xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e369bd92da3d1cb1eb8ecd6c9530596f189f1e45)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114   AllocaInt8PtrTy = Int8Ty->getPointerTo(
115       M.getDataLayout().getAllocaAddrSpace());
116 
117   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
118   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
119 
120   if (LangOpts.ObjC1)
121     createObjCRuntime();
122   if (LangOpts.OpenCL)
123     createOpenCLRuntime();
124   if (LangOpts.OpenMP)
125     createOpenMPRuntime();
126   if (LangOpts.CUDA)
127     createCUDARuntime();
128 
129   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
130   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
131       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
132     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
133                                getCXXABI().getMangleContext()));
134 
135   // If debug info or coverage generation is enabled, create the CGDebugInfo
136   // object.
137   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
138       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
139     DebugInfo.reset(new CGDebugInfo(*this));
140 
141   Block.GlobalUniqueCount = 0;
142 
143   if (C.getLangOpts().ObjC1)
144     ObjCData.reset(new ObjCEntrypoints());
145 
146   if (CodeGenOpts.hasProfileClangUse()) {
147     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
148         CodeGenOpts.ProfileInstrumentUsePath);
149     if (auto E = ReaderOrErr.takeError()) {
150       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
151                                               "Could not read profile %0: %1");
152       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
153         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
154                                   << EI.message();
155       });
156     } else
157       PGOReader = std::move(ReaderOrErr.get());
158   }
159 
160   // If coverage mapping generation is enabled, create the
161   // CoverageMappingModuleGen object.
162   if (CodeGenOpts.CoverageMapping)
163     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
164 }
165 
166 CodeGenModule::~CodeGenModule() {}
167 
168 void CodeGenModule::createObjCRuntime() {
169   // This is just isGNUFamily(), but we want to force implementors of
170   // new ABIs to decide how best to do this.
171   switch (LangOpts.ObjCRuntime.getKind()) {
172   case ObjCRuntime::GNUstep:
173   case ObjCRuntime::GCC:
174   case ObjCRuntime::ObjFW:
175     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
176     return;
177 
178   case ObjCRuntime::FragileMacOSX:
179   case ObjCRuntime::MacOSX:
180   case ObjCRuntime::iOS:
181   case ObjCRuntime::WatchOS:
182     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
183     return;
184   }
185   llvm_unreachable("bad runtime kind");
186 }
187 
188 void CodeGenModule::createOpenCLRuntime() {
189   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
190 }
191 
192 void CodeGenModule::createOpenMPRuntime() {
193   // Select a specialized code generation class based on the target, if any.
194   // If it does not exist use the default implementation.
195   switch (getTriple().getArch()) {
196   case llvm::Triple::nvptx:
197   case llvm::Triple::nvptx64:
198     assert(getLangOpts().OpenMPIsDevice &&
199            "OpenMP NVPTX is only prepared to deal with device code.");
200     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
201     break;
202   default:
203     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
204     break;
205   }
206 }
207 
208 void CodeGenModule::createCUDARuntime() {
209   CUDARuntime.reset(CreateNVCUDARuntime(*this));
210 }
211 
212 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
213   Replacements[Name] = C;
214 }
215 
216 void CodeGenModule::applyReplacements() {
217   for (auto &I : Replacements) {
218     StringRef MangledName = I.first();
219     llvm::Constant *Replacement = I.second;
220     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
221     if (!Entry)
222       continue;
223     auto *OldF = cast<llvm::Function>(Entry);
224     auto *NewF = dyn_cast<llvm::Function>(Replacement);
225     if (!NewF) {
226       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
227         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
228       } else {
229         auto *CE = cast<llvm::ConstantExpr>(Replacement);
230         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
231                CE->getOpcode() == llvm::Instruction::GetElementPtr);
232         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
233       }
234     }
235 
236     // Replace old with new, but keep the old order.
237     OldF->replaceAllUsesWith(Replacement);
238     if (NewF) {
239       NewF->removeFromParent();
240       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
241                                                        NewF);
242     }
243     OldF->eraseFromParent();
244   }
245 }
246 
247 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
248   GlobalValReplacements.push_back(std::make_pair(GV, C));
249 }
250 
251 void CodeGenModule::applyGlobalValReplacements() {
252   for (auto &I : GlobalValReplacements) {
253     llvm::GlobalValue *GV = I.first;
254     llvm::Constant *C = I.second;
255 
256     GV->replaceAllUsesWith(C);
257     GV->eraseFromParent();
258   }
259 }
260 
261 // This is only used in aliases that we created and we know they have a
262 // linear structure.
263 static const llvm::GlobalObject *getAliasedGlobal(
264     const llvm::GlobalIndirectSymbol &GIS) {
265   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
266   const llvm::Constant *C = &GIS;
267   for (;;) {
268     C = C->stripPointerCasts();
269     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
270       return GO;
271     // stripPointerCasts will not walk over weak aliases.
272     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
273     if (!GIS2)
274       return nullptr;
275     if (!Visited.insert(GIS2).second)
276       return nullptr;
277     C = GIS2->getIndirectSymbol();
278   }
279 }
280 
281 void CodeGenModule::checkAliases() {
282   // Check if the constructed aliases are well formed. It is really unfortunate
283   // that we have to do this in CodeGen, but we only construct mangled names
284   // and aliases during codegen.
285   bool Error = false;
286   DiagnosticsEngine &Diags = getDiags();
287   for (const GlobalDecl &GD : Aliases) {
288     const auto *D = cast<ValueDecl>(GD.getDecl());
289     SourceLocation Location;
290     bool IsIFunc = D->hasAttr<IFuncAttr>();
291     if (const Attr *A = D->getDefiningAttr())
292       Location = A->getLocation();
293     else
294       llvm_unreachable("Not an alias or ifunc?");
295     StringRef MangledName = getMangledName(GD);
296     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
297     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
298     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
299     if (!GV) {
300       Error = true;
301       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
302     } else if (GV->isDeclaration()) {
303       Error = true;
304       Diags.Report(Location, diag::err_alias_to_undefined)
305           << IsIFunc << IsIFunc;
306     } else if (IsIFunc) {
307       // Check resolver function type.
308       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
309           GV->getType()->getPointerElementType());
310       assert(FTy);
311       if (!FTy->getReturnType()->isPointerTy())
312         Diags.Report(Location, diag::err_ifunc_resolver_return);
313       if (FTy->getNumParams())
314         Diags.Report(Location, diag::err_ifunc_resolver_params);
315     }
316 
317     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
318     llvm::GlobalValue *AliaseeGV;
319     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
320       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
321     else
322       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
323 
324     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
325       StringRef AliasSection = SA->getName();
326       if (AliasSection != AliaseeGV->getSection())
327         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
328             << AliasSection << IsIFunc << IsIFunc;
329     }
330 
331     // We have to handle alias to weak aliases in here. LLVM itself disallows
332     // this since the object semantics would not match the IL one. For
333     // compatibility with gcc we implement it by just pointing the alias
334     // to its aliasee's aliasee. We also warn, since the user is probably
335     // expecting the link to be weak.
336     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
337       if (GA->isInterposable()) {
338         Diags.Report(Location, diag::warn_alias_to_weak_alias)
339             << GV->getName() << GA->getName() << IsIFunc;
340         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
341             GA->getIndirectSymbol(), Alias->getType());
342         Alias->setIndirectSymbol(Aliasee);
343       }
344     }
345   }
346   if (!Error)
347     return;
348 
349   for (const GlobalDecl &GD : Aliases) {
350     StringRef MangledName = getMangledName(GD);
351     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
352     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
353     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
354     Alias->eraseFromParent();
355   }
356 }
357 
358 void CodeGenModule::clear() {
359   DeferredDeclsToEmit.clear();
360   if (OpenMPRuntime)
361     OpenMPRuntime->clear();
362 }
363 
364 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
365                                        StringRef MainFile) {
366   if (!hasDiagnostics())
367     return;
368   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
369     if (MainFile.empty())
370       MainFile = "<stdin>";
371     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
372   } else {
373     if (Mismatched > 0)
374       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
375 
376     if (Missing > 0)
377       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
378   }
379 }
380 
381 void CodeGenModule::Release() {
382   EmitDeferred();
383   applyGlobalValReplacements();
384   applyReplacements();
385   checkAliases();
386   EmitCXXGlobalInitFunc();
387   EmitCXXGlobalDtorFunc();
388   EmitCXXThreadLocalInitFunc();
389   if (ObjCRuntime)
390     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
391       AddGlobalCtor(ObjCInitFunction);
392   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
393       CUDARuntime) {
394     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
395       AddGlobalCtor(CudaCtorFunction);
396     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
397       AddGlobalDtor(CudaDtorFunction);
398   }
399   if (OpenMPRuntime)
400     if (llvm::Function *OpenMPRegistrationFunction =
401             OpenMPRuntime->emitRegistrationFunction())
402       AddGlobalCtor(OpenMPRegistrationFunction, 0);
403   if (PGOReader) {
404     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
405     if (PGOStats.hasDiagnostics())
406       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
407   }
408   EmitCtorList(GlobalCtors, "llvm.global_ctors");
409   EmitCtorList(GlobalDtors, "llvm.global_dtors");
410   EmitGlobalAnnotations();
411   EmitStaticExternCAliases();
412   EmitDeferredUnusedCoverageMappings();
413   if (CoverageMapping)
414     CoverageMapping->emit();
415   if (CodeGenOpts.SanitizeCfiCrossDso) {
416     CodeGenFunction(*this).EmitCfiCheckFail();
417     CodeGenFunction(*this).EmitCfiCheckStub();
418   }
419   emitAtAvailableLinkGuard();
420   emitLLVMUsed();
421   if (SanStats)
422     SanStats->finish();
423 
424   if (CodeGenOpts.Autolink &&
425       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
426     EmitModuleLinkOptions();
427   }
428 
429   // Record mregparm value now so it is visible through rest of codegen.
430   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
431     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
432                               CodeGenOpts.NumRegisterParameters);
433 
434   if (CodeGenOpts.DwarfVersion) {
435     // We actually want the latest version when there are conflicts.
436     // We can change from Warning to Latest if such mode is supported.
437     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
438                               CodeGenOpts.DwarfVersion);
439   }
440   if (CodeGenOpts.EmitCodeView) {
441     // Indicate that we want CodeView in the metadata.
442     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
443   }
444   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
445     // We don't support LTO with 2 with different StrictVTablePointers
446     // FIXME: we could support it by stripping all the information introduced
447     // by StrictVTablePointers.
448 
449     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
450 
451     llvm::Metadata *Ops[2] = {
452               llvm::MDString::get(VMContext, "StrictVTablePointers"),
453               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
454                   llvm::Type::getInt32Ty(VMContext), 1))};
455 
456     getModule().addModuleFlag(llvm::Module::Require,
457                               "StrictVTablePointersRequirement",
458                               llvm::MDNode::get(VMContext, Ops));
459   }
460   if (DebugInfo)
461     // We support a single version in the linked module. The LLVM
462     // parser will drop debug info with a different version number
463     // (and warn about it, too).
464     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
465                               llvm::DEBUG_METADATA_VERSION);
466 
467   // We need to record the widths of enums and wchar_t, so that we can generate
468   // the correct build attributes in the ARM backend.
469   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
470   if (   Arch == llvm::Triple::arm
471       || Arch == llvm::Triple::armeb
472       || Arch == llvm::Triple::thumb
473       || Arch == llvm::Triple::thumbeb) {
474     // Width of wchar_t in bytes
475     uint64_t WCharWidth =
476         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
477     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
478 
479     // The minimum width of an enum in bytes
480     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
481     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
482   }
483 
484   if (CodeGenOpts.SanitizeCfiCrossDso) {
485     // Indicate that we want cross-DSO control flow integrity checks.
486     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
487   }
488 
489   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
490     // Indicate whether __nvvm_reflect should be configured to flush denormal
491     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
492     // property.)
493     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
494                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
495   }
496 
497   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
498     assert(PLevel < 3 && "Invalid PIC Level");
499     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
500     if (Context.getLangOpts().PIE)
501       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
502   }
503 
504   SimplifyPersonality();
505 
506   if (getCodeGenOpts().EmitDeclMetadata)
507     EmitDeclMetadata();
508 
509   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
510     EmitCoverageFile();
511 
512   if (DebugInfo)
513     DebugInfo->finalize();
514 
515   EmitVersionIdentMetadata();
516 
517   EmitTargetMetadata();
518 }
519 
520 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
521   // Make sure that this type is translated.
522   Types.UpdateCompletedType(TD);
523 }
524 
525 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
526   // Make sure that this type is translated.
527   Types.RefreshTypeCacheForClass(RD);
528 }
529 
530 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
531   if (!TBAA)
532     return nullptr;
533   return TBAA->getTBAAInfo(QTy);
534 }
535 
536 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
537   if (!TBAA)
538     return nullptr;
539   return TBAA->getTBAAInfoForVTablePtr();
540 }
541 
542 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
543   if (!TBAA)
544     return nullptr;
545   return TBAA->getTBAAStructInfo(QTy);
546 }
547 
548 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
549                                                   llvm::MDNode *AccessN,
550                                                   uint64_t O) {
551   if (!TBAA)
552     return nullptr;
553   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
554 }
555 
556 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
557 /// and struct-path aware TBAA, the tag has the same format:
558 /// base type, access type and offset.
559 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
560 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
561                                                 llvm::MDNode *TBAAInfo,
562                                                 bool ConvertTypeToTag) {
563   if (ConvertTypeToTag && TBAA)
564     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
565                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
566   else
567     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
568 }
569 
570 void CodeGenModule::DecorateInstructionWithInvariantGroup(
571     llvm::Instruction *I, const CXXRecordDecl *RD) {
572   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
573                  llvm::MDNode::get(getLLVMContext(), {}));
574 }
575 
576 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
577   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
578   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
579 }
580 
581 /// ErrorUnsupported - Print out an error that codegen doesn't support the
582 /// specified stmt yet.
583 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
584   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
585                                                "cannot compile this %0 yet");
586   std::string Msg = Type;
587   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
588     << Msg << S->getSourceRange();
589 }
590 
591 /// ErrorUnsupported - Print out an error that codegen doesn't support the
592 /// specified decl yet.
593 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
594   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
595                                                "cannot compile this %0 yet");
596   std::string Msg = Type;
597   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
598 }
599 
600 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
601   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
602 }
603 
604 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
605                                         const NamedDecl *D) const {
606   // Internal definitions always have default visibility.
607   if (GV->hasLocalLinkage()) {
608     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
609     return;
610   }
611 
612   // Set visibility for definitions.
613   LinkageInfo LV = D->getLinkageAndVisibility();
614   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
615     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
616 }
617 
618 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
619   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
620       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
621       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
622       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
623       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
624 }
625 
626 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
627     CodeGenOptions::TLSModel M) {
628   switch (M) {
629   case CodeGenOptions::GeneralDynamicTLSModel:
630     return llvm::GlobalVariable::GeneralDynamicTLSModel;
631   case CodeGenOptions::LocalDynamicTLSModel:
632     return llvm::GlobalVariable::LocalDynamicTLSModel;
633   case CodeGenOptions::InitialExecTLSModel:
634     return llvm::GlobalVariable::InitialExecTLSModel;
635   case CodeGenOptions::LocalExecTLSModel:
636     return llvm::GlobalVariable::LocalExecTLSModel;
637   }
638   llvm_unreachable("Invalid TLS model!");
639 }
640 
641 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
642   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
643 
644   llvm::GlobalValue::ThreadLocalMode TLM;
645   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
646 
647   // Override the TLS model if it is explicitly specified.
648   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
649     TLM = GetLLVMTLSModel(Attr->getModel());
650   }
651 
652   GV->setThreadLocalMode(TLM);
653 }
654 
655 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
656   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
657 
658   // Some ABIs don't have constructor variants.  Make sure that base and
659   // complete constructors get mangled the same.
660   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
661     if (!getTarget().getCXXABI().hasConstructorVariants()) {
662       CXXCtorType OrigCtorType = GD.getCtorType();
663       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
664       if (OrigCtorType == Ctor_Base)
665         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
666     }
667   }
668 
669   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
670   if (!FoundStr.empty())
671     return FoundStr;
672 
673   const auto *ND = cast<NamedDecl>(GD.getDecl());
674   SmallString<256> Buffer;
675   StringRef Str;
676   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
677     llvm::raw_svector_ostream Out(Buffer);
678     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
679       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
680     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
681       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
682     else
683       getCXXABI().getMangleContext().mangleName(ND, Out);
684     Str = Out.str();
685   } else {
686     IdentifierInfo *II = ND->getIdentifier();
687     assert(II && "Attempt to mangle unnamed decl.");
688     const auto *FD = dyn_cast<FunctionDecl>(ND);
689 
690     if (FD &&
691         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
692       llvm::raw_svector_ostream Out(Buffer);
693       Out << "__regcall3__" << II->getName();
694       Str = Out.str();
695     } else {
696       Str = II->getName();
697     }
698   }
699 
700   // Keep the first result in the case of a mangling collision.
701   auto Result = Manglings.insert(std::make_pair(Str, GD));
702   return FoundStr = Result.first->first();
703 }
704 
705 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
706                                              const BlockDecl *BD) {
707   MangleContext &MangleCtx = getCXXABI().getMangleContext();
708   const Decl *D = GD.getDecl();
709 
710   SmallString<256> Buffer;
711   llvm::raw_svector_ostream Out(Buffer);
712   if (!D)
713     MangleCtx.mangleGlobalBlock(BD,
714       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
715   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
716     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
717   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
718     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
719   else
720     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
721 
722   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
723   return Result.first->first();
724 }
725 
726 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
727   return getModule().getNamedValue(Name);
728 }
729 
730 /// AddGlobalCtor - Add a function to the list that will be called before
731 /// main() runs.
732 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
733                                   llvm::Constant *AssociatedData) {
734   // FIXME: Type coercion of void()* types.
735   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
736 }
737 
738 /// AddGlobalDtor - Add a function to the list that will be called
739 /// when the module is unloaded.
740 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
741   // FIXME: Type coercion of void()* types.
742   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
743 }
744 
745 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
746   if (Fns.empty()) return;
747 
748   // Ctor function type is void()*.
749   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
750   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
751 
752   // Get the type of a ctor entry, { i32, void ()*, i8* }.
753   llvm::StructType *CtorStructTy = llvm::StructType::get(
754       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
755 
756   // Construct the constructor and destructor arrays.
757   ConstantInitBuilder builder(*this);
758   auto ctors = builder.beginArray(CtorStructTy);
759   for (const auto &I : Fns) {
760     auto ctor = ctors.beginStruct(CtorStructTy);
761     ctor.addInt(Int32Ty, I.Priority);
762     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
763     if (I.AssociatedData)
764       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
765     else
766       ctor.addNullPointer(VoidPtrTy);
767     ctor.finishAndAddTo(ctors);
768   }
769 
770   auto list =
771     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
772                                 /*constant*/ false,
773                                 llvm::GlobalValue::AppendingLinkage);
774 
775   // The LTO linker doesn't seem to like it when we set an alignment
776   // on appending variables.  Take it off as a workaround.
777   list->setAlignment(0);
778 
779   Fns.clear();
780 }
781 
782 llvm::GlobalValue::LinkageTypes
783 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
784   const auto *D = cast<FunctionDecl>(GD.getDecl());
785 
786   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
787 
788   if (isa<CXXDestructorDecl>(D) &&
789       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
790                                          GD.getDtorType())) {
791     // Destructor variants in the Microsoft C++ ABI are always internal or
792     // linkonce_odr thunks emitted on an as-needed basis.
793     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
794                                    : llvm::GlobalValue::LinkOnceODRLinkage;
795   }
796 
797   if (isa<CXXConstructorDecl>(D) &&
798       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
799       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
800     // Our approach to inheriting constructors is fundamentally different from
801     // that used by the MS ABI, so keep our inheriting constructor thunks
802     // internal rather than trying to pick an unambiguous mangling for them.
803     return llvm::GlobalValue::InternalLinkage;
804   }
805 
806   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
807 }
808 
809 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
810   const auto *FD = cast<FunctionDecl>(GD.getDecl());
811 
812   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
813     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
814       // Don't dllexport/import destructor thunks.
815       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
816       return;
817     }
818   }
819 
820   if (FD->hasAttr<DLLImportAttr>())
821     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
822   else if (FD->hasAttr<DLLExportAttr>())
823     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
824   else
825     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
826 }
827 
828 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
829   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
830   if (!MDS) return nullptr;
831 
832   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
833 }
834 
835 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
836                                                     llvm::Function *F) {
837   setNonAliasAttributes(D, F);
838 }
839 
840 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
841                                               const CGFunctionInfo &Info,
842                                               llvm::Function *F) {
843   unsigned CallingConv;
844   llvm::AttributeList PAL;
845   ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false);
846   F->setAttributes(PAL);
847   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
848 }
849 
850 /// Determines whether the language options require us to model
851 /// unwind exceptions.  We treat -fexceptions as mandating this
852 /// except under the fragile ObjC ABI with only ObjC exceptions
853 /// enabled.  This means, for example, that C with -fexceptions
854 /// enables this.
855 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
856   // If exceptions are completely disabled, obviously this is false.
857   if (!LangOpts.Exceptions) return false;
858 
859   // If C++ exceptions are enabled, this is true.
860   if (LangOpts.CXXExceptions) return true;
861 
862   // If ObjC exceptions are enabled, this depends on the ABI.
863   if (LangOpts.ObjCExceptions) {
864     return LangOpts.ObjCRuntime.hasUnwindExceptions();
865   }
866 
867   return true;
868 }
869 
870 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
871                                                            llvm::Function *F) {
872   llvm::AttrBuilder B;
873 
874   if (CodeGenOpts.UnwindTables)
875     B.addAttribute(llvm::Attribute::UWTable);
876 
877   if (!hasUnwindExceptions(LangOpts))
878     B.addAttribute(llvm::Attribute::NoUnwind);
879 
880   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
881     B.addAttribute(llvm::Attribute::StackProtect);
882   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
883     B.addAttribute(llvm::Attribute::StackProtectStrong);
884   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
885     B.addAttribute(llvm::Attribute::StackProtectReq);
886 
887   if (!D) {
888     // If we don't have a declaration to control inlining, the function isn't
889     // explicitly marked as alwaysinline for semantic reasons, and inlining is
890     // disabled, mark the function as noinline.
891     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
892         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
893       B.addAttribute(llvm::Attribute::NoInline);
894 
895     F->addAttributes(
896         llvm::AttributeList::FunctionIndex,
897         llvm::AttributeList::get(F->getContext(),
898                                  llvm::AttributeList::FunctionIndex, B));
899     return;
900   }
901 
902   if (D->hasAttr<OptimizeNoneAttr>()) {
903     B.addAttribute(llvm::Attribute::OptimizeNone);
904 
905     // OptimizeNone implies noinline; we should not be inlining such functions.
906     B.addAttribute(llvm::Attribute::NoInline);
907     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
908            "OptimizeNone and AlwaysInline on same function!");
909 
910     // We still need to handle naked functions even though optnone subsumes
911     // much of their semantics.
912     if (D->hasAttr<NakedAttr>())
913       B.addAttribute(llvm::Attribute::Naked);
914 
915     // OptimizeNone wins over OptimizeForSize and MinSize.
916     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
917     F->removeFnAttr(llvm::Attribute::MinSize);
918   } else if (D->hasAttr<NakedAttr>()) {
919     // Naked implies noinline: we should not be inlining such functions.
920     B.addAttribute(llvm::Attribute::Naked);
921     B.addAttribute(llvm::Attribute::NoInline);
922   } else if (D->hasAttr<NoDuplicateAttr>()) {
923     B.addAttribute(llvm::Attribute::NoDuplicate);
924   } else if (D->hasAttr<NoInlineAttr>()) {
925     B.addAttribute(llvm::Attribute::NoInline);
926   } else if (D->hasAttr<AlwaysInlineAttr>() &&
927              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
928     // (noinline wins over always_inline, and we can't specify both in IR)
929     B.addAttribute(llvm::Attribute::AlwaysInline);
930   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
931     // If we're not inlining, then force everything that isn't always_inline to
932     // carry an explicit noinline attribute.
933     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
934       B.addAttribute(llvm::Attribute::NoInline);
935   } else {
936     // Otherwise, propagate the inline hint attribute and potentially use its
937     // absence to mark things as noinline.
938     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
939       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
940             return Redecl->isInlineSpecified();
941           })) {
942         B.addAttribute(llvm::Attribute::InlineHint);
943       } else if (CodeGenOpts.getInlining() ==
944                      CodeGenOptions::OnlyHintInlining &&
945                  !FD->isInlined() &&
946                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
947         B.addAttribute(llvm::Attribute::NoInline);
948       }
949     }
950   }
951 
952   // Add other optimization related attributes if we are optimizing this
953   // function.
954   if (!D->hasAttr<OptimizeNoneAttr>()) {
955     if (D->hasAttr<ColdAttr>()) {
956       B.addAttribute(llvm::Attribute::OptimizeForSize);
957       B.addAttribute(llvm::Attribute::Cold);
958     }
959 
960     if (D->hasAttr<MinSizeAttr>())
961       B.addAttribute(llvm::Attribute::MinSize);
962   }
963 
964   F->addAttributes(llvm::AttributeList::FunctionIndex,
965                    llvm::AttributeList::get(
966                        F->getContext(), llvm::AttributeList::FunctionIndex, B));
967 
968   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
969   if (alignment)
970     F->setAlignment(alignment);
971 
972   // Some C++ ABIs require 2-byte alignment for member functions, in order to
973   // reserve a bit for differentiating between virtual and non-virtual member
974   // functions. If the current target's C++ ABI requires this and this is a
975   // member function, set its alignment accordingly.
976   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
977     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
978       F->setAlignment(2);
979   }
980 
981   // In the cross-dso CFI mode, we want !type attributes on definitions only.
982   if (CodeGenOpts.SanitizeCfiCrossDso)
983     if (auto *FD = dyn_cast<FunctionDecl>(D))
984       CreateFunctionTypeMetadata(FD, F);
985 }
986 
987 void CodeGenModule::SetCommonAttributes(const Decl *D,
988                                         llvm::GlobalValue *GV) {
989   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
990     setGlobalVisibility(GV, ND);
991   else
992     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
993 
994   if (D && D->hasAttr<UsedAttr>())
995     addUsedGlobal(GV);
996 }
997 
998 void CodeGenModule::setAliasAttributes(const Decl *D,
999                                        llvm::GlobalValue *GV) {
1000   SetCommonAttributes(D, GV);
1001 
1002   // Process the dllexport attribute based on whether the original definition
1003   // (not necessarily the aliasee) was exported.
1004   if (D->hasAttr<DLLExportAttr>())
1005     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1006 }
1007 
1008 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1009                                           llvm::GlobalObject *GO) {
1010   SetCommonAttributes(D, GO);
1011 
1012   if (D)
1013     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1014       GO->setSection(SA->getName());
1015 
1016   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1017 }
1018 
1019 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1020                                                   llvm::Function *F,
1021                                                   const CGFunctionInfo &FI) {
1022   SetLLVMFunctionAttributes(D, FI, F);
1023   SetLLVMFunctionAttributesForDefinition(D, F);
1024 
1025   F->setLinkage(llvm::Function::InternalLinkage);
1026 
1027   setNonAliasAttributes(D, F);
1028 }
1029 
1030 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1031                                          const NamedDecl *ND) {
1032   // Set linkage and visibility in case we never see a definition.
1033   LinkageInfo LV = ND->getLinkageAndVisibility();
1034   if (LV.getLinkage() != ExternalLinkage) {
1035     // Don't set internal linkage on declarations.
1036   } else {
1037     if (ND->hasAttr<DLLImportAttr>()) {
1038       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1039       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1040     } else if (ND->hasAttr<DLLExportAttr>()) {
1041       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1042     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1043       // "extern_weak" is overloaded in LLVM; we probably should have
1044       // separate linkage types for this.
1045       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1046     }
1047 
1048     // Set visibility on a declaration only if it's explicit.
1049     if (LV.isVisibilityExplicit())
1050       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1051   }
1052 }
1053 
1054 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1055                                                llvm::Function *F) {
1056   // Only if we are checking indirect calls.
1057   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1058     return;
1059 
1060   // Non-static class methods are handled via vtable pointer checks elsewhere.
1061   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1062     return;
1063 
1064   // Additionally, if building with cross-DSO support...
1065   if (CodeGenOpts.SanitizeCfiCrossDso) {
1066     // Skip available_externally functions. They won't be codegen'ed in the
1067     // current module anyway.
1068     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1069       return;
1070   }
1071 
1072   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1073   F->addTypeMetadata(0, MD);
1074 
1075   // Emit a hash-based bit set entry for cross-DSO calls.
1076   if (CodeGenOpts.SanitizeCfiCrossDso)
1077     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1078       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1079 }
1080 
1081 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1082                                           bool IsIncompleteFunction,
1083                                           bool IsThunk) {
1084   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1085     // If this is an intrinsic function, set the function's attributes
1086     // to the intrinsic's attributes.
1087     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1088     return;
1089   }
1090 
1091   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1092 
1093   if (!IsIncompleteFunction)
1094     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1095 
1096   // Add the Returned attribute for "this", except for iOS 5 and earlier
1097   // where substantial code, including the libstdc++ dylib, was compiled with
1098   // GCC and does not actually return "this".
1099   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1100       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1101     assert(!F->arg_empty() &&
1102            F->arg_begin()->getType()
1103              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1104            "unexpected this return");
1105     F->addAttribute(1, llvm::Attribute::Returned);
1106   }
1107 
1108   // Only a few attributes are set on declarations; these may later be
1109   // overridden by a definition.
1110 
1111   setLinkageAndVisibilityForGV(F, FD);
1112 
1113   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1114     F->setSection(SA->getName());
1115 
1116   if (FD->isReplaceableGlobalAllocationFunction()) {
1117     // A replaceable global allocation function does not act like a builtin by
1118     // default, only if it is invoked by a new-expression or delete-expression.
1119     F->addAttribute(llvm::AttributeList::FunctionIndex,
1120                     llvm::Attribute::NoBuiltin);
1121 
1122     // A sane operator new returns a non-aliasing pointer.
1123     // FIXME: Also add NonNull attribute to the return value
1124     // for the non-nothrow forms?
1125     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1126     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1127         (Kind == OO_New || Kind == OO_Array_New))
1128       F->addAttribute(llvm::AttributeList::ReturnIndex,
1129                       llvm::Attribute::NoAlias);
1130   }
1131 
1132   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1133     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1134   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1135     if (MD->isVirtual())
1136       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1137 
1138   // Don't emit entries for function declarations in the cross-DSO mode. This
1139   // is handled with better precision by the receiving DSO.
1140   if (!CodeGenOpts.SanitizeCfiCrossDso)
1141     CreateFunctionTypeMetadata(FD, F);
1142 }
1143 
1144 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1145   assert(!GV->isDeclaration() &&
1146          "Only globals with definition can force usage.");
1147   LLVMUsed.emplace_back(GV);
1148 }
1149 
1150 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1151   assert(!GV->isDeclaration() &&
1152          "Only globals with definition can force usage.");
1153   LLVMCompilerUsed.emplace_back(GV);
1154 }
1155 
1156 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1157                      std::vector<llvm::WeakTrackingVH> &List) {
1158   // Don't create llvm.used if there is no need.
1159   if (List.empty())
1160     return;
1161 
1162   // Convert List to what ConstantArray needs.
1163   SmallVector<llvm::Constant*, 8> UsedArray;
1164   UsedArray.resize(List.size());
1165   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1166     UsedArray[i] =
1167         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1168             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1169   }
1170 
1171   if (UsedArray.empty())
1172     return;
1173   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1174 
1175   auto *GV = new llvm::GlobalVariable(
1176       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1177       llvm::ConstantArray::get(ATy, UsedArray), Name);
1178 
1179   GV->setSection("llvm.metadata");
1180 }
1181 
1182 void CodeGenModule::emitLLVMUsed() {
1183   emitUsed(*this, "llvm.used", LLVMUsed);
1184   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1185 }
1186 
1187 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1188   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1189   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1190 }
1191 
1192 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1193   llvm::SmallString<32> Opt;
1194   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1195   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1196   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1197 }
1198 
1199 void CodeGenModule::AddDependentLib(StringRef Lib) {
1200   llvm::SmallString<24> Opt;
1201   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1202   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1203   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1204 }
1205 
1206 /// \brief Add link options implied by the given module, including modules
1207 /// it depends on, using a postorder walk.
1208 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1209                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1210                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1211   // Import this module's parent.
1212   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1213     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1214   }
1215 
1216   // Import this module's dependencies.
1217   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1218     if (Visited.insert(Mod->Imports[I - 1]).second)
1219       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1220   }
1221 
1222   // Add linker options to link against the libraries/frameworks
1223   // described by this module.
1224   llvm::LLVMContext &Context = CGM.getLLVMContext();
1225   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1226     // Link against a framework.  Frameworks are currently Darwin only, so we
1227     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1228     if (Mod->LinkLibraries[I-1].IsFramework) {
1229       llvm::Metadata *Args[2] = {
1230           llvm::MDString::get(Context, "-framework"),
1231           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1232 
1233       Metadata.push_back(llvm::MDNode::get(Context, Args));
1234       continue;
1235     }
1236 
1237     // Link against a library.
1238     llvm::SmallString<24> Opt;
1239     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1240       Mod->LinkLibraries[I-1].Library, Opt);
1241     auto *OptString = llvm::MDString::get(Context, Opt);
1242     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1243   }
1244 }
1245 
1246 void CodeGenModule::EmitModuleLinkOptions() {
1247   // Collect the set of all of the modules we want to visit to emit link
1248   // options, which is essentially the imported modules and all of their
1249   // non-explicit child modules.
1250   llvm::SetVector<clang::Module *> LinkModules;
1251   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1252   SmallVector<clang::Module *, 16> Stack;
1253 
1254   // Seed the stack with imported modules.
1255   for (Module *M : ImportedModules) {
1256     // Do not add any link flags when an implementation TU of a module imports
1257     // a header of that same module.
1258     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1259         !getLangOpts().isCompilingModule())
1260       continue;
1261     if (Visited.insert(M).second)
1262       Stack.push_back(M);
1263   }
1264 
1265   // Find all of the modules to import, making a little effort to prune
1266   // non-leaf modules.
1267   while (!Stack.empty()) {
1268     clang::Module *Mod = Stack.pop_back_val();
1269 
1270     bool AnyChildren = false;
1271 
1272     // Visit the submodules of this module.
1273     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1274                                         SubEnd = Mod->submodule_end();
1275          Sub != SubEnd; ++Sub) {
1276       // Skip explicit children; they need to be explicitly imported to be
1277       // linked against.
1278       if ((*Sub)->IsExplicit)
1279         continue;
1280 
1281       if (Visited.insert(*Sub).second) {
1282         Stack.push_back(*Sub);
1283         AnyChildren = true;
1284       }
1285     }
1286 
1287     // We didn't find any children, so add this module to the list of
1288     // modules to link against.
1289     if (!AnyChildren) {
1290       LinkModules.insert(Mod);
1291     }
1292   }
1293 
1294   // Add link options for all of the imported modules in reverse topological
1295   // order.  We don't do anything to try to order import link flags with respect
1296   // to linker options inserted by things like #pragma comment().
1297   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1298   Visited.clear();
1299   for (Module *M : LinkModules)
1300     if (Visited.insert(M).second)
1301       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1302   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1303   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1304 
1305   // Add the linker options metadata flag.
1306   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1307                             llvm::MDNode::get(getLLVMContext(),
1308                                               LinkerOptionsMetadata));
1309 }
1310 
1311 void CodeGenModule::EmitDeferred() {
1312   // Emit code for any potentially referenced deferred decls.  Since a
1313   // previously unused static decl may become used during the generation of code
1314   // for a static function, iterate until no changes are made.
1315 
1316   if (!DeferredVTables.empty()) {
1317     EmitDeferredVTables();
1318 
1319     // Emitting a vtable doesn't directly cause more vtables to
1320     // become deferred, although it can cause functions to be
1321     // emitted that then need those vtables.
1322     assert(DeferredVTables.empty());
1323   }
1324 
1325   // Stop if we're out of both deferred vtables and deferred declarations.
1326   if (DeferredDeclsToEmit.empty())
1327     return;
1328 
1329   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1330   // work, it will not interfere with this.
1331   std::vector<GlobalDecl> CurDeclsToEmit;
1332   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1333 
1334   for (GlobalDecl &D : CurDeclsToEmit) {
1335     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1336     // to get GlobalValue with exactly the type we need, not something that
1337     // might had been created for another decl with the same mangled name but
1338     // different type.
1339     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1340         GetAddrOfGlobal(D, ForDefinition));
1341 
1342     // In case of different address spaces, we may still get a cast, even with
1343     // IsForDefinition equal to true. Query mangled names table to get
1344     // GlobalValue.
1345     if (!GV)
1346       GV = GetGlobalValue(getMangledName(D));
1347 
1348     // Make sure GetGlobalValue returned non-null.
1349     assert(GV);
1350 
1351     // Check to see if we've already emitted this.  This is necessary
1352     // for a couple of reasons: first, decls can end up in the
1353     // deferred-decls queue multiple times, and second, decls can end
1354     // up with definitions in unusual ways (e.g. by an extern inline
1355     // function acquiring a strong function redefinition).  Just
1356     // ignore these cases.
1357     if (!GV->isDeclaration())
1358       continue;
1359 
1360     // Otherwise, emit the definition and move on to the next one.
1361     EmitGlobalDefinition(D, GV);
1362 
1363     // If we found out that we need to emit more decls, do that recursively.
1364     // This has the advantage that the decls are emitted in a DFS and related
1365     // ones are close together, which is convenient for testing.
1366     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1367       EmitDeferred();
1368       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1369     }
1370   }
1371 }
1372 
1373 void CodeGenModule::EmitGlobalAnnotations() {
1374   if (Annotations.empty())
1375     return;
1376 
1377   // Create a new global variable for the ConstantStruct in the Module.
1378   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1379     Annotations[0]->getType(), Annotations.size()), Annotations);
1380   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1381                                       llvm::GlobalValue::AppendingLinkage,
1382                                       Array, "llvm.global.annotations");
1383   gv->setSection(AnnotationSection);
1384 }
1385 
1386 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1387   llvm::Constant *&AStr = AnnotationStrings[Str];
1388   if (AStr)
1389     return AStr;
1390 
1391   // Not found yet, create a new global.
1392   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1393   auto *gv =
1394       new llvm::GlobalVariable(getModule(), s->getType(), true,
1395                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1396   gv->setSection(AnnotationSection);
1397   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1398   AStr = gv;
1399   return gv;
1400 }
1401 
1402 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1403   SourceManager &SM = getContext().getSourceManager();
1404   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1405   if (PLoc.isValid())
1406     return EmitAnnotationString(PLoc.getFilename());
1407   return EmitAnnotationString(SM.getBufferName(Loc));
1408 }
1409 
1410 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1411   SourceManager &SM = getContext().getSourceManager();
1412   PresumedLoc PLoc = SM.getPresumedLoc(L);
1413   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1414     SM.getExpansionLineNumber(L);
1415   return llvm::ConstantInt::get(Int32Ty, LineNo);
1416 }
1417 
1418 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1419                                                 const AnnotateAttr *AA,
1420                                                 SourceLocation L) {
1421   // Get the globals for file name, annotation, and the line number.
1422   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1423                  *UnitGV = EmitAnnotationUnit(L),
1424                  *LineNoCst = EmitAnnotationLineNo(L);
1425 
1426   // Create the ConstantStruct for the global annotation.
1427   llvm::Constant *Fields[4] = {
1428     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1429     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1430     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1431     LineNoCst
1432   };
1433   return llvm::ConstantStruct::getAnon(Fields);
1434 }
1435 
1436 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1437                                          llvm::GlobalValue *GV) {
1438   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1439   // Get the struct elements for these annotations.
1440   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1441     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1442 }
1443 
1444 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1445                                            SourceLocation Loc) const {
1446   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1447   // Blacklist by function name.
1448   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1449     return true;
1450   // Blacklist by location.
1451   if (Loc.isValid())
1452     return SanitizerBL.isBlacklistedLocation(Loc);
1453   // If location is unknown, this may be a compiler-generated function. Assume
1454   // it's located in the main file.
1455   auto &SM = Context.getSourceManager();
1456   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1457     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1458   }
1459   return false;
1460 }
1461 
1462 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1463                                            SourceLocation Loc, QualType Ty,
1464                                            StringRef Category) const {
1465   // For now globals can be blacklisted only in ASan and KASan.
1466   if (!LangOpts.Sanitize.hasOneOf(
1467           SanitizerKind::Address | SanitizerKind::KernelAddress))
1468     return false;
1469   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1470   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1471     return true;
1472   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1473     return true;
1474   // Check global type.
1475   if (!Ty.isNull()) {
1476     // Drill down the array types: if global variable of a fixed type is
1477     // blacklisted, we also don't instrument arrays of them.
1478     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1479       Ty = AT->getElementType();
1480     Ty = Ty.getCanonicalType().getUnqualifiedType();
1481     // We allow to blacklist only record types (classes, structs etc.)
1482     if (Ty->isRecordType()) {
1483       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1484       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1485         return true;
1486     }
1487   }
1488   return false;
1489 }
1490 
1491 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1492                                    StringRef Category) const {
1493   if (!LangOpts.XRayInstrument)
1494     return false;
1495   const auto &XRayFilter = getContext().getXRayFilter();
1496   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1497   auto Attr = XRayFunctionFilter::ImbueAttribute::NONE;
1498   if (Loc.isValid())
1499     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1500   if (Attr == ImbueAttr::NONE)
1501     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1502   switch (Attr) {
1503   case ImbueAttr::NONE:
1504     return false;
1505   case ImbueAttr::ALWAYS:
1506     Fn->addFnAttr("function-instrument", "xray-always");
1507     break;
1508   case ImbueAttr::NEVER:
1509     Fn->addFnAttr("function-instrument", "xray-never");
1510     break;
1511   }
1512   return true;
1513 }
1514 
1515 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1516   // Never defer when EmitAllDecls is specified.
1517   if (LangOpts.EmitAllDecls)
1518     return true;
1519 
1520   return getContext().DeclMustBeEmitted(Global);
1521 }
1522 
1523 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1524   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1525     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1526       // Implicit template instantiations may change linkage if they are later
1527       // explicitly instantiated, so they should not be emitted eagerly.
1528       return false;
1529   if (const auto *VD = dyn_cast<VarDecl>(Global))
1530     if (Context.getInlineVariableDefinitionKind(VD) ==
1531         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1532       // A definition of an inline constexpr static data member may change
1533       // linkage later if it's redeclared outside the class.
1534       return false;
1535   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1536   // codegen for global variables, because they may be marked as threadprivate.
1537   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1538       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1539     return false;
1540 
1541   return true;
1542 }
1543 
1544 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1545     const CXXUuidofExpr* E) {
1546   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1547   // well-formed.
1548   StringRef Uuid = E->getUuidStr();
1549   std::string Name = "_GUID_" + Uuid.lower();
1550   std::replace(Name.begin(), Name.end(), '-', '_');
1551 
1552   // The UUID descriptor should be pointer aligned.
1553   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1554 
1555   // Look for an existing global.
1556   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1557     return ConstantAddress(GV, Alignment);
1558 
1559   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1560   assert(Init && "failed to initialize as constant");
1561 
1562   auto *GV = new llvm::GlobalVariable(
1563       getModule(), Init->getType(),
1564       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1565   if (supportsCOMDAT())
1566     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1567   return ConstantAddress(GV, Alignment);
1568 }
1569 
1570 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1571   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1572   assert(AA && "No alias?");
1573 
1574   CharUnits Alignment = getContext().getDeclAlign(VD);
1575   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1576 
1577   // See if there is already something with the target's name in the module.
1578   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1579   if (Entry) {
1580     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1581     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1582     return ConstantAddress(Ptr, Alignment);
1583   }
1584 
1585   llvm::Constant *Aliasee;
1586   if (isa<llvm::FunctionType>(DeclTy))
1587     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1588                                       GlobalDecl(cast<FunctionDecl>(VD)),
1589                                       /*ForVTable=*/false);
1590   else
1591     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1592                                     llvm::PointerType::getUnqual(DeclTy),
1593                                     nullptr);
1594 
1595   auto *F = cast<llvm::GlobalValue>(Aliasee);
1596   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1597   WeakRefReferences.insert(F);
1598 
1599   return ConstantAddress(Aliasee, Alignment);
1600 }
1601 
1602 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1603   const auto *Global = cast<ValueDecl>(GD.getDecl());
1604 
1605   // Weak references don't produce any output by themselves.
1606   if (Global->hasAttr<WeakRefAttr>())
1607     return;
1608 
1609   // If this is an alias definition (which otherwise looks like a declaration)
1610   // emit it now.
1611   if (Global->hasAttr<AliasAttr>())
1612     return EmitAliasDefinition(GD);
1613 
1614   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1615   if (Global->hasAttr<IFuncAttr>())
1616     return emitIFuncDefinition(GD);
1617 
1618   // If this is CUDA, be selective about which declarations we emit.
1619   if (LangOpts.CUDA) {
1620     if (LangOpts.CUDAIsDevice) {
1621       if (!Global->hasAttr<CUDADeviceAttr>() &&
1622           !Global->hasAttr<CUDAGlobalAttr>() &&
1623           !Global->hasAttr<CUDAConstantAttr>() &&
1624           !Global->hasAttr<CUDASharedAttr>())
1625         return;
1626     } else {
1627       // We need to emit host-side 'shadows' for all global
1628       // device-side variables because the CUDA runtime needs their
1629       // size and host-side address in order to provide access to
1630       // their device-side incarnations.
1631 
1632       // So device-only functions are the only things we skip.
1633       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1634           Global->hasAttr<CUDADeviceAttr>())
1635         return;
1636 
1637       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1638              "Expected Variable or Function");
1639     }
1640   }
1641 
1642   if (LangOpts.OpenMP) {
1643     // If this is OpenMP device, check if it is legal to emit this global
1644     // normally.
1645     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1646       return;
1647     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1648       if (MustBeEmitted(Global))
1649         EmitOMPDeclareReduction(DRD);
1650       return;
1651     }
1652   }
1653 
1654   // Ignore declarations, they will be emitted on their first use.
1655   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1656     // Forward declarations are emitted lazily on first use.
1657     if (!FD->doesThisDeclarationHaveABody()) {
1658       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1659         return;
1660 
1661       StringRef MangledName = getMangledName(GD);
1662 
1663       // Compute the function info and LLVM type.
1664       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1665       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1666 
1667       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1668                               /*DontDefer=*/false);
1669       return;
1670     }
1671   } else {
1672     const auto *VD = cast<VarDecl>(Global);
1673     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1674     // We need to emit device-side global CUDA variables even if a
1675     // variable does not have a definition -- we still need to define
1676     // host-side shadow for it.
1677     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1678                            !VD->hasDefinition() &&
1679                            (VD->hasAttr<CUDAConstantAttr>() ||
1680                             VD->hasAttr<CUDADeviceAttr>());
1681     if (!MustEmitForCuda &&
1682         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1683         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1684       // If this declaration may have caused an inline variable definition to
1685       // change linkage, make sure that it's emitted.
1686       if (Context.getInlineVariableDefinitionKind(VD) ==
1687           ASTContext::InlineVariableDefinitionKind::Strong)
1688         GetAddrOfGlobalVar(VD);
1689       return;
1690     }
1691   }
1692 
1693   // Defer code generation to first use when possible, e.g. if this is an inline
1694   // function. If the global must always be emitted, do it eagerly if possible
1695   // to benefit from cache locality.
1696   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1697     // Emit the definition if it can't be deferred.
1698     EmitGlobalDefinition(GD);
1699     return;
1700   }
1701 
1702   // If we're deferring emission of a C++ variable with an
1703   // initializer, remember the order in which it appeared in the file.
1704   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1705       cast<VarDecl>(Global)->hasInit()) {
1706     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1707     CXXGlobalInits.push_back(nullptr);
1708   }
1709 
1710   StringRef MangledName = getMangledName(GD);
1711   if (GetGlobalValue(MangledName) != nullptr) {
1712     // The value has already been used and should therefore be emitted.
1713     addDeferredDeclToEmit(GD);
1714   } else if (MustBeEmitted(Global)) {
1715     // The value must be emitted, but cannot be emitted eagerly.
1716     assert(!MayBeEmittedEagerly(Global));
1717     addDeferredDeclToEmit(GD);
1718   } else {
1719     // Otherwise, remember that we saw a deferred decl with this name.  The
1720     // first use of the mangled name will cause it to move into
1721     // DeferredDeclsToEmit.
1722     DeferredDecls[MangledName] = GD;
1723   }
1724 }
1725 
1726 // Check if T is a class type with a destructor that's not dllimport.
1727 static bool HasNonDllImportDtor(QualType T) {
1728   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1729     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1730       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1731         return true;
1732 
1733   return false;
1734 }
1735 
1736 namespace {
1737   struct FunctionIsDirectlyRecursive :
1738     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1739     const StringRef Name;
1740     const Builtin::Context &BI;
1741     bool Result;
1742     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1743       Name(N), BI(C), Result(false) {
1744     }
1745     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1746 
1747     bool TraverseCallExpr(CallExpr *E) {
1748       const FunctionDecl *FD = E->getDirectCallee();
1749       if (!FD)
1750         return true;
1751       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1752       if (Attr && Name == Attr->getLabel()) {
1753         Result = true;
1754         return false;
1755       }
1756       unsigned BuiltinID = FD->getBuiltinID();
1757       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1758         return true;
1759       StringRef BuiltinName = BI.getName(BuiltinID);
1760       if (BuiltinName.startswith("__builtin_") &&
1761           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1762         Result = true;
1763         return false;
1764       }
1765       return true;
1766     }
1767   };
1768 
1769   // Make sure we're not referencing non-imported vars or functions.
1770   struct DLLImportFunctionVisitor
1771       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1772     bool SafeToInline = true;
1773 
1774     bool shouldVisitImplicitCode() const { return true; }
1775 
1776     bool VisitVarDecl(VarDecl *VD) {
1777       if (VD->getTLSKind()) {
1778         // A thread-local variable cannot be imported.
1779         SafeToInline = false;
1780         return SafeToInline;
1781       }
1782 
1783       // A variable definition might imply a destructor call.
1784       if (VD->isThisDeclarationADefinition())
1785         SafeToInline = !HasNonDllImportDtor(VD->getType());
1786 
1787       return SafeToInline;
1788     }
1789 
1790     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1791       if (const auto *D = E->getTemporary()->getDestructor())
1792         SafeToInline = D->hasAttr<DLLImportAttr>();
1793       return SafeToInline;
1794     }
1795 
1796     bool VisitDeclRefExpr(DeclRefExpr *E) {
1797       ValueDecl *VD = E->getDecl();
1798       if (isa<FunctionDecl>(VD))
1799         SafeToInline = VD->hasAttr<DLLImportAttr>();
1800       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1801         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1802       return SafeToInline;
1803     }
1804 
1805     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1806       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1807       return SafeToInline;
1808     }
1809 
1810     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1811       CXXMethodDecl *M = E->getMethodDecl();
1812       if (!M) {
1813         // Call through a pointer to member function. This is safe to inline.
1814         SafeToInline = true;
1815       } else {
1816         SafeToInline = M->hasAttr<DLLImportAttr>();
1817       }
1818       return SafeToInline;
1819     }
1820 
1821     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1822       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1823       return SafeToInline;
1824     }
1825 
1826     bool VisitCXXNewExpr(CXXNewExpr *E) {
1827       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1828       return SafeToInline;
1829     }
1830   };
1831 }
1832 
1833 // isTriviallyRecursive - Check if this function calls another
1834 // decl that, because of the asm attribute or the other decl being a builtin,
1835 // ends up pointing to itself.
1836 bool
1837 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1838   StringRef Name;
1839   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1840     // asm labels are a special kind of mangling we have to support.
1841     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1842     if (!Attr)
1843       return false;
1844     Name = Attr->getLabel();
1845   } else {
1846     Name = FD->getName();
1847   }
1848 
1849   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1850   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1851   return Walker.Result;
1852 }
1853 
1854 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1855   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1856     return true;
1857   const auto *F = cast<FunctionDecl>(GD.getDecl());
1858   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1859     return false;
1860 
1861   if (F->hasAttr<DLLImportAttr>()) {
1862     // Check whether it would be safe to inline this dllimport function.
1863     DLLImportFunctionVisitor Visitor;
1864     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1865     if (!Visitor.SafeToInline)
1866       return false;
1867 
1868     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1869       // Implicit destructor invocations aren't captured in the AST, so the
1870       // check above can't see them. Check for them manually here.
1871       for (const Decl *Member : Dtor->getParent()->decls())
1872         if (isa<FieldDecl>(Member))
1873           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1874             return false;
1875       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1876         if (HasNonDllImportDtor(B.getType()))
1877           return false;
1878     }
1879   }
1880 
1881   // PR9614. Avoid cases where the source code is lying to us. An available
1882   // externally function should have an equivalent function somewhere else,
1883   // but a function that calls itself is clearly not equivalent to the real
1884   // implementation.
1885   // This happens in glibc's btowc and in some configure checks.
1886   return !isTriviallyRecursive(F);
1887 }
1888 
1889 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1890   const auto *D = cast<ValueDecl>(GD.getDecl());
1891 
1892   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1893                                  Context.getSourceManager(),
1894                                  "Generating code for declaration");
1895 
1896   if (isa<FunctionDecl>(D)) {
1897     // At -O0, don't generate IR for functions with available_externally
1898     // linkage.
1899     if (!shouldEmitFunction(GD))
1900       return;
1901 
1902     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1903       // Make sure to emit the definition(s) before we emit the thunks.
1904       // This is necessary for the generation of certain thunks.
1905       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1906         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1907       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1908         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1909       else
1910         EmitGlobalFunctionDefinition(GD, GV);
1911 
1912       if (Method->isVirtual())
1913         getVTables().EmitThunks(GD);
1914 
1915       return;
1916     }
1917 
1918     return EmitGlobalFunctionDefinition(GD, GV);
1919   }
1920 
1921   if (const auto *VD = dyn_cast<VarDecl>(D))
1922     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1923 
1924   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1925 }
1926 
1927 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1928                                                       llvm::Function *NewFn);
1929 
1930 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1931 /// module, create and return an llvm Function with the specified type. If there
1932 /// is something in the module with the specified name, return it potentially
1933 /// bitcasted to the right type.
1934 ///
1935 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1936 /// to set the attributes on the function when it is first created.
1937 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1938     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1939     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1940     ForDefinition_t IsForDefinition) {
1941   const Decl *D = GD.getDecl();
1942 
1943   // Lookup the entry, lazily creating it if necessary.
1944   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1945   if (Entry) {
1946     if (WeakRefReferences.erase(Entry)) {
1947       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1948       if (FD && !FD->hasAttr<WeakAttr>())
1949         Entry->setLinkage(llvm::Function::ExternalLinkage);
1950     }
1951 
1952     // Handle dropped DLL attributes.
1953     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1954       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1955 
1956     // If there are two attempts to define the same mangled name, issue an
1957     // error.
1958     if (IsForDefinition && !Entry->isDeclaration()) {
1959       GlobalDecl OtherGD;
1960       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1961       // to make sure that we issue an error only once.
1962       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1963           (GD.getCanonicalDecl().getDecl() !=
1964            OtherGD.getCanonicalDecl().getDecl()) &&
1965           DiagnosedConflictingDefinitions.insert(GD).second) {
1966         getDiags().Report(D->getLocation(),
1967                           diag::err_duplicate_mangled_name);
1968         getDiags().Report(OtherGD.getDecl()->getLocation(),
1969                           diag::note_previous_definition);
1970       }
1971     }
1972 
1973     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1974         (Entry->getType()->getElementType() == Ty)) {
1975       return Entry;
1976     }
1977 
1978     // Make sure the result is of the correct type.
1979     // (If function is requested for a definition, we always need to create a new
1980     // function, not just return a bitcast.)
1981     if (!IsForDefinition)
1982       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1983   }
1984 
1985   // This function doesn't have a complete type (for example, the return
1986   // type is an incomplete struct). Use a fake type instead, and make
1987   // sure not to try to set attributes.
1988   bool IsIncompleteFunction = false;
1989 
1990   llvm::FunctionType *FTy;
1991   if (isa<llvm::FunctionType>(Ty)) {
1992     FTy = cast<llvm::FunctionType>(Ty);
1993   } else {
1994     FTy = llvm::FunctionType::get(VoidTy, false);
1995     IsIncompleteFunction = true;
1996   }
1997 
1998   llvm::Function *F =
1999       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2000                              Entry ? StringRef() : MangledName, &getModule());
2001 
2002   // If we already created a function with the same mangled name (but different
2003   // type) before, take its name and add it to the list of functions to be
2004   // replaced with F at the end of CodeGen.
2005   //
2006   // This happens if there is a prototype for a function (e.g. "int f()") and
2007   // then a definition of a different type (e.g. "int f(int x)").
2008   if (Entry) {
2009     F->takeName(Entry);
2010 
2011     // This might be an implementation of a function without a prototype, in
2012     // which case, try to do special replacement of calls which match the new
2013     // prototype.  The really key thing here is that we also potentially drop
2014     // arguments from the call site so as to make a direct call, which makes the
2015     // inliner happier and suppresses a number of optimizer warnings (!) about
2016     // dropping arguments.
2017     if (!Entry->use_empty()) {
2018       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2019       Entry->removeDeadConstantUsers();
2020     }
2021 
2022     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2023         F, Entry->getType()->getElementType()->getPointerTo());
2024     addGlobalValReplacement(Entry, BC);
2025   }
2026 
2027   assert(F->getName() == MangledName && "name was uniqued!");
2028   if (D)
2029     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2030   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2031     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2032     F->addAttributes(llvm::AttributeList::FunctionIndex,
2033                      llvm::AttributeList::get(
2034                          VMContext, llvm::AttributeList::FunctionIndex, B));
2035   }
2036 
2037   if (!DontDefer) {
2038     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2039     // each other bottoming out with the base dtor.  Therefore we emit non-base
2040     // dtors on usage, even if there is no dtor definition in the TU.
2041     if (D && isa<CXXDestructorDecl>(D) &&
2042         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2043                                            GD.getDtorType()))
2044       addDeferredDeclToEmit(GD);
2045 
2046     // This is the first use or definition of a mangled name.  If there is a
2047     // deferred decl with this name, remember that we need to emit it at the end
2048     // of the file.
2049     auto DDI = DeferredDecls.find(MangledName);
2050     if (DDI != DeferredDecls.end()) {
2051       // Move the potentially referenced deferred decl to the
2052       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2053       // don't need it anymore).
2054       addDeferredDeclToEmit(DDI->second);
2055       DeferredDecls.erase(DDI);
2056 
2057       // Otherwise, there are cases we have to worry about where we're
2058       // using a declaration for which we must emit a definition but where
2059       // we might not find a top-level definition:
2060       //   - member functions defined inline in their classes
2061       //   - friend functions defined inline in some class
2062       //   - special member functions with implicit definitions
2063       // If we ever change our AST traversal to walk into class methods,
2064       // this will be unnecessary.
2065       //
2066       // We also don't emit a definition for a function if it's going to be an
2067       // entry in a vtable, unless it's already marked as used.
2068     } else if (getLangOpts().CPlusPlus && D) {
2069       // Look for a declaration that's lexically in a record.
2070       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2071            FD = FD->getPreviousDecl()) {
2072         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2073           if (FD->doesThisDeclarationHaveABody()) {
2074             addDeferredDeclToEmit(GD.getWithDecl(FD));
2075             break;
2076           }
2077         }
2078       }
2079     }
2080   }
2081 
2082   // Make sure the result is of the requested type.
2083   if (!IsIncompleteFunction) {
2084     assert(F->getType()->getElementType() == Ty);
2085     return F;
2086   }
2087 
2088   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2089   return llvm::ConstantExpr::getBitCast(F, PTy);
2090 }
2091 
2092 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2093 /// non-null, then this function will use the specified type if it has to
2094 /// create it (this occurs when we see a definition of the function).
2095 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2096                                                  llvm::Type *Ty,
2097                                                  bool ForVTable,
2098                                                  bool DontDefer,
2099                                               ForDefinition_t IsForDefinition) {
2100   // If there was no specific requested type, just convert it now.
2101   if (!Ty) {
2102     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2103     auto CanonTy = Context.getCanonicalType(FD->getType());
2104     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2105   }
2106 
2107   StringRef MangledName = getMangledName(GD);
2108   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2109                                  /*IsThunk=*/false, llvm::AttributeList(),
2110                                  IsForDefinition);
2111 }
2112 
2113 static const FunctionDecl *
2114 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2115   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2116   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2117 
2118   IdentifierInfo &CII = C.Idents.get(Name);
2119   for (const auto &Result : DC->lookup(&CII))
2120     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2121       return FD;
2122 
2123   if (!C.getLangOpts().CPlusPlus)
2124     return nullptr;
2125 
2126   // Demangle the premangled name from getTerminateFn()
2127   IdentifierInfo &CXXII =
2128       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2129           ? C.Idents.get("terminate")
2130           : C.Idents.get(Name);
2131 
2132   for (const auto &N : {"__cxxabiv1", "std"}) {
2133     IdentifierInfo &NS = C.Idents.get(N);
2134     for (const auto &Result : DC->lookup(&NS)) {
2135       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2136       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2137         for (const auto &Result : LSD->lookup(&NS))
2138           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2139             break;
2140 
2141       if (ND)
2142         for (const auto &Result : ND->lookup(&CXXII))
2143           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2144             return FD;
2145     }
2146   }
2147 
2148   return nullptr;
2149 }
2150 
2151 /// CreateRuntimeFunction - Create a new runtime function with the specified
2152 /// type and name.
2153 llvm::Constant *
2154 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2155                                      llvm::AttributeList ExtraAttrs,
2156                                      bool Local) {
2157   llvm::Constant *C =
2158       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2159                               /*DontDefer=*/false, /*IsThunk=*/false,
2160                               ExtraAttrs);
2161 
2162   if (auto *F = dyn_cast<llvm::Function>(C)) {
2163     if (F->empty()) {
2164       F->setCallingConv(getRuntimeCC());
2165 
2166       if (!Local && getTriple().isOSBinFormatCOFF() &&
2167           !getCodeGenOpts().LTOVisibilityPublicStd) {
2168         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2169         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2170           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2171           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2172         }
2173       }
2174     }
2175   }
2176 
2177   return C;
2178 }
2179 
2180 /// CreateBuiltinFunction - Create a new builtin function with the specified
2181 /// type and name.
2182 llvm::Constant *
2183 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2184                                      llvm::AttributeList ExtraAttrs) {
2185   llvm::Constant *C =
2186       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2187                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2188   if (auto *F = dyn_cast<llvm::Function>(C))
2189     if (F->empty())
2190       F->setCallingConv(getBuiltinCC());
2191   return C;
2192 }
2193 
2194 /// isTypeConstant - Determine whether an object of this type can be emitted
2195 /// as a constant.
2196 ///
2197 /// If ExcludeCtor is true, the duration when the object's constructor runs
2198 /// will not be considered. The caller will need to verify that the object is
2199 /// not written to during its construction.
2200 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2201   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2202     return false;
2203 
2204   if (Context.getLangOpts().CPlusPlus) {
2205     if (const CXXRecordDecl *Record
2206           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2207       return ExcludeCtor && !Record->hasMutableFields() &&
2208              Record->hasTrivialDestructor();
2209   }
2210 
2211   return true;
2212 }
2213 
2214 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2215 /// create and return an llvm GlobalVariable with the specified type.  If there
2216 /// is something in the module with the specified name, return it potentially
2217 /// bitcasted to the right type.
2218 ///
2219 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2220 /// to set the attributes on the global when it is first created.
2221 ///
2222 /// If IsForDefinition is true, it is guranteed that an actual global with
2223 /// type Ty will be returned, not conversion of a variable with the same
2224 /// mangled name but some other type.
2225 llvm::Constant *
2226 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2227                                      llvm::PointerType *Ty,
2228                                      const VarDecl *D,
2229                                      ForDefinition_t IsForDefinition) {
2230   // Lookup the entry, lazily creating it if necessary.
2231   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2232   if (Entry) {
2233     if (WeakRefReferences.erase(Entry)) {
2234       if (D && !D->hasAttr<WeakAttr>())
2235         Entry->setLinkage(llvm::Function::ExternalLinkage);
2236     }
2237 
2238     // Handle dropped DLL attributes.
2239     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2240       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2241 
2242     if (Entry->getType() == Ty)
2243       return Entry;
2244 
2245     // If there are two attempts to define the same mangled name, issue an
2246     // error.
2247     if (IsForDefinition && !Entry->isDeclaration()) {
2248       GlobalDecl OtherGD;
2249       const VarDecl *OtherD;
2250 
2251       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2252       // to make sure that we issue an error only once.
2253       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2254           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2255           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2256           OtherD->hasInit() &&
2257           DiagnosedConflictingDefinitions.insert(D).second) {
2258         getDiags().Report(D->getLocation(),
2259                           diag::err_duplicate_mangled_name);
2260         getDiags().Report(OtherGD.getDecl()->getLocation(),
2261                           diag::note_previous_definition);
2262       }
2263     }
2264 
2265     // Make sure the result is of the correct type.
2266     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2267       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2268 
2269     // (If global is requested for a definition, we always need to create a new
2270     // global, not just return a bitcast.)
2271     if (!IsForDefinition)
2272       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2273   }
2274 
2275   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2276   auto *GV = new llvm::GlobalVariable(
2277       getModule(), Ty->getElementType(), false,
2278       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2279       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2280 
2281   // If we already created a global with the same mangled name (but different
2282   // type) before, take its name and remove it from its parent.
2283   if (Entry) {
2284     GV->takeName(Entry);
2285 
2286     if (!Entry->use_empty()) {
2287       llvm::Constant *NewPtrForOldDecl =
2288           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2289       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2290     }
2291 
2292     Entry->eraseFromParent();
2293   }
2294 
2295   // This is the first use or definition of a mangled name.  If there is a
2296   // deferred decl with this name, remember that we need to emit it at the end
2297   // of the file.
2298   auto DDI = DeferredDecls.find(MangledName);
2299   if (DDI != DeferredDecls.end()) {
2300     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2301     // list, and remove it from DeferredDecls (since we don't need it anymore).
2302     addDeferredDeclToEmit(DDI->second);
2303     DeferredDecls.erase(DDI);
2304   }
2305 
2306   // Handle things which are present even on external declarations.
2307   if (D) {
2308     // FIXME: This code is overly simple and should be merged with other global
2309     // handling.
2310     GV->setConstant(isTypeConstant(D->getType(), false));
2311 
2312     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2313 
2314     setLinkageAndVisibilityForGV(GV, D);
2315 
2316     if (D->getTLSKind()) {
2317       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2318         CXXThreadLocals.push_back(D);
2319       setTLSMode(GV, *D);
2320     }
2321 
2322     // If required by the ABI, treat declarations of static data members with
2323     // inline initializers as definitions.
2324     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2325       EmitGlobalVarDefinition(D);
2326     }
2327 
2328     // Handle XCore specific ABI requirements.
2329     if (getTriple().getArch() == llvm::Triple::xcore &&
2330         D->getLanguageLinkage() == CLanguageLinkage &&
2331         D->getType().isConstant(Context) &&
2332         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2333       GV->setSection(".cp.rodata");
2334   }
2335 
2336   if (AddrSpace != Ty->getAddressSpace())
2337     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2338 
2339   return GV;
2340 }
2341 
2342 llvm::Constant *
2343 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2344                                ForDefinition_t IsForDefinition) {
2345   const Decl *D = GD.getDecl();
2346   if (isa<CXXConstructorDecl>(D))
2347     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2348                                 getFromCtorType(GD.getCtorType()),
2349                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2350                                 /*DontDefer=*/false, IsForDefinition);
2351   else if (isa<CXXDestructorDecl>(D))
2352     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2353                                 getFromDtorType(GD.getDtorType()),
2354                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2355                                 /*DontDefer=*/false, IsForDefinition);
2356   else if (isa<CXXMethodDecl>(D)) {
2357     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2358         cast<CXXMethodDecl>(D));
2359     auto Ty = getTypes().GetFunctionType(*FInfo);
2360     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2361                              IsForDefinition);
2362   } else if (isa<FunctionDecl>(D)) {
2363     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2364     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2365     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2366                              IsForDefinition);
2367   } else
2368     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2369                               IsForDefinition);
2370 }
2371 
2372 llvm::GlobalVariable *
2373 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2374                                       llvm::Type *Ty,
2375                                       llvm::GlobalValue::LinkageTypes Linkage) {
2376   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2377   llvm::GlobalVariable *OldGV = nullptr;
2378 
2379   if (GV) {
2380     // Check if the variable has the right type.
2381     if (GV->getType()->getElementType() == Ty)
2382       return GV;
2383 
2384     // Because C++ name mangling, the only way we can end up with an already
2385     // existing global with the same name is if it has been declared extern "C".
2386     assert(GV->isDeclaration() && "Declaration has wrong type!");
2387     OldGV = GV;
2388   }
2389 
2390   // Create a new variable.
2391   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2392                                 Linkage, nullptr, Name);
2393 
2394   if (OldGV) {
2395     // Replace occurrences of the old variable if needed.
2396     GV->takeName(OldGV);
2397 
2398     if (!OldGV->use_empty()) {
2399       llvm::Constant *NewPtrForOldDecl =
2400       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2401       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2402     }
2403 
2404     OldGV->eraseFromParent();
2405   }
2406 
2407   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2408       !GV->hasAvailableExternallyLinkage())
2409     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2410 
2411   return GV;
2412 }
2413 
2414 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2415 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2416 /// then it will be created with the specified type instead of whatever the
2417 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2418 /// that an actual global with type Ty will be returned, not conversion of a
2419 /// variable with the same mangled name but some other type.
2420 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2421                                                   llvm::Type *Ty,
2422                                            ForDefinition_t IsForDefinition) {
2423   assert(D->hasGlobalStorage() && "Not a global variable");
2424   QualType ASTTy = D->getType();
2425   if (!Ty)
2426     Ty = getTypes().ConvertTypeForMem(ASTTy);
2427 
2428   llvm::PointerType *PTy =
2429     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2430 
2431   StringRef MangledName = getMangledName(D);
2432   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2433 }
2434 
2435 /// CreateRuntimeVariable - Create a new runtime global variable with the
2436 /// specified type and name.
2437 llvm::Constant *
2438 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2439                                      StringRef Name) {
2440   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2441 }
2442 
2443 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2444   assert(!D->getInit() && "Cannot emit definite definitions here!");
2445 
2446   StringRef MangledName = getMangledName(D);
2447   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2448 
2449   // We already have a definition, not declaration, with the same mangled name.
2450   // Emitting of declaration is not required (and actually overwrites emitted
2451   // definition).
2452   if (GV && !GV->isDeclaration())
2453     return;
2454 
2455   // If we have not seen a reference to this variable yet, place it into the
2456   // deferred declarations table to be emitted if needed later.
2457   if (!MustBeEmitted(D) && !GV) {
2458       DeferredDecls[MangledName] = D;
2459       return;
2460   }
2461 
2462   // The tentative definition is the only definition.
2463   EmitGlobalVarDefinition(D);
2464 }
2465 
2466 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2467   return Context.toCharUnitsFromBits(
2468       getDataLayout().getTypeStoreSizeInBits(Ty));
2469 }
2470 
2471 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2472                                                  unsigned AddrSpace) {
2473   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2474     if (D->hasAttr<CUDAConstantAttr>())
2475       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2476     else if (D->hasAttr<CUDASharedAttr>())
2477       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2478     else
2479       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2480   }
2481 
2482   return AddrSpace;
2483 }
2484 
2485 template<typename SomeDecl>
2486 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2487                                                llvm::GlobalValue *GV) {
2488   if (!getLangOpts().CPlusPlus)
2489     return;
2490 
2491   // Must have 'used' attribute, or else inline assembly can't rely on
2492   // the name existing.
2493   if (!D->template hasAttr<UsedAttr>())
2494     return;
2495 
2496   // Must have internal linkage and an ordinary name.
2497   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2498     return;
2499 
2500   // Must be in an extern "C" context. Entities declared directly within
2501   // a record are not extern "C" even if the record is in such a context.
2502   const SomeDecl *First = D->getFirstDecl();
2503   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2504     return;
2505 
2506   // OK, this is an internal linkage entity inside an extern "C" linkage
2507   // specification. Make a note of that so we can give it the "expected"
2508   // mangled name if nothing else is using that name.
2509   std::pair<StaticExternCMap::iterator, bool> R =
2510       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2511 
2512   // If we have multiple internal linkage entities with the same name
2513   // in extern "C" regions, none of them gets that name.
2514   if (!R.second)
2515     R.first->second = nullptr;
2516 }
2517 
2518 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2519   if (!CGM.supportsCOMDAT())
2520     return false;
2521 
2522   if (D.hasAttr<SelectAnyAttr>())
2523     return true;
2524 
2525   GVALinkage Linkage;
2526   if (auto *VD = dyn_cast<VarDecl>(&D))
2527     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2528   else
2529     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2530 
2531   switch (Linkage) {
2532   case GVA_Internal:
2533   case GVA_AvailableExternally:
2534   case GVA_StrongExternal:
2535     return false;
2536   case GVA_DiscardableODR:
2537   case GVA_StrongODR:
2538     return true;
2539   }
2540   llvm_unreachable("No such linkage");
2541 }
2542 
2543 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2544                                           llvm::GlobalObject &GO) {
2545   if (!shouldBeInCOMDAT(*this, D))
2546     return;
2547   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2548 }
2549 
2550 /// Pass IsTentative as true if you want to create a tentative definition.
2551 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2552                                             bool IsTentative) {
2553   // OpenCL global variables of sampler type are translated to function calls,
2554   // therefore no need to be translated.
2555   QualType ASTTy = D->getType();
2556   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2557     return;
2558 
2559   llvm::Constant *Init = nullptr;
2560   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2561   bool NeedsGlobalCtor = false;
2562   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2563 
2564   const VarDecl *InitDecl;
2565   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2566 
2567   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2568   // as part of their declaration."  Sema has already checked for
2569   // error cases, so we just need to set Init to UndefValue.
2570   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2571       D->hasAttr<CUDASharedAttr>())
2572     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2573   else if (!InitExpr) {
2574     // This is a tentative definition; tentative definitions are
2575     // implicitly initialized with { 0 }.
2576     //
2577     // Note that tentative definitions are only emitted at the end of
2578     // a translation unit, so they should never have incomplete
2579     // type. In addition, EmitTentativeDefinition makes sure that we
2580     // never attempt to emit a tentative definition if a real one
2581     // exists. A use may still exists, however, so we still may need
2582     // to do a RAUW.
2583     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2584     Init = EmitNullConstant(D->getType());
2585   } else {
2586     initializedGlobalDecl = GlobalDecl(D);
2587     Init = EmitConstantInit(*InitDecl);
2588 
2589     if (!Init) {
2590       QualType T = InitExpr->getType();
2591       if (D->getType()->isReferenceType())
2592         T = D->getType();
2593 
2594       if (getLangOpts().CPlusPlus) {
2595         Init = EmitNullConstant(T);
2596         NeedsGlobalCtor = true;
2597       } else {
2598         ErrorUnsupported(D, "static initializer");
2599         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2600       }
2601     } else {
2602       // We don't need an initializer, so remove the entry for the delayed
2603       // initializer position (just in case this entry was delayed) if we
2604       // also don't need to register a destructor.
2605       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2606         DelayedCXXInitPosition.erase(D);
2607     }
2608   }
2609 
2610   llvm::Type* InitType = Init->getType();
2611   llvm::Constant *Entry =
2612       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2613 
2614   // Strip off a bitcast if we got one back.
2615   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2616     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2617            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2618            // All zero index gep.
2619            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2620     Entry = CE->getOperand(0);
2621   }
2622 
2623   // Entry is now either a Function or GlobalVariable.
2624   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2625 
2626   // We have a definition after a declaration with the wrong type.
2627   // We must make a new GlobalVariable* and update everything that used OldGV
2628   // (a declaration or tentative definition) with the new GlobalVariable*
2629   // (which will be a definition).
2630   //
2631   // This happens if there is a prototype for a global (e.g.
2632   // "extern int x[];") and then a definition of a different type (e.g.
2633   // "int x[10];"). This also happens when an initializer has a different type
2634   // from the type of the global (this happens with unions).
2635   if (!GV ||
2636       GV->getType()->getElementType() != InitType ||
2637       GV->getType()->getAddressSpace() !=
2638        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2639 
2640     // Move the old entry aside so that we'll create a new one.
2641     Entry->setName(StringRef());
2642 
2643     // Make a new global with the correct type, this is now guaranteed to work.
2644     GV = cast<llvm::GlobalVariable>(
2645         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2646 
2647     // Replace all uses of the old global with the new global
2648     llvm::Constant *NewPtrForOldDecl =
2649         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2650     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2651 
2652     // Erase the old global, since it is no longer used.
2653     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2654   }
2655 
2656   MaybeHandleStaticInExternC(D, GV);
2657 
2658   if (D->hasAttr<AnnotateAttr>())
2659     AddGlobalAnnotations(D, GV);
2660 
2661   // Set the llvm linkage type as appropriate.
2662   llvm::GlobalValue::LinkageTypes Linkage =
2663       getLLVMLinkageVarDefinition(D, GV->isConstant());
2664 
2665   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2666   // the device. [...]"
2667   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2668   // __device__, declares a variable that: [...]
2669   // Is accessible from all the threads within the grid and from the host
2670   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2671   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2672   if (GV && LangOpts.CUDA) {
2673     if (LangOpts.CUDAIsDevice) {
2674       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2675         GV->setExternallyInitialized(true);
2676     } else {
2677       // Host-side shadows of external declarations of device-side
2678       // global variables become internal definitions. These have to
2679       // be internal in order to prevent name conflicts with global
2680       // host variables with the same name in a different TUs.
2681       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2682         Linkage = llvm::GlobalValue::InternalLinkage;
2683 
2684         // Shadow variables and their properties must be registered
2685         // with CUDA runtime.
2686         unsigned Flags = 0;
2687         if (!D->hasDefinition())
2688           Flags |= CGCUDARuntime::ExternDeviceVar;
2689         if (D->hasAttr<CUDAConstantAttr>())
2690           Flags |= CGCUDARuntime::ConstantDeviceVar;
2691         getCUDARuntime().registerDeviceVar(*GV, Flags);
2692       } else if (D->hasAttr<CUDASharedAttr>())
2693         // __shared__ variables are odd. Shadows do get created, but
2694         // they are not registered with the CUDA runtime, so they
2695         // can't really be used to access their device-side
2696         // counterparts. It's not clear yet whether it's nvcc's bug or
2697         // a feature, but we've got to do the same for compatibility.
2698         Linkage = llvm::GlobalValue::InternalLinkage;
2699     }
2700   }
2701   GV->setInitializer(Init);
2702 
2703   // If it is safe to mark the global 'constant', do so now.
2704   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2705                   isTypeConstant(D->getType(), true));
2706 
2707   // If it is in a read-only section, mark it 'constant'.
2708   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2709     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2710     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2711       GV->setConstant(true);
2712   }
2713 
2714   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2715 
2716 
2717   // On Darwin, if the normal linkage of a C++ thread_local variable is
2718   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2719   // copies within a linkage unit; otherwise, the backing variable has
2720   // internal linkage and all accesses should just be calls to the
2721   // Itanium-specified entry point, which has the normal linkage of the
2722   // variable. This is to preserve the ability to change the implementation
2723   // behind the scenes.
2724   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2725       Context.getTargetInfo().getTriple().isOSDarwin() &&
2726       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2727       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2728     Linkage = llvm::GlobalValue::InternalLinkage;
2729 
2730   GV->setLinkage(Linkage);
2731   if (D->hasAttr<DLLImportAttr>())
2732     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2733   else if (D->hasAttr<DLLExportAttr>())
2734     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2735   else
2736     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2737 
2738   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2739     // common vars aren't constant even if declared const.
2740     GV->setConstant(false);
2741     // Tentative definition of global variables may be initialized with
2742     // non-zero null pointers. In this case they should have weak linkage
2743     // since common linkage must have zero initializer and must not have
2744     // explicit section therefore cannot have non-zero initial value.
2745     if (!GV->getInitializer()->isNullValue())
2746       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2747   }
2748 
2749   setNonAliasAttributes(D, GV);
2750 
2751   if (D->getTLSKind() && !GV->isThreadLocal()) {
2752     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2753       CXXThreadLocals.push_back(D);
2754     setTLSMode(GV, *D);
2755   }
2756 
2757   maybeSetTrivialComdat(*D, *GV);
2758 
2759   // Emit the initializer function if necessary.
2760   if (NeedsGlobalCtor || NeedsGlobalDtor)
2761     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2762 
2763   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2764 
2765   // Emit global variable debug information.
2766   if (CGDebugInfo *DI = getModuleDebugInfo())
2767     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2768       DI->EmitGlobalVariable(GV, D);
2769 }
2770 
2771 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2772                                       CodeGenModule &CGM, const VarDecl *D,
2773                                       bool NoCommon) {
2774   // Don't give variables common linkage if -fno-common was specified unless it
2775   // was overridden by a NoCommon attribute.
2776   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2777     return true;
2778 
2779   // C11 6.9.2/2:
2780   //   A declaration of an identifier for an object that has file scope without
2781   //   an initializer, and without a storage-class specifier or with the
2782   //   storage-class specifier static, constitutes a tentative definition.
2783   if (D->getInit() || D->hasExternalStorage())
2784     return true;
2785 
2786   // A variable cannot be both common and exist in a section.
2787   if (D->hasAttr<SectionAttr>())
2788     return true;
2789 
2790   // Thread local vars aren't considered common linkage.
2791   if (D->getTLSKind())
2792     return true;
2793 
2794   // Tentative definitions marked with WeakImportAttr are true definitions.
2795   if (D->hasAttr<WeakImportAttr>())
2796     return true;
2797 
2798   // A variable cannot be both common and exist in a comdat.
2799   if (shouldBeInCOMDAT(CGM, *D))
2800     return true;
2801 
2802   // Declarations with a required alignment do not have common linkage in MSVC
2803   // mode.
2804   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2805     if (D->hasAttr<AlignedAttr>())
2806       return true;
2807     QualType VarType = D->getType();
2808     if (Context.isAlignmentRequired(VarType))
2809       return true;
2810 
2811     if (const auto *RT = VarType->getAs<RecordType>()) {
2812       const RecordDecl *RD = RT->getDecl();
2813       for (const FieldDecl *FD : RD->fields()) {
2814         if (FD->isBitField())
2815           continue;
2816         if (FD->hasAttr<AlignedAttr>())
2817           return true;
2818         if (Context.isAlignmentRequired(FD->getType()))
2819           return true;
2820       }
2821     }
2822   }
2823 
2824   return false;
2825 }
2826 
2827 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2828     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2829   if (Linkage == GVA_Internal)
2830     return llvm::Function::InternalLinkage;
2831 
2832   if (D->hasAttr<WeakAttr>()) {
2833     if (IsConstantVariable)
2834       return llvm::GlobalVariable::WeakODRLinkage;
2835     else
2836       return llvm::GlobalVariable::WeakAnyLinkage;
2837   }
2838 
2839   // We are guaranteed to have a strong definition somewhere else,
2840   // so we can use available_externally linkage.
2841   if (Linkage == GVA_AvailableExternally)
2842     return llvm::GlobalValue::AvailableExternallyLinkage;
2843 
2844   // Note that Apple's kernel linker doesn't support symbol
2845   // coalescing, so we need to avoid linkonce and weak linkages there.
2846   // Normally, this means we just map to internal, but for explicit
2847   // instantiations we'll map to external.
2848 
2849   // In C++, the compiler has to emit a definition in every translation unit
2850   // that references the function.  We should use linkonce_odr because
2851   // a) if all references in this translation unit are optimized away, we
2852   // don't need to codegen it.  b) if the function persists, it needs to be
2853   // merged with other definitions. c) C++ has the ODR, so we know the
2854   // definition is dependable.
2855   if (Linkage == GVA_DiscardableODR)
2856     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2857                                             : llvm::Function::InternalLinkage;
2858 
2859   // An explicit instantiation of a template has weak linkage, since
2860   // explicit instantiations can occur in multiple translation units
2861   // and must all be equivalent. However, we are not allowed to
2862   // throw away these explicit instantiations.
2863   //
2864   // We don't currently support CUDA device code spread out across multiple TUs,
2865   // so say that CUDA templates are either external (for kernels) or internal.
2866   // This lets llvm perform aggressive inter-procedural optimizations.
2867   if (Linkage == GVA_StrongODR) {
2868     if (Context.getLangOpts().AppleKext)
2869       return llvm::Function::ExternalLinkage;
2870     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2871       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2872                                           : llvm::Function::InternalLinkage;
2873     return llvm::Function::WeakODRLinkage;
2874   }
2875 
2876   // C++ doesn't have tentative definitions and thus cannot have common
2877   // linkage.
2878   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2879       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2880                                  CodeGenOpts.NoCommon))
2881     return llvm::GlobalVariable::CommonLinkage;
2882 
2883   // selectany symbols are externally visible, so use weak instead of
2884   // linkonce.  MSVC optimizes away references to const selectany globals, so
2885   // all definitions should be the same and ODR linkage should be used.
2886   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2887   if (D->hasAttr<SelectAnyAttr>())
2888     return llvm::GlobalVariable::WeakODRLinkage;
2889 
2890   // Otherwise, we have strong external linkage.
2891   assert(Linkage == GVA_StrongExternal);
2892   return llvm::GlobalVariable::ExternalLinkage;
2893 }
2894 
2895 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2896     const VarDecl *VD, bool IsConstant) {
2897   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2898   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2899 }
2900 
2901 /// Replace the uses of a function that was declared with a non-proto type.
2902 /// We want to silently drop extra arguments from call sites
2903 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2904                                           llvm::Function *newFn) {
2905   // Fast path.
2906   if (old->use_empty()) return;
2907 
2908   llvm::Type *newRetTy = newFn->getReturnType();
2909   SmallVector<llvm::Value*, 4> newArgs;
2910   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2911 
2912   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2913          ui != ue; ) {
2914     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2915     llvm::User *user = use->getUser();
2916 
2917     // Recognize and replace uses of bitcasts.  Most calls to
2918     // unprototyped functions will use bitcasts.
2919     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2920       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2921         replaceUsesOfNonProtoConstant(bitcast, newFn);
2922       continue;
2923     }
2924 
2925     // Recognize calls to the function.
2926     llvm::CallSite callSite(user);
2927     if (!callSite) continue;
2928     if (!callSite.isCallee(&*use)) continue;
2929 
2930     // If the return types don't match exactly, then we can't
2931     // transform this call unless it's dead.
2932     if (callSite->getType() != newRetTy && !callSite->use_empty())
2933       continue;
2934 
2935     // Get the call site's attribute list.
2936     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
2937     llvm::AttributeList oldAttrs = callSite.getAttributes();
2938 
2939     // If the function was passed too few arguments, don't transform.
2940     unsigned newNumArgs = newFn->arg_size();
2941     if (callSite.arg_size() < newNumArgs) continue;
2942 
2943     // If extra arguments were passed, we silently drop them.
2944     // If any of the types mismatch, we don't transform.
2945     unsigned argNo = 0;
2946     bool dontTransform = false;
2947     for (llvm::Argument &A : newFn->args()) {
2948       if (callSite.getArgument(argNo)->getType() != A.getType()) {
2949         dontTransform = true;
2950         break;
2951       }
2952 
2953       // Add any parameter attributes.
2954       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
2955       argNo++;
2956     }
2957     if (dontTransform)
2958       continue;
2959 
2960     // Okay, we can transform this.  Create the new call instruction and copy
2961     // over the required information.
2962     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2963 
2964     // Copy over any operand bundles.
2965     callSite.getOperandBundlesAsDefs(newBundles);
2966 
2967     llvm::CallSite newCall;
2968     if (callSite.isCall()) {
2969       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2970                                        callSite.getInstruction());
2971     } else {
2972       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2973       newCall = llvm::InvokeInst::Create(newFn,
2974                                          oldInvoke->getNormalDest(),
2975                                          oldInvoke->getUnwindDest(),
2976                                          newArgs, newBundles, "",
2977                                          callSite.getInstruction());
2978     }
2979     newArgs.clear(); // for the next iteration
2980 
2981     if (!newCall->getType()->isVoidTy())
2982       newCall->takeName(callSite.getInstruction());
2983     newCall.setAttributes(llvm::AttributeList::get(
2984         newFn->getContext(), oldAttrs.getFnAttributes(),
2985         oldAttrs.getRetAttributes(), newArgAttrs));
2986     newCall.setCallingConv(callSite.getCallingConv());
2987 
2988     // Finally, remove the old call, replacing any uses with the new one.
2989     if (!callSite->use_empty())
2990       callSite->replaceAllUsesWith(newCall.getInstruction());
2991 
2992     // Copy debug location attached to CI.
2993     if (callSite->getDebugLoc())
2994       newCall->setDebugLoc(callSite->getDebugLoc());
2995 
2996     callSite->eraseFromParent();
2997   }
2998 }
2999 
3000 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3001 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3002 /// existing call uses of the old function in the module, this adjusts them to
3003 /// call the new function directly.
3004 ///
3005 /// This is not just a cleanup: the always_inline pass requires direct calls to
3006 /// functions to be able to inline them.  If there is a bitcast in the way, it
3007 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3008 /// run at -O0.
3009 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3010                                                       llvm::Function *NewFn) {
3011   // If we're redefining a global as a function, don't transform it.
3012   if (!isa<llvm::Function>(Old)) return;
3013 
3014   replaceUsesOfNonProtoConstant(Old, NewFn);
3015 }
3016 
3017 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3018   auto DK = VD->isThisDeclarationADefinition();
3019   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3020     return;
3021 
3022   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3023   // If we have a definition, this might be a deferred decl. If the
3024   // instantiation is explicit, make sure we emit it at the end.
3025   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3026     GetAddrOfGlobalVar(VD);
3027 
3028   EmitTopLevelDecl(VD);
3029 }
3030 
3031 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3032                                                  llvm::GlobalValue *GV) {
3033   const auto *D = cast<FunctionDecl>(GD.getDecl());
3034 
3035   // Compute the function info and LLVM type.
3036   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3037   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3038 
3039   // Get or create the prototype for the function.
3040   if (!GV || (GV->getType()->getElementType() != Ty))
3041     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3042                                                    /*DontDefer=*/true,
3043                                                    ForDefinition));
3044 
3045   // Already emitted.
3046   if (!GV->isDeclaration())
3047     return;
3048 
3049   // We need to set linkage and visibility on the function before
3050   // generating code for it because various parts of IR generation
3051   // want to propagate this information down (e.g. to local static
3052   // declarations).
3053   auto *Fn = cast<llvm::Function>(GV);
3054   setFunctionLinkage(GD, Fn);
3055   setFunctionDLLStorageClass(GD, Fn);
3056 
3057   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3058   setGlobalVisibility(Fn, D);
3059 
3060   MaybeHandleStaticInExternC(D, Fn);
3061 
3062   maybeSetTrivialComdat(*D, *Fn);
3063 
3064   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3065 
3066   setFunctionDefinitionAttributes(D, Fn);
3067   SetLLVMFunctionAttributesForDefinition(D, Fn);
3068 
3069   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3070     AddGlobalCtor(Fn, CA->getPriority());
3071   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3072     AddGlobalDtor(Fn, DA->getPriority());
3073   if (D->hasAttr<AnnotateAttr>())
3074     AddGlobalAnnotations(D, Fn);
3075 }
3076 
3077 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3078   const auto *D = cast<ValueDecl>(GD.getDecl());
3079   const AliasAttr *AA = D->getAttr<AliasAttr>();
3080   assert(AA && "Not an alias?");
3081 
3082   StringRef MangledName = getMangledName(GD);
3083 
3084   if (AA->getAliasee() == MangledName) {
3085     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3086     return;
3087   }
3088 
3089   // If there is a definition in the module, then it wins over the alias.
3090   // This is dubious, but allow it to be safe.  Just ignore the alias.
3091   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3092   if (Entry && !Entry->isDeclaration())
3093     return;
3094 
3095   Aliases.push_back(GD);
3096 
3097   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3098 
3099   // Create a reference to the named value.  This ensures that it is emitted
3100   // if a deferred decl.
3101   llvm::Constant *Aliasee;
3102   if (isa<llvm::FunctionType>(DeclTy))
3103     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3104                                       /*ForVTable=*/false);
3105   else
3106     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3107                                     llvm::PointerType::getUnqual(DeclTy),
3108                                     /*D=*/nullptr);
3109 
3110   // Create the new alias itself, but don't set a name yet.
3111   auto *GA = llvm::GlobalAlias::create(
3112       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3113 
3114   if (Entry) {
3115     if (GA->getAliasee() == Entry) {
3116       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3117       return;
3118     }
3119 
3120     assert(Entry->isDeclaration());
3121 
3122     // If there is a declaration in the module, then we had an extern followed
3123     // by the alias, as in:
3124     //   extern int test6();
3125     //   ...
3126     //   int test6() __attribute__((alias("test7")));
3127     //
3128     // Remove it and replace uses of it with the alias.
3129     GA->takeName(Entry);
3130 
3131     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3132                                                           Entry->getType()));
3133     Entry->eraseFromParent();
3134   } else {
3135     GA->setName(MangledName);
3136   }
3137 
3138   // Set attributes which are particular to an alias; this is a
3139   // specialization of the attributes which may be set on a global
3140   // variable/function.
3141   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3142       D->isWeakImported()) {
3143     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3144   }
3145 
3146   if (const auto *VD = dyn_cast<VarDecl>(D))
3147     if (VD->getTLSKind())
3148       setTLSMode(GA, *VD);
3149 
3150   setAliasAttributes(D, GA);
3151 }
3152 
3153 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3154   const auto *D = cast<ValueDecl>(GD.getDecl());
3155   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3156   assert(IFA && "Not an ifunc?");
3157 
3158   StringRef MangledName = getMangledName(GD);
3159 
3160   if (IFA->getResolver() == MangledName) {
3161     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3162     return;
3163   }
3164 
3165   // Report an error if some definition overrides ifunc.
3166   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3167   if (Entry && !Entry->isDeclaration()) {
3168     GlobalDecl OtherGD;
3169     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3170         DiagnosedConflictingDefinitions.insert(GD).second) {
3171       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3172       Diags.Report(OtherGD.getDecl()->getLocation(),
3173                    diag::note_previous_definition);
3174     }
3175     return;
3176   }
3177 
3178   Aliases.push_back(GD);
3179 
3180   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3181   llvm::Constant *Resolver =
3182       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3183                               /*ForVTable=*/false);
3184   llvm::GlobalIFunc *GIF =
3185       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3186                                 "", Resolver, &getModule());
3187   if (Entry) {
3188     if (GIF->getResolver() == Entry) {
3189       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3190       return;
3191     }
3192     assert(Entry->isDeclaration());
3193 
3194     // If there is a declaration in the module, then we had an extern followed
3195     // by the ifunc, as in:
3196     //   extern int test();
3197     //   ...
3198     //   int test() __attribute__((ifunc("resolver")));
3199     //
3200     // Remove it and replace uses of it with the ifunc.
3201     GIF->takeName(Entry);
3202 
3203     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3204                                                           Entry->getType()));
3205     Entry->eraseFromParent();
3206   } else
3207     GIF->setName(MangledName);
3208 
3209   SetCommonAttributes(D, GIF);
3210 }
3211 
3212 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3213                                             ArrayRef<llvm::Type*> Tys) {
3214   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3215                                          Tys);
3216 }
3217 
3218 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3219 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3220                          const StringLiteral *Literal, bool TargetIsLSB,
3221                          bool &IsUTF16, unsigned &StringLength) {
3222   StringRef String = Literal->getString();
3223   unsigned NumBytes = String.size();
3224 
3225   // Check for simple case.
3226   if (!Literal->containsNonAsciiOrNull()) {
3227     StringLength = NumBytes;
3228     return *Map.insert(std::make_pair(String, nullptr)).first;
3229   }
3230 
3231   // Otherwise, convert the UTF8 literals into a string of shorts.
3232   IsUTF16 = true;
3233 
3234   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3235   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3236   llvm::UTF16 *ToPtr = &ToBuf[0];
3237 
3238   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3239                                  ToPtr + NumBytes, llvm::strictConversion);
3240 
3241   // ConvertUTF8toUTF16 returns the length in ToPtr.
3242   StringLength = ToPtr - &ToBuf[0];
3243 
3244   // Add an explicit null.
3245   *ToPtr = 0;
3246   return *Map.insert(std::make_pair(
3247                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3248                                    (StringLength + 1) * 2),
3249                          nullptr)).first;
3250 }
3251 
3252 ConstantAddress
3253 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3254   unsigned StringLength = 0;
3255   bool isUTF16 = false;
3256   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3257       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3258                                getDataLayout().isLittleEndian(), isUTF16,
3259                                StringLength);
3260 
3261   if (auto *C = Entry.second)
3262     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3263 
3264   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3265   llvm::Constant *Zeros[] = { Zero, Zero };
3266 
3267   // If we don't already have it, get __CFConstantStringClassReference.
3268   if (!CFConstantStringClassRef) {
3269     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3270     Ty = llvm::ArrayType::get(Ty, 0);
3271     llvm::Constant *GV =
3272         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3273 
3274     if (getTriple().isOSBinFormatCOFF()) {
3275       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3276       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3277       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3278       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3279 
3280       const VarDecl *VD = nullptr;
3281       for (const auto &Result : DC->lookup(&II))
3282         if ((VD = dyn_cast<VarDecl>(Result)))
3283           break;
3284 
3285       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3286         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3287         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3288       } else {
3289         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3290         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3291       }
3292     }
3293 
3294     // Decay array -> ptr
3295     CFConstantStringClassRef =
3296         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3297   }
3298 
3299   QualType CFTy = getContext().getCFConstantStringType();
3300 
3301   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3302 
3303   ConstantInitBuilder Builder(*this);
3304   auto Fields = Builder.beginStruct(STy);
3305 
3306   // Class pointer.
3307   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3308 
3309   // Flags.
3310   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3311 
3312   // String pointer.
3313   llvm::Constant *C = nullptr;
3314   if (isUTF16) {
3315     auto Arr = llvm::makeArrayRef(
3316         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3317         Entry.first().size() / 2);
3318     C = llvm::ConstantDataArray::get(VMContext, Arr);
3319   } else {
3320     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3321   }
3322 
3323   // Note: -fwritable-strings doesn't make the backing store strings of
3324   // CFStrings writable. (See <rdar://problem/10657500>)
3325   auto *GV =
3326       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3327                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3328   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3329   // Don't enforce the target's minimum global alignment, since the only use
3330   // of the string is via this class initializer.
3331   CharUnits Align = isUTF16
3332                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3333                         : getContext().getTypeAlignInChars(getContext().CharTy);
3334   GV->setAlignment(Align.getQuantity());
3335 
3336   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3337   // Without it LLVM can merge the string with a non unnamed_addr one during
3338   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3339   if (getTriple().isOSBinFormatMachO())
3340     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3341                            : "__TEXT,__cstring,cstring_literals");
3342 
3343   // String.
3344   llvm::Constant *Str =
3345       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3346 
3347   if (isUTF16)
3348     // Cast the UTF16 string to the correct type.
3349     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3350   Fields.add(Str);
3351 
3352   // String length.
3353   auto Ty = getTypes().ConvertType(getContext().LongTy);
3354   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3355 
3356   CharUnits Alignment = getPointerAlign();
3357 
3358   // The struct.
3359   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3360                                     /*isConstant=*/false,
3361                                     llvm::GlobalVariable::PrivateLinkage);
3362   switch (getTriple().getObjectFormat()) {
3363   case llvm::Triple::UnknownObjectFormat:
3364     llvm_unreachable("unknown file format");
3365   case llvm::Triple::COFF:
3366   case llvm::Triple::ELF:
3367   case llvm::Triple::Wasm:
3368     GV->setSection("cfstring");
3369     break;
3370   case llvm::Triple::MachO:
3371     GV->setSection("__DATA,__cfstring");
3372     break;
3373   }
3374   Entry.second = GV;
3375 
3376   return ConstantAddress(GV, Alignment);
3377 }
3378 
3379 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3380   if (ObjCFastEnumerationStateType.isNull()) {
3381     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3382     D->startDefinition();
3383 
3384     QualType FieldTypes[] = {
3385       Context.UnsignedLongTy,
3386       Context.getPointerType(Context.getObjCIdType()),
3387       Context.getPointerType(Context.UnsignedLongTy),
3388       Context.getConstantArrayType(Context.UnsignedLongTy,
3389                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3390     };
3391 
3392     for (size_t i = 0; i < 4; ++i) {
3393       FieldDecl *Field = FieldDecl::Create(Context,
3394                                            D,
3395                                            SourceLocation(),
3396                                            SourceLocation(), nullptr,
3397                                            FieldTypes[i], /*TInfo=*/nullptr,
3398                                            /*BitWidth=*/nullptr,
3399                                            /*Mutable=*/false,
3400                                            ICIS_NoInit);
3401       Field->setAccess(AS_public);
3402       D->addDecl(Field);
3403     }
3404 
3405     D->completeDefinition();
3406     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3407   }
3408 
3409   return ObjCFastEnumerationStateType;
3410 }
3411 
3412 llvm::Constant *
3413 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3414   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3415 
3416   // Don't emit it as the address of the string, emit the string data itself
3417   // as an inline array.
3418   if (E->getCharByteWidth() == 1) {
3419     SmallString<64> Str(E->getString());
3420 
3421     // Resize the string to the right size, which is indicated by its type.
3422     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3423     Str.resize(CAT->getSize().getZExtValue());
3424     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3425   }
3426 
3427   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3428   llvm::Type *ElemTy = AType->getElementType();
3429   unsigned NumElements = AType->getNumElements();
3430 
3431   // Wide strings have either 2-byte or 4-byte elements.
3432   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3433     SmallVector<uint16_t, 32> Elements;
3434     Elements.reserve(NumElements);
3435 
3436     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3437       Elements.push_back(E->getCodeUnit(i));
3438     Elements.resize(NumElements);
3439     return llvm::ConstantDataArray::get(VMContext, Elements);
3440   }
3441 
3442   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3443   SmallVector<uint32_t, 32> Elements;
3444   Elements.reserve(NumElements);
3445 
3446   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3447     Elements.push_back(E->getCodeUnit(i));
3448   Elements.resize(NumElements);
3449   return llvm::ConstantDataArray::get(VMContext, Elements);
3450 }
3451 
3452 static llvm::GlobalVariable *
3453 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3454                       CodeGenModule &CGM, StringRef GlobalName,
3455                       CharUnits Alignment) {
3456   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3457   unsigned AddrSpace = 0;
3458   if (CGM.getLangOpts().OpenCL)
3459     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3460 
3461   llvm::Module &M = CGM.getModule();
3462   // Create a global variable for this string
3463   auto *GV = new llvm::GlobalVariable(
3464       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3465       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3466   GV->setAlignment(Alignment.getQuantity());
3467   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3468   if (GV->isWeakForLinker()) {
3469     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3470     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3471   }
3472 
3473   return GV;
3474 }
3475 
3476 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3477 /// constant array for the given string literal.
3478 ConstantAddress
3479 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3480                                                   StringRef Name) {
3481   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3482 
3483   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3484   llvm::GlobalVariable **Entry = nullptr;
3485   if (!LangOpts.WritableStrings) {
3486     Entry = &ConstantStringMap[C];
3487     if (auto GV = *Entry) {
3488       if (Alignment.getQuantity() > GV->getAlignment())
3489         GV->setAlignment(Alignment.getQuantity());
3490       return ConstantAddress(GV, Alignment);
3491     }
3492   }
3493 
3494   SmallString<256> MangledNameBuffer;
3495   StringRef GlobalVariableName;
3496   llvm::GlobalValue::LinkageTypes LT;
3497 
3498   // Mangle the string literal if the ABI allows for it.  However, we cannot
3499   // do this if  we are compiling with ASan or -fwritable-strings because they
3500   // rely on strings having normal linkage.
3501   if (!LangOpts.WritableStrings &&
3502       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3503       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3504     llvm::raw_svector_ostream Out(MangledNameBuffer);
3505     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3506 
3507     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3508     GlobalVariableName = MangledNameBuffer;
3509   } else {
3510     LT = llvm::GlobalValue::PrivateLinkage;
3511     GlobalVariableName = Name;
3512   }
3513 
3514   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3515   if (Entry)
3516     *Entry = GV;
3517 
3518   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3519                                   QualType());
3520   return ConstantAddress(GV, Alignment);
3521 }
3522 
3523 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3524 /// array for the given ObjCEncodeExpr node.
3525 ConstantAddress
3526 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3527   std::string Str;
3528   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3529 
3530   return GetAddrOfConstantCString(Str);
3531 }
3532 
3533 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3534 /// the literal and a terminating '\0' character.
3535 /// The result has pointer to array type.
3536 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3537     const std::string &Str, const char *GlobalName) {
3538   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3539   CharUnits Alignment =
3540     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3541 
3542   llvm::Constant *C =
3543       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3544 
3545   // Don't share any string literals if strings aren't constant.
3546   llvm::GlobalVariable **Entry = nullptr;
3547   if (!LangOpts.WritableStrings) {
3548     Entry = &ConstantStringMap[C];
3549     if (auto GV = *Entry) {
3550       if (Alignment.getQuantity() > GV->getAlignment())
3551         GV->setAlignment(Alignment.getQuantity());
3552       return ConstantAddress(GV, Alignment);
3553     }
3554   }
3555 
3556   // Get the default prefix if a name wasn't specified.
3557   if (!GlobalName)
3558     GlobalName = ".str";
3559   // Create a global variable for this.
3560   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3561                                   GlobalName, Alignment);
3562   if (Entry)
3563     *Entry = GV;
3564   return ConstantAddress(GV, Alignment);
3565 }
3566 
3567 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3568     const MaterializeTemporaryExpr *E, const Expr *Init) {
3569   assert((E->getStorageDuration() == SD_Static ||
3570           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3571   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3572 
3573   // If we're not materializing a subobject of the temporary, keep the
3574   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3575   QualType MaterializedType = Init->getType();
3576   if (Init == E->GetTemporaryExpr())
3577     MaterializedType = E->getType();
3578 
3579   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3580 
3581   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3582     return ConstantAddress(Slot, Align);
3583 
3584   // FIXME: If an externally-visible declaration extends multiple temporaries,
3585   // we need to give each temporary the same name in every translation unit (and
3586   // we also need to make the temporaries externally-visible).
3587   SmallString<256> Name;
3588   llvm::raw_svector_ostream Out(Name);
3589   getCXXABI().getMangleContext().mangleReferenceTemporary(
3590       VD, E->getManglingNumber(), Out);
3591 
3592   APValue *Value = nullptr;
3593   if (E->getStorageDuration() == SD_Static) {
3594     // We might have a cached constant initializer for this temporary. Note
3595     // that this might have a different value from the value computed by
3596     // evaluating the initializer if the surrounding constant expression
3597     // modifies the temporary.
3598     Value = getContext().getMaterializedTemporaryValue(E, false);
3599     if (Value && Value->isUninit())
3600       Value = nullptr;
3601   }
3602 
3603   // Try evaluating it now, it might have a constant initializer.
3604   Expr::EvalResult EvalResult;
3605   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3606       !EvalResult.hasSideEffects())
3607     Value = &EvalResult.Val;
3608 
3609   llvm::Constant *InitialValue = nullptr;
3610   bool Constant = false;
3611   llvm::Type *Type;
3612   if (Value) {
3613     // The temporary has a constant initializer, use it.
3614     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3615     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3616     Type = InitialValue->getType();
3617   } else {
3618     // No initializer, the initialization will be provided when we
3619     // initialize the declaration which performed lifetime extension.
3620     Type = getTypes().ConvertTypeForMem(MaterializedType);
3621   }
3622 
3623   // Create a global variable for this lifetime-extended temporary.
3624   llvm::GlobalValue::LinkageTypes Linkage =
3625       getLLVMLinkageVarDefinition(VD, Constant);
3626   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3627     const VarDecl *InitVD;
3628     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3629         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3630       // Temporaries defined inside a class get linkonce_odr linkage because the
3631       // class can be defined in multipe translation units.
3632       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3633     } else {
3634       // There is no need for this temporary to have external linkage if the
3635       // VarDecl has external linkage.
3636       Linkage = llvm::GlobalVariable::InternalLinkage;
3637     }
3638   }
3639   unsigned AddrSpace = GetGlobalVarAddressSpace(
3640       VD, getContext().getTargetAddressSpace(MaterializedType));
3641   auto *GV = new llvm::GlobalVariable(
3642       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3643       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3644       AddrSpace);
3645   setGlobalVisibility(GV, VD);
3646   GV->setAlignment(Align.getQuantity());
3647   if (supportsCOMDAT() && GV->isWeakForLinker())
3648     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3649   if (VD->getTLSKind())
3650     setTLSMode(GV, *VD);
3651   MaterializedGlobalTemporaryMap[E] = GV;
3652   return ConstantAddress(GV, Align);
3653 }
3654 
3655 /// EmitObjCPropertyImplementations - Emit information for synthesized
3656 /// properties for an implementation.
3657 void CodeGenModule::EmitObjCPropertyImplementations(const
3658                                                     ObjCImplementationDecl *D) {
3659   for (const auto *PID : D->property_impls()) {
3660     // Dynamic is just for type-checking.
3661     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3662       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3663 
3664       // Determine which methods need to be implemented, some may have
3665       // been overridden. Note that ::isPropertyAccessor is not the method
3666       // we want, that just indicates if the decl came from a
3667       // property. What we want to know is if the method is defined in
3668       // this implementation.
3669       if (!D->getInstanceMethod(PD->getGetterName()))
3670         CodeGenFunction(*this).GenerateObjCGetter(
3671                                  const_cast<ObjCImplementationDecl *>(D), PID);
3672       if (!PD->isReadOnly() &&
3673           !D->getInstanceMethod(PD->getSetterName()))
3674         CodeGenFunction(*this).GenerateObjCSetter(
3675                                  const_cast<ObjCImplementationDecl *>(D), PID);
3676     }
3677   }
3678 }
3679 
3680 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3681   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3682   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3683        ivar; ivar = ivar->getNextIvar())
3684     if (ivar->getType().isDestructedType())
3685       return true;
3686 
3687   return false;
3688 }
3689 
3690 static bool AllTrivialInitializers(CodeGenModule &CGM,
3691                                    ObjCImplementationDecl *D) {
3692   CodeGenFunction CGF(CGM);
3693   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3694        E = D->init_end(); B != E; ++B) {
3695     CXXCtorInitializer *CtorInitExp = *B;
3696     Expr *Init = CtorInitExp->getInit();
3697     if (!CGF.isTrivialInitializer(Init))
3698       return false;
3699   }
3700   return true;
3701 }
3702 
3703 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3704 /// for an implementation.
3705 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3706   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3707   if (needsDestructMethod(D)) {
3708     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3709     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3710     ObjCMethodDecl *DTORMethod =
3711       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3712                              cxxSelector, getContext().VoidTy, nullptr, D,
3713                              /*isInstance=*/true, /*isVariadic=*/false,
3714                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3715                              /*isDefined=*/false, ObjCMethodDecl::Required);
3716     D->addInstanceMethod(DTORMethod);
3717     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3718     D->setHasDestructors(true);
3719   }
3720 
3721   // If the implementation doesn't have any ivar initializers, we don't need
3722   // a .cxx_construct.
3723   if (D->getNumIvarInitializers() == 0 ||
3724       AllTrivialInitializers(*this, D))
3725     return;
3726 
3727   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3728   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3729   // The constructor returns 'self'.
3730   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3731                                                 D->getLocation(),
3732                                                 D->getLocation(),
3733                                                 cxxSelector,
3734                                                 getContext().getObjCIdType(),
3735                                                 nullptr, D, /*isInstance=*/true,
3736                                                 /*isVariadic=*/false,
3737                                                 /*isPropertyAccessor=*/true,
3738                                                 /*isImplicitlyDeclared=*/true,
3739                                                 /*isDefined=*/false,
3740                                                 ObjCMethodDecl::Required);
3741   D->addInstanceMethod(CTORMethod);
3742   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3743   D->setHasNonZeroConstructors(true);
3744 }
3745 
3746 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3747 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3748   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3749       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3750     ErrorUnsupported(LSD, "linkage spec");
3751     return;
3752   }
3753 
3754   EmitDeclContext(LSD);
3755 }
3756 
3757 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3758   for (auto *I : DC->decls()) {
3759     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3760     // are themselves considered "top-level", so EmitTopLevelDecl on an
3761     // ObjCImplDecl does not recursively visit them. We need to do that in
3762     // case they're nested inside another construct (LinkageSpecDecl /
3763     // ExportDecl) that does stop them from being considered "top-level".
3764     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3765       for (auto *M : OID->methods())
3766         EmitTopLevelDecl(M);
3767     }
3768 
3769     EmitTopLevelDecl(I);
3770   }
3771 }
3772 
3773 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3774 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3775   // Ignore dependent declarations.
3776   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3777     return;
3778 
3779   switch (D->getKind()) {
3780   case Decl::CXXConversion:
3781   case Decl::CXXMethod:
3782   case Decl::Function:
3783     // Skip function templates
3784     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3785         cast<FunctionDecl>(D)->isLateTemplateParsed())
3786       return;
3787 
3788     EmitGlobal(cast<FunctionDecl>(D));
3789     // Always provide some coverage mapping
3790     // even for the functions that aren't emitted.
3791     AddDeferredUnusedCoverageMapping(D);
3792     break;
3793 
3794   case Decl::CXXDeductionGuide:
3795     // Function-like, but does not result in code emission.
3796     break;
3797 
3798   case Decl::Var:
3799   case Decl::Decomposition:
3800     // Skip variable templates
3801     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3802       return;
3803   case Decl::VarTemplateSpecialization:
3804     EmitGlobal(cast<VarDecl>(D));
3805     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3806       for (auto *B : DD->bindings())
3807         if (auto *HD = B->getHoldingVar())
3808           EmitGlobal(HD);
3809     break;
3810 
3811   // Indirect fields from global anonymous structs and unions can be
3812   // ignored; only the actual variable requires IR gen support.
3813   case Decl::IndirectField:
3814     break;
3815 
3816   // C++ Decls
3817   case Decl::Namespace:
3818     EmitDeclContext(cast<NamespaceDecl>(D));
3819     break;
3820   case Decl::CXXRecord:
3821     if (DebugInfo) {
3822       if (auto *ES = D->getASTContext().getExternalSource())
3823         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
3824           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
3825     }
3826     // Emit any static data members, they may be definitions.
3827     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3828       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3829         EmitTopLevelDecl(I);
3830     break;
3831     // No code generation needed.
3832   case Decl::UsingShadow:
3833   case Decl::ClassTemplate:
3834   case Decl::VarTemplate:
3835   case Decl::VarTemplatePartialSpecialization:
3836   case Decl::FunctionTemplate:
3837   case Decl::TypeAliasTemplate:
3838   case Decl::Block:
3839   case Decl::Empty:
3840     break;
3841   case Decl::Using:          // using X; [C++]
3842     if (CGDebugInfo *DI = getModuleDebugInfo())
3843         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3844     return;
3845   case Decl::NamespaceAlias:
3846     if (CGDebugInfo *DI = getModuleDebugInfo())
3847         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3848     return;
3849   case Decl::UsingDirective: // using namespace X; [C++]
3850     if (CGDebugInfo *DI = getModuleDebugInfo())
3851       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3852     return;
3853   case Decl::CXXConstructor:
3854     // Skip function templates
3855     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3856         cast<FunctionDecl>(D)->isLateTemplateParsed())
3857       return;
3858 
3859     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3860     break;
3861   case Decl::CXXDestructor:
3862     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3863       return;
3864     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3865     break;
3866 
3867   case Decl::StaticAssert:
3868     // Nothing to do.
3869     break;
3870 
3871   // Objective-C Decls
3872 
3873   // Forward declarations, no (immediate) code generation.
3874   case Decl::ObjCInterface:
3875   case Decl::ObjCCategory:
3876     break;
3877 
3878   case Decl::ObjCProtocol: {
3879     auto *Proto = cast<ObjCProtocolDecl>(D);
3880     if (Proto->isThisDeclarationADefinition())
3881       ObjCRuntime->GenerateProtocol(Proto);
3882     break;
3883   }
3884 
3885   case Decl::ObjCCategoryImpl:
3886     // Categories have properties but don't support synthesize so we
3887     // can ignore them here.
3888     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3889     break;
3890 
3891   case Decl::ObjCImplementation: {
3892     auto *OMD = cast<ObjCImplementationDecl>(D);
3893     EmitObjCPropertyImplementations(OMD);
3894     EmitObjCIvarInitializations(OMD);
3895     ObjCRuntime->GenerateClass(OMD);
3896     // Emit global variable debug information.
3897     if (CGDebugInfo *DI = getModuleDebugInfo())
3898       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3899         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3900             OMD->getClassInterface()), OMD->getLocation());
3901     break;
3902   }
3903   case Decl::ObjCMethod: {
3904     auto *OMD = cast<ObjCMethodDecl>(D);
3905     // If this is not a prototype, emit the body.
3906     if (OMD->getBody())
3907       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3908     break;
3909   }
3910   case Decl::ObjCCompatibleAlias:
3911     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3912     break;
3913 
3914   case Decl::PragmaComment: {
3915     const auto *PCD = cast<PragmaCommentDecl>(D);
3916     switch (PCD->getCommentKind()) {
3917     case PCK_Unknown:
3918       llvm_unreachable("unexpected pragma comment kind");
3919     case PCK_Linker:
3920       AppendLinkerOptions(PCD->getArg());
3921       break;
3922     case PCK_Lib:
3923       AddDependentLib(PCD->getArg());
3924       break;
3925     case PCK_Compiler:
3926     case PCK_ExeStr:
3927     case PCK_User:
3928       break; // We ignore all of these.
3929     }
3930     break;
3931   }
3932 
3933   case Decl::PragmaDetectMismatch: {
3934     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3935     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3936     break;
3937   }
3938 
3939   case Decl::LinkageSpec:
3940     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3941     break;
3942 
3943   case Decl::FileScopeAsm: {
3944     // File-scope asm is ignored during device-side CUDA compilation.
3945     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3946       break;
3947     // File-scope asm is ignored during device-side OpenMP compilation.
3948     if (LangOpts.OpenMPIsDevice)
3949       break;
3950     auto *AD = cast<FileScopeAsmDecl>(D);
3951     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3952     break;
3953   }
3954 
3955   case Decl::Import: {
3956     auto *Import = cast<ImportDecl>(D);
3957 
3958     // If we've already imported this module, we're done.
3959     if (!ImportedModules.insert(Import->getImportedModule()))
3960       break;
3961 
3962     // Emit debug information for direct imports.
3963     if (!Import->getImportedOwningModule()) {
3964       if (CGDebugInfo *DI = getModuleDebugInfo())
3965         DI->EmitImportDecl(*Import);
3966     }
3967 
3968     // Find all of the submodules and emit the module initializers.
3969     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3970     SmallVector<clang::Module *, 16> Stack;
3971     Visited.insert(Import->getImportedModule());
3972     Stack.push_back(Import->getImportedModule());
3973 
3974     while (!Stack.empty()) {
3975       clang::Module *Mod = Stack.pop_back_val();
3976       if (!EmittedModuleInitializers.insert(Mod).second)
3977         continue;
3978 
3979       for (auto *D : Context.getModuleInitializers(Mod))
3980         EmitTopLevelDecl(D);
3981 
3982       // Visit the submodules of this module.
3983       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3984                                              SubEnd = Mod->submodule_end();
3985            Sub != SubEnd; ++Sub) {
3986         // Skip explicit children; they need to be explicitly imported to emit
3987         // the initializers.
3988         if ((*Sub)->IsExplicit)
3989           continue;
3990 
3991         if (Visited.insert(*Sub).second)
3992           Stack.push_back(*Sub);
3993       }
3994     }
3995     break;
3996   }
3997 
3998   case Decl::Export:
3999     EmitDeclContext(cast<ExportDecl>(D));
4000     break;
4001 
4002   case Decl::OMPThreadPrivate:
4003     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
4004     break;
4005 
4006   case Decl::ClassTemplateSpecialization: {
4007     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4008     if (DebugInfo &&
4009         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4010         Spec->hasDefinition())
4011       DebugInfo->completeTemplateDefinition(*Spec);
4012     break;
4013   }
4014 
4015   case Decl::OMPDeclareReduction:
4016     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
4017     break;
4018 
4019   default:
4020     // Make sure we handled everything we should, every other kind is a
4021     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
4022     // function. Need to recode Decl::Kind to do that easily.
4023     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4024     break;
4025   }
4026 }
4027 
4028 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4029   // Do we need to generate coverage mapping?
4030   if (!CodeGenOpts.CoverageMapping)
4031     return;
4032   switch (D->getKind()) {
4033   case Decl::CXXConversion:
4034   case Decl::CXXMethod:
4035   case Decl::Function:
4036   case Decl::ObjCMethod:
4037   case Decl::CXXConstructor:
4038   case Decl::CXXDestructor: {
4039     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4040       return;
4041     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4042     if (I == DeferredEmptyCoverageMappingDecls.end())
4043       DeferredEmptyCoverageMappingDecls[D] = true;
4044     break;
4045   }
4046   default:
4047     break;
4048   };
4049 }
4050 
4051 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4052   // Do we need to generate coverage mapping?
4053   if (!CodeGenOpts.CoverageMapping)
4054     return;
4055   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4056     if (Fn->isTemplateInstantiation())
4057       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4058   }
4059   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4060   if (I == DeferredEmptyCoverageMappingDecls.end())
4061     DeferredEmptyCoverageMappingDecls[D] = false;
4062   else
4063     I->second = false;
4064 }
4065 
4066 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4067   std::vector<const Decl *> DeferredDecls;
4068   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4069     if (!I.second)
4070       continue;
4071     DeferredDecls.push_back(I.first);
4072   }
4073   // Sort the declarations by their location to make sure that the tests get a
4074   // predictable order for the coverage mapping for the unused declarations.
4075   if (CodeGenOpts.DumpCoverageMapping)
4076     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4077               [] (const Decl *LHS, const Decl *RHS) {
4078       return LHS->getLocStart() < RHS->getLocStart();
4079     });
4080   for (const auto *D : DeferredDecls) {
4081     switch (D->getKind()) {
4082     case Decl::CXXConversion:
4083     case Decl::CXXMethod:
4084     case Decl::Function:
4085     case Decl::ObjCMethod: {
4086       CodeGenPGO PGO(*this);
4087       GlobalDecl GD(cast<FunctionDecl>(D));
4088       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4089                                   getFunctionLinkage(GD));
4090       break;
4091     }
4092     case Decl::CXXConstructor: {
4093       CodeGenPGO PGO(*this);
4094       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4095       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4096                                   getFunctionLinkage(GD));
4097       break;
4098     }
4099     case Decl::CXXDestructor: {
4100       CodeGenPGO PGO(*this);
4101       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4102       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4103                                   getFunctionLinkage(GD));
4104       break;
4105     }
4106     default:
4107       break;
4108     };
4109   }
4110 }
4111 
4112 /// Turns the given pointer into a constant.
4113 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4114                                           const void *Ptr) {
4115   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4116   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4117   return llvm::ConstantInt::get(i64, PtrInt);
4118 }
4119 
4120 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4121                                    llvm::NamedMDNode *&GlobalMetadata,
4122                                    GlobalDecl D,
4123                                    llvm::GlobalValue *Addr) {
4124   if (!GlobalMetadata)
4125     GlobalMetadata =
4126       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4127 
4128   // TODO: should we report variant information for ctors/dtors?
4129   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4130                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4131                                CGM.getLLVMContext(), D.getDecl()))};
4132   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4133 }
4134 
4135 /// For each function which is declared within an extern "C" region and marked
4136 /// as 'used', but has internal linkage, create an alias from the unmangled
4137 /// name to the mangled name if possible. People expect to be able to refer
4138 /// to such functions with an unmangled name from inline assembly within the
4139 /// same translation unit.
4140 void CodeGenModule::EmitStaticExternCAliases() {
4141   // Don't do anything if we're generating CUDA device code -- the NVPTX
4142   // assembly target doesn't support aliases.
4143   if (Context.getTargetInfo().getTriple().isNVPTX())
4144     return;
4145   for (auto &I : StaticExternCValues) {
4146     IdentifierInfo *Name = I.first;
4147     llvm::GlobalValue *Val = I.second;
4148     if (Val && !getModule().getNamedValue(Name->getName()))
4149       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4150   }
4151 }
4152 
4153 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4154                                              GlobalDecl &Result) const {
4155   auto Res = Manglings.find(MangledName);
4156   if (Res == Manglings.end())
4157     return false;
4158   Result = Res->getValue();
4159   return true;
4160 }
4161 
4162 /// Emits metadata nodes associating all the global values in the
4163 /// current module with the Decls they came from.  This is useful for
4164 /// projects using IR gen as a subroutine.
4165 ///
4166 /// Since there's currently no way to associate an MDNode directly
4167 /// with an llvm::GlobalValue, we create a global named metadata
4168 /// with the name 'clang.global.decl.ptrs'.
4169 void CodeGenModule::EmitDeclMetadata() {
4170   llvm::NamedMDNode *GlobalMetadata = nullptr;
4171 
4172   for (auto &I : MangledDeclNames) {
4173     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4174     // Some mangled names don't necessarily have an associated GlobalValue
4175     // in this module, e.g. if we mangled it for DebugInfo.
4176     if (Addr)
4177       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4178   }
4179 }
4180 
4181 /// Emits metadata nodes for all the local variables in the current
4182 /// function.
4183 void CodeGenFunction::EmitDeclMetadata() {
4184   if (LocalDeclMap.empty()) return;
4185 
4186   llvm::LLVMContext &Context = getLLVMContext();
4187 
4188   // Find the unique metadata ID for this name.
4189   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4190 
4191   llvm::NamedMDNode *GlobalMetadata = nullptr;
4192 
4193   for (auto &I : LocalDeclMap) {
4194     const Decl *D = I.first;
4195     llvm::Value *Addr = I.second.getPointer();
4196     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4197       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4198       Alloca->setMetadata(
4199           DeclPtrKind, llvm::MDNode::get(
4200                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4201     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4202       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4203       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4204     }
4205   }
4206 }
4207 
4208 void CodeGenModule::EmitVersionIdentMetadata() {
4209   llvm::NamedMDNode *IdentMetadata =
4210     TheModule.getOrInsertNamedMetadata("llvm.ident");
4211   std::string Version = getClangFullVersion();
4212   llvm::LLVMContext &Ctx = TheModule.getContext();
4213 
4214   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4215   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4216 }
4217 
4218 void CodeGenModule::EmitTargetMetadata() {
4219   // Warning, new MangledDeclNames may be appended within this loop.
4220   // We rely on MapVector insertions adding new elements to the end
4221   // of the container.
4222   // FIXME: Move this loop into the one target that needs it, and only
4223   // loop over those declarations for which we couldn't emit the target
4224   // metadata when we emitted the declaration.
4225   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4226     auto Val = *(MangledDeclNames.begin() + I);
4227     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4228     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4229     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4230   }
4231 }
4232 
4233 void CodeGenModule::EmitCoverageFile() {
4234   if (getCodeGenOpts().CoverageDataFile.empty() &&
4235       getCodeGenOpts().CoverageNotesFile.empty())
4236     return;
4237 
4238   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4239   if (!CUNode)
4240     return;
4241 
4242   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4243   llvm::LLVMContext &Ctx = TheModule.getContext();
4244   auto *CoverageDataFile =
4245       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4246   auto *CoverageNotesFile =
4247       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4248   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4249     llvm::MDNode *CU = CUNode->getOperand(i);
4250     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4251     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4252   }
4253 }
4254 
4255 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4256   // Sema has checked that all uuid strings are of the form
4257   // "12345678-1234-1234-1234-1234567890ab".
4258   assert(Uuid.size() == 36);
4259   for (unsigned i = 0; i < 36; ++i) {
4260     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4261     else                                         assert(isHexDigit(Uuid[i]));
4262   }
4263 
4264   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4265   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4266 
4267   llvm::Constant *Field3[8];
4268   for (unsigned Idx = 0; Idx < 8; ++Idx)
4269     Field3[Idx] = llvm::ConstantInt::get(
4270         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4271 
4272   llvm::Constant *Fields[4] = {
4273     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4274     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4275     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4276     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4277   };
4278 
4279   return llvm::ConstantStruct::getAnon(Fields);
4280 }
4281 
4282 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4283                                                        bool ForEH) {
4284   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4285   // FIXME: should we even be calling this method if RTTI is disabled
4286   // and it's not for EH?
4287   if (!ForEH && !getLangOpts().RTTI)
4288     return llvm::Constant::getNullValue(Int8PtrTy);
4289 
4290   if (ForEH && Ty->isObjCObjectPointerType() &&
4291       LangOpts.ObjCRuntime.isGNUFamily())
4292     return ObjCRuntime->GetEHType(Ty);
4293 
4294   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4295 }
4296 
4297 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4298   for (auto RefExpr : D->varlists()) {
4299     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4300     bool PerformInit =
4301         VD->getAnyInitializer() &&
4302         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4303                                                         /*ForRef=*/false);
4304 
4305     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4306     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4307             VD, Addr, RefExpr->getLocStart(), PerformInit))
4308       CXXGlobalInits.push_back(InitFunction);
4309   }
4310 }
4311 
4312 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4313   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4314   if (InternalId)
4315     return InternalId;
4316 
4317   if (isExternallyVisible(T->getLinkage())) {
4318     std::string OutName;
4319     llvm::raw_string_ostream Out(OutName);
4320     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4321 
4322     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4323   } else {
4324     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4325                                            llvm::ArrayRef<llvm::Metadata *>());
4326   }
4327 
4328   return InternalId;
4329 }
4330 
4331 /// Returns whether this module needs the "all-vtables" type identifier.
4332 bool CodeGenModule::NeedAllVtablesTypeId() const {
4333   // Returns true if at least one of vtable-based CFI checkers is enabled and
4334   // is not in the trapping mode.
4335   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4336            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4337           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4338            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4339           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4340            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4341           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4342            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4343 }
4344 
4345 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4346                                           CharUnits Offset,
4347                                           const CXXRecordDecl *RD) {
4348   llvm::Metadata *MD =
4349       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4350   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4351 
4352   if (CodeGenOpts.SanitizeCfiCrossDso)
4353     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4354       VTable->addTypeMetadata(Offset.getQuantity(),
4355                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4356 
4357   if (NeedAllVtablesTypeId()) {
4358     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4359     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4360   }
4361 }
4362 
4363 // Fills in the supplied string map with the set of target features for the
4364 // passed in function.
4365 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4366                                           const FunctionDecl *FD) {
4367   StringRef TargetCPU = Target.getTargetOpts().CPU;
4368   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4369     // If we have a TargetAttr build up the feature map based on that.
4370     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4371 
4372     // Make a copy of the features as passed on the command line into the
4373     // beginning of the additional features from the function to override.
4374     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4375                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4376                             Target.getTargetOpts().FeaturesAsWritten.end());
4377 
4378     if (ParsedAttr.second != "")
4379       TargetCPU = ParsedAttr.second;
4380 
4381     // Now populate the feature map, first with the TargetCPU which is either
4382     // the default or a new one from the target attribute string. Then we'll use
4383     // the passed in features (FeaturesAsWritten) along with the new ones from
4384     // the attribute.
4385     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4386   } else {
4387     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4388                           Target.getTargetOpts().Features);
4389   }
4390 }
4391 
4392 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4393   if (!SanStats)
4394     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4395 
4396   return *SanStats;
4397 }
4398 llvm::Value *
4399 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4400                                                   CodeGenFunction &CGF) {
4401   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4402   auto SamplerT = getOpenCLRuntime().getSamplerType();
4403   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4404   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4405                                 "__translate_sampler_initializer"),
4406                                 {C});
4407 }
4408