2291                              getDataLayout().isLittleEndian(),
2292                              isUTF16, StringLength);
2293 
2294   if (llvm::Constant *C = Entry.getValue())
2295     return C;
2296 
2297   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2298   llvm::Constant *Zeros[] = { Zero, Zero };
2299   llvm::Value *V;
2300 
2301   // If we don't already have it, get __CFConstantStringClassReference.
2302   if (!CFConstantStringClassRef) {
2303     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2304     Ty = llvm::ArrayType::get(Ty, 0);
2305     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2306                                            "__CFConstantStringClassReference");
2307     // Decay array -> ptr
2308     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2309     CFConstantStringClassRef = V;
2310   }
2311   else
2312     V = CFConstantStringClassRef;
2313 
2314   QualType CFTy = getContext().getCFConstantStringType();
2315 
2316   llvm::StructType *STy =
2317     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2318 
2319   llvm::Constant *Fields[4];
2320 
2321   // Class pointer.
2322   Fields[0] = cast<llvm::ConstantExpr>(V);
2323 
2324   // Flags.
2325   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2326   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2327     llvm::ConstantInt::get(Ty, 0x07C8);
2328 
2329   // String pointer.
2330   llvm::Constant *C = 0;
2331   if (isUTF16) {
2332     ArrayRef<uint16_t> Arr =
2333       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2334                                      const_cast<char *>(Entry.getKey().data())),
2335                                    Entry.getKey().size() / 2);
2336     C = llvm::ConstantDataArray::get(VMContext, Arr);
2337   } else {
2338     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2339   }
2340 
2341   llvm::GlobalValue::LinkageTypes Linkage;
2342   if (isUTF16)
2343     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2344     Linkage = llvm::GlobalValue::InternalLinkage;
2345   else
2346     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2347     // when using private linkage. It is not clear if this is a bug in ld
2348     // or a reasonable new restriction.
2349     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2350 
2351   // Note: -fwritable-strings doesn't make the backing store strings of
2352   // CFStrings writable. (See <rdar://problem/10657500>)
2353   llvm::GlobalVariable *GV =
2354     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2355                              Linkage, C, ".str");
2356   GV->setUnnamedAddr(true);
2357   // Don't enforce the target's minimum global alignment, since the only use
2358   // of the string is via this class initializer.
2359   if (isUTF16) {
2360     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2361     GV->setAlignment(Align.getQuantity());
2362   } else {
2363     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2364     GV->setAlignment(Align.getQuantity());
2365   }
2366 
2367   // String.
2368   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2369 
2370   if (isUTF16)
2371     // Cast the UTF16 string to the correct type.
2372     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2373 
2374   // String length.
2375   Ty = getTypes().ConvertType(getContext().LongTy);
2376   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2377 
2378   // The struct.
2379   C = llvm::ConstantStruct::get(STy, Fields);
2380   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2381                                 llvm::GlobalVariable::PrivateLinkage, C,
2382                                 "_unnamed_cfstring_");
2383   if (const char *Sect = getTarget().getCFStringSection())
2384     GV->setSection(Sect);
2385   Entry.setValue(GV);
2386 
2387   return GV;
2388 }
2389 
2390 static RecordDecl *
2391 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2392                  DeclContext *DC, IdentifierInfo *Id) {
2393   SourceLocation Loc;
2394   if (Ctx.getLangOpts().CPlusPlus)
2395     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2396   else
2397     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2398 }
2399 
2400 llvm::Constant *
2401 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2402   unsigned StringLength = 0;
2403   llvm::StringMapEntry<llvm::Constant*> &Entry =
2404     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2405 
2406   if (llvm::Constant *C = Entry.getValue())
2407     return C;
2408 
2409   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2410   llvm::Constant *Zeros[] = { Zero, Zero };
2411   llvm::Value *V;
2412   // If we don't already have it, get _NSConstantStringClassReference.
2413   if (!ConstantStringClassRef) {
2414     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2415     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2416     llvm::Constant *GV;
2417     if (LangOpts.ObjCRuntime.isNonFragile()) {
2418       std::string str =
2419         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2420                             : "OBJC_CLASS_$_" + StringClass;
2421       GV = getObjCRuntime().GetClassGlobal(str);
2422       // Make sure the result is of the correct type.
2423       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2424       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2425       ConstantStringClassRef = V;
2426     } else {
2427       std::string str =
2428         StringClass.empty() ? "_NSConstantStringClassReference"
2429                             : "_" + StringClass + "ClassReference";
2430       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2431       GV = CreateRuntimeVariable(PTy, str);
2432       // Decay array -> ptr
2433       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2434       ConstantStringClassRef = V;
2435     }
2436   }
2437   else
2438     V = ConstantStringClassRef;
2439 
2440   if (!NSConstantStringType) {
2441     // Construct the type for a constant NSString.
2442     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2443                                      Context.getTranslationUnitDecl(),
2444                                    &Context.Idents.get("__builtin_NSString"));
2445     D->startDefinition();
2446 
2447     QualType FieldTypes[3];
2448 
2449     // const int *isa;
2450     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2451     // const char *str;
2452     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2453     // unsigned int length;
2454     FieldTypes[2] = Context.UnsignedIntTy;
2455 
2456     // Create fields
2457     for (unsigned i = 0; i < 3; ++i) {
2458       FieldDecl *Field = FieldDecl::Create(Context, D,
2459                                            SourceLocation(),
2460                                            SourceLocation(), 0,
2461                                            FieldTypes[i], /*TInfo=*/0,
2462                                            /*BitWidth=*/0,
2463                                            /*Mutable=*/false,
2464                                            ICIS_NoInit);
2465       Field->setAccess(AS_public);
2466       D->addDecl(Field);
2467     }
2468 
2469     D->completeDefinition();
2470     QualType NSTy = Context.getTagDeclType(D);
2471     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2472   }
2473 
2474   llvm::Constant *Fields[3];
2475 
2476   // Class pointer.
2477   Fields[0] = cast<llvm::ConstantExpr>(V);
2478 
2479   // String pointer.
2480   llvm::Constant *C =
2481     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2482 
2483   llvm::GlobalValue::LinkageTypes Linkage;
2484   bool isConstant;
2485   Linkage = llvm::GlobalValue::PrivateLinkage;
2486   isConstant = !LangOpts.WritableStrings;
2487 
2488   llvm::GlobalVariable *GV =
2489   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2490                            ".str");
2491   GV->setUnnamedAddr(true);
2492   // Don't enforce the target's minimum global alignment, since the only use
2493   // of the string is via this class initializer.
2494   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2495   GV->setAlignment(Align.getQuantity());
2496   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2497 
2498   // String length.
2499   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2500   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2501 
2502   // The struct.
2503   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2504   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2505                                 llvm::GlobalVariable::PrivateLinkage, C,
2506                                 "_unnamed_nsstring_");
2507   // FIXME. Fix section.
2508   if (const char *Sect =
2509         LangOpts.ObjCRuntime.isNonFragile()
2510           ? getTarget().getNSStringNonFragileABISection()
2511           : getTarget().getNSStringSection())
2512     GV->setSection(Sect);
2513   Entry.setValue(GV);
2514 
2515   return GV;
2516 }
2517 
2518 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2519   if (ObjCFastEnumerationStateType.isNull()) {
2520     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2521                                      Context.getTranslationUnitDecl(),
2522                       &Context.Idents.get("__objcFastEnumerationState"));
2523     D->startDefinition();
2524 
2525     QualType FieldTypes[] = {
2526       Context.UnsignedLongTy,
2527       Context.getPointerType(Context.getObjCIdType()),
2528       Context.getPointerType(Context.UnsignedLongTy),
2529       Context.getConstantArrayType(Context.UnsignedLongTy,
2530                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2531     };
2532 
2533     for (size_t i = 0; i < 4; ++i) {
2534       FieldDecl *Field = FieldDecl::Create(Context,
2535                                            D,
2536                                            SourceLocation(),
2537                                            SourceLocation(), 0,
2538                                            FieldTypes[i], /*TInfo=*/0,
2539                                            /*BitWidth=*/0,
2540                                            /*Mutable=*/false,
2541                                            ICIS_NoInit);
2542       Field->setAccess(AS_public);
2543       D->addDecl(Field);
2544     }
2545 
2546     D->completeDefinition();
2547     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2548   }
2549 
2550   return ObjCFastEnumerationStateType;
2551 }
2552 
2553 llvm::Constant *
2554 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2555   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2556 
2557   // Don't emit it as the address of the string, emit the string data itself
2558   // as an inline array.
2559   if (E->getCharByteWidth() == 1) {
2560     SmallString<64> Str(E->getString());
2561 
2562     // Resize the string to the right size, which is indicated by its type.
2563     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2564     Str.resize(CAT->getSize().getZExtValue());
2565     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2566   }
2567 
2568   llvm::ArrayType *AType =
2569     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2570   llvm::Type *ElemTy = AType->getElementType();
2571   unsigned NumElements = AType->getNumElements();
2572 
2573   // Wide strings have either 2-byte or 4-byte elements.
2574   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2575     SmallVector<uint16_t, 32> Elements;
2576     Elements.reserve(NumElements);
2577 
2578     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2579       Elements.push_back(E->getCodeUnit(i));
2580     Elements.resize(NumElements);
2581     return llvm::ConstantDataArray::get(VMContext, Elements);
2582   }
2583 
2584   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2585   SmallVector<uint32_t, 32> Elements;
2586   Elements.reserve(NumElements);
2587 
2588   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2589     Elements.push_back(E->getCodeUnit(i));
2590   Elements.resize(NumElements);
2591   return llvm::ConstantDataArray::get(VMContext, Elements);
2592 }
2593 
2594 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2595 /// constant array for the given string literal.
2596 llvm::Constant *
2597 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2598   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2599   if (S->isAscii() || S->isUTF8()) {
2600     SmallString<64> Str(S->getString());
2601 
2602     // Resize the string to the right size, which is indicated by its type.
2603     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2604     Str.resize(CAT->getSize().getZExtValue());
2605     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2606   }
2607 
2608   // FIXME: the following does not memoize wide strings.
2609   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2610   llvm::GlobalVariable *GV =
2611     new llvm::GlobalVariable(getModule(),C->getType(),
2612                              !LangOpts.WritableStrings,
2613                              llvm::GlobalValue::PrivateLinkage,
2614                              C,".str");
2615 
2616   GV->setAlignment(Align.getQuantity());
2617   GV->setUnnamedAddr(true);
2618   return GV;
2619 }
2620 
2621 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2622 /// array for the given ObjCEncodeExpr node.
2623 llvm::Constant *
2624 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2625   std::string Str;
2626   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2627 
2628   return GetAddrOfConstantCString(Str);
2629 }
2630 
2631 
2632 /// GenerateWritableString -- Creates storage for a string literal.
2633 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2634                                              bool constant,
2635                                              CodeGenModule &CGM,
2636                                              const char *GlobalName,
2637                                              unsigned Alignment) {
2638   // Create Constant for this string literal. Don't add a '\0'.
2639   llvm::Constant *C =
2640       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2641 
2642   // Create a global variable for this string
2643   llvm::GlobalVariable *GV =
2644     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2645                              llvm::GlobalValue::PrivateLinkage,
2646                              C, GlobalName);
2647   GV->setAlignment(Alignment);
2648   GV->setUnnamedAddr(true);
2649   return GV;
2650 }
2651 
2652 /// GetAddrOfConstantString - Returns a pointer to a character array
2653 /// containing the literal. This contents are exactly that of the
2654 /// given string, i.e. it will not be null terminated automatically;
2655 /// see GetAddrOfConstantCString. Note that whether the result is
2656 /// actually a pointer to an LLVM constant depends on
2657 /// Feature.WriteableStrings.
2658 ///
2659 /// The result has pointer to array type.
2660 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2661                                                        const char *GlobalName,
2662                                                        unsigned Alignment) {
2663   // Get the default prefix if a name wasn't specified.
2664   if (!GlobalName)
2665     GlobalName = ".str";
2666 
2667   if (Alignment == 0)
2668     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2669       .getQuantity();
2670 
2671   // Don't share any string literals if strings aren't constant.
2672   if (LangOpts.WritableStrings)
2673     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2674 
2675   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2676     ConstantStringMap.GetOrCreateValue(Str);
2677 
2678   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2679     if (Alignment > GV->getAlignment()) {
2680       GV->setAlignment(Alignment);
2681     }
2682     return GV;
2683   }
2684 
2685   // Create a global variable for this.
2686   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2687                                                    Alignment);
2688   Entry.setValue(GV);
2689   return GV;
2690 }
2691 
2692 /// GetAddrOfConstantCString - Returns a pointer to a character
2693 /// array containing the literal and a terminating '\0'
2694 /// character. The result has pointer to array type.
2695 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2696                                                         const char *GlobalName,
2697                                                         unsigned Alignment) {
2698   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2699   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2700 }
2701 
2702 /// EmitObjCPropertyImplementations - Emit information for synthesized
2703 /// properties for an implementation.
2704 void CodeGenModule::EmitObjCPropertyImplementations(const
2705                                                     ObjCImplementationDecl *D) {
2706   for (ObjCImplementationDecl::propimpl_iterator
2707          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2708     ObjCPropertyImplDecl *PID = *i;
2709 
2710     // Dynamic is just for type-checking.
2711     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2712       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2713 
2714       // Determine which methods need to be implemented, some may have
2715       // been overridden. Note that ::isPropertyAccessor is not the method
2716       // we want, that just indicates if the decl came from a
2717       // property. What we want to know is if the method is defined in
2718       // this implementation.
2719       if (!D->getInstanceMethod(PD->getGetterName()))
2720         CodeGenFunction(*this).GenerateObjCGetter(
2721                                  const_cast<ObjCImplementationDecl *>(D), PID);
2722       if (!PD->isReadOnly() &&
2723           !D->getInstanceMethod(PD->getSetterName()))
2724         CodeGenFunction(*this).GenerateObjCSetter(
2725                                  const_cast<ObjCImplementationDecl *>(D), PID);
2726     }
2727   }
2728 }
2729 
2730 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2731   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2732   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2733        ivar; ivar = ivar->getNextIvar())
2734     if (ivar->getType().isDestructedType())
2735       return true;
2736 
2737   return false;
2738 }
2739 
2740 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2741 /// for an implementation.
2742 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2743   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2744   if (needsDestructMethod(D)) {
2745     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2746     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2747     ObjCMethodDecl *DTORMethod =
2748       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2749                              cxxSelector, getContext().VoidTy, 0, D,
2750                              /*isInstance=*/true, /*isVariadic=*/false,
2751                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2752                              /*isDefined=*/false, ObjCMethodDecl::Required);
2753     D->addInstanceMethod(DTORMethod);
2754     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2755     D->setHasDestructors(true);
2756   }
2757 
2758   // If the implementation doesn't have any ivar initializers, we don't need
2759   // a .cxx_construct.
2760   if (D->getNumIvarInitializers() == 0)
2761     return;
2762 
2763   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2764   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2765   // The constructor returns 'self'.
2766   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2767                                                 D->getLocation(),
2768                                                 D->getLocation(),
2769                                                 cxxSelector,
2770                                                 getContext().getObjCIdType(), 0,
2771                                                 D, /*isInstance=*/true,
2772                                                 /*isVariadic=*/false,
2773                                                 /*isPropertyAccessor=*/true,
2774                                                 /*isImplicitlyDeclared=*/true,
2775                                                 /*isDefined=*/false,
2776                                                 ObjCMethodDecl::Required);
2777   D->addInstanceMethod(CTORMethod);
2778   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2779   D->setHasNonZeroConstructors(true);
2780 }
2781 
2782 /// EmitNamespace - Emit all declarations in a namespace.
2783 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2784   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2785        I != E; ++I)
2786     EmitTopLevelDecl(*I);
2787 }
2788 
2789 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2790 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2791   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2792       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2793     ErrorUnsupported(LSD, "linkage spec");
2794     return;
2795   }
2796 
2797   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2798        I != E; ++I) {
2799     // Meta-data for ObjC class includes references to implemented methods.
2800     // Generate class's method definitions first.
2801     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2802       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2803            MEnd = OID->meth_end();
2804            M != MEnd; ++M)
2805         EmitTopLevelDecl(*M);
2806     }
2807     EmitTopLevelDecl(*I);
2808   }
2809 }
2810 
2811 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2812 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2813   // If an error has occurred, stop code generation, but continue
2814   // parsing and semantic analysis (to ensure all warnings and errors
2815   // are emitted).
2816   if (Diags.hasErrorOccurred())
2817     return;
2818 
2819   // Ignore dependent declarations.
2820   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2821     return;
2822 
2823   switch (D->getKind()) {
2824   case Decl::CXXConversion:
2825   case Decl::CXXMethod:
2826   case Decl::Function:
2827     // Skip function templates
2828     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2829         cast<FunctionDecl>(D)->isLateTemplateParsed())
2830       return;
2831 
2832     EmitGlobal(cast<FunctionDecl>(D));
2833     break;
2834 
2835   case Decl::Var:
2836     EmitGlobal(cast<VarDecl>(D));
2837     break;
2838 
2839   // Indirect fields from global anonymous structs and unions can be
2840   // ignored; only the actual variable requires IR gen support.
2841   case Decl::IndirectField:
2842     break;
2843 
2844   // C++ Decls
2845   case Decl::Namespace:
2846     EmitNamespace(cast<NamespaceDecl>(D));
2847     break;
2848     // No code generation needed.
2849   case Decl::UsingShadow:
2850   case Decl::Using:
2851   case Decl::ClassTemplate:
2852   case Decl::FunctionTemplate:
2853   case Decl::TypeAliasTemplate:
2854   case Decl::NamespaceAlias:
2855   case Decl::Block:
2856   case Decl::Empty:
2857     break;
2858   case Decl::UsingDirective: // using namespace X; [C++]
2859     if (CGDebugInfo *DI = getModuleDebugInfo())
2860       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2861     return;
2862   case Decl::CXXConstructor:
2863     // Skip function templates
2864     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2865         cast<FunctionDecl>(D)->isLateTemplateParsed())
2866       return;
2867 
2868     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2869     break;
2870   case Decl::CXXDestructor:
2871     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2872       return;
2873     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2874     break;
2875 
2876   case Decl::StaticAssert:
2877     // Nothing to do.
2878     break;
2879 
2880   // Objective-C Decls
2881 
2882   // Forward declarations, no (immediate) code generation.
2883   case Decl::ObjCInterface:
2884   case Decl::ObjCCategory:
2885     break;
2886 
2887   case Decl::ObjCProtocol: {
2888     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2889     if (Proto->isThisDeclarationADefinition())
2890       ObjCRuntime->GenerateProtocol(Proto);
2891     break;
2892   }
2893 
2894   case Decl::ObjCCategoryImpl:
2895     // Categories have properties but don't support synthesize so we
2896     // can ignore them here.
2897     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2898     break;
2899 
2900   case Decl::ObjCImplementation: {
2901     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2902     EmitObjCPropertyImplementations(OMD);
2903     EmitObjCIvarInitializations(OMD);
2904     ObjCRuntime->GenerateClass(OMD);
2905     // Emit global variable debug information.
2906     if (CGDebugInfo *DI = getModuleDebugInfo())
2907       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2908         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2909             OMD->getClassInterface()), OMD->getLocation());
2910     break;
2911   }
2912   case Decl::ObjCMethod: {
2913     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2914     // If this is not a prototype, emit the body.
2915     if (OMD->getBody())
2916       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2917     break;
2918   }
2919   case Decl::ObjCCompatibleAlias:
2920     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2921     break;
2922 
2923   case Decl::LinkageSpec:
2924     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2925     break;
2926 
2927   case Decl::FileScopeAsm: {
2928     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2929     StringRef AsmString = AD->getAsmString()->getString();
2930 
2931     const std::string &S = getModule().getModuleInlineAsm();
2932     if (S.empty())
2933       getModule().setModuleInlineAsm(AsmString);
2934     else if (S.end()[-1] == '\n')
2935       getModule().setModuleInlineAsm(S + AsmString.str());
2936     else
2937       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2938     break;
2939   }
2940 
2941   case Decl::Import: {
2942     ImportDecl *Import = cast<ImportDecl>(D);
2943 
2944     // Ignore import declarations that come from imported modules.
2945     if (clang::Module *Owner = Import->getOwningModule()) {
2946       if (getLangOpts().CurrentModule.empty() ||
2947           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2948         break;
2949     }
2950 
2951     ImportedModules.insert(Import->getImportedModule());
2952     break;
2953  }
2954 
2955   default:
2956     // Make sure we handled everything we should, every other kind is a
2957     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2958     // function. Need to recode Decl::Kind to do that easily.
2959     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2960   }
2961 }
2962 
2963 /// Turns the given pointer into a constant.
2964 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2965                                           const void *Ptr) {
2966   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2967   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2968   return llvm::ConstantInt::get(i64, PtrInt);
2969 }
2970 
2971 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2972                                    llvm::NamedMDNode *&GlobalMetadata,
2973                                    GlobalDecl D,
2974                                    llvm::GlobalValue *Addr) {
2975   if (!GlobalMetadata)
2976     GlobalMetadata =
2977       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2978 
2979   // TODO: should we report variant information for ctors/dtors?
2980   llvm::Value *Ops[] = {
2981     Addr,
2982     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2983   };
2984   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2985 }
2986 
2987 /// For each function which is declared within an extern "C" region and marked
2988 /// as 'used', but has internal linkage, create an alias from the unmangled
2989 /// name to the mangled name if possible. People expect to be able to refer
2990 /// to such functions with an unmangled name from inline assembly within the
2991 /// same translation unit.
2992 void CodeGenModule::EmitStaticExternCAliases() {
2993   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2994                                   E = StaticExternCValues.end();
2995        I != E; ++I) {
2996     IdentifierInfo *Name = I->first;
2997     llvm::GlobalValue *Val = I->second;
2998     if (Val && !getModule().getNamedValue(Name->getName()))
2999       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3000                                           Name->getName(), Val, &getModule()));
3001   }
3002 }
3003 
3004 /// Emits metadata nodes associating all the global values in the
3005 /// current module with the Decls they came from.  This is useful for
3006 /// projects using IR gen as a subroutine.
3007 ///
3008 /// Since there's currently no way to associate an MDNode directly
3009 /// with an llvm::GlobalValue, we create a global named metadata
3010 /// with the name 'clang.global.decl.ptrs'.
3011 void CodeGenModule::EmitDeclMetadata() {
3012   llvm::NamedMDNode *GlobalMetadata = 0;
3013 
3014   // StaticLocalDeclMap
3015   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3016          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3017        I != E; ++I) {
3018     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3019     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3020   }
3021 }
3022 
3023 /// Emits metadata nodes for all the local variables in the current
3024 /// function.
3025 void CodeGenFunction::EmitDeclMetadata() {
3026   if (LocalDeclMap.empty()) return;
3027 
3028   llvm::LLVMContext &Context = getLLVMContext();
3029 
3030   // Find the unique metadata ID for this name.
3031   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3032 
3033   llvm::NamedMDNode *GlobalMetadata = 0;
3034 
3035   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3036          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3037     const Decl *D = I->first;
3038     llvm::Value *Addr = I->second;
3039 
3040     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3041       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3042       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3043     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3044       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3045       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3046     }
3047   }
3048 }
3049 
3050 void CodeGenModule::EmitCoverageFile() {
3051   if (!getCodeGenOpts().CoverageFile.empty()) {
3052     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3053       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3054       llvm::LLVMContext &Ctx = TheModule.getContext();
3055       llvm::MDString *CoverageFile =
3056           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3057       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3058         llvm::MDNode *CU = CUNode->getOperand(i);
3059         llvm::Value *node[] = { CoverageFile, CU };
3060         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3061         GCov->addOperand(N);
3062       }
3063     }
3064   }
3065 }
3066 
3067 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3068                                                      QualType GuidType) {
3069   // Sema has checked that all uuid strings are of the form
3070   // "12345678-1234-1234-1234-1234567890ab".
3071   assert(Uuid.size() == 36);
3072   const char *Uuidstr = Uuid.data();
3073   for (int i = 0; i < 36; ++i) {
3074     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3075     else                                         assert(isHexDigit(Uuidstr[i]));
3076   }
3077 
3078   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3079   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3080   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3081   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3082 
3083   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3084   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3085   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3086   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3087   APValue& Arr = InitStruct.getStructField(3);
3088   Arr = APValue(APValue::UninitArray(), 8, 8);
3089   for (int t = 0; t < 8; ++t)
3090     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3091           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3092 
3093   return EmitConstantValue(InitStruct, GuidType);
3094 }
3095