1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/Support/ConvertUTF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 53 using namespace clang; 54 using namespace CodeGen; 55 56 static const char AnnotationSection[] = "llvm.metadata"; 57 58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 59 switch (CGM.getTarget().getCXXABI().getKind()) { 60 case TargetCXXABI::GenericAArch64: 61 case TargetCXXABI::GenericARM: 62 case TargetCXXABI::iOS: 63 case TargetCXXABI::iOS64: 64 case TargetCXXABI::GenericItanium: 65 return CreateItaniumCXXABI(CGM); 66 case TargetCXXABI::Microsoft: 67 return CreateMicrosoftCXXABI(CGM); 68 } 69 70 llvm_unreachable("invalid C++ ABI kind"); 71 } 72 73 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 74 llvm::Module &M, const llvm::DataLayout &TD, 75 DiagnosticsEngine &diags) 76 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 77 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 78 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 79 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 80 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 81 NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0), 82 CFConstantStringClassRef(0), 83 ConstantStringClassRef(0), NSConstantStringType(0), 84 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 85 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 86 LifetimeStartFn(0), LifetimeEndFn(0), 87 SanitizerBlacklist( 88 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 89 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 90 : LangOpts.Sanitize) { 91 92 // Initialize the type cache. 93 llvm::LLVMContext &LLVMContext = M.getContext(); 94 VoidTy = llvm::Type::getVoidTy(LLVMContext); 95 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 96 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 97 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 98 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 99 FloatTy = llvm::Type::getFloatTy(LLVMContext); 100 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 101 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 102 PointerAlignInBytes = 103 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 104 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 105 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 106 Int8PtrTy = Int8Ty->getPointerTo(0); 107 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 108 109 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 110 111 if (LangOpts.ObjC1) 112 createObjCRuntime(); 113 if (LangOpts.OpenCL) 114 createOpenCLRuntime(); 115 if (LangOpts.CUDA) 116 createCUDARuntime(); 117 118 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 119 if (SanOpts.Thread || 120 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 121 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 122 getCXXABI().getMangleContext()); 123 124 // If debug info or coverage generation is enabled, create the CGDebugInfo 125 // object. 126 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 127 CodeGenOpts.EmitGcovArcs || 128 CodeGenOpts.EmitGcovNotes) 129 DebugInfo = new CGDebugInfo(*this); 130 131 Block.GlobalUniqueCount = 0; 132 133 if (C.getLangOpts().ObjCAutoRefCount) 134 ARCData = new ARCEntrypoints(); 135 RRData = new RREntrypoints(); 136 137 if (!CodeGenOpts.InstrProfileInput.empty()) 138 PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput); 139 } 140 141 CodeGenModule::~CodeGenModule() { 142 delete ObjCRuntime; 143 delete OpenCLRuntime; 144 delete CUDARuntime; 145 delete TheTargetCodeGenInfo; 146 delete TBAA; 147 delete DebugInfo; 148 delete ARCData; 149 delete RRData; 150 } 151 152 void CodeGenModule::createObjCRuntime() { 153 // This is just isGNUFamily(), but we want to force implementors of 154 // new ABIs to decide how best to do this. 155 switch (LangOpts.ObjCRuntime.getKind()) { 156 case ObjCRuntime::GNUstep: 157 case ObjCRuntime::GCC: 158 case ObjCRuntime::ObjFW: 159 ObjCRuntime = CreateGNUObjCRuntime(*this); 160 return; 161 162 case ObjCRuntime::FragileMacOSX: 163 case ObjCRuntime::MacOSX: 164 case ObjCRuntime::iOS: 165 ObjCRuntime = CreateMacObjCRuntime(*this); 166 return; 167 } 168 llvm_unreachable("bad runtime kind"); 169 } 170 171 void CodeGenModule::createOpenCLRuntime() { 172 OpenCLRuntime = new CGOpenCLRuntime(*this); 173 } 174 175 void CodeGenModule::createCUDARuntime() { 176 CUDARuntime = CreateNVCUDARuntime(*this); 177 } 178 179 void CodeGenModule::applyReplacements() { 180 for (ReplacementsTy::iterator I = Replacements.begin(), 181 E = Replacements.end(); 182 I != E; ++I) { 183 StringRef MangledName = I->first(); 184 llvm::Constant *Replacement = I->second; 185 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 186 if (!Entry) 187 continue; 188 llvm::Function *OldF = cast<llvm::Function>(Entry); 189 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 190 if (!NewF) { 191 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 192 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 193 } else { 194 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 195 assert(CE->getOpcode() == llvm::Instruction::BitCast || 196 CE->getOpcode() == llvm::Instruction::GetElementPtr); 197 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 198 } 199 } 200 201 // Replace old with new, but keep the old order. 202 OldF->replaceAllUsesWith(Replacement); 203 if (NewF) { 204 NewF->removeFromParent(); 205 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 206 } 207 OldF->eraseFromParent(); 208 } 209 } 210 211 void CodeGenModule::checkAliases() { 212 // Check if the constructed aliases are well formed. It is really unfortunate 213 // that we have to do this in CodeGen, but we only construct mangled names 214 // and aliases during codegen. 215 bool Error = false; 216 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 217 E = Aliases.end(); I != E; ++I) { 218 const GlobalDecl &GD = *I; 219 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 220 const AliasAttr *AA = D->getAttr<AliasAttr>(); 221 StringRef MangledName = getMangledName(GD); 222 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 223 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 224 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 225 if (!GV) { 226 Error = true; 227 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 228 } else if (GV->isDeclaration()) { 229 Error = true; 230 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 231 } 232 233 // We have to handle alias to weak aliases in here. LLVM itself disallows 234 // this since the object semantics would not match the IL one. For 235 // compatibility with gcc we implement it by just pointing the alias 236 // to its aliasee's aliasee. We also warn, since the user is probably 237 // expecting the link to be weak. 238 llvm::Constant *Aliasee = Alias->getAliasee(); 239 llvm::GlobalValue *AliaseeGV; 240 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 241 assert((CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 243 "Unsupported aliasee"); 244 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 245 } else { 246 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 247 } 248 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 249 if (GA->mayBeOverridden()) { 250 getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 251 << GA->getAliasedGlobal()->getName() << GA->getName(); 252 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 253 GA->getAliasee(), Alias->getType()); 254 Alias->setAliasee(Aliasee); 255 } 256 } 257 } 258 if (!Error) 259 return; 260 261 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 262 E = Aliases.end(); I != E; ++I) { 263 const GlobalDecl &GD = *I; 264 StringRef MangledName = getMangledName(GD); 265 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 266 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 267 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 268 Alias->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::clear() { 273 DeferredDeclsToEmit.clear(); 274 } 275 276 void CodeGenModule::Release() { 277 EmitDeferred(); 278 applyReplacements(); 279 checkAliases(); 280 EmitCXXGlobalInitFunc(); 281 EmitCXXGlobalDtorFunc(); 282 EmitCXXThreadLocalInitFunc(); 283 if (ObjCRuntime) 284 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 285 AddGlobalCtor(ObjCInitFunction); 286 if (getCodeGenOpts().ProfileInstrGenerate) 287 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 288 AddGlobalCtor(PGOInit, 0); 289 if (PGOData && PGOStats.isOutOfDate()) 290 getDiags().Report(diag::warn_profile_data_out_of_date) 291 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 292 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 293 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 294 EmitGlobalAnnotations(); 295 EmitStaticExternCAliases(); 296 emitLLVMUsed(); 297 298 if (CodeGenOpts.Autolink && 299 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 300 EmitModuleLinkOptions(); 301 } 302 if (CodeGenOpts.DwarfVersion) 303 // We actually want the latest version when there are conflicts. 304 // We can change from Warning to Latest if such mode is supported. 305 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 306 CodeGenOpts.DwarfVersion); 307 if (DebugInfo) 308 // We support a single version in the linked module: error out when 309 // modules do not have the same version. We are going to implement dropping 310 // debug info when the version number is not up-to-date. Once that is 311 // done, the bitcode linker is not going to see modules with different 312 // version numbers. 313 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 314 llvm::DEBUG_METADATA_VERSION); 315 316 SimplifyPersonality(); 317 318 if (getCodeGenOpts().EmitDeclMetadata) 319 EmitDeclMetadata(); 320 321 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 322 EmitCoverageFile(); 323 324 if (DebugInfo) 325 DebugInfo->finalize(); 326 327 EmitVersionIdentMetadata(); 328 } 329 330 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 331 // Make sure that this type is translated. 332 Types.UpdateCompletedType(TD); 333 } 334 335 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 336 if (!TBAA) 337 return 0; 338 return TBAA->getTBAAInfo(QTy); 339 } 340 341 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 342 if (!TBAA) 343 return 0; 344 return TBAA->getTBAAInfoForVTablePtr(); 345 } 346 347 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 348 if (!TBAA) 349 return 0; 350 return TBAA->getTBAAStructInfo(QTy); 351 } 352 353 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 354 if (!TBAA) 355 return 0; 356 return TBAA->getTBAAStructTypeInfo(QTy); 357 } 358 359 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 360 llvm::MDNode *AccessN, 361 uint64_t O) { 362 if (!TBAA) 363 return 0; 364 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 365 } 366 367 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 368 /// and struct-path aware TBAA, the tag has the same format: 369 /// base type, access type and offset. 370 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 371 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 372 llvm::MDNode *TBAAInfo, 373 bool ConvertTypeToTag) { 374 if (ConvertTypeToTag && TBAA) 375 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 376 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 377 else 378 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 379 } 380 381 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 382 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 383 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 384 } 385 386 /// ErrorUnsupported - Print out an error that codegen doesn't support the 387 /// specified stmt yet. 388 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 389 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 390 "cannot compile this %0 yet"); 391 std::string Msg = Type; 392 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 393 << Msg << S->getSourceRange(); 394 } 395 396 /// ErrorUnsupported - Print out an error that codegen doesn't support the 397 /// specified decl yet. 398 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 399 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 400 "cannot compile this %0 yet"); 401 std::string Msg = Type; 402 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 403 } 404 405 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 406 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 407 } 408 409 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 410 const NamedDecl *D) const { 411 // Internal definitions always have default visibility. 412 if (GV->hasLocalLinkage()) { 413 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 414 return; 415 } 416 417 // Set visibility for definitions. 418 LinkageInfo LV = D->getLinkageAndVisibility(); 419 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 420 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 421 } 422 423 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 424 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 425 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 426 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 427 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 428 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 429 } 430 431 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 432 CodeGenOptions::TLSModel M) { 433 switch (M) { 434 case CodeGenOptions::GeneralDynamicTLSModel: 435 return llvm::GlobalVariable::GeneralDynamicTLSModel; 436 case CodeGenOptions::LocalDynamicTLSModel: 437 return llvm::GlobalVariable::LocalDynamicTLSModel; 438 case CodeGenOptions::InitialExecTLSModel: 439 return llvm::GlobalVariable::InitialExecTLSModel; 440 case CodeGenOptions::LocalExecTLSModel: 441 return llvm::GlobalVariable::LocalExecTLSModel; 442 } 443 llvm_unreachable("Invalid TLS model!"); 444 } 445 446 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 447 const VarDecl &D) const { 448 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 449 450 llvm::GlobalVariable::ThreadLocalMode TLM; 451 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 452 453 // Override the TLS model if it is explicitly specified. 454 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 455 TLM = GetLLVMTLSModel(Attr->getModel()); 456 } 457 458 GV->setThreadLocalMode(TLM); 459 } 460 461 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 462 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 463 464 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 465 if (!Str.empty()) 466 return Str; 467 468 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 469 IdentifierInfo *II = ND->getIdentifier(); 470 assert(II && "Attempt to mangle unnamed decl."); 471 472 Str = II->getName(); 473 return Str; 474 } 475 476 SmallString<256> Buffer; 477 llvm::raw_svector_ostream Out(Buffer); 478 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 479 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 480 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 481 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 482 else 483 getCXXABI().getMangleContext().mangleName(ND, Out); 484 485 // Allocate space for the mangled name. 486 Out.flush(); 487 size_t Length = Buffer.size(); 488 char *Name = MangledNamesAllocator.Allocate<char>(Length); 489 std::copy(Buffer.begin(), Buffer.end(), Name); 490 491 Str = StringRef(Name, Length); 492 493 return Str; 494 } 495 496 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 497 const BlockDecl *BD) { 498 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 499 const Decl *D = GD.getDecl(); 500 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 501 if (D == 0) 502 MangleCtx.mangleGlobalBlock(BD, 503 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 504 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 505 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 506 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 507 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 508 else 509 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 510 } 511 512 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 513 return getModule().getNamedValue(Name); 514 } 515 516 /// AddGlobalCtor - Add a function to the list that will be called before 517 /// main() runs. 518 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 519 // FIXME: Type coercion of void()* types. 520 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 521 } 522 523 /// AddGlobalDtor - Add a function to the list that will be called 524 /// when the module is unloaded. 525 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 526 // FIXME: Type coercion of void()* types. 527 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 528 } 529 530 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 531 // Ctor function type is void()*. 532 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 533 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 534 535 // Get the type of a ctor entry, { i32, void ()* }. 536 llvm::StructType *CtorStructTy = 537 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 538 539 // Construct the constructor and destructor arrays. 540 SmallVector<llvm::Constant*, 8> Ctors; 541 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 542 llvm::Constant *S[] = { 543 llvm::ConstantInt::get(Int32Ty, I->second, false), 544 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 545 }; 546 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 547 } 548 549 if (!Ctors.empty()) { 550 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 551 new llvm::GlobalVariable(TheModule, AT, false, 552 llvm::GlobalValue::AppendingLinkage, 553 llvm::ConstantArray::get(AT, Ctors), 554 GlobalName); 555 } 556 } 557 558 llvm::GlobalValue::LinkageTypes 559 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 560 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 561 562 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 563 564 if (Linkage == GVA_Internal) 565 return llvm::Function::InternalLinkage; 566 567 if (D->hasAttr<DLLExportAttr>()) 568 return llvm::Function::ExternalLinkage; 569 570 if (D->hasAttr<WeakAttr>()) 571 return llvm::Function::WeakAnyLinkage; 572 573 // In C99 mode, 'inline' functions are guaranteed to have a strong 574 // definition somewhere else, so we can use available_externally linkage. 575 if (Linkage == GVA_C99Inline) 576 return llvm::Function::AvailableExternallyLinkage; 577 578 // Note that Apple's kernel linker doesn't support symbol 579 // coalescing, so we need to avoid linkonce and weak linkages there. 580 // Normally, this means we just map to internal, but for explicit 581 // instantiations we'll map to external. 582 583 // In C++, the compiler has to emit a definition in every translation unit 584 // that references the function. We should use linkonce_odr because 585 // a) if all references in this translation unit are optimized away, we 586 // don't need to codegen it. b) if the function persists, it needs to be 587 // merged with other definitions. c) C++ has the ODR, so we know the 588 // definition is dependable. 589 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 590 return !Context.getLangOpts().AppleKext 591 ? llvm::Function::LinkOnceODRLinkage 592 : llvm::Function::InternalLinkage; 593 594 // An explicit instantiation of a template has weak linkage, since 595 // explicit instantiations can occur in multiple translation units 596 // and must all be equivalent. However, we are not allowed to 597 // throw away these explicit instantiations. 598 if (Linkage == GVA_StrongODR) 599 return !Context.getLangOpts().AppleKext 600 ? llvm::Function::WeakODRLinkage 601 : llvm::Function::ExternalLinkage; 602 603 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 604 // emitted on an as-needed basis. 605 if (isa<CXXDestructorDecl>(D) && 606 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 607 GD.getDtorType())) 608 return llvm::Function::LinkOnceODRLinkage; 609 610 // Otherwise, we have strong external linkage. 611 assert(Linkage == GVA_StrongExternal); 612 return llvm::Function::ExternalLinkage; 613 } 614 615 616 /// SetFunctionDefinitionAttributes - Set attributes for a global. 617 /// 618 /// FIXME: This is currently only done for aliases and functions, but not for 619 /// variables (these details are set in EmitGlobalVarDefinition for variables). 620 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 621 llvm::GlobalValue *GV) { 622 SetCommonAttributes(D, GV); 623 } 624 625 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 626 const CGFunctionInfo &Info, 627 llvm::Function *F) { 628 unsigned CallingConv; 629 AttributeListType AttributeList; 630 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 631 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 632 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 633 } 634 635 /// Determines whether the language options require us to model 636 /// unwind exceptions. We treat -fexceptions as mandating this 637 /// except under the fragile ObjC ABI with only ObjC exceptions 638 /// enabled. This means, for example, that C with -fexceptions 639 /// enables this. 640 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 641 // If exceptions are completely disabled, obviously this is false. 642 if (!LangOpts.Exceptions) return false; 643 644 // If C++ exceptions are enabled, this is true. 645 if (LangOpts.CXXExceptions) return true; 646 647 // If ObjC exceptions are enabled, this depends on the ABI. 648 if (LangOpts.ObjCExceptions) { 649 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 650 } 651 652 return true; 653 } 654 655 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 656 llvm::Function *F) { 657 llvm::AttrBuilder B; 658 659 if (CodeGenOpts.UnwindTables) 660 B.addAttribute(llvm::Attribute::UWTable); 661 662 if (!hasUnwindExceptions(LangOpts)) 663 B.addAttribute(llvm::Attribute::NoUnwind); 664 665 if (D->hasAttr<NakedAttr>()) { 666 // Naked implies noinline: we should not be inlining such functions. 667 B.addAttribute(llvm::Attribute::Naked); 668 B.addAttribute(llvm::Attribute::NoInline); 669 } else if (D->hasAttr<OptimizeNoneAttr>()) { 670 // OptimizeNone implies noinline; we should not be inlining such functions. 671 B.addAttribute(llvm::Attribute::OptimizeNone); 672 B.addAttribute(llvm::Attribute::NoInline); 673 } else if (D->hasAttr<NoDuplicateAttr>()) { 674 B.addAttribute(llvm::Attribute::NoDuplicate); 675 } else if (D->hasAttr<NoInlineAttr>()) { 676 B.addAttribute(llvm::Attribute::NoInline); 677 } else if (D->hasAttr<AlwaysInlineAttr>() && 678 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 679 llvm::Attribute::NoInline)) { 680 // (noinline wins over always_inline, and we can't specify both in IR) 681 B.addAttribute(llvm::Attribute::AlwaysInline); 682 } 683 684 if (D->hasAttr<ColdAttr>()) { 685 B.addAttribute(llvm::Attribute::OptimizeForSize); 686 B.addAttribute(llvm::Attribute::Cold); 687 } 688 689 if (D->hasAttr<MinSizeAttr>()) 690 B.addAttribute(llvm::Attribute::MinSize); 691 692 if (D->hasAttr<OptimizeNoneAttr>()) { 693 // OptimizeNone wins over OptimizeForSize and MinSize. 694 B.removeAttribute(llvm::Attribute::OptimizeForSize); 695 B.removeAttribute(llvm::Attribute::MinSize); 696 } 697 698 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 699 B.addAttribute(llvm::Attribute::StackProtect); 700 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 701 B.addAttribute(llvm::Attribute::StackProtectStrong); 702 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 703 B.addAttribute(llvm::Attribute::StackProtectReq); 704 705 // Add sanitizer attributes if function is not blacklisted. 706 if (!SanitizerBlacklist->isIn(*F)) { 707 // When AddressSanitizer is enabled, set SanitizeAddress attribute 708 // unless __attribute__((no_sanitize_address)) is used. 709 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 710 B.addAttribute(llvm::Attribute::SanitizeAddress); 711 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 712 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 713 B.addAttribute(llvm::Attribute::SanitizeThread); 714 } 715 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 716 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 717 B.addAttribute(llvm::Attribute::SanitizeMemory); 718 } 719 720 F->addAttributes(llvm::AttributeSet::FunctionIndex, 721 llvm::AttributeSet::get( 722 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 723 724 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 725 F->setUnnamedAddr(true); 726 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 727 if (MD->isVirtual()) 728 F->setUnnamedAddr(true); 729 730 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 731 if (alignment) 732 F->setAlignment(alignment); 733 734 // C++ ABI requires 2-byte alignment for member functions. 735 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 736 F->setAlignment(2); 737 } 738 739 void CodeGenModule::SetCommonAttributes(const Decl *D, 740 llvm::GlobalValue *GV) { 741 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 742 setGlobalVisibility(GV, ND); 743 else 744 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 745 746 if (D->hasAttr<UsedAttr>()) 747 addUsedGlobal(GV); 748 749 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 750 GV->setSection(SA->getName()); 751 752 // Alias cannot have attributes. Filter them here. 753 if (!isa<llvm::GlobalAlias>(GV)) 754 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 755 } 756 757 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 758 llvm::Function *F, 759 const CGFunctionInfo &FI) { 760 SetLLVMFunctionAttributes(D, FI, F); 761 SetLLVMFunctionAttributesForDefinition(D, F); 762 763 F->setLinkage(llvm::Function::InternalLinkage); 764 765 SetCommonAttributes(D, F); 766 } 767 768 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 769 llvm::Function *F, 770 bool IsIncompleteFunction) { 771 if (unsigned IID = F->getIntrinsicID()) { 772 // If this is an intrinsic function, set the function's attributes 773 // to the intrinsic's attributes. 774 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 775 (llvm::Intrinsic::ID)IID)); 776 return; 777 } 778 779 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 780 781 if (!IsIncompleteFunction) 782 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 783 784 // Add the Returned attribute for "this", except for iOS 5 and earlier 785 // where substantial code, including the libstdc++ dylib, was compiled with 786 // GCC and does not actually return "this". 787 if (getCXXABI().HasThisReturn(GD) && 788 !(getTarget().getTriple().isiOS() && 789 getTarget().getTriple().isOSVersionLT(6))) { 790 assert(!F->arg_empty() && 791 F->arg_begin()->getType() 792 ->canLosslesslyBitCastTo(F->getReturnType()) && 793 "unexpected this return"); 794 F->addAttribute(1, llvm::Attribute::Returned); 795 } 796 797 // Only a few attributes are set on declarations; these may later be 798 // overridden by a definition. 799 800 if (FD->hasAttr<DLLImportAttr>()) { 801 F->setLinkage(llvm::Function::ExternalLinkage); 802 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 803 } else if (FD->hasAttr<WeakAttr>() || 804 FD->isWeakImported()) { 805 // "extern_weak" is overloaded in LLVM; we probably should have 806 // separate linkage types for this. 807 F->setLinkage(llvm::Function::ExternalWeakLinkage); 808 } else { 809 F->setLinkage(llvm::Function::ExternalLinkage); 810 if (FD->hasAttr<DLLExportAttr>()) 811 F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 812 813 LinkageInfo LV = FD->getLinkageAndVisibility(); 814 if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) { 815 F->setVisibility(GetLLVMVisibility(LV.getVisibility())); 816 } 817 } 818 819 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 820 F->setSection(SA->getName()); 821 822 // A replaceable global allocation function does not act like a builtin by 823 // default, only if it is invoked by a new-expression or delete-expression. 824 if (FD->isReplaceableGlobalAllocationFunction()) 825 F->addAttribute(llvm::AttributeSet::FunctionIndex, 826 llvm::Attribute::NoBuiltin); 827 } 828 829 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 830 assert(!GV->isDeclaration() && 831 "Only globals with definition can force usage."); 832 LLVMUsed.push_back(GV); 833 } 834 835 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 836 assert(!GV->isDeclaration() && 837 "Only globals with definition can force usage."); 838 LLVMCompilerUsed.push_back(GV); 839 } 840 841 static void emitUsed(CodeGenModule &CGM, StringRef Name, 842 std::vector<llvm::WeakVH> &List) { 843 // Don't create llvm.used if there is no need. 844 if (List.empty()) 845 return; 846 847 // Convert List to what ConstantArray needs. 848 SmallVector<llvm::Constant*, 8> UsedArray; 849 UsedArray.resize(List.size()); 850 for (unsigned i = 0, e = List.size(); i != e; ++i) { 851 UsedArray[i] = 852 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 853 CGM.Int8PtrTy); 854 } 855 856 if (UsedArray.empty()) 857 return; 858 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 859 860 llvm::GlobalVariable *GV = 861 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 862 llvm::GlobalValue::AppendingLinkage, 863 llvm::ConstantArray::get(ATy, UsedArray), 864 Name); 865 866 GV->setSection("llvm.metadata"); 867 } 868 869 void CodeGenModule::emitLLVMUsed() { 870 emitUsed(*this, "llvm.used", LLVMUsed); 871 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 872 } 873 874 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 875 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 876 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 877 } 878 879 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 880 llvm::SmallString<32> Opt; 881 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 882 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 883 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 884 } 885 886 void CodeGenModule::AddDependentLib(StringRef Lib) { 887 llvm::SmallString<24> Opt; 888 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 889 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 890 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 891 } 892 893 /// \brief Add link options implied by the given module, including modules 894 /// it depends on, using a postorder walk. 895 static void addLinkOptionsPostorder(CodeGenModule &CGM, 896 Module *Mod, 897 SmallVectorImpl<llvm::Value *> &Metadata, 898 llvm::SmallPtrSet<Module *, 16> &Visited) { 899 // Import this module's parent. 900 if (Mod->Parent && Visited.insert(Mod->Parent)) { 901 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 902 } 903 904 // Import this module's dependencies. 905 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 906 if (Visited.insert(Mod->Imports[I-1])) 907 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 908 } 909 910 // Add linker options to link against the libraries/frameworks 911 // described by this module. 912 llvm::LLVMContext &Context = CGM.getLLVMContext(); 913 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 914 // Link against a framework. Frameworks are currently Darwin only, so we 915 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 916 if (Mod->LinkLibraries[I-1].IsFramework) { 917 llvm::Value *Args[2] = { 918 llvm::MDString::get(Context, "-framework"), 919 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 920 }; 921 922 Metadata.push_back(llvm::MDNode::get(Context, Args)); 923 continue; 924 } 925 926 // Link against a library. 927 llvm::SmallString<24> Opt; 928 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 929 Mod->LinkLibraries[I-1].Library, Opt); 930 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 931 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 932 } 933 } 934 935 void CodeGenModule::EmitModuleLinkOptions() { 936 // Collect the set of all of the modules we want to visit to emit link 937 // options, which is essentially the imported modules and all of their 938 // non-explicit child modules. 939 llvm::SetVector<clang::Module *> LinkModules; 940 llvm::SmallPtrSet<clang::Module *, 16> Visited; 941 SmallVector<clang::Module *, 16> Stack; 942 943 // Seed the stack with imported modules. 944 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 945 MEnd = ImportedModules.end(); 946 M != MEnd; ++M) { 947 if (Visited.insert(*M)) 948 Stack.push_back(*M); 949 } 950 951 // Find all of the modules to import, making a little effort to prune 952 // non-leaf modules. 953 while (!Stack.empty()) { 954 clang::Module *Mod = Stack.pop_back_val(); 955 956 bool AnyChildren = false; 957 958 // Visit the submodules of this module. 959 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 960 SubEnd = Mod->submodule_end(); 961 Sub != SubEnd; ++Sub) { 962 // Skip explicit children; they need to be explicitly imported to be 963 // linked against. 964 if ((*Sub)->IsExplicit) 965 continue; 966 967 if (Visited.insert(*Sub)) { 968 Stack.push_back(*Sub); 969 AnyChildren = true; 970 } 971 } 972 973 // We didn't find any children, so add this module to the list of 974 // modules to link against. 975 if (!AnyChildren) { 976 LinkModules.insert(Mod); 977 } 978 } 979 980 // Add link options for all of the imported modules in reverse topological 981 // order. We don't do anything to try to order import link flags with respect 982 // to linker options inserted by things like #pragma comment(). 983 SmallVector<llvm::Value *, 16> MetadataArgs; 984 Visited.clear(); 985 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 986 MEnd = LinkModules.end(); 987 M != MEnd; ++M) { 988 if (Visited.insert(*M)) 989 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 990 } 991 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 992 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 993 994 // Add the linker options metadata flag. 995 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 996 llvm::MDNode::get(getLLVMContext(), 997 LinkerOptionsMetadata)); 998 } 999 1000 void CodeGenModule::EmitDeferred() { 1001 // Emit code for any potentially referenced deferred decls. Since a 1002 // previously unused static decl may become used during the generation of code 1003 // for a static function, iterate until no changes are made. 1004 1005 while (true) { 1006 if (!DeferredVTables.empty()) { 1007 EmitDeferredVTables(); 1008 1009 // Emitting a v-table doesn't directly cause more v-tables to 1010 // become deferred, although it can cause functions to be 1011 // emitted that then need those v-tables. 1012 assert(DeferredVTables.empty()); 1013 } 1014 1015 // Stop if we're out of both deferred v-tables and deferred declarations. 1016 if (DeferredDeclsToEmit.empty()) break; 1017 1018 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1019 GlobalDecl D = G.GD; 1020 llvm::GlobalValue *GV = G.GV; 1021 DeferredDeclsToEmit.pop_back(); 1022 1023 assert(GV == GetGlobalValue(getMangledName(D))); 1024 // Check to see if we've already emitted this. This is necessary 1025 // for a couple of reasons: first, decls can end up in the 1026 // deferred-decls queue multiple times, and second, decls can end 1027 // up with definitions in unusual ways (e.g. by an extern inline 1028 // function acquiring a strong function redefinition). Just 1029 // ignore these cases. 1030 if(!GV->isDeclaration()) 1031 continue; 1032 1033 // Otherwise, emit the definition and move on to the next one. 1034 EmitGlobalDefinition(D, GV); 1035 } 1036 } 1037 1038 void CodeGenModule::EmitGlobalAnnotations() { 1039 if (Annotations.empty()) 1040 return; 1041 1042 // Create a new global variable for the ConstantStruct in the Module. 1043 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1044 Annotations[0]->getType(), Annotations.size()), Annotations); 1045 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1046 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1047 "llvm.global.annotations"); 1048 gv->setSection(AnnotationSection); 1049 } 1050 1051 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1052 llvm::Constant *&AStr = AnnotationStrings[Str]; 1053 if (AStr) 1054 return AStr; 1055 1056 // Not found yet, create a new global. 1057 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1058 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1059 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1060 gv->setSection(AnnotationSection); 1061 gv->setUnnamedAddr(true); 1062 AStr = gv; 1063 return gv; 1064 } 1065 1066 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1067 SourceManager &SM = getContext().getSourceManager(); 1068 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1069 if (PLoc.isValid()) 1070 return EmitAnnotationString(PLoc.getFilename()); 1071 return EmitAnnotationString(SM.getBufferName(Loc)); 1072 } 1073 1074 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1075 SourceManager &SM = getContext().getSourceManager(); 1076 PresumedLoc PLoc = SM.getPresumedLoc(L); 1077 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1078 SM.getExpansionLineNumber(L); 1079 return llvm::ConstantInt::get(Int32Ty, LineNo); 1080 } 1081 1082 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1083 const AnnotateAttr *AA, 1084 SourceLocation L) { 1085 // Get the globals for file name, annotation, and the line number. 1086 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1087 *UnitGV = EmitAnnotationUnit(L), 1088 *LineNoCst = EmitAnnotationLineNo(L); 1089 1090 // Create the ConstantStruct for the global annotation. 1091 llvm::Constant *Fields[4] = { 1092 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1093 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1094 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1095 LineNoCst 1096 }; 1097 return llvm::ConstantStruct::getAnon(Fields); 1098 } 1099 1100 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1101 llvm::GlobalValue *GV) { 1102 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1103 // Get the struct elements for these annotations. 1104 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1105 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1106 } 1107 1108 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1109 // Never defer when EmitAllDecls is specified. 1110 if (LangOpts.EmitAllDecls) 1111 return false; 1112 1113 return !getContext().DeclMustBeEmitted(Global); 1114 } 1115 1116 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1117 const CXXUuidofExpr* E) { 1118 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1119 // well-formed. 1120 StringRef Uuid = E->getUuidAsStringRef(Context); 1121 std::string Name = "_GUID_" + Uuid.lower(); 1122 std::replace(Name.begin(), Name.end(), '-', '_'); 1123 1124 // Look for an existing global. 1125 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1126 return GV; 1127 1128 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1129 assert(Init && "failed to initialize as constant"); 1130 1131 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1132 getModule(), Init->getType(), 1133 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1134 return GV; 1135 } 1136 1137 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1138 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1139 assert(AA && "No alias?"); 1140 1141 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1142 1143 // See if there is already something with the target's name in the module. 1144 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1145 if (Entry) { 1146 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1147 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1148 } 1149 1150 llvm::Constant *Aliasee; 1151 if (isa<llvm::FunctionType>(DeclTy)) 1152 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1153 GlobalDecl(cast<FunctionDecl>(VD)), 1154 /*ForVTable=*/false); 1155 else 1156 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1157 llvm::PointerType::getUnqual(DeclTy), 0); 1158 1159 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1160 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1161 WeakRefReferences.insert(F); 1162 1163 return Aliasee; 1164 } 1165 1166 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1167 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1168 1169 // Weak references don't produce any output by themselves. 1170 if (Global->hasAttr<WeakRefAttr>()) 1171 return; 1172 1173 // If this is an alias definition (which otherwise looks like a declaration) 1174 // emit it now. 1175 if (Global->hasAttr<AliasAttr>()) 1176 return EmitAliasDefinition(GD); 1177 1178 // If this is CUDA, be selective about which declarations we emit. 1179 if (LangOpts.CUDA) { 1180 if (CodeGenOpts.CUDAIsDevice) { 1181 if (!Global->hasAttr<CUDADeviceAttr>() && 1182 !Global->hasAttr<CUDAGlobalAttr>() && 1183 !Global->hasAttr<CUDAConstantAttr>() && 1184 !Global->hasAttr<CUDASharedAttr>()) 1185 return; 1186 } else { 1187 if (!Global->hasAttr<CUDAHostAttr>() && ( 1188 Global->hasAttr<CUDADeviceAttr>() || 1189 Global->hasAttr<CUDAConstantAttr>() || 1190 Global->hasAttr<CUDASharedAttr>())) 1191 return; 1192 } 1193 } 1194 1195 // Ignore declarations, they will be emitted on their first use. 1196 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1197 // Forward declarations are emitted lazily on first use. 1198 if (!FD->doesThisDeclarationHaveABody()) { 1199 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1200 return; 1201 1202 StringRef MangledName = getMangledName(GD); 1203 1204 // Compute the function info and LLVM type. 1205 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1206 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1207 1208 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1209 /*DontDefer=*/false); 1210 return; 1211 } 1212 } else { 1213 const VarDecl *VD = cast<VarDecl>(Global); 1214 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1215 1216 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1217 return; 1218 } 1219 1220 // Defer code generation when possible if this is a static definition, inline 1221 // function etc. These we only want to emit if they are used. 1222 if (!MayDeferGeneration(Global)) { 1223 // Emit the definition if it can't be deferred. 1224 EmitGlobalDefinition(GD); 1225 return; 1226 } 1227 1228 // If we're deferring emission of a C++ variable with an 1229 // initializer, remember the order in which it appeared in the file. 1230 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1231 cast<VarDecl>(Global)->hasInit()) { 1232 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1233 CXXGlobalInits.push_back(0); 1234 } 1235 1236 // If the value has already been used, add it directly to the 1237 // DeferredDeclsToEmit list. 1238 StringRef MangledName = getMangledName(GD); 1239 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1240 addDeferredDeclToEmit(GV, GD); 1241 else { 1242 // Otherwise, remember that we saw a deferred decl with this name. The 1243 // first use of the mangled name will cause it to move into 1244 // DeferredDeclsToEmit. 1245 DeferredDecls[MangledName] = GD; 1246 } 1247 } 1248 1249 namespace { 1250 struct FunctionIsDirectlyRecursive : 1251 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1252 const StringRef Name; 1253 const Builtin::Context &BI; 1254 bool Result; 1255 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1256 Name(N), BI(C), Result(false) { 1257 } 1258 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1259 1260 bool TraverseCallExpr(CallExpr *E) { 1261 const FunctionDecl *FD = E->getDirectCallee(); 1262 if (!FD) 1263 return true; 1264 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1265 if (Attr && Name == Attr->getLabel()) { 1266 Result = true; 1267 return false; 1268 } 1269 unsigned BuiltinID = FD->getBuiltinID(); 1270 if (!BuiltinID) 1271 return true; 1272 StringRef BuiltinName = BI.GetName(BuiltinID); 1273 if (BuiltinName.startswith("__builtin_") && 1274 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1275 Result = true; 1276 return false; 1277 } 1278 return true; 1279 } 1280 }; 1281 } 1282 1283 // isTriviallyRecursive - Check if this function calls another 1284 // decl that, because of the asm attribute or the other decl being a builtin, 1285 // ends up pointing to itself. 1286 bool 1287 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1288 StringRef Name; 1289 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1290 // asm labels are a special kind of mangling we have to support. 1291 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1292 if (!Attr) 1293 return false; 1294 Name = Attr->getLabel(); 1295 } else { 1296 Name = FD->getName(); 1297 } 1298 1299 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1300 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1301 return Walker.Result; 1302 } 1303 1304 bool 1305 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1306 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1307 return true; 1308 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1309 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1310 return false; 1311 // PR9614. Avoid cases where the source code is lying to us. An available 1312 // externally function should have an equivalent function somewhere else, 1313 // but a function that calls itself is clearly not equivalent to the real 1314 // implementation. 1315 // This happens in glibc's btowc and in some configure checks. 1316 return !isTriviallyRecursive(F); 1317 } 1318 1319 /// If the type for the method's class was generated by 1320 /// CGDebugInfo::createContextChain(), the cache contains only a 1321 /// limited DIType without any declarations. Since EmitFunctionStart() 1322 /// needs to find the canonical declaration for each method, we need 1323 /// to construct the complete type prior to emitting the method. 1324 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1325 if (!D->isInstance()) 1326 return; 1327 1328 if (CGDebugInfo *DI = getModuleDebugInfo()) 1329 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1330 const PointerType *ThisPtr = 1331 cast<PointerType>(D->getThisType(getContext())); 1332 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1333 } 1334 } 1335 1336 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1337 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1338 1339 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1340 Context.getSourceManager(), 1341 "Generating code for declaration"); 1342 1343 if (isa<FunctionDecl>(D)) { 1344 // At -O0, don't generate IR for functions with available_externally 1345 // linkage. 1346 if (!shouldEmitFunction(GD)) 1347 return; 1348 1349 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1350 CompleteDIClassType(Method); 1351 // Make sure to emit the definition(s) before we emit the thunks. 1352 // This is necessary for the generation of certain thunks. 1353 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1354 EmitCXXConstructor(CD, GD.getCtorType()); 1355 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1356 EmitCXXDestructor(DD, GD.getDtorType()); 1357 else 1358 EmitGlobalFunctionDefinition(GD, GV); 1359 1360 if (Method->isVirtual()) 1361 getVTables().EmitThunks(GD); 1362 1363 return; 1364 } 1365 1366 return EmitGlobalFunctionDefinition(GD, GV); 1367 } 1368 1369 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1370 return EmitGlobalVarDefinition(VD); 1371 1372 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1373 } 1374 1375 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1376 /// module, create and return an llvm Function with the specified type. If there 1377 /// is something in the module with the specified name, return it potentially 1378 /// bitcasted to the right type. 1379 /// 1380 /// If D is non-null, it specifies a decl that correspond to this. This is used 1381 /// to set the attributes on the function when it is first created. 1382 llvm::Constant * 1383 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1384 llvm::Type *Ty, 1385 GlobalDecl GD, bool ForVTable, 1386 bool DontDefer, 1387 llvm::AttributeSet ExtraAttrs) { 1388 const Decl *D = GD.getDecl(); 1389 1390 // Lookup the entry, lazily creating it if necessary. 1391 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1392 if (Entry) { 1393 if (WeakRefReferences.erase(Entry)) { 1394 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1395 if (FD && !FD->hasAttr<WeakAttr>()) 1396 Entry->setLinkage(llvm::Function::ExternalLinkage); 1397 } 1398 1399 if (Entry->getType()->getElementType() == Ty) 1400 return Entry; 1401 1402 // Make sure the result is of the correct type. 1403 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1404 } 1405 1406 // This function doesn't have a complete type (for example, the return 1407 // type is an incomplete struct). Use a fake type instead, and make 1408 // sure not to try to set attributes. 1409 bool IsIncompleteFunction = false; 1410 1411 llvm::FunctionType *FTy; 1412 if (isa<llvm::FunctionType>(Ty)) { 1413 FTy = cast<llvm::FunctionType>(Ty); 1414 } else { 1415 FTy = llvm::FunctionType::get(VoidTy, false); 1416 IsIncompleteFunction = true; 1417 } 1418 1419 llvm::Function *F = llvm::Function::Create(FTy, 1420 llvm::Function::ExternalLinkage, 1421 MangledName, &getModule()); 1422 assert(F->getName() == MangledName && "name was uniqued!"); 1423 if (D) 1424 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1425 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1426 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1427 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1428 llvm::AttributeSet::get(VMContext, 1429 llvm::AttributeSet::FunctionIndex, 1430 B)); 1431 } 1432 1433 if (!DontDefer) { 1434 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1435 // each other bottoming out with the base dtor. Therefore we emit non-base 1436 // dtors on usage, even if there is no dtor definition in the TU. 1437 if (D && isa<CXXDestructorDecl>(D) && 1438 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1439 GD.getDtorType())) 1440 addDeferredDeclToEmit(F, GD); 1441 1442 // This is the first use or definition of a mangled name. If there is a 1443 // deferred decl with this name, remember that we need to emit it at the end 1444 // of the file. 1445 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1446 if (DDI != DeferredDecls.end()) { 1447 // Move the potentially referenced deferred decl to the 1448 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1449 // don't need it anymore). 1450 addDeferredDeclToEmit(F, DDI->second); 1451 DeferredDecls.erase(DDI); 1452 1453 // Otherwise, if this is a sized deallocation function, emit a weak 1454 // definition 1455 // for it at the end of the translation unit. 1456 } else if (D && cast<FunctionDecl>(D) 1457 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1458 addDeferredDeclToEmit(F, GD); 1459 1460 // Otherwise, there are cases we have to worry about where we're 1461 // using a declaration for which we must emit a definition but where 1462 // we might not find a top-level definition: 1463 // - member functions defined inline in their classes 1464 // - friend functions defined inline in some class 1465 // - special member functions with implicit definitions 1466 // If we ever change our AST traversal to walk into class methods, 1467 // this will be unnecessary. 1468 // 1469 // We also don't emit a definition for a function if it's going to be an 1470 // entry 1471 // in a vtable, unless it's already marked as used. 1472 } else if (getLangOpts().CPlusPlus && D) { 1473 // Look for a declaration that's lexically in a record. 1474 const FunctionDecl *FD = cast<FunctionDecl>(D); 1475 FD = FD->getMostRecentDecl(); 1476 do { 1477 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1478 if (FD->isImplicit() && !ForVTable) { 1479 assert(FD->isUsed() && 1480 "Sema didn't mark implicit function as used!"); 1481 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1482 break; 1483 } else if (FD->doesThisDeclarationHaveABody()) { 1484 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1485 break; 1486 } 1487 } 1488 FD = FD->getPreviousDecl(); 1489 } while (FD); 1490 } 1491 } 1492 1493 // Make sure the result is of the requested type. 1494 if (!IsIncompleteFunction) { 1495 assert(F->getType()->getElementType() == Ty); 1496 return F; 1497 } 1498 1499 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1500 return llvm::ConstantExpr::getBitCast(F, PTy); 1501 } 1502 1503 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1504 /// non-null, then this function will use the specified type if it has to 1505 /// create it (this occurs when we see a definition of the function). 1506 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1507 llvm::Type *Ty, 1508 bool ForVTable, 1509 bool DontDefer) { 1510 // If there was no specific requested type, just convert it now. 1511 if (!Ty) 1512 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1513 1514 StringRef MangledName = getMangledName(GD); 1515 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1516 } 1517 1518 /// CreateRuntimeFunction - Create a new runtime function with the specified 1519 /// type and name. 1520 llvm::Constant * 1521 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1522 StringRef Name, 1523 llvm::AttributeSet ExtraAttrs) { 1524 llvm::Constant *C = 1525 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1526 /*DontDefer=*/false, ExtraAttrs); 1527 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1528 if (F->empty()) 1529 F->setCallingConv(getRuntimeCC()); 1530 return C; 1531 } 1532 1533 /// isTypeConstant - Determine whether an object of this type can be emitted 1534 /// as a constant. 1535 /// 1536 /// If ExcludeCtor is true, the duration when the object's constructor runs 1537 /// will not be considered. The caller will need to verify that the object is 1538 /// not written to during its construction. 1539 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1540 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1541 return false; 1542 1543 if (Context.getLangOpts().CPlusPlus) { 1544 if (const CXXRecordDecl *Record 1545 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1546 return ExcludeCtor && !Record->hasMutableFields() && 1547 Record->hasTrivialDestructor(); 1548 } 1549 1550 return true; 1551 } 1552 1553 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1554 /// create and return an llvm GlobalVariable with the specified type. If there 1555 /// is something in the module with the specified name, return it potentially 1556 /// bitcasted to the right type. 1557 /// 1558 /// If D is non-null, it specifies a decl that correspond to this. This is used 1559 /// to set the attributes on the global when it is first created. 1560 llvm::Constant * 1561 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1562 llvm::PointerType *Ty, 1563 const VarDecl *D, 1564 bool UnnamedAddr) { 1565 // Lookup the entry, lazily creating it if necessary. 1566 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1567 if (Entry) { 1568 if (WeakRefReferences.erase(Entry)) { 1569 if (D && !D->hasAttr<WeakAttr>()) 1570 Entry->setLinkage(llvm::Function::ExternalLinkage); 1571 } 1572 1573 if (UnnamedAddr) 1574 Entry->setUnnamedAddr(true); 1575 1576 if (Entry->getType() == Ty) 1577 return Entry; 1578 1579 // Make sure the result is of the correct type. 1580 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1581 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1582 1583 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1584 } 1585 1586 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1587 llvm::GlobalVariable *GV = 1588 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1589 llvm::GlobalValue::ExternalLinkage, 1590 0, MangledName, 0, 1591 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1592 1593 // This is the first use or definition of a mangled name. If there is a 1594 // deferred decl with this name, remember that we need to emit it at the end 1595 // of the file. 1596 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1597 if (DDI != DeferredDecls.end()) { 1598 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1599 // list, and remove it from DeferredDecls (since we don't need it anymore). 1600 addDeferredDeclToEmit(GV, DDI->second); 1601 DeferredDecls.erase(DDI); 1602 } 1603 1604 // Handle things which are present even on external declarations. 1605 if (D) { 1606 // FIXME: This code is overly simple and should be merged with other global 1607 // handling. 1608 GV->setConstant(isTypeConstant(D->getType(), false)); 1609 1610 // Set linkage and visibility in case we never see a definition. 1611 LinkageInfo LV = D->getLinkageAndVisibility(); 1612 if (LV.getLinkage() != ExternalLinkage) { 1613 // Don't set internal linkage on declarations. 1614 } else { 1615 if (D->hasAttr<DLLImportAttr>()) { 1616 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1617 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1618 } else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1619 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1620 1621 // Set visibility on a declaration only if it's explicit. 1622 if (LV.isVisibilityExplicit()) 1623 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1624 } 1625 1626 if (D->getTLSKind()) { 1627 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1628 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1629 setTLSMode(GV, *D); 1630 } 1631 1632 // If required by the ABI, treat declarations of static data members with 1633 // inline initializers as definitions. 1634 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1635 D->isStaticDataMember() && D->hasInit() && 1636 !D->isThisDeclarationADefinition()) 1637 EmitGlobalVarDefinition(D); 1638 } 1639 1640 if (AddrSpace != Ty->getAddressSpace()) 1641 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1642 1643 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1644 D->getLanguageLinkage() == CLanguageLinkage && 1645 D->getType().isConstant(Context) && 1646 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1647 GV->setSection(".cp.rodata"); 1648 1649 return GV; 1650 } 1651 1652 1653 llvm::GlobalVariable * 1654 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1655 llvm::Type *Ty, 1656 llvm::GlobalValue::LinkageTypes Linkage) { 1657 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1658 llvm::GlobalVariable *OldGV = 0; 1659 1660 1661 if (GV) { 1662 // Check if the variable has the right type. 1663 if (GV->getType()->getElementType() == Ty) 1664 return GV; 1665 1666 // Because C++ name mangling, the only way we can end up with an already 1667 // existing global with the same name is if it has been declared extern "C". 1668 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1669 OldGV = GV; 1670 } 1671 1672 // Create a new variable. 1673 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1674 Linkage, 0, Name); 1675 1676 if (OldGV) { 1677 // Replace occurrences of the old variable if needed. 1678 GV->takeName(OldGV); 1679 1680 if (!OldGV->use_empty()) { 1681 llvm::Constant *NewPtrForOldDecl = 1682 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1683 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1684 } 1685 1686 OldGV->eraseFromParent(); 1687 } 1688 1689 return GV; 1690 } 1691 1692 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1693 /// given global variable. If Ty is non-null and if the global doesn't exist, 1694 /// then it will be created with the specified type instead of whatever the 1695 /// normal requested type would be. 1696 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1697 llvm::Type *Ty) { 1698 assert(D->hasGlobalStorage() && "Not a global variable"); 1699 QualType ASTTy = D->getType(); 1700 if (Ty == 0) 1701 Ty = getTypes().ConvertTypeForMem(ASTTy); 1702 1703 llvm::PointerType *PTy = 1704 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1705 1706 StringRef MangledName = getMangledName(D); 1707 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1708 } 1709 1710 /// CreateRuntimeVariable - Create a new runtime global variable with the 1711 /// specified type and name. 1712 llvm::Constant * 1713 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1714 StringRef Name) { 1715 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1716 true); 1717 } 1718 1719 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1720 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1721 1722 if (MayDeferGeneration(D)) { 1723 // If we have not seen a reference to this variable yet, place it 1724 // into the deferred declarations table to be emitted if needed 1725 // later. 1726 StringRef MangledName = getMangledName(D); 1727 if (!GetGlobalValue(MangledName)) { 1728 DeferredDecls[MangledName] = D; 1729 return; 1730 } 1731 } 1732 1733 // The tentative definition is the only definition. 1734 EmitGlobalVarDefinition(D); 1735 } 1736 1737 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1738 return Context.toCharUnitsFromBits( 1739 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1740 } 1741 1742 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1743 unsigned AddrSpace) { 1744 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1745 if (D->hasAttr<CUDAConstantAttr>()) 1746 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1747 else if (D->hasAttr<CUDASharedAttr>()) 1748 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1749 else 1750 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1751 } 1752 1753 return AddrSpace; 1754 } 1755 1756 template<typename SomeDecl> 1757 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1758 llvm::GlobalValue *GV) { 1759 if (!getLangOpts().CPlusPlus) 1760 return; 1761 1762 // Must have 'used' attribute, or else inline assembly can't rely on 1763 // the name existing. 1764 if (!D->template hasAttr<UsedAttr>()) 1765 return; 1766 1767 // Must have internal linkage and an ordinary name. 1768 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1769 return; 1770 1771 // Must be in an extern "C" context. Entities declared directly within 1772 // a record are not extern "C" even if the record is in such a context. 1773 const SomeDecl *First = D->getFirstDecl(); 1774 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1775 return; 1776 1777 // OK, this is an internal linkage entity inside an extern "C" linkage 1778 // specification. Make a note of that so we can give it the "expected" 1779 // mangled name if nothing else is using that name. 1780 std::pair<StaticExternCMap::iterator, bool> R = 1781 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1782 1783 // If we have multiple internal linkage entities with the same name 1784 // in extern "C" regions, none of them gets that name. 1785 if (!R.second) 1786 R.first->second = 0; 1787 } 1788 1789 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1790 llvm::Constant *Init = 0; 1791 QualType ASTTy = D->getType(); 1792 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1793 bool NeedsGlobalCtor = false; 1794 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1795 1796 const VarDecl *InitDecl; 1797 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1798 1799 if (!InitExpr) { 1800 // This is a tentative definition; tentative definitions are 1801 // implicitly initialized with { 0 }. 1802 // 1803 // Note that tentative definitions are only emitted at the end of 1804 // a translation unit, so they should never have incomplete 1805 // type. In addition, EmitTentativeDefinition makes sure that we 1806 // never attempt to emit a tentative definition if a real one 1807 // exists. A use may still exists, however, so we still may need 1808 // to do a RAUW. 1809 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1810 Init = EmitNullConstant(D->getType()); 1811 } else { 1812 initializedGlobalDecl = GlobalDecl(D); 1813 Init = EmitConstantInit(*InitDecl); 1814 1815 if (!Init) { 1816 QualType T = InitExpr->getType(); 1817 if (D->getType()->isReferenceType()) 1818 T = D->getType(); 1819 1820 if (getLangOpts().CPlusPlus) { 1821 Init = EmitNullConstant(T); 1822 NeedsGlobalCtor = true; 1823 } else { 1824 ErrorUnsupported(D, "static initializer"); 1825 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1826 } 1827 } else { 1828 // We don't need an initializer, so remove the entry for the delayed 1829 // initializer position (just in case this entry was delayed) if we 1830 // also don't need to register a destructor. 1831 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1832 DelayedCXXInitPosition.erase(D); 1833 } 1834 } 1835 1836 llvm::Type* InitType = Init->getType(); 1837 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1838 1839 // Strip off a bitcast if we got one back. 1840 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1841 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1842 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1843 // All zero index gep. 1844 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1845 Entry = CE->getOperand(0); 1846 } 1847 1848 // Entry is now either a Function or GlobalVariable. 1849 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1850 1851 // We have a definition after a declaration with the wrong type. 1852 // We must make a new GlobalVariable* and update everything that used OldGV 1853 // (a declaration or tentative definition) with the new GlobalVariable* 1854 // (which will be a definition). 1855 // 1856 // This happens if there is a prototype for a global (e.g. 1857 // "extern int x[];") and then a definition of a different type (e.g. 1858 // "int x[10];"). This also happens when an initializer has a different type 1859 // from the type of the global (this happens with unions). 1860 if (GV == 0 || 1861 GV->getType()->getElementType() != InitType || 1862 GV->getType()->getAddressSpace() != 1863 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1864 1865 // Move the old entry aside so that we'll create a new one. 1866 Entry->setName(StringRef()); 1867 1868 // Make a new global with the correct type, this is now guaranteed to work. 1869 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1870 1871 // Replace all uses of the old global with the new global 1872 llvm::Constant *NewPtrForOldDecl = 1873 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1874 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1875 1876 // Erase the old global, since it is no longer used. 1877 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1878 } 1879 1880 MaybeHandleStaticInExternC(D, GV); 1881 1882 if (D->hasAttr<AnnotateAttr>()) 1883 AddGlobalAnnotations(D, GV); 1884 1885 GV->setInitializer(Init); 1886 1887 // If it is safe to mark the global 'constant', do so now. 1888 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1889 isTypeConstant(D->getType(), true)); 1890 1891 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1892 1893 // Set the llvm linkage type as appropriate. 1894 llvm::GlobalValue::LinkageTypes Linkage = 1895 GetLLVMLinkageVarDefinition(D, GV->isConstant()); 1896 GV->setLinkage(Linkage); 1897 if (D->hasAttr<DLLImportAttr>()) 1898 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1899 else if (D->hasAttr<DLLExportAttr>()) 1900 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1901 1902 // If required by the ABI, give definitions of static data members with inline 1903 // initializers linkonce_odr linkage. 1904 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1905 D->isStaticDataMember() && InitExpr && 1906 !InitDecl->isThisDeclarationADefinition()) 1907 GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage); 1908 1909 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1910 // common vars aren't constant even if declared const. 1911 GV->setConstant(false); 1912 1913 SetCommonAttributes(D, GV); 1914 1915 // Emit the initializer function if necessary. 1916 if (NeedsGlobalCtor || NeedsGlobalDtor) 1917 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1918 1919 // If we are compiling with ASan, add metadata indicating dynamically 1920 // initialized globals. 1921 if (SanOpts.Address && NeedsGlobalCtor) { 1922 llvm::Module &M = getModule(); 1923 1924 llvm::NamedMDNode *DynamicInitializers = 1925 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1926 llvm::Value *GlobalToAdd[] = { GV }; 1927 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1928 DynamicInitializers->addOperand(ThisGlobal); 1929 } 1930 1931 // Emit global variable debug information. 1932 if (CGDebugInfo *DI = getModuleDebugInfo()) 1933 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1934 DI->EmitGlobalVariable(GV, D); 1935 } 1936 1937 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1938 // Don't give variables common linkage if -fno-common was specified unless it 1939 // was overridden by a NoCommon attribute. 1940 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1941 return true; 1942 1943 // C11 6.9.2/2: 1944 // A declaration of an identifier for an object that has file scope without 1945 // an initializer, and without a storage-class specifier or with the 1946 // storage-class specifier static, constitutes a tentative definition. 1947 if (D->getInit() || D->hasExternalStorage()) 1948 return true; 1949 1950 // A variable cannot be both common and exist in a section. 1951 if (D->hasAttr<SectionAttr>()) 1952 return true; 1953 1954 // Thread local vars aren't considered common linkage. 1955 if (D->getTLSKind()) 1956 return true; 1957 1958 // Tentative definitions marked with WeakImportAttr are true definitions. 1959 if (D->hasAttr<WeakImportAttr>()) 1960 return true; 1961 1962 return false; 1963 } 1964 1965 llvm::GlobalValue::LinkageTypes 1966 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) { 1967 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1968 if (Linkage == GVA_Internal) 1969 return llvm::Function::InternalLinkage; 1970 else if (D->hasAttr<DLLImportAttr>()) 1971 return llvm::Function::ExternalLinkage; 1972 else if (D->hasAttr<DLLExportAttr>()) 1973 return llvm::Function::ExternalLinkage; 1974 else if (D->hasAttr<SelectAnyAttr>()) { 1975 // selectany symbols are externally visible, so use weak instead of 1976 // linkonce. MSVC optimizes away references to const selectany globals, so 1977 // all definitions should be the same and ODR linkage should be used. 1978 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 1979 return llvm::GlobalVariable::WeakODRLinkage; 1980 } else if (D->hasAttr<WeakAttr>()) { 1981 if (isConstant) 1982 return llvm::GlobalVariable::WeakODRLinkage; 1983 else 1984 return llvm::GlobalVariable::WeakAnyLinkage; 1985 } else if (Linkage == GVA_TemplateInstantiation || Linkage == GVA_StrongODR) 1986 return llvm::GlobalVariable::WeakODRLinkage; 1987 else if (D->getTLSKind() == VarDecl::TLS_Dynamic && 1988 getTarget().getTriple().isMacOSX()) 1989 // On Darwin, the backing variable for a C++11 thread_local variable always 1990 // has internal linkage; all accesses should just be calls to the 1991 // Itanium-specified entry point, which has the normal linkage of the 1992 // variable. 1993 return llvm::GlobalValue::InternalLinkage; 1994 // C++ doesn't have tentative definitions and thus cannot have common linkage. 1995 else if (!getLangOpts().CPlusPlus && 1996 !isVarDeclStrongDefinition(D, CodeGenOpts.NoCommon)) 1997 return llvm::GlobalVariable::CommonLinkage; 1998 1999 return llvm::GlobalVariable::ExternalLinkage; 2000 } 2001 2002 /// Replace the uses of a function that was declared with a non-proto type. 2003 /// We want to silently drop extra arguments from call sites 2004 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2005 llvm::Function *newFn) { 2006 // Fast path. 2007 if (old->use_empty()) return; 2008 2009 llvm::Type *newRetTy = newFn->getReturnType(); 2010 SmallVector<llvm::Value*, 4> newArgs; 2011 2012 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2013 ui != ue; ) { 2014 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2015 llvm::User *user = use->getUser(); 2016 2017 // Recognize and replace uses of bitcasts. Most calls to 2018 // unprototyped functions will use bitcasts. 2019 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2020 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2021 replaceUsesOfNonProtoConstant(bitcast, newFn); 2022 continue; 2023 } 2024 2025 // Recognize calls to the function. 2026 llvm::CallSite callSite(user); 2027 if (!callSite) continue; 2028 if (!callSite.isCallee(&*use)) continue; 2029 2030 // If the return types don't match exactly, then we can't 2031 // transform this call unless it's dead. 2032 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2033 continue; 2034 2035 // Get the call site's attribute list. 2036 SmallVector<llvm::AttributeSet, 8> newAttrs; 2037 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2038 2039 // Collect any return attributes from the call. 2040 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2041 newAttrs.push_back( 2042 llvm::AttributeSet::get(newFn->getContext(), 2043 oldAttrs.getRetAttributes())); 2044 2045 // If the function was passed too few arguments, don't transform. 2046 unsigned newNumArgs = newFn->arg_size(); 2047 if (callSite.arg_size() < newNumArgs) continue; 2048 2049 // If extra arguments were passed, we silently drop them. 2050 // If any of the types mismatch, we don't transform. 2051 unsigned argNo = 0; 2052 bool dontTransform = false; 2053 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2054 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2055 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2056 dontTransform = true; 2057 break; 2058 } 2059 2060 // Add any parameter attributes. 2061 if (oldAttrs.hasAttributes(argNo + 1)) 2062 newAttrs. 2063 push_back(llvm:: 2064 AttributeSet::get(newFn->getContext(), 2065 oldAttrs.getParamAttributes(argNo + 1))); 2066 } 2067 if (dontTransform) 2068 continue; 2069 2070 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2071 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2072 oldAttrs.getFnAttributes())); 2073 2074 // Okay, we can transform this. Create the new call instruction and copy 2075 // over the required information. 2076 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2077 2078 llvm::CallSite newCall; 2079 if (callSite.isCall()) { 2080 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2081 callSite.getInstruction()); 2082 } else { 2083 llvm::InvokeInst *oldInvoke = 2084 cast<llvm::InvokeInst>(callSite.getInstruction()); 2085 newCall = llvm::InvokeInst::Create(newFn, 2086 oldInvoke->getNormalDest(), 2087 oldInvoke->getUnwindDest(), 2088 newArgs, "", 2089 callSite.getInstruction()); 2090 } 2091 newArgs.clear(); // for the next iteration 2092 2093 if (!newCall->getType()->isVoidTy()) 2094 newCall->takeName(callSite.getInstruction()); 2095 newCall.setAttributes( 2096 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2097 newCall.setCallingConv(callSite.getCallingConv()); 2098 2099 // Finally, remove the old call, replacing any uses with the new one. 2100 if (!callSite->use_empty()) 2101 callSite->replaceAllUsesWith(newCall.getInstruction()); 2102 2103 // Copy debug location attached to CI. 2104 if (!callSite->getDebugLoc().isUnknown()) 2105 newCall->setDebugLoc(callSite->getDebugLoc()); 2106 callSite->eraseFromParent(); 2107 } 2108 } 2109 2110 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2111 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2112 /// existing call uses of the old function in the module, this adjusts them to 2113 /// call the new function directly. 2114 /// 2115 /// This is not just a cleanup: the always_inline pass requires direct calls to 2116 /// functions to be able to inline them. If there is a bitcast in the way, it 2117 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2118 /// run at -O0. 2119 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2120 llvm::Function *NewFn) { 2121 // If we're redefining a global as a function, don't transform it. 2122 if (!isa<llvm::Function>(Old)) return; 2123 2124 replaceUsesOfNonProtoConstant(Old, NewFn); 2125 } 2126 2127 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2128 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2129 // If we have a definition, this might be a deferred decl. If the 2130 // instantiation is explicit, make sure we emit it at the end. 2131 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2132 GetAddrOfGlobalVar(VD); 2133 2134 EmitTopLevelDecl(VD); 2135 } 2136 2137 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2138 llvm::GlobalValue *GV) { 2139 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2140 2141 // Compute the function info and LLVM type. 2142 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2143 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2144 2145 // Get or create the prototype for the function. 2146 llvm::Constant *Entry = 2147 GV ? GV 2148 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2149 2150 // Strip off a bitcast if we got one back. 2151 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2152 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2153 Entry = CE->getOperand(0); 2154 } 2155 2156 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2157 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2158 return; 2159 } 2160 2161 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2162 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2163 2164 // If the types mismatch then we have to rewrite the definition. 2165 assert(OldFn->isDeclaration() && 2166 "Shouldn't replace non-declaration"); 2167 2168 // F is the Function* for the one with the wrong type, we must make a new 2169 // Function* and update everything that used F (a declaration) with the new 2170 // Function* (which will be a definition). 2171 // 2172 // This happens if there is a prototype for a function 2173 // (e.g. "int f()") and then a definition of a different type 2174 // (e.g. "int f(int x)"). Move the old function aside so that it 2175 // doesn't interfere with GetAddrOfFunction. 2176 OldFn->setName(StringRef()); 2177 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2178 2179 // This might be an implementation of a function without a 2180 // prototype, in which case, try to do special replacement of 2181 // calls which match the new prototype. The really key thing here 2182 // is that we also potentially drop arguments from the call site 2183 // so as to make a direct call, which makes the inliner happier 2184 // and suppresses a number of optimizer warnings (!) about 2185 // dropping arguments. 2186 if (!OldFn->use_empty()) { 2187 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2188 OldFn->removeDeadConstantUsers(); 2189 } 2190 2191 // Replace uses of F with the Function we will endow with a body. 2192 if (!Entry->use_empty()) { 2193 llvm::Constant *NewPtrForOldDecl = 2194 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2195 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2196 } 2197 2198 // Ok, delete the old function now, which is dead. 2199 OldFn->eraseFromParent(); 2200 2201 Entry = NewFn; 2202 } 2203 2204 // We need to set linkage and visibility on the function before 2205 // generating code for it because various parts of IR generation 2206 // want to propagate this information down (e.g. to local static 2207 // declarations). 2208 llvm::Function *Fn = cast<llvm::Function>(Entry); 2209 setFunctionLinkage(GD, Fn); 2210 2211 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2212 setGlobalVisibility(Fn, D); 2213 2214 MaybeHandleStaticInExternC(D, Fn); 2215 2216 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2217 2218 SetFunctionDefinitionAttributes(D, Fn); 2219 SetLLVMFunctionAttributesForDefinition(D, Fn); 2220 2221 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2222 AddGlobalCtor(Fn, CA->getPriority()); 2223 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2224 AddGlobalDtor(Fn, DA->getPriority()); 2225 if (D->hasAttr<AnnotateAttr>()) 2226 AddGlobalAnnotations(D, Fn); 2227 } 2228 2229 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2230 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2231 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2232 assert(AA && "Not an alias?"); 2233 2234 StringRef MangledName = getMangledName(GD); 2235 2236 // If there is a definition in the module, then it wins over the alias. 2237 // This is dubious, but allow it to be safe. Just ignore the alias. 2238 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2239 if (Entry && !Entry->isDeclaration()) 2240 return; 2241 2242 Aliases.push_back(GD); 2243 2244 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2245 2246 // Create a reference to the named value. This ensures that it is emitted 2247 // if a deferred decl. 2248 llvm::Constant *Aliasee; 2249 if (isa<llvm::FunctionType>(DeclTy)) 2250 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2251 /*ForVTable=*/false); 2252 else 2253 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2254 llvm::PointerType::getUnqual(DeclTy), 0); 2255 2256 // Create the new alias itself, but don't set a name yet. 2257 llvm::GlobalValue *GA = 2258 new llvm::GlobalAlias(Aliasee->getType(), 2259 llvm::Function::ExternalLinkage, 2260 "", Aliasee, &getModule()); 2261 2262 if (Entry) { 2263 assert(Entry->isDeclaration()); 2264 2265 // If there is a declaration in the module, then we had an extern followed 2266 // by the alias, as in: 2267 // extern int test6(); 2268 // ... 2269 // int test6() __attribute__((alias("test7"))); 2270 // 2271 // Remove it and replace uses of it with the alias. 2272 GA->takeName(Entry); 2273 2274 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2275 Entry->getType())); 2276 Entry->eraseFromParent(); 2277 } else { 2278 GA->setName(MangledName); 2279 } 2280 2281 // Set attributes which are particular to an alias; this is a 2282 // specialization of the attributes which may be set on a global 2283 // variable/function. 2284 if (D->hasAttr<DLLExportAttr>()) { 2285 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2286 // The dllexport attribute is ignored for undefined symbols. 2287 if (FD->hasBody()) 2288 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2289 } else { 2290 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2291 } 2292 } else if (D->hasAttr<WeakAttr>() || 2293 D->hasAttr<WeakRefAttr>() || 2294 D->isWeakImported()) { 2295 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2296 } 2297 2298 SetCommonAttributes(D, GA); 2299 } 2300 2301 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2302 ArrayRef<llvm::Type*> Tys) { 2303 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2304 Tys); 2305 } 2306 2307 static llvm::StringMapEntry<llvm::Constant*> & 2308 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2309 const StringLiteral *Literal, 2310 bool TargetIsLSB, 2311 bool &IsUTF16, 2312 unsigned &StringLength) { 2313 StringRef String = Literal->getString(); 2314 unsigned NumBytes = String.size(); 2315 2316 // Check for simple case. 2317 if (!Literal->containsNonAsciiOrNull()) { 2318 StringLength = NumBytes; 2319 return Map.GetOrCreateValue(String); 2320 } 2321 2322 // Otherwise, convert the UTF8 literals into a string of shorts. 2323 IsUTF16 = true; 2324 2325 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2326 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2327 UTF16 *ToPtr = &ToBuf[0]; 2328 2329 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2330 &ToPtr, ToPtr + NumBytes, 2331 strictConversion); 2332 2333 // ConvertUTF8toUTF16 returns the length in ToPtr. 2334 StringLength = ToPtr - &ToBuf[0]; 2335 2336 // Add an explicit null. 2337 *ToPtr = 0; 2338 return Map. 2339 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2340 (StringLength + 1) * 2)); 2341 } 2342 2343 static llvm::StringMapEntry<llvm::Constant*> & 2344 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2345 const StringLiteral *Literal, 2346 unsigned &StringLength) { 2347 StringRef String = Literal->getString(); 2348 StringLength = String.size(); 2349 return Map.GetOrCreateValue(String); 2350 } 2351 2352 llvm::Constant * 2353 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2354 unsigned StringLength = 0; 2355 bool isUTF16 = false; 2356 llvm::StringMapEntry<llvm::Constant*> &Entry = 2357 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2358 getDataLayout().isLittleEndian(), 2359 isUTF16, StringLength); 2360 2361 if (llvm::Constant *C = Entry.getValue()) 2362 return C; 2363 2364 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2365 llvm::Constant *Zeros[] = { Zero, Zero }; 2366 llvm::Value *V; 2367 2368 // If we don't already have it, get __CFConstantStringClassReference. 2369 if (!CFConstantStringClassRef) { 2370 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2371 Ty = llvm::ArrayType::get(Ty, 0); 2372 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2373 "__CFConstantStringClassReference"); 2374 // Decay array -> ptr 2375 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2376 CFConstantStringClassRef = V; 2377 } 2378 else 2379 V = CFConstantStringClassRef; 2380 2381 QualType CFTy = getContext().getCFConstantStringType(); 2382 2383 llvm::StructType *STy = 2384 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2385 2386 llvm::Constant *Fields[4]; 2387 2388 // Class pointer. 2389 Fields[0] = cast<llvm::ConstantExpr>(V); 2390 2391 // Flags. 2392 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2393 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2394 llvm::ConstantInt::get(Ty, 0x07C8); 2395 2396 // String pointer. 2397 llvm::Constant *C = 0; 2398 if (isUTF16) { 2399 ArrayRef<uint16_t> Arr = 2400 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2401 const_cast<char *>(Entry.getKey().data())), 2402 Entry.getKey().size() / 2); 2403 C = llvm::ConstantDataArray::get(VMContext, Arr); 2404 } else { 2405 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2406 } 2407 2408 // Note: -fwritable-strings doesn't make the backing store strings of 2409 // CFStrings writable. (See <rdar://problem/10657500>) 2410 llvm::GlobalVariable *GV = 2411 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2412 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2413 GV->setUnnamedAddr(true); 2414 // Don't enforce the target's minimum global alignment, since the only use 2415 // of the string is via this class initializer. 2416 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2417 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2418 // that changes the section it ends in, which surprises ld64. 2419 if (isUTF16) { 2420 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2421 GV->setAlignment(Align.getQuantity()); 2422 GV->setSection("__TEXT,__ustring"); 2423 } else { 2424 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2425 GV->setAlignment(Align.getQuantity()); 2426 GV->setSection("__TEXT,__cstring,cstring_literals"); 2427 } 2428 2429 // String. 2430 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2431 2432 if (isUTF16) 2433 // Cast the UTF16 string to the correct type. 2434 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2435 2436 // String length. 2437 Ty = getTypes().ConvertType(getContext().LongTy); 2438 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2439 2440 // The struct. 2441 C = llvm::ConstantStruct::get(STy, Fields); 2442 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2443 llvm::GlobalVariable::PrivateLinkage, C, 2444 "_unnamed_cfstring_"); 2445 GV->setSection("__DATA,__cfstring"); 2446 Entry.setValue(GV); 2447 2448 return GV; 2449 } 2450 2451 llvm::Constant * 2452 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2453 unsigned StringLength = 0; 2454 llvm::StringMapEntry<llvm::Constant*> &Entry = 2455 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2456 2457 if (llvm::Constant *C = Entry.getValue()) 2458 return C; 2459 2460 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2461 llvm::Constant *Zeros[] = { Zero, Zero }; 2462 llvm::Value *V; 2463 // If we don't already have it, get _NSConstantStringClassReference. 2464 if (!ConstantStringClassRef) { 2465 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2466 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2467 llvm::Constant *GV; 2468 if (LangOpts.ObjCRuntime.isNonFragile()) { 2469 std::string str = 2470 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2471 : "OBJC_CLASS_$_" + StringClass; 2472 GV = getObjCRuntime().GetClassGlobal(str); 2473 // Make sure the result is of the correct type. 2474 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2475 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2476 ConstantStringClassRef = V; 2477 } else { 2478 std::string str = 2479 StringClass.empty() ? "_NSConstantStringClassReference" 2480 : "_" + StringClass + "ClassReference"; 2481 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2482 GV = CreateRuntimeVariable(PTy, str); 2483 // Decay array -> ptr 2484 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2485 ConstantStringClassRef = V; 2486 } 2487 } 2488 else 2489 V = ConstantStringClassRef; 2490 2491 if (!NSConstantStringType) { 2492 // Construct the type for a constant NSString. 2493 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2494 D->startDefinition(); 2495 2496 QualType FieldTypes[3]; 2497 2498 // const int *isa; 2499 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2500 // const char *str; 2501 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2502 // unsigned int length; 2503 FieldTypes[2] = Context.UnsignedIntTy; 2504 2505 // Create fields 2506 for (unsigned i = 0; i < 3; ++i) { 2507 FieldDecl *Field = FieldDecl::Create(Context, D, 2508 SourceLocation(), 2509 SourceLocation(), 0, 2510 FieldTypes[i], /*TInfo=*/0, 2511 /*BitWidth=*/0, 2512 /*Mutable=*/false, 2513 ICIS_NoInit); 2514 Field->setAccess(AS_public); 2515 D->addDecl(Field); 2516 } 2517 2518 D->completeDefinition(); 2519 QualType NSTy = Context.getTagDeclType(D); 2520 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2521 } 2522 2523 llvm::Constant *Fields[3]; 2524 2525 // Class pointer. 2526 Fields[0] = cast<llvm::ConstantExpr>(V); 2527 2528 // String pointer. 2529 llvm::Constant *C = 2530 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2531 2532 llvm::GlobalValue::LinkageTypes Linkage; 2533 bool isConstant; 2534 Linkage = llvm::GlobalValue::PrivateLinkage; 2535 isConstant = !LangOpts.WritableStrings; 2536 2537 llvm::GlobalVariable *GV = 2538 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2539 ".str"); 2540 GV->setUnnamedAddr(true); 2541 // Don't enforce the target's minimum global alignment, since the only use 2542 // of the string is via this class initializer. 2543 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2544 GV->setAlignment(Align.getQuantity()); 2545 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2546 2547 // String length. 2548 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2549 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2550 2551 // The struct. 2552 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2553 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2554 llvm::GlobalVariable::PrivateLinkage, C, 2555 "_unnamed_nsstring_"); 2556 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2557 const char *NSStringNonFragileABISection = 2558 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2559 // FIXME. Fix section. 2560 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2561 ? NSStringNonFragileABISection 2562 : NSStringSection); 2563 Entry.setValue(GV); 2564 2565 return GV; 2566 } 2567 2568 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2569 if (ObjCFastEnumerationStateType.isNull()) { 2570 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2571 D->startDefinition(); 2572 2573 QualType FieldTypes[] = { 2574 Context.UnsignedLongTy, 2575 Context.getPointerType(Context.getObjCIdType()), 2576 Context.getPointerType(Context.UnsignedLongTy), 2577 Context.getConstantArrayType(Context.UnsignedLongTy, 2578 llvm::APInt(32, 5), ArrayType::Normal, 0) 2579 }; 2580 2581 for (size_t i = 0; i < 4; ++i) { 2582 FieldDecl *Field = FieldDecl::Create(Context, 2583 D, 2584 SourceLocation(), 2585 SourceLocation(), 0, 2586 FieldTypes[i], /*TInfo=*/0, 2587 /*BitWidth=*/0, 2588 /*Mutable=*/false, 2589 ICIS_NoInit); 2590 Field->setAccess(AS_public); 2591 D->addDecl(Field); 2592 } 2593 2594 D->completeDefinition(); 2595 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2596 } 2597 2598 return ObjCFastEnumerationStateType; 2599 } 2600 2601 llvm::Constant * 2602 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2603 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2604 2605 // Don't emit it as the address of the string, emit the string data itself 2606 // as an inline array. 2607 if (E->getCharByteWidth() == 1) { 2608 SmallString<64> Str(E->getString()); 2609 2610 // Resize the string to the right size, which is indicated by its type. 2611 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2612 Str.resize(CAT->getSize().getZExtValue()); 2613 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2614 } 2615 2616 llvm::ArrayType *AType = 2617 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2618 llvm::Type *ElemTy = AType->getElementType(); 2619 unsigned NumElements = AType->getNumElements(); 2620 2621 // Wide strings have either 2-byte or 4-byte elements. 2622 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2623 SmallVector<uint16_t, 32> Elements; 2624 Elements.reserve(NumElements); 2625 2626 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2627 Elements.push_back(E->getCodeUnit(i)); 2628 Elements.resize(NumElements); 2629 return llvm::ConstantDataArray::get(VMContext, Elements); 2630 } 2631 2632 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2633 SmallVector<uint32_t, 32> Elements; 2634 Elements.reserve(NumElements); 2635 2636 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2637 Elements.push_back(E->getCodeUnit(i)); 2638 Elements.resize(NumElements); 2639 return llvm::ConstantDataArray::get(VMContext, Elements); 2640 } 2641 2642 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2643 /// constant array for the given string literal. 2644 llvm::Constant * 2645 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2646 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2647 2648 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2649 llvm::GlobalVariable *GV = nullptr; 2650 if (!LangOpts.WritableStrings) { 2651 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2652 switch (S->getCharByteWidth()) { 2653 case 1: 2654 ConstantStringMap = &Constant1ByteStringMap; 2655 break; 2656 case 2: 2657 ConstantStringMap = &Constant2ByteStringMap; 2658 break; 2659 case 4: 2660 ConstantStringMap = &Constant4ByteStringMap; 2661 break; 2662 default: 2663 llvm_unreachable("unhandled byte width!"); 2664 } 2665 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2666 GV = Entry->getValue(); 2667 } 2668 2669 if (!GV) { 2670 SmallString<256> MangledNameBuffer; 2671 StringRef GlobalVariableName; 2672 llvm::GlobalValue::LinkageTypes LT; 2673 2674 // Mangle the string literal if the ABI allows for it. However, we cannot 2675 // do this if we are compiling with ASan or -fwritable-strings because they 2676 // rely on strings having normal linkage. 2677 if (!LangOpts.WritableStrings && !SanOpts.Address && 2678 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2679 llvm::raw_svector_ostream Out(MangledNameBuffer); 2680 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2681 Out.flush(); 2682 2683 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2684 GlobalVariableName = MangledNameBuffer; 2685 } else { 2686 LT = llvm::GlobalValue::PrivateLinkage;; 2687 GlobalVariableName = ".str"; 2688 } 2689 2690 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2691 unsigned AddrSpace = 0; 2692 if (getLangOpts().OpenCL) 2693 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2694 2695 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2696 GV = new llvm::GlobalVariable( 2697 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2698 GlobalVariableName, /*InsertBefore=*/nullptr, 2699 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2700 GV->setUnnamedAddr(true); 2701 if (Entry) 2702 Entry->setValue(GV); 2703 } 2704 2705 if (Align.getQuantity() > GV->getAlignment()) 2706 GV->setAlignment(Align.getQuantity()); 2707 2708 return GV; 2709 } 2710 2711 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2712 /// array for the given ObjCEncodeExpr node. 2713 llvm::Constant * 2714 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2715 std::string Str; 2716 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2717 2718 return GetAddrOfConstantCString(Str); 2719 } 2720 2721 2722 /// GenerateWritableString -- Creates storage for a string literal. 2723 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2724 bool constant, 2725 CodeGenModule &CGM, 2726 const char *GlobalName, 2727 unsigned Alignment) { 2728 // Create Constant for this string literal. Don't add a '\0'. 2729 llvm::Constant *C = 2730 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2731 2732 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2733 unsigned AddrSpace = 0; 2734 if (CGM.getLangOpts().OpenCL) 2735 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2736 2737 // Create a global variable for this string 2738 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2739 CGM.getModule(), C->getType(), constant, 2740 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2741 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2742 GV->setAlignment(Alignment); 2743 GV->setUnnamedAddr(true); 2744 return GV; 2745 } 2746 2747 /// GetAddrOfConstantString - Returns a pointer to a character array 2748 /// containing the literal. This contents are exactly that of the 2749 /// given string, i.e. it will not be null terminated automatically; 2750 /// see GetAddrOfConstantCString. Note that whether the result is 2751 /// actually a pointer to an LLVM constant depends on 2752 /// Feature.WriteableStrings. 2753 /// 2754 /// The result has pointer to array type. 2755 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2756 const char *GlobalName, 2757 unsigned Alignment) { 2758 // Get the default prefix if a name wasn't specified. 2759 if (!GlobalName) 2760 GlobalName = ".str"; 2761 2762 if (Alignment == 0) 2763 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2764 .getQuantity(); 2765 2766 // Don't share any string literals if strings aren't constant. 2767 if (LangOpts.WritableStrings) 2768 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2769 2770 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2771 Constant1ByteStringMap.GetOrCreateValue(Str); 2772 2773 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2774 if (Alignment > GV->getAlignment()) { 2775 GV->setAlignment(Alignment); 2776 } 2777 return GV; 2778 } 2779 2780 // Create a global variable for this. 2781 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2782 Alignment); 2783 Entry.setValue(GV); 2784 return GV; 2785 } 2786 2787 /// GetAddrOfConstantCString - Returns a pointer to a character 2788 /// array containing the literal and a terminating '\0' 2789 /// character. The result has pointer to array type. 2790 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2791 const char *GlobalName, 2792 unsigned Alignment) { 2793 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2794 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2795 } 2796 2797 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2798 const MaterializeTemporaryExpr *E, const Expr *Init) { 2799 assert((E->getStorageDuration() == SD_Static || 2800 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2801 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2802 2803 // If we're not materializing a subobject of the temporary, keep the 2804 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2805 QualType MaterializedType = Init->getType(); 2806 if (Init == E->GetTemporaryExpr()) 2807 MaterializedType = E->getType(); 2808 2809 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2810 if (Slot) 2811 return Slot; 2812 2813 // FIXME: If an externally-visible declaration extends multiple temporaries, 2814 // we need to give each temporary the same name in every translation unit (and 2815 // we also need to make the temporaries externally-visible). 2816 SmallString<256> Name; 2817 llvm::raw_svector_ostream Out(Name); 2818 getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out); 2819 Out.flush(); 2820 2821 APValue *Value = 0; 2822 if (E->getStorageDuration() == SD_Static) { 2823 // We might have a cached constant initializer for this temporary. Note 2824 // that this might have a different value from the value computed by 2825 // evaluating the initializer if the surrounding constant expression 2826 // modifies the temporary. 2827 Value = getContext().getMaterializedTemporaryValue(E, false); 2828 if (Value && Value->isUninit()) 2829 Value = 0; 2830 } 2831 2832 // Try evaluating it now, it might have a constant initializer. 2833 Expr::EvalResult EvalResult; 2834 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2835 !EvalResult.hasSideEffects()) 2836 Value = &EvalResult.Val; 2837 2838 llvm::Constant *InitialValue = 0; 2839 bool Constant = false; 2840 llvm::Type *Type; 2841 if (Value) { 2842 // The temporary has a constant initializer, use it. 2843 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2844 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2845 Type = InitialValue->getType(); 2846 } else { 2847 // No initializer, the initialization will be provided when we 2848 // initialize the declaration which performed lifetime extension. 2849 Type = getTypes().ConvertTypeForMem(MaterializedType); 2850 } 2851 2852 // Create a global variable for this lifetime-extended temporary. 2853 llvm::GlobalVariable *GV = 2854 new llvm::GlobalVariable(getModule(), Type, Constant, 2855 llvm::GlobalValue::PrivateLinkage, 2856 InitialValue, Name.c_str()); 2857 GV->setAlignment( 2858 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2859 if (VD->getTLSKind()) 2860 setTLSMode(GV, *VD); 2861 Slot = GV; 2862 return GV; 2863 } 2864 2865 /// EmitObjCPropertyImplementations - Emit information for synthesized 2866 /// properties for an implementation. 2867 void CodeGenModule::EmitObjCPropertyImplementations(const 2868 ObjCImplementationDecl *D) { 2869 for (const auto *PID : D->property_impls()) { 2870 // Dynamic is just for type-checking. 2871 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2872 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2873 2874 // Determine which methods need to be implemented, some may have 2875 // been overridden. Note that ::isPropertyAccessor is not the method 2876 // we want, that just indicates if the decl came from a 2877 // property. What we want to know is if the method is defined in 2878 // this implementation. 2879 if (!D->getInstanceMethod(PD->getGetterName())) 2880 CodeGenFunction(*this).GenerateObjCGetter( 2881 const_cast<ObjCImplementationDecl *>(D), PID); 2882 if (!PD->isReadOnly() && 2883 !D->getInstanceMethod(PD->getSetterName())) 2884 CodeGenFunction(*this).GenerateObjCSetter( 2885 const_cast<ObjCImplementationDecl *>(D), PID); 2886 } 2887 } 2888 } 2889 2890 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2891 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2892 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2893 ivar; ivar = ivar->getNextIvar()) 2894 if (ivar->getType().isDestructedType()) 2895 return true; 2896 2897 return false; 2898 } 2899 2900 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2901 /// for an implementation. 2902 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2903 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2904 if (needsDestructMethod(D)) { 2905 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2906 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2907 ObjCMethodDecl *DTORMethod = 2908 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2909 cxxSelector, getContext().VoidTy, 0, D, 2910 /*isInstance=*/true, /*isVariadic=*/false, 2911 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2912 /*isDefined=*/false, ObjCMethodDecl::Required); 2913 D->addInstanceMethod(DTORMethod); 2914 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2915 D->setHasDestructors(true); 2916 } 2917 2918 // If the implementation doesn't have any ivar initializers, we don't need 2919 // a .cxx_construct. 2920 if (D->getNumIvarInitializers() == 0) 2921 return; 2922 2923 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2924 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2925 // The constructor returns 'self'. 2926 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2927 D->getLocation(), 2928 D->getLocation(), 2929 cxxSelector, 2930 getContext().getObjCIdType(), 0, 2931 D, /*isInstance=*/true, 2932 /*isVariadic=*/false, 2933 /*isPropertyAccessor=*/true, 2934 /*isImplicitlyDeclared=*/true, 2935 /*isDefined=*/false, 2936 ObjCMethodDecl::Required); 2937 D->addInstanceMethod(CTORMethod); 2938 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2939 D->setHasNonZeroConstructors(true); 2940 } 2941 2942 /// EmitNamespace - Emit all declarations in a namespace. 2943 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2944 for (auto *I : ND->decls()) { 2945 if (const auto *VD = dyn_cast<VarDecl>(I)) 2946 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2947 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2948 continue; 2949 EmitTopLevelDecl(I); 2950 } 2951 } 2952 2953 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2954 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2955 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2956 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2957 ErrorUnsupported(LSD, "linkage spec"); 2958 return; 2959 } 2960 2961 for (auto *I : LSD->decls()) { 2962 // Meta-data for ObjC class includes references to implemented methods. 2963 // Generate class's method definitions first. 2964 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2965 for (auto *M : OID->methods()) 2966 EmitTopLevelDecl(M); 2967 } 2968 EmitTopLevelDecl(I); 2969 } 2970 } 2971 2972 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2973 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2974 // Ignore dependent declarations. 2975 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2976 return; 2977 2978 switch (D->getKind()) { 2979 case Decl::CXXConversion: 2980 case Decl::CXXMethod: 2981 case Decl::Function: 2982 // Skip function templates 2983 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2984 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2985 return; 2986 2987 EmitGlobal(cast<FunctionDecl>(D)); 2988 break; 2989 2990 case Decl::Var: 2991 // Skip variable templates 2992 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 2993 return; 2994 case Decl::VarTemplateSpecialization: 2995 EmitGlobal(cast<VarDecl>(D)); 2996 break; 2997 2998 // Indirect fields from global anonymous structs and unions can be 2999 // ignored; only the actual variable requires IR gen support. 3000 case Decl::IndirectField: 3001 break; 3002 3003 // C++ Decls 3004 case Decl::Namespace: 3005 EmitNamespace(cast<NamespaceDecl>(D)); 3006 break; 3007 // No code generation needed. 3008 case Decl::UsingShadow: 3009 case Decl::ClassTemplate: 3010 case Decl::VarTemplate: 3011 case Decl::VarTemplatePartialSpecialization: 3012 case Decl::FunctionTemplate: 3013 case Decl::TypeAliasTemplate: 3014 case Decl::Block: 3015 case Decl::Empty: 3016 break; 3017 case Decl::Using: // using X; [C++] 3018 if (CGDebugInfo *DI = getModuleDebugInfo()) 3019 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3020 return; 3021 case Decl::NamespaceAlias: 3022 if (CGDebugInfo *DI = getModuleDebugInfo()) 3023 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3024 return; 3025 case Decl::UsingDirective: // using namespace X; [C++] 3026 if (CGDebugInfo *DI = getModuleDebugInfo()) 3027 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3028 return; 3029 case Decl::CXXConstructor: 3030 // Skip function templates 3031 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3032 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3033 return; 3034 3035 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3036 break; 3037 case Decl::CXXDestructor: 3038 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3039 return; 3040 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3041 break; 3042 3043 case Decl::StaticAssert: 3044 // Nothing to do. 3045 break; 3046 3047 // Objective-C Decls 3048 3049 // Forward declarations, no (immediate) code generation. 3050 case Decl::ObjCInterface: 3051 case Decl::ObjCCategory: 3052 break; 3053 3054 case Decl::ObjCProtocol: { 3055 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3056 if (Proto->isThisDeclarationADefinition()) 3057 ObjCRuntime->GenerateProtocol(Proto); 3058 break; 3059 } 3060 3061 case Decl::ObjCCategoryImpl: 3062 // Categories have properties but don't support synthesize so we 3063 // can ignore them here. 3064 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3065 break; 3066 3067 case Decl::ObjCImplementation: { 3068 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3069 EmitObjCPropertyImplementations(OMD); 3070 EmitObjCIvarInitializations(OMD); 3071 ObjCRuntime->GenerateClass(OMD); 3072 // Emit global variable debug information. 3073 if (CGDebugInfo *DI = getModuleDebugInfo()) 3074 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3075 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3076 OMD->getClassInterface()), OMD->getLocation()); 3077 break; 3078 } 3079 case Decl::ObjCMethod: { 3080 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3081 // If this is not a prototype, emit the body. 3082 if (OMD->getBody()) 3083 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3084 break; 3085 } 3086 case Decl::ObjCCompatibleAlias: 3087 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3088 break; 3089 3090 case Decl::LinkageSpec: 3091 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3092 break; 3093 3094 case Decl::FileScopeAsm: { 3095 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3096 StringRef AsmString = AD->getAsmString()->getString(); 3097 3098 const std::string &S = getModule().getModuleInlineAsm(); 3099 if (S.empty()) 3100 getModule().setModuleInlineAsm(AsmString); 3101 else if (S.end()[-1] == '\n') 3102 getModule().setModuleInlineAsm(S + AsmString.str()); 3103 else 3104 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3105 break; 3106 } 3107 3108 case Decl::Import: { 3109 ImportDecl *Import = cast<ImportDecl>(D); 3110 3111 // Ignore import declarations that come from imported modules. 3112 if (clang::Module *Owner = Import->getOwningModule()) { 3113 if (getLangOpts().CurrentModule.empty() || 3114 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3115 break; 3116 } 3117 3118 ImportedModules.insert(Import->getImportedModule()); 3119 break; 3120 } 3121 3122 case Decl::ClassTemplateSpecialization: { 3123 const ClassTemplateSpecializationDecl *Spec = 3124 cast<ClassTemplateSpecializationDecl>(D); 3125 if (DebugInfo && 3126 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3127 DebugInfo->completeTemplateDefinition(*Spec); 3128 } 3129 3130 default: 3131 // Make sure we handled everything we should, every other kind is a 3132 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3133 // function. Need to recode Decl::Kind to do that easily. 3134 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3135 } 3136 } 3137 3138 /// Turns the given pointer into a constant. 3139 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3140 const void *Ptr) { 3141 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3142 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3143 return llvm::ConstantInt::get(i64, PtrInt); 3144 } 3145 3146 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3147 llvm::NamedMDNode *&GlobalMetadata, 3148 GlobalDecl D, 3149 llvm::GlobalValue *Addr) { 3150 if (!GlobalMetadata) 3151 GlobalMetadata = 3152 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3153 3154 // TODO: should we report variant information for ctors/dtors? 3155 llvm::Value *Ops[] = { 3156 Addr, 3157 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3158 }; 3159 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3160 } 3161 3162 /// For each function which is declared within an extern "C" region and marked 3163 /// as 'used', but has internal linkage, create an alias from the unmangled 3164 /// name to the mangled name if possible. People expect to be able to refer 3165 /// to such functions with an unmangled name from inline assembly within the 3166 /// same translation unit. 3167 void CodeGenModule::EmitStaticExternCAliases() { 3168 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3169 E = StaticExternCValues.end(); 3170 I != E; ++I) { 3171 IdentifierInfo *Name = I->first; 3172 llvm::GlobalValue *Val = I->second; 3173 if (Val && !getModule().getNamedValue(Name->getName())) 3174 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3175 Name->getName(), Val, &getModule())); 3176 } 3177 } 3178 3179 /// Emits metadata nodes associating all the global values in the 3180 /// current module with the Decls they came from. This is useful for 3181 /// projects using IR gen as a subroutine. 3182 /// 3183 /// Since there's currently no way to associate an MDNode directly 3184 /// with an llvm::GlobalValue, we create a global named metadata 3185 /// with the name 'clang.global.decl.ptrs'. 3186 void CodeGenModule::EmitDeclMetadata() { 3187 llvm::NamedMDNode *GlobalMetadata = 0; 3188 3189 // StaticLocalDeclMap 3190 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3191 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3192 I != E; ++I) { 3193 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3194 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3195 } 3196 } 3197 3198 /// Emits metadata nodes for all the local variables in the current 3199 /// function. 3200 void CodeGenFunction::EmitDeclMetadata() { 3201 if (LocalDeclMap.empty()) return; 3202 3203 llvm::LLVMContext &Context = getLLVMContext(); 3204 3205 // Find the unique metadata ID for this name. 3206 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3207 3208 llvm::NamedMDNode *GlobalMetadata = 0; 3209 3210 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3211 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3212 const Decl *D = I->first; 3213 llvm::Value *Addr = I->second; 3214 3215 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3216 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3217 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3218 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3219 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3220 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3221 } 3222 } 3223 } 3224 3225 void CodeGenModule::EmitVersionIdentMetadata() { 3226 llvm::NamedMDNode *IdentMetadata = 3227 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3228 std::string Version = getClangFullVersion(); 3229 llvm::LLVMContext &Ctx = TheModule.getContext(); 3230 3231 llvm::Value *IdentNode[] = { 3232 llvm::MDString::get(Ctx, Version) 3233 }; 3234 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3235 } 3236 3237 void CodeGenModule::EmitCoverageFile() { 3238 if (!getCodeGenOpts().CoverageFile.empty()) { 3239 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3240 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3241 llvm::LLVMContext &Ctx = TheModule.getContext(); 3242 llvm::MDString *CoverageFile = 3243 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3244 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3245 llvm::MDNode *CU = CUNode->getOperand(i); 3246 llvm::Value *node[] = { CoverageFile, CU }; 3247 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3248 GCov->addOperand(N); 3249 } 3250 } 3251 } 3252 } 3253 3254 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3255 QualType GuidType) { 3256 // Sema has checked that all uuid strings are of the form 3257 // "12345678-1234-1234-1234-1234567890ab". 3258 assert(Uuid.size() == 36); 3259 for (unsigned i = 0; i < 36; ++i) { 3260 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3261 else assert(isHexDigit(Uuid[i])); 3262 } 3263 3264 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3265 3266 llvm::Constant *Field3[8]; 3267 for (unsigned Idx = 0; Idx < 8; ++Idx) 3268 Field3[Idx] = llvm::ConstantInt::get( 3269 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3270 3271 llvm::Constant *Fields[4] = { 3272 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3273 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3274 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3275 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3276 }; 3277 3278 return llvm::ConstantStruct::getAnon(Fields); 3279 } 3280