xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e28342c4013c6646315d854adfc46defaf8a37e7)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
168                                         const NamedDecl *D) const {
169   // Internal definitions always have default visibility.
170   if (GV->hasLocalLinkage()) {
171     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
172     return;
173   }
174 
175   // Set visibility for definitions.
176   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
177   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
178     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
179 }
180 
181 /// Set the symbol visibility of type information (vtable and RTTI)
182 /// associated with the given type.
183 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
184                                       const CXXRecordDecl *RD,
185                                       TypeVisibilityKind TVK) const {
186   setGlobalVisibility(GV, RD);
187 
188   if (!CodeGenOpts.HiddenWeakVTables)
189     return;
190 
191   // We never want to drop the visibility for RTTI names.
192   if (TVK == TVK_ForRTTIName)
193     return;
194 
195   // We want to drop the visibility to hidden for weak type symbols.
196   // This isn't possible if there might be unresolved references
197   // elsewhere that rely on this symbol being visible.
198 
199   // This should be kept roughly in sync with setThunkVisibility
200   // in CGVTables.cpp.
201 
202   // Preconditions.
203   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
204       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
205     return;
206 
207   // Don't override an explicit visibility attribute.
208   if (RD->hasAttr<VisibilityAttr>())
209     return;
210 
211   switch (RD->getTemplateSpecializationKind()) {
212   // We have to disable the optimization if this is an EI definition
213   // because there might be EI declarations in other shared objects.
214   case TSK_ExplicitInstantiationDefinition:
215   case TSK_ExplicitInstantiationDeclaration:
216     return;
217 
218   // Every use of a non-template class's type information has to emit it.
219   case TSK_Undeclared:
220     break;
221 
222   // In theory, implicit instantiations can ignore the possibility of
223   // an explicit instantiation declaration because there necessarily
224   // must be an EI definition somewhere with default visibility.  In
225   // practice, it's possible to have an explicit instantiation for
226   // an arbitrary template class, and linkers aren't necessarily able
227   // to deal with mixed-visibility symbols.
228   case TSK_ExplicitSpecialization:
229   case TSK_ImplicitInstantiation:
230     if (!CodeGenOpts.HiddenWeakTemplateVTables)
231       return;
232     break;
233   }
234 
235   // If there's a key function, there may be translation units
236   // that don't have the key function's definition.  But ignore
237   // this if we're emitting RTTI under -fno-rtti.
238   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
239     if (Context.getKeyFunction(RD))
240       return;
241   }
242 
243   // Otherwise, drop the visibility to hidden.
244   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
245   GV->setUnnamedAddr(true);
246 }
247 
248 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
249   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
250 
251   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
252   if (!Str.empty())
253     return Str;
254 
255   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
256     IdentifierInfo *II = ND->getIdentifier();
257     assert(II && "Attempt to mangle unnamed decl.");
258 
259     Str = II->getName();
260     return Str;
261   }
262 
263   llvm::SmallString<256> Buffer;
264   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
265     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
266   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
267     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
268   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
269     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
270   else
271     getCXXABI().getMangleContext().mangleName(ND, Buffer);
272 
273   // Allocate space for the mangled name.
274   size_t Length = Buffer.size();
275   char *Name = MangledNamesAllocator.Allocate<char>(Length);
276   std::copy(Buffer.begin(), Buffer.end(), Name);
277 
278   Str = llvm::StringRef(Name, Length);
279 
280   return Str;
281 }
282 
283 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
284                                         const BlockDecl *BD) {
285   MangleContext &MangleCtx = getCXXABI().getMangleContext();
286   const Decl *D = GD.getDecl();
287   if (D == 0)
288     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
289   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
290     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
291   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
292     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
293   else
294     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
295 }
296 
297 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
298   return getModule().getNamedValue(Name);
299 }
300 
301 /// AddGlobalCtor - Add a function to the list that will be called before
302 /// main() runs.
303 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
304   // FIXME: Type coercion of void()* types.
305   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
306 }
307 
308 /// AddGlobalDtor - Add a function to the list that will be called
309 /// when the module is unloaded.
310 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
311   // FIXME: Type coercion of void()* types.
312   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
313 }
314 
315 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
316   // Ctor function type is void()*.
317   llvm::FunctionType* CtorFTy =
318     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
319   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
320 
321   // Get the type of a ctor entry, { i32, void ()* }.
322   llvm::StructType* CtorStructTy =
323     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
324                           llvm::PointerType::getUnqual(CtorFTy), NULL);
325 
326   // Construct the constructor and destructor arrays.
327   std::vector<llvm::Constant*> Ctors;
328   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
329     std::vector<llvm::Constant*> S;
330     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
331                 I->second, false));
332     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
333     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
334   }
335 
336   if (!Ctors.empty()) {
337     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
338     new llvm::GlobalVariable(TheModule, AT, false,
339                              llvm::GlobalValue::AppendingLinkage,
340                              llvm::ConstantArray::get(AT, Ctors),
341                              GlobalName);
342   }
343 }
344 
345 void CodeGenModule::EmitAnnotations() {
346   if (Annotations.empty())
347     return;
348 
349   // Create a new global variable for the ConstantStruct in the Module.
350   llvm::Constant *Array =
351   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
352                                                 Annotations.size()),
353                            Annotations);
354   llvm::GlobalValue *gv =
355   new llvm::GlobalVariable(TheModule, Array->getType(), false,
356                            llvm::GlobalValue::AppendingLinkage, Array,
357                            "llvm.global.annotations");
358   gv->setSection("llvm.metadata");
359 }
360 
361 llvm::GlobalValue::LinkageTypes
362 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
363   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
364 
365   if (Linkage == GVA_Internal)
366     return llvm::Function::InternalLinkage;
367 
368   if (D->hasAttr<DLLExportAttr>())
369     return llvm::Function::DLLExportLinkage;
370 
371   if (D->hasAttr<WeakAttr>())
372     return llvm::Function::WeakAnyLinkage;
373 
374   // In C99 mode, 'inline' functions are guaranteed to have a strong
375   // definition somewhere else, so we can use available_externally linkage.
376   if (Linkage == GVA_C99Inline)
377     return llvm::Function::AvailableExternallyLinkage;
378 
379   // In C++, the compiler has to emit a definition in every translation unit
380   // that references the function.  We should use linkonce_odr because
381   // a) if all references in this translation unit are optimized away, we
382   // don't need to codegen it.  b) if the function persists, it needs to be
383   // merged with other definitions. c) C++ has the ODR, so we know the
384   // definition is dependable.
385   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
386     return !Context.getLangOptions().AppleKext
387              ? llvm::Function::LinkOnceODRLinkage
388              : llvm::Function::InternalLinkage;
389 
390   // An explicit instantiation of a template has weak linkage, since
391   // explicit instantiations can occur in multiple translation units
392   // and must all be equivalent. However, we are not allowed to
393   // throw away these explicit instantiations.
394   if (Linkage == GVA_ExplicitTemplateInstantiation)
395     return !Context.getLangOptions().AppleKext
396              ? llvm::Function::WeakODRLinkage
397              : llvm::Function::InternalLinkage;
398 
399   // Otherwise, we have strong external linkage.
400   assert(Linkage == GVA_StrongExternal);
401   return llvm::Function::ExternalLinkage;
402 }
403 
404 
405 /// SetFunctionDefinitionAttributes - Set attributes for a global.
406 ///
407 /// FIXME: This is currently only done for aliases and functions, but not for
408 /// variables (these details are set in EmitGlobalVarDefinition for variables).
409 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
410                                                     llvm::GlobalValue *GV) {
411   SetCommonAttributes(D, GV);
412 }
413 
414 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
415                                               const CGFunctionInfo &Info,
416                                               llvm::Function *F) {
417   unsigned CallingConv;
418   AttributeListType AttributeList;
419   ConstructAttributeList(Info, D, AttributeList, CallingConv);
420   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
421                                           AttributeList.size()));
422   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
423 }
424 
425 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
426                                                            llvm::Function *F) {
427   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
428     F->addFnAttr(llvm::Attribute::NoUnwind);
429 
430   if (D->hasAttr<AlwaysInlineAttr>())
431     F->addFnAttr(llvm::Attribute::AlwaysInline);
432 
433   if (D->hasAttr<NakedAttr>())
434     F->addFnAttr(llvm::Attribute::Naked);
435 
436   if (D->hasAttr<NoInlineAttr>())
437     F->addFnAttr(llvm::Attribute::NoInline);
438 
439   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
440     F->setUnnamedAddr(true);
441 
442   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
443     F->addFnAttr(llvm::Attribute::StackProtect);
444   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
445     F->addFnAttr(llvm::Attribute::StackProtectReq);
446 
447   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
448   if (alignment)
449     F->setAlignment(alignment);
450 
451   // C++ ABI requires 2-byte alignment for member functions.
452   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
453     F->setAlignment(2);
454 }
455 
456 void CodeGenModule::SetCommonAttributes(const Decl *D,
457                                         llvm::GlobalValue *GV) {
458   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
459     setGlobalVisibility(GV, ND);
460   else
461     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
462 
463   if (D->hasAttr<UsedAttr>())
464     AddUsedGlobal(GV);
465 
466   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
467     GV->setSection(SA->getName());
468 
469   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
470 }
471 
472 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
473                                                   llvm::Function *F,
474                                                   const CGFunctionInfo &FI) {
475   SetLLVMFunctionAttributes(D, FI, F);
476   SetLLVMFunctionAttributesForDefinition(D, F);
477 
478   F->setLinkage(llvm::Function::InternalLinkage);
479 
480   SetCommonAttributes(D, F);
481 }
482 
483 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
484                                           llvm::Function *F,
485                                           bool IsIncompleteFunction) {
486   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
487 
488   if (!IsIncompleteFunction)
489     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
490 
491   // Only a few attributes are set on declarations; these may later be
492   // overridden by a definition.
493 
494   if (FD->hasAttr<DLLImportAttr>()) {
495     F->setLinkage(llvm::Function::DLLImportLinkage);
496   } else if (FD->hasAttr<WeakAttr>() ||
497              FD->hasAttr<WeakImportAttr>()) {
498     // "extern_weak" is overloaded in LLVM; we probably should have
499     // separate linkage types for this.
500     F->setLinkage(llvm::Function::ExternalWeakLinkage);
501   } else {
502     F->setLinkage(llvm::Function::ExternalLinkage);
503 
504     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
505     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
506       F->setVisibility(GetLLVMVisibility(LV.visibility()));
507     }
508   }
509 
510   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
511     F->setSection(SA->getName());
512 }
513 
514 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
515   assert(!GV->isDeclaration() &&
516          "Only globals with definition can force usage.");
517   LLVMUsed.push_back(GV);
518 }
519 
520 void CodeGenModule::EmitLLVMUsed() {
521   // Don't create llvm.used if there is no need.
522   if (LLVMUsed.empty())
523     return;
524 
525   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
526 
527   // Convert LLVMUsed to what ConstantArray needs.
528   std::vector<llvm::Constant*> UsedArray;
529   UsedArray.resize(LLVMUsed.size());
530   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
531     UsedArray[i] =
532      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
533                                       i8PTy);
534   }
535 
536   if (UsedArray.empty())
537     return;
538   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
539 
540   llvm::GlobalVariable *GV =
541     new llvm::GlobalVariable(getModule(), ATy, false,
542                              llvm::GlobalValue::AppendingLinkage,
543                              llvm::ConstantArray::get(ATy, UsedArray),
544                              "llvm.used");
545 
546   GV->setSection("llvm.metadata");
547 }
548 
549 void CodeGenModule::EmitDeferred() {
550   // Emit code for any potentially referenced deferred decls.  Since a
551   // previously unused static decl may become used during the generation of code
552   // for a static function, iterate until no  changes are made.
553 
554   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
555     if (!DeferredVTables.empty()) {
556       const CXXRecordDecl *RD = DeferredVTables.back();
557       DeferredVTables.pop_back();
558       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
559       continue;
560     }
561 
562     GlobalDecl D = DeferredDeclsToEmit.back();
563     DeferredDeclsToEmit.pop_back();
564 
565     // Check to see if we've already emitted this.  This is necessary
566     // for a couple of reasons: first, decls can end up in the
567     // deferred-decls queue multiple times, and second, decls can end
568     // up with definitions in unusual ways (e.g. by an extern inline
569     // function acquiring a strong function redefinition).  Just
570     // ignore these cases.
571     //
572     // TODO: That said, looking this up multiple times is very wasteful.
573     llvm::StringRef Name = getMangledName(D);
574     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
575     assert(CGRef && "Deferred decl wasn't referenced?");
576 
577     if (!CGRef->isDeclaration())
578       continue;
579 
580     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
581     // purposes an alias counts as a definition.
582     if (isa<llvm::GlobalAlias>(CGRef))
583       continue;
584 
585     // Otherwise, emit the definition and move on to the next one.
586     EmitGlobalDefinition(D);
587   }
588 }
589 
590 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
591 /// annotation information for a given GlobalValue.  The annotation struct is
592 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
593 /// GlobalValue being annotated.  The second field is the constant string
594 /// created from the AnnotateAttr's annotation.  The third field is a constant
595 /// string containing the name of the translation unit.  The fourth field is
596 /// the line number in the file of the annotated value declaration.
597 ///
598 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
599 ///        appears to.
600 ///
601 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
602                                                 const AnnotateAttr *AA,
603                                                 unsigned LineNo) {
604   llvm::Module *M = &getModule();
605 
606   // get [N x i8] constants for the annotation string, and the filename string
607   // which are the 2nd and 3rd elements of the global annotation structure.
608   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
609   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
610                                                   AA->getAnnotation(), true);
611   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
612                                                   M->getModuleIdentifier(),
613                                                   true);
614 
615   // Get the two global values corresponding to the ConstantArrays we just
616   // created to hold the bytes of the strings.
617   llvm::GlobalValue *annoGV =
618     new llvm::GlobalVariable(*M, anno->getType(), false,
619                              llvm::GlobalValue::PrivateLinkage, anno,
620                              GV->getName());
621   // translation unit name string, emitted into the llvm.metadata section.
622   llvm::GlobalValue *unitGV =
623     new llvm::GlobalVariable(*M, unit->getType(), false,
624                              llvm::GlobalValue::PrivateLinkage, unit,
625                              ".str");
626   unitGV->setUnnamedAddr(true);
627 
628   // Create the ConstantStruct for the global annotation.
629   llvm::Constant *Fields[4] = {
630     llvm::ConstantExpr::getBitCast(GV, SBP),
631     llvm::ConstantExpr::getBitCast(annoGV, SBP),
632     llvm::ConstantExpr::getBitCast(unitGV, SBP),
633     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
634   };
635   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
636 }
637 
638 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
639   // Never defer when EmitAllDecls is specified.
640   if (Features.EmitAllDecls)
641     return false;
642 
643   return !getContext().DeclMustBeEmitted(Global);
644 }
645 
646 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
647   const AliasAttr *AA = VD->getAttr<AliasAttr>();
648   assert(AA && "No alias?");
649 
650   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
651 
652   // See if there is already something with the target's name in the module.
653   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
654 
655   llvm::Constant *Aliasee;
656   if (isa<llvm::FunctionType>(DeclTy))
657     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
658   else
659     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
660                                     llvm::PointerType::getUnqual(DeclTy), 0);
661   if (!Entry) {
662     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
663     F->setLinkage(llvm::Function::ExternalWeakLinkage);
664     WeakRefReferences.insert(F);
665   }
666 
667   return Aliasee;
668 }
669 
670 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
671   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
672 
673   // Weak references don't produce any output by themselves.
674   if (Global->hasAttr<WeakRefAttr>())
675     return;
676 
677   // If this is an alias definition (which otherwise looks like a declaration)
678   // emit it now.
679   if (Global->hasAttr<AliasAttr>())
680     return EmitAliasDefinition(GD);
681 
682   // Ignore declarations, they will be emitted on their first use.
683   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
684     if (FD->getIdentifier()) {
685       llvm::StringRef Name = FD->getName();
686       if (Name == "_Block_object_assign") {
687         BlockObjectAssignDecl = FD;
688       } else if (Name == "_Block_object_dispose") {
689         BlockObjectDisposeDecl = FD;
690       }
691     }
692 
693     // Forward declarations are emitted lazily on first use.
694     if (!FD->isThisDeclarationADefinition())
695       return;
696   } else {
697     const VarDecl *VD = cast<VarDecl>(Global);
698     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
699 
700     if (VD->getIdentifier()) {
701       llvm::StringRef Name = VD->getName();
702       if (Name == "_NSConcreteGlobalBlock") {
703         NSConcreteGlobalBlockDecl = VD;
704       } else if (Name == "_NSConcreteStackBlock") {
705         NSConcreteStackBlockDecl = VD;
706       }
707     }
708 
709 
710     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
711       return;
712   }
713 
714   // Defer code generation when possible if this is a static definition, inline
715   // function etc.  These we only want to emit if they are used.
716   if (!MayDeferGeneration(Global)) {
717     // Emit the definition if it can't be deferred.
718     EmitGlobalDefinition(GD);
719     return;
720   }
721 
722   // If we're deferring emission of a C++ variable with an
723   // initializer, remember the order in which it appeared in the file.
724   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
725       cast<VarDecl>(Global)->hasInit()) {
726     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
727     CXXGlobalInits.push_back(0);
728   }
729 
730   // If the value has already been used, add it directly to the
731   // DeferredDeclsToEmit list.
732   llvm::StringRef MangledName = getMangledName(GD);
733   if (GetGlobalValue(MangledName))
734     DeferredDeclsToEmit.push_back(GD);
735   else {
736     // Otherwise, remember that we saw a deferred decl with this name.  The
737     // first use of the mangled name will cause it to move into
738     // DeferredDeclsToEmit.
739     DeferredDecls[MangledName] = GD;
740   }
741 }
742 
743 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
744   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
745 
746   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
747                                  Context.getSourceManager(),
748                                  "Generating code for declaration");
749 
750   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
751     // At -O0, don't generate IR for functions with available_externally
752     // linkage.
753     if (CodeGenOpts.OptimizationLevel == 0 &&
754         !Function->hasAttr<AlwaysInlineAttr>() &&
755         getFunctionLinkage(Function)
756                                   == llvm::Function::AvailableExternallyLinkage)
757       return;
758 
759     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
760       if (Method->isVirtual())
761         getVTables().EmitThunks(GD);
762 
763       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
764         return EmitCXXConstructor(CD, GD.getCtorType());
765 
766       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
767         return EmitCXXDestructor(DD, GD.getDtorType());
768     }
769 
770     return EmitGlobalFunctionDefinition(GD);
771   }
772 
773   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
774     return EmitGlobalVarDefinition(VD);
775 
776   assert(0 && "Invalid argument to EmitGlobalDefinition()");
777 }
778 
779 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
780 /// module, create and return an llvm Function with the specified type. If there
781 /// is something in the module with the specified name, return it potentially
782 /// bitcasted to the right type.
783 ///
784 /// If D is non-null, it specifies a decl that correspond to this.  This is used
785 /// to set the attributes on the function when it is first created.
786 llvm::Constant *
787 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
788                                        const llvm::Type *Ty,
789                                        GlobalDecl D) {
790   // Lookup the entry, lazily creating it if necessary.
791   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
792   if (Entry) {
793     if (WeakRefReferences.count(Entry)) {
794       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
795       if (FD && !FD->hasAttr<WeakAttr>())
796         Entry->setLinkage(llvm::Function::ExternalLinkage);
797 
798       WeakRefReferences.erase(Entry);
799     }
800 
801     if (Entry->getType()->getElementType() == Ty)
802       return Entry;
803 
804     // Make sure the result is of the correct type.
805     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
806     return llvm::ConstantExpr::getBitCast(Entry, PTy);
807   }
808 
809   // This function doesn't have a complete type (for example, the return
810   // type is an incomplete struct). Use a fake type instead, and make
811   // sure not to try to set attributes.
812   bool IsIncompleteFunction = false;
813 
814   const llvm::FunctionType *FTy;
815   if (isa<llvm::FunctionType>(Ty)) {
816     FTy = cast<llvm::FunctionType>(Ty);
817   } else {
818     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
819     IsIncompleteFunction = true;
820   }
821 
822   llvm::Function *F = llvm::Function::Create(FTy,
823                                              llvm::Function::ExternalLinkage,
824                                              MangledName, &getModule());
825   assert(F->getName() == MangledName && "name was uniqued!");
826   if (D.getDecl())
827     SetFunctionAttributes(D, F, IsIncompleteFunction);
828 
829   // This is the first use or definition of a mangled name.  If there is a
830   // deferred decl with this name, remember that we need to emit it at the end
831   // of the file.
832   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
833   if (DDI != DeferredDecls.end()) {
834     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
835     // list, and remove it from DeferredDecls (since we don't need it anymore).
836     DeferredDeclsToEmit.push_back(DDI->second);
837     DeferredDecls.erase(DDI);
838 
839   // Otherwise, there are cases we have to worry about where we're
840   // using a declaration for which we must emit a definition but where
841   // we might not find a top-level definition:
842   //   - member functions defined inline in their classes
843   //   - friend functions defined inline in some class
844   //   - special member functions with implicit definitions
845   // If we ever change our AST traversal to walk into class methods,
846   // this will be unnecessary.
847   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
848     // Look for a declaration that's lexically in a record.
849     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
850     do {
851       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
852         if (FD->isImplicit()) {
853           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
854           DeferredDeclsToEmit.push_back(D);
855           break;
856         } else if (FD->isThisDeclarationADefinition()) {
857           DeferredDeclsToEmit.push_back(D);
858           break;
859         }
860       }
861       FD = FD->getPreviousDeclaration();
862     } while (FD);
863   }
864 
865   // Make sure the result is of the requested type.
866   if (!IsIncompleteFunction) {
867     assert(F->getType()->getElementType() == Ty);
868     return F;
869   }
870 
871   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
872   return llvm::ConstantExpr::getBitCast(F, PTy);
873 }
874 
875 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
876 /// non-null, then this function will use the specified type if it has to
877 /// create it (this occurs when we see a definition of the function).
878 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
879                                                  const llvm::Type *Ty) {
880   // If there was no specific requested type, just convert it now.
881   if (!Ty)
882     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
883 
884   llvm::StringRef MangledName = getMangledName(GD);
885   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
886 }
887 
888 /// CreateRuntimeFunction - Create a new runtime function with the specified
889 /// type and name.
890 llvm::Constant *
891 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
892                                      llvm::StringRef Name) {
893   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
894 }
895 
896 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
897   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
898     return false;
899   if (Context.getLangOptions().CPlusPlus &&
900       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
901     // FIXME: We should do something fancier here!
902     return false;
903   }
904   return true;
905 }
906 
907 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
908 /// create and return an llvm GlobalVariable with the specified type.  If there
909 /// is something in the module with the specified name, return it potentially
910 /// bitcasted to the right type.
911 ///
912 /// If D is non-null, it specifies a decl that correspond to this.  This is used
913 /// to set the attributes on the global when it is first created.
914 llvm::Constant *
915 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
916                                      const llvm::PointerType *Ty,
917                                      const VarDecl *D,
918                                      bool UnnamedAddr) {
919   // Lookup the entry, lazily creating it if necessary.
920   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
921   if (Entry) {
922     if (WeakRefReferences.count(Entry)) {
923       if (D && !D->hasAttr<WeakAttr>())
924         Entry->setLinkage(llvm::Function::ExternalLinkage);
925 
926       WeakRefReferences.erase(Entry);
927     }
928 
929     if (UnnamedAddr)
930       Entry->setUnnamedAddr(true);
931 
932     if (Entry->getType() == Ty)
933       return Entry;
934 
935     // Make sure the result is of the correct type.
936     return llvm::ConstantExpr::getBitCast(Entry, Ty);
937   }
938 
939   // This is the first use or definition of a mangled name.  If there is a
940   // deferred decl with this name, remember that we need to emit it at the end
941   // of the file.
942   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
943   if (DDI != DeferredDecls.end()) {
944     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
945     // list, and remove it from DeferredDecls (since we don't need it anymore).
946     DeferredDeclsToEmit.push_back(DDI->second);
947     DeferredDecls.erase(DDI);
948   }
949 
950   llvm::GlobalVariable *GV =
951     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
952                              llvm::GlobalValue::ExternalLinkage,
953                              0, MangledName, 0,
954                              false, Ty->getAddressSpace());
955 
956   // Handle things which are present even on external declarations.
957   if (D) {
958     // FIXME: This code is overly simple and should be merged with other global
959     // handling.
960     GV->setConstant(DeclIsConstantGlobal(Context, D));
961 
962     // Set linkage and visibility in case we never see a definition.
963     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
964     if (LV.linkage() != ExternalLinkage) {
965       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
966     } else {
967       if (D->hasAttr<DLLImportAttr>())
968         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
969       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
970         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
971 
972       // Set visibility on a declaration only if it's explicit.
973       if (LV.visibilityExplicit())
974         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
975     }
976 
977     GV->setThreadLocal(D->isThreadSpecified());
978   }
979 
980   return GV;
981 }
982 
983 
984 llvm::GlobalVariable *
985 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
986                                       const llvm::Type *Ty,
987                                       llvm::GlobalValue::LinkageTypes Linkage) {
988   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
989   llvm::GlobalVariable *OldGV = 0;
990 
991 
992   if (GV) {
993     // Check if the variable has the right type.
994     if (GV->getType()->getElementType() == Ty)
995       return GV;
996 
997     // Because C++ name mangling, the only way we can end up with an already
998     // existing global with the same name is if it has been declared extern "C".
999       assert(GV->isDeclaration() && "Declaration has wrong type!");
1000     OldGV = GV;
1001   }
1002 
1003   // Create a new variable.
1004   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1005                                 Linkage, 0, Name);
1006 
1007   if (OldGV) {
1008     // Replace occurrences of the old variable if needed.
1009     GV->takeName(OldGV);
1010 
1011     if (!OldGV->use_empty()) {
1012       llvm::Constant *NewPtrForOldDecl =
1013       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1014       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1015     }
1016 
1017     OldGV->eraseFromParent();
1018   }
1019 
1020   return GV;
1021 }
1022 
1023 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1024 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1025 /// then it will be greated with the specified type instead of whatever the
1026 /// normal requested type would be.
1027 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1028                                                   const llvm::Type *Ty) {
1029   assert(D->hasGlobalStorage() && "Not a global variable");
1030   QualType ASTTy = D->getType();
1031   if (Ty == 0)
1032     Ty = getTypes().ConvertTypeForMem(ASTTy);
1033 
1034   const llvm::PointerType *PTy =
1035     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1036 
1037   llvm::StringRef MangledName = getMangledName(D);
1038   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1039 }
1040 
1041 /// CreateRuntimeVariable - Create a new runtime global variable with the
1042 /// specified type and name.
1043 llvm::Constant *
1044 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1045                                      llvm::StringRef Name) {
1046   return GetOrCreateLLVMGlobal(Name,  llvm::PointerType::getUnqual(Ty), 0,
1047                                true);
1048 }
1049 
1050 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1051   assert(!D->getInit() && "Cannot emit definite definitions here!");
1052 
1053   if (MayDeferGeneration(D)) {
1054     // If we have not seen a reference to this variable yet, place it
1055     // into the deferred declarations table to be emitted if needed
1056     // later.
1057     llvm::StringRef MangledName = getMangledName(D);
1058     if (!GetGlobalValue(MangledName)) {
1059       DeferredDecls[MangledName] = D;
1060       return;
1061     }
1062   }
1063 
1064   // The tentative definition is the only definition.
1065   EmitGlobalVarDefinition(D);
1066 }
1067 
1068 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1069   if (DefinitionRequired)
1070     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1071 }
1072 
1073 llvm::GlobalVariable::LinkageTypes
1074 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1075   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1076     return llvm::GlobalVariable::InternalLinkage;
1077 
1078   if (const CXXMethodDecl *KeyFunction
1079                                     = RD->getASTContext().getKeyFunction(RD)) {
1080     // If this class has a key function, use that to determine the linkage of
1081     // the vtable.
1082     const FunctionDecl *Def = 0;
1083     if (KeyFunction->hasBody(Def))
1084       KeyFunction = cast<CXXMethodDecl>(Def);
1085 
1086     switch (KeyFunction->getTemplateSpecializationKind()) {
1087       case TSK_Undeclared:
1088       case TSK_ExplicitSpecialization:
1089         // When compiling with optimizations turned on, we emit all vtables,
1090         // even if the key function is not defined in the current translation
1091         // unit. If this is the case, use available_externally linkage.
1092         if (!Def && CodeGenOpts.OptimizationLevel)
1093           return llvm::GlobalVariable::AvailableExternallyLinkage;
1094 
1095         if (KeyFunction->isInlined())
1096           return !Context.getLangOptions().AppleKext ?
1097                    llvm::GlobalVariable::LinkOnceODRLinkage :
1098                    llvm::Function::InternalLinkage;
1099 
1100         return llvm::GlobalVariable::ExternalLinkage;
1101 
1102       case TSK_ImplicitInstantiation:
1103         return !Context.getLangOptions().AppleKext ?
1104                  llvm::GlobalVariable::LinkOnceODRLinkage :
1105                  llvm::Function::InternalLinkage;
1106 
1107       case TSK_ExplicitInstantiationDefinition:
1108         return !Context.getLangOptions().AppleKext ?
1109                  llvm::GlobalVariable::WeakODRLinkage :
1110                  llvm::Function::InternalLinkage;
1111 
1112       case TSK_ExplicitInstantiationDeclaration:
1113         // FIXME: Use available_externally linkage. However, this currently
1114         // breaks LLVM's build due to undefined symbols.
1115         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1116         return !Context.getLangOptions().AppleKext ?
1117                  llvm::GlobalVariable::LinkOnceODRLinkage :
1118                  llvm::Function::InternalLinkage;
1119     }
1120   }
1121 
1122   if (Context.getLangOptions().AppleKext)
1123     return llvm::Function::InternalLinkage;
1124 
1125   switch (RD->getTemplateSpecializationKind()) {
1126   case TSK_Undeclared:
1127   case TSK_ExplicitSpecialization:
1128   case TSK_ImplicitInstantiation:
1129     // FIXME: Use available_externally linkage. However, this currently
1130     // breaks LLVM's build due to undefined symbols.
1131     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1132   case TSK_ExplicitInstantiationDeclaration:
1133     return llvm::GlobalVariable::LinkOnceODRLinkage;
1134 
1135   case TSK_ExplicitInstantiationDefinition:
1136       return llvm::GlobalVariable::WeakODRLinkage;
1137   }
1138 
1139   // Silence GCC warning.
1140   return llvm::GlobalVariable::LinkOnceODRLinkage;
1141 }
1142 
1143 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1144     return Context.toCharUnitsFromBits(
1145       TheTargetData.getTypeStoreSizeInBits(Ty));
1146 }
1147 
1148 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1149   llvm::Constant *Init = 0;
1150   QualType ASTTy = D->getType();
1151   bool NonConstInit = false;
1152 
1153   const Expr *InitExpr = D->getAnyInitializer();
1154 
1155   if (!InitExpr) {
1156     // This is a tentative definition; tentative definitions are
1157     // implicitly initialized with { 0 }.
1158     //
1159     // Note that tentative definitions are only emitted at the end of
1160     // a translation unit, so they should never have incomplete
1161     // type. In addition, EmitTentativeDefinition makes sure that we
1162     // never attempt to emit a tentative definition if a real one
1163     // exists. A use may still exists, however, so we still may need
1164     // to do a RAUW.
1165     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1166     Init = EmitNullConstant(D->getType());
1167   } else {
1168     Init = EmitConstantExpr(InitExpr, D->getType());
1169     if (!Init) {
1170       QualType T = InitExpr->getType();
1171       if (D->getType()->isReferenceType())
1172         T = D->getType();
1173 
1174       if (getLangOptions().CPlusPlus) {
1175         Init = EmitNullConstant(T);
1176         NonConstInit = true;
1177       } else {
1178         ErrorUnsupported(D, "static initializer");
1179         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1180       }
1181     } else {
1182       // We don't need an initializer, so remove the entry for the delayed
1183       // initializer position (just in case this entry was delayed).
1184       if (getLangOptions().CPlusPlus)
1185         DelayedCXXInitPosition.erase(D);
1186     }
1187   }
1188 
1189   const llvm::Type* InitType = Init->getType();
1190   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1191 
1192   // Strip off a bitcast if we got one back.
1193   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1194     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1195            // all zero index gep.
1196            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1197     Entry = CE->getOperand(0);
1198   }
1199 
1200   // Entry is now either a Function or GlobalVariable.
1201   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1202 
1203   // We have a definition after a declaration with the wrong type.
1204   // We must make a new GlobalVariable* and update everything that used OldGV
1205   // (a declaration or tentative definition) with the new GlobalVariable*
1206   // (which will be a definition).
1207   //
1208   // This happens if there is a prototype for a global (e.g.
1209   // "extern int x[];") and then a definition of a different type (e.g.
1210   // "int x[10];"). This also happens when an initializer has a different type
1211   // from the type of the global (this happens with unions).
1212   if (GV == 0 ||
1213       GV->getType()->getElementType() != InitType ||
1214       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1215 
1216     // Move the old entry aside so that we'll create a new one.
1217     Entry->setName(llvm::StringRef());
1218 
1219     // Make a new global with the correct type, this is now guaranteed to work.
1220     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1221 
1222     // Replace all uses of the old global with the new global
1223     llvm::Constant *NewPtrForOldDecl =
1224         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1225     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1226 
1227     // Erase the old global, since it is no longer used.
1228     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1229   }
1230 
1231   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1232     SourceManager &SM = Context.getSourceManager();
1233     AddAnnotation(EmitAnnotateAttr(GV, AA,
1234                               SM.getInstantiationLineNumber(D->getLocation())));
1235   }
1236 
1237   GV->setInitializer(Init);
1238 
1239   // If it is safe to mark the global 'constant', do so now.
1240   GV->setConstant(false);
1241   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1242     GV->setConstant(true);
1243 
1244   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1245 
1246   // Set the llvm linkage type as appropriate.
1247   llvm::GlobalValue::LinkageTypes Linkage =
1248     GetLLVMLinkageVarDefinition(D, GV);
1249   GV->setLinkage(Linkage);
1250   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1251     // common vars aren't constant even if declared const.
1252     GV->setConstant(false);
1253 
1254   SetCommonAttributes(D, GV);
1255 
1256   // Emit the initializer function if necessary.
1257   if (NonConstInit)
1258     EmitCXXGlobalVarDeclInitFunc(D, GV);
1259 
1260   // Emit global variable debug information.
1261   if (CGDebugInfo *DI = getDebugInfo()) {
1262     DI->setLocation(D->getLocation());
1263     DI->EmitGlobalVariable(GV, D);
1264   }
1265 }
1266 
1267 llvm::GlobalValue::LinkageTypes
1268 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1269                                            llvm::GlobalVariable *GV) {
1270   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1271   if (Linkage == GVA_Internal)
1272     return llvm::Function::InternalLinkage;
1273   else if (D->hasAttr<DLLImportAttr>())
1274     return llvm::Function::DLLImportLinkage;
1275   else if (D->hasAttr<DLLExportAttr>())
1276     return llvm::Function::DLLExportLinkage;
1277   else if (D->hasAttr<WeakAttr>()) {
1278     if (GV->isConstant())
1279       return llvm::GlobalVariable::WeakODRLinkage;
1280     else
1281       return llvm::GlobalVariable::WeakAnyLinkage;
1282   } else if (Linkage == GVA_TemplateInstantiation ||
1283              Linkage == GVA_ExplicitTemplateInstantiation)
1284     // FIXME: It seems like we can provide more specific linkage here
1285     // (LinkOnceODR, WeakODR).
1286     return llvm::GlobalVariable::WeakAnyLinkage;
1287   else if (!getLangOptions().CPlusPlus &&
1288            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1289              D->getAttr<CommonAttr>()) &&
1290            !D->hasExternalStorage() && !D->getInit() &&
1291            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1292     // Thread local vars aren't considered common linkage.
1293     return llvm::GlobalVariable::CommonLinkage;
1294   }
1295   return llvm::GlobalVariable::ExternalLinkage;
1296 }
1297 
1298 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1299 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1300 /// existing call uses of the old function in the module, this adjusts them to
1301 /// call the new function directly.
1302 ///
1303 /// This is not just a cleanup: the always_inline pass requires direct calls to
1304 /// functions to be able to inline them.  If there is a bitcast in the way, it
1305 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1306 /// run at -O0.
1307 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1308                                                       llvm::Function *NewFn) {
1309   // If we're redefining a global as a function, don't transform it.
1310   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1311   if (OldFn == 0) return;
1312 
1313   const llvm::Type *NewRetTy = NewFn->getReturnType();
1314   llvm::SmallVector<llvm::Value*, 4> ArgList;
1315 
1316   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1317        UI != E; ) {
1318     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1319     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1320     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1321     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1322     llvm::CallSite CS(CI);
1323     if (!CI || !CS.isCallee(I)) continue;
1324 
1325     // If the return types don't match exactly, and if the call isn't dead, then
1326     // we can't transform this call.
1327     if (CI->getType() != NewRetTy && !CI->use_empty())
1328       continue;
1329 
1330     // If the function was passed too few arguments, don't transform.  If extra
1331     // arguments were passed, we silently drop them.  If any of the types
1332     // mismatch, we don't transform.
1333     unsigned ArgNo = 0;
1334     bool DontTransform = false;
1335     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1336          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1337       if (CS.arg_size() == ArgNo ||
1338           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1339         DontTransform = true;
1340         break;
1341       }
1342     }
1343     if (DontTransform)
1344       continue;
1345 
1346     // Okay, we can transform this.  Create the new call instruction and copy
1347     // over the required information.
1348     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1349     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1350                                                      ArgList.end(), "", CI);
1351     ArgList.clear();
1352     if (!NewCall->getType()->isVoidTy())
1353       NewCall->takeName(CI);
1354     NewCall->setAttributes(CI->getAttributes());
1355     NewCall->setCallingConv(CI->getCallingConv());
1356 
1357     // Finally, remove the old call, replacing any uses with the new one.
1358     if (!CI->use_empty())
1359       CI->replaceAllUsesWith(NewCall);
1360 
1361     // Copy debug location attached to CI.
1362     if (!CI->getDebugLoc().isUnknown())
1363       NewCall->setDebugLoc(CI->getDebugLoc());
1364     CI->eraseFromParent();
1365   }
1366 }
1367 
1368 
1369 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1370   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1371   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1372   // Get or create the prototype for the function.
1373   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1374 
1375   // Strip off a bitcast if we got one back.
1376   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1377     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1378     Entry = CE->getOperand(0);
1379   }
1380 
1381 
1382   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1383     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1384 
1385     // If the types mismatch then we have to rewrite the definition.
1386     assert(OldFn->isDeclaration() &&
1387            "Shouldn't replace non-declaration");
1388 
1389     // F is the Function* for the one with the wrong type, we must make a new
1390     // Function* and update everything that used F (a declaration) with the new
1391     // Function* (which will be a definition).
1392     //
1393     // This happens if there is a prototype for a function
1394     // (e.g. "int f()") and then a definition of a different type
1395     // (e.g. "int f(int x)").  Move the old function aside so that it
1396     // doesn't interfere with GetAddrOfFunction.
1397     OldFn->setName(llvm::StringRef());
1398     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1399 
1400     // If this is an implementation of a function without a prototype, try to
1401     // replace any existing uses of the function (which may be calls) with uses
1402     // of the new function
1403     if (D->getType()->isFunctionNoProtoType()) {
1404       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1405       OldFn->removeDeadConstantUsers();
1406     }
1407 
1408     // Replace uses of F with the Function we will endow with a body.
1409     if (!Entry->use_empty()) {
1410       llvm::Constant *NewPtrForOldDecl =
1411         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1412       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1413     }
1414 
1415     // Ok, delete the old function now, which is dead.
1416     OldFn->eraseFromParent();
1417 
1418     Entry = NewFn;
1419   }
1420 
1421   // We need to set linkage and visibility on the function before
1422   // generating code for it because various parts of IR generation
1423   // want to propagate this information down (e.g. to local static
1424   // declarations).
1425   llvm::Function *Fn = cast<llvm::Function>(Entry);
1426   setFunctionLinkage(D, Fn);
1427 
1428   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1429   setGlobalVisibility(Fn, D);
1430 
1431   CodeGenFunction(*this).GenerateCode(D, Fn);
1432 
1433   SetFunctionDefinitionAttributes(D, Fn);
1434   SetLLVMFunctionAttributesForDefinition(D, Fn);
1435 
1436   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1437     AddGlobalCtor(Fn, CA->getPriority());
1438   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1439     AddGlobalDtor(Fn, DA->getPriority());
1440 }
1441 
1442 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1443   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1444   const AliasAttr *AA = D->getAttr<AliasAttr>();
1445   assert(AA && "Not an alias?");
1446 
1447   llvm::StringRef MangledName = getMangledName(GD);
1448 
1449   // If there is a definition in the module, then it wins over the alias.
1450   // This is dubious, but allow it to be safe.  Just ignore the alias.
1451   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1452   if (Entry && !Entry->isDeclaration())
1453     return;
1454 
1455   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1456 
1457   // Create a reference to the named value.  This ensures that it is emitted
1458   // if a deferred decl.
1459   llvm::Constant *Aliasee;
1460   if (isa<llvm::FunctionType>(DeclTy))
1461     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1462   else
1463     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1464                                     llvm::PointerType::getUnqual(DeclTy), 0);
1465 
1466   // Create the new alias itself, but don't set a name yet.
1467   llvm::GlobalValue *GA =
1468     new llvm::GlobalAlias(Aliasee->getType(),
1469                           llvm::Function::ExternalLinkage,
1470                           "", Aliasee, &getModule());
1471 
1472   if (Entry) {
1473     assert(Entry->isDeclaration());
1474 
1475     // If there is a declaration in the module, then we had an extern followed
1476     // by the alias, as in:
1477     //   extern int test6();
1478     //   ...
1479     //   int test6() __attribute__((alias("test7")));
1480     //
1481     // Remove it and replace uses of it with the alias.
1482     GA->takeName(Entry);
1483 
1484     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1485                                                           Entry->getType()));
1486     Entry->eraseFromParent();
1487   } else {
1488     GA->setName(MangledName);
1489   }
1490 
1491   // Set attributes which are particular to an alias; this is a
1492   // specialization of the attributes which may be set on a global
1493   // variable/function.
1494   if (D->hasAttr<DLLExportAttr>()) {
1495     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1496       // The dllexport attribute is ignored for undefined symbols.
1497       if (FD->hasBody())
1498         GA->setLinkage(llvm::Function::DLLExportLinkage);
1499     } else {
1500       GA->setLinkage(llvm::Function::DLLExportLinkage);
1501     }
1502   } else if (D->hasAttr<WeakAttr>() ||
1503              D->hasAttr<WeakRefAttr>() ||
1504              D->hasAttr<WeakImportAttr>()) {
1505     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1506   }
1507 
1508   SetCommonAttributes(D, GA);
1509 }
1510 
1511 /// getBuiltinLibFunction - Given a builtin id for a function like
1512 /// "__builtin_fabsf", return a Function* for "fabsf".
1513 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1514                                                   unsigned BuiltinID) {
1515   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1516           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1517          "isn't a lib fn");
1518 
1519   // Get the name, skip over the __builtin_ prefix (if necessary).
1520   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1521   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1522     Name += 10;
1523 
1524   const llvm::FunctionType *Ty =
1525     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1526 
1527   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1528 }
1529 
1530 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1531                                             unsigned NumTys) {
1532   return llvm::Intrinsic::getDeclaration(&getModule(),
1533                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1534 }
1535 
1536 static llvm::StringMapEntry<llvm::Constant*> &
1537 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1538                          const StringLiteral *Literal,
1539                          bool TargetIsLSB,
1540                          bool &IsUTF16,
1541                          unsigned &StringLength) {
1542   llvm::StringRef String = Literal->getString();
1543   unsigned NumBytes = String.size();
1544 
1545   // Check for simple case.
1546   if (!Literal->containsNonAsciiOrNull()) {
1547     StringLength = NumBytes;
1548     return Map.GetOrCreateValue(String);
1549   }
1550 
1551   // Otherwise, convert the UTF8 literals into a byte string.
1552   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1553   const UTF8 *FromPtr = (UTF8 *)String.data();
1554   UTF16 *ToPtr = &ToBuf[0];
1555 
1556   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1557                            &ToPtr, ToPtr + NumBytes,
1558                            strictConversion);
1559 
1560   // ConvertUTF8toUTF16 returns the length in ToPtr.
1561   StringLength = ToPtr - &ToBuf[0];
1562 
1563   // Render the UTF-16 string into a byte array and convert to the target byte
1564   // order.
1565   //
1566   // FIXME: This isn't something we should need to do here.
1567   llvm::SmallString<128> AsBytes;
1568   AsBytes.reserve(StringLength * 2);
1569   for (unsigned i = 0; i != StringLength; ++i) {
1570     unsigned short Val = ToBuf[i];
1571     if (TargetIsLSB) {
1572       AsBytes.push_back(Val & 0xFF);
1573       AsBytes.push_back(Val >> 8);
1574     } else {
1575       AsBytes.push_back(Val >> 8);
1576       AsBytes.push_back(Val & 0xFF);
1577     }
1578   }
1579   // Append one extra null character, the second is automatically added by our
1580   // caller.
1581   AsBytes.push_back(0);
1582 
1583   IsUTF16 = true;
1584   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1585 }
1586 
1587 llvm::Constant *
1588 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1589   unsigned StringLength = 0;
1590   bool isUTF16 = false;
1591   llvm::StringMapEntry<llvm::Constant*> &Entry =
1592     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1593                              getTargetData().isLittleEndian(),
1594                              isUTF16, StringLength);
1595 
1596   if (llvm::Constant *C = Entry.getValue())
1597     return C;
1598 
1599   llvm::Constant *Zero =
1600       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1601   llvm::Constant *Zeros[] = { Zero, Zero };
1602 
1603   // If we don't already have it, get __CFConstantStringClassReference.
1604   if (!CFConstantStringClassRef) {
1605     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1606     Ty = llvm::ArrayType::get(Ty, 0);
1607     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1608                                            "__CFConstantStringClassReference");
1609     // Decay array -> ptr
1610     CFConstantStringClassRef =
1611       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1612   }
1613 
1614   QualType CFTy = getContext().getCFConstantStringType();
1615 
1616   const llvm::StructType *STy =
1617     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1618 
1619   std::vector<llvm::Constant*> Fields(4);
1620 
1621   // Class pointer.
1622   Fields[0] = CFConstantStringClassRef;
1623 
1624   // Flags.
1625   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1626   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1627     llvm::ConstantInt::get(Ty, 0x07C8);
1628 
1629   // String pointer.
1630   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1631 
1632   llvm::GlobalValue::LinkageTypes Linkage;
1633   bool isConstant;
1634   if (isUTF16) {
1635     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1636     Linkage = llvm::GlobalValue::InternalLinkage;
1637     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1638     // does make plain ascii ones writable.
1639     isConstant = true;
1640   } else {
1641     Linkage = llvm::GlobalValue::PrivateLinkage;
1642     isConstant = !Features.WritableStrings;
1643   }
1644 
1645   llvm::GlobalVariable *GV =
1646     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1647                              ".str");
1648   GV->setUnnamedAddr(true);
1649   if (isUTF16) {
1650     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1651     GV->setAlignment(Align.getQuantity());
1652   }
1653   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1654 
1655   // String length.
1656   Ty = getTypes().ConvertType(getContext().LongTy);
1657   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1658 
1659   // The struct.
1660   C = llvm::ConstantStruct::get(STy, Fields);
1661   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1662                                 llvm::GlobalVariable::PrivateLinkage, C,
1663                                 "_unnamed_cfstring_");
1664   if (const char *Sect = getContext().Target.getCFStringSection())
1665     GV->setSection(Sect);
1666   Entry.setValue(GV);
1667 
1668   return GV;
1669 }
1670 
1671 llvm::Constant *
1672 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1673   unsigned StringLength = 0;
1674   bool isUTF16 = false;
1675   llvm::StringMapEntry<llvm::Constant*> &Entry =
1676     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1677                              getTargetData().isLittleEndian(),
1678                              isUTF16, StringLength);
1679 
1680   if (llvm::Constant *C = Entry.getValue())
1681     return C;
1682 
1683   llvm::Constant *Zero =
1684   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1685   llvm::Constant *Zeros[] = { Zero, Zero };
1686 
1687   // If we don't already have it, get _NSConstantStringClassReference.
1688   if (!ConstantStringClassRef) {
1689     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1690     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1691     Ty = llvm::ArrayType::get(Ty, 0);
1692     llvm::Constant *GV;
1693     if (StringClass.empty())
1694       GV = CreateRuntimeVariable(Ty,
1695                                  Features.ObjCNonFragileABI ?
1696                                  "OBJC_CLASS_$_NSConstantString" :
1697                                  "_NSConstantStringClassReference");
1698     else {
1699       std::string str;
1700       if (Features.ObjCNonFragileABI)
1701         str = "OBJC_CLASS_$_" + StringClass;
1702       else
1703         str = "_" + StringClass + "ClassReference";
1704       GV = CreateRuntimeVariable(Ty, str);
1705     }
1706     // Decay array -> ptr
1707     ConstantStringClassRef =
1708     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1709   }
1710 
1711   QualType NSTy = getContext().getNSConstantStringType();
1712 
1713   const llvm::StructType *STy =
1714   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1715 
1716   std::vector<llvm::Constant*> Fields(3);
1717 
1718   // Class pointer.
1719   Fields[0] = ConstantStringClassRef;
1720 
1721   // String pointer.
1722   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1723 
1724   llvm::GlobalValue::LinkageTypes Linkage;
1725   bool isConstant;
1726   if (isUTF16) {
1727     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1728     Linkage = llvm::GlobalValue::InternalLinkage;
1729     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1730     // does make plain ascii ones writable.
1731     isConstant = true;
1732   } else {
1733     Linkage = llvm::GlobalValue::PrivateLinkage;
1734     isConstant = !Features.WritableStrings;
1735   }
1736 
1737   llvm::GlobalVariable *GV =
1738   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1739                            ".str");
1740   GV->setUnnamedAddr(true);
1741   if (isUTF16) {
1742     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1743     GV->setAlignment(Align.getQuantity());
1744   }
1745   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1746 
1747   // String length.
1748   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1749   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1750 
1751   // The struct.
1752   C = llvm::ConstantStruct::get(STy, Fields);
1753   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1754                                 llvm::GlobalVariable::PrivateLinkage, C,
1755                                 "_unnamed_nsstring_");
1756   // FIXME. Fix section.
1757   if (const char *Sect =
1758         Features.ObjCNonFragileABI
1759           ? getContext().Target.getNSStringNonFragileABISection()
1760           : getContext().Target.getNSStringSection())
1761     GV->setSection(Sect);
1762   Entry.setValue(GV);
1763 
1764   return GV;
1765 }
1766 
1767 /// GetStringForStringLiteral - Return the appropriate bytes for a
1768 /// string literal, properly padded to match the literal type.
1769 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1770   const ASTContext &Context = getContext();
1771   const ConstantArrayType *CAT =
1772     Context.getAsConstantArrayType(E->getType());
1773   assert(CAT && "String isn't pointer or array!");
1774 
1775   // Resize the string to the right size.
1776   uint64_t RealLen = CAT->getSize().getZExtValue();
1777 
1778   if (E->isWide())
1779     RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1780 
1781   std::string Str = E->getString().str();
1782   Str.resize(RealLen, '\0');
1783 
1784   return Str;
1785 }
1786 
1787 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1788 /// constant array for the given string literal.
1789 llvm::Constant *
1790 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1791   // FIXME: This can be more efficient.
1792   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1793   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1794   if (S->isWide()) {
1795     llvm::Type *DestTy =
1796         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1797     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1798   }
1799   return C;
1800 }
1801 
1802 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1803 /// array for the given ObjCEncodeExpr node.
1804 llvm::Constant *
1805 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1806   std::string Str;
1807   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1808 
1809   return GetAddrOfConstantCString(Str);
1810 }
1811 
1812 
1813 /// GenerateWritableString -- Creates storage for a string literal.
1814 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1815                                              bool constant,
1816                                              CodeGenModule &CGM,
1817                                              const char *GlobalName) {
1818   // Create Constant for this string literal. Don't add a '\0'.
1819   llvm::Constant *C =
1820       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1821 
1822   // Create a global variable for this string
1823   llvm::GlobalVariable *GV =
1824     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1825                              llvm::GlobalValue::PrivateLinkage,
1826                              C, GlobalName);
1827   GV->setUnnamedAddr(true);
1828   return GV;
1829 }
1830 
1831 /// GetAddrOfConstantString - Returns a pointer to a character array
1832 /// containing the literal. This contents are exactly that of the
1833 /// given string, i.e. it will not be null terminated automatically;
1834 /// see GetAddrOfConstantCString. Note that whether the result is
1835 /// actually a pointer to an LLVM constant depends on
1836 /// Feature.WriteableStrings.
1837 ///
1838 /// The result has pointer to array type.
1839 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1840                                                        const char *GlobalName) {
1841   bool IsConstant = !Features.WritableStrings;
1842 
1843   // Get the default prefix if a name wasn't specified.
1844   if (!GlobalName)
1845     GlobalName = ".str";
1846 
1847   // Don't share any string literals if strings aren't constant.
1848   if (!IsConstant)
1849     return GenerateStringLiteral(str, false, *this, GlobalName);
1850 
1851   llvm::StringMapEntry<llvm::Constant *> &Entry =
1852     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1853 
1854   if (Entry.getValue())
1855     return Entry.getValue();
1856 
1857   // Create a global variable for this.
1858   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1859   Entry.setValue(C);
1860   return C;
1861 }
1862 
1863 /// GetAddrOfConstantCString - Returns a pointer to a character
1864 /// array containing the literal and a terminating '\-'
1865 /// character. The result has pointer to array type.
1866 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1867                                                         const char *GlobalName){
1868   return GetAddrOfConstantString(str + '\0', GlobalName);
1869 }
1870 
1871 /// EmitObjCPropertyImplementations - Emit information for synthesized
1872 /// properties for an implementation.
1873 void CodeGenModule::EmitObjCPropertyImplementations(const
1874                                                     ObjCImplementationDecl *D) {
1875   for (ObjCImplementationDecl::propimpl_iterator
1876          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1877     ObjCPropertyImplDecl *PID = *i;
1878 
1879     // Dynamic is just for type-checking.
1880     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1881       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1882 
1883       // Determine which methods need to be implemented, some may have
1884       // been overridden. Note that ::isSynthesized is not the method
1885       // we want, that just indicates if the decl came from a
1886       // property. What we want to know is if the method is defined in
1887       // this implementation.
1888       if (!D->getInstanceMethod(PD->getGetterName()))
1889         CodeGenFunction(*this).GenerateObjCGetter(
1890                                  const_cast<ObjCImplementationDecl *>(D), PID);
1891       if (!PD->isReadOnly() &&
1892           !D->getInstanceMethod(PD->getSetterName()))
1893         CodeGenFunction(*this).GenerateObjCSetter(
1894                                  const_cast<ObjCImplementationDecl *>(D), PID);
1895     }
1896   }
1897 }
1898 
1899 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1900 /// for an implementation.
1901 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1902   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1903     return;
1904   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1905   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1906   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1907   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1908   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1909                                                   D->getLocation(),
1910                                                   D->getLocation(), cxxSelector,
1911                                                   getContext().VoidTy, 0,
1912                                                   DC, true, false, true, false,
1913                                                   ObjCMethodDecl::Required);
1914   D->addInstanceMethod(DTORMethod);
1915   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1916 
1917   II = &getContext().Idents.get(".cxx_construct");
1918   cxxSelector = getContext().Selectors.getSelector(0, &II);
1919   // The constructor returns 'self'.
1920   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1921                                                 D->getLocation(),
1922                                                 D->getLocation(), cxxSelector,
1923                                                 getContext().getObjCIdType(), 0,
1924                                                 DC, true, false, true, false,
1925                                                 ObjCMethodDecl::Required);
1926   D->addInstanceMethod(CTORMethod);
1927   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1928 
1929 
1930 }
1931 
1932 /// EmitNamespace - Emit all declarations in a namespace.
1933 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1934   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1935        I != E; ++I)
1936     EmitTopLevelDecl(*I);
1937 }
1938 
1939 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1940 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1941   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1942       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1943     ErrorUnsupported(LSD, "linkage spec");
1944     return;
1945   }
1946 
1947   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1948        I != E; ++I)
1949     EmitTopLevelDecl(*I);
1950 }
1951 
1952 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1953 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1954   // If an error has occurred, stop code generation, but continue
1955   // parsing and semantic analysis (to ensure all warnings and errors
1956   // are emitted).
1957   if (Diags.hasErrorOccurred())
1958     return;
1959 
1960   // Ignore dependent declarations.
1961   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1962     return;
1963 
1964   switch (D->getKind()) {
1965   case Decl::CXXConversion:
1966   case Decl::CXXMethod:
1967   case Decl::Function:
1968     // Skip function templates
1969     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1970       return;
1971 
1972     EmitGlobal(cast<FunctionDecl>(D));
1973     break;
1974 
1975   case Decl::Var:
1976     EmitGlobal(cast<VarDecl>(D));
1977     break;
1978 
1979   // C++ Decls
1980   case Decl::Namespace:
1981     EmitNamespace(cast<NamespaceDecl>(D));
1982     break;
1983     // No code generation needed.
1984   case Decl::UsingShadow:
1985   case Decl::Using:
1986   case Decl::UsingDirective:
1987   case Decl::ClassTemplate:
1988   case Decl::FunctionTemplate:
1989   case Decl::NamespaceAlias:
1990     break;
1991   case Decl::CXXConstructor:
1992     // Skip function templates
1993     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1994       return;
1995 
1996     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1997     break;
1998   case Decl::CXXDestructor:
1999     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2000     break;
2001 
2002   case Decl::StaticAssert:
2003     // Nothing to do.
2004     break;
2005 
2006   // Objective-C Decls
2007 
2008   // Forward declarations, no (immediate) code generation.
2009   case Decl::ObjCClass:
2010   case Decl::ObjCForwardProtocol:
2011   case Decl::ObjCInterface:
2012     break;
2013 
2014     case Decl::ObjCCategory: {
2015       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2016       if (CD->IsClassExtension() && CD->hasSynthBitfield())
2017         Context.ResetObjCLayout(CD->getClassInterface());
2018       break;
2019     }
2020 
2021 
2022   case Decl::ObjCProtocol:
2023     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2024     break;
2025 
2026   case Decl::ObjCCategoryImpl:
2027     // Categories have properties but don't support synthesize so we
2028     // can ignore them here.
2029     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2030     break;
2031 
2032   case Decl::ObjCImplementation: {
2033     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2034     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2035       Context.ResetObjCLayout(OMD->getClassInterface());
2036     EmitObjCPropertyImplementations(OMD);
2037     EmitObjCIvarInitializations(OMD);
2038     Runtime->GenerateClass(OMD);
2039     break;
2040   }
2041   case Decl::ObjCMethod: {
2042     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2043     // If this is not a prototype, emit the body.
2044     if (OMD->getBody())
2045       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2046     break;
2047   }
2048   case Decl::ObjCCompatibleAlias:
2049     // compatibility-alias is a directive and has no code gen.
2050     break;
2051 
2052   case Decl::LinkageSpec:
2053     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2054     break;
2055 
2056   case Decl::FileScopeAsm: {
2057     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2058     llvm::StringRef AsmString = AD->getAsmString()->getString();
2059 
2060     const std::string &S = getModule().getModuleInlineAsm();
2061     if (S.empty())
2062       getModule().setModuleInlineAsm(AsmString);
2063     else
2064       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2065     break;
2066   }
2067 
2068   default:
2069     // Make sure we handled everything we should, every other kind is a
2070     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2071     // function. Need to recode Decl::Kind to do that easily.
2072     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2073   }
2074 }
2075 
2076 /// Turns the given pointer into a constant.
2077 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2078                                           const void *Ptr) {
2079   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2080   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2081   return llvm::ConstantInt::get(i64, PtrInt);
2082 }
2083 
2084 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2085                                    llvm::NamedMDNode *&GlobalMetadata,
2086                                    GlobalDecl D,
2087                                    llvm::GlobalValue *Addr) {
2088   if (!GlobalMetadata)
2089     GlobalMetadata =
2090       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2091 
2092   // TODO: should we report variant information for ctors/dtors?
2093   llvm::Value *Ops[] = {
2094     Addr,
2095     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2096   };
2097   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2098 }
2099 
2100 /// Emits metadata nodes associating all the global values in the
2101 /// current module with the Decls they came from.  This is useful for
2102 /// projects using IR gen as a subroutine.
2103 ///
2104 /// Since there's currently no way to associate an MDNode directly
2105 /// with an llvm::GlobalValue, we create a global named metadata
2106 /// with the name 'clang.global.decl.ptrs'.
2107 void CodeGenModule::EmitDeclMetadata() {
2108   llvm::NamedMDNode *GlobalMetadata = 0;
2109 
2110   // StaticLocalDeclMap
2111   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2112          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2113        I != E; ++I) {
2114     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2115     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2116   }
2117 }
2118 
2119 /// Emits metadata nodes for all the local variables in the current
2120 /// function.
2121 void CodeGenFunction::EmitDeclMetadata() {
2122   if (LocalDeclMap.empty()) return;
2123 
2124   llvm::LLVMContext &Context = getLLVMContext();
2125 
2126   // Find the unique metadata ID for this name.
2127   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2128 
2129   llvm::NamedMDNode *GlobalMetadata = 0;
2130 
2131   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2132          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2133     const Decl *D = I->first;
2134     llvm::Value *Addr = I->second;
2135 
2136     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2137       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2138       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2139     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2140       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2141       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2142     }
2143   }
2144 }
2145 
2146 ///@name Custom Runtime Function Interfaces
2147 ///@{
2148 //
2149 // FIXME: These can be eliminated once we can have clients just get the required
2150 // AST nodes from the builtin tables.
2151 
2152 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2153   if (BlockObjectDispose)
2154     return BlockObjectDispose;
2155 
2156   // If we saw an explicit decl, use that.
2157   if (BlockObjectDisposeDecl) {
2158     return BlockObjectDispose = GetAddrOfFunction(
2159       BlockObjectDisposeDecl,
2160       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2161   }
2162 
2163   // Otherwise construct the function by hand.
2164   const llvm::FunctionType *FTy;
2165   std::vector<const llvm::Type*> ArgTys;
2166   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2167   ArgTys.push_back(PtrToInt8Ty);
2168   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2169   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2170   return BlockObjectDispose =
2171     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2172 }
2173 
2174 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2175   if (BlockObjectAssign)
2176     return BlockObjectAssign;
2177 
2178   // If we saw an explicit decl, use that.
2179   if (BlockObjectAssignDecl) {
2180     return BlockObjectAssign = GetAddrOfFunction(
2181       BlockObjectAssignDecl,
2182       getTypes().GetFunctionType(BlockObjectAssignDecl));
2183   }
2184 
2185   // Otherwise construct the function by hand.
2186   const llvm::FunctionType *FTy;
2187   std::vector<const llvm::Type*> ArgTys;
2188   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2189   ArgTys.push_back(PtrToInt8Ty);
2190   ArgTys.push_back(PtrToInt8Ty);
2191   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2192   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2193   return BlockObjectAssign =
2194     CreateRuntimeFunction(FTy, "_Block_object_assign");
2195 }
2196 
2197 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2198   if (NSConcreteGlobalBlock)
2199     return NSConcreteGlobalBlock;
2200 
2201   // If we saw an explicit decl, use that.
2202   if (NSConcreteGlobalBlockDecl) {
2203     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2204       NSConcreteGlobalBlockDecl,
2205       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2206   }
2207 
2208   // Otherwise construct the variable by hand.
2209   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2210     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2211 }
2212 
2213 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2214   if (NSConcreteStackBlock)
2215     return NSConcreteStackBlock;
2216 
2217   // If we saw an explicit decl, use that.
2218   if (NSConcreteStackBlockDecl) {
2219     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2220       NSConcreteStackBlockDecl,
2221       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2222   }
2223 
2224   // Otherwise construct the variable by hand.
2225   return NSConcreteStackBlock = CreateRuntimeVariable(
2226     PtrToInt8Ty, "_NSConcreteStackBlock");
2227 }
2228 
2229 ///@}
2230