1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 73 using namespace clang; 74 using namespace CodeGen; 75 76 static llvm::cl::opt<bool> LimitedCoverage( 77 "limited-coverage-experimental", llvm::cl::Hidden, 78 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 79 80 static const char AnnotationSection[] = "llvm.metadata"; 81 82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 83 switch (CGM.getContext().getCXXABIKind()) { 84 case TargetCXXABI::AppleARM64: 85 case TargetCXXABI::Fuchsia: 86 case TargetCXXABI::GenericAArch64: 87 case TargetCXXABI::GenericARM: 88 case TargetCXXABI::iOS: 89 case TargetCXXABI::WatchOS: 90 case TargetCXXABI::GenericMIPS: 91 case TargetCXXABI::GenericItanium: 92 case TargetCXXABI::WebAssembly: 93 case TargetCXXABI::XL: 94 return CreateItaniumCXXABI(CGM); 95 case TargetCXXABI::Microsoft: 96 return CreateMicrosoftCXXABI(CGM); 97 } 98 99 llvm_unreachable("invalid C++ ABI kind"); 100 } 101 102 CodeGenModule::CodeGenModule(ASTContext &C, 103 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 104 const HeaderSearchOptions &HSO, 105 const PreprocessorOptions &PPO, 106 const CodeGenOptions &CGO, llvm::Module &M, 107 DiagnosticsEngine &diags, 108 CoverageSourceInfo *CoverageInfo) 109 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 110 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 111 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 112 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 113 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 114 115 // Initialize the type cache. 116 llvm::LLVMContext &LLVMContext = M.getContext(); 117 VoidTy = llvm::Type::getVoidTy(LLVMContext); 118 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 119 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 120 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 121 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 122 HalfTy = llvm::Type::getHalfTy(LLVMContext); 123 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 124 FloatTy = llvm::Type::getFloatTy(LLVMContext); 125 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 126 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 127 PointerAlignInBytes = 128 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 129 .getQuantity(); 130 SizeSizeInBytes = 131 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 132 IntAlignInBytes = 133 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 134 CharTy = 135 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 136 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 137 IntPtrTy = llvm::IntegerType::get(LLVMContext, 138 C.getTargetInfo().getMaxPointerWidth()); 139 Int8PtrTy = Int8Ty->getPointerTo(0); 140 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 141 const llvm::DataLayout &DL = M.getDataLayout(); 142 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 143 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 144 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 145 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 146 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 147 148 // Build C++20 Module initializers. 149 // TODO: Add Microsoft here once we know the mangling required for the 150 // initializers. 151 CXX20ModuleInits = 152 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 153 ItaniumMangleContext::MK_Itanium; 154 155 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 156 157 if (LangOpts.ObjC) 158 createObjCRuntime(); 159 if (LangOpts.OpenCL) 160 createOpenCLRuntime(); 161 if (LangOpts.OpenMP) 162 createOpenMPRuntime(); 163 if (LangOpts.CUDA) 164 createCUDARuntime(); 165 if (LangOpts.HLSL) 166 createHLSLRuntime(); 167 168 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 169 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 170 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 171 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 172 getCXXABI().getMangleContext())); 173 174 // If debug info or coverage generation is enabled, create the CGDebugInfo 175 // object. 176 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 177 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 178 DebugInfo.reset(new CGDebugInfo(*this)); 179 180 Block.GlobalUniqueCount = 0; 181 182 if (C.getLangOpts().ObjC) 183 ObjCData.reset(new ObjCEntrypoints()); 184 185 if (CodeGenOpts.hasProfileClangUse()) { 186 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 187 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 188 // We're checking for profile read errors in CompilerInvocation, so if 189 // there was an error it should've already been caught. If it hasn't been 190 // somehow, trip an assertion. 191 assert(ReaderOrErr); 192 PGOReader = std::move(ReaderOrErr.get()); 193 } 194 195 // If coverage mapping generation is enabled, create the 196 // CoverageMappingModuleGen object. 197 if (CodeGenOpts.CoverageMapping) 198 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 199 200 // Generate the module name hash here if needed. 201 if (CodeGenOpts.UniqueInternalLinkageNames && 202 !getModule().getSourceFileName().empty()) { 203 std::string Path = getModule().getSourceFileName(); 204 // Check if a path substitution is needed from the MacroPrefixMap. 205 for (const auto &Entry : LangOpts.MacroPrefixMap) 206 if (Path.rfind(Entry.first, 0) != std::string::npos) { 207 Path = Entry.second + Path.substr(Entry.first.size()); 208 break; 209 } 210 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 211 } 212 } 213 214 CodeGenModule::~CodeGenModule() {} 215 216 void CodeGenModule::createObjCRuntime() { 217 // This is just isGNUFamily(), but we want to force implementors of 218 // new ABIs to decide how best to do this. 219 switch (LangOpts.ObjCRuntime.getKind()) { 220 case ObjCRuntime::GNUstep: 221 case ObjCRuntime::GCC: 222 case ObjCRuntime::ObjFW: 223 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 224 return; 225 226 case ObjCRuntime::FragileMacOSX: 227 case ObjCRuntime::MacOSX: 228 case ObjCRuntime::iOS: 229 case ObjCRuntime::WatchOS: 230 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 231 return; 232 } 233 llvm_unreachable("bad runtime kind"); 234 } 235 236 void CodeGenModule::createOpenCLRuntime() { 237 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 238 } 239 240 void CodeGenModule::createOpenMPRuntime() { 241 // Select a specialized code generation class based on the target, if any. 242 // If it does not exist use the default implementation. 243 switch (getTriple().getArch()) { 244 case llvm::Triple::nvptx: 245 case llvm::Triple::nvptx64: 246 case llvm::Triple::amdgcn: 247 assert(getLangOpts().OpenMPIsDevice && 248 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 249 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 250 break; 251 default: 252 if (LangOpts.OpenMPSimd) 253 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 254 else 255 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 256 break; 257 } 258 } 259 260 void CodeGenModule::createCUDARuntime() { 261 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 262 } 263 264 void CodeGenModule::createHLSLRuntime() { 265 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 266 } 267 268 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 269 Replacements[Name] = C; 270 } 271 272 void CodeGenModule::applyReplacements() { 273 for (auto &I : Replacements) { 274 StringRef MangledName = I.first(); 275 llvm::Constant *Replacement = I.second; 276 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 277 if (!Entry) 278 continue; 279 auto *OldF = cast<llvm::Function>(Entry); 280 auto *NewF = dyn_cast<llvm::Function>(Replacement); 281 if (!NewF) { 282 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 283 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 284 } else { 285 auto *CE = cast<llvm::ConstantExpr>(Replacement); 286 assert(CE->getOpcode() == llvm::Instruction::BitCast || 287 CE->getOpcode() == llvm::Instruction::GetElementPtr); 288 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 289 } 290 } 291 292 // Replace old with new, but keep the old order. 293 OldF->replaceAllUsesWith(Replacement); 294 if (NewF) { 295 NewF->removeFromParent(); 296 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 297 NewF); 298 } 299 OldF->eraseFromParent(); 300 } 301 } 302 303 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 304 GlobalValReplacements.push_back(std::make_pair(GV, C)); 305 } 306 307 void CodeGenModule::applyGlobalValReplacements() { 308 for (auto &I : GlobalValReplacements) { 309 llvm::GlobalValue *GV = I.first; 310 llvm::Constant *C = I.second; 311 312 GV->replaceAllUsesWith(C); 313 GV->eraseFromParent(); 314 } 315 } 316 317 // This is only used in aliases that we created and we know they have a 318 // linear structure. 319 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 320 const llvm::Constant *C; 321 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 322 C = GA->getAliasee(); 323 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 324 C = GI->getResolver(); 325 else 326 return GV; 327 328 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 329 if (!AliaseeGV) 330 return nullptr; 331 332 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 333 if (FinalGV == GV) 334 return nullptr; 335 336 return FinalGV; 337 } 338 339 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 340 SourceLocation Location, bool IsIFunc, 341 const llvm::GlobalValue *Alias, 342 const llvm::GlobalValue *&GV) { 343 GV = getAliasedGlobal(Alias); 344 if (!GV) { 345 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 346 return false; 347 } 348 349 if (GV->isDeclaration()) { 350 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 351 return false; 352 } 353 354 if (IsIFunc) { 355 // Check resolver function type. 356 const auto *F = dyn_cast<llvm::Function>(GV); 357 if (!F) { 358 Diags.Report(Location, diag::err_alias_to_undefined) 359 << IsIFunc << IsIFunc; 360 return false; 361 } 362 363 llvm::FunctionType *FTy = F->getFunctionType(); 364 if (!FTy->getReturnType()->isPointerTy()) { 365 Diags.Report(Location, diag::err_ifunc_resolver_return); 366 return false; 367 } 368 } 369 370 return true; 371 } 372 373 void CodeGenModule::checkAliases() { 374 // Check if the constructed aliases are well formed. It is really unfortunate 375 // that we have to do this in CodeGen, but we only construct mangled names 376 // and aliases during codegen. 377 bool Error = false; 378 DiagnosticsEngine &Diags = getDiags(); 379 for (const GlobalDecl &GD : Aliases) { 380 const auto *D = cast<ValueDecl>(GD.getDecl()); 381 SourceLocation Location; 382 bool IsIFunc = D->hasAttr<IFuncAttr>(); 383 if (const Attr *A = D->getDefiningAttr()) 384 Location = A->getLocation(); 385 else 386 llvm_unreachable("Not an alias or ifunc?"); 387 388 StringRef MangledName = getMangledName(GD); 389 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 390 const llvm::GlobalValue *GV = nullptr; 391 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 392 Error = true; 393 continue; 394 } 395 396 llvm::Constant *Aliasee = 397 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 398 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 399 400 llvm::GlobalValue *AliaseeGV; 401 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 402 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 403 else 404 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 405 406 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 407 StringRef AliasSection = SA->getName(); 408 if (AliasSection != AliaseeGV->getSection()) 409 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 410 << AliasSection << IsIFunc << IsIFunc; 411 } 412 413 // We have to handle alias to weak aliases in here. LLVM itself disallows 414 // this since the object semantics would not match the IL one. For 415 // compatibility with gcc we implement it by just pointing the alias 416 // to its aliasee's aliasee. We also warn, since the user is probably 417 // expecting the link to be weak. 418 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 419 if (GA->isInterposable()) { 420 Diags.Report(Location, diag::warn_alias_to_weak_alias) 421 << GV->getName() << GA->getName() << IsIFunc; 422 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 423 GA->getAliasee(), Alias->getType()); 424 425 if (IsIFunc) 426 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 427 else 428 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 429 } 430 } 431 } 432 if (!Error) 433 return; 434 435 for (const GlobalDecl &GD : Aliases) { 436 StringRef MangledName = getMangledName(GD); 437 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 438 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 439 Alias->eraseFromParent(); 440 } 441 } 442 443 void CodeGenModule::clear() { 444 DeferredDeclsToEmit.clear(); 445 EmittedDeferredDecls.clear(); 446 if (OpenMPRuntime) 447 OpenMPRuntime->clear(); 448 } 449 450 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 451 StringRef MainFile) { 452 if (!hasDiagnostics()) 453 return; 454 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 455 if (MainFile.empty()) 456 MainFile = "<stdin>"; 457 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 458 } else { 459 if (Mismatched > 0) 460 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 461 462 if (Missing > 0) 463 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 464 } 465 } 466 467 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 468 llvm::Module &M) { 469 if (!LO.VisibilityFromDLLStorageClass) 470 return; 471 472 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 473 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 474 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 475 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 476 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 477 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 478 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 479 CodeGenModule::GetLLVMVisibility( 480 LO.getExternDeclNoDLLStorageClassVisibility()); 481 482 for (llvm::GlobalValue &GV : M.global_values()) { 483 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 484 continue; 485 486 // Reset DSO locality before setting the visibility. This removes 487 // any effects that visibility options and annotations may have 488 // had on the DSO locality. Setting the visibility will implicitly set 489 // appropriate globals to DSO Local; however, this will be pessimistic 490 // w.r.t. to the normal compiler IRGen. 491 GV.setDSOLocal(false); 492 493 if (GV.isDeclarationForLinker()) { 494 GV.setVisibility(GV.getDLLStorageClass() == 495 llvm::GlobalValue::DLLImportStorageClass 496 ? ExternDeclDLLImportVisibility 497 : ExternDeclNoDLLStorageClassVisibility); 498 } else { 499 GV.setVisibility(GV.getDLLStorageClass() == 500 llvm::GlobalValue::DLLExportStorageClass 501 ? DLLExportVisibility 502 : NoDLLStorageClassVisibility); 503 } 504 505 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 506 } 507 } 508 509 void CodeGenModule::Release() { 510 Module *Primary = getContext().getModuleForCodeGen(); 511 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 512 EmitModuleInitializers(Primary); 513 EmitDeferred(); 514 DeferredDecls.insert(EmittedDeferredDecls.begin(), 515 EmittedDeferredDecls.end()); 516 EmittedDeferredDecls.clear(); 517 EmitVTablesOpportunistically(); 518 applyGlobalValReplacements(); 519 applyReplacements(); 520 emitMultiVersionFunctions(); 521 522 if (Context.getLangOpts().IncrementalExtensions && 523 GlobalTopLevelStmtBlockInFlight.first) { 524 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 525 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 526 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 527 } 528 529 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 530 EmitCXXModuleInitFunc(Primary); 531 else 532 EmitCXXGlobalInitFunc(); 533 EmitCXXGlobalCleanUpFunc(); 534 registerGlobalDtorsWithAtExit(); 535 EmitCXXThreadLocalInitFunc(); 536 if (ObjCRuntime) 537 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 538 AddGlobalCtor(ObjCInitFunction); 539 if (Context.getLangOpts().CUDA && CUDARuntime) { 540 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 541 AddGlobalCtor(CudaCtorFunction); 542 } 543 if (OpenMPRuntime) { 544 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 545 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 546 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 547 } 548 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 549 OpenMPRuntime->clear(); 550 } 551 if (PGOReader) { 552 getModule().setProfileSummary( 553 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 554 llvm::ProfileSummary::PSK_Instr); 555 if (PGOStats.hasDiagnostics()) 556 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 557 } 558 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 559 return L.LexOrder < R.LexOrder; 560 }); 561 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 562 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 563 EmitGlobalAnnotations(); 564 EmitStaticExternCAliases(); 565 checkAliases(); 566 EmitDeferredUnusedCoverageMappings(); 567 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 568 if (CoverageMapping) 569 CoverageMapping->emit(); 570 if (CodeGenOpts.SanitizeCfiCrossDso) { 571 CodeGenFunction(*this).EmitCfiCheckFail(); 572 CodeGenFunction(*this).EmitCfiCheckStub(); 573 } 574 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 575 finalizeKCFITypes(); 576 emitAtAvailableLinkGuard(); 577 if (Context.getTargetInfo().getTriple().isWasm()) 578 EmitMainVoidAlias(); 579 580 if (getTriple().isAMDGPU()) { 581 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 582 // preserve ASAN functions in bitcode libraries. 583 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 584 auto *FT = llvm::FunctionType::get(VoidTy, {}); 585 auto *F = llvm::Function::Create( 586 FT, llvm::GlobalValue::ExternalLinkage, 587 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 588 auto *Var = new llvm::GlobalVariable( 589 getModule(), FT->getPointerTo(), 590 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 591 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 592 llvm::GlobalVariable::NotThreadLocal); 593 addCompilerUsedGlobal(Var); 594 } 595 // Emit amdgpu_code_object_version module flag, which is code object version 596 // times 100. 597 if (getTarget().getTargetOpts().CodeObjectVersion != 598 TargetOptions::COV_None) { 599 getModule().addModuleFlag(llvm::Module::Error, 600 "amdgpu_code_object_version", 601 getTarget().getTargetOpts().CodeObjectVersion); 602 } 603 } 604 605 // Emit a global array containing all external kernels or device variables 606 // used by host functions and mark it as used for CUDA/HIP. This is necessary 607 // to get kernels or device variables in archives linked in even if these 608 // kernels or device variables are only used in host functions. 609 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 610 SmallVector<llvm::Constant *, 8> UsedArray; 611 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 612 GlobalDecl GD; 613 if (auto *FD = dyn_cast<FunctionDecl>(D)) 614 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 615 else 616 GD = GlobalDecl(D); 617 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 618 GetAddrOfGlobal(GD), Int8PtrTy)); 619 } 620 621 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 622 623 auto *GV = new llvm::GlobalVariable( 624 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 625 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 626 addCompilerUsedGlobal(GV); 627 } 628 629 emitLLVMUsed(); 630 if (SanStats) 631 SanStats->finish(); 632 633 if (CodeGenOpts.Autolink && 634 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 635 EmitModuleLinkOptions(); 636 } 637 638 // On ELF we pass the dependent library specifiers directly to the linker 639 // without manipulating them. This is in contrast to other platforms where 640 // they are mapped to a specific linker option by the compiler. This 641 // difference is a result of the greater variety of ELF linkers and the fact 642 // that ELF linkers tend to handle libraries in a more complicated fashion 643 // than on other platforms. This forces us to defer handling the dependent 644 // libs to the linker. 645 // 646 // CUDA/HIP device and host libraries are different. Currently there is no 647 // way to differentiate dependent libraries for host or device. Existing 648 // usage of #pragma comment(lib, *) is intended for host libraries on 649 // Windows. Therefore emit llvm.dependent-libraries only for host. 650 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 651 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 652 for (auto *MD : ELFDependentLibraries) 653 NMD->addOperand(MD); 654 } 655 656 // Record mregparm value now so it is visible through rest of codegen. 657 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 658 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 659 CodeGenOpts.NumRegisterParameters); 660 661 if (CodeGenOpts.DwarfVersion) { 662 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 663 CodeGenOpts.DwarfVersion); 664 } 665 666 if (CodeGenOpts.Dwarf64) 667 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 668 669 if (Context.getLangOpts().SemanticInterposition) 670 // Require various optimization to respect semantic interposition. 671 getModule().setSemanticInterposition(true); 672 673 if (CodeGenOpts.EmitCodeView) { 674 // Indicate that we want CodeView in the metadata. 675 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 676 } 677 if (CodeGenOpts.CodeViewGHash) { 678 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 679 } 680 if (CodeGenOpts.ControlFlowGuard) { 681 // Function ID tables and checks for Control Flow Guard (cfguard=2). 682 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 683 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 684 // Function ID tables for Control Flow Guard (cfguard=1). 685 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 686 } 687 if (CodeGenOpts.EHContGuard) { 688 // Function ID tables for EH Continuation Guard. 689 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 690 } 691 if (Context.getLangOpts().Kernel) { 692 // Note if we are compiling with /kernel. 693 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 694 } 695 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 696 // We don't support LTO with 2 with different StrictVTablePointers 697 // FIXME: we could support it by stripping all the information introduced 698 // by StrictVTablePointers. 699 700 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 701 702 llvm::Metadata *Ops[2] = { 703 llvm::MDString::get(VMContext, "StrictVTablePointers"), 704 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 705 llvm::Type::getInt32Ty(VMContext), 1))}; 706 707 getModule().addModuleFlag(llvm::Module::Require, 708 "StrictVTablePointersRequirement", 709 llvm::MDNode::get(VMContext, Ops)); 710 } 711 if (getModuleDebugInfo()) 712 // We support a single version in the linked module. The LLVM 713 // parser will drop debug info with a different version number 714 // (and warn about it, too). 715 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 716 llvm::DEBUG_METADATA_VERSION); 717 718 // We need to record the widths of enums and wchar_t, so that we can generate 719 // the correct build attributes in the ARM backend. wchar_size is also used by 720 // TargetLibraryInfo. 721 uint64_t WCharWidth = 722 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 723 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 724 725 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 726 if ( Arch == llvm::Triple::arm 727 || Arch == llvm::Triple::armeb 728 || Arch == llvm::Triple::thumb 729 || Arch == llvm::Triple::thumbeb) { 730 // The minimum width of an enum in bytes 731 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 732 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 733 } 734 735 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 736 StringRef ABIStr = Target.getABI(); 737 llvm::LLVMContext &Ctx = TheModule.getContext(); 738 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 739 llvm::MDString::get(Ctx, ABIStr)); 740 } 741 742 if (CodeGenOpts.SanitizeCfiCrossDso) { 743 // Indicate that we want cross-DSO control flow integrity checks. 744 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 745 } 746 747 if (CodeGenOpts.WholeProgramVTables) { 748 // Indicate whether VFE was enabled for this module, so that the 749 // vcall_visibility metadata added under whole program vtables is handled 750 // appropriately in the optimizer. 751 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 752 CodeGenOpts.VirtualFunctionElimination); 753 } 754 755 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 756 getModule().addModuleFlag(llvm::Module::Override, 757 "CFI Canonical Jump Tables", 758 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 759 } 760 761 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 762 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 763 764 if (CodeGenOpts.CFProtectionReturn && 765 Target.checkCFProtectionReturnSupported(getDiags())) { 766 // Indicate that we want to instrument return control flow protection. 767 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 768 1); 769 } 770 771 if (CodeGenOpts.CFProtectionBranch && 772 Target.checkCFProtectionBranchSupported(getDiags())) { 773 // Indicate that we want to instrument branch control flow protection. 774 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 775 1); 776 } 777 778 if (CodeGenOpts.IBTSeal) 779 getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1); 780 781 if (CodeGenOpts.FunctionReturnThunks) 782 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 783 784 if (CodeGenOpts.IndirectBranchCSPrefix) 785 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 786 787 // Add module metadata for return address signing (ignoring 788 // non-leaf/all) and stack tagging. These are actually turned on by function 789 // attributes, but we use module metadata to emit build attributes. This is 790 // needed for LTO, where the function attributes are inside bitcode 791 // serialised into a global variable by the time build attributes are 792 // emitted, so we can't access them. LTO objects could be compiled with 793 // different flags therefore module flags are set to "Min" behavior to achieve 794 // the same end result of the normal build where e.g BTI is off if any object 795 // doesn't support it. 796 if (Context.getTargetInfo().hasFeature("ptrauth") && 797 LangOpts.getSignReturnAddressScope() != 798 LangOptions::SignReturnAddressScopeKind::None) 799 getModule().addModuleFlag(llvm::Module::Override, 800 "sign-return-address-buildattr", 1); 801 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 802 getModule().addModuleFlag(llvm::Module::Override, 803 "tag-stack-memory-buildattr", 1); 804 805 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 806 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 807 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 808 Arch == llvm::Triple::aarch64_be) { 809 if (LangOpts.BranchTargetEnforcement) 810 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 811 1); 812 if (LangOpts.hasSignReturnAddress()) 813 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 814 if (LangOpts.isSignReturnAddressScopeAll()) 815 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 816 1); 817 if (!LangOpts.isSignReturnAddressWithAKey()) 818 getModule().addModuleFlag(llvm::Module::Min, 819 "sign-return-address-with-bkey", 1); 820 } 821 822 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 823 llvm::LLVMContext &Ctx = TheModule.getContext(); 824 getModule().addModuleFlag( 825 llvm::Module::Error, "MemProfProfileFilename", 826 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 827 } 828 829 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 830 // Indicate whether __nvvm_reflect should be configured to flush denormal 831 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 832 // property.) 833 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 834 CodeGenOpts.FP32DenormalMode.Output != 835 llvm::DenormalMode::IEEE); 836 } 837 838 if (LangOpts.EHAsynch) 839 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 840 841 // Indicate whether this Module was compiled with -fopenmp 842 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 843 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 844 if (getLangOpts().OpenMPIsDevice) 845 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 846 LangOpts.OpenMP); 847 848 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 849 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 850 EmitOpenCLMetadata(); 851 // Emit SPIR version. 852 if (getTriple().isSPIR()) { 853 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 854 // opencl.spir.version named metadata. 855 // C++ for OpenCL has a distinct mapping for version compatibility with 856 // OpenCL. 857 auto Version = LangOpts.getOpenCLCompatibleVersion(); 858 llvm::Metadata *SPIRVerElts[] = { 859 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 860 Int32Ty, Version / 100)), 861 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 862 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 863 llvm::NamedMDNode *SPIRVerMD = 864 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 865 llvm::LLVMContext &Ctx = TheModule.getContext(); 866 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 867 } 868 } 869 870 // HLSL related end of code gen work items. 871 if (LangOpts.HLSL) 872 getHLSLRuntime().finishCodeGen(); 873 874 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 875 assert(PLevel < 3 && "Invalid PIC Level"); 876 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 877 if (Context.getLangOpts().PIE) 878 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 879 } 880 881 if (getCodeGenOpts().CodeModel.size() > 0) { 882 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 883 .Case("tiny", llvm::CodeModel::Tiny) 884 .Case("small", llvm::CodeModel::Small) 885 .Case("kernel", llvm::CodeModel::Kernel) 886 .Case("medium", llvm::CodeModel::Medium) 887 .Case("large", llvm::CodeModel::Large) 888 .Default(~0u); 889 if (CM != ~0u) { 890 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 891 getModule().setCodeModel(codeModel); 892 } 893 } 894 895 if (CodeGenOpts.NoPLT) 896 getModule().setRtLibUseGOT(); 897 if (CodeGenOpts.UnwindTables) 898 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 899 900 switch (CodeGenOpts.getFramePointer()) { 901 case CodeGenOptions::FramePointerKind::None: 902 // 0 ("none") is the default. 903 break; 904 case CodeGenOptions::FramePointerKind::NonLeaf: 905 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 906 break; 907 case CodeGenOptions::FramePointerKind::All: 908 getModule().setFramePointer(llvm::FramePointerKind::All); 909 break; 910 } 911 912 SimplifyPersonality(); 913 914 if (getCodeGenOpts().EmitDeclMetadata) 915 EmitDeclMetadata(); 916 917 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 918 EmitCoverageFile(); 919 920 if (CGDebugInfo *DI = getModuleDebugInfo()) 921 DI->finalize(); 922 923 if (getCodeGenOpts().EmitVersionIdentMetadata) 924 EmitVersionIdentMetadata(); 925 926 if (!getCodeGenOpts().RecordCommandLine.empty()) 927 EmitCommandLineMetadata(); 928 929 if (!getCodeGenOpts().StackProtectorGuard.empty()) 930 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 931 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 932 getModule().setStackProtectorGuardReg( 933 getCodeGenOpts().StackProtectorGuardReg); 934 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 935 getModule().setStackProtectorGuardSymbol( 936 getCodeGenOpts().StackProtectorGuardSymbol); 937 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 938 getModule().setStackProtectorGuardOffset( 939 getCodeGenOpts().StackProtectorGuardOffset); 940 if (getCodeGenOpts().StackAlignment) 941 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 942 if (getCodeGenOpts().SkipRaxSetup) 943 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 944 945 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 946 947 EmitBackendOptionsMetadata(getCodeGenOpts()); 948 949 // If there is device offloading code embed it in the host now. 950 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 951 952 // Set visibility from DLL storage class 953 // We do this at the end of LLVM IR generation; after any operation 954 // that might affect the DLL storage class or the visibility, and 955 // before anything that might act on these. 956 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 957 } 958 959 void CodeGenModule::EmitOpenCLMetadata() { 960 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 961 // opencl.ocl.version named metadata node. 962 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 963 auto Version = LangOpts.getOpenCLCompatibleVersion(); 964 llvm::Metadata *OCLVerElts[] = { 965 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 966 Int32Ty, Version / 100)), 967 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 968 Int32Ty, (Version % 100) / 10))}; 969 llvm::NamedMDNode *OCLVerMD = 970 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 971 llvm::LLVMContext &Ctx = TheModule.getContext(); 972 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 973 } 974 975 void CodeGenModule::EmitBackendOptionsMetadata( 976 const CodeGenOptions CodeGenOpts) { 977 if (getTriple().isRISCV()) { 978 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 979 CodeGenOpts.SmallDataLimit); 980 } 981 } 982 983 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 984 // Make sure that this type is translated. 985 Types.UpdateCompletedType(TD); 986 } 987 988 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 989 // Make sure that this type is translated. 990 Types.RefreshTypeCacheForClass(RD); 991 } 992 993 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 994 if (!TBAA) 995 return nullptr; 996 return TBAA->getTypeInfo(QTy); 997 } 998 999 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1000 if (!TBAA) 1001 return TBAAAccessInfo(); 1002 if (getLangOpts().CUDAIsDevice) { 1003 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1004 // access info. 1005 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1006 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1007 nullptr) 1008 return TBAAAccessInfo(); 1009 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1010 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1011 nullptr) 1012 return TBAAAccessInfo(); 1013 } 1014 } 1015 return TBAA->getAccessInfo(AccessType); 1016 } 1017 1018 TBAAAccessInfo 1019 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1020 if (!TBAA) 1021 return TBAAAccessInfo(); 1022 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1023 } 1024 1025 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1026 if (!TBAA) 1027 return nullptr; 1028 return TBAA->getTBAAStructInfo(QTy); 1029 } 1030 1031 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1032 if (!TBAA) 1033 return nullptr; 1034 return TBAA->getBaseTypeInfo(QTy); 1035 } 1036 1037 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1038 if (!TBAA) 1039 return nullptr; 1040 return TBAA->getAccessTagInfo(Info); 1041 } 1042 1043 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1044 TBAAAccessInfo TargetInfo) { 1045 if (!TBAA) 1046 return TBAAAccessInfo(); 1047 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1048 } 1049 1050 TBAAAccessInfo 1051 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1052 TBAAAccessInfo InfoB) { 1053 if (!TBAA) 1054 return TBAAAccessInfo(); 1055 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1056 } 1057 1058 TBAAAccessInfo 1059 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1060 TBAAAccessInfo SrcInfo) { 1061 if (!TBAA) 1062 return TBAAAccessInfo(); 1063 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1064 } 1065 1066 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1067 TBAAAccessInfo TBAAInfo) { 1068 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1069 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1070 } 1071 1072 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1073 llvm::Instruction *I, const CXXRecordDecl *RD) { 1074 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1075 llvm::MDNode::get(getLLVMContext(), {})); 1076 } 1077 1078 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1079 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1080 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1081 } 1082 1083 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1084 /// specified stmt yet. 1085 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1086 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1087 "cannot compile this %0 yet"); 1088 std::string Msg = Type; 1089 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1090 << Msg << S->getSourceRange(); 1091 } 1092 1093 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1094 /// specified decl yet. 1095 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1096 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1097 "cannot compile this %0 yet"); 1098 std::string Msg = Type; 1099 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1100 } 1101 1102 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1103 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1104 } 1105 1106 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1107 const NamedDecl *D) const { 1108 // Internal definitions always have default visibility. 1109 if (GV->hasLocalLinkage()) { 1110 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1111 return; 1112 } 1113 if (!D) 1114 return; 1115 // Set visibility for definitions, and for declarations if requested globally 1116 // or set explicitly. 1117 LinkageInfo LV = D->getLinkageAndVisibility(); 1118 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1119 // Reject incompatible dlllstorage and visibility annotations. 1120 if (!LV.isVisibilityExplicit()) 1121 return; 1122 if (GV->hasDLLExportStorageClass()) { 1123 if (LV.getVisibility() == HiddenVisibility) 1124 getDiags().Report(D->getLocation(), 1125 diag::err_hidden_visibility_dllexport); 1126 } else if (LV.getVisibility() != DefaultVisibility) { 1127 getDiags().Report(D->getLocation(), 1128 diag::err_non_default_visibility_dllimport); 1129 } 1130 return; 1131 } 1132 1133 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1134 !GV->isDeclarationForLinker()) 1135 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1136 } 1137 1138 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1139 llvm::GlobalValue *GV) { 1140 if (GV->hasLocalLinkage()) 1141 return true; 1142 1143 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1144 return true; 1145 1146 // DLLImport explicitly marks the GV as external. 1147 if (GV->hasDLLImportStorageClass()) 1148 return false; 1149 1150 const llvm::Triple &TT = CGM.getTriple(); 1151 if (TT.isWindowsGNUEnvironment()) { 1152 // In MinGW, variables without DLLImport can still be automatically 1153 // imported from a DLL by the linker; don't mark variables that 1154 // potentially could come from another DLL as DSO local. 1155 1156 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1157 // (and this actually happens in the public interface of libstdc++), so 1158 // such variables can't be marked as DSO local. (Native TLS variables 1159 // can't be dllimported at all, though.) 1160 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1161 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1162 return false; 1163 } 1164 1165 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1166 // remain unresolved in the link, they can be resolved to zero, which is 1167 // outside the current DSO. 1168 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1169 return false; 1170 1171 // Every other GV is local on COFF. 1172 // Make an exception for windows OS in the triple: Some firmware builds use 1173 // *-win32-macho triples. This (accidentally?) produced windows relocations 1174 // without GOT tables in older clang versions; Keep this behaviour. 1175 // FIXME: even thread local variables? 1176 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1177 return true; 1178 1179 // Only handle COFF and ELF for now. 1180 if (!TT.isOSBinFormatELF()) 1181 return false; 1182 1183 // If this is not an executable, don't assume anything is local. 1184 const auto &CGOpts = CGM.getCodeGenOpts(); 1185 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1186 const auto &LOpts = CGM.getLangOpts(); 1187 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1188 // On ELF, if -fno-semantic-interposition is specified and the target 1189 // supports local aliases, there will be neither CC1 1190 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1191 // dso_local on the function if using a local alias is preferable (can avoid 1192 // PLT indirection). 1193 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1194 return false; 1195 return !(CGM.getLangOpts().SemanticInterposition || 1196 CGM.getLangOpts().HalfNoSemanticInterposition); 1197 } 1198 1199 // A definition cannot be preempted from an executable. 1200 if (!GV->isDeclarationForLinker()) 1201 return true; 1202 1203 // Most PIC code sequences that assume that a symbol is local cannot produce a 1204 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1205 // depended, it seems worth it to handle it here. 1206 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1207 return false; 1208 1209 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1210 if (TT.isPPC64()) 1211 return false; 1212 1213 if (CGOpts.DirectAccessExternalData) { 1214 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1215 // for non-thread-local variables. If the symbol is not defined in the 1216 // executable, a copy relocation will be needed at link time. dso_local is 1217 // excluded for thread-local variables because they generally don't support 1218 // copy relocations. 1219 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1220 if (!Var->isThreadLocal()) 1221 return true; 1222 1223 // -fno-pic sets dso_local on a function declaration to allow direct 1224 // accesses when taking its address (similar to a data symbol). If the 1225 // function is not defined in the executable, a canonical PLT entry will be 1226 // needed at link time. -fno-direct-access-external-data can avoid the 1227 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1228 // it could just cause trouble without providing perceptible benefits. 1229 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1230 return true; 1231 } 1232 1233 // If we can use copy relocations we can assume it is local. 1234 1235 // Otherwise don't assume it is local. 1236 return false; 1237 } 1238 1239 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1240 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1241 } 1242 1243 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1244 GlobalDecl GD) const { 1245 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1246 // C++ destructors have a few C++ ABI specific special cases. 1247 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1248 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1249 return; 1250 } 1251 setDLLImportDLLExport(GV, D); 1252 } 1253 1254 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1255 const NamedDecl *D) const { 1256 if (D && D->isExternallyVisible()) { 1257 if (D->hasAttr<DLLImportAttr>()) 1258 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1259 else if ((D->hasAttr<DLLExportAttr>() || 1260 shouldMapVisibilityToDLLExport(D)) && 1261 !GV->isDeclarationForLinker()) 1262 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1263 } 1264 } 1265 1266 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1267 GlobalDecl GD) const { 1268 setDLLImportDLLExport(GV, GD); 1269 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1270 } 1271 1272 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1273 const NamedDecl *D) const { 1274 setDLLImportDLLExport(GV, D); 1275 setGVPropertiesAux(GV, D); 1276 } 1277 1278 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1279 const NamedDecl *D) const { 1280 setGlobalVisibility(GV, D); 1281 setDSOLocal(GV); 1282 GV->setPartition(CodeGenOpts.SymbolPartition); 1283 } 1284 1285 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1286 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1287 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1288 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1289 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1290 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1291 } 1292 1293 llvm::GlobalVariable::ThreadLocalMode 1294 CodeGenModule::GetDefaultLLVMTLSModel() const { 1295 switch (CodeGenOpts.getDefaultTLSModel()) { 1296 case CodeGenOptions::GeneralDynamicTLSModel: 1297 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1298 case CodeGenOptions::LocalDynamicTLSModel: 1299 return llvm::GlobalVariable::LocalDynamicTLSModel; 1300 case CodeGenOptions::InitialExecTLSModel: 1301 return llvm::GlobalVariable::InitialExecTLSModel; 1302 case CodeGenOptions::LocalExecTLSModel: 1303 return llvm::GlobalVariable::LocalExecTLSModel; 1304 } 1305 llvm_unreachable("Invalid TLS model!"); 1306 } 1307 1308 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1309 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1310 1311 llvm::GlobalValue::ThreadLocalMode TLM; 1312 TLM = GetDefaultLLVMTLSModel(); 1313 1314 // Override the TLS model if it is explicitly specified. 1315 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1316 TLM = GetLLVMTLSModel(Attr->getModel()); 1317 } 1318 1319 GV->setThreadLocalMode(TLM); 1320 } 1321 1322 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1323 StringRef Name) { 1324 const TargetInfo &Target = CGM.getTarget(); 1325 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1326 } 1327 1328 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1329 const CPUSpecificAttr *Attr, 1330 unsigned CPUIndex, 1331 raw_ostream &Out) { 1332 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1333 // supported. 1334 if (Attr) 1335 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1336 else if (CGM.getTarget().supportsIFunc()) 1337 Out << ".resolver"; 1338 } 1339 1340 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1341 const TargetVersionAttr *Attr, 1342 raw_ostream &Out) { 1343 if (Attr->isDefaultVersion()) 1344 return; 1345 Out << "._"; 1346 llvm::SmallVector<StringRef, 8> Feats; 1347 Attr->getFeatures(Feats); 1348 for (const auto &Feat : Feats) { 1349 Out << 'M'; 1350 Out << Feat; 1351 } 1352 } 1353 1354 static void AppendTargetMangling(const CodeGenModule &CGM, 1355 const TargetAttr *Attr, raw_ostream &Out) { 1356 if (Attr->isDefaultVersion()) 1357 return; 1358 1359 Out << '.'; 1360 const TargetInfo &Target = CGM.getTarget(); 1361 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1362 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1363 // Multiversioning doesn't allow "no-${feature}", so we can 1364 // only have "+" prefixes here. 1365 assert(LHS.startswith("+") && RHS.startswith("+") && 1366 "Features should always have a prefix."); 1367 return Target.multiVersionSortPriority(LHS.substr(1)) > 1368 Target.multiVersionSortPriority(RHS.substr(1)); 1369 }); 1370 1371 bool IsFirst = true; 1372 1373 if (!Info.CPU.empty()) { 1374 IsFirst = false; 1375 Out << "arch_" << Info.CPU; 1376 } 1377 1378 for (StringRef Feat : Info.Features) { 1379 if (!IsFirst) 1380 Out << '_'; 1381 IsFirst = false; 1382 Out << Feat.substr(1); 1383 } 1384 } 1385 1386 // Returns true if GD is a function decl with internal linkage and 1387 // needs a unique suffix after the mangled name. 1388 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1389 CodeGenModule &CGM) { 1390 const Decl *D = GD.getDecl(); 1391 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1392 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1393 } 1394 1395 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1396 const TargetClonesAttr *Attr, 1397 unsigned VersionIndex, 1398 raw_ostream &Out) { 1399 if (CGM.getTarget().getTriple().isAArch64()) { 1400 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1401 if (FeatureStr == "default") 1402 return; 1403 Out << "._"; 1404 SmallVector<StringRef, 8> Features; 1405 FeatureStr.split(Features, "+"); 1406 for (auto &Feat : Features) { 1407 Out << 'M'; 1408 Out << Feat; 1409 } 1410 } else { 1411 Out << '.'; 1412 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1413 if (FeatureStr.startswith("arch=")) 1414 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1415 else 1416 Out << FeatureStr; 1417 1418 Out << '.' << Attr->getMangledIndex(VersionIndex); 1419 } 1420 } 1421 1422 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1423 const NamedDecl *ND, 1424 bool OmitMultiVersionMangling = false) { 1425 SmallString<256> Buffer; 1426 llvm::raw_svector_ostream Out(Buffer); 1427 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1428 if (!CGM.getModuleNameHash().empty()) 1429 MC.needsUniqueInternalLinkageNames(); 1430 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1431 if (ShouldMangle) 1432 MC.mangleName(GD.getWithDecl(ND), Out); 1433 else { 1434 IdentifierInfo *II = ND->getIdentifier(); 1435 assert(II && "Attempt to mangle unnamed decl."); 1436 const auto *FD = dyn_cast<FunctionDecl>(ND); 1437 1438 if (FD && 1439 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1440 Out << "__regcall3__" << II->getName(); 1441 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1442 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1443 Out << "__device_stub__" << II->getName(); 1444 } else { 1445 Out << II->getName(); 1446 } 1447 } 1448 1449 // Check if the module name hash should be appended for internal linkage 1450 // symbols. This should come before multi-version target suffixes are 1451 // appended. This is to keep the name and module hash suffix of the 1452 // internal linkage function together. The unique suffix should only be 1453 // added when name mangling is done to make sure that the final name can 1454 // be properly demangled. For example, for C functions without prototypes, 1455 // name mangling is not done and the unique suffix should not be appeneded 1456 // then. 1457 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1458 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1459 "Hash computed when not explicitly requested"); 1460 Out << CGM.getModuleNameHash(); 1461 } 1462 1463 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1464 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1465 switch (FD->getMultiVersionKind()) { 1466 case MultiVersionKind::CPUDispatch: 1467 case MultiVersionKind::CPUSpecific: 1468 AppendCPUSpecificCPUDispatchMangling(CGM, 1469 FD->getAttr<CPUSpecificAttr>(), 1470 GD.getMultiVersionIndex(), Out); 1471 break; 1472 case MultiVersionKind::Target: 1473 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1474 break; 1475 case MultiVersionKind::TargetVersion: 1476 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1477 break; 1478 case MultiVersionKind::TargetClones: 1479 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1480 GD.getMultiVersionIndex(), Out); 1481 break; 1482 case MultiVersionKind::None: 1483 llvm_unreachable("None multiversion type isn't valid here"); 1484 } 1485 } 1486 1487 // Make unique name for device side static file-scope variable for HIP. 1488 if (CGM.getContext().shouldExternalize(ND) && 1489 CGM.getLangOpts().GPURelocatableDeviceCode && 1490 CGM.getLangOpts().CUDAIsDevice) 1491 CGM.printPostfixForExternalizedDecl(Out, ND); 1492 1493 return std::string(Out.str()); 1494 } 1495 1496 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1497 const FunctionDecl *FD, 1498 StringRef &CurName) { 1499 if (!FD->isMultiVersion()) 1500 return; 1501 1502 // Get the name of what this would be without the 'target' attribute. This 1503 // allows us to lookup the version that was emitted when this wasn't a 1504 // multiversion function. 1505 std::string NonTargetName = 1506 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1507 GlobalDecl OtherGD; 1508 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1509 assert(OtherGD.getCanonicalDecl() 1510 .getDecl() 1511 ->getAsFunction() 1512 ->isMultiVersion() && 1513 "Other GD should now be a multiversioned function"); 1514 // OtherFD is the version of this function that was mangled BEFORE 1515 // becoming a MultiVersion function. It potentially needs to be updated. 1516 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1517 .getDecl() 1518 ->getAsFunction() 1519 ->getMostRecentDecl(); 1520 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1521 // This is so that if the initial version was already the 'default' 1522 // version, we don't try to update it. 1523 if (OtherName != NonTargetName) { 1524 // Remove instead of erase, since others may have stored the StringRef 1525 // to this. 1526 const auto ExistingRecord = Manglings.find(NonTargetName); 1527 if (ExistingRecord != std::end(Manglings)) 1528 Manglings.remove(&(*ExistingRecord)); 1529 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1530 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1531 Result.first->first(); 1532 // If this is the current decl is being created, make sure we update the name. 1533 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1534 CurName = OtherNameRef; 1535 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1536 Entry->setName(OtherName); 1537 } 1538 } 1539 } 1540 1541 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1542 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1543 1544 // Some ABIs don't have constructor variants. Make sure that base and 1545 // complete constructors get mangled the same. 1546 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1547 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1548 CXXCtorType OrigCtorType = GD.getCtorType(); 1549 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1550 if (OrigCtorType == Ctor_Base) 1551 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1552 } 1553 } 1554 1555 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1556 // static device variable depends on whether the variable is referenced by 1557 // a host or device host function. Therefore the mangled name cannot be 1558 // cached. 1559 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1560 auto FoundName = MangledDeclNames.find(CanonicalGD); 1561 if (FoundName != MangledDeclNames.end()) 1562 return FoundName->second; 1563 } 1564 1565 // Keep the first result in the case of a mangling collision. 1566 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1567 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1568 1569 // Ensure either we have different ABIs between host and device compilations, 1570 // says host compilation following MSVC ABI but device compilation follows 1571 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1572 // mangling should be the same after name stubbing. The later checking is 1573 // very important as the device kernel name being mangled in host-compilation 1574 // is used to resolve the device binaries to be executed. Inconsistent naming 1575 // result in undefined behavior. Even though we cannot check that naming 1576 // directly between host- and device-compilations, the host- and 1577 // device-mangling in host compilation could help catching certain ones. 1578 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1579 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1580 (getContext().getAuxTargetInfo() && 1581 (getContext().getAuxTargetInfo()->getCXXABI() != 1582 getContext().getTargetInfo().getCXXABI())) || 1583 getCUDARuntime().getDeviceSideName(ND) == 1584 getMangledNameImpl( 1585 *this, 1586 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1587 ND)); 1588 1589 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1590 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1591 } 1592 1593 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1594 const BlockDecl *BD) { 1595 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1596 const Decl *D = GD.getDecl(); 1597 1598 SmallString<256> Buffer; 1599 llvm::raw_svector_ostream Out(Buffer); 1600 if (!D) 1601 MangleCtx.mangleGlobalBlock(BD, 1602 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1603 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1604 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1605 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1606 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1607 else 1608 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1609 1610 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1611 return Result.first->first(); 1612 } 1613 1614 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1615 auto it = MangledDeclNames.begin(); 1616 while (it != MangledDeclNames.end()) { 1617 if (it->second == Name) 1618 return it->first; 1619 it++; 1620 } 1621 return GlobalDecl(); 1622 } 1623 1624 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1625 return getModule().getNamedValue(Name); 1626 } 1627 1628 /// AddGlobalCtor - Add a function to the list that will be called before 1629 /// main() runs. 1630 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1631 unsigned LexOrder, 1632 llvm::Constant *AssociatedData) { 1633 // FIXME: Type coercion of void()* types. 1634 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1635 } 1636 1637 /// AddGlobalDtor - Add a function to the list that will be called 1638 /// when the module is unloaded. 1639 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1640 bool IsDtorAttrFunc) { 1641 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1642 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1643 DtorsUsingAtExit[Priority].push_back(Dtor); 1644 return; 1645 } 1646 1647 // FIXME: Type coercion of void()* types. 1648 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1649 } 1650 1651 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1652 if (Fns.empty()) return; 1653 1654 // Ctor function type is void()*. 1655 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1656 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1657 TheModule.getDataLayout().getProgramAddressSpace()); 1658 1659 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1660 llvm::StructType *CtorStructTy = llvm::StructType::get( 1661 Int32Ty, CtorPFTy, VoidPtrTy); 1662 1663 // Construct the constructor and destructor arrays. 1664 ConstantInitBuilder builder(*this); 1665 auto ctors = builder.beginArray(CtorStructTy); 1666 for (const auto &I : Fns) { 1667 auto ctor = ctors.beginStruct(CtorStructTy); 1668 ctor.addInt(Int32Ty, I.Priority); 1669 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1670 if (I.AssociatedData) 1671 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1672 else 1673 ctor.addNullPointer(VoidPtrTy); 1674 ctor.finishAndAddTo(ctors); 1675 } 1676 1677 auto list = 1678 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1679 /*constant*/ false, 1680 llvm::GlobalValue::AppendingLinkage); 1681 1682 // The LTO linker doesn't seem to like it when we set an alignment 1683 // on appending variables. Take it off as a workaround. 1684 list->setAlignment(std::nullopt); 1685 1686 Fns.clear(); 1687 } 1688 1689 llvm::GlobalValue::LinkageTypes 1690 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1691 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1692 1693 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1694 1695 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1696 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1697 1698 if (isa<CXXConstructorDecl>(D) && 1699 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1700 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1701 // Our approach to inheriting constructors is fundamentally different from 1702 // that used by the MS ABI, so keep our inheriting constructor thunks 1703 // internal rather than trying to pick an unambiguous mangling for them. 1704 return llvm::GlobalValue::InternalLinkage; 1705 } 1706 1707 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1708 } 1709 1710 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1711 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1712 if (!MDS) return nullptr; 1713 1714 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1715 } 1716 1717 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1718 if (auto *FnType = T->getAs<FunctionProtoType>()) 1719 T = getContext().getFunctionType( 1720 FnType->getReturnType(), FnType->getParamTypes(), 1721 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1722 1723 std::string OutName; 1724 llvm::raw_string_ostream Out(OutName); 1725 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1726 1727 return llvm::ConstantInt::get(Int32Ty, 1728 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1729 } 1730 1731 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1732 const CGFunctionInfo &Info, 1733 llvm::Function *F, bool IsThunk) { 1734 unsigned CallingConv; 1735 llvm::AttributeList PAL; 1736 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1737 /*AttrOnCallSite=*/false, IsThunk); 1738 F->setAttributes(PAL); 1739 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1740 } 1741 1742 static void removeImageAccessQualifier(std::string& TyName) { 1743 std::string ReadOnlyQual("__read_only"); 1744 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1745 if (ReadOnlyPos != std::string::npos) 1746 // "+ 1" for the space after access qualifier. 1747 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1748 else { 1749 std::string WriteOnlyQual("__write_only"); 1750 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1751 if (WriteOnlyPos != std::string::npos) 1752 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1753 else { 1754 std::string ReadWriteQual("__read_write"); 1755 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1756 if (ReadWritePos != std::string::npos) 1757 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1758 } 1759 } 1760 } 1761 1762 // Returns the address space id that should be produced to the 1763 // kernel_arg_addr_space metadata. This is always fixed to the ids 1764 // as specified in the SPIR 2.0 specification in order to differentiate 1765 // for example in clGetKernelArgInfo() implementation between the address 1766 // spaces with targets without unique mapping to the OpenCL address spaces 1767 // (basically all single AS CPUs). 1768 static unsigned ArgInfoAddressSpace(LangAS AS) { 1769 switch (AS) { 1770 case LangAS::opencl_global: 1771 return 1; 1772 case LangAS::opencl_constant: 1773 return 2; 1774 case LangAS::opencl_local: 1775 return 3; 1776 case LangAS::opencl_generic: 1777 return 4; // Not in SPIR 2.0 specs. 1778 case LangAS::opencl_global_device: 1779 return 5; 1780 case LangAS::opencl_global_host: 1781 return 6; 1782 default: 1783 return 0; // Assume private. 1784 } 1785 } 1786 1787 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1788 const FunctionDecl *FD, 1789 CodeGenFunction *CGF) { 1790 assert(((FD && CGF) || (!FD && !CGF)) && 1791 "Incorrect use - FD and CGF should either be both null or not!"); 1792 // Create MDNodes that represent the kernel arg metadata. 1793 // Each MDNode is a list in the form of "key", N number of values which is 1794 // the same number of values as their are kernel arguments. 1795 1796 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1797 1798 // MDNode for the kernel argument address space qualifiers. 1799 SmallVector<llvm::Metadata *, 8> addressQuals; 1800 1801 // MDNode for the kernel argument access qualifiers (images only). 1802 SmallVector<llvm::Metadata *, 8> accessQuals; 1803 1804 // MDNode for the kernel argument type names. 1805 SmallVector<llvm::Metadata *, 8> argTypeNames; 1806 1807 // MDNode for the kernel argument base type names. 1808 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1809 1810 // MDNode for the kernel argument type qualifiers. 1811 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1812 1813 // MDNode for the kernel argument names. 1814 SmallVector<llvm::Metadata *, 8> argNames; 1815 1816 if (FD && CGF) 1817 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1818 const ParmVarDecl *parm = FD->getParamDecl(i); 1819 // Get argument name. 1820 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1821 1822 if (!getLangOpts().OpenCL) 1823 continue; 1824 QualType ty = parm->getType(); 1825 std::string typeQuals; 1826 1827 // Get image and pipe access qualifier: 1828 if (ty->isImageType() || ty->isPipeType()) { 1829 const Decl *PDecl = parm; 1830 if (const auto *TD = ty->getAs<TypedefType>()) 1831 PDecl = TD->getDecl(); 1832 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1833 if (A && A->isWriteOnly()) 1834 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1835 else if (A && A->isReadWrite()) 1836 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1837 else 1838 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1839 } else 1840 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1841 1842 auto getTypeSpelling = [&](QualType Ty) { 1843 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1844 1845 if (Ty.isCanonical()) { 1846 StringRef typeNameRef = typeName; 1847 // Turn "unsigned type" to "utype" 1848 if (typeNameRef.consume_front("unsigned ")) 1849 return std::string("u") + typeNameRef.str(); 1850 if (typeNameRef.consume_front("signed ")) 1851 return typeNameRef.str(); 1852 } 1853 1854 return typeName; 1855 }; 1856 1857 if (ty->isPointerType()) { 1858 QualType pointeeTy = ty->getPointeeType(); 1859 1860 // Get address qualifier. 1861 addressQuals.push_back( 1862 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1863 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1864 1865 // Get argument type name. 1866 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1867 std::string baseTypeName = 1868 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1869 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1870 argBaseTypeNames.push_back( 1871 llvm::MDString::get(VMContext, baseTypeName)); 1872 1873 // Get argument type qualifiers: 1874 if (ty.isRestrictQualified()) 1875 typeQuals = "restrict"; 1876 if (pointeeTy.isConstQualified() || 1877 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1878 typeQuals += typeQuals.empty() ? "const" : " const"; 1879 if (pointeeTy.isVolatileQualified()) 1880 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1881 } else { 1882 uint32_t AddrSpc = 0; 1883 bool isPipe = ty->isPipeType(); 1884 if (ty->isImageType() || isPipe) 1885 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1886 1887 addressQuals.push_back( 1888 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1889 1890 // Get argument type name. 1891 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1892 std::string typeName = getTypeSpelling(ty); 1893 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1894 1895 // Remove access qualifiers on images 1896 // (as they are inseparable from type in clang implementation, 1897 // but OpenCL spec provides a special query to get access qualifier 1898 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1899 if (ty->isImageType()) { 1900 removeImageAccessQualifier(typeName); 1901 removeImageAccessQualifier(baseTypeName); 1902 } 1903 1904 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1905 argBaseTypeNames.push_back( 1906 llvm::MDString::get(VMContext, baseTypeName)); 1907 1908 if (isPipe) 1909 typeQuals = "pipe"; 1910 } 1911 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1912 } 1913 1914 if (getLangOpts().OpenCL) { 1915 Fn->setMetadata("kernel_arg_addr_space", 1916 llvm::MDNode::get(VMContext, addressQuals)); 1917 Fn->setMetadata("kernel_arg_access_qual", 1918 llvm::MDNode::get(VMContext, accessQuals)); 1919 Fn->setMetadata("kernel_arg_type", 1920 llvm::MDNode::get(VMContext, argTypeNames)); 1921 Fn->setMetadata("kernel_arg_base_type", 1922 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1923 Fn->setMetadata("kernel_arg_type_qual", 1924 llvm::MDNode::get(VMContext, argTypeQuals)); 1925 } 1926 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1927 getCodeGenOpts().HIPSaveKernelArgName) 1928 Fn->setMetadata("kernel_arg_name", 1929 llvm::MDNode::get(VMContext, argNames)); 1930 } 1931 1932 /// Determines whether the language options require us to model 1933 /// unwind exceptions. We treat -fexceptions as mandating this 1934 /// except under the fragile ObjC ABI with only ObjC exceptions 1935 /// enabled. This means, for example, that C with -fexceptions 1936 /// enables this. 1937 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1938 // If exceptions are completely disabled, obviously this is false. 1939 if (!LangOpts.Exceptions) return false; 1940 1941 // If C++ exceptions are enabled, this is true. 1942 if (LangOpts.CXXExceptions) return true; 1943 1944 // If ObjC exceptions are enabled, this depends on the ABI. 1945 if (LangOpts.ObjCExceptions) { 1946 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1947 } 1948 1949 return true; 1950 } 1951 1952 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1953 const CXXMethodDecl *MD) { 1954 // Check that the type metadata can ever actually be used by a call. 1955 if (!CGM.getCodeGenOpts().LTOUnit || 1956 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1957 return false; 1958 1959 // Only functions whose address can be taken with a member function pointer 1960 // need this sort of type metadata. 1961 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1962 !isa<CXXDestructorDecl>(MD); 1963 } 1964 1965 std::vector<const CXXRecordDecl *> 1966 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1967 llvm::SetVector<const CXXRecordDecl *> MostBases; 1968 1969 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1970 CollectMostBases = [&](const CXXRecordDecl *RD) { 1971 if (RD->getNumBases() == 0) 1972 MostBases.insert(RD); 1973 for (const CXXBaseSpecifier &B : RD->bases()) 1974 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1975 }; 1976 CollectMostBases(RD); 1977 return MostBases.takeVector(); 1978 } 1979 1980 llvm::GlobalVariable * 1981 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1982 auto It = RTTIProxyMap.find(Addr); 1983 if (It != RTTIProxyMap.end()) 1984 return It->second; 1985 1986 auto *FTRTTIProxy = new llvm::GlobalVariable( 1987 TheModule, Addr->getType(), 1988 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1989 "__llvm_rtti_proxy"); 1990 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1991 1992 RTTIProxyMap[Addr] = FTRTTIProxy; 1993 return FTRTTIProxy; 1994 } 1995 1996 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1997 llvm::Function *F) { 1998 llvm::AttrBuilder B(F->getContext()); 1999 2000 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2001 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2002 2003 if (CodeGenOpts.StackClashProtector) 2004 B.addAttribute("probe-stack", "inline-asm"); 2005 2006 if (!hasUnwindExceptions(LangOpts)) 2007 B.addAttribute(llvm::Attribute::NoUnwind); 2008 2009 if (D && D->hasAttr<NoStackProtectorAttr>()) 2010 ; // Do nothing. 2011 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2012 LangOpts.getStackProtector() == LangOptions::SSPOn) 2013 B.addAttribute(llvm::Attribute::StackProtectStrong); 2014 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2015 B.addAttribute(llvm::Attribute::StackProtect); 2016 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2017 B.addAttribute(llvm::Attribute::StackProtectStrong); 2018 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2019 B.addAttribute(llvm::Attribute::StackProtectReq); 2020 2021 if (!D) { 2022 // If we don't have a declaration to control inlining, the function isn't 2023 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2024 // disabled, mark the function as noinline. 2025 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2026 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2027 B.addAttribute(llvm::Attribute::NoInline); 2028 2029 F->addFnAttrs(B); 2030 return; 2031 } 2032 2033 // Track whether we need to add the optnone LLVM attribute, 2034 // starting with the default for this optimization level. 2035 bool ShouldAddOptNone = 2036 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2037 // We can't add optnone in the following cases, it won't pass the verifier. 2038 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2039 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2040 2041 // Add optnone, but do so only if the function isn't always_inline. 2042 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2043 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2044 B.addAttribute(llvm::Attribute::OptimizeNone); 2045 2046 // OptimizeNone implies noinline; we should not be inlining such functions. 2047 B.addAttribute(llvm::Attribute::NoInline); 2048 2049 // We still need to handle naked functions even though optnone subsumes 2050 // much of their semantics. 2051 if (D->hasAttr<NakedAttr>()) 2052 B.addAttribute(llvm::Attribute::Naked); 2053 2054 // OptimizeNone wins over OptimizeForSize and MinSize. 2055 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2056 F->removeFnAttr(llvm::Attribute::MinSize); 2057 } else if (D->hasAttr<NakedAttr>()) { 2058 // Naked implies noinline: we should not be inlining such functions. 2059 B.addAttribute(llvm::Attribute::Naked); 2060 B.addAttribute(llvm::Attribute::NoInline); 2061 } else if (D->hasAttr<NoDuplicateAttr>()) { 2062 B.addAttribute(llvm::Attribute::NoDuplicate); 2063 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2064 // Add noinline if the function isn't always_inline. 2065 B.addAttribute(llvm::Attribute::NoInline); 2066 } else if (D->hasAttr<AlwaysInlineAttr>() && 2067 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2068 // (noinline wins over always_inline, and we can't specify both in IR) 2069 B.addAttribute(llvm::Attribute::AlwaysInline); 2070 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2071 // If we're not inlining, then force everything that isn't always_inline to 2072 // carry an explicit noinline attribute. 2073 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2074 B.addAttribute(llvm::Attribute::NoInline); 2075 } else { 2076 // Otherwise, propagate the inline hint attribute and potentially use its 2077 // absence to mark things as noinline. 2078 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2079 // Search function and template pattern redeclarations for inline. 2080 auto CheckForInline = [](const FunctionDecl *FD) { 2081 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2082 return Redecl->isInlineSpecified(); 2083 }; 2084 if (any_of(FD->redecls(), CheckRedeclForInline)) 2085 return true; 2086 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2087 if (!Pattern) 2088 return false; 2089 return any_of(Pattern->redecls(), CheckRedeclForInline); 2090 }; 2091 if (CheckForInline(FD)) { 2092 B.addAttribute(llvm::Attribute::InlineHint); 2093 } else if (CodeGenOpts.getInlining() == 2094 CodeGenOptions::OnlyHintInlining && 2095 !FD->isInlined() && 2096 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2097 B.addAttribute(llvm::Attribute::NoInline); 2098 } 2099 } 2100 } 2101 2102 // Add other optimization related attributes if we are optimizing this 2103 // function. 2104 if (!D->hasAttr<OptimizeNoneAttr>()) { 2105 if (D->hasAttr<ColdAttr>()) { 2106 if (!ShouldAddOptNone) 2107 B.addAttribute(llvm::Attribute::OptimizeForSize); 2108 B.addAttribute(llvm::Attribute::Cold); 2109 } 2110 if (D->hasAttr<HotAttr>()) 2111 B.addAttribute(llvm::Attribute::Hot); 2112 if (D->hasAttr<MinSizeAttr>()) 2113 B.addAttribute(llvm::Attribute::MinSize); 2114 } 2115 2116 F->addFnAttrs(B); 2117 2118 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2119 if (alignment) 2120 F->setAlignment(llvm::Align(alignment)); 2121 2122 if (!D->hasAttr<AlignedAttr>()) 2123 if (LangOpts.FunctionAlignment) 2124 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2125 2126 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2127 // reserve a bit for differentiating between virtual and non-virtual member 2128 // functions. If the current target's C++ ABI requires this and this is a 2129 // member function, set its alignment accordingly. 2130 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2131 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2132 F->setAlignment(llvm::Align(2)); 2133 } 2134 2135 // In the cross-dso CFI mode with canonical jump tables, we want !type 2136 // attributes on definitions only. 2137 if (CodeGenOpts.SanitizeCfiCrossDso && 2138 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2139 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2140 // Skip available_externally functions. They won't be codegen'ed in the 2141 // current module anyway. 2142 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2143 CreateFunctionTypeMetadataForIcall(FD, F); 2144 } 2145 } 2146 2147 // Emit type metadata on member functions for member function pointer checks. 2148 // These are only ever necessary on definitions; we're guaranteed that the 2149 // definition will be present in the LTO unit as a result of LTO visibility. 2150 auto *MD = dyn_cast<CXXMethodDecl>(D); 2151 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2152 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2153 llvm::Metadata *Id = 2154 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2155 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2156 F->addTypeMetadata(0, Id); 2157 } 2158 } 2159 } 2160 2161 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2162 llvm::Function *F) { 2163 if (D->hasAttr<StrictFPAttr>()) { 2164 llvm::AttrBuilder FuncAttrs(F->getContext()); 2165 FuncAttrs.addAttribute("strictfp"); 2166 F->addFnAttrs(FuncAttrs); 2167 } 2168 } 2169 2170 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2171 const Decl *D = GD.getDecl(); 2172 if (isa_and_nonnull<NamedDecl>(D)) 2173 setGVProperties(GV, GD); 2174 else 2175 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2176 2177 if (D && D->hasAttr<UsedAttr>()) 2178 addUsedOrCompilerUsedGlobal(GV); 2179 2180 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2181 const auto *VD = cast<VarDecl>(D); 2182 if (VD->getType().isConstQualified() && 2183 VD->getStorageDuration() == SD_Static) 2184 addUsedOrCompilerUsedGlobal(GV); 2185 } 2186 } 2187 2188 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2189 llvm::AttrBuilder &Attrs) { 2190 // Add target-cpu and target-features attributes to functions. If 2191 // we have a decl for the function and it has a target attribute then 2192 // parse that and add it to the feature set. 2193 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2194 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2195 std::vector<std::string> Features; 2196 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2197 FD = FD ? FD->getMostRecentDecl() : FD; 2198 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2199 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2200 assert((!TD || !TV) && "both target_version and target specified"); 2201 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2202 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2203 bool AddedAttr = false; 2204 if (TD || TV || SD || TC) { 2205 llvm::StringMap<bool> FeatureMap; 2206 getContext().getFunctionFeatureMap(FeatureMap, GD); 2207 2208 // Produce the canonical string for this set of features. 2209 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2210 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2211 2212 // Now add the target-cpu and target-features to the function. 2213 // While we populated the feature map above, we still need to 2214 // get and parse the target attribute so we can get the cpu for 2215 // the function. 2216 if (TD) { 2217 ParsedTargetAttr ParsedAttr = 2218 Target.parseTargetAttr(TD->getFeaturesStr()); 2219 if (!ParsedAttr.CPU.empty() && 2220 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2221 TargetCPU = ParsedAttr.CPU; 2222 TuneCPU = ""; // Clear the tune CPU. 2223 } 2224 if (!ParsedAttr.Tune.empty() && 2225 getTarget().isValidCPUName(ParsedAttr.Tune)) 2226 TuneCPU = ParsedAttr.Tune; 2227 } 2228 2229 if (SD) { 2230 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2231 // favor this processor. 2232 TuneCPU = getTarget().getCPUSpecificTuneName( 2233 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2234 } 2235 } else { 2236 // Otherwise just add the existing target cpu and target features to the 2237 // function. 2238 Features = getTarget().getTargetOpts().Features; 2239 } 2240 2241 if (!TargetCPU.empty()) { 2242 Attrs.addAttribute("target-cpu", TargetCPU); 2243 AddedAttr = true; 2244 } 2245 if (!TuneCPU.empty()) { 2246 Attrs.addAttribute("tune-cpu", TuneCPU); 2247 AddedAttr = true; 2248 } 2249 if (!Features.empty()) { 2250 llvm::sort(Features); 2251 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2252 AddedAttr = true; 2253 } 2254 2255 return AddedAttr; 2256 } 2257 2258 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2259 llvm::GlobalObject *GO) { 2260 const Decl *D = GD.getDecl(); 2261 SetCommonAttributes(GD, GO); 2262 2263 if (D) { 2264 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2265 if (D->hasAttr<RetainAttr>()) 2266 addUsedGlobal(GV); 2267 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2268 GV->addAttribute("bss-section", SA->getName()); 2269 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2270 GV->addAttribute("data-section", SA->getName()); 2271 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2272 GV->addAttribute("rodata-section", SA->getName()); 2273 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2274 GV->addAttribute("relro-section", SA->getName()); 2275 } 2276 2277 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2278 if (D->hasAttr<RetainAttr>()) 2279 addUsedGlobal(F); 2280 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2281 if (!D->getAttr<SectionAttr>()) 2282 F->addFnAttr("implicit-section-name", SA->getName()); 2283 2284 llvm::AttrBuilder Attrs(F->getContext()); 2285 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2286 // We know that GetCPUAndFeaturesAttributes will always have the 2287 // newest set, since it has the newest possible FunctionDecl, so the 2288 // new ones should replace the old. 2289 llvm::AttributeMask RemoveAttrs; 2290 RemoveAttrs.addAttribute("target-cpu"); 2291 RemoveAttrs.addAttribute("target-features"); 2292 RemoveAttrs.addAttribute("tune-cpu"); 2293 F->removeFnAttrs(RemoveAttrs); 2294 F->addFnAttrs(Attrs); 2295 } 2296 } 2297 2298 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2299 GO->setSection(CSA->getName()); 2300 else if (const auto *SA = D->getAttr<SectionAttr>()) 2301 GO->setSection(SA->getName()); 2302 } 2303 2304 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2305 } 2306 2307 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2308 llvm::Function *F, 2309 const CGFunctionInfo &FI) { 2310 const Decl *D = GD.getDecl(); 2311 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2312 SetLLVMFunctionAttributesForDefinition(D, F); 2313 2314 F->setLinkage(llvm::Function::InternalLinkage); 2315 2316 setNonAliasAttributes(GD, F); 2317 } 2318 2319 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2320 // Set linkage and visibility in case we never see a definition. 2321 LinkageInfo LV = ND->getLinkageAndVisibility(); 2322 // Don't set internal linkage on declarations. 2323 // "extern_weak" is overloaded in LLVM; we probably should have 2324 // separate linkage types for this. 2325 if (isExternallyVisible(LV.getLinkage()) && 2326 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2327 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2328 } 2329 2330 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2331 llvm::Function *F) { 2332 // Only if we are checking indirect calls. 2333 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2334 return; 2335 2336 // Non-static class methods are handled via vtable or member function pointer 2337 // checks elsewhere. 2338 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2339 return; 2340 2341 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2342 F->addTypeMetadata(0, MD); 2343 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2344 2345 // Emit a hash-based bit set entry for cross-DSO calls. 2346 if (CodeGenOpts.SanitizeCfiCrossDso) 2347 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2348 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2349 } 2350 2351 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2352 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2353 return; 2354 2355 llvm::LLVMContext &Ctx = F->getContext(); 2356 llvm::MDBuilder MDB(Ctx); 2357 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2358 llvm::MDNode::get( 2359 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2360 } 2361 2362 static bool allowKCFIIdentifier(StringRef Name) { 2363 // KCFI type identifier constants are only necessary for external assembly 2364 // functions, which means it's safe to skip unusual names. Subset of 2365 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2366 return llvm::all_of(Name, [](const char &C) { 2367 return llvm::isAlnum(C) || C == '_' || C == '.'; 2368 }); 2369 } 2370 2371 void CodeGenModule::finalizeKCFITypes() { 2372 llvm::Module &M = getModule(); 2373 for (auto &F : M.functions()) { 2374 // Remove KCFI type metadata from non-address-taken local functions. 2375 bool AddressTaken = F.hasAddressTaken(); 2376 if (!AddressTaken && F.hasLocalLinkage()) 2377 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2378 2379 // Generate a constant with the expected KCFI type identifier for all 2380 // address-taken function declarations to support annotating indirectly 2381 // called assembly functions. 2382 if (!AddressTaken || !F.isDeclaration()) 2383 continue; 2384 2385 const llvm::ConstantInt *Type; 2386 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2387 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2388 else 2389 continue; 2390 2391 StringRef Name = F.getName(); 2392 if (!allowKCFIIdentifier(Name)) 2393 continue; 2394 2395 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2396 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2397 .str(); 2398 M.appendModuleInlineAsm(Asm); 2399 } 2400 } 2401 2402 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2403 bool IsIncompleteFunction, 2404 bool IsThunk) { 2405 2406 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2407 // If this is an intrinsic function, set the function's attributes 2408 // to the intrinsic's attributes. 2409 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2410 return; 2411 } 2412 2413 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2414 2415 if (!IsIncompleteFunction) 2416 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2417 IsThunk); 2418 2419 // Add the Returned attribute for "this", except for iOS 5 and earlier 2420 // where substantial code, including the libstdc++ dylib, was compiled with 2421 // GCC and does not actually return "this". 2422 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2423 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2424 assert(!F->arg_empty() && 2425 F->arg_begin()->getType() 2426 ->canLosslesslyBitCastTo(F->getReturnType()) && 2427 "unexpected this return"); 2428 F->addParamAttr(0, llvm::Attribute::Returned); 2429 } 2430 2431 // Only a few attributes are set on declarations; these may later be 2432 // overridden by a definition. 2433 2434 setLinkageForGV(F, FD); 2435 setGVProperties(F, FD); 2436 2437 // Setup target-specific attributes. 2438 if (!IsIncompleteFunction && F->isDeclaration()) 2439 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2440 2441 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2442 F->setSection(CSA->getName()); 2443 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2444 F->setSection(SA->getName()); 2445 2446 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2447 if (EA->isError()) 2448 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2449 else if (EA->isWarning()) 2450 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2451 } 2452 2453 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2454 if (FD->isInlineBuiltinDeclaration()) { 2455 const FunctionDecl *FDBody; 2456 bool HasBody = FD->hasBody(FDBody); 2457 (void)HasBody; 2458 assert(HasBody && "Inline builtin declarations should always have an " 2459 "available body!"); 2460 if (shouldEmitFunction(FDBody)) 2461 F->addFnAttr(llvm::Attribute::NoBuiltin); 2462 } 2463 2464 if (FD->isReplaceableGlobalAllocationFunction()) { 2465 // A replaceable global allocation function does not act like a builtin by 2466 // default, only if it is invoked by a new-expression or delete-expression. 2467 F->addFnAttr(llvm::Attribute::NoBuiltin); 2468 } 2469 2470 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2471 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2472 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2473 if (MD->isVirtual()) 2474 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2475 2476 // Don't emit entries for function declarations in the cross-DSO mode. This 2477 // is handled with better precision by the receiving DSO. But if jump tables 2478 // are non-canonical then we need type metadata in order to produce the local 2479 // jump table. 2480 if (!CodeGenOpts.SanitizeCfiCrossDso || 2481 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2482 CreateFunctionTypeMetadataForIcall(FD, F); 2483 2484 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2485 setKCFIType(FD, F); 2486 2487 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2488 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2489 2490 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2491 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2492 2493 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2494 // Annotate the callback behavior as metadata: 2495 // - The callback callee (as argument number). 2496 // - The callback payloads (as argument numbers). 2497 llvm::LLVMContext &Ctx = F->getContext(); 2498 llvm::MDBuilder MDB(Ctx); 2499 2500 // The payload indices are all but the first one in the encoding. The first 2501 // identifies the callback callee. 2502 int CalleeIdx = *CB->encoding_begin(); 2503 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2504 F->addMetadata(llvm::LLVMContext::MD_callback, 2505 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2506 CalleeIdx, PayloadIndices, 2507 /* VarArgsArePassed */ false)})); 2508 } 2509 } 2510 2511 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2512 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2513 "Only globals with definition can force usage."); 2514 LLVMUsed.emplace_back(GV); 2515 } 2516 2517 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2518 assert(!GV->isDeclaration() && 2519 "Only globals with definition can force usage."); 2520 LLVMCompilerUsed.emplace_back(GV); 2521 } 2522 2523 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2524 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2525 "Only globals with definition can force usage."); 2526 if (getTriple().isOSBinFormatELF()) 2527 LLVMCompilerUsed.emplace_back(GV); 2528 else 2529 LLVMUsed.emplace_back(GV); 2530 } 2531 2532 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2533 std::vector<llvm::WeakTrackingVH> &List) { 2534 // Don't create llvm.used if there is no need. 2535 if (List.empty()) 2536 return; 2537 2538 // Convert List to what ConstantArray needs. 2539 SmallVector<llvm::Constant*, 8> UsedArray; 2540 UsedArray.resize(List.size()); 2541 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2542 UsedArray[i] = 2543 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2544 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2545 } 2546 2547 if (UsedArray.empty()) 2548 return; 2549 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2550 2551 auto *GV = new llvm::GlobalVariable( 2552 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2553 llvm::ConstantArray::get(ATy, UsedArray), Name); 2554 2555 GV->setSection("llvm.metadata"); 2556 } 2557 2558 void CodeGenModule::emitLLVMUsed() { 2559 emitUsed(*this, "llvm.used", LLVMUsed); 2560 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2561 } 2562 2563 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2564 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2565 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2566 } 2567 2568 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2569 llvm::SmallString<32> Opt; 2570 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2571 if (Opt.empty()) 2572 return; 2573 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2574 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2575 } 2576 2577 void CodeGenModule::AddDependentLib(StringRef Lib) { 2578 auto &C = getLLVMContext(); 2579 if (getTarget().getTriple().isOSBinFormatELF()) { 2580 ELFDependentLibraries.push_back( 2581 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2582 return; 2583 } 2584 2585 llvm::SmallString<24> Opt; 2586 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2587 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2588 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2589 } 2590 2591 /// Add link options implied by the given module, including modules 2592 /// it depends on, using a postorder walk. 2593 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2594 SmallVectorImpl<llvm::MDNode *> &Metadata, 2595 llvm::SmallPtrSet<Module *, 16> &Visited) { 2596 // Import this module's parent. 2597 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2598 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2599 } 2600 2601 // Import this module's dependencies. 2602 for (Module *Import : llvm::reverse(Mod->Imports)) { 2603 if (Visited.insert(Import).second) 2604 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2605 } 2606 2607 // Add linker options to link against the libraries/frameworks 2608 // described by this module. 2609 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2610 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2611 2612 // For modules that use export_as for linking, use that module 2613 // name instead. 2614 if (Mod->UseExportAsModuleLinkName) 2615 return; 2616 2617 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2618 // Link against a framework. Frameworks are currently Darwin only, so we 2619 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2620 if (LL.IsFramework) { 2621 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2622 llvm::MDString::get(Context, LL.Library)}; 2623 2624 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2625 continue; 2626 } 2627 2628 // Link against a library. 2629 if (IsELF) { 2630 llvm::Metadata *Args[2] = { 2631 llvm::MDString::get(Context, "lib"), 2632 llvm::MDString::get(Context, LL.Library), 2633 }; 2634 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2635 } else { 2636 llvm::SmallString<24> Opt; 2637 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2638 auto *OptString = llvm::MDString::get(Context, Opt); 2639 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2640 } 2641 } 2642 } 2643 2644 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2645 // Emit the initializers in the order that sub-modules appear in the 2646 // source, first Global Module Fragments, if present. 2647 if (auto GMF = Primary->getGlobalModuleFragment()) { 2648 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2649 if (isa<ImportDecl>(D)) 2650 continue; 2651 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2652 EmitTopLevelDecl(D); 2653 } 2654 } 2655 // Second any associated with the module, itself. 2656 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2657 // Skip import decls, the inits for those are called explicitly. 2658 if (isa<ImportDecl>(D)) 2659 continue; 2660 EmitTopLevelDecl(D); 2661 } 2662 // Third any associated with the Privat eMOdule Fragment, if present. 2663 if (auto PMF = Primary->getPrivateModuleFragment()) { 2664 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2665 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2666 EmitTopLevelDecl(D); 2667 } 2668 } 2669 } 2670 2671 void CodeGenModule::EmitModuleLinkOptions() { 2672 // Collect the set of all of the modules we want to visit to emit link 2673 // options, which is essentially the imported modules and all of their 2674 // non-explicit child modules. 2675 llvm::SetVector<clang::Module *> LinkModules; 2676 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2677 SmallVector<clang::Module *, 16> Stack; 2678 2679 // Seed the stack with imported modules. 2680 for (Module *M : ImportedModules) { 2681 // Do not add any link flags when an implementation TU of a module imports 2682 // a header of that same module. 2683 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2684 !getLangOpts().isCompilingModule()) 2685 continue; 2686 if (Visited.insert(M).second) 2687 Stack.push_back(M); 2688 } 2689 2690 // Find all of the modules to import, making a little effort to prune 2691 // non-leaf modules. 2692 while (!Stack.empty()) { 2693 clang::Module *Mod = Stack.pop_back_val(); 2694 2695 bool AnyChildren = false; 2696 2697 // Visit the submodules of this module. 2698 for (const auto &SM : Mod->submodules()) { 2699 // Skip explicit children; they need to be explicitly imported to be 2700 // linked against. 2701 if (SM->IsExplicit) 2702 continue; 2703 2704 if (Visited.insert(SM).second) { 2705 Stack.push_back(SM); 2706 AnyChildren = true; 2707 } 2708 } 2709 2710 // We didn't find any children, so add this module to the list of 2711 // modules to link against. 2712 if (!AnyChildren) { 2713 LinkModules.insert(Mod); 2714 } 2715 } 2716 2717 // Add link options for all of the imported modules in reverse topological 2718 // order. We don't do anything to try to order import link flags with respect 2719 // to linker options inserted by things like #pragma comment(). 2720 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2721 Visited.clear(); 2722 for (Module *M : LinkModules) 2723 if (Visited.insert(M).second) 2724 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2725 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2726 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2727 2728 // Add the linker options metadata flag. 2729 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2730 for (auto *MD : LinkerOptionsMetadata) 2731 NMD->addOperand(MD); 2732 } 2733 2734 void CodeGenModule::EmitDeferred() { 2735 // Emit deferred declare target declarations. 2736 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2737 getOpenMPRuntime().emitDeferredTargetDecls(); 2738 2739 // Emit code for any potentially referenced deferred decls. Since a 2740 // previously unused static decl may become used during the generation of code 2741 // for a static function, iterate until no changes are made. 2742 2743 if (!DeferredVTables.empty()) { 2744 EmitDeferredVTables(); 2745 2746 // Emitting a vtable doesn't directly cause more vtables to 2747 // become deferred, although it can cause functions to be 2748 // emitted that then need those vtables. 2749 assert(DeferredVTables.empty()); 2750 } 2751 2752 // Emit CUDA/HIP static device variables referenced by host code only. 2753 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2754 // needed for further handling. 2755 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2756 llvm::append_range(DeferredDeclsToEmit, 2757 getContext().CUDADeviceVarODRUsedByHost); 2758 2759 // Stop if we're out of both deferred vtables and deferred declarations. 2760 if (DeferredDeclsToEmit.empty()) 2761 return; 2762 2763 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2764 // work, it will not interfere with this. 2765 std::vector<GlobalDecl> CurDeclsToEmit; 2766 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2767 2768 for (GlobalDecl &D : CurDeclsToEmit) { 2769 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2770 // to get GlobalValue with exactly the type we need, not something that 2771 // might had been created for another decl with the same mangled name but 2772 // different type. 2773 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2774 GetAddrOfGlobal(D, ForDefinition)); 2775 2776 // In case of different address spaces, we may still get a cast, even with 2777 // IsForDefinition equal to true. Query mangled names table to get 2778 // GlobalValue. 2779 if (!GV) 2780 GV = GetGlobalValue(getMangledName(D)); 2781 2782 // Make sure GetGlobalValue returned non-null. 2783 assert(GV); 2784 2785 // Check to see if we've already emitted this. This is necessary 2786 // for a couple of reasons: first, decls can end up in the 2787 // deferred-decls queue multiple times, and second, decls can end 2788 // up with definitions in unusual ways (e.g. by an extern inline 2789 // function acquiring a strong function redefinition). Just 2790 // ignore these cases. 2791 if (!GV->isDeclaration()) 2792 continue; 2793 2794 // If this is OpenMP, check if it is legal to emit this global normally. 2795 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2796 continue; 2797 2798 // Otherwise, emit the definition and move on to the next one. 2799 EmitGlobalDefinition(D, GV); 2800 2801 // If we found out that we need to emit more decls, do that recursively. 2802 // This has the advantage that the decls are emitted in a DFS and related 2803 // ones are close together, which is convenient for testing. 2804 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2805 EmitDeferred(); 2806 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2807 } 2808 } 2809 } 2810 2811 void CodeGenModule::EmitVTablesOpportunistically() { 2812 // Try to emit external vtables as available_externally if they have emitted 2813 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2814 // is not allowed to create new references to things that need to be emitted 2815 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2816 2817 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2818 && "Only emit opportunistic vtables with optimizations"); 2819 2820 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2821 assert(getVTables().isVTableExternal(RD) && 2822 "This queue should only contain external vtables"); 2823 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2824 VTables.GenerateClassData(RD); 2825 } 2826 OpportunisticVTables.clear(); 2827 } 2828 2829 void CodeGenModule::EmitGlobalAnnotations() { 2830 if (Annotations.empty()) 2831 return; 2832 2833 // Create a new global variable for the ConstantStruct in the Module. 2834 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2835 Annotations[0]->getType(), Annotations.size()), Annotations); 2836 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2837 llvm::GlobalValue::AppendingLinkage, 2838 Array, "llvm.global.annotations"); 2839 gv->setSection(AnnotationSection); 2840 } 2841 2842 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2843 llvm::Constant *&AStr = AnnotationStrings[Str]; 2844 if (AStr) 2845 return AStr; 2846 2847 // Not found yet, create a new global. 2848 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2849 auto *gv = new llvm::GlobalVariable( 2850 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2851 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2852 ConstGlobalsPtrTy->getAddressSpace()); 2853 gv->setSection(AnnotationSection); 2854 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2855 AStr = gv; 2856 return gv; 2857 } 2858 2859 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2860 SourceManager &SM = getContext().getSourceManager(); 2861 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2862 if (PLoc.isValid()) 2863 return EmitAnnotationString(PLoc.getFilename()); 2864 return EmitAnnotationString(SM.getBufferName(Loc)); 2865 } 2866 2867 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2868 SourceManager &SM = getContext().getSourceManager(); 2869 PresumedLoc PLoc = SM.getPresumedLoc(L); 2870 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2871 SM.getExpansionLineNumber(L); 2872 return llvm::ConstantInt::get(Int32Ty, LineNo); 2873 } 2874 2875 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2876 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2877 if (Exprs.empty()) 2878 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2879 2880 llvm::FoldingSetNodeID ID; 2881 for (Expr *E : Exprs) { 2882 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2883 } 2884 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2885 if (Lookup) 2886 return Lookup; 2887 2888 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2889 LLVMArgs.reserve(Exprs.size()); 2890 ConstantEmitter ConstEmiter(*this); 2891 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2892 const auto *CE = cast<clang::ConstantExpr>(E); 2893 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2894 CE->getType()); 2895 }); 2896 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2897 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2898 llvm::GlobalValue::PrivateLinkage, Struct, 2899 ".args"); 2900 GV->setSection(AnnotationSection); 2901 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2902 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2903 2904 Lookup = Bitcasted; 2905 return Bitcasted; 2906 } 2907 2908 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2909 const AnnotateAttr *AA, 2910 SourceLocation L) { 2911 // Get the globals for file name, annotation, and the line number. 2912 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2913 *UnitGV = EmitAnnotationUnit(L), 2914 *LineNoCst = EmitAnnotationLineNo(L), 2915 *Args = EmitAnnotationArgs(AA); 2916 2917 llvm::Constant *GVInGlobalsAS = GV; 2918 if (GV->getAddressSpace() != 2919 getDataLayout().getDefaultGlobalsAddressSpace()) { 2920 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2921 GV, GV->getValueType()->getPointerTo( 2922 getDataLayout().getDefaultGlobalsAddressSpace())); 2923 } 2924 2925 // Create the ConstantStruct for the global annotation. 2926 llvm::Constant *Fields[] = { 2927 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2928 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2929 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2930 LineNoCst, 2931 Args, 2932 }; 2933 return llvm::ConstantStruct::getAnon(Fields); 2934 } 2935 2936 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2937 llvm::GlobalValue *GV) { 2938 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2939 // Get the struct elements for these annotations. 2940 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2941 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2942 } 2943 2944 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2945 SourceLocation Loc) const { 2946 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2947 // NoSanitize by function name. 2948 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2949 return true; 2950 // NoSanitize by location. Check "mainfile" prefix. 2951 auto &SM = Context.getSourceManager(); 2952 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2953 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2954 return true; 2955 2956 // Check "src" prefix. 2957 if (Loc.isValid()) 2958 return NoSanitizeL.containsLocation(Kind, Loc); 2959 // If location is unknown, this may be a compiler-generated function. Assume 2960 // it's located in the main file. 2961 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2962 } 2963 2964 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2965 llvm::GlobalVariable *GV, 2966 SourceLocation Loc, QualType Ty, 2967 StringRef Category) const { 2968 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2969 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2970 return true; 2971 auto &SM = Context.getSourceManager(); 2972 if (NoSanitizeL.containsMainFile( 2973 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2974 return true; 2975 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2976 return true; 2977 2978 // Check global type. 2979 if (!Ty.isNull()) { 2980 // Drill down the array types: if global variable of a fixed type is 2981 // not sanitized, we also don't instrument arrays of them. 2982 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2983 Ty = AT->getElementType(); 2984 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2985 // Only record types (classes, structs etc.) are ignored. 2986 if (Ty->isRecordType()) { 2987 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2988 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2989 return true; 2990 } 2991 } 2992 return false; 2993 } 2994 2995 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2996 StringRef Category) const { 2997 const auto &XRayFilter = getContext().getXRayFilter(); 2998 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2999 auto Attr = ImbueAttr::NONE; 3000 if (Loc.isValid()) 3001 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3002 if (Attr == ImbueAttr::NONE) 3003 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3004 switch (Attr) { 3005 case ImbueAttr::NONE: 3006 return false; 3007 case ImbueAttr::ALWAYS: 3008 Fn->addFnAttr("function-instrument", "xray-always"); 3009 break; 3010 case ImbueAttr::ALWAYS_ARG1: 3011 Fn->addFnAttr("function-instrument", "xray-always"); 3012 Fn->addFnAttr("xray-log-args", "1"); 3013 break; 3014 case ImbueAttr::NEVER: 3015 Fn->addFnAttr("function-instrument", "xray-never"); 3016 break; 3017 } 3018 return true; 3019 } 3020 3021 ProfileList::ExclusionType 3022 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3023 SourceLocation Loc) const { 3024 const auto &ProfileList = getContext().getProfileList(); 3025 // If the profile list is empty, then instrument everything. 3026 if (ProfileList.isEmpty()) 3027 return ProfileList::Allow; 3028 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3029 // First, check the function name. 3030 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3031 return *V; 3032 // Next, check the source location. 3033 if (Loc.isValid()) 3034 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3035 return *V; 3036 // If location is unknown, this may be a compiler-generated function. Assume 3037 // it's located in the main file. 3038 auto &SM = Context.getSourceManager(); 3039 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3040 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3041 return *V; 3042 return ProfileList.getDefault(Kind); 3043 } 3044 3045 ProfileList::ExclusionType 3046 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3047 SourceLocation Loc) const { 3048 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3049 if (V != ProfileList::Allow) 3050 return V; 3051 3052 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3053 if (NumGroups > 1) { 3054 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3055 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3056 return ProfileList::Skip; 3057 } 3058 return ProfileList::Allow; 3059 } 3060 3061 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3062 // Never defer when EmitAllDecls is specified. 3063 if (LangOpts.EmitAllDecls) 3064 return true; 3065 3066 if (CodeGenOpts.KeepStaticConsts) { 3067 const auto *VD = dyn_cast<VarDecl>(Global); 3068 if (VD && VD->getType().isConstQualified() && 3069 VD->getStorageDuration() == SD_Static) 3070 return true; 3071 } 3072 3073 return getContext().DeclMustBeEmitted(Global); 3074 } 3075 3076 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3077 // In OpenMP 5.0 variables and function may be marked as 3078 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3079 // that they must be emitted on the host/device. To be sure we need to have 3080 // seen a declare target with an explicit mentioning of the function, we know 3081 // we have if the level of the declare target attribute is -1. Note that we 3082 // check somewhere else if we should emit this at all. 3083 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3084 llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3085 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3086 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3087 return false; 3088 } 3089 3090 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3091 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3092 // Implicit template instantiations may change linkage if they are later 3093 // explicitly instantiated, so they should not be emitted eagerly. 3094 return false; 3095 } 3096 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3097 if (Context.getInlineVariableDefinitionKind(VD) == 3098 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3099 // A definition of an inline constexpr static data member may change 3100 // linkage later if it's redeclared outside the class. 3101 return false; 3102 if (CXX20ModuleInits && VD->getOwningModule() && 3103 !VD->getOwningModule()->isModuleMapModule()) { 3104 // For CXX20, module-owned initializers need to be deferred, since it is 3105 // not known at this point if they will be run for the current module or 3106 // as part of the initializer for an imported one. 3107 return false; 3108 } 3109 } 3110 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3111 // codegen for global variables, because they may be marked as threadprivate. 3112 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3113 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3114 !isTypeConstant(Global->getType(), false) && 3115 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3116 return false; 3117 3118 return true; 3119 } 3120 3121 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3122 StringRef Name = getMangledName(GD); 3123 3124 // The UUID descriptor should be pointer aligned. 3125 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3126 3127 // Look for an existing global. 3128 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3129 return ConstantAddress(GV, GV->getValueType(), Alignment); 3130 3131 ConstantEmitter Emitter(*this); 3132 llvm::Constant *Init; 3133 3134 APValue &V = GD->getAsAPValue(); 3135 if (!V.isAbsent()) { 3136 // If possible, emit the APValue version of the initializer. In particular, 3137 // this gets the type of the constant right. 3138 Init = Emitter.emitForInitializer( 3139 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3140 } else { 3141 // As a fallback, directly construct the constant. 3142 // FIXME: This may get padding wrong under esoteric struct layout rules. 3143 // MSVC appears to create a complete type 'struct __s_GUID' that it 3144 // presumably uses to represent these constants. 3145 MSGuidDecl::Parts Parts = GD->getParts(); 3146 llvm::Constant *Fields[4] = { 3147 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3148 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3149 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3150 llvm::ConstantDataArray::getRaw( 3151 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3152 Int8Ty)}; 3153 Init = llvm::ConstantStruct::getAnon(Fields); 3154 } 3155 3156 auto *GV = new llvm::GlobalVariable( 3157 getModule(), Init->getType(), 3158 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3159 if (supportsCOMDAT()) 3160 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3161 setDSOLocal(GV); 3162 3163 if (!V.isAbsent()) { 3164 Emitter.finalize(GV); 3165 return ConstantAddress(GV, GV->getValueType(), Alignment); 3166 } 3167 3168 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3169 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3170 GV, Ty->getPointerTo(GV->getAddressSpace())); 3171 return ConstantAddress(Addr, Ty, Alignment); 3172 } 3173 3174 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3175 const UnnamedGlobalConstantDecl *GCD) { 3176 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3177 3178 llvm::GlobalVariable **Entry = nullptr; 3179 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3180 if (*Entry) 3181 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3182 3183 ConstantEmitter Emitter(*this); 3184 llvm::Constant *Init; 3185 3186 const APValue &V = GCD->getValue(); 3187 3188 assert(!V.isAbsent()); 3189 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3190 GCD->getType()); 3191 3192 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3193 /*isConstant=*/true, 3194 llvm::GlobalValue::PrivateLinkage, Init, 3195 ".constant"); 3196 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3197 GV->setAlignment(Alignment.getAsAlign()); 3198 3199 Emitter.finalize(GV); 3200 3201 *Entry = GV; 3202 return ConstantAddress(GV, GV->getValueType(), Alignment); 3203 } 3204 3205 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3206 const TemplateParamObjectDecl *TPO) { 3207 StringRef Name = getMangledName(TPO); 3208 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3209 3210 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3211 return ConstantAddress(GV, GV->getValueType(), Alignment); 3212 3213 ConstantEmitter Emitter(*this); 3214 llvm::Constant *Init = Emitter.emitForInitializer( 3215 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3216 3217 if (!Init) { 3218 ErrorUnsupported(TPO, "template parameter object"); 3219 return ConstantAddress::invalid(); 3220 } 3221 3222 auto *GV = new llvm::GlobalVariable( 3223 getModule(), Init->getType(), 3224 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3225 if (supportsCOMDAT()) 3226 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3227 Emitter.finalize(GV); 3228 3229 return ConstantAddress(GV, GV->getValueType(), Alignment); 3230 } 3231 3232 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3233 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3234 assert(AA && "No alias?"); 3235 3236 CharUnits Alignment = getContext().getDeclAlign(VD); 3237 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3238 3239 // See if there is already something with the target's name in the module. 3240 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3241 if (Entry) { 3242 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3243 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3244 return ConstantAddress(Ptr, DeclTy, Alignment); 3245 } 3246 3247 llvm::Constant *Aliasee; 3248 if (isa<llvm::FunctionType>(DeclTy)) 3249 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3250 GlobalDecl(cast<FunctionDecl>(VD)), 3251 /*ForVTable=*/false); 3252 else 3253 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3254 nullptr); 3255 3256 auto *F = cast<llvm::GlobalValue>(Aliasee); 3257 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3258 WeakRefReferences.insert(F); 3259 3260 return ConstantAddress(Aliasee, DeclTy, Alignment); 3261 } 3262 3263 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3264 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3265 3266 // Weak references don't produce any output by themselves. 3267 if (Global->hasAttr<WeakRefAttr>()) 3268 return; 3269 3270 // If this is an alias definition (which otherwise looks like a declaration) 3271 // emit it now. 3272 if (Global->hasAttr<AliasAttr>()) 3273 return EmitAliasDefinition(GD); 3274 3275 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3276 if (Global->hasAttr<IFuncAttr>()) 3277 return emitIFuncDefinition(GD); 3278 3279 // If this is a cpu_dispatch multiversion function, emit the resolver. 3280 if (Global->hasAttr<CPUDispatchAttr>()) 3281 return emitCPUDispatchDefinition(GD); 3282 3283 // If this is CUDA, be selective about which declarations we emit. 3284 if (LangOpts.CUDA) { 3285 if (LangOpts.CUDAIsDevice) { 3286 if (!Global->hasAttr<CUDADeviceAttr>() && 3287 !Global->hasAttr<CUDAGlobalAttr>() && 3288 !Global->hasAttr<CUDAConstantAttr>() && 3289 !Global->hasAttr<CUDASharedAttr>() && 3290 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3291 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3292 return; 3293 } else { 3294 // We need to emit host-side 'shadows' for all global 3295 // device-side variables because the CUDA runtime needs their 3296 // size and host-side address in order to provide access to 3297 // their device-side incarnations. 3298 3299 // So device-only functions are the only things we skip. 3300 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3301 Global->hasAttr<CUDADeviceAttr>()) 3302 return; 3303 3304 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3305 "Expected Variable or Function"); 3306 } 3307 } 3308 3309 if (LangOpts.OpenMP) { 3310 // If this is OpenMP, check if it is legal to emit this global normally. 3311 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3312 return; 3313 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3314 if (MustBeEmitted(Global)) 3315 EmitOMPDeclareReduction(DRD); 3316 return; 3317 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3318 if (MustBeEmitted(Global)) 3319 EmitOMPDeclareMapper(DMD); 3320 return; 3321 } 3322 } 3323 3324 // Ignore declarations, they will be emitted on their first use. 3325 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3326 // Forward declarations are emitted lazily on first use. 3327 if (!FD->doesThisDeclarationHaveABody()) { 3328 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3329 return; 3330 3331 StringRef MangledName = getMangledName(GD); 3332 3333 // Compute the function info and LLVM type. 3334 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3335 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3336 3337 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3338 /*DontDefer=*/false); 3339 return; 3340 } 3341 } else { 3342 const auto *VD = cast<VarDecl>(Global); 3343 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3344 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3345 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3346 if (LangOpts.OpenMP) { 3347 // Emit declaration of the must-be-emitted declare target variable. 3348 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3349 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3350 bool UnifiedMemoryEnabled = 3351 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3352 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3353 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3354 !UnifiedMemoryEnabled) { 3355 (void)GetAddrOfGlobalVar(VD); 3356 } else { 3357 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3358 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3359 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3360 UnifiedMemoryEnabled)) && 3361 "Link clause or to clause with unified memory expected."); 3362 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3363 } 3364 3365 return; 3366 } 3367 } 3368 // If this declaration may have caused an inline variable definition to 3369 // change linkage, make sure that it's emitted. 3370 if (Context.getInlineVariableDefinitionKind(VD) == 3371 ASTContext::InlineVariableDefinitionKind::Strong) 3372 GetAddrOfGlobalVar(VD); 3373 return; 3374 } 3375 } 3376 3377 // Defer code generation to first use when possible, e.g. if this is an inline 3378 // function. If the global must always be emitted, do it eagerly if possible 3379 // to benefit from cache locality. 3380 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3381 // Emit the definition if it can't be deferred. 3382 EmitGlobalDefinition(GD); 3383 return; 3384 } 3385 3386 // If we're deferring emission of a C++ variable with an 3387 // initializer, remember the order in which it appeared in the file. 3388 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3389 cast<VarDecl>(Global)->hasInit()) { 3390 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3391 CXXGlobalInits.push_back(nullptr); 3392 } 3393 3394 StringRef MangledName = getMangledName(GD); 3395 if (GetGlobalValue(MangledName) != nullptr) { 3396 // The value has already been used and should therefore be emitted. 3397 addDeferredDeclToEmit(GD); 3398 } else if (MustBeEmitted(Global)) { 3399 // The value must be emitted, but cannot be emitted eagerly. 3400 assert(!MayBeEmittedEagerly(Global)); 3401 addDeferredDeclToEmit(GD); 3402 EmittedDeferredDecls[MangledName] = GD; 3403 } else { 3404 // Otherwise, remember that we saw a deferred decl with this name. The 3405 // first use of the mangled name will cause it to move into 3406 // DeferredDeclsToEmit. 3407 DeferredDecls[MangledName] = GD; 3408 } 3409 } 3410 3411 // Check if T is a class type with a destructor that's not dllimport. 3412 static bool HasNonDllImportDtor(QualType T) { 3413 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3414 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3415 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3416 return true; 3417 3418 return false; 3419 } 3420 3421 namespace { 3422 struct FunctionIsDirectlyRecursive 3423 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3424 const StringRef Name; 3425 const Builtin::Context &BI; 3426 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3427 : Name(N), BI(C) {} 3428 3429 bool VisitCallExpr(const CallExpr *E) { 3430 const FunctionDecl *FD = E->getDirectCallee(); 3431 if (!FD) 3432 return false; 3433 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3434 if (Attr && Name == Attr->getLabel()) 3435 return true; 3436 unsigned BuiltinID = FD->getBuiltinID(); 3437 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3438 return false; 3439 StringRef BuiltinName = BI.getName(BuiltinID); 3440 if (BuiltinName.startswith("__builtin_") && 3441 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3442 return true; 3443 } 3444 return false; 3445 } 3446 3447 bool VisitStmt(const Stmt *S) { 3448 for (const Stmt *Child : S->children()) 3449 if (Child && this->Visit(Child)) 3450 return true; 3451 return false; 3452 } 3453 }; 3454 3455 // Make sure we're not referencing non-imported vars or functions. 3456 struct DLLImportFunctionVisitor 3457 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3458 bool SafeToInline = true; 3459 3460 bool shouldVisitImplicitCode() const { return true; } 3461 3462 bool VisitVarDecl(VarDecl *VD) { 3463 if (VD->getTLSKind()) { 3464 // A thread-local variable cannot be imported. 3465 SafeToInline = false; 3466 return SafeToInline; 3467 } 3468 3469 // A variable definition might imply a destructor call. 3470 if (VD->isThisDeclarationADefinition()) 3471 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3472 3473 return SafeToInline; 3474 } 3475 3476 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3477 if (const auto *D = E->getTemporary()->getDestructor()) 3478 SafeToInline = D->hasAttr<DLLImportAttr>(); 3479 return SafeToInline; 3480 } 3481 3482 bool VisitDeclRefExpr(DeclRefExpr *E) { 3483 ValueDecl *VD = E->getDecl(); 3484 if (isa<FunctionDecl>(VD)) 3485 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3486 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3487 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3488 return SafeToInline; 3489 } 3490 3491 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3492 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3493 return SafeToInline; 3494 } 3495 3496 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3497 CXXMethodDecl *M = E->getMethodDecl(); 3498 if (!M) { 3499 // Call through a pointer to member function. This is safe to inline. 3500 SafeToInline = true; 3501 } else { 3502 SafeToInline = M->hasAttr<DLLImportAttr>(); 3503 } 3504 return SafeToInline; 3505 } 3506 3507 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3508 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3509 return SafeToInline; 3510 } 3511 3512 bool VisitCXXNewExpr(CXXNewExpr *E) { 3513 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3514 return SafeToInline; 3515 } 3516 }; 3517 } 3518 3519 // isTriviallyRecursive - Check if this function calls another 3520 // decl that, because of the asm attribute or the other decl being a builtin, 3521 // ends up pointing to itself. 3522 bool 3523 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3524 StringRef Name; 3525 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3526 // asm labels are a special kind of mangling we have to support. 3527 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3528 if (!Attr) 3529 return false; 3530 Name = Attr->getLabel(); 3531 } else { 3532 Name = FD->getName(); 3533 } 3534 3535 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3536 const Stmt *Body = FD->getBody(); 3537 return Body ? Walker.Visit(Body) : false; 3538 } 3539 3540 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3541 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3542 return true; 3543 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3544 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3545 return false; 3546 3547 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3548 // Check whether it would be safe to inline this dllimport function. 3549 DLLImportFunctionVisitor Visitor; 3550 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3551 if (!Visitor.SafeToInline) 3552 return false; 3553 3554 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3555 // Implicit destructor invocations aren't captured in the AST, so the 3556 // check above can't see them. Check for them manually here. 3557 for (const Decl *Member : Dtor->getParent()->decls()) 3558 if (isa<FieldDecl>(Member)) 3559 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3560 return false; 3561 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3562 if (HasNonDllImportDtor(B.getType())) 3563 return false; 3564 } 3565 } 3566 3567 // Inline builtins declaration must be emitted. They often are fortified 3568 // functions. 3569 if (F->isInlineBuiltinDeclaration()) 3570 return true; 3571 3572 // PR9614. Avoid cases where the source code is lying to us. An available 3573 // externally function should have an equivalent function somewhere else, 3574 // but a function that calls itself through asm label/`__builtin_` trickery is 3575 // clearly not equivalent to the real implementation. 3576 // This happens in glibc's btowc and in some configure checks. 3577 return !isTriviallyRecursive(F); 3578 } 3579 3580 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3581 return CodeGenOpts.OptimizationLevel > 0; 3582 } 3583 3584 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3585 llvm::GlobalValue *GV) { 3586 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3587 3588 if (FD->isCPUSpecificMultiVersion()) { 3589 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3590 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3591 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3592 } else if (FD->isTargetClonesMultiVersion()) { 3593 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3594 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3595 if (Clone->isFirstOfVersion(I)) 3596 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3597 // Ensure that the resolver function is also emitted. 3598 GetOrCreateMultiVersionResolver(GD); 3599 } else 3600 EmitGlobalFunctionDefinition(GD, GV); 3601 } 3602 3603 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3604 const auto *D = cast<ValueDecl>(GD.getDecl()); 3605 3606 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3607 Context.getSourceManager(), 3608 "Generating code for declaration"); 3609 3610 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3611 // At -O0, don't generate IR for functions with available_externally 3612 // linkage. 3613 if (!shouldEmitFunction(GD)) 3614 return; 3615 3616 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3617 std::string Name; 3618 llvm::raw_string_ostream OS(Name); 3619 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3620 /*Qualified=*/true); 3621 return Name; 3622 }); 3623 3624 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3625 // Make sure to emit the definition(s) before we emit the thunks. 3626 // This is necessary for the generation of certain thunks. 3627 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3628 ABI->emitCXXStructor(GD); 3629 else if (FD->isMultiVersion()) 3630 EmitMultiVersionFunctionDefinition(GD, GV); 3631 else 3632 EmitGlobalFunctionDefinition(GD, GV); 3633 3634 if (Method->isVirtual()) 3635 getVTables().EmitThunks(GD); 3636 3637 return; 3638 } 3639 3640 if (FD->isMultiVersion()) 3641 return EmitMultiVersionFunctionDefinition(GD, GV); 3642 return EmitGlobalFunctionDefinition(GD, GV); 3643 } 3644 3645 if (const auto *VD = dyn_cast<VarDecl>(D)) 3646 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3647 3648 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3649 } 3650 3651 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3652 llvm::Function *NewFn); 3653 3654 static unsigned 3655 TargetMVPriority(const TargetInfo &TI, 3656 const CodeGenFunction::MultiVersionResolverOption &RO) { 3657 unsigned Priority = 0; 3658 unsigned NumFeatures = 0; 3659 for (StringRef Feat : RO.Conditions.Features) { 3660 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3661 NumFeatures++; 3662 } 3663 3664 if (!RO.Conditions.Architecture.empty()) 3665 Priority = std::max( 3666 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3667 3668 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3669 3670 return Priority; 3671 } 3672 3673 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3674 // TU can forward declare the function without causing problems. Particularly 3675 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3676 // work with internal linkage functions, so that the same function name can be 3677 // used with internal linkage in multiple TUs. 3678 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3679 GlobalDecl GD) { 3680 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3681 if (FD->getFormalLinkage() == InternalLinkage) 3682 return llvm::GlobalValue::InternalLinkage; 3683 return llvm::GlobalValue::WeakODRLinkage; 3684 } 3685 3686 void CodeGenModule::emitMultiVersionFunctions() { 3687 std::vector<GlobalDecl> MVFuncsToEmit; 3688 MultiVersionFuncs.swap(MVFuncsToEmit); 3689 for (GlobalDecl GD : MVFuncsToEmit) { 3690 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3691 assert(FD && "Expected a FunctionDecl"); 3692 3693 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3694 if (FD->isTargetMultiVersion()) { 3695 getContext().forEachMultiversionedFunctionVersion( 3696 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3697 GlobalDecl CurGD{ 3698 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3699 StringRef MangledName = getMangledName(CurGD); 3700 llvm::Constant *Func = GetGlobalValue(MangledName); 3701 if (!Func) { 3702 if (CurFD->isDefined()) { 3703 EmitGlobalFunctionDefinition(CurGD, nullptr); 3704 Func = GetGlobalValue(MangledName); 3705 } else { 3706 const CGFunctionInfo &FI = 3707 getTypes().arrangeGlobalDeclaration(GD); 3708 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3709 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3710 /*DontDefer=*/false, ForDefinition); 3711 } 3712 assert(Func && "This should have just been created"); 3713 } 3714 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3715 const auto *TA = CurFD->getAttr<TargetAttr>(); 3716 llvm::SmallVector<StringRef, 8> Feats; 3717 TA->getAddedFeatures(Feats); 3718 Options.emplace_back(cast<llvm::Function>(Func), 3719 TA->getArchitecture(), Feats); 3720 } else { 3721 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3722 llvm::SmallVector<StringRef, 8> Feats; 3723 TVA->getFeatures(Feats); 3724 Options.emplace_back(cast<llvm::Function>(Func), 3725 /*Architecture*/ "", Feats); 3726 } 3727 }); 3728 } else if (FD->isTargetClonesMultiVersion()) { 3729 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3730 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3731 ++VersionIndex) { 3732 if (!TC->isFirstOfVersion(VersionIndex)) 3733 continue; 3734 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3735 VersionIndex}; 3736 StringRef Version = TC->getFeatureStr(VersionIndex); 3737 StringRef MangledName = getMangledName(CurGD); 3738 llvm::Constant *Func = GetGlobalValue(MangledName); 3739 if (!Func) { 3740 if (FD->isDefined()) { 3741 EmitGlobalFunctionDefinition(CurGD, nullptr); 3742 Func = GetGlobalValue(MangledName); 3743 } else { 3744 const CGFunctionInfo &FI = 3745 getTypes().arrangeGlobalDeclaration(CurGD); 3746 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3747 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3748 /*DontDefer=*/false, ForDefinition); 3749 } 3750 assert(Func && "This should have just been created"); 3751 } 3752 3753 StringRef Architecture; 3754 llvm::SmallVector<StringRef, 1> Feature; 3755 3756 if (getTarget().getTriple().isAArch64()) { 3757 if (Version != "default") { 3758 llvm::SmallVector<StringRef, 8> VerFeats; 3759 Version.split(VerFeats, "+"); 3760 for (auto &CurFeat : VerFeats) 3761 Feature.push_back(CurFeat.trim()); 3762 } 3763 } else { 3764 if (Version.startswith("arch=")) 3765 Architecture = Version.drop_front(sizeof("arch=") - 1); 3766 else if (Version != "default") 3767 Feature.push_back(Version); 3768 } 3769 3770 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3771 } 3772 } else { 3773 assert(0 && "Expected a target or target_clones multiversion function"); 3774 continue; 3775 } 3776 3777 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3778 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3779 ResolverConstant = IFunc->getResolver(); 3780 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3781 3782 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3783 3784 if (supportsCOMDAT()) 3785 ResolverFunc->setComdat( 3786 getModule().getOrInsertComdat(ResolverFunc->getName())); 3787 3788 const TargetInfo &TI = getTarget(); 3789 llvm::stable_sort( 3790 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3791 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3792 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3793 }); 3794 CodeGenFunction CGF(*this); 3795 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3796 } 3797 3798 // Ensure that any additions to the deferred decls list caused by emitting a 3799 // variant are emitted. This can happen when the variant itself is inline and 3800 // calls a function without linkage. 3801 if (!MVFuncsToEmit.empty()) 3802 EmitDeferred(); 3803 3804 // Ensure that any additions to the multiversion funcs list from either the 3805 // deferred decls or the multiversion functions themselves are emitted. 3806 if (!MultiVersionFuncs.empty()) 3807 emitMultiVersionFunctions(); 3808 } 3809 3810 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3811 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3812 assert(FD && "Not a FunctionDecl?"); 3813 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3814 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3815 assert(DD && "Not a cpu_dispatch Function?"); 3816 3817 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3818 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3819 3820 StringRef ResolverName = getMangledName(GD); 3821 UpdateMultiVersionNames(GD, FD, ResolverName); 3822 3823 llvm::Type *ResolverType; 3824 GlobalDecl ResolverGD; 3825 if (getTarget().supportsIFunc()) { 3826 ResolverType = llvm::FunctionType::get( 3827 llvm::PointerType::get(DeclTy, 3828 getTypes().getTargetAddressSpace(FD->getType())), 3829 false); 3830 } 3831 else { 3832 ResolverType = DeclTy; 3833 ResolverGD = GD; 3834 } 3835 3836 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3837 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3838 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3839 if (supportsCOMDAT()) 3840 ResolverFunc->setComdat( 3841 getModule().getOrInsertComdat(ResolverFunc->getName())); 3842 3843 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3844 const TargetInfo &Target = getTarget(); 3845 unsigned Index = 0; 3846 for (const IdentifierInfo *II : DD->cpus()) { 3847 // Get the name of the target function so we can look it up/create it. 3848 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3849 getCPUSpecificMangling(*this, II->getName()); 3850 3851 llvm::Constant *Func = GetGlobalValue(MangledName); 3852 3853 if (!Func) { 3854 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3855 if (ExistingDecl.getDecl() && 3856 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3857 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3858 Func = GetGlobalValue(MangledName); 3859 } else { 3860 if (!ExistingDecl.getDecl()) 3861 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3862 3863 Func = GetOrCreateLLVMFunction( 3864 MangledName, DeclTy, ExistingDecl, 3865 /*ForVTable=*/false, /*DontDefer=*/true, 3866 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3867 } 3868 } 3869 3870 llvm::SmallVector<StringRef, 32> Features; 3871 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3872 llvm::transform(Features, Features.begin(), 3873 [](StringRef Str) { return Str.substr(1); }); 3874 llvm::erase_if(Features, [&Target](StringRef Feat) { 3875 return !Target.validateCpuSupports(Feat); 3876 }); 3877 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3878 ++Index; 3879 } 3880 3881 llvm::stable_sort( 3882 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3883 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3884 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3885 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3886 }); 3887 3888 // If the list contains multiple 'default' versions, such as when it contains 3889 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3890 // always run on at least a 'pentium'). We do this by deleting the 'least 3891 // advanced' (read, lowest mangling letter). 3892 while (Options.size() > 1 && 3893 llvm::X86::getCpuSupportsMask( 3894 (Options.end() - 2)->Conditions.Features) == 0) { 3895 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3896 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3897 if (LHSName.compare(RHSName) < 0) 3898 Options.erase(Options.end() - 2); 3899 else 3900 Options.erase(Options.end() - 1); 3901 } 3902 3903 CodeGenFunction CGF(*this); 3904 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3905 3906 if (getTarget().supportsIFunc()) { 3907 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3908 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3909 3910 // Fix up function declarations that were created for cpu_specific before 3911 // cpu_dispatch was known 3912 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3913 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3914 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3915 &getModule()); 3916 GI->takeName(IFunc); 3917 IFunc->replaceAllUsesWith(GI); 3918 IFunc->eraseFromParent(); 3919 IFunc = GI; 3920 } 3921 3922 std::string AliasName = getMangledNameImpl( 3923 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3924 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3925 if (!AliasFunc) { 3926 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3927 &getModule()); 3928 SetCommonAttributes(GD, GA); 3929 } 3930 } 3931 } 3932 3933 /// If a dispatcher for the specified mangled name is not in the module, create 3934 /// and return an llvm Function with the specified type. 3935 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3936 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3937 assert(FD && "Not a FunctionDecl?"); 3938 3939 std::string MangledName = 3940 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3941 3942 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3943 // a separate resolver). 3944 std::string ResolverName = MangledName; 3945 if (getTarget().supportsIFunc()) 3946 ResolverName += ".ifunc"; 3947 else if (FD->isTargetMultiVersion()) 3948 ResolverName += ".resolver"; 3949 3950 // If the resolver has already been created, just return it. 3951 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3952 return ResolverGV; 3953 3954 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3955 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3956 3957 // The resolver needs to be created. For target and target_clones, defer 3958 // creation until the end of the TU. 3959 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3960 MultiVersionFuncs.push_back(GD); 3961 3962 // For cpu_specific, don't create an ifunc yet because we don't know if the 3963 // cpu_dispatch will be emitted in this translation unit. 3964 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3965 llvm::Type *ResolverType = llvm::FunctionType::get( 3966 llvm::PointerType::get(DeclTy, 3967 getTypes().getTargetAddressSpace(FD->getType())), 3968 false); 3969 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3970 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3971 /*ForVTable=*/false); 3972 llvm::GlobalIFunc *GIF = 3973 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3974 "", Resolver, &getModule()); 3975 GIF->setName(ResolverName); 3976 SetCommonAttributes(FD, GIF); 3977 3978 return GIF; 3979 } 3980 3981 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3982 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3983 assert(isa<llvm::GlobalValue>(Resolver) && 3984 "Resolver should be created for the first time"); 3985 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3986 return Resolver; 3987 } 3988 3989 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3990 /// module, create and return an llvm Function with the specified type. If there 3991 /// is something in the module with the specified name, return it potentially 3992 /// bitcasted to the right type. 3993 /// 3994 /// If D is non-null, it specifies a decl that correspond to this. This is used 3995 /// to set the attributes on the function when it is first created. 3996 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3997 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3998 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3999 ForDefinition_t IsForDefinition) { 4000 const Decl *D = GD.getDecl(); 4001 4002 // Any attempts to use a MultiVersion function should result in retrieving 4003 // the iFunc instead. Name Mangling will handle the rest of the changes. 4004 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4005 // For the device mark the function as one that should be emitted. 4006 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4007 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4008 !DontDefer && !IsForDefinition) { 4009 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4010 GlobalDecl GDDef; 4011 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4012 GDDef = GlobalDecl(CD, GD.getCtorType()); 4013 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4014 GDDef = GlobalDecl(DD, GD.getDtorType()); 4015 else 4016 GDDef = GlobalDecl(FDDef); 4017 EmitGlobal(GDDef); 4018 } 4019 } 4020 4021 if (FD->isMultiVersion()) { 4022 UpdateMultiVersionNames(GD, FD, MangledName); 4023 if (!IsForDefinition) 4024 return GetOrCreateMultiVersionResolver(GD); 4025 } 4026 } 4027 4028 // Lookup the entry, lazily creating it if necessary. 4029 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4030 if (Entry) { 4031 if (WeakRefReferences.erase(Entry)) { 4032 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4033 if (FD && !FD->hasAttr<WeakAttr>()) 4034 Entry->setLinkage(llvm::Function::ExternalLinkage); 4035 } 4036 4037 // Handle dropped DLL attributes. 4038 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4039 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4040 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4041 setDSOLocal(Entry); 4042 } 4043 4044 // If there are two attempts to define the same mangled name, issue an 4045 // error. 4046 if (IsForDefinition && !Entry->isDeclaration()) { 4047 GlobalDecl OtherGD; 4048 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4049 // to make sure that we issue an error only once. 4050 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4051 (GD.getCanonicalDecl().getDecl() != 4052 OtherGD.getCanonicalDecl().getDecl()) && 4053 DiagnosedConflictingDefinitions.insert(GD).second) { 4054 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4055 << MangledName; 4056 getDiags().Report(OtherGD.getDecl()->getLocation(), 4057 diag::note_previous_definition); 4058 } 4059 } 4060 4061 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4062 (Entry->getValueType() == Ty)) { 4063 return Entry; 4064 } 4065 4066 // Make sure the result is of the correct type. 4067 // (If function is requested for a definition, we always need to create a new 4068 // function, not just return a bitcast.) 4069 if (!IsForDefinition) 4070 return llvm::ConstantExpr::getBitCast( 4071 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4072 } 4073 4074 // This function doesn't have a complete type (for example, the return 4075 // type is an incomplete struct). Use a fake type instead, and make 4076 // sure not to try to set attributes. 4077 bool IsIncompleteFunction = false; 4078 4079 llvm::FunctionType *FTy; 4080 if (isa<llvm::FunctionType>(Ty)) { 4081 FTy = cast<llvm::FunctionType>(Ty); 4082 } else { 4083 FTy = llvm::FunctionType::get(VoidTy, false); 4084 IsIncompleteFunction = true; 4085 } 4086 4087 llvm::Function *F = 4088 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4089 Entry ? StringRef() : MangledName, &getModule()); 4090 4091 // If we already created a function with the same mangled name (but different 4092 // type) before, take its name and add it to the list of functions to be 4093 // replaced with F at the end of CodeGen. 4094 // 4095 // This happens if there is a prototype for a function (e.g. "int f()") and 4096 // then a definition of a different type (e.g. "int f(int x)"). 4097 if (Entry) { 4098 F->takeName(Entry); 4099 4100 // This might be an implementation of a function without a prototype, in 4101 // which case, try to do special replacement of calls which match the new 4102 // prototype. The really key thing here is that we also potentially drop 4103 // arguments from the call site so as to make a direct call, which makes the 4104 // inliner happier and suppresses a number of optimizer warnings (!) about 4105 // dropping arguments. 4106 if (!Entry->use_empty()) { 4107 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4108 Entry->removeDeadConstantUsers(); 4109 } 4110 4111 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4112 F, Entry->getValueType()->getPointerTo()); 4113 addGlobalValReplacement(Entry, BC); 4114 } 4115 4116 assert(F->getName() == MangledName && "name was uniqued!"); 4117 if (D) 4118 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4119 if (ExtraAttrs.hasFnAttrs()) { 4120 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4121 F->addFnAttrs(B); 4122 } 4123 4124 if (!DontDefer) { 4125 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4126 // each other bottoming out with the base dtor. Therefore we emit non-base 4127 // dtors on usage, even if there is no dtor definition in the TU. 4128 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4129 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4130 GD.getDtorType())) 4131 addDeferredDeclToEmit(GD); 4132 4133 // This is the first use or definition of a mangled name. If there is a 4134 // deferred decl with this name, remember that we need to emit it at the end 4135 // of the file. 4136 auto DDI = DeferredDecls.find(MangledName); 4137 if (DDI != DeferredDecls.end()) { 4138 // Move the potentially referenced deferred decl to the 4139 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4140 // don't need it anymore). 4141 addDeferredDeclToEmit(DDI->second); 4142 EmittedDeferredDecls[DDI->first] = DDI->second; 4143 DeferredDecls.erase(DDI); 4144 4145 // Otherwise, there are cases we have to worry about where we're 4146 // using a declaration for which we must emit a definition but where 4147 // we might not find a top-level definition: 4148 // - member functions defined inline in their classes 4149 // - friend functions defined inline in some class 4150 // - special member functions with implicit definitions 4151 // If we ever change our AST traversal to walk into class methods, 4152 // this will be unnecessary. 4153 // 4154 // We also don't emit a definition for a function if it's going to be an 4155 // entry in a vtable, unless it's already marked as used. 4156 } else if (getLangOpts().CPlusPlus && D) { 4157 // Look for a declaration that's lexically in a record. 4158 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4159 FD = FD->getPreviousDecl()) { 4160 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4161 if (FD->doesThisDeclarationHaveABody()) { 4162 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4163 break; 4164 } 4165 } 4166 } 4167 } 4168 } 4169 4170 // Make sure the result is of the requested type. 4171 if (!IsIncompleteFunction) { 4172 assert(F->getFunctionType() == Ty); 4173 return F; 4174 } 4175 4176 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 4177 return llvm::ConstantExpr::getBitCast(F, PTy); 4178 } 4179 4180 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4181 /// non-null, then this function will use the specified type if it has to 4182 /// create it (this occurs when we see a definition of the function). 4183 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4184 llvm::Type *Ty, 4185 bool ForVTable, 4186 bool DontDefer, 4187 ForDefinition_t IsForDefinition) { 4188 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4189 "consteval function should never be emitted"); 4190 // If there was no specific requested type, just convert it now. 4191 if (!Ty) { 4192 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4193 Ty = getTypes().ConvertType(FD->getType()); 4194 } 4195 4196 // Devirtualized destructor calls may come through here instead of via 4197 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4198 // of the complete destructor when necessary. 4199 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4200 if (getTarget().getCXXABI().isMicrosoft() && 4201 GD.getDtorType() == Dtor_Complete && 4202 DD->getParent()->getNumVBases() == 0) 4203 GD = GlobalDecl(DD, Dtor_Base); 4204 } 4205 4206 StringRef MangledName = getMangledName(GD); 4207 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4208 /*IsThunk=*/false, llvm::AttributeList(), 4209 IsForDefinition); 4210 // Returns kernel handle for HIP kernel stub function. 4211 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4212 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4213 auto *Handle = getCUDARuntime().getKernelHandle( 4214 cast<llvm::Function>(F->stripPointerCasts()), GD); 4215 if (IsForDefinition) 4216 return F; 4217 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4218 } 4219 return F; 4220 } 4221 4222 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4223 llvm::GlobalValue *F = 4224 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4225 4226 return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F), 4227 llvm::Type::getInt8PtrTy(VMContext)); 4228 } 4229 4230 static const FunctionDecl * 4231 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4232 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4233 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4234 4235 IdentifierInfo &CII = C.Idents.get(Name); 4236 for (const auto *Result : DC->lookup(&CII)) 4237 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4238 return FD; 4239 4240 if (!C.getLangOpts().CPlusPlus) 4241 return nullptr; 4242 4243 // Demangle the premangled name from getTerminateFn() 4244 IdentifierInfo &CXXII = 4245 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4246 ? C.Idents.get("terminate") 4247 : C.Idents.get(Name); 4248 4249 for (const auto &N : {"__cxxabiv1", "std"}) { 4250 IdentifierInfo &NS = C.Idents.get(N); 4251 for (const auto *Result : DC->lookup(&NS)) { 4252 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4253 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4254 for (const auto *Result : LSD->lookup(&NS)) 4255 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4256 break; 4257 4258 if (ND) 4259 for (const auto *Result : ND->lookup(&CXXII)) 4260 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4261 return FD; 4262 } 4263 } 4264 4265 return nullptr; 4266 } 4267 4268 /// CreateRuntimeFunction - Create a new runtime function with the specified 4269 /// type and name. 4270 llvm::FunctionCallee 4271 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4272 llvm::AttributeList ExtraAttrs, bool Local, 4273 bool AssumeConvergent) { 4274 if (AssumeConvergent) { 4275 ExtraAttrs = 4276 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4277 } 4278 4279 llvm::Constant *C = 4280 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4281 /*DontDefer=*/false, /*IsThunk=*/false, 4282 ExtraAttrs); 4283 4284 if (auto *F = dyn_cast<llvm::Function>(C)) { 4285 if (F->empty()) { 4286 F->setCallingConv(getRuntimeCC()); 4287 4288 // In Windows Itanium environments, try to mark runtime functions 4289 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4290 // will link their standard library statically or dynamically. Marking 4291 // functions imported when they are not imported can cause linker errors 4292 // and warnings. 4293 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4294 !getCodeGenOpts().LTOVisibilityPublicStd) { 4295 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4296 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4297 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4298 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4299 } 4300 } 4301 setDSOLocal(F); 4302 } 4303 } 4304 4305 return {FTy, C}; 4306 } 4307 4308 /// isTypeConstant - Determine whether an object of this type can be emitted 4309 /// as a constant. 4310 /// 4311 /// If ExcludeCtor is true, the duration when the object's constructor runs 4312 /// will not be considered. The caller will need to verify that the object is 4313 /// not written to during its construction. 4314 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4315 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4316 return false; 4317 4318 if (Context.getLangOpts().CPlusPlus) { 4319 if (const CXXRecordDecl *Record 4320 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4321 return ExcludeCtor && !Record->hasMutableFields() && 4322 Record->hasTrivialDestructor(); 4323 } 4324 4325 return true; 4326 } 4327 4328 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4329 /// create and return an llvm GlobalVariable with the specified type and address 4330 /// space. If there is something in the module with the specified name, return 4331 /// it potentially bitcasted to the right type. 4332 /// 4333 /// If D is non-null, it specifies a decl that correspond to this. This is used 4334 /// to set the attributes on the global when it is first created. 4335 /// 4336 /// If IsForDefinition is true, it is guaranteed that an actual global with 4337 /// type Ty will be returned, not conversion of a variable with the same 4338 /// mangled name but some other type. 4339 llvm::Constant * 4340 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4341 LangAS AddrSpace, const VarDecl *D, 4342 ForDefinition_t IsForDefinition) { 4343 // Lookup the entry, lazily creating it if necessary. 4344 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4345 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4346 if (Entry) { 4347 if (WeakRefReferences.erase(Entry)) { 4348 if (D && !D->hasAttr<WeakAttr>()) 4349 Entry->setLinkage(llvm::Function::ExternalLinkage); 4350 } 4351 4352 // Handle dropped DLL attributes. 4353 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4354 !shouldMapVisibilityToDLLExport(D)) 4355 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4356 4357 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4358 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4359 4360 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4361 return Entry; 4362 4363 // If there are two attempts to define the same mangled name, issue an 4364 // error. 4365 if (IsForDefinition && !Entry->isDeclaration()) { 4366 GlobalDecl OtherGD; 4367 const VarDecl *OtherD; 4368 4369 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4370 // to make sure that we issue an error only once. 4371 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4372 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4373 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4374 OtherD->hasInit() && 4375 DiagnosedConflictingDefinitions.insert(D).second) { 4376 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4377 << MangledName; 4378 getDiags().Report(OtherGD.getDecl()->getLocation(), 4379 diag::note_previous_definition); 4380 } 4381 } 4382 4383 // Make sure the result is of the correct type. 4384 if (Entry->getType()->getAddressSpace() != TargetAS) { 4385 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4386 Ty->getPointerTo(TargetAS)); 4387 } 4388 4389 // (If global is requested for a definition, we always need to create a new 4390 // global, not just return a bitcast.) 4391 if (!IsForDefinition) 4392 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4393 } 4394 4395 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4396 4397 auto *GV = new llvm::GlobalVariable( 4398 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4399 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4400 getContext().getTargetAddressSpace(DAddrSpace)); 4401 4402 // If we already created a global with the same mangled name (but different 4403 // type) before, take its name and remove it from its parent. 4404 if (Entry) { 4405 GV->takeName(Entry); 4406 4407 if (!Entry->use_empty()) { 4408 llvm::Constant *NewPtrForOldDecl = 4409 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4410 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4411 } 4412 4413 Entry->eraseFromParent(); 4414 } 4415 4416 // This is the first use or definition of a mangled name. If there is a 4417 // deferred decl with this name, remember that we need to emit it at the end 4418 // of the file. 4419 auto DDI = DeferredDecls.find(MangledName); 4420 if (DDI != DeferredDecls.end()) { 4421 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4422 // list, and remove it from DeferredDecls (since we don't need it anymore). 4423 addDeferredDeclToEmit(DDI->second); 4424 EmittedDeferredDecls[DDI->first] = DDI->second; 4425 DeferredDecls.erase(DDI); 4426 } 4427 4428 // Handle things which are present even on external declarations. 4429 if (D) { 4430 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4431 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4432 4433 // FIXME: This code is overly simple and should be merged with other global 4434 // handling. 4435 GV->setConstant(isTypeConstant(D->getType(), false)); 4436 4437 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4438 4439 setLinkageForGV(GV, D); 4440 4441 if (D->getTLSKind()) { 4442 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4443 CXXThreadLocals.push_back(D); 4444 setTLSMode(GV, *D); 4445 } 4446 4447 setGVProperties(GV, D); 4448 4449 // If required by the ABI, treat declarations of static data members with 4450 // inline initializers as definitions. 4451 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4452 EmitGlobalVarDefinition(D); 4453 } 4454 4455 // Emit section information for extern variables. 4456 if (D->hasExternalStorage()) { 4457 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4458 GV->setSection(SA->getName()); 4459 } 4460 4461 // Handle XCore specific ABI requirements. 4462 if (getTriple().getArch() == llvm::Triple::xcore && 4463 D->getLanguageLinkage() == CLanguageLinkage && 4464 D->getType().isConstant(Context) && 4465 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4466 GV->setSection(".cp.rodata"); 4467 4468 // Check if we a have a const declaration with an initializer, we may be 4469 // able to emit it as available_externally to expose it's value to the 4470 // optimizer. 4471 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4472 D->getType().isConstQualified() && !GV->hasInitializer() && 4473 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4474 const auto *Record = 4475 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4476 bool HasMutableFields = Record && Record->hasMutableFields(); 4477 if (!HasMutableFields) { 4478 const VarDecl *InitDecl; 4479 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4480 if (InitExpr) { 4481 ConstantEmitter emitter(*this); 4482 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4483 if (Init) { 4484 auto *InitType = Init->getType(); 4485 if (GV->getValueType() != InitType) { 4486 // The type of the initializer does not match the definition. 4487 // This happens when an initializer has a different type from 4488 // the type of the global (because of padding at the end of a 4489 // structure for instance). 4490 GV->setName(StringRef()); 4491 // Make a new global with the correct type, this is now guaranteed 4492 // to work. 4493 auto *NewGV = cast<llvm::GlobalVariable>( 4494 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4495 ->stripPointerCasts()); 4496 4497 // Erase the old global, since it is no longer used. 4498 GV->eraseFromParent(); 4499 GV = NewGV; 4500 } else { 4501 GV->setInitializer(Init); 4502 GV->setConstant(true); 4503 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4504 } 4505 emitter.finalize(GV); 4506 } 4507 } 4508 } 4509 } 4510 } 4511 4512 if (GV->isDeclaration()) { 4513 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4514 // External HIP managed variables needed to be recorded for transformation 4515 // in both device and host compilations. 4516 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4517 D->hasExternalStorage()) 4518 getCUDARuntime().handleVarRegistration(D, *GV); 4519 } 4520 4521 if (D) 4522 SanitizerMD->reportGlobal(GV, *D); 4523 4524 LangAS ExpectedAS = 4525 D ? D->getType().getAddressSpace() 4526 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4527 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4528 if (DAddrSpace != ExpectedAS) { 4529 return getTargetCodeGenInfo().performAddrSpaceCast( 4530 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4531 } 4532 4533 return GV; 4534 } 4535 4536 llvm::Constant * 4537 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4538 const Decl *D = GD.getDecl(); 4539 4540 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4541 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4542 /*DontDefer=*/false, IsForDefinition); 4543 4544 if (isa<CXXMethodDecl>(D)) { 4545 auto FInfo = 4546 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4547 auto Ty = getTypes().GetFunctionType(*FInfo); 4548 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4549 IsForDefinition); 4550 } 4551 4552 if (isa<FunctionDecl>(D)) { 4553 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4554 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4555 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4556 IsForDefinition); 4557 } 4558 4559 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4560 } 4561 4562 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4563 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4564 unsigned Alignment) { 4565 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4566 llvm::GlobalVariable *OldGV = nullptr; 4567 4568 if (GV) { 4569 // Check if the variable has the right type. 4570 if (GV->getValueType() == Ty) 4571 return GV; 4572 4573 // Because C++ name mangling, the only way we can end up with an already 4574 // existing global with the same name is if it has been declared extern "C". 4575 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4576 OldGV = GV; 4577 } 4578 4579 // Create a new variable. 4580 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4581 Linkage, nullptr, Name); 4582 4583 if (OldGV) { 4584 // Replace occurrences of the old variable if needed. 4585 GV->takeName(OldGV); 4586 4587 if (!OldGV->use_empty()) { 4588 llvm::Constant *NewPtrForOldDecl = 4589 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4590 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4591 } 4592 4593 OldGV->eraseFromParent(); 4594 } 4595 4596 if (supportsCOMDAT() && GV->isWeakForLinker() && 4597 !GV->hasAvailableExternallyLinkage()) 4598 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4599 4600 GV->setAlignment(llvm::MaybeAlign(Alignment)); 4601 4602 return GV; 4603 } 4604 4605 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4606 /// given global variable. If Ty is non-null and if the global doesn't exist, 4607 /// then it will be created with the specified type instead of whatever the 4608 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4609 /// that an actual global with type Ty will be returned, not conversion of a 4610 /// variable with the same mangled name but some other type. 4611 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4612 llvm::Type *Ty, 4613 ForDefinition_t IsForDefinition) { 4614 assert(D->hasGlobalStorage() && "Not a global variable"); 4615 QualType ASTTy = D->getType(); 4616 if (!Ty) 4617 Ty = getTypes().ConvertTypeForMem(ASTTy); 4618 4619 StringRef MangledName = getMangledName(D); 4620 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4621 IsForDefinition); 4622 } 4623 4624 /// CreateRuntimeVariable - Create a new runtime global variable with the 4625 /// specified type and name. 4626 llvm::Constant * 4627 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4628 StringRef Name) { 4629 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4630 : LangAS::Default; 4631 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4632 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4633 return Ret; 4634 } 4635 4636 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4637 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4638 4639 StringRef MangledName = getMangledName(D); 4640 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4641 4642 // We already have a definition, not declaration, with the same mangled name. 4643 // Emitting of declaration is not required (and actually overwrites emitted 4644 // definition). 4645 if (GV && !GV->isDeclaration()) 4646 return; 4647 4648 // If we have not seen a reference to this variable yet, place it into the 4649 // deferred declarations table to be emitted if needed later. 4650 if (!MustBeEmitted(D) && !GV) { 4651 DeferredDecls[MangledName] = D; 4652 return; 4653 } 4654 4655 // The tentative definition is the only definition. 4656 EmitGlobalVarDefinition(D); 4657 } 4658 4659 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4660 EmitExternalVarDeclaration(D); 4661 } 4662 4663 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4664 return Context.toCharUnitsFromBits( 4665 getDataLayout().getTypeStoreSizeInBits(Ty)); 4666 } 4667 4668 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4669 if (LangOpts.OpenCL) { 4670 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4671 assert(AS == LangAS::opencl_global || 4672 AS == LangAS::opencl_global_device || 4673 AS == LangAS::opencl_global_host || 4674 AS == LangAS::opencl_constant || 4675 AS == LangAS::opencl_local || 4676 AS >= LangAS::FirstTargetAddressSpace); 4677 return AS; 4678 } 4679 4680 if (LangOpts.SYCLIsDevice && 4681 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4682 return LangAS::sycl_global; 4683 4684 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4685 if (D && D->hasAttr<CUDAConstantAttr>()) 4686 return LangAS::cuda_constant; 4687 else if (D && D->hasAttr<CUDASharedAttr>()) 4688 return LangAS::cuda_shared; 4689 else if (D && D->hasAttr<CUDADeviceAttr>()) 4690 return LangAS::cuda_device; 4691 else if (D && D->getType().isConstQualified()) 4692 return LangAS::cuda_constant; 4693 else 4694 return LangAS::cuda_device; 4695 } 4696 4697 if (LangOpts.OpenMP) { 4698 LangAS AS; 4699 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4700 return AS; 4701 } 4702 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4703 } 4704 4705 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4706 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4707 if (LangOpts.OpenCL) 4708 return LangAS::opencl_constant; 4709 if (LangOpts.SYCLIsDevice) 4710 return LangAS::sycl_global; 4711 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4712 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4713 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4714 // with OpVariable instructions with Generic storage class which is not 4715 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4716 // UniformConstant storage class is not viable as pointers to it may not be 4717 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4718 return LangAS::cuda_device; 4719 if (auto AS = getTarget().getConstantAddressSpace()) 4720 return *AS; 4721 return LangAS::Default; 4722 } 4723 4724 // In address space agnostic languages, string literals are in default address 4725 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4726 // emitted in constant address space in LLVM IR. To be consistent with other 4727 // parts of AST, string literal global variables in constant address space 4728 // need to be casted to default address space before being put into address 4729 // map and referenced by other part of CodeGen. 4730 // In OpenCL, string literals are in constant address space in AST, therefore 4731 // they should not be casted to default address space. 4732 static llvm::Constant * 4733 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4734 llvm::GlobalVariable *GV) { 4735 llvm::Constant *Cast = GV; 4736 if (!CGM.getLangOpts().OpenCL) { 4737 auto AS = CGM.GetGlobalConstantAddressSpace(); 4738 if (AS != LangAS::Default) 4739 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4740 CGM, GV, AS, LangAS::Default, 4741 GV->getValueType()->getPointerTo( 4742 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4743 } 4744 return Cast; 4745 } 4746 4747 template<typename SomeDecl> 4748 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4749 llvm::GlobalValue *GV) { 4750 if (!getLangOpts().CPlusPlus) 4751 return; 4752 4753 // Must have 'used' attribute, or else inline assembly can't rely on 4754 // the name existing. 4755 if (!D->template hasAttr<UsedAttr>()) 4756 return; 4757 4758 // Must have internal linkage and an ordinary name. 4759 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4760 return; 4761 4762 // Must be in an extern "C" context. Entities declared directly within 4763 // a record are not extern "C" even if the record is in such a context. 4764 const SomeDecl *First = D->getFirstDecl(); 4765 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4766 return; 4767 4768 // OK, this is an internal linkage entity inside an extern "C" linkage 4769 // specification. Make a note of that so we can give it the "expected" 4770 // mangled name if nothing else is using that name. 4771 std::pair<StaticExternCMap::iterator, bool> R = 4772 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4773 4774 // If we have multiple internal linkage entities with the same name 4775 // in extern "C" regions, none of them gets that name. 4776 if (!R.second) 4777 R.first->second = nullptr; 4778 } 4779 4780 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4781 if (!CGM.supportsCOMDAT()) 4782 return false; 4783 4784 if (D.hasAttr<SelectAnyAttr>()) 4785 return true; 4786 4787 GVALinkage Linkage; 4788 if (auto *VD = dyn_cast<VarDecl>(&D)) 4789 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4790 else 4791 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4792 4793 switch (Linkage) { 4794 case GVA_Internal: 4795 case GVA_AvailableExternally: 4796 case GVA_StrongExternal: 4797 return false; 4798 case GVA_DiscardableODR: 4799 case GVA_StrongODR: 4800 return true; 4801 } 4802 llvm_unreachable("No such linkage"); 4803 } 4804 4805 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4806 llvm::GlobalObject &GO) { 4807 if (!shouldBeInCOMDAT(*this, D)) 4808 return; 4809 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4810 } 4811 4812 /// Pass IsTentative as true if you want to create a tentative definition. 4813 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4814 bool IsTentative) { 4815 // OpenCL global variables of sampler type are translated to function calls, 4816 // therefore no need to be translated. 4817 QualType ASTTy = D->getType(); 4818 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4819 return; 4820 4821 // If this is OpenMP device, check if it is legal to emit this global 4822 // normally. 4823 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4824 OpenMPRuntime->emitTargetGlobalVariable(D)) 4825 return; 4826 4827 llvm::TrackingVH<llvm::Constant> Init; 4828 bool NeedsGlobalCtor = false; 4829 bool NeedsGlobalDtor = 4830 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4831 4832 const VarDecl *InitDecl; 4833 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4834 4835 Optional<ConstantEmitter> emitter; 4836 4837 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4838 // as part of their declaration." Sema has already checked for 4839 // error cases, so we just need to set Init to UndefValue. 4840 bool IsCUDASharedVar = 4841 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4842 // Shadows of initialized device-side global variables are also left 4843 // undefined. 4844 // Managed Variables should be initialized on both host side and device side. 4845 bool IsCUDAShadowVar = 4846 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4847 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4848 D->hasAttr<CUDASharedAttr>()); 4849 bool IsCUDADeviceShadowVar = 4850 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4851 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4852 D->getType()->isCUDADeviceBuiltinTextureType()); 4853 if (getLangOpts().CUDA && 4854 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4855 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4856 else if (D->hasAttr<LoaderUninitializedAttr>()) 4857 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4858 else if (!InitExpr) { 4859 // This is a tentative definition; tentative definitions are 4860 // implicitly initialized with { 0 }. 4861 // 4862 // Note that tentative definitions are only emitted at the end of 4863 // a translation unit, so they should never have incomplete 4864 // type. In addition, EmitTentativeDefinition makes sure that we 4865 // never attempt to emit a tentative definition if a real one 4866 // exists. A use may still exists, however, so we still may need 4867 // to do a RAUW. 4868 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4869 Init = EmitNullConstant(D->getType()); 4870 } else { 4871 initializedGlobalDecl = GlobalDecl(D); 4872 emitter.emplace(*this); 4873 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4874 if (!Initializer) { 4875 QualType T = InitExpr->getType(); 4876 if (D->getType()->isReferenceType()) 4877 T = D->getType(); 4878 4879 if (getLangOpts().CPlusPlus) { 4880 if (InitDecl->hasFlexibleArrayInit(getContext())) 4881 ErrorUnsupported(D, "flexible array initializer"); 4882 Init = EmitNullConstant(T); 4883 NeedsGlobalCtor = true; 4884 } else { 4885 ErrorUnsupported(D, "static initializer"); 4886 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4887 } 4888 } else { 4889 Init = Initializer; 4890 // We don't need an initializer, so remove the entry for the delayed 4891 // initializer position (just in case this entry was delayed) if we 4892 // also don't need to register a destructor. 4893 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4894 DelayedCXXInitPosition.erase(D); 4895 4896 #ifndef NDEBUG 4897 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4898 InitDecl->getFlexibleArrayInitChars(getContext()); 4899 CharUnits CstSize = CharUnits::fromQuantity( 4900 getDataLayout().getTypeAllocSize(Init->getType())); 4901 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4902 #endif 4903 } 4904 } 4905 4906 llvm::Type* InitType = Init->getType(); 4907 llvm::Constant *Entry = 4908 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4909 4910 // Strip off pointer casts if we got them. 4911 Entry = Entry->stripPointerCasts(); 4912 4913 // Entry is now either a Function or GlobalVariable. 4914 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4915 4916 // We have a definition after a declaration with the wrong type. 4917 // We must make a new GlobalVariable* and update everything that used OldGV 4918 // (a declaration or tentative definition) with the new GlobalVariable* 4919 // (which will be a definition). 4920 // 4921 // This happens if there is a prototype for a global (e.g. 4922 // "extern int x[];") and then a definition of a different type (e.g. 4923 // "int x[10];"). This also happens when an initializer has a different type 4924 // from the type of the global (this happens with unions). 4925 if (!GV || GV->getValueType() != InitType || 4926 GV->getType()->getAddressSpace() != 4927 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4928 4929 // Move the old entry aside so that we'll create a new one. 4930 Entry->setName(StringRef()); 4931 4932 // Make a new global with the correct type, this is now guaranteed to work. 4933 GV = cast<llvm::GlobalVariable>( 4934 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4935 ->stripPointerCasts()); 4936 4937 // Replace all uses of the old global with the new global 4938 llvm::Constant *NewPtrForOldDecl = 4939 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4940 Entry->getType()); 4941 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4942 4943 // Erase the old global, since it is no longer used. 4944 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4945 } 4946 4947 MaybeHandleStaticInExternC(D, GV); 4948 4949 if (D->hasAttr<AnnotateAttr>()) 4950 AddGlobalAnnotations(D, GV); 4951 4952 // Set the llvm linkage type as appropriate. 4953 llvm::GlobalValue::LinkageTypes Linkage = 4954 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4955 4956 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4957 // the device. [...]" 4958 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4959 // __device__, declares a variable that: [...] 4960 // Is accessible from all the threads within the grid and from the host 4961 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4962 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4963 if (GV && LangOpts.CUDA) { 4964 if (LangOpts.CUDAIsDevice) { 4965 if (Linkage != llvm::GlobalValue::InternalLinkage && 4966 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4967 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4968 D->getType()->isCUDADeviceBuiltinTextureType())) 4969 GV->setExternallyInitialized(true); 4970 } else { 4971 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4972 } 4973 getCUDARuntime().handleVarRegistration(D, *GV); 4974 } 4975 4976 GV->setInitializer(Init); 4977 if (emitter) 4978 emitter->finalize(GV); 4979 4980 // If it is safe to mark the global 'constant', do so now. 4981 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4982 isTypeConstant(D->getType(), true)); 4983 4984 // If it is in a read-only section, mark it 'constant'. 4985 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4986 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4987 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4988 GV->setConstant(true); 4989 } 4990 4991 CharUnits AlignVal = getContext().getDeclAlign(D); 4992 // Check for alignment specifed in an 'omp allocate' directive. 4993 if (llvm::Optional<CharUnits> AlignValFromAllocate = 4994 getOMPAllocateAlignment(D)) 4995 AlignVal = *AlignValFromAllocate; 4996 GV->setAlignment(AlignVal.getAsAlign()); 4997 4998 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4999 // function is only defined alongside the variable, not also alongside 5000 // callers. Normally, all accesses to a thread_local go through the 5001 // thread-wrapper in order to ensure initialization has occurred, underlying 5002 // variable will never be used other than the thread-wrapper, so it can be 5003 // converted to internal linkage. 5004 // 5005 // However, if the variable has the 'constinit' attribute, it _can_ be 5006 // referenced directly, without calling the thread-wrapper, so the linkage 5007 // must not be changed. 5008 // 5009 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5010 // weak or linkonce, the de-duplication semantics are important to preserve, 5011 // so we don't change the linkage. 5012 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5013 Linkage == llvm::GlobalValue::ExternalLinkage && 5014 Context.getTargetInfo().getTriple().isOSDarwin() && 5015 !D->hasAttr<ConstInitAttr>()) 5016 Linkage = llvm::GlobalValue::InternalLinkage; 5017 5018 GV->setLinkage(Linkage); 5019 if (D->hasAttr<DLLImportAttr>()) 5020 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5021 else if (D->hasAttr<DLLExportAttr>()) 5022 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5023 else 5024 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5025 5026 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5027 // common vars aren't constant even if declared const. 5028 GV->setConstant(false); 5029 // Tentative definition of global variables may be initialized with 5030 // non-zero null pointers. In this case they should have weak linkage 5031 // since common linkage must have zero initializer and must not have 5032 // explicit section therefore cannot have non-zero initial value. 5033 if (!GV->getInitializer()->isNullValue()) 5034 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5035 } 5036 5037 setNonAliasAttributes(D, GV); 5038 5039 if (D->getTLSKind() && !GV->isThreadLocal()) { 5040 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5041 CXXThreadLocals.push_back(D); 5042 setTLSMode(GV, *D); 5043 } 5044 5045 maybeSetTrivialComdat(*D, *GV); 5046 5047 // Emit the initializer function if necessary. 5048 if (NeedsGlobalCtor || NeedsGlobalDtor) 5049 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5050 5051 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5052 5053 // Emit global variable debug information. 5054 if (CGDebugInfo *DI = getModuleDebugInfo()) 5055 if (getCodeGenOpts().hasReducedDebugInfo()) 5056 DI->EmitGlobalVariable(GV, D); 5057 } 5058 5059 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5060 if (CGDebugInfo *DI = getModuleDebugInfo()) 5061 if (getCodeGenOpts().hasReducedDebugInfo()) { 5062 QualType ASTTy = D->getType(); 5063 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5064 llvm::Constant *GV = 5065 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5066 DI->EmitExternalVariable( 5067 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5068 } 5069 } 5070 5071 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5072 CodeGenModule &CGM, const VarDecl *D, 5073 bool NoCommon) { 5074 // Don't give variables common linkage if -fno-common was specified unless it 5075 // was overridden by a NoCommon attribute. 5076 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5077 return true; 5078 5079 // C11 6.9.2/2: 5080 // A declaration of an identifier for an object that has file scope without 5081 // an initializer, and without a storage-class specifier or with the 5082 // storage-class specifier static, constitutes a tentative definition. 5083 if (D->getInit() || D->hasExternalStorage()) 5084 return true; 5085 5086 // A variable cannot be both common and exist in a section. 5087 if (D->hasAttr<SectionAttr>()) 5088 return true; 5089 5090 // A variable cannot be both common and exist in a section. 5091 // We don't try to determine which is the right section in the front-end. 5092 // If no specialized section name is applicable, it will resort to default. 5093 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5094 D->hasAttr<PragmaClangDataSectionAttr>() || 5095 D->hasAttr<PragmaClangRelroSectionAttr>() || 5096 D->hasAttr<PragmaClangRodataSectionAttr>()) 5097 return true; 5098 5099 // Thread local vars aren't considered common linkage. 5100 if (D->getTLSKind()) 5101 return true; 5102 5103 // Tentative definitions marked with WeakImportAttr are true definitions. 5104 if (D->hasAttr<WeakImportAttr>()) 5105 return true; 5106 5107 // A variable cannot be both common and exist in a comdat. 5108 if (shouldBeInCOMDAT(CGM, *D)) 5109 return true; 5110 5111 // Declarations with a required alignment do not have common linkage in MSVC 5112 // mode. 5113 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5114 if (D->hasAttr<AlignedAttr>()) 5115 return true; 5116 QualType VarType = D->getType(); 5117 if (Context.isAlignmentRequired(VarType)) 5118 return true; 5119 5120 if (const auto *RT = VarType->getAs<RecordType>()) { 5121 const RecordDecl *RD = RT->getDecl(); 5122 for (const FieldDecl *FD : RD->fields()) { 5123 if (FD->isBitField()) 5124 continue; 5125 if (FD->hasAttr<AlignedAttr>()) 5126 return true; 5127 if (Context.isAlignmentRequired(FD->getType())) 5128 return true; 5129 } 5130 } 5131 } 5132 5133 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5134 // common symbols, so symbols with greater alignment requirements cannot be 5135 // common. 5136 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5137 // alignments for common symbols via the aligncomm directive, so this 5138 // restriction only applies to MSVC environments. 5139 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5140 Context.getTypeAlignIfKnown(D->getType()) > 5141 Context.toBits(CharUnits::fromQuantity(32))) 5142 return true; 5143 5144 return false; 5145 } 5146 5147 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5148 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5149 if (Linkage == GVA_Internal) 5150 return llvm::Function::InternalLinkage; 5151 5152 if (D->hasAttr<WeakAttr>()) 5153 return llvm::GlobalVariable::WeakAnyLinkage; 5154 5155 if (const auto *FD = D->getAsFunction()) 5156 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5157 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5158 5159 // We are guaranteed to have a strong definition somewhere else, 5160 // so we can use available_externally linkage. 5161 if (Linkage == GVA_AvailableExternally) 5162 return llvm::GlobalValue::AvailableExternallyLinkage; 5163 5164 // Note that Apple's kernel linker doesn't support symbol 5165 // coalescing, so we need to avoid linkonce and weak linkages there. 5166 // Normally, this means we just map to internal, but for explicit 5167 // instantiations we'll map to external. 5168 5169 // In C++, the compiler has to emit a definition in every translation unit 5170 // that references the function. We should use linkonce_odr because 5171 // a) if all references in this translation unit are optimized away, we 5172 // don't need to codegen it. b) if the function persists, it needs to be 5173 // merged with other definitions. c) C++ has the ODR, so we know the 5174 // definition is dependable. 5175 if (Linkage == GVA_DiscardableODR) 5176 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5177 : llvm::Function::InternalLinkage; 5178 5179 // An explicit instantiation of a template has weak linkage, since 5180 // explicit instantiations can occur in multiple translation units 5181 // and must all be equivalent. However, we are not allowed to 5182 // throw away these explicit instantiations. 5183 // 5184 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5185 // so say that CUDA templates are either external (for kernels) or internal. 5186 // This lets llvm perform aggressive inter-procedural optimizations. For 5187 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5188 // therefore we need to follow the normal linkage paradigm. 5189 if (Linkage == GVA_StrongODR) { 5190 if (getLangOpts().AppleKext) 5191 return llvm::Function::ExternalLinkage; 5192 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5193 !getLangOpts().GPURelocatableDeviceCode) 5194 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5195 : llvm::Function::InternalLinkage; 5196 return llvm::Function::WeakODRLinkage; 5197 } 5198 5199 // C++ doesn't have tentative definitions and thus cannot have common 5200 // linkage. 5201 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5202 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5203 CodeGenOpts.NoCommon)) 5204 return llvm::GlobalVariable::CommonLinkage; 5205 5206 // selectany symbols are externally visible, so use weak instead of 5207 // linkonce. MSVC optimizes away references to const selectany globals, so 5208 // all definitions should be the same and ODR linkage should be used. 5209 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5210 if (D->hasAttr<SelectAnyAttr>()) 5211 return llvm::GlobalVariable::WeakODRLinkage; 5212 5213 // Otherwise, we have strong external linkage. 5214 assert(Linkage == GVA_StrongExternal); 5215 return llvm::GlobalVariable::ExternalLinkage; 5216 } 5217 5218 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5219 const VarDecl *VD, bool IsConstant) { 5220 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5221 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5222 } 5223 5224 /// Replace the uses of a function that was declared with a non-proto type. 5225 /// We want to silently drop extra arguments from call sites 5226 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5227 llvm::Function *newFn) { 5228 // Fast path. 5229 if (old->use_empty()) return; 5230 5231 llvm::Type *newRetTy = newFn->getReturnType(); 5232 SmallVector<llvm::Value*, 4> newArgs; 5233 5234 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5235 ui != ue; ) { 5236 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5237 llvm::User *user = use->getUser(); 5238 5239 // Recognize and replace uses of bitcasts. Most calls to 5240 // unprototyped functions will use bitcasts. 5241 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5242 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5243 replaceUsesOfNonProtoConstant(bitcast, newFn); 5244 continue; 5245 } 5246 5247 // Recognize calls to the function. 5248 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5249 if (!callSite) continue; 5250 if (!callSite->isCallee(&*use)) 5251 continue; 5252 5253 // If the return types don't match exactly, then we can't 5254 // transform this call unless it's dead. 5255 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5256 continue; 5257 5258 // Get the call site's attribute list. 5259 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5260 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5261 5262 // If the function was passed too few arguments, don't transform. 5263 unsigned newNumArgs = newFn->arg_size(); 5264 if (callSite->arg_size() < newNumArgs) 5265 continue; 5266 5267 // If extra arguments were passed, we silently drop them. 5268 // If any of the types mismatch, we don't transform. 5269 unsigned argNo = 0; 5270 bool dontTransform = false; 5271 for (llvm::Argument &A : newFn->args()) { 5272 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5273 dontTransform = true; 5274 break; 5275 } 5276 5277 // Add any parameter attributes. 5278 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5279 argNo++; 5280 } 5281 if (dontTransform) 5282 continue; 5283 5284 // Okay, we can transform this. Create the new call instruction and copy 5285 // over the required information. 5286 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5287 5288 // Copy over any operand bundles. 5289 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5290 callSite->getOperandBundlesAsDefs(newBundles); 5291 5292 llvm::CallBase *newCall; 5293 if (isa<llvm::CallInst>(callSite)) { 5294 newCall = 5295 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5296 } else { 5297 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5298 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5299 oldInvoke->getUnwindDest(), newArgs, 5300 newBundles, "", callSite); 5301 } 5302 newArgs.clear(); // for the next iteration 5303 5304 if (!newCall->getType()->isVoidTy()) 5305 newCall->takeName(callSite); 5306 newCall->setAttributes( 5307 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5308 oldAttrs.getRetAttrs(), newArgAttrs)); 5309 newCall->setCallingConv(callSite->getCallingConv()); 5310 5311 // Finally, remove the old call, replacing any uses with the new one. 5312 if (!callSite->use_empty()) 5313 callSite->replaceAllUsesWith(newCall); 5314 5315 // Copy debug location attached to CI. 5316 if (callSite->getDebugLoc()) 5317 newCall->setDebugLoc(callSite->getDebugLoc()); 5318 5319 callSite->eraseFromParent(); 5320 } 5321 } 5322 5323 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5324 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5325 /// existing call uses of the old function in the module, this adjusts them to 5326 /// call the new function directly. 5327 /// 5328 /// This is not just a cleanup: the always_inline pass requires direct calls to 5329 /// functions to be able to inline them. If there is a bitcast in the way, it 5330 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5331 /// run at -O0. 5332 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5333 llvm::Function *NewFn) { 5334 // If we're redefining a global as a function, don't transform it. 5335 if (!isa<llvm::Function>(Old)) return; 5336 5337 replaceUsesOfNonProtoConstant(Old, NewFn); 5338 } 5339 5340 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5341 auto DK = VD->isThisDeclarationADefinition(); 5342 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5343 return; 5344 5345 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5346 // If we have a definition, this might be a deferred decl. If the 5347 // instantiation is explicit, make sure we emit it at the end. 5348 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5349 GetAddrOfGlobalVar(VD); 5350 5351 EmitTopLevelDecl(VD); 5352 } 5353 5354 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5355 llvm::GlobalValue *GV) { 5356 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5357 5358 // Compute the function info and LLVM type. 5359 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5360 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5361 5362 // Get or create the prototype for the function. 5363 if (!GV || (GV->getValueType() != Ty)) 5364 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5365 /*DontDefer=*/true, 5366 ForDefinition)); 5367 5368 // Already emitted. 5369 if (!GV->isDeclaration()) 5370 return; 5371 5372 // We need to set linkage and visibility on the function before 5373 // generating code for it because various parts of IR generation 5374 // want to propagate this information down (e.g. to local static 5375 // declarations). 5376 auto *Fn = cast<llvm::Function>(GV); 5377 setFunctionLinkage(GD, Fn); 5378 5379 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5380 setGVProperties(Fn, GD); 5381 5382 MaybeHandleStaticInExternC(D, Fn); 5383 5384 maybeSetTrivialComdat(*D, *Fn); 5385 5386 // Set CodeGen attributes that represent floating point environment. 5387 setLLVMFunctionFEnvAttributes(D, Fn); 5388 5389 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5390 5391 setNonAliasAttributes(GD, Fn); 5392 SetLLVMFunctionAttributesForDefinition(D, Fn); 5393 5394 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5395 AddGlobalCtor(Fn, CA->getPriority()); 5396 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5397 AddGlobalDtor(Fn, DA->getPriority(), true); 5398 if (D->hasAttr<AnnotateAttr>()) 5399 AddGlobalAnnotations(D, Fn); 5400 } 5401 5402 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5403 const auto *D = cast<ValueDecl>(GD.getDecl()); 5404 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5405 assert(AA && "Not an alias?"); 5406 5407 StringRef MangledName = getMangledName(GD); 5408 5409 if (AA->getAliasee() == MangledName) { 5410 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5411 return; 5412 } 5413 5414 // If there is a definition in the module, then it wins over the alias. 5415 // This is dubious, but allow it to be safe. Just ignore the alias. 5416 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5417 if (Entry && !Entry->isDeclaration()) 5418 return; 5419 5420 Aliases.push_back(GD); 5421 5422 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5423 5424 // Create a reference to the named value. This ensures that it is emitted 5425 // if a deferred decl. 5426 llvm::Constant *Aliasee; 5427 llvm::GlobalValue::LinkageTypes LT; 5428 if (isa<llvm::FunctionType>(DeclTy)) { 5429 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5430 /*ForVTable=*/false); 5431 LT = getFunctionLinkage(GD); 5432 } else { 5433 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5434 /*D=*/nullptr); 5435 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5436 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5437 else 5438 LT = getFunctionLinkage(GD); 5439 } 5440 5441 // Create the new alias itself, but don't set a name yet. 5442 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5443 auto *GA = 5444 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5445 5446 if (Entry) { 5447 if (GA->getAliasee() == Entry) { 5448 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5449 return; 5450 } 5451 5452 assert(Entry->isDeclaration()); 5453 5454 // If there is a declaration in the module, then we had an extern followed 5455 // by the alias, as in: 5456 // extern int test6(); 5457 // ... 5458 // int test6() __attribute__((alias("test7"))); 5459 // 5460 // Remove it and replace uses of it with the alias. 5461 GA->takeName(Entry); 5462 5463 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5464 Entry->getType())); 5465 Entry->eraseFromParent(); 5466 } else { 5467 GA->setName(MangledName); 5468 } 5469 5470 // Set attributes which are particular to an alias; this is a 5471 // specialization of the attributes which may be set on a global 5472 // variable/function. 5473 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5474 D->isWeakImported()) { 5475 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5476 } 5477 5478 if (const auto *VD = dyn_cast<VarDecl>(D)) 5479 if (VD->getTLSKind()) 5480 setTLSMode(GA, *VD); 5481 5482 SetCommonAttributes(GD, GA); 5483 5484 // Emit global alias debug information. 5485 if (isa<VarDecl>(D)) 5486 if (CGDebugInfo *DI = getModuleDebugInfo()) 5487 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5488 } 5489 5490 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5491 const auto *D = cast<ValueDecl>(GD.getDecl()); 5492 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5493 assert(IFA && "Not an ifunc?"); 5494 5495 StringRef MangledName = getMangledName(GD); 5496 5497 if (IFA->getResolver() == MangledName) { 5498 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5499 return; 5500 } 5501 5502 // Report an error if some definition overrides ifunc. 5503 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5504 if (Entry && !Entry->isDeclaration()) { 5505 GlobalDecl OtherGD; 5506 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5507 DiagnosedConflictingDefinitions.insert(GD).second) { 5508 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5509 << MangledName; 5510 Diags.Report(OtherGD.getDecl()->getLocation(), 5511 diag::note_previous_definition); 5512 } 5513 return; 5514 } 5515 5516 Aliases.push_back(GD); 5517 5518 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5519 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5520 llvm::Constant *Resolver = 5521 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5522 /*ForVTable=*/false); 5523 llvm::GlobalIFunc *GIF = 5524 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5525 "", Resolver, &getModule()); 5526 if (Entry) { 5527 if (GIF->getResolver() == Entry) { 5528 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5529 return; 5530 } 5531 assert(Entry->isDeclaration()); 5532 5533 // If there is a declaration in the module, then we had an extern followed 5534 // by the ifunc, as in: 5535 // extern int test(); 5536 // ... 5537 // int test() __attribute__((ifunc("resolver"))); 5538 // 5539 // Remove it and replace uses of it with the ifunc. 5540 GIF->takeName(Entry); 5541 5542 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5543 Entry->getType())); 5544 Entry->eraseFromParent(); 5545 } else 5546 GIF->setName(MangledName); 5547 5548 SetCommonAttributes(GD, GIF); 5549 } 5550 5551 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5552 ArrayRef<llvm::Type*> Tys) { 5553 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5554 Tys); 5555 } 5556 5557 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5558 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5559 const StringLiteral *Literal, bool TargetIsLSB, 5560 bool &IsUTF16, unsigned &StringLength) { 5561 StringRef String = Literal->getString(); 5562 unsigned NumBytes = String.size(); 5563 5564 // Check for simple case. 5565 if (!Literal->containsNonAsciiOrNull()) { 5566 StringLength = NumBytes; 5567 return *Map.insert(std::make_pair(String, nullptr)).first; 5568 } 5569 5570 // Otherwise, convert the UTF8 literals into a string of shorts. 5571 IsUTF16 = true; 5572 5573 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5574 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5575 llvm::UTF16 *ToPtr = &ToBuf[0]; 5576 5577 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5578 ToPtr + NumBytes, llvm::strictConversion); 5579 5580 // ConvertUTF8toUTF16 returns the length in ToPtr. 5581 StringLength = ToPtr - &ToBuf[0]; 5582 5583 // Add an explicit null. 5584 *ToPtr = 0; 5585 return *Map.insert(std::make_pair( 5586 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5587 (StringLength + 1) * 2), 5588 nullptr)).first; 5589 } 5590 5591 ConstantAddress 5592 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5593 unsigned StringLength = 0; 5594 bool isUTF16 = false; 5595 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5596 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5597 getDataLayout().isLittleEndian(), isUTF16, 5598 StringLength); 5599 5600 if (auto *C = Entry.second) 5601 return ConstantAddress( 5602 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5603 5604 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5605 llvm::Constant *Zeros[] = { Zero, Zero }; 5606 5607 const ASTContext &Context = getContext(); 5608 const llvm::Triple &Triple = getTriple(); 5609 5610 const auto CFRuntime = getLangOpts().CFRuntime; 5611 const bool IsSwiftABI = 5612 static_cast<unsigned>(CFRuntime) >= 5613 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5614 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5615 5616 // If we don't already have it, get __CFConstantStringClassReference. 5617 if (!CFConstantStringClassRef) { 5618 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5619 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5620 Ty = llvm::ArrayType::get(Ty, 0); 5621 5622 switch (CFRuntime) { 5623 default: break; 5624 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5625 case LangOptions::CoreFoundationABI::Swift5_0: 5626 CFConstantStringClassName = 5627 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5628 : "$s10Foundation19_NSCFConstantStringCN"; 5629 Ty = IntPtrTy; 5630 break; 5631 case LangOptions::CoreFoundationABI::Swift4_2: 5632 CFConstantStringClassName = 5633 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5634 : "$S10Foundation19_NSCFConstantStringCN"; 5635 Ty = IntPtrTy; 5636 break; 5637 case LangOptions::CoreFoundationABI::Swift4_1: 5638 CFConstantStringClassName = 5639 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5640 : "__T010Foundation19_NSCFConstantStringCN"; 5641 Ty = IntPtrTy; 5642 break; 5643 } 5644 5645 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5646 5647 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5648 llvm::GlobalValue *GV = nullptr; 5649 5650 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5651 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5652 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5653 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5654 5655 const VarDecl *VD = nullptr; 5656 for (const auto *Result : DC->lookup(&II)) 5657 if ((VD = dyn_cast<VarDecl>(Result))) 5658 break; 5659 5660 if (Triple.isOSBinFormatELF()) { 5661 if (!VD) 5662 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5663 } else { 5664 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5665 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5666 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5667 else 5668 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5669 } 5670 5671 setDSOLocal(GV); 5672 } 5673 } 5674 5675 // Decay array -> ptr 5676 CFConstantStringClassRef = 5677 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5678 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5679 } 5680 5681 QualType CFTy = Context.getCFConstantStringType(); 5682 5683 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5684 5685 ConstantInitBuilder Builder(*this); 5686 auto Fields = Builder.beginStruct(STy); 5687 5688 // Class pointer. 5689 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5690 5691 // Flags. 5692 if (IsSwiftABI) { 5693 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5694 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5695 } else { 5696 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5697 } 5698 5699 // String pointer. 5700 llvm::Constant *C = nullptr; 5701 if (isUTF16) { 5702 auto Arr = llvm::makeArrayRef( 5703 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5704 Entry.first().size() / 2); 5705 C = llvm::ConstantDataArray::get(VMContext, Arr); 5706 } else { 5707 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5708 } 5709 5710 // Note: -fwritable-strings doesn't make the backing store strings of 5711 // CFStrings writable. (See <rdar://problem/10657500>) 5712 auto *GV = 5713 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5714 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5715 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5716 // Don't enforce the target's minimum global alignment, since the only use 5717 // of the string is via this class initializer. 5718 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5719 : Context.getTypeAlignInChars(Context.CharTy); 5720 GV->setAlignment(Align.getAsAlign()); 5721 5722 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5723 // Without it LLVM can merge the string with a non unnamed_addr one during 5724 // LTO. Doing that changes the section it ends in, which surprises ld64. 5725 if (Triple.isOSBinFormatMachO()) 5726 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5727 : "__TEXT,__cstring,cstring_literals"); 5728 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5729 // the static linker to adjust permissions to read-only later on. 5730 else if (Triple.isOSBinFormatELF()) 5731 GV->setSection(".rodata"); 5732 5733 // String. 5734 llvm::Constant *Str = 5735 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5736 5737 if (isUTF16) 5738 // Cast the UTF16 string to the correct type. 5739 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5740 Fields.add(Str); 5741 5742 // String length. 5743 llvm::IntegerType *LengthTy = 5744 llvm::IntegerType::get(getModule().getContext(), 5745 Context.getTargetInfo().getLongWidth()); 5746 if (IsSwiftABI) { 5747 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5748 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5749 LengthTy = Int32Ty; 5750 else 5751 LengthTy = IntPtrTy; 5752 } 5753 Fields.addInt(LengthTy, StringLength); 5754 5755 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5756 // properly aligned on 32-bit platforms. 5757 CharUnits Alignment = 5758 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5759 5760 // The struct. 5761 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5762 /*isConstant=*/false, 5763 llvm::GlobalVariable::PrivateLinkage); 5764 GV->addAttribute("objc_arc_inert"); 5765 switch (Triple.getObjectFormat()) { 5766 case llvm::Triple::UnknownObjectFormat: 5767 llvm_unreachable("unknown file format"); 5768 case llvm::Triple::DXContainer: 5769 case llvm::Triple::GOFF: 5770 case llvm::Triple::SPIRV: 5771 case llvm::Triple::XCOFF: 5772 llvm_unreachable("unimplemented"); 5773 case llvm::Triple::COFF: 5774 case llvm::Triple::ELF: 5775 case llvm::Triple::Wasm: 5776 GV->setSection("cfstring"); 5777 break; 5778 case llvm::Triple::MachO: 5779 GV->setSection("__DATA,__cfstring"); 5780 break; 5781 } 5782 Entry.second = GV; 5783 5784 return ConstantAddress(GV, GV->getValueType(), Alignment); 5785 } 5786 5787 bool CodeGenModule::getExpressionLocationsEnabled() const { 5788 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5789 } 5790 5791 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5792 if (ObjCFastEnumerationStateType.isNull()) { 5793 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5794 D->startDefinition(); 5795 5796 QualType FieldTypes[] = { 5797 Context.UnsignedLongTy, 5798 Context.getPointerType(Context.getObjCIdType()), 5799 Context.getPointerType(Context.UnsignedLongTy), 5800 Context.getConstantArrayType(Context.UnsignedLongTy, 5801 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5802 }; 5803 5804 for (size_t i = 0; i < 4; ++i) { 5805 FieldDecl *Field = FieldDecl::Create(Context, 5806 D, 5807 SourceLocation(), 5808 SourceLocation(), nullptr, 5809 FieldTypes[i], /*TInfo=*/nullptr, 5810 /*BitWidth=*/nullptr, 5811 /*Mutable=*/false, 5812 ICIS_NoInit); 5813 Field->setAccess(AS_public); 5814 D->addDecl(Field); 5815 } 5816 5817 D->completeDefinition(); 5818 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5819 } 5820 5821 return ObjCFastEnumerationStateType; 5822 } 5823 5824 llvm::Constant * 5825 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5826 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5827 5828 // Don't emit it as the address of the string, emit the string data itself 5829 // as an inline array. 5830 if (E->getCharByteWidth() == 1) { 5831 SmallString<64> Str(E->getString()); 5832 5833 // Resize the string to the right size, which is indicated by its type. 5834 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5835 Str.resize(CAT->getSize().getZExtValue()); 5836 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5837 } 5838 5839 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5840 llvm::Type *ElemTy = AType->getElementType(); 5841 unsigned NumElements = AType->getNumElements(); 5842 5843 // Wide strings have either 2-byte or 4-byte elements. 5844 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5845 SmallVector<uint16_t, 32> Elements; 5846 Elements.reserve(NumElements); 5847 5848 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5849 Elements.push_back(E->getCodeUnit(i)); 5850 Elements.resize(NumElements); 5851 return llvm::ConstantDataArray::get(VMContext, Elements); 5852 } 5853 5854 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5855 SmallVector<uint32_t, 32> Elements; 5856 Elements.reserve(NumElements); 5857 5858 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5859 Elements.push_back(E->getCodeUnit(i)); 5860 Elements.resize(NumElements); 5861 return llvm::ConstantDataArray::get(VMContext, Elements); 5862 } 5863 5864 static llvm::GlobalVariable * 5865 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5866 CodeGenModule &CGM, StringRef GlobalName, 5867 CharUnits Alignment) { 5868 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5869 CGM.GetGlobalConstantAddressSpace()); 5870 5871 llvm::Module &M = CGM.getModule(); 5872 // Create a global variable for this string 5873 auto *GV = new llvm::GlobalVariable( 5874 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5875 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5876 GV->setAlignment(Alignment.getAsAlign()); 5877 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5878 if (GV->isWeakForLinker()) { 5879 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5880 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5881 } 5882 CGM.setDSOLocal(GV); 5883 5884 return GV; 5885 } 5886 5887 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5888 /// constant array for the given string literal. 5889 ConstantAddress 5890 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5891 StringRef Name) { 5892 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5893 5894 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5895 llvm::GlobalVariable **Entry = nullptr; 5896 if (!LangOpts.WritableStrings) { 5897 Entry = &ConstantStringMap[C]; 5898 if (auto GV = *Entry) { 5899 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5900 GV->setAlignment(Alignment.getAsAlign()); 5901 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5902 GV->getValueType(), Alignment); 5903 } 5904 } 5905 5906 SmallString<256> MangledNameBuffer; 5907 StringRef GlobalVariableName; 5908 llvm::GlobalValue::LinkageTypes LT; 5909 5910 // Mangle the string literal if that's how the ABI merges duplicate strings. 5911 // Don't do it if they are writable, since we don't want writes in one TU to 5912 // affect strings in another. 5913 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5914 !LangOpts.WritableStrings) { 5915 llvm::raw_svector_ostream Out(MangledNameBuffer); 5916 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5917 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5918 GlobalVariableName = MangledNameBuffer; 5919 } else { 5920 LT = llvm::GlobalValue::PrivateLinkage; 5921 GlobalVariableName = Name; 5922 } 5923 5924 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5925 5926 CGDebugInfo *DI = getModuleDebugInfo(); 5927 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5928 DI->AddStringLiteralDebugInfo(GV, S); 5929 5930 if (Entry) 5931 *Entry = GV; 5932 5933 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5934 5935 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5936 GV->getValueType(), Alignment); 5937 } 5938 5939 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5940 /// array for the given ObjCEncodeExpr node. 5941 ConstantAddress 5942 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5943 std::string Str; 5944 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5945 5946 return GetAddrOfConstantCString(Str); 5947 } 5948 5949 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5950 /// the literal and a terminating '\0' character. 5951 /// The result has pointer to array type. 5952 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5953 const std::string &Str, const char *GlobalName) { 5954 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5955 CharUnits Alignment = 5956 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5957 5958 llvm::Constant *C = 5959 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5960 5961 // Don't share any string literals if strings aren't constant. 5962 llvm::GlobalVariable **Entry = nullptr; 5963 if (!LangOpts.WritableStrings) { 5964 Entry = &ConstantStringMap[C]; 5965 if (auto GV = *Entry) { 5966 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5967 GV->setAlignment(Alignment.getAsAlign()); 5968 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5969 GV->getValueType(), Alignment); 5970 } 5971 } 5972 5973 // Get the default prefix if a name wasn't specified. 5974 if (!GlobalName) 5975 GlobalName = ".str"; 5976 // Create a global variable for this. 5977 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5978 GlobalName, Alignment); 5979 if (Entry) 5980 *Entry = GV; 5981 5982 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5983 GV->getValueType(), Alignment); 5984 } 5985 5986 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5987 const MaterializeTemporaryExpr *E, const Expr *Init) { 5988 assert((E->getStorageDuration() == SD_Static || 5989 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5990 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5991 5992 // If we're not materializing a subobject of the temporary, keep the 5993 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5994 QualType MaterializedType = Init->getType(); 5995 if (Init == E->getSubExpr()) 5996 MaterializedType = E->getType(); 5997 5998 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5999 6000 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6001 if (!InsertResult.second) { 6002 // We've seen this before: either we already created it or we're in the 6003 // process of doing so. 6004 if (!InsertResult.first->second) { 6005 // We recursively re-entered this function, probably during emission of 6006 // the initializer. Create a placeholder. We'll clean this up in the 6007 // outer call, at the end of this function. 6008 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6009 InsertResult.first->second = new llvm::GlobalVariable( 6010 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6011 nullptr); 6012 } 6013 return ConstantAddress(InsertResult.first->second, 6014 llvm::cast<llvm::GlobalVariable>( 6015 InsertResult.first->second->stripPointerCasts()) 6016 ->getValueType(), 6017 Align); 6018 } 6019 6020 // FIXME: If an externally-visible declaration extends multiple temporaries, 6021 // we need to give each temporary the same name in every translation unit (and 6022 // we also need to make the temporaries externally-visible). 6023 SmallString<256> Name; 6024 llvm::raw_svector_ostream Out(Name); 6025 getCXXABI().getMangleContext().mangleReferenceTemporary( 6026 VD, E->getManglingNumber(), Out); 6027 6028 APValue *Value = nullptr; 6029 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6030 // If the initializer of the extending declaration is a constant 6031 // initializer, we should have a cached constant initializer for this 6032 // temporary. Note that this might have a different value from the value 6033 // computed by evaluating the initializer if the surrounding constant 6034 // expression modifies the temporary. 6035 Value = E->getOrCreateValue(false); 6036 } 6037 6038 // Try evaluating it now, it might have a constant initializer. 6039 Expr::EvalResult EvalResult; 6040 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6041 !EvalResult.hasSideEffects()) 6042 Value = &EvalResult.Val; 6043 6044 LangAS AddrSpace = 6045 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6046 6047 Optional<ConstantEmitter> emitter; 6048 llvm::Constant *InitialValue = nullptr; 6049 bool Constant = false; 6050 llvm::Type *Type; 6051 if (Value) { 6052 // The temporary has a constant initializer, use it. 6053 emitter.emplace(*this); 6054 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6055 MaterializedType); 6056 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6057 Type = InitialValue->getType(); 6058 } else { 6059 // No initializer, the initialization will be provided when we 6060 // initialize the declaration which performed lifetime extension. 6061 Type = getTypes().ConvertTypeForMem(MaterializedType); 6062 } 6063 6064 // Create a global variable for this lifetime-extended temporary. 6065 llvm::GlobalValue::LinkageTypes Linkage = 6066 getLLVMLinkageVarDefinition(VD, Constant); 6067 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6068 const VarDecl *InitVD; 6069 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6070 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6071 // Temporaries defined inside a class get linkonce_odr linkage because the 6072 // class can be defined in multiple translation units. 6073 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6074 } else { 6075 // There is no need for this temporary to have external linkage if the 6076 // VarDecl has external linkage. 6077 Linkage = llvm::GlobalVariable::InternalLinkage; 6078 } 6079 } 6080 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6081 auto *GV = new llvm::GlobalVariable( 6082 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6083 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6084 if (emitter) emitter->finalize(GV); 6085 // Don't assign dllimport or dllexport to local linkage globals. 6086 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6087 setGVProperties(GV, VD); 6088 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6089 // The reference temporary should never be dllexport. 6090 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6091 } 6092 GV->setAlignment(Align.getAsAlign()); 6093 if (supportsCOMDAT() && GV->isWeakForLinker()) 6094 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6095 if (VD->getTLSKind()) 6096 setTLSMode(GV, *VD); 6097 llvm::Constant *CV = GV; 6098 if (AddrSpace != LangAS::Default) 6099 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6100 *this, GV, AddrSpace, LangAS::Default, 6101 Type->getPointerTo( 6102 getContext().getTargetAddressSpace(LangAS::Default))); 6103 6104 // Update the map with the new temporary. If we created a placeholder above, 6105 // replace it with the new global now. 6106 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6107 if (Entry) { 6108 Entry->replaceAllUsesWith( 6109 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6110 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6111 } 6112 Entry = CV; 6113 6114 return ConstantAddress(CV, Type, Align); 6115 } 6116 6117 /// EmitObjCPropertyImplementations - Emit information for synthesized 6118 /// properties for an implementation. 6119 void CodeGenModule::EmitObjCPropertyImplementations(const 6120 ObjCImplementationDecl *D) { 6121 for (const auto *PID : D->property_impls()) { 6122 // Dynamic is just for type-checking. 6123 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6124 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6125 6126 // Determine which methods need to be implemented, some may have 6127 // been overridden. Note that ::isPropertyAccessor is not the method 6128 // we want, that just indicates if the decl came from a 6129 // property. What we want to know is if the method is defined in 6130 // this implementation. 6131 auto *Getter = PID->getGetterMethodDecl(); 6132 if (!Getter || Getter->isSynthesizedAccessorStub()) 6133 CodeGenFunction(*this).GenerateObjCGetter( 6134 const_cast<ObjCImplementationDecl *>(D), PID); 6135 auto *Setter = PID->getSetterMethodDecl(); 6136 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6137 CodeGenFunction(*this).GenerateObjCSetter( 6138 const_cast<ObjCImplementationDecl *>(D), PID); 6139 } 6140 } 6141 } 6142 6143 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6144 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6145 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6146 ivar; ivar = ivar->getNextIvar()) 6147 if (ivar->getType().isDestructedType()) 6148 return true; 6149 6150 return false; 6151 } 6152 6153 static bool AllTrivialInitializers(CodeGenModule &CGM, 6154 ObjCImplementationDecl *D) { 6155 CodeGenFunction CGF(CGM); 6156 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6157 E = D->init_end(); B != E; ++B) { 6158 CXXCtorInitializer *CtorInitExp = *B; 6159 Expr *Init = CtorInitExp->getInit(); 6160 if (!CGF.isTrivialInitializer(Init)) 6161 return false; 6162 } 6163 return true; 6164 } 6165 6166 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6167 /// for an implementation. 6168 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6169 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6170 if (needsDestructMethod(D)) { 6171 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6172 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6173 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6174 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6175 getContext().VoidTy, nullptr, D, 6176 /*isInstance=*/true, /*isVariadic=*/false, 6177 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6178 /*isImplicitlyDeclared=*/true, 6179 /*isDefined=*/false, ObjCMethodDecl::Required); 6180 D->addInstanceMethod(DTORMethod); 6181 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6182 D->setHasDestructors(true); 6183 } 6184 6185 // If the implementation doesn't have any ivar initializers, we don't need 6186 // a .cxx_construct. 6187 if (D->getNumIvarInitializers() == 0 || 6188 AllTrivialInitializers(*this, D)) 6189 return; 6190 6191 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6192 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6193 // The constructor returns 'self'. 6194 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6195 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6196 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6197 /*isVariadic=*/false, 6198 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6199 /*isImplicitlyDeclared=*/true, 6200 /*isDefined=*/false, ObjCMethodDecl::Required); 6201 D->addInstanceMethod(CTORMethod); 6202 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6203 D->setHasNonZeroConstructors(true); 6204 } 6205 6206 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6207 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6208 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6209 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6210 ErrorUnsupported(LSD, "linkage spec"); 6211 return; 6212 } 6213 6214 EmitDeclContext(LSD); 6215 } 6216 6217 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6218 std::unique_ptr<CodeGenFunction> &CurCGF = 6219 GlobalTopLevelStmtBlockInFlight.first; 6220 6221 // We emitted a top-level stmt but after it there is initialization. 6222 // Stop squashing the top-level stmts into a single function. 6223 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6224 CurCGF->FinishFunction(D->getEndLoc()); 6225 CurCGF = nullptr; 6226 } 6227 6228 if (!CurCGF) { 6229 // void __stmts__N(void) 6230 // FIXME: Ask the ABI name mangler to pick a name. 6231 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6232 FunctionArgList Args; 6233 QualType RetTy = getContext().VoidTy; 6234 const CGFunctionInfo &FnInfo = 6235 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6236 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6237 llvm::Function *Fn = llvm::Function::Create( 6238 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6239 6240 CurCGF.reset(new CodeGenFunction(*this)); 6241 GlobalTopLevelStmtBlockInFlight.second = D; 6242 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6243 D->getBeginLoc(), D->getBeginLoc()); 6244 CXXGlobalInits.push_back(Fn); 6245 } 6246 6247 CurCGF->EmitStmt(D->getStmt()); 6248 } 6249 6250 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6251 for (auto *I : DC->decls()) { 6252 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6253 // are themselves considered "top-level", so EmitTopLevelDecl on an 6254 // ObjCImplDecl does not recursively visit them. We need to do that in 6255 // case they're nested inside another construct (LinkageSpecDecl / 6256 // ExportDecl) that does stop them from being considered "top-level". 6257 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6258 for (auto *M : OID->methods()) 6259 EmitTopLevelDecl(M); 6260 } 6261 6262 EmitTopLevelDecl(I); 6263 } 6264 } 6265 6266 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6267 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6268 // Ignore dependent declarations. 6269 if (D->isTemplated()) 6270 return; 6271 6272 // Consteval function shouldn't be emitted. 6273 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6274 if (FD->isConsteval()) 6275 return; 6276 6277 switch (D->getKind()) { 6278 case Decl::CXXConversion: 6279 case Decl::CXXMethod: 6280 case Decl::Function: 6281 EmitGlobal(cast<FunctionDecl>(D)); 6282 // Always provide some coverage mapping 6283 // even for the functions that aren't emitted. 6284 AddDeferredUnusedCoverageMapping(D); 6285 break; 6286 6287 case Decl::CXXDeductionGuide: 6288 // Function-like, but does not result in code emission. 6289 break; 6290 6291 case Decl::Var: 6292 case Decl::Decomposition: 6293 case Decl::VarTemplateSpecialization: 6294 EmitGlobal(cast<VarDecl>(D)); 6295 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6296 for (auto *B : DD->bindings()) 6297 if (auto *HD = B->getHoldingVar()) 6298 EmitGlobal(HD); 6299 break; 6300 6301 // Indirect fields from global anonymous structs and unions can be 6302 // ignored; only the actual variable requires IR gen support. 6303 case Decl::IndirectField: 6304 break; 6305 6306 // C++ Decls 6307 case Decl::Namespace: 6308 EmitDeclContext(cast<NamespaceDecl>(D)); 6309 break; 6310 case Decl::ClassTemplateSpecialization: { 6311 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6312 if (CGDebugInfo *DI = getModuleDebugInfo()) 6313 if (Spec->getSpecializationKind() == 6314 TSK_ExplicitInstantiationDefinition && 6315 Spec->hasDefinition()) 6316 DI->completeTemplateDefinition(*Spec); 6317 } [[fallthrough]]; 6318 case Decl::CXXRecord: { 6319 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6320 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6321 if (CRD->hasDefinition()) 6322 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6323 if (auto *ES = D->getASTContext().getExternalSource()) 6324 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6325 DI->completeUnusedClass(*CRD); 6326 } 6327 // Emit any static data members, they may be definitions. 6328 for (auto *I : CRD->decls()) 6329 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6330 EmitTopLevelDecl(I); 6331 break; 6332 } 6333 // No code generation needed. 6334 case Decl::UsingShadow: 6335 case Decl::ClassTemplate: 6336 case Decl::VarTemplate: 6337 case Decl::Concept: 6338 case Decl::VarTemplatePartialSpecialization: 6339 case Decl::FunctionTemplate: 6340 case Decl::TypeAliasTemplate: 6341 case Decl::Block: 6342 case Decl::Empty: 6343 case Decl::Binding: 6344 break; 6345 case Decl::Using: // using X; [C++] 6346 if (CGDebugInfo *DI = getModuleDebugInfo()) 6347 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6348 break; 6349 case Decl::UsingEnum: // using enum X; [C++] 6350 if (CGDebugInfo *DI = getModuleDebugInfo()) 6351 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6352 break; 6353 case Decl::NamespaceAlias: 6354 if (CGDebugInfo *DI = getModuleDebugInfo()) 6355 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6356 break; 6357 case Decl::UsingDirective: // using namespace X; [C++] 6358 if (CGDebugInfo *DI = getModuleDebugInfo()) 6359 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6360 break; 6361 case Decl::CXXConstructor: 6362 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6363 break; 6364 case Decl::CXXDestructor: 6365 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6366 break; 6367 6368 case Decl::StaticAssert: 6369 // Nothing to do. 6370 break; 6371 6372 // Objective-C Decls 6373 6374 // Forward declarations, no (immediate) code generation. 6375 case Decl::ObjCInterface: 6376 case Decl::ObjCCategory: 6377 break; 6378 6379 case Decl::ObjCProtocol: { 6380 auto *Proto = cast<ObjCProtocolDecl>(D); 6381 if (Proto->isThisDeclarationADefinition()) 6382 ObjCRuntime->GenerateProtocol(Proto); 6383 break; 6384 } 6385 6386 case Decl::ObjCCategoryImpl: 6387 // Categories have properties but don't support synthesize so we 6388 // can ignore them here. 6389 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6390 break; 6391 6392 case Decl::ObjCImplementation: { 6393 auto *OMD = cast<ObjCImplementationDecl>(D); 6394 EmitObjCPropertyImplementations(OMD); 6395 EmitObjCIvarInitializations(OMD); 6396 ObjCRuntime->GenerateClass(OMD); 6397 // Emit global variable debug information. 6398 if (CGDebugInfo *DI = getModuleDebugInfo()) 6399 if (getCodeGenOpts().hasReducedDebugInfo()) 6400 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6401 OMD->getClassInterface()), OMD->getLocation()); 6402 break; 6403 } 6404 case Decl::ObjCMethod: { 6405 auto *OMD = cast<ObjCMethodDecl>(D); 6406 // If this is not a prototype, emit the body. 6407 if (OMD->getBody()) 6408 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6409 break; 6410 } 6411 case Decl::ObjCCompatibleAlias: 6412 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6413 break; 6414 6415 case Decl::PragmaComment: { 6416 const auto *PCD = cast<PragmaCommentDecl>(D); 6417 switch (PCD->getCommentKind()) { 6418 case PCK_Unknown: 6419 llvm_unreachable("unexpected pragma comment kind"); 6420 case PCK_Linker: 6421 AppendLinkerOptions(PCD->getArg()); 6422 break; 6423 case PCK_Lib: 6424 AddDependentLib(PCD->getArg()); 6425 break; 6426 case PCK_Compiler: 6427 case PCK_ExeStr: 6428 case PCK_User: 6429 break; // We ignore all of these. 6430 } 6431 break; 6432 } 6433 6434 case Decl::PragmaDetectMismatch: { 6435 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6436 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6437 break; 6438 } 6439 6440 case Decl::LinkageSpec: 6441 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6442 break; 6443 6444 case Decl::FileScopeAsm: { 6445 // File-scope asm is ignored during device-side CUDA compilation. 6446 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6447 break; 6448 // File-scope asm is ignored during device-side OpenMP compilation. 6449 if (LangOpts.OpenMPIsDevice) 6450 break; 6451 // File-scope asm is ignored during device-side SYCL compilation. 6452 if (LangOpts.SYCLIsDevice) 6453 break; 6454 auto *AD = cast<FileScopeAsmDecl>(D); 6455 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6456 break; 6457 } 6458 6459 case Decl::TopLevelStmt: 6460 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6461 break; 6462 6463 case Decl::Import: { 6464 auto *Import = cast<ImportDecl>(D); 6465 6466 // If we've already imported this module, we're done. 6467 if (!ImportedModules.insert(Import->getImportedModule())) 6468 break; 6469 6470 // Emit debug information for direct imports. 6471 if (!Import->getImportedOwningModule()) { 6472 if (CGDebugInfo *DI = getModuleDebugInfo()) 6473 DI->EmitImportDecl(*Import); 6474 } 6475 6476 // For C++ standard modules we are done - we will call the module 6477 // initializer for imported modules, and that will likewise call those for 6478 // any imports it has. 6479 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6480 !Import->getImportedOwningModule()->isModuleMapModule()) 6481 break; 6482 6483 // For clang C++ module map modules the initializers for sub-modules are 6484 // emitted here. 6485 6486 // Find all of the submodules and emit the module initializers. 6487 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6488 SmallVector<clang::Module *, 16> Stack; 6489 Visited.insert(Import->getImportedModule()); 6490 Stack.push_back(Import->getImportedModule()); 6491 6492 while (!Stack.empty()) { 6493 clang::Module *Mod = Stack.pop_back_val(); 6494 if (!EmittedModuleInitializers.insert(Mod).second) 6495 continue; 6496 6497 for (auto *D : Context.getModuleInitializers(Mod)) 6498 EmitTopLevelDecl(D); 6499 6500 // Visit the submodules of this module. 6501 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6502 SubEnd = Mod->submodule_end(); 6503 Sub != SubEnd; ++Sub) { 6504 // Skip explicit children; they need to be explicitly imported to emit 6505 // the initializers. 6506 if ((*Sub)->IsExplicit) 6507 continue; 6508 6509 if (Visited.insert(*Sub).second) 6510 Stack.push_back(*Sub); 6511 } 6512 } 6513 break; 6514 } 6515 6516 case Decl::Export: 6517 EmitDeclContext(cast<ExportDecl>(D)); 6518 break; 6519 6520 case Decl::OMPThreadPrivate: 6521 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6522 break; 6523 6524 case Decl::OMPAllocate: 6525 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6526 break; 6527 6528 case Decl::OMPDeclareReduction: 6529 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6530 break; 6531 6532 case Decl::OMPDeclareMapper: 6533 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6534 break; 6535 6536 case Decl::OMPRequires: 6537 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6538 break; 6539 6540 case Decl::Typedef: 6541 case Decl::TypeAlias: // using foo = bar; [C++11] 6542 if (CGDebugInfo *DI = getModuleDebugInfo()) 6543 DI->EmitAndRetainType( 6544 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6545 break; 6546 6547 case Decl::Record: 6548 if (CGDebugInfo *DI = getModuleDebugInfo()) 6549 if (cast<RecordDecl>(D)->getDefinition()) 6550 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6551 break; 6552 6553 case Decl::Enum: 6554 if (CGDebugInfo *DI = getModuleDebugInfo()) 6555 if (cast<EnumDecl>(D)->getDefinition()) 6556 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6557 break; 6558 6559 case Decl::HLSLBuffer: 6560 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6561 break; 6562 6563 default: 6564 // Make sure we handled everything we should, every other kind is a 6565 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6566 // function. Need to recode Decl::Kind to do that easily. 6567 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6568 break; 6569 } 6570 } 6571 6572 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6573 // Do we need to generate coverage mapping? 6574 if (!CodeGenOpts.CoverageMapping) 6575 return; 6576 switch (D->getKind()) { 6577 case Decl::CXXConversion: 6578 case Decl::CXXMethod: 6579 case Decl::Function: 6580 case Decl::ObjCMethod: 6581 case Decl::CXXConstructor: 6582 case Decl::CXXDestructor: { 6583 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6584 break; 6585 SourceManager &SM = getContext().getSourceManager(); 6586 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6587 break; 6588 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6589 if (I == DeferredEmptyCoverageMappingDecls.end()) 6590 DeferredEmptyCoverageMappingDecls[D] = true; 6591 break; 6592 } 6593 default: 6594 break; 6595 }; 6596 } 6597 6598 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6599 // Do we need to generate coverage mapping? 6600 if (!CodeGenOpts.CoverageMapping) 6601 return; 6602 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6603 if (Fn->isTemplateInstantiation()) 6604 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6605 } 6606 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6607 if (I == DeferredEmptyCoverageMappingDecls.end()) 6608 DeferredEmptyCoverageMappingDecls[D] = false; 6609 else 6610 I->second = false; 6611 } 6612 6613 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6614 // We call takeVector() here to avoid use-after-free. 6615 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6616 // we deserialize function bodies to emit coverage info for them, and that 6617 // deserializes more declarations. How should we handle that case? 6618 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6619 if (!Entry.second) 6620 continue; 6621 const Decl *D = Entry.first; 6622 switch (D->getKind()) { 6623 case Decl::CXXConversion: 6624 case Decl::CXXMethod: 6625 case Decl::Function: 6626 case Decl::ObjCMethod: { 6627 CodeGenPGO PGO(*this); 6628 GlobalDecl GD(cast<FunctionDecl>(D)); 6629 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6630 getFunctionLinkage(GD)); 6631 break; 6632 } 6633 case Decl::CXXConstructor: { 6634 CodeGenPGO PGO(*this); 6635 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6636 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6637 getFunctionLinkage(GD)); 6638 break; 6639 } 6640 case Decl::CXXDestructor: { 6641 CodeGenPGO PGO(*this); 6642 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6643 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6644 getFunctionLinkage(GD)); 6645 break; 6646 } 6647 default: 6648 break; 6649 }; 6650 } 6651 } 6652 6653 void CodeGenModule::EmitMainVoidAlias() { 6654 // In order to transition away from "__original_main" gracefully, emit an 6655 // alias for "main" in the no-argument case so that libc can detect when 6656 // new-style no-argument main is in used. 6657 if (llvm::Function *F = getModule().getFunction("main")) { 6658 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6659 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6660 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6661 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6662 } 6663 } 6664 } 6665 6666 /// Turns the given pointer into a constant. 6667 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6668 const void *Ptr) { 6669 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6670 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6671 return llvm::ConstantInt::get(i64, PtrInt); 6672 } 6673 6674 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6675 llvm::NamedMDNode *&GlobalMetadata, 6676 GlobalDecl D, 6677 llvm::GlobalValue *Addr) { 6678 if (!GlobalMetadata) 6679 GlobalMetadata = 6680 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6681 6682 // TODO: should we report variant information for ctors/dtors? 6683 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6684 llvm::ConstantAsMetadata::get(GetPointerConstant( 6685 CGM.getLLVMContext(), D.getDecl()))}; 6686 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6687 } 6688 6689 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6690 llvm::GlobalValue *CppFunc) { 6691 // Store the list of ifuncs we need to replace uses in. 6692 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6693 // List of ConstantExprs that we should be able to delete when we're done 6694 // here. 6695 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6696 6697 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6698 if (Elem == CppFunc) 6699 return false; 6700 6701 // First make sure that all users of this are ifuncs (or ifuncs via a 6702 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6703 // later. 6704 for (llvm::User *User : Elem->users()) { 6705 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6706 // ifunc directly. In any other case, just give up, as we don't know what we 6707 // could break by changing those. 6708 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6709 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6710 return false; 6711 6712 for (llvm::User *CEUser : ConstExpr->users()) { 6713 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6714 IFuncs.push_back(IFunc); 6715 } else { 6716 return false; 6717 } 6718 } 6719 CEs.push_back(ConstExpr); 6720 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6721 IFuncs.push_back(IFunc); 6722 } else { 6723 // This user is one we don't know how to handle, so fail redirection. This 6724 // will result in an ifunc retaining a resolver name that will ultimately 6725 // fail to be resolved to a defined function. 6726 return false; 6727 } 6728 } 6729 6730 // Now we know this is a valid case where we can do this alias replacement, we 6731 // need to remove all of the references to Elem (and the bitcasts!) so we can 6732 // delete it. 6733 for (llvm::GlobalIFunc *IFunc : IFuncs) 6734 IFunc->setResolver(nullptr); 6735 for (llvm::ConstantExpr *ConstExpr : CEs) 6736 ConstExpr->destroyConstant(); 6737 6738 // We should now be out of uses for the 'old' version of this function, so we 6739 // can erase it as well. 6740 Elem->eraseFromParent(); 6741 6742 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6743 // The type of the resolver is always just a function-type that returns the 6744 // type of the IFunc, so create that here. If the type of the actual 6745 // resolver doesn't match, it just gets bitcast to the right thing. 6746 auto *ResolverTy = 6747 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6748 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6749 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6750 IFunc->setResolver(Resolver); 6751 } 6752 return true; 6753 } 6754 6755 /// For each function which is declared within an extern "C" region and marked 6756 /// as 'used', but has internal linkage, create an alias from the unmangled 6757 /// name to the mangled name if possible. People expect to be able to refer 6758 /// to such functions with an unmangled name from inline assembly within the 6759 /// same translation unit. 6760 void CodeGenModule::EmitStaticExternCAliases() { 6761 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6762 return; 6763 for (auto &I : StaticExternCValues) { 6764 IdentifierInfo *Name = I.first; 6765 llvm::GlobalValue *Val = I.second; 6766 6767 // If Val is null, that implies there were multiple declarations that each 6768 // had a claim to the unmangled name. In this case, generation of the alias 6769 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6770 if (!Val) 6771 break; 6772 6773 llvm::GlobalValue *ExistingElem = 6774 getModule().getNamedValue(Name->getName()); 6775 6776 // If there is either not something already by this name, or we were able to 6777 // replace all uses from IFuncs, create the alias. 6778 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6779 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6780 } 6781 } 6782 6783 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6784 GlobalDecl &Result) const { 6785 auto Res = Manglings.find(MangledName); 6786 if (Res == Manglings.end()) 6787 return false; 6788 Result = Res->getValue(); 6789 return true; 6790 } 6791 6792 /// Emits metadata nodes associating all the global values in the 6793 /// current module with the Decls they came from. This is useful for 6794 /// projects using IR gen as a subroutine. 6795 /// 6796 /// Since there's currently no way to associate an MDNode directly 6797 /// with an llvm::GlobalValue, we create a global named metadata 6798 /// with the name 'clang.global.decl.ptrs'. 6799 void CodeGenModule::EmitDeclMetadata() { 6800 llvm::NamedMDNode *GlobalMetadata = nullptr; 6801 6802 for (auto &I : MangledDeclNames) { 6803 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6804 // Some mangled names don't necessarily have an associated GlobalValue 6805 // in this module, e.g. if we mangled it for DebugInfo. 6806 if (Addr) 6807 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6808 } 6809 } 6810 6811 /// Emits metadata nodes for all the local variables in the current 6812 /// function. 6813 void CodeGenFunction::EmitDeclMetadata() { 6814 if (LocalDeclMap.empty()) return; 6815 6816 llvm::LLVMContext &Context = getLLVMContext(); 6817 6818 // Find the unique metadata ID for this name. 6819 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6820 6821 llvm::NamedMDNode *GlobalMetadata = nullptr; 6822 6823 for (auto &I : LocalDeclMap) { 6824 const Decl *D = I.first; 6825 llvm::Value *Addr = I.second.getPointer(); 6826 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6827 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6828 Alloca->setMetadata( 6829 DeclPtrKind, llvm::MDNode::get( 6830 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6831 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6832 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6833 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6834 } 6835 } 6836 } 6837 6838 void CodeGenModule::EmitVersionIdentMetadata() { 6839 llvm::NamedMDNode *IdentMetadata = 6840 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6841 std::string Version = getClangFullVersion(); 6842 llvm::LLVMContext &Ctx = TheModule.getContext(); 6843 6844 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6845 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6846 } 6847 6848 void CodeGenModule::EmitCommandLineMetadata() { 6849 llvm::NamedMDNode *CommandLineMetadata = 6850 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6851 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6852 llvm::LLVMContext &Ctx = TheModule.getContext(); 6853 6854 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6855 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6856 } 6857 6858 void CodeGenModule::EmitCoverageFile() { 6859 if (getCodeGenOpts().CoverageDataFile.empty() && 6860 getCodeGenOpts().CoverageNotesFile.empty()) 6861 return; 6862 6863 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6864 if (!CUNode) 6865 return; 6866 6867 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6868 llvm::LLVMContext &Ctx = TheModule.getContext(); 6869 auto *CoverageDataFile = 6870 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6871 auto *CoverageNotesFile = 6872 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6873 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6874 llvm::MDNode *CU = CUNode->getOperand(i); 6875 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6876 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6877 } 6878 } 6879 6880 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6881 bool ForEH) { 6882 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6883 // FIXME: should we even be calling this method if RTTI is disabled 6884 // and it's not for EH? 6885 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6886 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6887 getTriple().isNVPTX())) 6888 return llvm::Constant::getNullValue(Int8PtrTy); 6889 6890 if (ForEH && Ty->isObjCObjectPointerType() && 6891 LangOpts.ObjCRuntime.isGNUFamily()) 6892 return ObjCRuntime->GetEHType(Ty); 6893 6894 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6895 } 6896 6897 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6898 // Do not emit threadprivates in simd-only mode. 6899 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6900 return; 6901 for (auto RefExpr : D->varlists()) { 6902 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6903 bool PerformInit = 6904 VD->getAnyInitializer() && 6905 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6906 /*ForRef=*/false); 6907 6908 Address Addr(GetAddrOfGlobalVar(VD), 6909 getTypes().ConvertTypeForMem(VD->getType()), 6910 getContext().getDeclAlign(VD)); 6911 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6912 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6913 CXXGlobalInits.push_back(InitFunction); 6914 } 6915 } 6916 6917 llvm::Metadata * 6918 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6919 StringRef Suffix) { 6920 if (auto *FnType = T->getAs<FunctionProtoType>()) 6921 T = getContext().getFunctionType( 6922 FnType->getReturnType(), FnType->getParamTypes(), 6923 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6924 6925 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6926 if (InternalId) 6927 return InternalId; 6928 6929 if (isExternallyVisible(T->getLinkage())) { 6930 std::string OutName; 6931 llvm::raw_string_ostream Out(OutName); 6932 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6933 Out << Suffix; 6934 6935 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6936 } else { 6937 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6938 llvm::ArrayRef<llvm::Metadata *>()); 6939 } 6940 6941 return InternalId; 6942 } 6943 6944 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6945 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6946 } 6947 6948 llvm::Metadata * 6949 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6950 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6951 } 6952 6953 // Generalize pointer types to a void pointer with the qualifiers of the 6954 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6955 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6956 // 'void *'. 6957 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6958 if (!Ty->isPointerType()) 6959 return Ty; 6960 6961 return Ctx.getPointerType( 6962 QualType(Ctx.VoidTy).withCVRQualifiers( 6963 Ty->getPointeeType().getCVRQualifiers())); 6964 } 6965 6966 // Apply type generalization to a FunctionType's return and argument types 6967 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6968 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6969 SmallVector<QualType, 8> GeneralizedParams; 6970 for (auto &Param : FnType->param_types()) 6971 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6972 6973 return Ctx.getFunctionType( 6974 GeneralizeType(Ctx, FnType->getReturnType()), 6975 GeneralizedParams, FnType->getExtProtoInfo()); 6976 } 6977 6978 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6979 return Ctx.getFunctionNoProtoType( 6980 GeneralizeType(Ctx, FnType->getReturnType())); 6981 6982 llvm_unreachable("Encountered unknown FunctionType"); 6983 } 6984 6985 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6986 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6987 GeneralizedMetadataIdMap, ".generalized"); 6988 } 6989 6990 /// Returns whether this module needs the "all-vtables" type identifier. 6991 bool CodeGenModule::NeedAllVtablesTypeId() const { 6992 // Returns true if at least one of vtable-based CFI checkers is enabled and 6993 // is not in the trapping mode. 6994 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6995 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6996 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6997 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6998 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6999 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7000 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7001 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7002 } 7003 7004 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7005 CharUnits Offset, 7006 const CXXRecordDecl *RD) { 7007 llvm::Metadata *MD = 7008 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7009 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7010 7011 if (CodeGenOpts.SanitizeCfiCrossDso) 7012 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7013 VTable->addTypeMetadata(Offset.getQuantity(), 7014 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7015 7016 if (NeedAllVtablesTypeId()) { 7017 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7018 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7019 } 7020 } 7021 7022 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7023 if (!SanStats) 7024 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7025 7026 return *SanStats; 7027 } 7028 7029 llvm::Value * 7030 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7031 CodeGenFunction &CGF) { 7032 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7033 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7034 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7035 auto *Call = CGF.EmitRuntimeCall( 7036 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7037 return Call; 7038 } 7039 7040 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7041 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7042 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7043 /* forPointeeType= */ true); 7044 } 7045 7046 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7047 LValueBaseInfo *BaseInfo, 7048 TBAAAccessInfo *TBAAInfo, 7049 bool forPointeeType) { 7050 if (TBAAInfo) 7051 *TBAAInfo = getTBAAAccessInfo(T); 7052 7053 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7054 // that doesn't return the information we need to compute BaseInfo. 7055 7056 // Honor alignment typedef attributes even on incomplete types. 7057 // We also honor them straight for C++ class types, even as pointees; 7058 // there's an expressivity gap here. 7059 if (auto TT = T->getAs<TypedefType>()) { 7060 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7061 if (BaseInfo) 7062 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7063 return getContext().toCharUnitsFromBits(Align); 7064 } 7065 } 7066 7067 bool AlignForArray = T->isArrayType(); 7068 7069 // Analyze the base element type, so we don't get confused by incomplete 7070 // array types. 7071 T = getContext().getBaseElementType(T); 7072 7073 if (T->isIncompleteType()) { 7074 // We could try to replicate the logic from 7075 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7076 // type is incomplete, so it's impossible to test. We could try to reuse 7077 // getTypeAlignIfKnown, but that doesn't return the information we need 7078 // to set BaseInfo. So just ignore the possibility that the alignment is 7079 // greater than one. 7080 if (BaseInfo) 7081 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7082 return CharUnits::One(); 7083 } 7084 7085 if (BaseInfo) 7086 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7087 7088 CharUnits Alignment; 7089 const CXXRecordDecl *RD; 7090 if (T.getQualifiers().hasUnaligned()) { 7091 Alignment = CharUnits::One(); 7092 } else if (forPointeeType && !AlignForArray && 7093 (RD = T->getAsCXXRecordDecl())) { 7094 // For C++ class pointees, we don't know whether we're pointing at a 7095 // base or a complete object, so we generally need to use the 7096 // non-virtual alignment. 7097 Alignment = getClassPointerAlignment(RD); 7098 } else { 7099 Alignment = getContext().getTypeAlignInChars(T); 7100 } 7101 7102 // Cap to the global maximum type alignment unless the alignment 7103 // was somehow explicit on the type. 7104 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7105 if (Alignment.getQuantity() > MaxAlign && 7106 !getContext().isAlignmentRequired(T)) 7107 Alignment = CharUnits::fromQuantity(MaxAlign); 7108 } 7109 return Alignment; 7110 } 7111 7112 bool CodeGenModule::stopAutoInit() { 7113 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7114 if (StopAfter) { 7115 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7116 // used 7117 if (NumAutoVarInit >= StopAfter) { 7118 return true; 7119 } 7120 if (!NumAutoVarInit) { 7121 unsigned DiagID = getDiags().getCustomDiagID( 7122 DiagnosticsEngine::Warning, 7123 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7124 "number of times ftrivial-auto-var-init=%1 gets applied."); 7125 getDiags().Report(DiagID) 7126 << StopAfter 7127 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7128 LangOptions::TrivialAutoVarInitKind::Zero 7129 ? "zero" 7130 : "pattern"); 7131 } 7132 ++NumAutoVarInit; 7133 } 7134 return false; 7135 } 7136 7137 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7138 const Decl *D) const { 7139 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7140 // postfix beginning with '.' since the symbol name can be demangled. 7141 if (LangOpts.HIP) 7142 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7143 else 7144 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7145 7146 // If the CUID is not specified we try to generate a unique postfix. 7147 if (getLangOpts().CUID.empty()) { 7148 SourceManager &SM = getContext().getSourceManager(); 7149 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7150 assert(PLoc.isValid() && "Source location is expected to be valid."); 7151 7152 // Get the hash of the user defined macros. 7153 llvm::MD5 Hash; 7154 llvm::MD5::MD5Result Result; 7155 for (const auto &Arg : PreprocessorOpts.Macros) 7156 Hash.update(Arg.first); 7157 Hash.final(Result); 7158 7159 // Get the UniqueID for the file containing the decl. 7160 llvm::sys::fs::UniqueID ID; 7161 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7162 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7163 assert(PLoc.isValid() && "Source location is expected to be valid."); 7164 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7165 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7166 << PLoc.getFilename() << EC.message(); 7167 } 7168 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7169 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7170 } else { 7171 OS << getContext().getCUIDHash(); 7172 } 7173 } 7174 7175 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7176 assert(DeferredDeclsToEmit.empty() && 7177 "Should have emitted all decls deferred to emit."); 7178 assert(NewBuilder->DeferredDecls.empty() && 7179 "Newly created module should not have deferred decls"); 7180 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7181 7182 assert(NewBuilder->DeferredVTables.empty() && 7183 "Newly created module should not have deferred vtables"); 7184 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7185 7186 assert(NewBuilder->MangledDeclNames.empty() && 7187 "Newly created module should not have mangled decl names"); 7188 assert(NewBuilder->Manglings.empty() && 7189 "Newly created module should not have manglings"); 7190 NewBuilder->Manglings = std::move(Manglings); 7191 7192 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7193 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7194 7195 NewBuilder->TBAA = std::move(TBAA); 7196 7197 assert(NewBuilder->EmittedDeferredDecls.empty() && 7198 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7199 7200 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7201 7202 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7203 } 7204