xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e42021d5cc25a8dc7e3efac1e7007cc0c1a7b2bd)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeAMDGCN.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/ConstantInitBuilder.h"
48 #include "clang/Frontend/FrontendDiagnostic.h"
49 #include "llvm/ADT/StringSwitch.h"
50 #include "llvm/ADT/Triple.h"
51 #include "llvm/Analysis/TargetLibraryInfo.h"
52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
53 #include "llvm/IR/CallingConv.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ProfileSummary.h"
59 #include "llvm/ProfileData/InstrProfReader.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/ConvertUTF.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/MD5.h"
65 #include "llvm/Support/TimeProfiler.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getTarget().getCXXABI().getKind()) {
79   case TargetCXXABI::Fuchsia:
80   case TargetCXXABI::GenericAArch64:
81   case TargetCXXABI::GenericARM:
82   case TargetCXXABI::iOS:
83   case TargetCXXABI::iOS64:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
127   IntPtrTy = llvm::IntegerType::get(LLVMContext,
128     C.getTargetInfo().getMaxPointerWidth());
129   Int8PtrTy = Int8Ty->getPointerTo(0);
130   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
131   AllocaInt8PtrTy = Int8Ty->getPointerTo(
132       M.getDataLayout().getAllocaAddrSpace());
133   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
134 
135   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
136 
137   if (LangOpts.ObjC)
138     createObjCRuntime();
139   if (LangOpts.OpenCL)
140     createOpenCLRuntime();
141   if (LangOpts.OpenMP)
142     createOpenMPRuntime();
143   if (LangOpts.CUDA)
144     createCUDARuntime();
145 
146   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
147   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
148       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
149     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
150                                getCXXABI().getMangleContext()));
151 
152   // If debug info or coverage generation is enabled, create the CGDebugInfo
153   // object.
154   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
155       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
156     DebugInfo.reset(new CGDebugInfo(*this));
157 
158   Block.GlobalUniqueCount = 0;
159 
160   if (C.getLangOpts().ObjC)
161     ObjCData.reset(new ObjCEntrypoints());
162 
163   if (CodeGenOpts.hasProfileClangUse()) {
164     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
165         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
166     if (auto E = ReaderOrErr.takeError()) {
167       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
168                                               "Could not read profile %0: %1");
169       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
170         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
171                                   << EI.message();
172       });
173     } else
174       PGOReader = std::move(ReaderOrErr.get());
175   }
176 
177   // If coverage mapping generation is enabled, create the
178   // CoverageMappingModuleGen object.
179   if (CodeGenOpts.CoverageMapping)
180     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
181 }
182 
183 CodeGenModule::~CodeGenModule() {}
184 
185 void CodeGenModule::createObjCRuntime() {
186   // This is just isGNUFamily(), but we want to force implementors of
187   // new ABIs to decide how best to do this.
188   switch (LangOpts.ObjCRuntime.getKind()) {
189   case ObjCRuntime::GNUstep:
190   case ObjCRuntime::GCC:
191   case ObjCRuntime::ObjFW:
192     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
193     return;
194 
195   case ObjCRuntime::FragileMacOSX:
196   case ObjCRuntime::MacOSX:
197   case ObjCRuntime::iOS:
198   case ObjCRuntime::WatchOS:
199     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
200     return;
201   }
202   llvm_unreachable("bad runtime kind");
203 }
204 
205 void CodeGenModule::createOpenCLRuntime() {
206   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
207 }
208 
209 void CodeGenModule::createOpenMPRuntime() {
210   // Select a specialized code generation class based on the target, if any.
211   // If it does not exist use the default implementation.
212   switch (getTriple().getArch()) {
213   case llvm::Triple::nvptx:
214   case llvm::Triple::nvptx64:
215     assert(getLangOpts().OpenMPIsDevice &&
216            "OpenMP NVPTX is only prepared to deal with device code.");
217     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
218     break;
219   case llvm::Triple::amdgcn:
220     assert(getLangOpts().OpenMPIsDevice &&
221            "OpenMP AMDGCN is only prepared to deal with device code.");
222     OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this));
223     break;
224   default:
225     if (LangOpts.OpenMPSimd)
226       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
227     else
228       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
229     break;
230   }
231 }
232 
233 void CodeGenModule::createCUDARuntime() {
234   CUDARuntime.reset(CreateNVCUDARuntime(*this));
235 }
236 
237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
238   Replacements[Name] = C;
239 }
240 
241 void CodeGenModule::applyReplacements() {
242   for (auto &I : Replacements) {
243     StringRef MangledName = I.first();
244     llvm::Constant *Replacement = I.second;
245     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
246     if (!Entry)
247       continue;
248     auto *OldF = cast<llvm::Function>(Entry);
249     auto *NewF = dyn_cast<llvm::Function>(Replacement);
250     if (!NewF) {
251       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
252         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
253       } else {
254         auto *CE = cast<llvm::ConstantExpr>(Replacement);
255         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
256                CE->getOpcode() == llvm::Instruction::GetElementPtr);
257         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
258       }
259     }
260 
261     // Replace old with new, but keep the old order.
262     OldF->replaceAllUsesWith(Replacement);
263     if (NewF) {
264       NewF->removeFromParent();
265       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
266                                                        NewF);
267     }
268     OldF->eraseFromParent();
269   }
270 }
271 
272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
273   GlobalValReplacements.push_back(std::make_pair(GV, C));
274 }
275 
276 void CodeGenModule::applyGlobalValReplacements() {
277   for (auto &I : GlobalValReplacements) {
278     llvm::GlobalValue *GV = I.first;
279     llvm::Constant *C = I.second;
280 
281     GV->replaceAllUsesWith(C);
282     GV->eraseFromParent();
283   }
284 }
285 
286 // This is only used in aliases that we created and we know they have a
287 // linear structure.
288 static const llvm::GlobalObject *getAliasedGlobal(
289     const llvm::GlobalIndirectSymbol &GIS) {
290   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
291   const llvm::Constant *C = &GIS;
292   for (;;) {
293     C = C->stripPointerCasts();
294     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
295       return GO;
296     // stripPointerCasts will not walk over weak aliases.
297     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
298     if (!GIS2)
299       return nullptr;
300     if (!Visited.insert(GIS2).second)
301       return nullptr;
302     C = GIS2->getIndirectSymbol();
303   }
304 }
305 
306 void CodeGenModule::checkAliases() {
307   // Check if the constructed aliases are well formed. It is really unfortunate
308   // that we have to do this in CodeGen, but we only construct mangled names
309   // and aliases during codegen.
310   bool Error = false;
311   DiagnosticsEngine &Diags = getDiags();
312   for (const GlobalDecl &GD : Aliases) {
313     const auto *D = cast<ValueDecl>(GD.getDecl());
314     SourceLocation Location;
315     bool IsIFunc = D->hasAttr<IFuncAttr>();
316     if (const Attr *A = D->getDefiningAttr())
317       Location = A->getLocation();
318     else
319       llvm_unreachable("Not an alias or ifunc?");
320     StringRef MangledName = getMangledName(GD);
321     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
322     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
323     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
324     if (!GV) {
325       Error = true;
326       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
327     } else if (GV->isDeclaration()) {
328       Error = true;
329       Diags.Report(Location, diag::err_alias_to_undefined)
330           << IsIFunc << IsIFunc;
331     } else if (IsIFunc) {
332       // Check resolver function type.
333       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
334           GV->getType()->getPointerElementType());
335       assert(FTy);
336       if (!FTy->getReturnType()->isPointerTy())
337         Diags.Report(Location, diag::err_ifunc_resolver_return);
338     }
339 
340     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
341     llvm::GlobalValue *AliaseeGV;
342     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
343       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
344     else
345       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
346 
347     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
348       StringRef AliasSection = SA->getName();
349       if (AliasSection != AliaseeGV->getSection())
350         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
351             << AliasSection << IsIFunc << IsIFunc;
352     }
353 
354     // We have to handle alias to weak aliases in here. LLVM itself disallows
355     // this since the object semantics would not match the IL one. For
356     // compatibility with gcc we implement it by just pointing the alias
357     // to its aliasee's aliasee. We also warn, since the user is probably
358     // expecting the link to be weak.
359     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
360       if (GA->isInterposable()) {
361         Diags.Report(Location, diag::warn_alias_to_weak_alias)
362             << GV->getName() << GA->getName() << IsIFunc;
363         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
364             GA->getIndirectSymbol(), Alias->getType());
365         Alias->setIndirectSymbol(Aliasee);
366       }
367     }
368   }
369   if (!Error)
370     return;
371 
372   for (const GlobalDecl &GD : Aliases) {
373     StringRef MangledName = getMangledName(GD);
374     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
375     auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry);
376     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
377     Alias->eraseFromParent();
378   }
379 }
380 
381 void CodeGenModule::clear() {
382   DeferredDeclsToEmit.clear();
383   if (OpenMPRuntime)
384     OpenMPRuntime->clear();
385 }
386 
387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
388                                        StringRef MainFile) {
389   if (!hasDiagnostics())
390     return;
391   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
392     if (MainFile.empty())
393       MainFile = "<stdin>";
394     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
395   } else {
396     if (Mismatched > 0)
397       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
398 
399     if (Missing > 0)
400       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
401   }
402 }
403 
404 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
405                                              llvm::Module &M) {
406   if (!LO.VisibilityFromDLLStorageClass)
407     return;
408 
409   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
410       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
411   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
412       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
413   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
414       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
415   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
416       CodeGenModule::GetLLVMVisibility(
417           LO.getExternDeclNoDLLStorageClassVisibility());
418 
419   for (llvm::GlobalValue &GV : M.global_values()) {
420     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
421       continue;
422 
423     // Reset DSO locality before setting the visibility. This removes
424     // any effects that visibility options and annotations may have
425     // had on the DSO locality. Setting the visibility will implicitly set
426     // appropriate globals to DSO Local; however, this will be pessimistic
427     // w.r.t. to the normal compiler IRGen.
428     GV.setDSOLocal(false);
429 
430     if (GV.isDeclarationForLinker()) {
431       GV.setVisibility(GV.getDLLStorageClass() ==
432                                llvm::GlobalValue::DLLImportStorageClass
433                            ? ExternDeclDLLImportVisibility
434                            : ExternDeclNoDLLStorageClassVisibility);
435     } else {
436       GV.setVisibility(GV.getDLLStorageClass() ==
437                                llvm::GlobalValue::DLLExportStorageClass
438                            ? DLLExportVisibility
439                            : NoDLLStorageClassVisibility);
440     }
441 
442     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
443   }
444 }
445 
446 void CodeGenModule::Release() {
447   EmitDeferred();
448   EmitVTablesOpportunistically();
449   applyGlobalValReplacements();
450   applyReplacements();
451   checkAliases();
452   emitMultiVersionFunctions();
453   EmitCXXGlobalInitFunc();
454   EmitCXXGlobalCleanUpFunc();
455   registerGlobalDtorsWithAtExit();
456   EmitCXXThreadLocalInitFunc();
457   if (ObjCRuntime)
458     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
459       AddGlobalCtor(ObjCInitFunction);
460   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
461       CUDARuntime) {
462     if (llvm::Function *CudaCtorFunction =
463             CUDARuntime->makeModuleCtorFunction())
464       AddGlobalCtor(CudaCtorFunction);
465   }
466   if (OpenMPRuntime) {
467     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
468             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
469       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
470     }
471     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
472     OpenMPRuntime->clear();
473   }
474   if (PGOReader) {
475     getModule().setProfileSummary(
476         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
477         llvm::ProfileSummary::PSK_Instr);
478     if (PGOStats.hasDiagnostics())
479       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
480   }
481   EmitCtorList(GlobalCtors, "llvm.global_ctors");
482   EmitCtorList(GlobalDtors, "llvm.global_dtors");
483   EmitGlobalAnnotations();
484   EmitStaticExternCAliases();
485   EmitDeferredUnusedCoverageMappings();
486   if (CoverageMapping)
487     CoverageMapping->emit();
488   if (CodeGenOpts.SanitizeCfiCrossDso) {
489     CodeGenFunction(*this).EmitCfiCheckFail();
490     CodeGenFunction(*this).EmitCfiCheckStub();
491   }
492   emitAtAvailableLinkGuard();
493   if (Context.getTargetInfo().getTriple().isWasm() &&
494       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
495     EmitMainVoidAlias();
496   }
497   emitLLVMUsed();
498   if (SanStats)
499     SanStats->finish();
500 
501   if (CodeGenOpts.Autolink &&
502       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
503     EmitModuleLinkOptions();
504   }
505 
506   // On ELF we pass the dependent library specifiers directly to the linker
507   // without manipulating them. This is in contrast to other platforms where
508   // they are mapped to a specific linker option by the compiler. This
509   // difference is a result of the greater variety of ELF linkers and the fact
510   // that ELF linkers tend to handle libraries in a more complicated fashion
511   // than on other platforms. This forces us to defer handling the dependent
512   // libs to the linker.
513   //
514   // CUDA/HIP device and host libraries are different. Currently there is no
515   // way to differentiate dependent libraries for host or device. Existing
516   // usage of #pragma comment(lib, *) is intended for host libraries on
517   // Windows. Therefore emit llvm.dependent-libraries only for host.
518   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
519     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
520     for (auto *MD : ELFDependentLibraries)
521       NMD->addOperand(MD);
522   }
523 
524   // Record mregparm value now so it is visible through rest of codegen.
525   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
526     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
527                               CodeGenOpts.NumRegisterParameters);
528 
529   if (CodeGenOpts.DwarfVersion) {
530     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
531                               CodeGenOpts.DwarfVersion);
532   }
533 
534   if (Context.getLangOpts().SemanticInterposition)
535     // Require various optimization to respect semantic interposition.
536     getModule().setSemanticInterposition(1);
537   else if (Context.getLangOpts().ExplicitNoSemanticInterposition)
538     // Allow dso_local on applicable targets.
539     getModule().setSemanticInterposition(0);
540 
541   if (CodeGenOpts.EmitCodeView) {
542     // Indicate that we want CodeView in the metadata.
543     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
544   }
545   if (CodeGenOpts.CodeViewGHash) {
546     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
547   }
548   if (CodeGenOpts.ControlFlowGuard) {
549     // Function ID tables and checks for Control Flow Guard (cfguard=2).
550     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
551   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
552     // Function ID tables for Control Flow Guard (cfguard=1).
553     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
554   }
555   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
556     // We don't support LTO with 2 with different StrictVTablePointers
557     // FIXME: we could support it by stripping all the information introduced
558     // by StrictVTablePointers.
559 
560     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
561 
562     llvm::Metadata *Ops[2] = {
563               llvm::MDString::get(VMContext, "StrictVTablePointers"),
564               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
565                   llvm::Type::getInt32Ty(VMContext), 1))};
566 
567     getModule().addModuleFlag(llvm::Module::Require,
568                               "StrictVTablePointersRequirement",
569                               llvm::MDNode::get(VMContext, Ops));
570   }
571   if (getModuleDebugInfo())
572     // We support a single version in the linked module. The LLVM
573     // parser will drop debug info with a different version number
574     // (and warn about it, too).
575     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
576                               llvm::DEBUG_METADATA_VERSION);
577 
578   // We need to record the widths of enums and wchar_t, so that we can generate
579   // the correct build attributes in the ARM backend. wchar_size is also used by
580   // TargetLibraryInfo.
581   uint64_t WCharWidth =
582       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
583   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
584 
585   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
586   if (   Arch == llvm::Triple::arm
587       || Arch == llvm::Triple::armeb
588       || Arch == llvm::Triple::thumb
589       || Arch == llvm::Triple::thumbeb) {
590     // The minimum width of an enum in bytes
591     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
592     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
593   }
594 
595   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
596     StringRef ABIStr = Target.getABI();
597     llvm::LLVMContext &Ctx = TheModule.getContext();
598     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
599                               llvm::MDString::get(Ctx, ABIStr));
600   }
601 
602   if (CodeGenOpts.SanitizeCfiCrossDso) {
603     // Indicate that we want cross-DSO control flow integrity checks.
604     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
605   }
606 
607   if (CodeGenOpts.WholeProgramVTables) {
608     // Indicate whether VFE was enabled for this module, so that the
609     // vcall_visibility metadata added under whole program vtables is handled
610     // appropriately in the optimizer.
611     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
612                               CodeGenOpts.VirtualFunctionElimination);
613   }
614 
615   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
616     getModule().addModuleFlag(llvm::Module::Override,
617                               "CFI Canonical Jump Tables",
618                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
619   }
620 
621   if (CodeGenOpts.CFProtectionReturn &&
622       Target.checkCFProtectionReturnSupported(getDiags())) {
623     // Indicate that we want to instrument return control flow protection.
624     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
625                               1);
626   }
627 
628   if (CodeGenOpts.CFProtectionBranch &&
629       Target.checkCFProtectionBranchSupported(getDiags())) {
630     // Indicate that we want to instrument branch control flow protection.
631     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
632                               1);
633   }
634 
635   if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
636       Arch == llvm::Triple::aarch64_be) {
637     getModule().addModuleFlag(llvm::Module::Error,
638                               "branch-target-enforcement",
639                               LangOpts.BranchTargetEnforcement);
640 
641     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
642                               LangOpts.hasSignReturnAddress());
643 
644     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
645                               LangOpts.isSignReturnAddressScopeAll());
646 
647     getModule().addModuleFlag(llvm::Module::Error,
648                               "sign-return-address-with-bkey",
649                               !LangOpts.isSignReturnAddressWithAKey());
650   }
651 
652   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
653     llvm::LLVMContext &Ctx = TheModule.getContext();
654     getModule().addModuleFlag(
655         llvm::Module::Error, "MemProfProfileFilename",
656         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
657   }
658 
659   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
660     // Indicate whether __nvvm_reflect should be configured to flush denormal
661     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
662     // property.)
663     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
664                               CodeGenOpts.FP32DenormalMode.Output !=
665                                   llvm::DenormalMode::IEEE);
666   }
667 
668   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
669   if (LangOpts.OpenCL) {
670     EmitOpenCLMetadata();
671     // Emit SPIR version.
672     if (getTriple().isSPIR()) {
673       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
674       // opencl.spir.version named metadata.
675       // C++ is backwards compatible with OpenCL v2.0.
676       auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
677       llvm::Metadata *SPIRVerElts[] = {
678           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
679               Int32Ty, Version / 100)),
680           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
681               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
682       llvm::NamedMDNode *SPIRVerMD =
683           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
684       llvm::LLVMContext &Ctx = TheModule.getContext();
685       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
686     }
687   }
688 
689   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
690     assert(PLevel < 3 && "Invalid PIC Level");
691     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
692     if (Context.getLangOpts().PIE)
693       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
694   }
695 
696   if (getCodeGenOpts().CodeModel.size() > 0) {
697     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
698                   .Case("tiny", llvm::CodeModel::Tiny)
699                   .Case("small", llvm::CodeModel::Small)
700                   .Case("kernel", llvm::CodeModel::Kernel)
701                   .Case("medium", llvm::CodeModel::Medium)
702                   .Case("large", llvm::CodeModel::Large)
703                   .Default(~0u);
704     if (CM != ~0u) {
705       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
706       getModule().setCodeModel(codeModel);
707     }
708   }
709 
710   if (CodeGenOpts.NoPLT)
711     getModule().setRtLibUseGOT();
712 
713   SimplifyPersonality();
714 
715   if (getCodeGenOpts().EmitDeclMetadata)
716     EmitDeclMetadata();
717 
718   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
719     EmitCoverageFile();
720 
721   if (CGDebugInfo *DI = getModuleDebugInfo())
722     DI->finalize();
723 
724   if (getCodeGenOpts().EmitVersionIdentMetadata)
725     EmitVersionIdentMetadata();
726 
727   if (!getCodeGenOpts().RecordCommandLine.empty())
728     EmitCommandLineMetadata();
729 
730   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
731 
732   EmitBackendOptionsMetadata(getCodeGenOpts());
733 
734   // Set visibility from DLL storage class
735   // We do this at the end of LLVM IR generation; after any operation
736   // that might affect the DLL storage class or the visibility, and
737   // before anything that might act on these.
738   setVisibilityFromDLLStorageClass(LangOpts, getModule());
739 }
740 
741 void CodeGenModule::EmitOpenCLMetadata() {
742   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
743   // opencl.ocl.version named metadata node.
744   // C++ is backwards compatible with OpenCL v2.0.
745   // FIXME: We might need to add CXX version at some point too?
746   auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion;
747   llvm::Metadata *OCLVerElts[] = {
748       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
749           Int32Ty, Version / 100)),
750       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
751           Int32Ty, (Version % 100) / 10))};
752   llvm::NamedMDNode *OCLVerMD =
753       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
754   llvm::LLVMContext &Ctx = TheModule.getContext();
755   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
756 }
757 
758 void CodeGenModule::EmitBackendOptionsMetadata(
759     const CodeGenOptions CodeGenOpts) {
760   switch (getTriple().getArch()) {
761   default:
762     break;
763   case llvm::Triple::riscv32:
764   case llvm::Triple::riscv64:
765     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
766                               CodeGenOpts.SmallDataLimit);
767     break;
768   }
769 }
770 
771 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
772   // Make sure that this type is translated.
773   Types.UpdateCompletedType(TD);
774 }
775 
776 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
777   // Make sure that this type is translated.
778   Types.RefreshTypeCacheForClass(RD);
779 }
780 
781 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
782   if (!TBAA)
783     return nullptr;
784   return TBAA->getTypeInfo(QTy);
785 }
786 
787 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
788   if (!TBAA)
789     return TBAAAccessInfo();
790   if (getLangOpts().CUDAIsDevice) {
791     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
792     // access info.
793     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
794       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
795           nullptr)
796         return TBAAAccessInfo();
797     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
798       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
799           nullptr)
800         return TBAAAccessInfo();
801     }
802   }
803   return TBAA->getAccessInfo(AccessType);
804 }
805 
806 TBAAAccessInfo
807 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
808   if (!TBAA)
809     return TBAAAccessInfo();
810   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
811 }
812 
813 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
814   if (!TBAA)
815     return nullptr;
816   return TBAA->getTBAAStructInfo(QTy);
817 }
818 
819 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
820   if (!TBAA)
821     return nullptr;
822   return TBAA->getBaseTypeInfo(QTy);
823 }
824 
825 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
826   if (!TBAA)
827     return nullptr;
828   return TBAA->getAccessTagInfo(Info);
829 }
830 
831 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
832                                                    TBAAAccessInfo TargetInfo) {
833   if (!TBAA)
834     return TBAAAccessInfo();
835   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
836 }
837 
838 TBAAAccessInfo
839 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
840                                                    TBAAAccessInfo InfoB) {
841   if (!TBAA)
842     return TBAAAccessInfo();
843   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
844 }
845 
846 TBAAAccessInfo
847 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
848                                               TBAAAccessInfo SrcInfo) {
849   if (!TBAA)
850     return TBAAAccessInfo();
851   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
852 }
853 
854 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
855                                                 TBAAAccessInfo TBAAInfo) {
856   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
857     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
858 }
859 
860 void CodeGenModule::DecorateInstructionWithInvariantGroup(
861     llvm::Instruction *I, const CXXRecordDecl *RD) {
862   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
863                  llvm::MDNode::get(getLLVMContext(), {}));
864 }
865 
866 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
867   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
868   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
869 }
870 
871 /// ErrorUnsupported - Print out an error that codegen doesn't support the
872 /// specified stmt yet.
873 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
874   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
875                                                "cannot compile this %0 yet");
876   std::string Msg = Type;
877   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
878       << Msg << S->getSourceRange();
879 }
880 
881 /// ErrorUnsupported - Print out an error that codegen doesn't support the
882 /// specified decl yet.
883 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
884   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
885                                                "cannot compile this %0 yet");
886   std::string Msg = Type;
887   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
888 }
889 
890 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
891   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
892 }
893 
894 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
895                                         const NamedDecl *D) const {
896   if (GV->hasDLLImportStorageClass())
897     return;
898   // Internal definitions always have default visibility.
899   if (GV->hasLocalLinkage()) {
900     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
901     return;
902   }
903   if (!D)
904     return;
905   // Set visibility for definitions, and for declarations if requested globally
906   // or set explicitly.
907   LinkageInfo LV = D->getLinkageAndVisibility();
908   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
909       !GV->isDeclarationForLinker())
910     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
911 }
912 
913 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
914                                  llvm::GlobalValue *GV) {
915   if (GV->hasLocalLinkage())
916     return true;
917 
918   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
919     return true;
920 
921   // DLLImport explicitly marks the GV as external.
922   if (GV->hasDLLImportStorageClass())
923     return false;
924 
925   const llvm::Triple &TT = CGM.getTriple();
926   if (TT.isWindowsGNUEnvironment()) {
927     // In MinGW, variables without DLLImport can still be automatically
928     // imported from a DLL by the linker; don't mark variables that
929     // potentially could come from another DLL as DSO local.
930     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
931         !GV->isThreadLocal())
932       return false;
933   }
934 
935   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
936   // remain unresolved in the link, they can be resolved to zero, which is
937   // outside the current DSO.
938   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
939     return false;
940 
941   // Every other GV is local on COFF.
942   // Make an exception for windows OS in the triple: Some firmware builds use
943   // *-win32-macho triples. This (accidentally?) produced windows relocations
944   // without GOT tables in older clang versions; Keep this behaviour.
945   // FIXME: even thread local variables?
946   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
947     return true;
948 
949   // Only handle COFF and ELF for now.
950   if (!TT.isOSBinFormatELF())
951     return false;
952 
953   // If this is not an executable, don't assume anything is local.
954   const auto &CGOpts = CGM.getCodeGenOpts();
955   llvm::Reloc::Model RM = CGOpts.RelocationModel;
956   const auto &LOpts = CGM.getLangOpts();
957   if (RM != llvm::Reloc::Static && !LOpts.PIE)
958     return false;
959 
960   // A definition cannot be preempted from an executable.
961   if (!GV->isDeclarationForLinker())
962     return true;
963 
964   // Most PIC code sequences that assume that a symbol is local cannot produce a
965   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
966   // depended, it seems worth it to handle it here.
967   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
968     return false;
969 
970   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
971   llvm::Triple::ArchType Arch = TT.getArch();
972   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
973       Arch == llvm::Triple::ppc64le)
974     return false;
975 
976   // If we can use copy relocations we can assume it is local.
977   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
978     if (!Var->isThreadLocal() &&
979         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
980       return true;
981 
982   // If we can use a plt entry as the symbol address we can assume it
983   // is local.
984   // FIXME: This should work for PIE, but the gold linker doesn't support it.
985   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
986     return true;
987 
988   // Otherwise don't assume it is local.
989   return false;
990 }
991 
992 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
993   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
994 }
995 
996 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
997                                           GlobalDecl GD) const {
998   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
999   // C++ destructors have a few C++ ABI specific special cases.
1000   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1001     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1002     return;
1003   }
1004   setDLLImportDLLExport(GV, D);
1005 }
1006 
1007 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1008                                           const NamedDecl *D) const {
1009   if (D && D->isExternallyVisible()) {
1010     if (D->hasAttr<DLLImportAttr>())
1011       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1012     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1013       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1014   }
1015 }
1016 
1017 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1018                                     GlobalDecl GD) const {
1019   setDLLImportDLLExport(GV, GD);
1020   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1021 }
1022 
1023 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1024                                     const NamedDecl *D) const {
1025   setDLLImportDLLExport(GV, D);
1026   setGVPropertiesAux(GV, D);
1027 }
1028 
1029 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1030                                        const NamedDecl *D) const {
1031   setGlobalVisibility(GV, D);
1032   setDSOLocal(GV);
1033   GV->setPartition(CodeGenOpts.SymbolPartition);
1034 }
1035 
1036 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1037   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1038       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1039       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1040       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1041       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1042 }
1043 
1044 llvm::GlobalVariable::ThreadLocalMode
1045 CodeGenModule::GetDefaultLLVMTLSModel() const {
1046   switch (CodeGenOpts.getDefaultTLSModel()) {
1047   case CodeGenOptions::GeneralDynamicTLSModel:
1048     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1049   case CodeGenOptions::LocalDynamicTLSModel:
1050     return llvm::GlobalVariable::LocalDynamicTLSModel;
1051   case CodeGenOptions::InitialExecTLSModel:
1052     return llvm::GlobalVariable::InitialExecTLSModel;
1053   case CodeGenOptions::LocalExecTLSModel:
1054     return llvm::GlobalVariable::LocalExecTLSModel;
1055   }
1056   llvm_unreachable("Invalid TLS model!");
1057 }
1058 
1059 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1060   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1061 
1062   llvm::GlobalValue::ThreadLocalMode TLM;
1063   TLM = GetDefaultLLVMTLSModel();
1064 
1065   // Override the TLS model if it is explicitly specified.
1066   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1067     TLM = GetLLVMTLSModel(Attr->getModel());
1068   }
1069 
1070   GV->setThreadLocalMode(TLM);
1071 }
1072 
1073 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1074                                           StringRef Name) {
1075   const TargetInfo &Target = CGM.getTarget();
1076   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1077 }
1078 
1079 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1080                                                  const CPUSpecificAttr *Attr,
1081                                                  unsigned CPUIndex,
1082                                                  raw_ostream &Out) {
1083   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1084   // supported.
1085   if (Attr)
1086     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1087   else if (CGM.getTarget().supportsIFunc())
1088     Out << ".resolver";
1089 }
1090 
1091 static void AppendTargetMangling(const CodeGenModule &CGM,
1092                                  const TargetAttr *Attr, raw_ostream &Out) {
1093   if (Attr->isDefaultVersion())
1094     return;
1095 
1096   Out << '.';
1097   const TargetInfo &Target = CGM.getTarget();
1098   ParsedTargetAttr Info =
1099       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1100         // Multiversioning doesn't allow "no-${feature}", so we can
1101         // only have "+" prefixes here.
1102         assert(LHS.startswith("+") && RHS.startswith("+") &&
1103                "Features should always have a prefix.");
1104         return Target.multiVersionSortPriority(LHS.substr(1)) >
1105                Target.multiVersionSortPriority(RHS.substr(1));
1106       });
1107 
1108   bool IsFirst = true;
1109 
1110   if (!Info.Architecture.empty()) {
1111     IsFirst = false;
1112     Out << "arch_" << Info.Architecture;
1113   }
1114 
1115   for (StringRef Feat : Info.Features) {
1116     if (!IsFirst)
1117       Out << '_';
1118     IsFirst = false;
1119     Out << Feat.substr(1);
1120   }
1121 }
1122 
1123 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
1124                                       const NamedDecl *ND,
1125                                       bool OmitMultiVersionMangling = false) {
1126   SmallString<256> Buffer;
1127   llvm::raw_svector_ostream Out(Buffer);
1128   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1129   if (MC.shouldMangleDeclName(ND))
1130     MC.mangleName(GD.getWithDecl(ND), Out);
1131   else {
1132     IdentifierInfo *II = ND->getIdentifier();
1133     assert(II && "Attempt to mangle unnamed decl.");
1134     const auto *FD = dyn_cast<FunctionDecl>(ND);
1135 
1136     if (FD &&
1137         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1138       Out << "__regcall3__" << II->getName();
1139     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1140                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1141       Out << "__device_stub__" << II->getName();
1142     } else {
1143       Out << II->getName();
1144     }
1145   }
1146 
1147   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1148     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1149       switch (FD->getMultiVersionKind()) {
1150       case MultiVersionKind::CPUDispatch:
1151       case MultiVersionKind::CPUSpecific:
1152         AppendCPUSpecificCPUDispatchMangling(CGM,
1153                                              FD->getAttr<CPUSpecificAttr>(),
1154                                              GD.getMultiVersionIndex(), Out);
1155         break;
1156       case MultiVersionKind::Target:
1157         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1158         break;
1159       case MultiVersionKind::None:
1160         llvm_unreachable("None multiversion type isn't valid here");
1161       }
1162     }
1163 
1164   return std::string(Out.str());
1165 }
1166 
1167 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1168                                             const FunctionDecl *FD) {
1169   if (!FD->isMultiVersion())
1170     return;
1171 
1172   // Get the name of what this would be without the 'target' attribute.  This
1173   // allows us to lookup the version that was emitted when this wasn't a
1174   // multiversion function.
1175   std::string NonTargetName =
1176       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1177   GlobalDecl OtherGD;
1178   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1179     assert(OtherGD.getCanonicalDecl()
1180                .getDecl()
1181                ->getAsFunction()
1182                ->isMultiVersion() &&
1183            "Other GD should now be a multiversioned function");
1184     // OtherFD is the version of this function that was mangled BEFORE
1185     // becoming a MultiVersion function.  It potentially needs to be updated.
1186     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1187                                       .getDecl()
1188                                       ->getAsFunction()
1189                                       ->getMostRecentDecl();
1190     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1191     // This is so that if the initial version was already the 'default'
1192     // version, we don't try to update it.
1193     if (OtherName != NonTargetName) {
1194       // Remove instead of erase, since others may have stored the StringRef
1195       // to this.
1196       const auto ExistingRecord = Manglings.find(NonTargetName);
1197       if (ExistingRecord != std::end(Manglings))
1198         Manglings.remove(&(*ExistingRecord));
1199       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1200       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1201       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1202         Entry->setName(OtherName);
1203     }
1204   }
1205 }
1206 
1207 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1208   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1209 
1210   // Some ABIs don't have constructor variants.  Make sure that base and
1211   // complete constructors get mangled the same.
1212   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1213     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1214       CXXCtorType OrigCtorType = GD.getCtorType();
1215       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1216       if (OrigCtorType == Ctor_Base)
1217         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1218     }
1219   }
1220 
1221   auto FoundName = MangledDeclNames.find(CanonicalGD);
1222   if (FoundName != MangledDeclNames.end())
1223     return FoundName->second;
1224 
1225   // Keep the first result in the case of a mangling collision.
1226   const auto *ND = cast<NamedDecl>(GD.getDecl());
1227   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1228 
1229   // Ensure either we have different ABIs between host and device compilations,
1230   // says host compilation following MSVC ABI but device compilation follows
1231   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1232   // mangling should be the same after name stubbing. The later checking is
1233   // very important as the device kernel name being mangled in host-compilation
1234   // is used to resolve the device binaries to be executed. Inconsistent naming
1235   // result in undefined behavior. Even though we cannot check that naming
1236   // directly between host- and device-compilations, the host- and
1237   // device-mangling in host compilation could help catching certain ones.
1238   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1239          getLangOpts().CUDAIsDevice ||
1240          (getContext().getAuxTargetInfo() &&
1241           (getContext().getAuxTargetInfo()->getCXXABI() !=
1242            getContext().getTargetInfo().getCXXABI())) ||
1243          getCUDARuntime().getDeviceSideName(ND) ==
1244              getMangledNameImpl(
1245                  *this,
1246                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1247                  ND));
1248 
1249   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1250   return MangledDeclNames[CanonicalGD] = Result.first->first();
1251 }
1252 
1253 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1254                                              const BlockDecl *BD) {
1255   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1256   const Decl *D = GD.getDecl();
1257 
1258   SmallString<256> Buffer;
1259   llvm::raw_svector_ostream Out(Buffer);
1260   if (!D)
1261     MangleCtx.mangleGlobalBlock(BD,
1262       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1263   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1264     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1265   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1266     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1267   else
1268     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1269 
1270   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1271   return Result.first->first();
1272 }
1273 
1274 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1275   return getModule().getNamedValue(Name);
1276 }
1277 
1278 /// AddGlobalCtor - Add a function to the list that will be called before
1279 /// main() runs.
1280 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1281                                   llvm::Constant *AssociatedData) {
1282   // FIXME: Type coercion of void()* types.
1283   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1284 }
1285 
1286 /// AddGlobalDtor - Add a function to the list that will be called
1287 /// when the module is unloaded.
1288 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1289                                   bool IsDtorAttrFunc) {
1290   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1291       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1292     DtorsUsingAtExit[Priority].push_back(Dtor);
1293     return;
1294   }
1295 
1296   // FIXME: Type coercion of void()* types.
1297   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1298 }
1299 
1300 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1301   if (Fns.empty()) return;
1302 
1303   // Ctor function type is void()*.
1304   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1305   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1306       TheModule.getDataLayout().getProgramAddressSpace());
1307 
1308   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1309   llvm::StructType *CtorStructTy = llvm::StructType::get(
1310       Int32Ty, CtorPFTy, VoidPtrTy);
1311 
1312   // Construct the constructor and destructor arrays.
1313   ConstantInitBuilder builder(*this);
1314   auto ctors = builder.beginArray(CtorStructTy);
1315   for (const auto &I : Fns) {
1316     auto ctor = ctors.beginStruct(CtorStructTy);
1317     ctor.addInt(Int32Ty, I.Priority);
1318     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1319     if (I.AssociatedData)
1320       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1321     else
1322       ctor.addNullPointer(VoidPtrTy);
1323     ctor.finishAndAddTo(ctors);
1324   }
1325 
1326   auto list =
1327     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1328                                 /*constant*/ false,
1329                                 llvm::GlobalValue::AppendingLinkage);
1330 
1331   // The LTO linker doesn't seem to like it when we set an alignment
1332   // on appending variables.  Take it off as a workaround.
1333   list->setAlignment(llvm::None);
1334 
1335   Fns.clear();
1336 }
1337 
1338 llvm::GlobalValue::LinkageTypes
1339 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1340   const auto *D = cast<FunctionDecl>(GD.getDecl());
1341 
1342   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1343 
1344   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1345     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1346 
1347   if (isa<CXXConstructorDecl>(D) &&
1348       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1349       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1350     // Our approach to inheriting constructors is fundamentally different from
1351     // that used by the MS ABI, so keep our inheriting constructor thunks
1352     // internal rather than trying to pick an unambiguous mangling for them.
1353     return llvm::GlobalValue::InternalLinkage;
1354   }
1355 
1356   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1357 }
1358 
1359 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1360   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1361   if (!MDS) return nullptr;
1362 
1363   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1364 }
1365 
1366 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1367                                               const CGFunctionInfo &Info,
1368                                               llvm::Function *F) {
1369   unsigned CallingConv;
1370   llvm::AttributeList PAL;
1371   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1372   F->setAttributes(PAL);
1373   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1374 }
1375 
1376 static void removeImageAccessQualifier(std::string& TyName) {
1377   std::string ReadOnlyQual("__read_only");
1378   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1379   if (ReadOnlyPos != std::string::npos)
1380     // "+ 1" for the space after access qualifier.
1381     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1382   else {
1383     std::string WriteOnlyQual("__write_only");
1384     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1385     if (WriteOnlyPos != std::string::npos)
1386       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1387     else {
1388       std::string ReadWriteQual("__read_write");
1389       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1390       if (ReadWritePos != std::string::npos)
1391         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1392     }
1393   }
1394 }
1395 
1396 // Returns the address space id that should be produced to the
1397 // kernel_arg_addr_space metadata. This is always fixed to the ids
1398 // as specified in the SPIR 2.0 specification in order to differentiate
1399 // for example in clGetKernelArgInfo() implementation between the address
1400 // spaces with targets without unique mapping to the OpenCL address spaces
1401 // (basically all single AS CPUs).
1402 static unsigned ArgInfoAddressSpace(LangAS AS) {
1403   switch (AS) {
1404   case LangAS::opencl_global:
1405     return 1;
1406   case LangAS::opencl_constant:
1407     return 2;
1408   case LangAS::opencl_local:
1409     return 3;
1410   case LangAS::opencl_generic:
1411     return 4; // Not in SPIR 2.0 specs.
1412   case LangAS::opencl_global_device:
1413     return 5;
1414   case LangAS::opencl_global_host:
1415     return 6;
1416   default:
1417     return 0; // Assume private.
1418   }
1419 }
1420 
1421 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1422                                          const FunctionDecl *FD,
1423                                          CodeGenFunction *CGF) {
1424   assert(((FD && CGF) || (!FD && !CGF)) &&
1425          "Incorrect use - FD and CGF should either be both null or not!");
1426   // Create MDNodes that represent the kernel arg metadata.
1427   // Each MDNode is a list in the form of "key", N number of values which is
1428   // the same number of values as their are kernel arguments.
1429 
1430   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1431 
1432   // MDNode for the kernel argument address space qualifiers.
1433   SmallVector<llvm::Metadata *, 8> addressQuals;
1434 
1435   // MDNode for the kernel argument access qualifiers (images only).
1436   SmallVector<llvm::Metadata *, 8> accessQuals;
1437 
1438   // MDNode for the kernel argument type names.
1439   SmallVector<llvm::Metadata *, 8> argTypeNames;
1440 
1441   // MDNode for the kernel argument base type names.
1442   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1443 
1444   // MDNode for the kernel argument type qualifiers.
1445   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1446 
1447   // MDNode for the kernel argument names.
1448   SmallVector<llvm::Metadata *, 8> argNames;
1449 
1450   if (FD && CGF)
1451     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1452       const ParmVarDecl *parm = FD->getParamDecl(i);
1453       QualType ty = parm->getType();
1454       std::string typeQuals;
1455 
1456       if (ty->isPointerType()) {
1457         QualType pointeeTy = ty->getPointeeType();
1458 
1459         // Get address qualifier.
1460         addressQuals.push_back(
1461             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1462                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1463 
1464         // Get argument type name.
1465         std::string typeName =
1466             pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
1467 
1468         // Turn "unsigned type" to "utype"
1469         std::string::size_type pos = typeName.find("unsigned");
1470         if (pointeeTy.isCanonical() && pos != std::string::npos)
1471           typeName.erase(pos + 1, 8);
1472 
1473         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1474 
1475         std::string baseTypeName =
1476             pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
1477                 Policy) +
1478             "*";
1479 
1480         // Turn "unsigned type" to "utype"
1481         pos = baseTypeName.find("unsigned");
1482         if (pos != std::string::npos)
1483           baseTypeName.erase(pos + 1, 8);
1484 
1485         argBaseTypeNames.push_back(
1486             llvm::MDString::get(VMContext, baseTypeName));
1487 
1488         // Get argument type qualifiers:
1489         if (ty.isRestrictQualified())
1490           typeQuals = "restrict";
1491         if (pointeeTy.isConstQualified() ||
1492             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1493           typeQuals += typeQuals.empty() ? "const" : " const";
1494         if (pointeeTy.isVolatileQualified())
1495           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1496       } else {
1497         uint32_t AddrSpc = 0;
1498         bool isPipe = ty->isPipeType();
1499         if (ty->isImageType() || isPipe)
1500           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1501 
1502         addressQuals.push_back(
1503             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1504 
1505         // Get argument type name.
1506         std::string typeName;
1507         if (isPipe)
1508           typeName = ty.getCanonicalType()
1509                          ->castAs<PipeType>()
1510                          ->getElementType()
1511                          .getAsString(Policy);
1512         else
1513           typeName = ty.getUnqualifiedType().getAsString(Policy);
1514 
1515         // Turn "unsigned type" to "utype"
1516         std::string::size_type pos = typeName.find("unsigned");
1517         if (ty.isCanonical() && pos != std::string::npos)
1518           typeName.erase(pos + 1, 8);
1519 
1520         std::string baseTypeName;
1521         if (isPipe)
1522           baseTypeName = ty.getCanonicalType()
1523                              ->castAs<PipeType>()
1524                              ->getElementType()
1525                              .getCanonicalType()
1526                              .getAsString(Policy);
1527         else
1528           baseTypeName =
1529               ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
1530 
1531         // Remove access qualifiers on images
1532         // (as they are inseparable from type in clang implementation,
1533         // but OpenCL spec provides a special query to get access qualifier
1534         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1535         if (ty->isImageType()) {
1536           removeImageAccessQualifier(typeName);
1537           removeImageAccessQualifier(baseTypeName);
1538         }
1539 
1540         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1541 
1542         // Turn "unsigned type" to "utype"
1543         pos = baseTypeName.find("unsigned");
1544         if (pos != std::string::npos)
1545           baseTypeName.erase(pos + 1, 8);
1546 
1547         argBaseTypeNames.push_back(
1548             llvm::MDString::get(VMContext, baseTypeName));
1549 
1550         if (isPipe)
1551           typeQuals = "pipe";
1552       }
1553 
1554       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1555 
1556       // Get image and pipe access qualifier:
1557       if (ty->isImageType() || ty->isPipeType()) {
1558         const Decl *PDecl = parm;
1559         if (auto *TD = dyn_cast<TypedefType>(ty))
1560           PDecl = TD->getDecl();
1561         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1562         if (A && A->isWriteOnly())
1563           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1564         else if (A && A->isReadWrite())
1565           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1566         else
1567           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1568       } else
1569         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1570 
1571       // Get argument name.
1572       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1573     }
1574 
1575   Fn->setMetadata("kernel_arg_addr_space",
1576                   llvm::MDNode::get(VMContext, addressQuals));
1577   Fn->setMetadata("kernel_arg_access_qual",
1578                   llvm::MDNode::get(VMContext, accessQuals));
1579   Fn->setMetadata("kernel_arg_type",
1580                   llvm::MDNode::get(VMContext, argTypeNames));
1581   Fn->setMetadata("kernel_arg_base_type",
1582                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1583   Fn->setMetadata("kernel_arg_type_qual",
1584                   llvm::MDNode::get(VMContext, argTypeQuals));
1585   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1586     Fn->setMetadata("kernel_arg_name",
1587                     llvm::MDNode::get(VMContext, argNames));
1588 }
1589 
1590 /// Determines whether the language options require us to model
1591 /// unwind exceptions.  We treat -fexceptions as mandating this
1592 /// except under the fragile ObjC ABI with only ObjC exceptions
1593 /// enabled.  This means, for example, that C with -fexceptions
1594 /// enables this.
1595 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1596   // If exceptions are completely disabled, obviously this is false.
1597   if (!LangOpts.Exceptions) return false;
1598 
1599   // If C++ exceptions are enabled, this is true.
1600   if (LangOpts.CXXExceptions) return true;
1601 
1602   // If ObjC exceptions are enabled, this depends on the ABI.
1603   if (LangOpts.ObjCExceptions) {
1604     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1605   }
1606 
1607   return true;
1608 }
1609 
1610 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1611                                                       const CXXMethodDecl *MD) {
1612   // Check that the type metadata can ever actually be used by a call.
1613   if (!CGM.getCodeGenOpts().LTOUnit ||
1614       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1615     return false;
1616 
1617   // Only functions whose address can be taken with a member function pointer
1618   // need this sort of type metadata.
1619   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1620          !isa<CXXDestructorDecl>(MD);
1621 }
1622 
1623 std::vector<const CXXRecordDecl *>
1624 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1625   llvm::SetVector<const CXXRecordDecl *> MostBases;
1626 
1627   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1628   CollectMostBases = [&](const CXXRecordDecl *RD) {
1629     if (RD->getNumBases() == 0)
1630       MostBases.insert(RD);
1631     for (const CXXBaseSpecifier &B : RD->bases())
1632       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1633   };
1634   CollectMostBases(RD);
1635   return MostBases.takeVector();
1636 }
1637 
1638 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1639                                                            llvm::Function *F) {
1640   llvm::AttrBuilder B;
1641 
1642   if (CodeGenOpts.UnwindTables)
1643     B.addAttribute(llvm::Attribute::UWTable);
1644 
1645   if (CodeGenOpts.StackClashProtector)
1646     B.addAttribute("probe-stack", "inline-asm");
1647 
1648   if (!hasUnwindExceptions(LangOpts))
1649     B.addAttribute(llvm::Attribute::NoUnwind);
1650 
1651   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1652     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1653       B.addAttribute(llvm::Attribute::StackProtect);
1654     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1655       B.addAttribute(llvm::Attribute::StackProtectStrong);
1656     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1657       B.addAttribute(llvm::Attribute::StackProtectReq);
1658   }
1659 
1660   if (!D) {
1661     // If we don't have a declaration to control inlining, the function isn't
1662     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1663     // disabled, mark the function as noinline.
1664     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1665         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1666       B.addAttribute(llvm::Attribute::NoInline);
1667 
1668     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1669     return;
1670   }
1671 
1672   // Track whether we need to add the optnone LLVM attribute,
1673   // starting with the default for this optimization level.
1674   bool ShouldAddOptNone =
1675       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1676   // We can't add optnone in the following cases, it won't pass the verifier.
1677   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1678   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1679 
1680   // Add optnone, but do so only if the function isn't always_inline.
1681   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1682       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1683     B.addAttribute(llvm::Attribute::OptimizeNone);
1684 
1685     // OptimizeNone implies noinline; we should not be inlining such functions.
1686     B.addAttribute(llvm::Attribute::NoInline);
1687 
1688     // We still need to handle naked functions even though optnone subsumes
1689     // much of their semantics.
1690     if (D->hasAttr<NakedAttr>())
1691       B.addAttribute(llvm::Attribute::Naked);
1692 
1693     // OptimizeNone wins over OptimizeForSize and MinSize.
1694     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1695     F->removeFnAttr(llvm::Attribute::MinSize);
1696   } else if (D->hasAttr<NakedAttr>()) {
1697     // Naked implies noinline: we should not be inlining such functions.
1698     B.addAttribute(llvm::Attribute::Naked);
1699     B.addAttribute(llvm::Attribute::NoInline);
1700   } else if (D->hasAttr<NoDuplicateAttr>()) {
1701     B.addAttribute(llvm::Attribute::NoDuplicate);
1702   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1703     // Add noinline if the function isn't always_inline.
1704     B.addAttribute(llvm::Attribute::NoInline);
1705   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1706              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1707     // (noinline wins over always_inline, and we can't specify both in IR)
1708     B.addAttribute(llvm::Attribute::AlwaysInline);
1709   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1710     // If we're not inlining, then force everything that isn't always_inline to
1711     // carry an explicit noinline attribute.
1712     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1713       B.addAttribute(llvm::Attribute::NoInline);
1714   } else {
1715     // Otherwise, propagate the inline hint attribute and potentially use its
1716     // absence to mark things as noinline.
1717     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1718       // Search function and template pattern redeclarations for inline.
1719       auto CheckForInline = [](const FunctionDecl *FD) {
1720         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1721           return Redecl->isInlineSpecified();
1722         };
1723         if (any_of(FD->redecls(), CheckRedeclForInline))
1724           return true;
1725         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1726         if (!Pattern)
1727           return false;
1728         return any_of(Pattern->redecls(), CheckRedeclForInline);
1729       };
1730       if (CheckForInline(FD)) {
1731         B.addAttribute(llvm::Attribute::InlineHint);
1732       } else if (CodeGenOpts.getInlining() ==
1733                      CodeGenOptions::OnlyHintInlining &&
1734                  !FD->isInlined() &&
1735                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1736         B.addAttribute(llvm::Attribute::NoInline);
1737       }
1738     }
1739   }
1740 
1741   // Add other optimization related attributes if we are optimizing this
1742   // function.
1743   if (!D->hasAttr<OptimizeNoneAttr>()) {
1744     if (D->hasAttr<ColdAttr>()) {
1745       if (!ShouldAddOptNone)
1746         B.addAttribute(llvm::Attribute::OptimizeForSize);
1747       B.addAttribute(llvm::Attribute::Cold);
1748     }
1749 
1750     if (D->hasAttr<MinSizeAttr>())
1751       B.addAttribute(llvm::Attribute::MinSize);
1752   }
1753 
1754   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1755 
1756   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1757   if (alignment)
1758     F->setAlignment(llvm::Align(alignment));
1759 
1760   if (!D->hasAttr<AlignedAttr>())
1761     if (LangOpts.FunctionAlignment)
1762       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1763 
1764   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1765   // reserve a bit for differentiating between virtual and non-virtual member
1766   // functions. If the current target's C++ ABI requires this and this is a
1767   // member function, set its alignment accordingly.
1768   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1769     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1770       F->setAlignment(llvm::Align(2));
1771   }
1772 
1773   // In the cross-dso CFI mode with canonical jump tables, we want !type
1774   // attributes on definitions only.
1775   if (CodeGenOpts.SanitizeCfiCrossDso &&
1776       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1777     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1778       // Skip available_externally functions. They won't be codegen'ed in the
1779       // current module anyway.
1780       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1781         CreateFunctionTypeMetadataForIcall(FD, F);
1782     }
1783   }
1784 
1785   // Emit type metadata on member functions for member function pointer checks.
1786   // These are only ever necessary on definitions; we're guaranteed that the
1787   // definition will be present in the LTO unit as a result of LTO visibility.
1788   auto *MD = dyn_cast<CXXMethodDecl>(D);
1789   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1790     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1791       llvm::Metadata *Id =
1792           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1793               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1794       F->addTypeMetadata(0, Id);
1795     }
1796   }
1797 }
1798 
1799 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
1800                                                   llvm::Function *F) {
1801   if (D->hasAttr<StrictFPAttr>()) {
1802     llvm::AttrBuilder FuncAttrs;
1803     FuncAttrs.addAttribute("strictfp");
1804     F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1805   }
1806 }
1807 
1808 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1809   const Decl *D = GD.getDecl();
1810   if (dyn_cast_or_null<NamedDecl>(D))
1811     setGVProperties(GV, GD);
1812   else
1813     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1814 
1815   if (D && D->hasAttr<UsedAttr>())
1816     addUsedGlobal(GV);
1817 
1818   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1819     const auto *VD = cast<VarDecl>(D);
1820     if (VD->getType().isConstQualified() &&
1821         VD->getStorageDuration() == SD_Static)
1822       addUsedGlobal(GV);
1823   }
1824 }
1825 
1826 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1827                                                 llvm::AttrBuilder &Attrs) {
1828   // Add target-cpu and target-features attributes to functions. If
1829   // we have a decl for the function and it has a target attribute then
1830   // parse that and add it to the feature set.
1831   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1832   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
1833   std::vector<std::string> Features;
1834   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1835   FD = FD ? FD->getMostRecentDecl() : FD;
1836   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1837   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1838   bool AddedAttr = false;
1839   if (TD || SD) {
1840     llvm::StringMap<bool> FeatureMap;
1841     getContext().getFunctionFeatureMap(FeatureMap, GD);
1842 
1843     // Produce the canonical string for this set of features.
1844     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1845       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1846 
1847     // Now add the target-cpu and target-features to the function.
1848     // While we populated the feature map above, we still need to
1849     // get and parse the target attribute so we can get the cpu for
1850     // the function.
1851     if (TD) {
1852       ParsedTargetAttr ParsedAttr = TD->parse();
1853       if (!ParsedAttr.Architecture.empty() &&
1854           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
1855         TargetCPU = ParsedAttr.Architecture;
1856         TuneCPU = ""; // Clear the tune CPU.
1857       }
1858       if (!ParsedAttr.Tune.empty() &&
1859           getTarget().isValidCPUName(ParsedAttr.Tune))
1860         TuneCPU = ParsedAttr.Tune;
1861     }
1862   } else {
1863     // Otherwise just add the existing target cpu and target features to the
1864     // function.
1865     Features = getTarget().getTargetOpts().Features;
1866   }
1867 
1868   if (!TargetCPU.empty()) {
1869     Attrs.addAttribute("target-cpu", TargetCPU);
1870     AddedAttr = true;
1871   }
1872   if (!TuneCPU.empty()) {
1873     Attrs.addAttribute("tune-cpu", TuneCPU);
1874     AddedAttr = true;
1875   }
1876   if (!Features.empty()) {
1877     llvm::sort(Features);
1878     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1879     AddedAttr = true;
1880   }
1881 
1882   return AddedAttr;
1883 }
1884 
1885 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1886                                           llvm::GlobalObject *GO) {
1887   const Decl *D = GD.getDecl();
1888   SetCommonAttributes(GD, GO);
1889 
1890   if (D) {
1891     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1892       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1893         GV->addAttribute("bss-section", SA->getName());
1894       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1895         GV->addAttribute("data-section", SA->getName());
1896       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1897         GV->addAttribute("rodata-section", SA->getName());
1898       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
1899         GV->addAttribute("relro-section", SA->getName());
1900     }
1901 
1902     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1903       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1904         if (!D->getAttr<SectionAttr>())
1905           F->addFnAttr("implicit-section-name", SA->getName());
1906 
1907       llvm::AttrBuilder Attrs;
1908       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1909         // We know that GetCPUAndFeaturesAttributes will always have the
1910         // newest set, since it has the newest possible FunctionDecl, so the
1911         // new ones should replace the old.
1912         llvm::AttrBuilder RemoveAttrs;
1913         RemoveAttrs.addAttribute("target-cpu");
1914         RemoveAttrs.addAttribute("target-features");
1915         RemoveAttrs.addAttribute("tune-cpu");
1916         F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs);
1917         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1918       }
1919     }
1920 
1921     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1922       GO->setSection(CSA->getName());
1923     else if (const auto *SA = D->getAttr<SectionAttr>())
1924       GO->setSection(SA->getName());
1925   }
1926 
1927   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1928 }
1929 
1930 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1931                                                   llvm::Function *F,
1932                                                   const CGFunctionInfo &FI) {
1933   const Decl *D = GD.getDecl();
1934   SetLLVMFunctionAttributes(GD, FI, F);
1935   SetLLVMFunctionAttributesForDefinition(D, F);
1936 
1937   F->setLinkage(llvm::Function::InternalLinkage);
1938 
1939   setNonAliasAttributes(GD, F);
1940 }
1941 
1942 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1943   // Set linkage and visibility in case we never see a definition.
1944   LinkageInfo LV = ND->getLinkageAndVisibility();
1945   // Don't set internal linkage on declarations.
1946   // "extern_weak" is overloaded in LLVM; we probably should have
1947   // separate linkage types for this.
1948   if (isExternallyVisible(LV.getLinkage()) &&
1949       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1950     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1951 }
1952 
1953 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1954                                                        llvm::Function *F) {
1955   // Only if we are checking indirect calls.
1956   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1957     return;
1958 
1959   // Non-static class methods are handled via vtable or member function pointer
1960   // checks elsewhere.
1961   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1962     return;
1963 
1964   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1965   F->addTypeMetadata(0, MD);
1966   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1967 
1968   // Emit a hash-based bit set entry for cross-DSO calls.
1969   if (CodeGenOpts.SanitizeCfiCrossDso)
1970     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1971       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1972 }
1973 
1974 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1975                                           bool IsIncompleteFunction,
1976                                           bool IsThunk) {
1977 
1978   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1979     // If this is an intrinsic function, set the function's attributes
1980     // to the intrinsic's attributes.
1981     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1982     return;
1983   }
1984 
1985   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1986 
1987   if (!IsIncompleteFunction)
1988     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1989 
1990   // Add the Returned attribute for "this", except for iOS 5 and earlier
1991   // where substantial code, including the libstdc++ dylib, was compiled with
1992   // GCC and does not actually return "this".
1993   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1994       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1995     assert(!F->arg_empty() &&
1996            F->arg_begin()->getType()
1997              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1998            "unexpected this return");
1999     F->addAttribute(1, llvm::Attribute::Returned);
2000   }
2001 
2002   // Only a few attributes are set on declarations; these may later be
2003   // overridden by a definition.
2004 
2005   setLinkageForGV(F, FD);
2006   setGVProperties(F, FD);
2007 
2008   // Setup target-specific attributes.
2009   if (!IsIncompleteFunction && F->isDeclaration())
2010     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2011 
2012   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2013     F->setSection(CSA->getName());
2014   else if (const auto *SA = FD->getAttr<SectionAttr>())
2015      F->setSection(SA->getName());
2016 
2017   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2018   if (FD->isInlineBuiltinDeclaration()) {
2019     const FunctionDecl *FDBody;
2020     bool HasBody = FD->hasBody(FDBody);
2021     (void)HasBody;
2022     assert(HasBody && "Inline builtin declarations should always have an "
2023                       "available body!");
2024     if (shouldEmitFunction(FDBody))
2025       F->addAttribute(llvm::AttributeList::FunctionIndex,
2026                       llvm::Attribute::NoBuiltin);
2027   }
2028 
2029   if (FD->isReplaceableGlobalAllocationFunction()) {
2030     // A replaceable global allocation function does not act like a builtin by
2031     // default, only if it is invoked by a new-expression or delete-expression.
2032     F->addAttribute(llvm::AttributeList::FunctionIndex,
2033                     llvm::Attribute::NoBuiltin);
2034   }
2035 
2036   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2037     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2038   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2039     if (MD->isVirtual())
2040       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2041 
2042   // Don't emit entries for function declarations in the cross-DSO mode. This
2043   // is handled with better precision by the receiving DSO. But if jump tables
2044   // are non-canonical then we need type metadata in order to produce the local
2045   // jump table.
2046   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2047       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2048     CreateFunctionTypeMetadataForIcall(FD, F);
2049 
2050   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2051     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2052 
2053   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2054     // Annotate the callback behavior as metadata:
2055     //  - The callback callee (as argument number).
2056     //  - The callback payloads (as argument numbers).
2057     llvm::LLVMContext &Ctx = F->getContext();
2058     llvm::MDBuilder MDB(Ctx);
2059 
2060     // The payload indices are all but the first one in the encoding. The first
2061     // identifies the callback callee.
2062     int CalleeIdx = *CB->encoding_begin();
2063     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2064     F->addMetadata(llvm::LLVMContext::MD_callback,
2065                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2066                                                CalleeIdx, PayloadIndices,
2067                                                /* VarArgsArePassed */ false)}));
2068   }
2069 }
2070 
2071 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2072   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2073          "Only globals with definition can force usage.");
2074   LLVMUsed.emplace_back(GV);
2075 }
2076 
2077 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2078   assert(!GV->isDeclaration() &&
2079          "Only globals with definition can force usage.");
2080   LLVMCompilerUsed.emplace_back(GV);
2081 }
2082 
2083 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2084                      std::vector<llvm::WeakTrackingVH> &List) {
2085   // Don't create llvm.used if there is no need.
2086   if (List.empty())
2087     return;
2088 
2089   // Convert List to what ConstantArray needs.
2090   SmallVector<llvm::Constant*, 8> UsedArray;
2091   UsedArray.resize(List.size());
2092   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2093     UsedArray[i] =
2094         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2095             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2096   }
2097 
2098   if (UsedArray.empty())
2099     return;
2100   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2101 
2102   auto *GV = new llvm::GlobalVariable(
2103       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2104       llvm::ConstantArray::get(ATy, UsedArray), Name);
2105 
2106   GV->setSection("llvm.metadata");
2107 }
2108 
2109 void CodeGenModule::emitLLVMUsed() {
2110   emitUsed(*this, "llvm.used", LLVMUsed);
2111   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2112 }
2113 
2114 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2115   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2116   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2117 }
2118 
2119 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2120   llvm::SmallString<32> Opt;
2121   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2122   if (Opt.empty())
2123     return;
2124   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2125   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2126 }
2127 
2128 void CodeGenModule::AddDependentLib(StringRef Lib) {
2129   auto &C = getLLVMContext();
2130   if (getTarget().getTriple().isOSBinFormatELF()) {
2131       ELFDependentLibraries.push_back(
2132         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2133     return;
2134   }
2135 
2136   llvm::SmallString<24> Opt;
2137   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2138   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2139   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2140 }
2141 
2142 /// Add link options implied by the given module, including modules
2143 /// it depends on, using a postorder walk.
2144 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2145                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2146                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2147   // Import this module's parent.
2148   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2149     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2150   }
2151 
2152   // Import this module's dependencies.
2153   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
2154     if (Visited.insert(Mod->Imports[I - 1]).second)
2155       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
2156   }
2157 
2158   // Add linker options to link against the libraries/frameworks
2159   // described by this module.
2160   llvm::LLVMContext &Context = CGM.getLLVMContext();
2161   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2162 
2163   // For modules that use export_as for linking, use that module
2164   // name instead.
2165   if (Mod->UseExportAsModuleLinkName)
2166     return;
2167 
2168   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
2169     // Link against a framework.  Frameworks are currently Darwin only, so we
2170     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2171     if (Mod->LinkLibraries[I-1].IsFramework) {
2172       llvm::Metadata *Args[2] = {
2173           llvm::MDString::get(Context, "-framework"),
2174           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
2175 
2176       Metadata.push_back(llvm::MDNode::get(Context, Args));
2177       continue;
2178     }
2179 
2180     // Link against a library.
2181     if (IsELF) {
2182       llvm::Metadata *Args[2] = {
2183           llvm::MDString::get(Context, "lib"),
2184           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library),
2185       };
2186       Metadata.push_back(llvm::MDNode::get(Context, Args));
2187     } else {
2188       llvm::SmallString<24> Opt;
2189       CGM.getTargetCodeGenInfo().getDependentLibraryOption(
2190           Mod->LinkLibraries[I - 1].Library, Opt);
2191       auto *OptString = llvm::MDString::get(Context, Opt);
2192       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2193     }
2194   }
2195 }
2196 
2197 void CodeGenModule::EmitModuleLinkOptions() {
2198   // Collect the set of all of the modules we want to visit to emit link
2199   // options, which is essentially the imported modules and all of their
2200   // non-explicit child modules.
2201   llvm::SetVector<clang::Module *> LinkModules;
2202   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2203   SmallVector<clang::Module *, 16> Stack;
2204 
2205   // Seed the stack with imported modules.
2206   for (Module *M : ImportedModules) {
2207     // Do not add any link flags when an implementation TU of a module imports
2208     // a header of that same module.
2209     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2210         !getLangOpts().isCompilingModule())
2211       continue;
2212     if (Visited.insert(M).second)
2213       Stack.push_back(M);
2214   }
2215 
2216   // Find all of the modules to import, making a little effort to prune
2217   // non-leaf modules.
2218   while (!Stack.empty()) {
2219     clang::Module *Mod = Stack.pop_back_val();
2220 
2221     bool AnyChildren = false;
2222 
2223     // Visit the submodules of this module.
2224     for (const auto &SM : Mod->submodules()) {
2225       // Skip explicit children; they need to be explicitly imported to be
2226       // linked against.
2227       if (SM->IsExplicit)
2228         continue;
2229 
2230       if (Visited.insert(SM).second) {
2231         Stack.push_back(SM);
2232         AnyChildren = true;
2233       }
2234     }
2235 
2236     // We didn't find any children, so add this module to the list of
2237     // modules to link against.
2238     if (!AnyChildren) {
2239       LinkModules.insert(Mod);
2240     }
2241   }
2242 
2243   // Add link options for all of the imported modules in reverse topological
2244   // order.  We don't do anything to try to order import link flags with respect
2245   // to linker options inserted by things like #pragma comment().
2246   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2247   Visited.clear();
2248   for (Module *M : LinkModules)
2249     if (Visited.insert(M).second)
2250       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2251   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2252   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2253 
2254   // Add the linker options metadata flag.
2255   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2256   for (auto *MD : LinkerOptionsMetadata)
2257     NMD->addOperand(MD);
2258 }
2259 
2260 void CodeGenModule::EmitDeferred() {
2261   // Emit deferred declare target declarations.
2262   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2263     getOpenMPRuntime().emitDeferredTargetDecls();
2264 
2265   // Emit code for any potentially referenced deferred decls.  Since a
2266   // previously unused static decl may become used during the generation of code
2267   // for a static function, iterate until no changes are made.
2268 
2269   if (!DeferredVTables.empty()) {
2270     EmitDeferredVTables();
2271 
2272     // Emitting a vtable doesn't directly cause more vtables to
2273     // become deferred, although it can cause functions to be
2274     // emitted that then need those vtables.
2275     assert(DeferredVTables.empty());
2276   }
2277 
2278   // Emit CUDA/HIP static device variables referenced by host code only.
2279   if (getLangOpts().CUDA)
2280     for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost)
2281       DeferredDeclsToEmit.push_back(V);
2282 
2283   // Stop if we're out of both deferred vtables and deferred declarations.
2284   if (DeferredDeclsToEmit.empty())
2285     return;
2286 
2287   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2288   // work, it will not interfere with this.
2289   std::vector<GlobalDecl> CurDeclsToEmit;
2290   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2291 
2292   for (GlobalDecl &D : CurDeclsToEmit) {
2293     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2294     // to get GlobalValue with exactly the type we need, not something that
2295     // might had been created for another decl with the same mangled name but
2296     // different type.
2297     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2298         GetAddrOfGlobal(D, ForDefinition));
2299 
2300     // In case of different address spaces, we may still get a cast, even with
2301     // IsForDefinition equal to true. Query mangled names table to get
2302     // GlobalValue.
2303     if (!GV)
2304       GV = GetGlobalValue(getMangledName(D));
2305 
2306     // Make sure GetGlobalValue returned non-null.
2307     assert(GV);
2308 
2309     // Check to see if we've already emitted this.  This is necessary
2310     // for a couple of reasons: first, decls can end up in the
2311     // deferred-decls queue multiple times, and second, decls can end
2312     // up with definitions in unusual ways (e.g. by an extern inline
2313     // function acquiring a strong function redefinition).  Just
2314     // ignore these cases.
2315     if (!GV->isDeclaration())
2316       continue;
2317 
2318     // If this is OpenMP, check if it is legal to emit this global normally.
2319     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2320       continue;
2321 
2322     // Otherwise, emit the definition and move on to the next one.
2323     EmitGlobalDefinition(D, GV);
2324 
2325     // If we found out that we need to emit more decls, do that recursively.
2326     // This has the advantage that the decls are emitted in a DFS and related
2327     // ones are close together, which is convenient for testing.
2328     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2329       EmitDeferred();
2330       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2331     }
2332   }
2333 }
2334 
2335 void CodeGenModule::EmitVTablesOpportunistically() {
2336   // Try to emit external vtables as available_externally if they have emitted
2337   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2338   // is not allowed to create new references to things that need to be emitted
2339   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2340 
2341   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2342          && "Only emit opportunistic vtables with optimizations");
2343 
2344   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2345     assert(getVTables().isVTableExternal(RD) &&
2346            "This queue should only contain external vtables");
2347     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2348       VTables.GenerateClassData(RD);
2349   }
2350   OpportunisticVTables.clear();
2351 }
2352 
2353 void CodeGenModule::EmitGlobalAnnotations() {
2354   if (Annotations.empty())
2355     return;
2356 
2357   // Create a new global variable for the ConstantStruct in the Module.
2358   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2359     Annotations[0]->getType(), Annotations.size()), Annotations);
2360   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2361                                       llvm::GlobalValue::AppendingLinkage,
2362                                       Array, "llvm.global.annotations");
2363   gv->setSection(AnnotationSection);
2364 }
2365 
2366 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2367   llvm::Constant *&AStr = AnnotationStrings[Str];
2368   if (AStr)
2369     return AStr;
2370 
2371   // Not found yet, create a new global.
2372   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2373   auto *gv =
2374       new llvm::GlobalVariable(getModule(), s->getType(), true,
2375                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2376   gv->setSection(AnnotationSection);
2377   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2378   AStr = gv;
2379   return gv;
2380 }
2381 
2382 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2383   SourceManager &SM = getContext().getSourceManager();
2384   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2385   if (PLoc.isValid())
2386     return EmitAnnotationString(PLoc.getFilename());
2387   return EmitAnnotationString(SM.getBufferName(Loc));
2388 }
2389 
2390 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2391   SourceManager &SM = getContext().getSourceManager();
2392   PresumedLoc PLoc = SM.getPresumedLoc(L);
2393   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2394     SM.getExpansionLineNumber(L);
2395   return llvm::ConstantInt::get(Int32Ty, LineNo);
2396 }
2397 
2398 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2399   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2400   if (Exprs.empty())
2401     return llvm::ConstantPointerNull::get(Int8PtrTy);
2402 
2403   llvm::FoldingSetNodeID ID;
2404   for (Expr *E : Exprs) {
2405     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2406   }
2407   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2408   if (Lookup)
2409     return Lookup;
2410 
2411   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2412   LLVMArgs.reserve(Exprs.size());
2413   ConstantEmitter ConstEmiter(*this);
2414   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2415     const auto *CE = cast<clang::ConstantExpr>(E);
2416     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2417                                     CE->getType());
2418   });
2419   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2420   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2421                                       llvm::GlobalValue::PrivateLinkage, Struct,
2422                                       ".args");
2423   GV->setSection(AnnotationSection);
2424   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2425   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy);
2426 
2427   Lookup = Bitcasted;
2428   return Bitcasted;
2429 }
2430 
2431 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2432                                                 const AnnotateAttr *AA,
2433                                                 SourceLocation L) {
2434   // Get the globals for file name, annotation, and the line number.
2435   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2436                  *UnitGV = EmitAnnotationUnit(L),
2437                  *LineNoCst = EmitAnnotationLineNo(L),
2438                  *Args = EmitAnnotationArgs(AA);
2439 
2440   llvm::Constant *ASZeroGV = GV;
2441   if (GV->getAddressSpace() != 0) {
2442     ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast(
2443                    GV, GV->getValueType()->getPointerTo(0));
2444   }
2445 
2446   // Create the ConstantStruct for the global annotation.
2447   llvm::Constant *Fields[] = {
2448       llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy),
2449       llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
2450       llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
2451       LineNoCst,
2452       Args,
2453   };
2454   return llvm::ConstantStruct::getAnon(Fields);
2455 }
2456 
2457 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2458                                          llvm::GlobalValue *GV) {
2459   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2460   // Get the struct elements for these annotations.
2461   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2462     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2463 }
2464 
2465 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
2466                                            llvm::Function *Fn,
2467                                            SourceLocation Loc) const {
2468   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2469   // Blacklist by function name.
2470   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
2471     return true;
2472   // Blacklist by location.
2473   if (Loc.isValid())
2474     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
2475   // If location is unknown, this may be a compiler-generated function. Assume
2476   // it's located in the main file.
2477   auto &SM = Context.getSourceManager();
2478   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2479     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
2480   }
2481   return false;
2482 }
2483 
2484 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
2485                                            SourceLocation Loc, QualType Ty,
2486                                            StringRef Category) const {
2487   // For now globals can be blacklisted only in ASan and KASan.
2488   const SanitizerMask EnabledAsanMask =
2489       LangOpts.Sanitize.Mask &
2490       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2491        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2492        SanitizerKind::MemTag);
2493   if (!EnabledAsanMask)
2494     return false;
2495   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
2496   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
2497     return true;
2498   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
2499     return true;
2500   // Check global type.
2501   if (!Ty.isNull()) {
2502     // Drill down the array types: if global variable of a fixed type is
2503     // blacklisted, we also don't instrument arrays of them.
2504     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2505       Ty = AT->getElementType();
2506     Ty = Ty.getCanonicalType().getUnqualifiedType();
2507     // We allow to blacklist only record types (classes, structs etc.)
2508     if (Ty->isRecordType()) {
2509       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2510       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
2511         return true;
2512     }
2513   }
2514   return false;
2515 }
2516 
2517 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2518                                    StringRef Category) const {
2519   const auto &XRayFilter = getContext().getXRayFilter();
2520   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2521   auto Attr = ImbueAttr::NONE;
2522   if (Loc.isValid())
2523     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2524   if (Attr == ImbueAttr::NONE)
2525     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2526   switch (Attr) {
2527   case ImbueAttr::NONE:
2528     return false;
2529   case ImbueAttr::ALWAYS:
2530     Fn->addFnAttr("function-instrument", "xray-always");
2531     break;
2532   case ImbueAttr::ALWAYS_ARG1:
2533     Fn->addFnAttr("function-instrument", "xray-always");
2534     Fn->addFnAttr("xray-log-args", "1");
2535     break;
2536   case ImbueAttr::NEVER:
2537     Fn->addFnAttr("function-instrument", "xray-never");
2538     break;
2539   }
2540   return true;
2541 }
2542 
2543 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2544   // Never defer when EmitAllDecls is specified.
2545   if (LangOpts.EmitAllDecls)
2546     return true;
2547 
2548   if (CodeGenOpts.KeepStaticConsts) {
2549     const auto *VD = dyn_cast<VarDecl>(Global);
2550     if (VD && VD->getType().isConstQualified() &&
2551         VD->getStorageDuration() == SD_Static)
2552       return true;
2553   }
2554 
2555   return getContext().DeclMustBeEmitted(Global);
2556 }
2557 
2558 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2559   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2560     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2561       // Implicit template instantiations may change linkage if they are later
2562       // explicitly instantiated, so they should not be emitted eagerly.
2563       return false;
2564     // In OpenMP 5.0 function may be marked as device_type(nohost) and we should
2565     // not emit them eagerly unless we sure that the function must be emitted on
2566     // the host.
2567     if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd &&
2568         !LangOpts.OpenMPIsDevice &&
2569         !OMPDeclareTargetDeclAttr::getDeviceType(FD) &&
2570         !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced())
2571       return false;
2572   }
2573   if (const auto *VD = dyn_cast<VarDecl>(Global))
2574     if (Context.getInlineVariableDefinitionKind(VD) ==
2575         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2576       // A definition of an inline constexpr static data member may change
2577       // linkage later if it's redeclared outside the class.
2578       return false;
2579   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2580   // codegen for global variables, because they may be marked as threadprivate.
2581   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2582       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2583       !isTypeConstant(Global->getType(), false) &&
2584       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2585     return false;
2586 
2587   return true;
2588 }
2589 
2590 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2591   StringRef Name = getMangledName(GD);
2592 
2593   // The UUID descriptor should be pointer aligned.
2594   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2595 
2596   // Look for an existing global.
2597   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2598     return ConstantAddress(GV, Alignment);
2599 
2600   ConstantEmitter Emitter(*this);
2601   llvm::Constant *Init;
2602 
2603   APValue &V = GD->getAsAPValue();
2604   if (!V.isAbsent()) {
2605     // If possible, emit the APValue version of the initializer. In particular,
2606     // this gets the type of the constant right.
2607     Init = Emitter.emitForInitializer(
2608         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2609   } else {
2610     // As a fallback, directly construct the constant.
2611     // FIXME: This may get padding wrong under esoteric struct layout rules.
2612     // MSVC appears to create a complete type 'struct __s_GUID' that it
2613     // presumably uses to represent these constants.
2614     MSGuidDecl::Parts Parts = GD->getParts();
2615     llvm::Constant *Fields[4] = {
2616         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2617         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2618         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2619         llvm::ConstantDataArray::getRaw(
2620             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2621             Int8Ty)};
2622     Init = llvm::ConstantStruct::getAnon(Fields);
2623   }
2624 
2625   auto *GV = new llvm::GlobalVariable(
2626       getModule(), Init->getType(),
2627       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2628   if (supportsCOMDAT())
2629     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2630   setDSOLocal(GV);
2631 
2632   llvm::Constant *Addr = GV;
2633   if (!V.isAbsent()) {
2634     Emitter.finalize(GV);
2635   } else {
2636     llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2637     Addr = llvm::ConstantExpr::getBitCast(
2638         GV, Ty->getPointerTo(GV->getAddressSpace()));
2639   }
2640   return ConstantAddress(Addr, Alignment);
2641 }
2642 
2643 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2644     const TemplateParamObjectDecl *TPO) {
2645   StringRef Name = getMangledName(TPO);
2646   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2647 
2648   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2649     return ConstantAddress(GV, Alignment);
2650 
2651   ConstantEmitter Emitter(*this);
2652   llvm::Constant *Init = Emitter.emitForInitializer(
2653         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2654 
2655   if (!Init) {
2656     ErrorUnsupported(TPO, "template parameter object");
2657     return ConstantAddress::invalid();
2658   }
2659 
2660   auto *GV = new llvm::GlobalVariable(
2661       getModule(), Init->getType(),
2662       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2663   if (supportsCOMDAT())
2664     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2665   Emitter.finalize(GV);
2666 
2667   return ConstantAddress(GV, Alignment);
2668 }
2669 
2670 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2671   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2672   assert(AA && "No alias?");
2673 
2674   CharUnits Alignment = getContext().getDeclAlign(VD);
2675   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2676 
2677   // See if there is already something with the target's name in the module.
2678   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2679   if (Entry) {
2680     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2681     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2682     return ConstantAddress(Ptr, Alignment);
2683   }
2684 
2685   llvm::Constant *Aliasee;
2686   if (isa<llvm::FunctionType>(DeclTy))
2687     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2688                                       GlobalDecl(cast<FunctionDecl>(VD)),
2689                                       /*ForVTable=*/false);
2690   else
2691     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2692                                     llvm::PointerType::getUnqual(DeclTy),
2693                                     nullptr);
2694 
2695   auto *F = cast<llvm::GlobalValue>(Aliasee);
2696   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2697   WeakRefReferences.insert(F);
2698 
2699   return ConstantAddress(Aliasee, Alignment);
2700 }
2701 
2702 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2703   const auto *Global = cast<ValueDecl>(GD.getDecl());
2704 
2705   // Weak references don't produce any output by themselves.
2706   if (Global->hasAttr<WeakRefAttr>())
2707     return;
2708 
2709   // If this is an alias definition (which otherwise looks like a declaration)
2710   // emit it now.
2711   if (Global->hasAttr<AliasAttr>())
2712     return EmitAliasDefinition(GD);
2713 
2714   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2715   if (Global->hasAttr<IFuncAttr>())
2716     return emitIFuncDefinition(GD);
2717 
2718   // If this is a cpu_dispatch multiversion function, emit the resolver.
2719   if (Global->hasAttr<CPUDispatchAttr>())
2720     return emitCPUDispatchDefinition(GD);
2721 
2722   // If this is CUDA, be selective about which declarations we emit.
2723   if (LangOpts.CUDA) {
2724     if (LangOpts.CUDAIsDevice) {
2725       if (!Global->hasAttr<CUDADeviceAttr>() &&
2726           !Global->hasAttr<CUDAGlobalAttr>() &&
2727           !Global->hasAttr<CUDAConstantAttr>() &&
2728           !Global->hasAttr<CUDASharedAttr>() &&
2729           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2730           !Global->getType()->isCUDADeviceBuiltinTextureType())
2731         return;
2732     } else {
2733       // We need to emit host-side 'shadows' for all global
2734       // device-side variables because the CUDA runtime needs their
2735       // size and host-side address in order to provide access to
2736       // their device-side incarnations.
2737 
2738       // So device-only functions are the only things we skip.
2739       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2740           Global->hasAttr<CUDADeviceAttr>())
2741         return;
2742 
2743       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2744              "Expected Variable or Function");
2745     }
2746   }
2747 
2748   if (LangOpts.OpenMP) {
2749     // If this is OpenMP, check if it is legal to emit this global normally.
2750     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2751       return;
2752     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2753       if (MustBeEmitted(Global))
2754         EmitOMPDeclareReduction(DRD);
2755       return;
2756     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
2757       if (MustBeEmitted(Global))
2758         EmitOMPDeclareMapper(DMD);
2759       return;
2760     }
2761   }
2762 
2763   // Ignore declarations, they will be emitted on their first use.
2764   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2765     // Forward declarations are emitted lazily on first use.
2766     if (!FD->doesThisDeclarationHaveABody()) {
2767       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2768         return;
2769 
2770       StringRef MangledName = getMangledName(GD);
2771 
2772       // Compute the function info and LLVM type.
2773       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2774       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2775 
2776       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2777                               /*DontDefer=*/false);
2778       return;
2779     }
2780   } else {
2781     const auto *VD = cast<VarDecl>(Global);
2782     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2783     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2784         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2785       if (LangOpts.OpenMP) {
2786         // Emit declaration of the must-be-emitted declare target variable.
2787         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2788                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2789           bool UnifiedMemoryEnabled =
2790               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
2791           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2792               !UnifiedMemoryEnabled) {
2793             (void)GetAddrOfGlobalVar(VD);
2794           } else {
2795             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2796                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
2797                      UnifiedMemoryEnabled)) &&
2798                    "Link clause or to clause with unified memory expected.");
2799             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2800           }
2801 
2802           return;
2803         }
2804       }
2805       // If this declaration may have caused an inline variable definition to
2806       // change linkage, make sure that it's emitted.
2807       if (Context.getInlineVariableDefinitionKind(VD) ==
2808           ASTContext::InlineVariableDefinitionKind::Strong)
2809         GetAddrOfGlobalVar(VD);
2810       return;
2811     }
2812   }
2813 
2814   // Defer code generation to first use when possible, e.g. if this is an inline
2815   // function. If the global must always be emitted, do it eagerly if possible
2816   // to benefit from cache locality.
2817   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2818     // Emit the definition if it can't be deferred.
2819     EmitGlobalDefinition(GD);
2820     return;
2821   }
2822 
2823   // If we're deferring emission of a C++ variable with an
2824   // initializer, remember the order in which it appeared in the file.
2825   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2826       cast<VarDecl>(Global)->hasInit()) {
2827     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2828     CXXGlobalInits.push_back(nullptr);
2829   }
2830 
2831   StringRef MangledName = getMangledName(GD);
2832   if (GetGlobalValue(MangledName) != nullptr) {
2833     // The value has already been used and should therefore be emitted.
2834     addDeferredDeclToEmit(GD);
2835   } else if (MustBeEmitted(Global)) {
2836     // The value must be emitted, but cannot be emitted eagerly.
2837     assert(!MayBeEmittedEagerly(Global));
2838     addDeferredDeclToEmit(GD);
2839   } else {
2840     // Otherwise, remember that we saw a deferred decl with this name.  The
2841     // first use of the mangled name will cause it to move into
2842     // DeferredDeclsToEmit.
2843     DeferredDecls[MangledName] = GD;
2844   }
2845 }
2846 
2847 // Check if T is a class type with a destructor that's not dllimport.
2848 static bool HasNonDllImportDtor(QualType T) {
2849   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2850     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2851       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2852         return true;
2853 
2854   return false;
2855 }
2856 
2857 namespace {
2858   struct FunctionIsDirectlyRecursive
2859       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
2860     const StringRef Name;
2861     const Builtin::Context &BI;
2862     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
2863         : Name(N), BI(C) {}
2864 
2865     bool VisitCallExpr(const CallExpr *E) {
2866       const FunctionDecl *FD = E->getDirectCallee();
2867       if (!FD)
2868         return false;
2869       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2870       if (Attr && Name == Attr->getLabel())
2871         return true;
2872       unsigned BuiltinID = FD->getBuiltinID();
2873       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2874         return false;
2875       StringRef BuiltinName = BI.getName(BuiltinID);
2876       if (BuiltinName.startswith("__builtin_") &&
2877           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2878         return true;
2879       }
2880       return false;
2881     }
2882 
2883     bool VisitStmt(const Stmt *S) {
2884       for (const Stmt *Child : S->children())
2885         if (Child && this->Visit(Child))
2886           return true;
2887       return false;
2888     }
2889   };
2890 
2891   // Make sure we're not referencing non-imported vars or functions.
2892   struct DLLImportFunctionVisitor
2893       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2894     bool SafeToInline = true;
2895 
2896     bool shouldVisitImplicitCode() const { return true; }
2897 
2898     bool VisitVarDecl(VarDecl *VD) {
2899       if (VD->getTLSKind()) {
2900         // A thread-local variable cannot be imported.
2901         SafeToInline = false;
2902         return SafeToInline;
2903       }
2904 
2905       // A variable definition might imply a destructor call.
2906       if (VD->isThisDeclarationADefinition())
2907         SafeToInline = !HasNonDllImportDtor(VD->getType());
2908 
2909       return SafeToInline;
2910     }
2911 
2912     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2913       if (const auto *D = E->getTemporary()->getDestructor())
2914         SafeToInline = D->hasAttr<DLLImportAttr>();
2915       return SafeToInline;
2916     }
2917 
2918     bool VisitDeclRefExpr(DeclRefExpr *E) {
2919       ValueDecl *VD = E->getDecl();
2920       if (isa<FunctionDecl>(VD))
2921         SafeToInline = VD->hasAttr<DLLImportAttr>();
2922       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2923         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2924       return SafeToInline;
2925     }
2926 
2927     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2928       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2929       return SafeToInline;
2930     }
2931 
2932     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2933       CXXMethodDecl *M = E->getMethodDecl();
2934       if (!M) {
2935         // Call through a pointer to member function. This is safe to inline.
2936         SafeToInline = true;
2937       } else {
2938         SafeToInline = M->hasAttr<DLLImportAttr>();
2939       }
2940       return SafeToInline;
2941     }
2942 
2943     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2944       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2945       return SafeToInline;
2946     }
2947 
2948     bool VisitCXXNewExpr(CXXNewExpr *E) {
2949       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2950       return SafeToInline;
2951     }
2952   };
2953 }
2954 
2955 // isTriviallyRecursive - Check if this function calls another
2956 // decl that, because of the asm attribute or the other decl being a builtin,
2957 // ends up pointing to itself.
2958 bool
2959 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2960   StringRef Name;
2961   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2962     // asm labels are a special kind of mangling we have to support.
2963     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2964     if (!Attr)
2965       return false;
2966     Name = Attr->getLabel();
2967   } else {
2968     Name = FD->getName();
2969   }
2970 
2971   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2972   const Stmt *Body = FD->getBody();
2973   return Body ? Walker.Visit(Body) : false;
2974 }
2975 
2976 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2977   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2978     return true;
2979   const auto *F = cast<FunctionDecl>(GD.getDecl());
2980   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2981     return false;
2982 
2983   if (F->hasAttr<DLLImportAttr>()) {
2984     // Check whether it would be safe to inline this dllimport function.
2985     DLLImportFunctionVisitor Visitor;
2986     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2987     if (!Visitor.SafeToInline)
2988       return false;
2989 
2990     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2991       // Implicit destructor invocations aren't captured in the AST, so the
2992       // check above can't see them. Check for them manually here.
2993       for (const Decl *Member : Dtor->getParent()->decls())
2994         if (isa<FieldDecl>(Member))
2995           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2996             return false;
2997       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2998         if (HasNonDllImportDtor(B.getType()))
2999           return false;
3000     }
3001   }
3002 
3003   // PR9614. Avoid cases where the source code is lying to us. An available
3004   // externally function should have an equivalent function somewhere else,
3005   // but a function that calls itself through asm label/`__builtin_` trickery is
3006   // clearly not equivalent to the real implementation.
3007   // This happens in glibc's btowc and in some configure checks.
3008   return !isTriviallyRecursive(F);
3009 }
3010 
3011 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3012   return CodeGenOpts.OptimizationLevel > 0;
3013 }
3014 
3015 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3016                                                        llvm::GlobalValue *GV) {
3017   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3018 
3019   if (FD->isCPUSpecificMultiVersion()) {
3020     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3021     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3022       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3023     // Requires multiple emits.
3024   } else
3025     EmitGlobalFunctionDefinition(GD, GV);
3026 }
3027 
3028 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3029   const auto *D = cast<ValueDecl>(GD.getDecl());
3030 
3031   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3032                                  Context.getSourceManager(),
3033                                  "Generating code for declaration");
3034 
3035   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3036     // At -O0, don't generate IR for functions with available_externally
3037     // linkage.
3038     if (!shouldEmitFunction(GD))
3039       return;
3040 
3041     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3042       std::string Name;
3043       llvm::raw_string_ostream OS(Name);
3044       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3045                                /*Qualified=*/true);
3046       return Name;
3047     });
3048 
3049     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3050       // Make sure to emit the definition(s) before we emit the thunks.
3051       // This is necessary for the generation of certain thunks.
3052       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3053         ABI->emitCXXStructor(GD);
3054       else if (FD->isMultiVersion())
3055         EmitMultiVersionFunctionDefinition(GD, GV);
3056       else
3057         EmitGlobalFunctionDefinition(GD, GV);
3058 
3059       if (Method->isVirtual())
3060         getVTables().EmitThunks(GD);
3061 
3062       return;
3063     }
3064 
3065     if (FD->isMultiVersion())
3066       return EmitMultiVersionFunctionDefinition(GD, GV);
3067     return EmitGlobalFunctionDefinition(GD, GV);
3068   }
3069 
3070   if (const auto *VD = dyn_cast<VarDecl>(D))
3071     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3072 
3073   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3074 }
3075 
3076 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3077                                                       llvm::Function *NewFn);
3078 
3079 static unsigned
3080 TargetMVPriority(const TargetInfo &TI,
3081                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3082   unsigned Priority = 0;
3083   for (StringRef Feat : RO.Conditions.Features)
3084     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3085 
3086   if (!RO.Conditions.Architecture.empty())
3087     Priority = std::max(
3088         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3089   return Priority;
3090 }
3091 
3092 void CodeGenModule::emitMultiVersionFunctions() {
3093   for (GlobalDecl GD : MultiVersionFuncs) {
3094     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3095     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3096     getContext().forEachMultiversionedFunctionVersion(
3097         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3098           GlobalDecl CurGD{
3099               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3100           StringRef MangledName = getMangledName(CurGD);
3101           llvm::Constant *Func = GetGlobalValue(MangledName);
3102           if (!Func) {
3103             if (CurFD->isDefined()) {
3104               EmitGlobalFunctionDefinition(CurGD, nullptr);
3105               Func = GetGlobalValue(MangledName);
3106             } else {
3107               const CGFunctionInfo &FI =
3108                   getTypes().arrangeGlobalDeclaration(GD);
3109               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3110               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3111                                        /*DontDefer=*/false, ForDefinition);
3112             }
3113             assert(Func && "This should have just been created");
3114           }
3115 
3116           const auto *TA = CurFD->getAttr<TargetAttr>();
3117           llvm::SmallVector<StringRef, 8> Feats;
3118           TA->getAddedFeatures(Feats);
3119 
3120           Options.emplace_back(cast<llvm::Function>(Func),
3121                                TA->getArchitecture(), Feats);
3122         });
3123 
3124     llvm::Function *ResolverFunc;
3125     const TargetInfo &TI = getTarget();
3126 
3127     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3128       ResolverFunc = cast<llvm::Function>(
3129           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3130       ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3131     } else {
3132       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3133     }
3134 
3135     if (supportsCOMDAT())
3136       ResolverFunc->setComdat(
3137           getModule().getOrInsertComdat(ResolverFunc->getName()));
3138 
3139     llvm::stable_sort(
3140         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3141                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3142           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3143         });
3144     CodeGenFunction CGF(*this);
3145     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3146   }
3147 }
3148 
3149 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3150   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3151   assert(FD && "Not a FunctionDecl?");
3152   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3153   assert(DD && "Not a cpu_dispatch Function?");
3154   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3155 
3156   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3157     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3158     DeclTy = getTypes().GetFunctionType(FInfo);
3159   }
3160 
3161   StringRef ResolverName = getMangledName(GD);
3162 
3163   llvm::Type *ResolverType;
3164   GlobalDecl ResolverGD;
3165   if (getTarget().supportsIFunc())
3166     ResolverType = llvm::FunctionType::get(
3167         llvm::PointerType::get(DeclTy,
3168                                Context.getTargetAddressSpace(FD->getType())),
3169         false);
3170   else {
3171     ResolverType = DeclTy;
3172     ResolverGD = GD;
3173   }
3174 
3175   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3176       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3177   ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage);
3178   if (supportsCOMDAT())
3179     ResolverFunc->setComdat(
3180         getModule().getOrInsertComdat(ResolverFunc->getName()));
3181 
3182   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3183   const TargetInfo &Target = getTarget();
3184   unsigned Index = 0;
3185   for (const IdentifierInfo *II : DD->cpus()) {
3186     // Get the name of the target function so we can look it up/create it.
3187     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3188                               getCPUSpecificMangling(*this, II->getName());
3189 
3190     llvm::Constant *Func = GetGlobalValue(MangledName);
3191 
3192     if (!Func) {
3193       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3194       if (ExistingDecl.getDecl() &&
3195           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3196         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3197         Func = GetGlobalValue(MangledName);
3198       } else {
3199         if (!ExistingDecl.getDecl())
3200           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3201 
3202       Func = GetOrCreateLLVMFunction(
3203           MangledName, DeclTy, ExistingDecl,
3204           /*ForVTable=*/false, /*DontDefer=*/true,
3205           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3206       }
3207     }
3208 
3209     llvm::SmallVector<StringRef, 32> Features;
3210     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3211     llvm::transform(Features, Features.begin(),
3212                     [](StringRef Str) { return Str.substr(1); });
3213     Features.erase(std::remove_if(
3214         Features.begin(), Features.end(), [&Target](StringRef Feat) {
3215           return !Target.validateCpuSupports(Feat);
3216         }), Features.end());
3217     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3218     ++Index;
3219   }
3220 
3221   llvm::sort(
3222       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3223                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3224         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
3225                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
3226       });
3227 
3228   // If the list contains multiple 'default' versions, such as when it contains
3229   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3230   // always run on at least a 'pentium'). We do this by deleting the 'least
3231   // advanced' (read, lowest mangling letter).
3232   while (Options.size() > 1 &&
3233          CodeGenFunction::GetX86CpuSupportsMask(
3234              (Options.end() - 2)->Conditions.Features) == 0) {
3235     StringRef LHSName = (Options.end() - 2)->Function->getName();
3236     StringRef RHSName = (Options.end() - 1)->Function->getName();
3237     if (LHSName.compare(RHSName) < 0)
3238       Options.erase(Options.end() - 2);
3239     else
3240       Options.erase(Options.end() - 1);
3241   }
3242 
3243   CodeGenFunction CGF(*this);
3244   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3245 
3246   if (getTarget().supportsIFunc()) {
3247     std::string AliasName = getMangledNameImpl(
3248         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3249     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3250     if (!AliasFunc) {
3251       auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction(
3252           AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true,
3253           /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition));
3254       auto *GA = llvm::GlobalAlias::create(
3255          DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule());
3256       GA->setLinkage(llvm::Function::WeakODRLinkage);
3257       SetCommonAttributes(GD, GA);
3258     }
3259   }
3260 }
3261 
3262 /// If a dispatcher for the specified mangled name is not in the module, create
3263 /// and return an llvm Function with the specified type.
3264 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3265     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3266   std::string MangledName =
3267       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3268 
3269   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3270   // a separate resolver).
3271   std::string ResolverName = MangledName;
3272   if (getTarget().supportsIFunc())
3273     ResolverName += ".ifunc";
3274   else if (FD->isTargetMultiVersion())
3275     ResolverName += ".resolver";
3276 
3277   // If this already exists, just return that one.
3278   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3279     return ResolverGV;
3280 
3281   // Since this is the first time we've created this IFunc, make sure
3282   // that we put this multiversioned function into the list to be
3283   // replaced later if necessary (target multiversioning only).
3284   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
3285     MultiVersionFuncs.push_back(GD);
3286 
3287   if (getTarget().supportsIFunc()) {
3288     llvm::Type *ResolverType = llvm::FunctionType::get(
3289         llvm::PointerType::get(
3290             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3291         false);
3292     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3293         MangledName + ".resolver", ResolverType, GlobalDecl{},
3294         /*ForVTable=*/false);
3295     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
3296         DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule());
3297     GIF->setName(ResolverName);
3298     SetCommonAttributes(FD, GIF);
3299 
3300     return GIF;
3301   }
3302 
3303   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3304       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3305   assert(isa<llvm::GlobalValue>(Resolver) &&
3306          "Resolver should be created for the first time");
3307   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3308   return Resolver;
3309 }
3310 
3311 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3312 /// module, create and return an llvm Function with the specified type. If there
3313 /// is something in the module with the specified name, return it potentially
3314 /// bitcasted to the right type.
3315 ///
3316 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3317 /// to set the attributes on the function when it is first created.
3318 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3319     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3320     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3321     ForDefinition_t IsForDefinition) {
3322   const Decl *D = GD.getDecl();
3323 
3324   // Any attempts to use a MultiVersion function should result in retrieving
3325   // the iFunc instead. Name Mangling will handle the rest of the changes.
3326   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3327     // For the device mark the function as one that should be emitted.
3328     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3329         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3330         !DontDefer && !IsForDefinition) {
3331       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3332         GlobalDecl GDDef;
3333         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3334           GDDef = GlobalDecl(CD, GD.getCtorType());
3335         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3336           GDDef = GlobalDecl(DD, GD.getDtorType());
3337         else
3338           GDDef = GlobalDecl(FDDef);
3339         EmitGlobal(GDDef);
3340       }
3341     }
3342 
3343     if (FD->isMultiVersion()) {
3344       if (FD->hasAttr<TargetAttr>())
3345         UpdateMultiVersionNames(GD, FD);
3346       if (!IsForDefinition)
3347         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3348     }
3349   }
3350 
3351   // Lookup the entry, lazily creating it if necessary.
3352   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3353   if (Entry) {
3354     if (WeakRefReferences.erase(Entry)) {
3355       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3356       if (FD && !FD->hasAttr<WeakAttr>())
3357         Entry->setLinkage(llvm::Function::ExternalLinkage);
3358     }
3359 
3360     // Handle dropped DLL attributes.
3361     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3362       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3363       setDSOLocal(Entry);
3364     }
3365 
3366     // If there are two attempts to define the same mangled name, issue an
3367     // error.
3368     if (IsForDefinition && !Entry->isDeclaration()) {
3369       GlobalDecl OtherGD;
3370       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3371       // to make sure that we issue an error only once.
3372       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3373           (GD.getCanonicalDecl().getDecl() !=
3374            OtherGD.getCanonicalDecl().getDecl()) &&
3375           DiagnosedConflictingDefinitions.insert(GD).second) {
3376         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3377             << MangledName;
3378         getDiags().Report(OtherGD.getDecl()->getLocation(),
3379                           diag::note_previous_definition);
3380       }
3381     }
3382 
3383     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3384         (Entry->getValueType() == Ty)) {
3385       return Entry;
3386     }
3387 
3388     // Make sure the result is of the correct type.
3389     // (If function is requested for a definition, we always need to create a new
3390     // function, not just return a bitcast.)
3391     if (!IsForDefinition)
3392       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3393   }
3394 
3395   // This function doesn't have a complete type (for example, the return
3396   // type is an incomplete struct). Use a fake type instead, and make
3397   // sure not to try to set attributes.
3398   bool IsIncompleteFunction = false;
3399 
3400   llvm::FunctionType *FTy;
3401   if (isa<llvm::FunctionType>(Ty)) {
3402     FTy = cast<llvm::FunctionType>(Ty);
3403   } else {
3404     FTy = llvm::FunctionType::get(VoidTy, false);
3405     IsIncompleteFunction = true;
3406   }
3407 
3408   llvm::Function *F =
3409       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3410                              Entry ? StringRef() : MangledName, &getModule());
3411 
3412   // If we already created a function with the same mangled name (but different
3413   // type) before, take its name and add it to the list of functions to be
3414   // replaced with F at the end of CodeGen.
3415   //
3416   // This happens if there is a prototype for a function (e.g. "int f()") and
3417   // then a definition of a different type (e.g. "int f(int x)").
3418   if (Entry) {
3419     F->takeName(Entry);
3420 
3421     // This might be an implementation of a function without a prototype, in
3422     // which case, try to do special replacement of calls which match the new
3423     // prototype.  The really key thing here is that we also potentially drop
3424     // arguments from the call site so as to make a direct call, which makes the
3425     // inliner happier and suppresses a number of optimizer warnings (!) about
3426     // dropping arguments.
3427     if (!Entry->use_empty()) {
3428       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3429       Entry->removeDeadConstantUsers();
3430     }
3431 
3432     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3433         F, Entry->getValueType()->getPointerTo());
3434     addGlobalValReplacement(Entry, BC);
3435   }
3436 
3437   assert(F->getName() == MangledName && "name was uniqued!");
3438   if (D)
3439     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3440   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
3441     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
3442     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
3443   }
3444 
3445   if (!DontDefer) {
3446     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3447     // each other bottoming out with the base dtor.  Therefore we emit non-base
3448     // dtors on usage, even if there is no dtor definition in the TU.
3449     if (D && isa<CXXDestructorDecl>(D) &&
3450         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3451                                            GD.getDtorType()))
3452       addDeferredDeclToEmit(GD);
3453 
3454     // This is the first use or definition of a mangled name.  If there is a
3455     // deferred decl with this name, remember that we need to emit it at the end
3456     // of the file.
3457     auto DDI = DeferredDecls.find(MangledName);
3458     if (DDI != DeferredDecls.end()) {
3459       // Move the potentially referenced deferred decl to the
3460       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3461       // don't need it anymore).
3462       addDeferredDeclToEmit(DDI->second);
3463       DeferredDecls.erase(DDI);
3464 
3465       // Otherwise, there are cases we have to worry about where we're
3466       // using a declaration for which we must emit a definition but where
3467       // we might not find a top-level definition:
3468       //   - member functions defined inline in their classes
3469       //   - friend functions defined inline in some class
3470       //   - special member functions with implicit definitions
3471       // If we ever change our AST traversal to walk into class methods,
3472       // this will be unnecessary.
3473       //
3474       // We also don't emit a definition for a function if it's going to be an
3475       // entry in a vtable, unless it's already marked as used.
3476     } else if (getLangOpts().CPlusPlus && D) {
3477       // Look for a declaration that's lexically in a record.
3478       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3479            FD = FD->getPreviousDecl()) {
3480         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3481           if (FD->doesThisDeclarationHaveABody()) {
3482             addDeferredDeclToEmit(GD.getWithDecl(FD));
3483             break;
3484           }
3485         }
3486       }
3487     }
3488   }
3489 
3490   // Make sure the result is of the requested type.
3491   if (!IsIncompleteFunction) {
3492     assert(F->getFunctionType() == Ty);
3493     return F;
3494   }
3495 
3496   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3497   return llvm::ConstantExpr::getBitCast(F, PTy);
3498 }
3499 
3500 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3501 /// non-null, then this function will use the specified type if it has to
3502 /// create it (this occurs when we see a definition of the function).
3503 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3504                                                  llvm::Type *Ty,
3505                                                  bool ForVTable,
3506                                                  bool DontDefer,
3507                                               ForDefinition_t IsForDefinition) {
3508   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3509          "consteval function should never be emitted");
3510   // If there was no specific requested type, just convert it now.
3511   if (!Ty) {
3512     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3513     Ty = getTypes().ConvertType(FD->getType());
3514   }
3515 
3516   // Devirtualized destructor calls may come through here instead of via
3517   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3518   // of the complete destructor when necessary.
3519   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3520     if (getTarget().getCXXABI().isMicrosoft() &&
3521         GD.getDtorType() == Dtor_Complete &&
3522         DD->getParent()->getNumVBases() == 0)
3523       GD = GlobalDecl(DD, Dtor_Base);
3524   }
3525 
3526   StringRef MangledName = getMangledName(GD);
3527   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3528                                  /*IsThunk=*/false, llvm::AttributeList(),
3529                                  IsForDefinition);
3530 }
3531 
3532 static const FunctionDecl *
3533 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3534   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3535   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3536 
3537   IdentifierInfo &CII = C.Idents.get(Name);
3538   for (const auto &Result : DC->lookup(&CII))
3539     if (const auto FD = dyn_cast<FunctionDecl>(Result))
3540       return FD;
3541 
3542   if (!C.getLangOpts().CPlusPlus)
3543     return nullptr;
3544 
3545   // Demangle the premangled name from getTerminateFn()
3546   IdentifierInfo &CXXII =
3547       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3548           ? C.Idents.get("terminate")
3549           : C.Idents.get(Name);
3550 
3551   for (const auto &N : {"__cxxabiv1", "std"}) {
3552     IdentifierInfo &NS = C.Idents.get(N);
3553     for (const auto &Result : DC->lookup(&NS)) {
3554       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3555       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
3556         for (const auto &Result : LSD->lookup(&NS))
3557           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3558             break;
3559 
3560       if (ND)
3561         for (const auto &Result : ND->lookup(&CXXII))
3562           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3563             return FD;
3564     }
3565   }
3566 
3567   return nullptr;
3568 }
3569 
3570 /// CreateRuntimeFunction - Create a new runtime function with the specified
3571 /// type and name.
3572 llvm::FunctionCallee
3573 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3574                                      llvm::AttributeList ExtraAttrs, bool Local,
3575                                      bool AssumeConvergent) {
3576   if (AssumeConvergent) {
3577     ExtraAttrs =
3578         ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex,
3579                                 llvm::Attribute::Convergent);
3580   }
3581 
3582   llvm::Constant *C =
3583       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3584                               /*DontDefer=*/false, /*IsThunk=*/false,
3585                               ExtraAttrs);
3586 
3587   if (auto *F = dyn_cast<llvm::Function>(C)) {
3588     if (F->empty()) {
3589       F->setCallingConv(getRuntimeCC());
3590 
3591       // In Windows Itanium environments, try to mark runtime functions
3592       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3593       // will link their standard library statically or dynamically. Marking
3594       // functions imported when they are not imported can cause linker errors
3595       // and warnings.
3596       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
3597           !getCodeGenOpts().LTOVisibilityPublicStd) {
3598         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
3599         if (!FD || FD->hasAttr<DLLImportAttr>()) {
3600           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3601           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
3602         }
3603       }
3604       setDSOLocal(F);
3605     }
3606   }
3607 
3608   return {FTy, C};
3609 }
3610 
3611 /// isTypeConstant - Determine whether an object of this type can be emitted
3612 /// as a constant.
3613 ///
3614 /// If ExcludeCtor is true, the duration when the object's constructor runs
3615 /// will not be considered. The caller will need to verify that the object is
3616 /// not written to during its construction.
3617 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3618   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3619     return false;
3620 
3621   if (Context.getLangOpts().CPlusPlus) {
3622     if (const CXXRecordDecl *Record
3623           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3624       return ExcludeCtor && !Record->hasMutableFields() &&
3625              Record->hasTrivialDestructor();
3626   }
3627 
3628   return true;
3629 }
3630 
3631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3632 /// create and return an llvm GlobalVariable with the specified type.  If there
3633 /// is something in the module with the specified name, return it potentially
3634 /// bitcasted to the right type.
3635 ///
3636 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3637 /// to set the attributes on the global when it is first created.
3638 ///
3639 /// If IsForDefinition is true, it is guaranteed that an actual global with
3640 /// type Ty will be returned, not conversion of a variable with the same
3641 /// mangled name but some other type.
3642 llvm::Constant *
3643 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3644                                      llvm::PointerType *Ty,
3645                                      const VarDecl *D,
3646                                      ForDefinition_t IsForDefinition) {
3647   // Lookup the entry, lazily creating it if necessary.
3648   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3649   if (Entry) {
3650     if (WeakRefReferences.erase(Entry)) {
3651       if (D && !D->hasAttr<WeakAttr>())
3652         Entry->setLinkage(llvm::Function::ExternalLinkage);
3653     }
3654 
3655     // Handle dropped DLL attributes.
3656     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3657       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3658 
3659     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3660       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3661 
3662     if (Entry->getType() == Ty)
3663       return Entry;
3664 
3665     // If there are two attempts to define the same mangled name, issue an
3666     // error.
3667     if (IsForDefinition && !Entry->isDeclaration()) {
3668       GlobalDecl OtherGD;
3669       const VarDecl *OtherD;
3670 
3671       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3672       // to make sure that we issue an error only once.
3673       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3674           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3675           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3676           OtherD->hasInit() &&
3677           DiagnosedConflictingDefinitions.insert(D).second) {
3678         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3679             << MangledName;
3680         getDiags().Report(OtherGD.getDecl()->getLocation(),
3681                           diag::note_previous_definition);
3682       }
3683     }
3684 
3685     // Make sure the result is of the correct type.
3686     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3687       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3688 
3689     // (If global is requested for a definition, we always need to create a new
3690     // global, not just return a bitcast.)
3691     if (!IsForDefinition)
3692       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3693   }
3694 
3695   auto AddrSpace = GetGlobalVarAddressSpace(D);
3696   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3697 
3698   auto *GV = new llvm::GlobalVariable(
3699       getModule(), Ty->getElementType(), false,
3700       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3701       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3702 
3703   // If we already created a global with the same mangled name (but different
3704   // type) before, take its name and remove it from its parent.
3705   if (Entry) {
3706     GV->takeName(Entry);
3707 
3708     if (!Entry->use_empty()) {
3709       llvm::Constant *NewPtrForOldDecl =
3710           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3711       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3712     }
3713 
3714     Entry->eraseFromParent();
3715   }
3716 
3717   // This is the first use or definition of a mangled name.  If there is a
3718   // deferred decl with this name, remember that we need to emit it at the end
3719   // of the file.
3720   auto DDI = DeferredDecls.find(MangledName);
3721   if (DDI != DeferredDecls.end()) {
3722     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3723     // list, and remove it from DeferredDecls (since we don't need it anymore).
3724     addDeferredDeclToEmit(DDI->second);
3725     DeferredDecls.erase(DDI);
3726   }
3727 
3728   // Handle things which are present even on external declarations.
3729   if (D) {
3730     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3731       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3732 
3733     // FIXME: This code is overly simple and should be merged with other global
3734     // handling.
3735     GV->setConstant(isTypeConstant(D->getType(), false));
3736 
3737     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
3738 
3739     setLinkageForGV(GV, D);
3740 
3741     if (D->getTLSKind()) {
3742       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3743         CXXThreadLocals.push_back(D);
3744       setTLSMode(GV, *D);
3745     }
3746 
3747     setGVProperties(GV, D);
3748 
3749     // If required by the ABI, treat declarations of static data members with
3750     // inline initializers as definitions.
3751     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3752       EmitGlobalVarDefinition(D);
3753     }
3754 
3755     // Emit section information for extern variables.
3756     if (D->hasExternalStorage()) {
3757       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3758         GV->setSection(SA->getName());
3759     }
3760 
3761     // Handle XCore specific ABI requirements.
3762     if (getTriple().getArch() == llvm::Triple::xcore &&
3763         D->getLanguageLinkage() == CLanguageLinkage &&
3764         D->getType().isConstant(Context) &&
3765         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3766       GV->setSection(".cp.rodata");
3767 
3768     // Check if we a have a const declaration with an initializer, we may be
3769     // able to emit it as available_externally to expose it's value to the
3770     // optimizer.
3771     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3772         D->getType().isConstQualified() && !GV->hasInitializer() &&
3773         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3774       const auto *Record =
3775           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3776       bool HasMutableFields = Record && Record->hasMutableFields();
3777       if (!HasMutableFields) {
3778         const VarDecl *InitDecl;
3779         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3780         if (InitExpr) {
3781           ConstantEmitter emitter(*this);
3782           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3783           if (Init) {
3784             auto *InitType = Init->getType();
3785             if (GV->getValueType() != InitType) {
3786               // The type of the initializer does not match the definition.
3787               // This happens when an initializer has a different type from
3788               // the type of the global (because of padding at the end of a
3789               // structure for instance).
3790               GV->setName(StringRef());
3791               // Make a new global with the correct type, this is now guaranteed
3792               // to work.
3793               auto *NewGV = cast<llvm::GlobalVariable>(
3794                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
3795                       ->stripPointerCasts());
3796 
3797               // Erase the old global, since it is no longer used.
3798               GV->eraseFromParent();
3799               GV = NewGV;
3800             } else {
3801               GV->setInitializer(Init);
3802               GV->setConstant(true);
3803               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3804             }
3805             emitter.finalize(GV);
3806           }
3807         }
3808       }
3809     }
3810   }
3811 
3812   if (GV->isDeclaration())
3813     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
3814 
3815   LangAS ExpectedAS =
3816       D ? D->getType().getAddressSpace()
3817         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3818   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3819          Ty->getPointerAddressSpace());
3820   if (AddrSpace != ExpectedAS)
3821     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3822                                                        ExpectedAS, Ty);
3823 
3824   return GV;
3825 }
3826 
3827 llvm::Constant *
3828 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
3829   const Decl *D = GD.getDecl();
3830 
3831   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
3832     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3833                                 /*DontDefer=*/false, IsForDefinition);
3834 
3835   if (isa<CXXMethodDecl>(D)) {
3836     auto FInfo =
3837         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
3838     auto Ty = getTypes().GetFunctionType(*FInfo);
3839     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3840                              IsForDefinition);
3841   }
3842 
3843   if (isa<FunctionDecl>(D)) {
3844     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3845     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3846     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3847                              IsForDefinition);
3848   }
3849 
3850   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
3851 }
3852 
3853 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3854     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3855     unsigned Alignment) {
3856   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3857   llvm::GlobalVariable *OldGV = nullptr;
3858 
3859   if (GV) {
3860     // Check if the variable has the right type.
3861     if (GV->getValueType() == Ty)
3862       return GV;
3863 
3864     // Because C++ name mangling, the only way we can end up with an already
3865     // existing global with the same name is if it has been declared extern "C".
3866     assert(GV->isDeclaration() && "Declaration has wrong type!");
3867     OldGV = GV;
3868   }
3869 
3870   // Create a new variable.
3871   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3872                                 Linkage, nullptr, Name);
3873 
3874   if (OldGV) {
3875     // Replace occurrences of the old variable if needed.
3876     GV->takeName(OldGV);
3877 
3878     if (!OldGV->use_empty()) {
3879       llvm::Constant *NewPtrForOldDecl =
3880       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3881       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3882     }
3883 
3884     OldGV->eraseFromParent();
3885   }
3886 
3887   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3888       !GV->hasAvailableExternallyLinkage())
3889     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3890 
3891   GV->setAlignment(llvm::MaybeAlign(Alignment));
3892 
3893   return GV;
3894 }
3895 
3896 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3897 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3898 /// then it will be created with the specified type instead of whatever the
3899 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3900 /// that an actual global with type Ty will be returned, not conversion of a
3901 /// variable with the same mangled name but some other type.
3902 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3903                                                   llvm::Type *Ty,
3904                                            ForDefinition_t IsForDefinition) {
3905   assert(D->hasGlobalStorage() && "Not a global variable");
3906   QualType ASTTy = D->getType();
3907   if (!Ty)
3908     Ty = getTypes().ConvertTypeForMem(ASTTy);
3909 
3910   llvm::PointerType *PTy =
3911     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3912 
3913   StringRef MangledName = getMangledName(D);
3914   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3915 }
3916 
3917 /// CreateRuntimeVariable - Create a new runtime global variable with the
3918 /// specified type and name.
3919 llvm::Constant *
3920 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3921                                      StringRef Name) {
3922   auto PtrTy =
3923       getContext().getLangOpts().OpenCL
3924           ? llvm::PointerType::get(
3925                 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global))
3926           : llvm::PointerType::getUnqual(Ty);
3927   auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr);
3928   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3929   return Ret;
3930 }
3931 
3932 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3933   assert(!D->getInit() && "Cannot emit definite definitions here!");
3934 
3935   StringRef MangledName = getMangledName(D);
3936   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3937 
3938   // We already have a definition, not declaration, with the same mangled name.
3939   // Emitting of declaration is not required (and actually overwrites emitted
3940   // definition).
3941   if (GV && !GV->isDeclaration())
3942     return;
3943 
3944   // If we have not seen a reference to this variable yet, place it into the
3945   // deferred declarations table to be emitted if needed later.
3946   if (!MustBeEmitted(D) && !GV) {
3947       DeferredDecls[MangledName] = D;
3948       return;
3949   }
3950 
3951   // The tentative definition is the only definition.
3952   EmitGlobalVarDefinition(D);
3953 }
3954 
3955 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
3956   EmitExternalVarDeclaration(D);
3957 }
3958 
3959 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3960   return Context.toCharUnitsFromBits(
3961       getDataLayout().getTypeStoreSizeInBits(Ty));
3962 }
3963 
3964 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3965   LangAS AddrSpace = LangAS::Default;
3966   if (LangOpts.OpenCL) {
3967     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3968     assert(AddrSpace == LangAS::opencl_global ||
3969            AddrSpace == LangAS::opencl_global_device ||
3970            AddrSpace == LangAS::opencl_global_host ||
3971            AddrSpace == LangAS::opencl_constant ||
3972            AddrSpace == LangAS::opencl_local ||
3973            AddrSpace >= LangAS::FirstTargetAddressSpace);
3974     return AddrSpace;
3975   }
3976 
3977   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3978     if (D && D->hasAttr<CUDAConstantAttr>())
3979       return LangAS::cuda_constant;
3980     else if (D && D->hasAttr<CUDASharedAttr>())
3981       return LangAS::cuda_shared;
3982     else if (D && D->hasAttr<CUDADeviceAttr>())
3983       return LangAS::cuda_device;
3984     else if (D && D->getType().isConstQualified())
3985       return LangAS::cuda_constant;
3986     else
3987       return LangAS::cuda_device;
3988   }
3989 
3990   if (LangOpts.OpenMP) {
3991     LangAS AS;
3992     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
3993       return AS;
3994   }
3995   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3996 }
3997 
3998 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3999   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4000   if (LangOpts.OpenCL)
4001     return LangAS::opencl_constant;
4002   if (auto AS = getTarget().getConstantAddressSpace())
4003     return AS.getValue();
4004   return LangAS::Default;
4005 }
4006 
4007 // In address space agnostic languages, string literals are in default address
4008 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4009 // emitted in constant address space in LLVM IR. To be consistent with other
4010 // parts of AST, string literal global variables in constant address space
4011 // need to be casted to default address space before being put into address
4012 // map and referenced by other part of CodeGen.
4013 // In OpenCL, string literals are in constant address space in AST, therefore
4014 // they should not be casted to default address space.
4015 static llvm::Constant *
4016 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4017                                        llvm::GlobalVariable *GV) {
4018   llvm::Constant *Cast = GV;
4019   if (!CGM.getLangOpts().OpenCL) {
4020     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
4021       if (AS != LangAS::Default)
4022         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4023             CGM, GV, AS.getValue(), LangAS::Default,
4024             GV->getValueType()->getPointerTo(
4025                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4026     }
4027   }
4028   return Cast;
4029 }
4030 
4031 template<typename SomeDecl>
4032 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4033                                                llvm::GlobalValue *GV) {
4034   if (!getLangOpts().CPlusPlus)
4035     return;
4036 
4037   // Must have 'used' attribute, or else inline assembly can't rely on
4038   // the name existing.
4039   if (!D->template hasAttr<UsedAttr>())
4040     return;
4041 
4042   // Must have internal linkage and an ordinary name.
4043   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4044     return;
4045 
4046   // Must be in an extern "C" context. Entities declared directly within
4047   // a record are not extern "C" even if the record is in such a context.
4048   const SomeDecl *First = D->getFirstDecl();
4049   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4050     return;
4051 
4052   // OK, this is an internal linkage entity inside an extern "C" linkage
4053   // specification. Make a note of that so we can give it the "expected"
4054   // mangled name if nothing else is using that name.
4055   std::pair<StaticExternCMap::iterator, bool> R =
4056       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4057 
4058   // If we have multiple internal linkage entities with the same name
4059   // in extern "C" regions, none of them gets that name.
4060   if (!R.second)
4061     R.first->second = nullptr;
4062 }
4063 
4064 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4065   if (!CGM.supportsCOMDAT())
4066     return false;
4067 
4068   // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent
4069   // them being "merged" by the COMDAT Folding linker optimization.
4070   if (D.hasAttr<CUDAGlobalAttr>())
4071     return false;
4072 
4073   if (D.hasAttr<SelectAnyAttr>())
4074     return true;
4075 
4076   GVALinkage Linkage;
4077   if (auto *VD = dyn_cast<VarDecl>(&D))
4078     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4079   else
4080     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4081 
4082   switch (Linkage) {
4083   case GVA_Internal:
4084   case GVA_AvailableExternally:
4085   case GVA_StrongExternal:
4086     return false;
4087   case GVA_DiscardableODR:
4088   case GVA_StrongODR:
4089     return true;
4090   }
4091   llvm_unreachable("No such linkage");
4092 }
4093 
4094 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4095                                           llvm::GlobalObject &GO) {
4096   if (!shouldBeInCOMDAT(*this, D))
4097     return;
4098   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4099 }
4100 
4101 /// Pass IsTentative as true if you want to create a tentative definition.
4102 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4103                                             bool IsTentative) {
4104   // OpenCL global variables of sampler type are translated to function calls,
4105   // therefore no need to be translated.
4106   QualType ASTTy = D->getType();
4107   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4108     return;
4109 
4110   // If this is OpenMP device, check if it is legal to emit this global
4111   // normally.
4112   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4113       OpenMPRuntime->emitTargetGlobalVariable(D))
4114     return;
4115 
4116   llvm::Constant *Init = nullptr;
4117   bool NeedsGlobalCtor = false;
4118   bool NeedsGlobalDtor =
4119       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4120 
4121   const VarDecl *InitDecl;
4122   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4123 
4124   Optional<ConstantEmitter> emitter;
4125 
4126   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4127   // as part of their declaration."  Sema has already checked for
4128   // error cases, so we just need to set Init to UndefValue.
4129   bool IsCUDASharedVar =
4130       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4131   // Shadows of initialized device-side global variables are also left
4132   // undefined.
4133   bool IsCUDAShadowVar =
4134       !getLangOpts().CUDAIsDevice &&
4135       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4136        D->hasAttr<CUDASharedAttr>());
4137   bool IsCUDADeviceShadowVar =
4138       getLangOpts().CUDAIsDevice &&
4139       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4140        D->getType()->isCUDADeviceBuiltinTextureType());
4141   // HIP pinned shadow of initialized host-side global variables are also
4142   // left undefined.
4143   if (getLangOpts().CUDA &&
4144       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4145     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4146   else if (D->hasAttr<LoaderUninitializedAttr>())
4147     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
4148   else if (!InitExpr) {
4149     // This is a tentative definition; tentative definitions are
4150     // implicitly initialized with { 0 }.
4151     //
4152     // Note that tentative definitions are only emitted at the end of
4153     // a translation unit, so they should never have incomplete
4154     // type. In addition, EmitTentativeDefinition makes sure that we
4155     // never attempt to emit a tentative definition if a real one
4156     // exists. A use may still exists, however, so we still may need
4157     // to do a RAUW.
4158     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4159     Init = EmitNullConstant(D->getType());
4160   } else {
4161     initializedGlobalDecl = GlobalDecl(D);
4162     emitter.emplace(*this);
4163     Init = emitter->tryEmitForInitializer(*InitDecl);
4164 
4165     if (!Init) {
4166       QualType T = InitExpr->getType();
4167       if (D->getType()->isReferenceType())
4168         T = D->getType();
4169 
4170       if (getLangOpts().CPlusPlus) {
4171         Init = EmitNullConstant(T);
4172         NeedsGlobalCtor = true;
4173       } else {
4174         ErrorUnsupported(D, "static initializer");
4175         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4176       }
4177     } else {
4178       // We don't need an initializer, so remove the entry for the delayed
4179       // initializer position (just in case this entry was delayed) if we
4180       // also don't need to register a destructor.
4181       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4182         DelayedCXXInitPosition.erase(D);
4183     }
4184   }
4185 
4186   llvm::Type* InitType = Init->getType();
4187   llvm::Constant *Entry =
4188       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4189 
4190   // Strip off pointer casts if we got them.
4191   Entry = Entry->stripPointerCasts();
4192 
4193   // Entry is now either a Function or GlobalVariable.
4194   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4195 
4196   // We have a definition after a declaration with the wrong type.
4197   // We must make a new GlobalVariable* and update everything that used OldGV
4198   // (a declaration or tentative definition) with the new GlobalVariable*
4199   // (which will be a definition).
4200   //
4201   // This happens if there is a prototype for a global (e.g.
4202   // "extern int x[];") and then a definition of a different type (e.g.
4203   // "int x[10];"). This also happens when an initializer has a different type
4204   // from the type of the global (this happens with unions).
4205   if (!GV || GV->getValueType() != InitType ||
4206       GV->getType()->getAddressSpace() !=
4207           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4208 
4209     // Move the old entry aside so that we'll create a new one.
4210     Entry->setName(StringRef());
4211 
4212     // Make a new global with the correct type, this is now guaranteed to work.
4213     GV = cast<llvm::GlobalVariable>(
4214         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4215             ->stripPointerCasts());
4216 
4217     // Replace all uses of the old global with the new global
4218     llvm::Constant *NewPtrForOldDecl =
4219         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4220     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4221 
4222     // Erase the old global, since it is no longer used.
4223     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4224   }
4225 
4226   MaybeHandleStaticInExternC(D, GV);
4227 
4228   if (D->hasAttr<AnnotateAttr>())
4229     AddGlobalAnnotations(D, GV);
4230 
4231   // Set the llvm linkage type as appropriate.
4232   llvm::GlobalValue::LinkageTypes Linkage =
4233       getLLVMLinkageVarDefinition(D, GV->isConstant());
4234 
4235   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4236   // the device. [...]"
4237   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4238   // __device__, declares a variable that: [...]
4239   // Is accessible from all the threads within the grid and from the host
4240   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4241   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4242   if (GV && LangOpts.CUDA) {
4243     if (LangOpts.CUDAIsDevice) {
4244       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4245           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()))
4246         GV->setExternallyInitialized(true);
4247     } else {
4248       // Host-side shadows of external declarations of device-side
4249       // global variables become internal definitions. These have to
4250       // be internal in order to prevent name conflicts with global
4251       // host variables with the same name in a different TUs.
4252       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
4253         Linkage = llvm::GlobalValue::InternalLinkage;
4254         // Shadow variables and their properties must be registered with CUDA
4255         // runtime. Skip Extern global variables, which will be registered in
4256         // the TU where they are defined.
4257         //
4258         // Don't register a C++17 inline variable. The local symbol can be
4259         // discarded and referencing a discarded local symbol from outside the
4260         // comdat (__cuda_register_globals) is disallowed by the ELF spec.
4261         // TODO: Reject __device__ constexpr and __device__ inline in Sema.
4262         if (!D->hasExternalStorage() && !D->isInline())
4263           getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(),
4264                                              D->hasAttr<CUDAConstantAttr>());
4265       } else if (D->hasAttr<CUDASharedAttr>()) {
4266         // __shared__ variables are odd. Shadows do get created, but
4267         // they are not registered with the CUDA runtime, so they
4268         // can't really be used to access their device-side
4269         // counterparts. It's not clear yet whether it's nvcc's bug or
4270         // a feature, but we've got to do the same for compatibility.
4271         Linkage = llvm::GlobalValue::InternalLinkage;
4272       } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4273                  D->getType()->isCUDADeviceBuiltinTextureType()) {
4274         // Builtin surfaces and textures and their template arguments are
4275         // also registered with CUDA runtime.
4276         Linkage = llvm::GlobalValue::InternalLinkage;
4277         const ClassTemplateSpecializationDecl *TD =
4278             cast<ClassTemplateSpecializationDecl>(
4279                 D->getType()->getAs<RecordType>()->getDecl());
4280         const TemplateArgumentList &Args = TD->getTemplateArgs();
4281         if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) {
4282           assert(Args.size() == 2 &&
4283                  "Unexpected number of template arguments of CUDA device "
4284                  "builtin surface type.");
4285           auto SurfType = Args[1].getAsIntegral();
4286           if (!D->hasExternalStorage())
4287             getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(),
4288                                                 SurfType.getSExtValue());
4289         } else {
4290           assert(Args.size() == 3 &&
4291                  "Unexpected number of template arguments of CUDA device "
4292                  "builtin texture type.");
4293           auto TexType = Args[1].getAsIntegral();
4294           auto Normalized = Args[2].getAsIntegral();
4295           if (!D->hasExternalStorage())
4296             getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(),
4297                                                TexType.getSExtValue(),
4298                                                Normalized.getZExtValue());
4299         }
4300       }
4301     }
4302   }
4303 
4304   GV->setInitializer(Init);
4305   if (emitter)
4306     emitter->finalize(GV);
4307 
4308   // If it is safe to mark the global 'constant', do so now.
4309   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4310                   isTypeConstant(D->getType(), true));
4311 
4312   // If it is in a read-only section, mark it 'constant'.
4313   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4314     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4315     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4316       GV->setConstant(true);
4317   }
4318 
4319   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4320 
4321   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4322   // function is only defined alongside the variable, not also alongside
4323   // callers. Normally, all accesses to a thread_local go through the
4324   // thread-wrapper in order to ensure initialization has occurred, underlying
4325   // variable will never be used other than the thread-wrapper, so it can be
4326   // converted to internal linkage.
4327   //
4328   // However, if the variable has the 'constinit' attribute, it _can_ be
4329   // referenced directly, without calling the thread-wrapper, so the linkage
4330   // must not be changed.
4331   //
4332   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4333   // weak or linkonce, the de-duplication semantics are important to preserve,
4334   // so we don't change the linkage.
4335   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4336       Linkage == llvm::GlobalValue::ExternalLinkage &&
4337       Context.getTargetInfo().getTriple().isOSDarwin() &&
4338       !D->hasAttr<ConstInitAttr>())
4339     Linkage = llvm::GlobalValue::InternalLinkage;
4340 
4341   GV->setLinkage(Linkage);
4342   if (D->hasAttr<DLLImportAttr>())
4343     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4344   else if (D->hasAttr<DLLExportAttr>())
4345     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4346   else
4347     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4348 
4349   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4350     // common vars aren't constant even if declared const.
4351     GV->setConstant(false);
4352     // Tentative definition of global variables may be initialized with
4353     // non-zero null pointers. In this case they should have weak linkage
4354     // since common linkage must have zero initializer and must not have
4355     // explicit section therefore cannot have non-zero initial value.
4356     if (!GV->getInitializer()->isNullValue())
4357       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4358   }
4359 
4360   setNonAliasAttributes(D, GV);
4361 
4362   if (D->getTLSKind() && !GV->isThreadLocal()) {
4363     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4364       CXXThreadLocals.push_back(D);
4365     setTLSMode(GV, *D);
4366   }
4367 
4368   maybeSetTrivialComdat(*D, *GV);
4369 
4370   // Emit the initializer function if necessary.
4371   if (NeedsGlobalCtor || NeedsGlobalDtor)
4372     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4373 
4374   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4375 
4376   // Emit global variable debug information.
4377   if (CGDebugInfo *DI = getModuleDebugInfo())
4378     if (getCodeGenOpts().hasReducedDebugInfo())
4379       DI->EmitGlobalVariable(GV, D);
4380 }
4381 
4382 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4383   if (CGDebugInfo *DI = getModuleDebugInfo())
4384     if (getCodeGenOpts().hasReducedDebugInfo()) {
4385       QualType ASTTy = D->getType();
4386       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4387       llvm::PointerType *PTy =
4388           llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
4389       llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D);
4390       DI->EmitExternalVariable(
4391           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4392     }
4393 }
4394 
4395 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4396                                       CodeGenModule &CGM, const VarDecl *D,
4397                                       bool NoCommon) {
4398   // Don't give variables common linkage if -fno-common was specified unless it
4399   // was overridden by a NoCommon attribute.
4400   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4401     return true;
4402 
4403   // C11 6.9.2/2:
4404   //   A declaration of an identifier for an object that has file scope without
4405   //   an initializer, and without a storage-class specifier or with the
4406   //   storage-class specifier static, constitutes a tentative definition.
4407   if (D->getInit() || D->hasExternalStorage())
4408     return true;
4409 
4410   // A variable cannot be both common and exist in a section.
4411   if (D->hasAttr<SectionAttr>())
4412     return true;
4413 
4414   // A variable cannot be both common and exist in a section.
4415   // We don't try to determine which is the right section in the front-end.
4416   // If no specialized section name is applicable, it will resort to default.
4417   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4418       D->hasAttr<PragmaClangDataSectionAttr>() ||
4419       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4420       D->hasAttr<PragmaClangRodataSectionAttr>())
4421     return true;
4422 
4423   // Thread local vars aren't considered common linkage.
4424   if (D->getTLSKind())
4425     return true;
4426 
4427   // Tentative definitions marked with WeakImportAttr are true definitions.
4428   if (D->hasAttr<WeakImportAttr>())
4429     return true;
4430 
4431   // A variable cannot be both common and exist in a comdat.
4432   if (shouldBeInCOMDAT(CGM, *D))
4433     return true;
4434 
4435   // Declarations with a required alignment do not have common linkage in MSVC
4436   // mode.
4437   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4438     if (D->hasAttr<AlignedAttr>())
4439       return true;
4440     QualType VarType = D->getType();
4441     if (Context.isAlignmentRequired(VarType))
4442       return true;
4443 
4444     if (const auto *RT = VarType->getAs<RecordType>()) {
4445       const RecordDecl *RD = RT->getDecl();
4446       for (const FieldDecl *FD : RD->fields()) {
4447         if (FD->isBitField())
4448           continue;
4449         if (FD->hasAttr<AlignedAttr>())
4450           return true;
4451         if (Context.isAlignmentRequired(FD->getType()))
4452           return true;
4453       }
4454     }
4455   }
4456 
4457   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4458   // common symbols, so symbols with greater alignment requirements cannot be
4459   // common.
4460   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4461   // alignments for common symbols via the aligncomm directive, so this
4462   // restriction only applies to MSVC environments.
4463   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4464       Context.getTypeAlignIfKnown(D->getType()) >
4465           Context.toBits(CharUnits::fromQuantity(32)))
4466     return true;
4467 
4468   return false;
4469 }
4470 
4471 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4472     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4473   if (Linkage == GVA_Internal)
4474     return llvm::Function::InternalLinkage;
4475 
4476   if (D->hasAttr<WeakAttr>()) {
4477     if (IsConstantVariable)
4478       return llvm::GlobalVariable::WeakODRLinkage;
4479     else
4480       return llvm::GlobalVariable::WeakAnyLinkage;
4481   }
4482 
4483   if (const auto *FD = D->getAsFunction())
4484     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4485       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4486 
4487   // We are guaranteed to have a strong definition somewhere else,
4488   // so we can use available_externally linkage.
4489   if (Linkage == GVA_AvailableExternally)
4490     return llvm::GlobalValue::AvailableExternallyLinkage;
4491 
4492   // Note that Apple's kernel linker doesn't support symbol
4493   // coalescing, so we need to avoid linkonce and weak linkages there.
4494   // Normally, this means we just map to internal, but for explicit
4495   // instantiations we'll map to external.
4496 
4497   // In C++, the compiler has to emit a definition in every translation unit
4498   // that references the function.  We should use linkonce_odr because
4499   // a) if all references in this translation unit are optimized away, we
4500   // don't need to codegen it.  b) if the function persists, it needs to be
4501   // merged with other definitions. c) C++ has the ODR, so we know the
4502   // definition is dependable.
4503   if (Linkage == GVA_DiscardableODR)
4504     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4505                                             : llvm::Function::InternalLinkage;
4506 
4507   // An explicit instantiation of a template has weak linkage, since
4508   // explicit instantiations can occur in multiple translation units
4509   // and must all be equivalent. However, we are not allowed to
4510   // throw away these explicit instantiations.
4511   //
4512   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4513   // so say that CUDA templates are either external (for kernels) or internal.
4514   // This lets llvm perform aggressive inter-procedural optimizations. For
4515   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4516   // therefore we need to follow the normal linkage paradigm.
4517   if (Linkage == GVA_StrongODR) {
4518     if (getLangOpts().AppleKext)
4519       return llvm::Function::ExternalLinkage;
4520     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4521         !getLangOpts().GPURelocatableDeviceCode)
4522       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4523                                           : llvm::Function::InternalLinkage;
4524     return llvm::Function::WeakODRLinkage;
4525   }
4526 
4527   // C++ doesn't have tentative definitions and thus cannot have common
4528   // linkage.
4529   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4530       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4531                                  CodeGenOpts.NoCommon))
4532     return llvm::GlobalVariable::CommonLinkage;
4533 
4534   // selectany symbols are externally visible, so use weak instead of
4535   // linkonce.  MSVC optimizes away references to const selectany globals, so
4536   // all definitions should be the same and ODR linkage should be used.
4537   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4538   if (D->hasAttr<SelectAnyAttr>())
4539     return llvm::GlobalVariable::WeakODRLinkage;
4540 
4541   // Otherwise, we have strong external linkage.
4542   assert(Linkage == GVA_StrongExternal);
4543   return llvm::GlobalVariable::ExternalLinkage;
4544 }
4545 
4546 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4547     const VarDecl *VD, bool IsConstant) {
4548   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4549   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4550 }
4551 
4552 /// Replace the uses of a function that was declared with a non-proto type.
4553 /// We want to silently drop extra arguments from call sites
4554 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4555                                           llvm::Function *newFn) {
4556   // Fast path.
4557   if (old->use_empty()) return;
4558 
4559   llvm::Type *newRetTy = newFn->getReturnType();
4560   SmallVector<llvm::Value*, 4> newArgs;
4561   SmallVector<llvm::OperandBundleDef, 1> newBundles;
4562 
4563   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4564          ui != ue; ) {
4565     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4566     llvm::User *user = use->getUser();
4567 
4568     // Recognize and replace uses of bitcasts.  Most calls to
4569     // unprototyped functions will use bitcasts.
4570     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4571       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4572         replaceUsesOfNonProtoConstant(bitcast, newFn);
4573       continue;
4574     }
4575 
4576     // Recognize calls to the function.
4577     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4578     if (!callSite) continue;
4579     if (!callSite->isCallee(&*use))
4580       continue;
4581 
4582     // If the return types don't match exactly, then we can't
4583     // transform this call unless it's dead.
4584     if (callSite->getType() != newRetTy && !callSite->use_empty())
4585       continue;
4586 
4587     // Get the call site's attribute list.
4588     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4589     llvm::AttributeList oldAttrs = callSite->getAttributes();
4590 
4591     // If the function was passed too few arguments, don't transform.
4592     unsigned newNumArgs = newFn->arg_size();
4593     if (callSite->arg_size() < newNumArgs)
4594       continue;
4595 
4596     // If extra arguments were passed, we silently drop them.
4597     // If any of the types mismatch, we don't transform.
4598     unsigned argNo = 0;
4599     bool dontTransform = false;
4600     for (llvm::Argument &A : newFn->args()) {
4601       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4602         dontTransform = true;
4603         break;
4604       }
4605 
4606       // Add any parameter attributes.
4607       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
4608       argNo++;
4609     }
4610     if (dontTransform)
4611       continue;
4612 
4613     // Okay, we can transform this.  Create the new call instruction and copy
4614     // over the required information.
4615     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4616 
4617     // Copy over any operand bundles.
4618     callSite->getOperandBundlesAsDefs(newBundles);
4619 
4620     llvm::CallBase *newCall;
4621     if (dyn_cast<llvm::CallInst>(callSite)) {
4622       newCall =
4623           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4624     } else {
4625       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4626       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4627                                          oldInvoke->getUnwindDest(), newArgs,
4628                                          newBundles, "", callSite);
4629     }
4630     newArgs.clear(); // for the next iteration
4631 
4632     if (!newCall->getType()->isVoidTy())
4633       newCall->takeName(callSite);
4634     newCall->setAttributes(llvm::AttributeList::get(
4635         newFn->getContext(), oldAttrs.getFnAttributes(),
4636         oldAttrs.getRetAttributes(), newArgAttrs));
4637     newCall->setCallingConv(callSite->getCallingConv());
4638 
4639     // Finally, remove the old call, replacing any uses with the new one.
4640     if (!callSite->use_empty())
4641       callSite->replaceAllUsesWith(newCall);
4642 
4643     // Copy debug location attached to CI.
4644     if (callSite->getDebugLoc())
4645       newCall->setDebugLoc(callSite->getDebugLoc());
4646 
4647     callSite->eraseFromParent();
4648   }
4649 }
4650 
4651 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
4652 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
4653 /// existing call uses of the old function in the module, this adjusts them to
4654 /// call the new function directly.
4655 ///
4656 /// This is not just a cleanup: the always_inline pass requires direct calls to
4657 /// functions to be able to inline them.  If there is a bitcast in the way, it
4658 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
4659 /// run at -O0.
4660 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4661                                                       llvm::Function *NewFn) {
4662   // If we're redefining a global as a function, don't transform it.
4663   if (!isa<llvm::Function>(Old)) return;
4664 
4665   replaceUsesOfNonProtoConstant(Old, NewFn);
4666 }
4667 
4668 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
4669   auto DK = VD->isThisDeclarationADefinition();
4670   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
4671     return;
4672 
4673   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
4674   // If we have a definition, this might be a deferred decl. If the
4675   // instantiation is explicit, make sure we emit it at the end.
4676   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
4677     GetAddrOfGlobalVar(VD);
4678 
4679   EmitTopLevelDecl(VD);
4680 }
4681 
4682 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
4683                                                  llvm::GlobalValue *GV) {
4684   const auto *D = cast<FunctionDecl>(GD.getDecl());
4685 
4686   // Compute the function info and LLVM type.
4687   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4688   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4689 
4690   // Get or create the prototype for the function.
4691   if (!GV || (GV->getValueType() != Ty))
4692     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
4693                                                    /*DontDefer=*/true,
4694                                                    ForDefinition));
4695 
4696   // Already emitted.
4697   if (!GV->isDeclaration())
4698     return;
4699 
4700   // We need to set linkage and visibility on the function before
4701   // generating code for it because various parts of IR generation
4702   // want to propagate this information down (e.g. to local static
4703   // declarations).
4704   auto *Fn = cast<llvm::Function>(GV);
4705   setFunctionLinkage(GD, Fn);
4706 
4707   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
4708   setGVProperties(Fn, GD);
4709 
4710   MaybeHandleStaticInExternC(D, Fn);
4711 
4712   maybeSetTrivialComdat(*D, *Fn);
4713 
4714   // Set CodeGen attributes that represent floating point environment.
4715   setLLVMFunctionFEnvAttributes(D, Fn);
4716 
4717   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
4718 
4719   setNonAliasAttributes(GD, Fn);
4720   SetLLVMFunctionAttributesForDefinition(D, Fn);
4721 
4722   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4723     AddGlobalCtor(Fn, CA->getPriority());
4724   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4725     AddGlobalDtor(Fn, DA->getPriority(), true);
4726   if (D->hasAttr<AnnotateAttr>())
4727     AddGlobalAnnotations(D, Fn);
4728 }
4729 
4730 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4731   const auto *D = cast<ValueDecl>(GD.getDecl());
4732   const AliasAttr *AA = D->getAttr<AliasAttr>();
4733   assert(AA && "Not an alias?");
4734 
4735   StringRef MangledName = getMangledName(GD);
4736 
4737   if (AA->getAliasee() == MangledName) {
4738     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4739     return;
4740   }
4741 
4742   // If there is a definition in the module, then it wins over the alias.
4743   // This is dubious, but allow it to be safe.  Just ignore the alias.
4744   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4745   if (Entry && !Entry->isDeclaration())
4746     return;
4747 
4748   Aliases.push_back(GD);
4749 
4750   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4751 
4752   // Create a reference to the named value.  This ensures that it is emitted
4753   // if a deferred decl.
4754   llvm::Constant *Aliasee;
4755   llvm::GlobalValue::LinkageTypes LT;
4756   if (isa<llvm::FunctionType>(DeclTy)) {
4757     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4758                                       /*ForVTable=*/false);
4759     LT = getFunctionLinkage(GD);
4760   } else {
4761     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4762                                     llvm::PointerType::getUnqual(DeclTy),
4763                                     /*D=*/nullptr);
4764     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
4765       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
4766     else
4767       LT = getFunctionLinkage(GD);
4768   }
4769 
4770   // Create the new alias itself, but don't set a name yet.
4771   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
4772   auto *GA =
4773       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
4774 
4775   if (Entry) {
4776     if (GA->getAliasee() == Entry) {
4777       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4778       return;
4779     }
4780 
4781     assert(Entry->isDeclaration());
4782 
4783     // If there is a declaration in the module, then we had an extern followed
4784     // by the alias, as in:
4785     //   extern int test6();
4786     //   ...
4787     //   int test6() __attribute__((alias("test7")));
4788     //
4789     // Remove it and replace uses of it with the alias.
4790     GA->takeName(Entry);
4791 
4792     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4793                                                           Entry->getType()));
4794     Entry->eraseFromParent();
4795   } else {
4796     GA->setName(MangledName);
4797   }
4798 
4799   // Set attributes which are particular to an alias; this is a
4800   // specialization of the attributes which may be set on a global
4801   // variable/function.
4802   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4803       D->isWeakImported()) {
4804     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4805   }
4806 
4807   if (const auto *VD = dyn_cast<VarDecl>(D))
4808     if (VD->getTLSKind())
4809       setTLSMode(GA, *VD);
4810 
4811   SetCommonAttributes(GD, GA);
4812 }
4813 
4814 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4815   const auto *D = cast<ValueDecl>(GD.getDecl());
4816   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4817   assert(IFA && "Not an ifunc?");
4818 
4819   StringRef MangledName = getMangledName(GD);
4820 
4821   if (IFA->getResolver() == MangledName) {
4822     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4823     return;
4824   }
4825 
4826   // Report an error if some definition overrides ifunc.
4827   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4828   if (Entry && !Entry->isDeclaration()) {
4829     GlobalDecl OtherGD;
4830     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4831         DiagnosedConflictingDefinitions.insert(GD).second) {
4832       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4833           << MangledName;
4834       Diags.Report(OtherGD.getDecl()->getLocation(),
4835                    diag::note_previous_definition);
4836     }
4837     return;
4838   }
4839 
4840   Aliases.push_back(GD);
4841 
4842   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4843   llvm::Constant *Resolver =
4844       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4845                               /*ForVTable=*/false);
4846   llvm::GlobalIFunc *GIF =
4847       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4848                                 "", Resolver, &getModule());
4849   if (Entry) {
4850     if (GIF->getResolver() == Entry) {
4851       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4852       return;
4853     }
4854     assert(Entry->isDeclaration());
4855 
4856     // If there is a declaration in the module, then we had an extern followed
4857     // by the ifunc, as in:
4858     //   extern int test();
4859     //   ...
4860     //   int test() __attribute__((ifunc("resolver")));
4861     //
4862     // Remove it and replace uses of it with the ifunc.
4863     GIF->takeName(Entry);
4864 
4865     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4866                                                           Entry->getType()));
4867     Entry->eraseFromParent();
4868   } else
4869     GIF->setName(MangledName);
4870 
4871   SetCommonAttributes(GD, GIF);
4872 }
4873 
4874 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4875                                             ArrayRef<llvm::Type*> Tys) {
4876   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4877                                          Tys);
4878 }
4879 
4880 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4881 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4882                          const StringLiteral *Literal, bool TargetIsLSB,
4883                          bool &IsUTF16, unsigned &StringLength) {
4884   StringRef String = Literal->getString();
4885   unsigned NumBytes = String.size();
4886 
4887   // Check for simple case.
4888   if (!Literal->containsNonAsciiOrNull()) {
4889     StringLength = NumBytes;
4890     return *Map.insert(std::make_pair(String, nullptr)).first;
4891   }
4892 
4893   // Otherwise, convert the UTF8 literals into a string of shorts.
4894   IsUTF16 = true;
4895 
4896   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4897   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4898   llvm::UTF16 *ToPtr = &ToBuf[0];
4899 
4900   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4901                                  ToPtr + NumBytes, llvm::strictConversion);
4902 
4903   // ConvertUTF8toUTF16 returns the length in ToPtr.
4904   StringLength = ToPtr - &ToBuf[0];
4905 
4906   // Add an explicit null.
4907   *ToPtr = 0;
4908   return *Map.insert(std::make_pair(
4909                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4910                                    (StringLength + 1) * 2),
4911                          nullptr)).first;
4912 }
4913 
4914 ConstantAddress
4915 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4916   unsigned StringLength = 0;
4917   bool isUTF16 = false;
4918   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4919       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4920                                getDataLayout().isLittleEndian(), isUTF16,
4921                                StringLength);
4922 
4923   if (auto *C = Entry.second)
4924     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4925 
4926   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4927   llvm::Constant *Zeros[] = { Zero, Zero };
4928 
4929   const ASTContext &Context = getContext();
4930   const llvm::Triple &Triple = getTriple();
4931 
4932   const auto CFRuntime = getLangOpts().CFRuntime;
4933   const bool IsSwiftABI =
4934       static_cast<unsigned>(CFRuntime) >=
4935       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4936   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4937 
4938   // If we don't already have it, get __CFConstantStringClassReference.
4939   if (!CFConstantStringClassRef) {
4940     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4941     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4942     Ty = llvm::ArrayType::get(Ty, 0);
4943 
4944     switch (CFRuntime) {
4945     default: break;
4946     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4947     case LangOptions::CoreFoundationABI::Swift5_0:
4948       CFConstantStringClassName =
4949           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4950                               : "$s10Foundation19_NSCFConstantStringCN";
4951       Ty = IntPtrTy;
4952       break;
4953     case LangOptions::CoreFoundationABI::Swift4_2:
4954       CFConstantStringClassName =
4955           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4956                               : "$S10Foundation19_NSCFConstantStringCN";
4957       Ty = IntPtrTy;
4958       break;
4959     case LangOptions::CoreFoundationABI::Swift4_1:
4960       CFConstantStringClassName =
4961           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4962                               : "__T010Foundation19_NSCFConstantStringCN";
4963       Ty = IntPtrTy;
4964       break;
4965     }
4966 
4967     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4968 
4969     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4970       llvm::GlobalValue *GV = nullptr;
4971 
4972       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4973         IdentifierInfo &II = Context.Idents.get(GV->getName());
4974         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4975         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4976 
4977         const VarDecl *VD = nullptr;
4978         for (const auto &Result : DC->lookup(&II))
4979           if ((VD = dyn_cast<VarDecl>(Result)))
4980             break;
4981 
4982         if (Triple.isOSBinFormatELF()) {
4983           if (!VD)
4984             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4985         } else {
4986           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4987           if (!VD || !VD->hasAttr<DLLExportAttr>())
4988             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4989           else
4990             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4991         }
4992 
4993         setDSOLocal(GV);
4994       }
4995     }
4996 
4997     // Decay array -> ptr
4998     CFConstantStringClassRef =
4999         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5000                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5001   }
5002 
5003   QualType CFTy = Context.getCFConstantStringType();
5004 
5005   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5006 
5007   ConstantInitBuilder Builder(*this);
5008   auto Fields = Builder.beginStruct(STy);
5009 
5010   // Class pointer.
5011   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5012 
5013   // Flags.
5014   if (IsSwiftABI) {
5015     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5016     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5017   } else {
5018     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5019   }
5020 
5021   // String pointer.
5022   llvm::Constant *C = nullptr;
5023   if (isUTF16) {
5024     auto Arr = llvm::makeArrayRef(
5025         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5026         Entry.first().size() / 2);
5027     C = llvm::ConstantDataArray::get(VMContext, Arr);
5028   } else {
5029     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5030   }
5031 
5032   // Note: -fwritable-strings doesn't make the backing store strings of
5033   // CFStrings writable. (See <rdar://problem/10657500>)
5034   auto *GV =
5035       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5036                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5037   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5038   // Don't enforce the target's minimum global alignment, since the only use
5039   // of the string is via this class initializer.
5040   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5041                             : Context.getTypeAlignInChars(Context.CharTy);
5042   GV->setAlignment(Align.getAsAlign());
5043 
5044   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5045   // Without it LLVM can merge the string with a non unnamed_addr one during
5046   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5047   if (Triple.isOSBinFormatMachO())
5048     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5049                            : "__TEXT,__cstring,cstring_literals");
5050   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5051   // the static linker to adjust permissions to read-only later on.
5052   else if (Triple.isOSBinFormatELF())
5053     GV->setSection(".rodata");
5054 
5055   // String.
5056   llvm::Constant *Str =
5057       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5058 
5059   if (isUTF16)
5060     // Cast the UTF16 string to the correct type.
5061     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5062   Fields.add(Str);
5063 
5064   // String length.
5065   llvm::IntegerType *LengthTy =
5066       llvm::IntegerType::get(getModule().getContext(),
5067                              Context.getTargetInfo().getLongWidth());
5068   if (IsSwiftABI) {
5069     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5070         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5071       LengthTy = Int32Ty;
5072     else
5073       LengthTy = IntPtrTy;
5074   }
5075   Fields.addInt(LengthTy, StringLength);
5076 
5077   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5078   // properly aligned on 32-bit platforms.
5079   CharUnits Alignment =
5080       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5081 
5082   // The struct.
5083   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5084                                     /*isConstant=*/false,
5085                                     llvm::GlobalVariable::PrivateLinkage);
5086   GV->addAttribute("objc_arc_inert");
5087   switch (Triple.getObjectFormat()) {
5088   case llvm::Triple::UnknownObjectFormat:
5089     llvm_unreachable("unknown file format");
5090   case llvm::Triple::GOFF:
5091     llvm_unreachable("GOFF is not yet implemented");
5092   case llvm::Triple::XCOFF:
5093     llvm_unreachable("XCOFF is not yet implemented");
5094   case llvm::Triple::COFF:
5095   case llvm::Triple::ELF:
5096   case llvm::Triple::Wasm:
5097     GV->setSection("cfstring");
5098     break;
5099   case llvm::Triple::MachO:
5100     GV->setSection("__DATA,__cfstring");
5101     break;
5102   }
5103   Entry.second = GV;
5104 
5105   return ConstantAddress(GV, Alignment);
5106 }
5107 
5108 bool CodeGenModule::getExpressionLocationsEnabled() const {
5109   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5110 }
5111 
5112 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5113   if (ObjCFastEnumerationStateType.isNull()) {
5114     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5115     D->startDefinition();
5116 
5117     QualType FieldTypes[] = {
5118       Context.UnsignedLongTy,
5119       Context.getPointerType(Context.getObjCIdType()),
5120       Context.getPointerType(Context.UnsignedLongTy),
5121       Context.getConstantArrayType(Context.UnsignedLongTy,
5122                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5123     };
5124 
5125     for (size_t i = 0; i < 4; ++i) {
5126       FieldDecl *Field = FieldDecl::Create(Context,
5127                                            D,
5128                                            SourceLocation(),
5129                                            SourceLocation(), nullptr,
5130                                            FieldTypes[i], /*TInfo=*/nullptr,
5131                                            /*BitWidth=*/nullptr,
5132                                            /*Mutable=*/false,
5133                                            ICIS_NoInit);
5134       Field->setAccess(AS_public);
5135       D->addDecl(Field);
5136     }
5137 
5138     D->completeDefinition();
5139     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5140   }
5141 
5142   return ObjCFastEnumerationStateType;
5143 }
5144 
5145 llvm::Constant *
5146 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5147   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5148 
5149   // Don't emit it as the address of the string, emit the string data itself
5150   // as an inline array.
5151   if (E->getCharByteWidth() == 1) {
5152     SmallString<64> Str(E->getString());
5153 
5154     // Resize the string to the right size, which is indicated by its type.
5155     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5156     Str.resize(CAT->getSize().getZExtValue());
5157     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5158   }
5159 
5160   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5161   llvm::Type *ElemTy = AType->getElementType();
5162   unsigned NumElements = AType->getNumElements();
5163 
5164   // Wide strings have either 2-byte or 4-byte elements.
5165   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5166     SmallVector<uint16_t, 32> Elements;
5167     Elements.reserve(NumElements);
5168 
5169     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5170       Elements.push_back(E->getCodeUnit(i));
5171     Elements.resize(NumElements);
5172     return llvm::ConstantDataArray::get(VMContext, Elements);
5173   }
5174 
5175   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5176   SmallVector<uint32_t, 32> Elements;
5177   Elements.reserve(NumElements);
5178 
5179   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5180     Elements.push_back(E->getCodeUnit(i));
5181   Elements.resize(NumElements);
5182   return llvm::ConstantDataArray::get(VMContext, Elements);
5183 }
5184 
5185 static llvm::GlobalVariable *
5186 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5187                       CodeGenModule &CGM, StringRef GlobalName,
5188                       CharUnits Alignment) {
5189   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5190       CGM.getStringLiteralAddressSpace());
5191 
5192   llvm::Module &M = CGM.getModule();
5193   // Create a global variable for this string
5194   auto *GV = new llvm::GlobalVariable(
5195       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5196       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5197   GV->setAlignment(Alignment.getAsAlign());
5198   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5199   if (GV->isWeakForLinker()) {
5200     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5201     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5202   }
5203   CGM.setDSOLocal(GV);
5204 
5205   return GV;
5206 }
5207 
5208 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5209 /// constant array for the given string literal.
5210 ConstantAddress
5211 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5212                                                   StringRef Name) {
5213   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5214 
5215   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5216   llvm::GlobalVariable **Entry = nullptr;
5217   if (!LangOpts.WritableStrings) {
5218     Entry = &ConstantStringMap[C];
5219     if (auto GV = *Entry) {
5220       if (Alignment.getQuantity() > GV->getAlignment())
5221         GV->setAlignment(Alignment.getAsAlign());
5222       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5223                              Alignment);
5224     }
5225   }
5226 
5227   SmallString<256> MangledNameBuffer;
5228   StringRef GlobalVariableName;
5229   llvm::GlobalValue::LinkageTypes LT;
5230 
5231   // Mangle the string literal if that's how the ABI merges duplicate strings.
5232   // Don't do it if they are writable, since we don't want writes in one TU to
5233   // affect strings in another.
5234   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5235       !LangOpts.WritableStrings) {
5236     llvm::raw_svector_ostream Out(MangledNameBuffer);
5237     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5238     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5239     GlobalVariableName = MangledNameBuffer;
5240   } else {
5241     LT = llvm::GlobalValue::PrivateLinkage;
5242     GlobalVariableName = Name;
5243   }
5244 
5245   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5246   if (Entry)
5247     *Entry = GV;
5248 
5249   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5250                                   QualType());
5251 
5252   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5253                          Alignment);
5254 }
5255 
5256 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5257 /// array for the given ObjCEncodeExpr node.
5258 ConstantAddress
5259 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5260   std::string Str;
5261   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5262 
5263   return GetAddrOfConstantCString(Str);
5264 }
5265 
5266 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5267 /// the literal and a terminating '\0' character.
5268 /// The result has pointer to array type.
5269 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5270     const std::string &Str, const char *GlobalName) {
5271   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5272   CharUnits Alignment =
5273     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5274 
5275   llvm::Constant *C =
5276       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5277 
5278   // Don't share any string literals if strings aren't constant.
5279   llvm::GlobalVariable **Entry = nullptr;
5280   if (!LangOpts.WritableStrings) {
5281     Entry = &ConstantStringMap[C];
5282     if (auto GV = *Entry) {
5283       if (Alignment.getQuantity() > GV->getAlignment())
5284         GV->setAlignment(Alignment.getAsAlign());
5285       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5286                              Alignment);
5287     }
5288   }
5289 
5290   // Get the default prefix if a name wasn't specified.
5291   if (!GlobalName)
5292     GlobalName = ".str";
5293   // Create a global variable for this.
5294   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5295                                   GlobalName, Alignment);
5296   if (Entry)
5297     *Entry = GV;
5298 
5299   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5300                          Alignment);
5301 }
5302 
5303 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5304     const MaterializeTemporaryExpr *E, const Expr *Init) {
5305   assert((E->getStorageDuration() == SD_Static ||
5306           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5307   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5308 
5309   // If we're not materializing a subobject of the temporary, keep the
5310   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5311   QualType MaterializedType = Init->getType();
5312   if (Init == E->getSubExpr())
5313     MaterializedType = E->getType();
5314 
5315   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5316 
5317   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
5318     return ConstantAddress(Slot, Align);
5319 
5320   // FIXME: If an externally-visible declaration extends multiple temporaries,
5321   // we need to give each temporary the same name in every translation unit (and
5322   // we also need to make the temporaries externally-visible).
5323   SmallString<256> Name;
5324   llvm::raw_svector_ostream Out(Name);
5325   getCXXABI().getMangleContext().mangleReferenceTemporary(
5326       VD, E->getManglingNumber(), Out);
5327 
5328   APValue *Value = nullptr;
5329   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5330     // If the initializer of the extending declaration is a constant
5331     // initializer, we should have a cached constant initializer for this
5332     // temporary. Note that this might have a different value from the value
5333     // computed by evaluating the initializer if the surrounding constant
5334     // expression modifies the temporary.
5335     Value = E->getOrCreateValue(false);
5336   }
5337 
5338   // Try evaluating it now, it might have a constant initializer.
5339   Expr::EvalResult EvalResult;
5340   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5341       !EvalResult.hasSideEffects())
5342     Value = &EvalResult.Val;
5343 
5344   LangAS AddrSpace =
5345       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5346 
5347   Optional<ConstantEmitter> emitter;
5348   llvm::Constant *InitialValue = nullptr;
5349   bool Constant = false;
5350   llvm::Type *Type;
5351   if (Value) {
5352     // The temporary has a constant initializer, use it.
5353     emitter.emplace(*this);
5354     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5355                                                MaterializedType);
5356     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5357     Type = InitialValue->getType();
5358   } else {
5359     // No initializer, the initialization will be provided when we
5360     // initialize the declaration which performed lifetime extension.
5361     Type = getTypes().ConvertTypeForMem(MaterializedType);
5362   }
5363 
5364   // Create a global variable for this lifetime-extended temporary.
5365   llvm::GlobalValue::LinkageTypes Linkage =
5366       getLLVMLinkageVarDefinition(VD, Constant);
5367   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5368     const VarDecl *InitVD;
5369     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5370         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5371       // Temporaries defined inside a class get linkonce_odr linkage because the
5372       // class can be defined in multiple translation units.
5373       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5374     } else {
5375       // There is no need for this temporary to have external linkage if the
5376       // VarDecl has external linkage.
5377       Linkage = llvm::GlobalVariable::InternalLinkage;
5378     }
5379   }
5380   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5381   auto *GV = new llvm::GlobalVariable(
5382       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5383       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5384   if (emitter) emitter->finalize(GV);
5385   setGVProperties(GV, VD);
5386   GV->setAlignment(Align.getAsAlign());
5387   if (supportsCOMDAT() && GV->isWeakForLinker())
5388     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5389   if (VD->getTLSKind())
5390     setTLSMode(GV, *VD);
5391   llvm::Constant *CV = GV;
5392   if (AddrSpace != LangAS::Default)
5393     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5394         *this, GV, AddrSpace, LangAS::Default,
5395         Type->getPointerTo(
5396             getContext().getTargetAddressSpace(LangAS::Default)));
5397   MaterializedGlobalTemporaryMap[E] = CV;
5398   return ConstantAddress(CV, Align);
5399 }
5400 
5401 /// EmitObjCPropertyImplementations - Emit information for synthesized
5402 /// properties for an implementation.
5403 void CodeGenModule::EmitObjCPropertyImplementations(const
5404                                                     ObjCImplementationDecl *D) {
5405   for (const auto *PID : D->property_impls()) {
5406     // Dynamic is just for type-checking.
5407     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5408       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5409 
5410       // Determine which methods need to be implemented, some may have
5411       // been overridden. Note that ::isPropertyAccessor is not the method
5412       // we want, that just indicates if the decl came from a
5413       // property. What we want to know is if the method is defined in
5414       // this implementation.
5415       auto *Getter = PID->getGetterMethodDecl();
5416       if (!Getter || Getter->isSynthesizedAccessorStub())
5417         CodeGenFunction(*this).GenerateObjCGetter(
5418             const_cast<ObjCImplementationDecl *>(D), PID);
5419       auto *Setter = PID->getSetterMethodDecl();
5420       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5421         CodeGenFunction(*this).GenerateObjCSetter(
5422                                  const_cast<ObjCImplementationDecl *>(D), PID);
5423     }
5424   }
5425 }
5426 
5427 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5428   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5429   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5430        ivar; ivar = ivar->getNextIvar())
5431     if (ivar->getType().isDestructedType())
5432       return true;
5433 
5434   return false;
5435 }
5436 
5437 static bool AllTrivialInitializers(CodeGenModule &CGM,
5438                                    ObjCImplementationDecl *D) {
5439   CodeGenFunction CGF(CGM);
5440   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5441        E = D->init_end(); B != E; ++B) {
5442     CXXCtorInitializer *CtorInitExp = *B;
5443     Expr *Init = CtorInitExp->getInit();
5444     if (!CGF.isTrivialInitializer(Init))
5445       return false;
5446   }
5447   return true;
5448 }
5449 
5450 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5451 /// for an implementation.
5452 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5453   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5454   if (needsDestructMethod(D)) {
5455     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5456     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5457     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5458         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5459         getContext().VoidTy, nullptr, D,
5460         /*isInstance=*/true, /*isVariadic=*/false,
5461         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5462         /*isImplicitlyDeclared=*/true,
5463         /*isDefined=*/false, ObjCMethodDecl::Required);
5464     D->addInstanceMethod(DTORMethod);
5465     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5466     D->setHasDestructors(true);
5467   }
5468 
5469   // If the implementation doesn't have any ivar initializers, we don't need
5470   // a .cxx_construct.
5471   if (D->getNumIvarInitializers() == 0 ||
5472       AllTrivialInitializers(*this, D))
5473     return;
5474 
5475   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5476   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5477   // The constructor returns 'self'.
5478   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5479       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5480       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5481       /*isVariadic=*/false,
5482       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5483       /*isImplicitlyDeclared=*/true,
5484       /*isDefined=*/false, ObjCMethodDecl::Required);
5485   D->addInstanceMethod(CTORMethod);
5486   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5487   D->setHasNonZeroConstructors(true);
5488 }
5489 
5490 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5491 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5492   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5493       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5494     ErrorUnsupported(LSD, "linkage spec");
5495     return;
5496   }
5497 
5498   EmitDeclContext(LSD);
5499 }
5500 
5501 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5502   for (auto *I : DC->decls()) {
5503     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5504     // are themselves considered "top-level", so EmitTopLevelDecl on an
5505     // ObjCImplDecl does not recursively visit them. We need to do that in
5506     // case they're nested inside another construct (LinkageSpecDecl /
5507     // ExportDecl) that does stop them from being considered "top-level".
5508     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5509       for (auto *M : OID->methods())
5510         EmitTopLevelDecl(M);
5511     }
5512 
5513     EmitTopLevelDecl(I);
5514   }
5515 }
5516 
5517 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5518 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5519   // Ignore dependent declarations.
5520   if (D->isTemplated())
5521     return;
5522 
5523   // Consteval function shouldn't be emitted.
5524   if (auto *FD = dyn_cast<FunctionDecl>(D))
5525     if (FD->isConsteval())
5526       return;
5527 
5528   switch (D->getKind()) {
5529   case Decl::CXXConversion:
5530   case Decl::CXXMethod:
5531   case Decl::Function:
5532     EmitGlobal(cast<FunctionDecl>(D));
5533     // Always provide some coverage mapping
5534     // even for the functions that aren't emitted.
5535     AddDeferredUnusedCoverageMapping(D);
5536     break;
5537 
5538   case Decl::CXXDeductionGuide:
5539     // Function-like, but does not result in code emission.
5540     break;
5541 
5542   case Decl::Var:
5543   case Decl::Decomposition:
5544   case Decl::VarTemplateSpecialization:
5545     EmitGlobal(cast<VarDecl>(D));
5546     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5547       for (auto *B : DD->bindings())
5548         if (auto *HD = B->getHoldingVar())
5549           EmitGlobal(HD);
5550     break;
5551 
5552   // Indirect fields from global anonymous structs and unions can be
5553   // ignored; only the actual variable requires IR gen support.
5554   case Decl::IndirectField:
5555     break;
5556 
5557   // C++ Decls
5558   case Decl::Namespace:
5559     EmitDeclContext(cast<NamespaceDecl>(D));
5560     break;
5561   case Decl::ClassTemplateSpecialization: {
5562     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5563     if (CGDebugInfo *DI = getModuleDebugInfo())
5564       if (Spec->getSpecializationKind() ==
5565               TSK_ExplicitInstantiationDefinition &&
5566           Spec->hasDefinition())
5567         DI->completeTemplateDefinition(*Spec);
5568   } LLVM_FALLTHROUGH;
5569   case Decl::CXXRecord: {
5570     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5571     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5572       if (CRD->hasDefinition())
5573         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5574       if (auto *ES = D->getASTContext().getExternalSource())
5575         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5576           DI->completeUnusedClass(*CRD);
5577     }
5578     // Emit any static data members, they may be definitions.
5579     for (auto *I : CRD->decls())
5580       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5581         EmitTopLevelDecl(I);
5582     break;
5583   }
5584     // No code generation needed.
5585   case Decl::UsingShadow:
5586   case Decl::ClassTemplate:
5587   case Decl::VarTemplate:
5588   case Decl::Concept:
5589   case Decl::VarTemplatePartialSpecialization:
5590   case Decl::FunctionTemplate:
5591   case Decl::TypeAliasTemplate:
5592   case Decl::Block:
5593   case Decl::Empty:
5594   case Decl::Binding:
5595     break;
5596   case Decl::Using:          // using X; [C++]
5597     if (CGDebugInfo *DI = getModuleDebugInfo())
5598         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5599     break;
5600   case Decl::NamespaceAlias:
5601     if (CGDebugInfo *DI = getModuleDebugInfo())
5602         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
5603     break;
5604   case Decl::UsingDirective: // using namespace X; [C++]
5605     if (CGDebugInfo *DI = getModuleDebugInfo())
5606       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
5607     break;
5608   case Decl::CXXConstructor:
5609     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
5610     break;
5611   case Decl::CXXDestructor:
5612     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
5613     break;
5614 
5615   case Decl::StaticAssert:
5616     // Nothing to do.
5617     break;
5618 
5619   // Objective-C Decls
5620 
5621   // Forward declarations, no (immediate) code generation.
5622   case Decl::ObjCInterface:
5623   case Decl::ObjCCategory:
5624     break;
5625 
5626   case Decl::ObjCProtocol: {
5627     auto *Proto = cast<ObjCProtocolDecl>(D);
5628     if (Proto->isThisDeclarationADefinition())
5629       ObjCRuntime->GenerateProtocol(Proto);
5630     break;
5631   }
5632 
5633   case Decl::ObjCCategoryImpl:
5634     // Categories have properties but don't support synthesize so we
5635     // can ignore them here.
5636     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
5637     break;
5638 
5639   case Decl::ObjCImplementation: {
5640     auto *OMD = cast<ObjCImplementationDecl>(D);
5641     EmitObjCPropertyImplementations(OMD);
5642     EmitObjCIvarInitializations(OMD);
5643     ObjCRuntime->GenerateClass(OMD);
5644     // Emit global variable debug information.
5645     if (CGDebugInfo *DI = getModuleDebugInfo())
5646       if (getCodeGenOpts().hasReducedDebugInfo())
5647         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
5648             OMD->getClassInterface()), OMD->getLocation());
5649     break;
5650   }
5651   case Decl::ObjCMethod: {
5652     auto *OMD = cast<ObjCMethodDecl>(D);
5653     // If this is not a prototype, emit the body.
5654     if (OMD->getBody())
5655       CodeGenFunction(*this).GenerateObjCMethod(OMD);
5656     break;
5657   }
5658   case Decl::ObjCCompatibleAlias:
5659     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
5660     break;
5661 
5662   case Decl::PragmaComment: {
5663     const auto *PCD = cast<PragmaCommentDecl>(D);
5664     switch (PCD->getCommentKind()) {
5665     case PCK_Unknown:
5666       llvm_unreachable("unexpected pragma comment kind");
5667     case PCK_Linker:
5668       AppendLinkerOptions(PCD->getArg());
5669       break;
5670     case PCK_Lib:
5671         AddDependentLib(PCD->getArg());
5672       break;
5673     case PCK_Compiler:
5674     case PCK_ExeStr:
5675     case PCK_User:
5676       break; // We ignore all of these.
5677     }
5678     break;
5679   }
5680 
5681   case Decl::PragmaDetectMismatch: {
5682     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
5683     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
5684     break;
5685   }
5686 
5687   case Decl::LinkageSpec:
5688     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
5689     break;
5690 
5691   case Decl::FileScopeAsm: {
5692     // File-scope asm is ignored during device-side CUDA compilation.
5693     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
5694       break;
5695     // File-scope asm is ignored during device-side OpenMP compilation.
5696     if (LangOpts.OpenMPIsDevice)
5697       break;
5698     auto *AD = cast<FileScopeAsmDecl>(D);
5699     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
5700     break;
5701   }
5702 
5703   case Decl::Import: {
5704     auto *Import = cast<ImportDecl>(D);
5705 
5706     // If we've already imported this module, we're done.
5707     if (!ImportedModules.insert(Import->getImportedModule()))
5708       break;
5709 
5710     // Emit debug information for direct imports.
5711     if (!Import->getImportedOwningModule()) {
5712       if (CGDebugInfo *DI = getModuleDebugInfo())
5713         DI->EmitImportDecl(*Import);
5714     }
5715 
5716     // Find all of the submodules and emit the module initializers.
5717     llvm::SmallPtrSet<clang::Module *, 16> Visited;
5718     SmallVector<clang::Module *, 16> Stack;
5719     Visited.insert(Import->getImportedModule());
5720     Stack.push_back(Import->getImportedModule());
5721 
5722     while (!Stack.empty()) {
5723       clang::Module *Mod = Stack.pop_back_val();
5724       if (!EmittedModuleInitializers.insert(Mod).second)
5725         continue;
5726 
5727       for (auto *D : Context.getModuleInitializers(Mod))
5728         EmitTopLevelDecl(D);
5729 
5730       // Visit the submodules of this module.
5731       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
5732                                              SubEnd = Mod->submodule_end();
5733            Sub != SubEnd; ++Sub) {
5734         // Skip explicit children; they need to be explicitly imported to emit
5735         // the initializers.
5736         if ((*Sub)->IsExplicit)
5737           continue;
5738 
5739         if (Visited.insert(*Sub).second)
5740           Stack.push_back(*Sub);
5741       }
5742     }
5743     break;
5744   }
5745 
5746   case Decl::Export:
5747     EmitDeclContext(cast<ExportDecl>(D));
5748     break;
5749 
5750   case Decl::OMPThreadPrivate:
5751     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5752     break;
5753 
5754   case Decl::OMPAllocate:
5755     break;
5756 
5757   case Decl::OMPDeclareReduction:
5758     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5759     break;
5760 
5761   case Decl::OMPDeclareMapper:
5762     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
5763     break;
5764 
5765   case Decl::OMPRequires:
5766     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5767     break;
5768 
5769   case Decl::Typedef:
5770   case Decl::TypeAlias: // using foo = bar; [C++11]
5771     if (CGDebugInfo *DI = getModuleDebugInfo())
5772       DI->EmitAndRetainType(
5773           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
5774     break;
5775 
5776   case Decl::Record:
5777     if (CGDebugInfo *DI = getModuleDebugInfo())
5778       if (cast<RecordDecl>(D)->getDefinition())
5779         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5780     break;
5781 
5782   case Decl::Enum:
5783     if (CGDebugInfo *DI = getModuleDebugInfo())
5784       if (cast<EnumDecl>(D)->getDefinition())
5785         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
5786     break;
5787 
5788   default:
5789     // Make sure we handled everything we should, every other kind is a
5790     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5791     // function. Need to recode Decl::Kind to do that easily.
5792     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5793     break;
5794   }
5795 }
5796 
5797 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5798   // Do we need to generate coverage mapping?
5799   if (!CodeGenOpts.CoverageMapping)
5800     return;
5801   switch (D->getKind()) {
5802   case Decl::CXXConversion:
5803   case Decl::CXXMethod:
5804   case Decl::Function:
5805   case Decl::ObjCMethod:
5806   case Decl::CXXConstructor:
5807   case Decl::CXXDestructor: {
5808     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5809       break;
5810     SourceManager &SM = getContext().getSourceManager();
5811     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5812       break;
5813     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5814     if (I == DeferredEmptyCoverageMappingDecls.end())
5815       DeferredEmptyCoverageMappingDecls[D] = true;
5816     break;
5817   }
5818   default:
5819     break;
5820   };
5821 }
5822 
5823 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5824   // Do we need to generate coverage mapping?
5825   if (!CodeGenOpts.CoverageMapping)
5826     return;
5827   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5828     if (Fn->isTemplateInstantiation())
5829       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5830   }
5831   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5832   if (I == DeferredEmptyCoverageMappingDecls.end())
5833     DeferredEmptyCoverageMappingDecls[D] = false;
5834   else
5835     I->second = false;
5836 }
5837 
5838 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5839   // We call takeVector() here to avoid use-after-free.
5840   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5841   // we deserialize function bodies to emit coverage info for them, and that
5842   // deserializes more declarations. How should we handle that case?
5843   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5844     if (!Entry.second)
5845       continue;
5846     const Decl *D = Entry.first;
5847     switch (D->getKind()) {
5848     case Decl::CXXConversion:
5849     case Decl::CXXMethod:
5850     case Decl::Function:
5851     case Decl::ObjCMethod: {
5852       CodeGenPGO PGO(*this);
5853       GlobalDecl GD(cast<FunctionDecl>(D));
5854       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5855                                   getFunctionLinkage(GD));
5856       break;
5857     }
5858     case Decl::CXXConstructor: {
5859       CodeGenPGO PGO(*this);
5860       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5861       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5862                                   getFunctionLinkage(GD));
5863       break;
5864     }
5865     case Decl::CXXDestructor: {
5866       CodeGenPGO PGO(*this);
5867       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5868       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5869                                   getFunctionLinkage(GD));
5870       break;
5871     }
5872     default:
5873       break;
5874     };
5875   }
5876 }
5877 
5878 void CodeGenModule::EmitMainVoidAlias() {
5879   // In order to transition away from "__original_main" gracefully, emit an
5880   // alias for "main" in the no-argument case so that libc can detect when
5881   // new-style no-argument main is in used.
5882   if (llvm::Function *F = getModule().getFunction("main")) {
5883     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
5884         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
5885       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
5886   }
5887 }
5888 
5889 /// Turns the given pointer into a constant.
5890 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5891                                           const void *Ptr) {
5892   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5893   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5894   return llvm::ConstantInt::get(i64, PtrInt);
5895 }
5896 
5897 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5898                                    llvm::NamedMDNode *&GlobalMetadata,
5899                                    GlobalDecl D,
5900                                    llvm::GlobalValue *Addr) {
5901   if (!GlobalMetadata)
5902     GlobalMetadata =
5903       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5904 
5905   // TODO: should we report variant information for ctors/dtors?
5906   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5907                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5908                                CGM.getLLVMContext(), D.getDecl()))};
5909   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5910 }
5911 
5912 /// For each function which is declared within an extern "C" region and marked
5913 /// as 'used', but has internal linkage, create an alias from the unmangled
5914 /// name to the mangled name if possible. People expect to be able to refer
5915 /// to such functions with an unmangled name from inline assembly within the
5916 /// same translation unit.
5917 void CodeGenModule::EmitStaticExternCAliases() {
5918   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5919     return;
5920   for (auto &I : StaticExternCValues) {
5921     IdentifierInfo *Name = I.first;
5922     llvm::GlobalValue *Val = I.second;
5923     if (Val && !getModule().getNamedValue(Name->getName()))
5924       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5925   }
5926 }
5927 
5928 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5929                                              GlobalDecl &Result) const {
5930   auto Res = Manglings.find(MangledName);
5931   if (Res == Manglings.end())
5932     return false;
5933   Result = Res->getValue();
5934   return true;
5935 }
5936 
5937 /// Emits metadata nodes associating all the global values in the
5938 /// current module with the Decls they came from.  This is useful for
5939 /// projects using IR gen as a subroutine.
5940 ///
5941 /// Since there's currently no way to associate an MDNode directly
5942 /// with an llvm::GlobalValue, we create a global named metadata
5943 /// with the name 'clang.global.decl.ptrs'.
5944 void CodeGenModule::EmitDeclMetadata() {
5945   llvm::NamedMDNode *GlobalMetadata = nullptr;
5946 
5947   for (auto &I : MangledDeclNames) {
5948     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5949     // Some mangled names don't necessarily have an associated GlobalValue
5950     // in this module, e.g. if we mangled it for DebugInfo.
5951     if (Addr)
5952       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5953   }
5954 }
5955 
5956 /// Emits metadata nodes for all the local variables in the current
5957 /// function.
5958 void CodeGenFunction::EmitDeclMetadata() {
5959   if (LocalDeclMap.empty()) return;
5960 
5961   llvm::LLVMContext &Context = getLLVMContext();
5962 
5963   // Find the unique metadata ID for this name.
5964   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5965 
5966   llvm::NamedMDNode *GlobalMetadata = nullptr;
5967 
5968   for (auto &I : LocalDeclMap) {
5969     const Decl *D = I.first;
5970     llvm::Value *Addr = I.second.getPointer();
5971     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5972       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5973       Alloca->setMetadata(
5974           DeclPtrKind, llvm::MDNode::get(
5975                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5976     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5977       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5978       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5979     }
5980   }
5981 }
5982 
5983 void CodeGenModule::EmitVersionIdentMetadata() {
5984   llvm::NamedMDNode *IdentMetadata =
5985     TheModule.getOrInsertNamedMetadata("llvm.ident");
5986   std::string Version = getClangFullVersion();
5987   llvm::LLVMContext &Ctx = TheModule.getContext();
5988 
5989   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5990   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5991 }
5992 
5993 void CodeGenModule::EmitCommandLineMetadata() {
5994   llvm::NamedMDNode *CommandLineMetadata =
5995     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5996   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5997   llvm::LLVMContext &Ctx = TheModule.getContext();
5998 
5999   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6000   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6001 }
6002 
6003 void CodeGenModule::EmitCoverageFile() {
6004   if (getCodeGenOpts().CoverageDataFile.empty() &&
6005       getCodeGenOpts().CoverageNotesFile.empty())
6006     return;
6007 
6008   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6009   if (!CUNode)
6010     return;
6011 
6012   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6013   llvm::LLVMContext &Ctx = TheModule.getContext();
6014   auto *CoverageDataFile =
6015       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6016   auto *CoverageNotesFile =
6017       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6018   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6019     llvm::MDNode *CU = CUNode->getOperand(i);
6020     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6021     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6022   }
6023 }
6024 
6025 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6026                                                        bool ForEH) {
6027   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6028   // FIXME: should we even be calling this method if RTTI is disabled
6029   // and it's not for EH?
6030   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6031       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6032        getTriple().isNVPTX()))
6033     return llvm::Constant::getNullValue(Int8PtrTy);
6034 
6035   if (ForEH && Ty->isObjCObjectPointerType() &&
6036       LangOpts.ObjCRuntime.isGNUFamily())
6037     return ObjCRuntime->GetEHType(Ty);
6038 
6039   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6040 }
6041 
6042 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6043   // Do not emit threadprivates in simd-only mode.
6044   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6045     return;
6046   for (auto RefExpr : D->varlists()) {
6047     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6048     bool PerformInit =
6049         VD->getAnyInitializer() &&
6050         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6051                                                         /*ForRef=*/false);
6052 
6053     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
6054     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6055             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6056       CXXGlobalInits.push_back(InitFunction);
6057   }
6058 }
6059 
6060 llvm::Metadata *
6061 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6062                                             StringRef Suffix) {
6063   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6064   if (InternalId)
6065     return InternalId;
6066 
6067   if (isExternallyVisible(T->getLinkage())) {
6068     std::string OutName;
6069     llvm::raw_string_ostream Out(OutName);
6070     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6071     Out << Suffix;
6072 
6073     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6074   } else {
6075     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6076                                            llvm::ArrayRef<llvm::Metadata *>());
6077   }
6078 
6079   return InternalId;
6080 }
6081 
6082 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6083   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6084 }
6085 
6086 llvm::Metadata *
6087 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6088   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6089 }
6090 
6091 // Generalize pointer types to a void pointer with the qualifiers of the
6092 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6093 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6094 // 'void *'.
6095 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6096   if (!Ty->isPointerType())
6097     return Ty;
6098 
6099   return Ctx.getPointerType(
6100       QualType(Ctx.VoidTy).withCVRQualifiers(
6101           Ty->getPointeeType().getCVRQualifiers()));
6102 }
6103 
6104 // Apply type generalization to a FunctionType's return and argument types
6105 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6106   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6107     SmallVector<QualType, 8> GeneralizedParams;
6108     for (auto &Param : FnType->param_types())
6109       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6110 
6111     return Ctx.getFunctionType(
6112         GeneralizeType(Ctx, FnType->getReturnType()),
6113         GeneralizedParams, FnType->getExtProtoInfo());
6114   }
6115 
6116   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6117     return Ctx.getFunctionNoProtoType(
6118         GeneralizeType(Ctx, FnType->getReturnType()));
6119 
6120   llvm_unreachable("Encountered unknown FunctionType");
6121 }
6122 
6123 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6124   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6125                                       GeneralizedMetadataIdMap, ".generalized");
6126 }
6127 
6128 /// Returns whether this module needs the "all-vtables" type identifier.
6129 bool CodeGenModule::NeedAllVtablesTypeId() const {
6130   // Returns true if at least one of vtable-based CFI checkers is enabled and
6131   // is not in the trapping mode.
6132   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6133            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6134           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6135            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6136           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6137            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6138           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6139            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6140 }
6141 
6142 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6143                                           CharUnits Offset,
6144                                           const CXXRecordDecl *RD) {
6145   llvm::Metadata *MD =
6146       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6147   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6148 
6149   if (CodeGenOpts.SanitizeCfiCrossDso)
6150     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6151       VTable->addTypeMetadata(Offset.getQuantity(),
6152                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6153 
6154   if (NeedAllVtablesTypeId()) {
6155     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6156     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6157   }
6158 }
6159 
6160 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6161   if (!SanStats)
6162     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6163 
6164   return *SanStats;
6165 }
6166 llvm::Value *
6167 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6168                                                   CodeGenFunction &CGF) {
6169   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6170   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6171   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6172   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
6173                                 "__translate_sampler_initializer"),
6174                                 {C});
6175 }
6176 
6177 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6178     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6179   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6180                                  /* forPointeeType= */ true);
6181 }
6182 
6183 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6184                                                  LValueBaseInfo *BaseInfo,
6185                                                  TBAAAccessInfo *TBAAInfo,
6186                                                  bool forPointeeType) {
6187   if (TBAAInfo)
6188     *TBAAInfo = getTBAAAccessInfo(T);
6189 
6190   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6191   // that doesn't return the information we need to compute BaseInfo.
6192 
6193   // Honor alignment typedef attributes even on incomplete types.
6194   // We also honor them straight for C++ class types, even as pointees;
6195   // there's an expressivity gap here.
6196   if (auto TT = T->getAs<TypedefType>()) {
6197     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6198       if (BaseInfo)
6199         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6200       return getContext().toCharUnitsFromBits(Align);
6201     }
6202   }
6203 
6204   bool AlignForArray = T->isArrayType();
6205 
6206   // Analyze the base element type, so we don't get confused by incomplete
6207   // array types.
6208   T = getContext().getBaseElementType(T);
6209 
6210   if (T->isIncompleteType()) {
6211     // We could try to replicate the logic from
6212     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6213     // type is incomplete, so it's impossible to test. We could try to reuse
6214     // getTypeAlignIfKnown, but that doesn't return the information we need
6215     // to set BaseInfo.  So just ignore the possibility that the alignment is
6216     // greater than one.
6217     if (BaseInfo)
6218       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6219     return CharUnits::One();
6220   }
6221 
6222   if (BaseInfo)
6223     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6224 
6225   CharUnits Alignment;
6226   const CXXRecordDecl *RD;
6227   if (T.getQualifiers().hasUnaligned()) {
6228     Alignment = CharUnits::One();
6229   } else if (forPointeeType && !AlignForArray &&
6230              (RD = T->getAsCXXRecordDecl())) {
6231     // For C++ class pointees, we don't know whether we're pointing at a
6232     // base or a complete object, so we generally need to use the
6233     // non-virtual alignment.
6234     Alignment = getClassPointerAlignment(RD);
6235   } else {
6236     Alignment = getContext().getTypeAlignInChars(T);
6237   }
6238 
6239   // Cap to the global maximum type alignment unless the alignment
6240   // was somehow explicit on the type.
6241   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6242     if (Alignment.getQuantity() > MaxAlign &&
6243         !getContext().isAlignmentRequired(T))
6244       Alignment = CharUnits::fromQuantity(MaxAlign);
6245   }
6246   return Alignment;
6247 }
6248 
6249 bool CodeGenModule::stopAutoInit() {
6250   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6251   if (StopAfter) {
6252     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6253     // used
6254     if (NumAutoVarInit >= StopAfter) {
6255       return true;
6256     }
6257     if (!NumAutoVarInit) {
6258       unsigned DiagID = getDiags().getCustomDiagID(
6259           DiagnosticsEngine::Warning,
6260           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6261           "number of times ftrivial-auto-var-init=%1 gets applied.");
6262       getDiags().Report(DiagID)
6263           << StopAfter
6264           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6265                       LangOptions::TrivialAutoVarInitKind::Zero
6266                   ? "zero"
6267                   : "pattern");
6268     }
6269     ++NumAutoVarInit;
6270   }
6271   return false;
6272 }
6273