1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), Types(*this), VTables(*this), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 llvm::LLVMContext &LLVMContext = M.getContext(); 349 VoidTy = llvm::Type::getVoidTy(LLVMContext); 350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 354 HalfTy = llvm::Type::getHalfTy(LLVMContext); 355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 356 FloatTy = llvm::Type::getFloatTy(LLVMContext); 357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 359 PointerAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 361 .getQuantity(); 362 SizeSizeInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 364 IntAlignInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 366 CharTy = 367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 369 IntPtrTy = llvm::IntegerType::get(LLVMContext, 370 C.getTargetInfo().getMaxPointerWidth()); 371 Int8PtrTy = llvm::PointerType::get(LLVMContext, 372 C.getTargetAddressSpace(LangAS::Default)); 373 const llvm::DataLayout &DL = M.getDataLayout(); 374 AllocaInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 376 GlobalsInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 378 ConstGlobalsPtrTy = llvm::PointerType::get( 379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 381 382 // Build C++20 Module initializers. 383 // TODO: Add Microsoft here once we know the mangling required for the 384 // initializers. 385 CXX20ModuleInits = 386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 387 ItaniumMangleContext::MK_Itanium; 388 389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 390 391 if (LangOpts.ObjC) 392 createObjCRuntime(); 393 if (LangOpts.OpenCL) 394 createOpenCLRuntime(); 395 if (LangOpts.OpenMP) 396 createOpenMPRuntime(); 397 if (LangOpts.CUDA) 398 createCUDARuntime(); 399 if (LangOpts.HLSL) 400 createHLSLRuntime(); 401 402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 406 getLangOpts(), getCXXABI().getMangleContext())); 407 408 // If debug info or coverage generation is enabled, create the CGDebugInfo 409 // object. 410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 411 CodeGenOpts.CoverageNotesFile.size() || 412 CodeGenOpts.CoverageDataFile.size()) 413 DebugInfo.reset(new CGDebugInfo(*this)); 414 415 Block.GlobalUniqueCount = 0; 416 417 if (C.getLangOpts().ObjC) 418 ObjCData.reset(new ObjCEntrypoints()); 419 420 if (CodeGenOpts.hasProfileClangUse()) { 421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 422 CodeGenOpts.ProfileInstrumentUsePath, *FS, 423 CodeGenOpts.ProfileRemappingFile); 424 // We're checking for profile read errors in CompilerInvocation, so if 425 // there was an error it should've already been caught. If it hasn't been 426 // somehow, trip an assertion. 427 assert(ReaderOrErr); 428 PGOReader = std::move(ReaderOrErr.get()); 429 } 430 431 // If coverage mapping generation is enabled, create the 432 // CoverageMappingModuleGen object. 433 if (CodeGenOpts.CoverageMapping) 434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 435 436 // Generate the module name hash here if needed. 437 if (CodeGenOpts.UniqueInternalLinkageNames && 438 !getModule().getSourceFileName().empty()) { 439 std::string Path = getModule().getSourceFileName(); 440 // Check if a path substitution is needed from the MacroPrefixMap. 441 for (const auto &Entry : LangOpts.MacroPrefixMap) 442 if (Path.rfind(Entry.first, 0) != std::string::npos) { 443 Path = Entry.second + Path.substr(Entry.first.size()); 444 break; 445 } 446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 447 } 448 449 // Record mregparm value now so it is visible through all of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 } 454 455 CodeGenModule::~CodeGenModule() {} 456 457 void CodeGenModule::createObjCRuntime() { 458 // This is just isGNUFamily(), but we want to force implementors of 459 // new ABIs to decide how best to do this. 460 switch (LangOpts.ObjCRuntime.getKind()) { 461 case ObjCRuntime::GNUstep: 462 case ObjCRuntime::GCC: 463 case ObjCRuntime::ObjFW: 464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 465 return; 466 467 case ObjCRuntime::FragileMacOSX: 468 case ObjCRuntime::MacOSX: 469 case ObjCRuntime::iOS: 470 case ObjCRuntime::WatchOS: 471 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 472 return; 473 } 474 llvm_unreachable("bad runtime kind"); 475 } 476 477 void CodeGenModule::createOpenCLRuntime() { 478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 479 } 480 481 void CodeGenModule::createOpenMPRuntime() { 482 // Select a specialized code generation class based on the target, if any. 483 // If it does not exist use the default implementation. 484 switch (getTriple().getArch()) { 485 case llvm::Triple::nvptx: 486 case llvm::Triple::nvptx64: 487 case llvm::Triple::amdgcn: 488 assert(getLangOpts().OpenMPIsTargetDevice && 489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 491 break; 492 default: 493 if (LangOpts.OpenMPSimd) 494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 495 else 496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 497 break; 498 } 499 } 500 501 void CodeGenModule::createCUDARuntime() { 502 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 503 } 504 505 void CodeGenModule::createHLSLRuntime() { 506 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 507 } 508 509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 510 Replacements[Name] = C; 511 } 512 513 void CodeGenModule::applyReplacements() { 514 for (auto &I : Replacements) { 515 StringRef MangledName = I.first; 516 llvm::Constant *Replacement = I.second; 517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 518 if (!Entry) 519 continue; 520 auto *OldF = cast<llvm::Function>(Entry); 521 auto *NewF = dyn_cast<llvm::Function>(Replacement); 522 if (!NewF) { 523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 525 } else { 526 auto *CE = cast<llvm::ConstantExpr>(Replacement); 527 assert(CE->getOpcode() == llvm::Instruction::BitCast || 528 CE->getOpcode() == llvm::Instruction::GetElementPtr); 529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 530 } 531 } 532 533 // Replace old with new, but keep the old order. 534 OldF->replaceAllUsesWith(Replacement); 535 if (NewF) { 536 NewF->removeFromParent(); 537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 538 NewF); 539 } 540 OldF->eraseFromParent(); 541 } 542 } 543 544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 545 GlobalValReplacements.push_back(std::make_pair(GV, C)); 546 } 547 548 void CodeGenModule::applyGlobalValReplacements() { 549 for (auto &I : GlobalValReplacements) { 550 llvm::GlobalValue *GV = I.first; 551 llvm::Constant *C = I.second; 552 553 GV->replaceAllUsesWith(C); 554 GV->eraseFromParent(); 555 } 556 } 557 558 // This is only used in aliases that we created and we know they have a 559 // linear structure. 560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 561 const llvm::Constant *C; 562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 563 C = GA->getAliasee(); 564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 565 C = GI->getResolver(); 566 else 567 return GV; 568 569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 570 if (!AliaseeGV) 571 return nullptr; 572 573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 574 if (FinalGV == GV) 575 return nullptr; 576 577 return FinalGV; 578 } 579 580 static bool checkAliasedGlobal( 581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 584 SourceRange AliasRange) { 585 GV = getAliasedGlobal(Alias); 586 if (!GV) { 587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 588 return false; 589 } 590 591 if (GV->hasCommonLinkage()) { 592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 594 Diags.Report(Location, diag::err_alias_to_common); 595 return false; 596 } 597 } 598 599 if (GV->isDeclaration()) { 600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 601 Diags.Report(Location, diag::note_alias_requires_mangled_name) 602 << IsIFunc << IsIFunc; 603 // Provide a note if the given function is not found and exists as a 604 // mangled name. 605 for (const auto &[Decl, Name] : MangledDeclNames) { 606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 607 if (ND->getName() == GV->getName()) { 608 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 609 << Name 610 << FixItHint::CreateReplacement( 611 AliasRange, 612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 613 .str()); 614 } 615 } 616 } 617 return false; 618 } 619 620 if (IsIFunc) { 621 // Check resolver function type. 622 const auto *F = dyn_cast<llvm::Function>(GV); 623 if (!F) { 624 Diags.Report(Location, diag::err_alias_to_undefined) 625 << IsIFunc << IsIFunc; 626 return false; 627 } 628 629 llvm::FunctionType *FTy = F->getFunctionType(); 630 if (!FTy->getReturnType()->isPointerTy()) { 631 Diags.Report(Location, diag::err_ifunc_resolver_return); 632 return false; 633 } 634 } 635 636 return true; 637 } 638 639 // Emit a warning if toc-data attribute is requested for global variables that 640 // have aliases and remove the toc-data attribute. 641 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 642 const CodeGenOptions &CodeGenOpts, 643 DiagnosticsEngine &Diags, 644 SourceLocation Location) { 645 if (GVar->hasAttribute("toc-data")) { 646 auto GVId = GVar->getName(); 647 // Is this a global variable specified by the user as local? 648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 649 Diags.Report(Location, diag::warn_toc_unsupported_type) 650 << GVId << "the variable has an alias"; 651 } 652 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 653 llvm::AttributeSet NewAttributes = 654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 655 GVar->setAttributes(NewAttributes); 656 } 657 } 658 659 void CodeGenModule::checkAliases() { 660 // Check if the constructed aliases are well formed. It is really unfortunate 661 // that we have to do this in CodeGen, but we only construct mangled names 662 // and aliases during codegen. 663 bool Error = false; 664 DiagnosticsEngine &Diags = getDiags(); 665 for (const GlobalDecl &GD : Aliases) { 666 const auto *D = cast<ValueDecl>(GD.getDecl()); 667 SourceLocation Location; 668 SourceRange Range; 669 bool IsIFunc = D->hasAttr<IFuncAttr>(); 670 if (const Attr *A = D->getDefiningAttr()) { 671 Location = A->getLocation(); 672 Range = A->getRange(); 673 } else 674 llvm_unreachable("Not an alias or ifunc?"); 675 676 StringRef MangledName = getMangledName(GD); 677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 678 const llvm::GlobalValue *GV = nullptr; 679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 680 MangledDeclNames, Range)) { 681 Error = true; 682 continue; 683 } 684 685 if (getContext().getTargetInfo().getTriple().isOSAIX()) 686 if (const llvm::GlobalVariable *GVar = 687 dyn_cast<const llvm::GlobalVariable>(GV)) 688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 689 getCodeGenOpts(), Diags, Location); 690 691 llvm::Constant *Aliasee = 692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 693 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 694 695 llvm::GlobalValue *AliaseeGV; 696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 698 else 699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 700 701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 702 StringRef AliasSection = SA->getName(); 703 if (AliasSection != AliaseeGV->getSection()) 704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 705 << AliasSection << IsIFunc << IsIFunc; 706 } 707 708 // We have to handle alias to weak aliases in here. LLVM itself disallows 709 // this since the object semantics would not match the IL one. For 710 // compatibility with gcc we implement it by just pointing the alias 711 // to its aliasee's aliasee. We also warn, since the user is probably 712 // expecting the link to be weak. 713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 714 if (GA->isInterposable()) { 715 Diags.Report(Location, diag::warn_alias_to_weak_alias) 716 << GV->getName() << GA->getName() << IsIFunc; 717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 718 GA->getAliasee(), Alias->getType()); 719 720 if (IsIFunc) 721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 722 else 723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 724 } 725 } 726 // ifunc resolvers are usually implemented to run before sanitizer 727 // initialization. Disable instrumentation to prevent the ordering issue. 728 if (IsIFunc) 729 cast<llvm::Function>(Aliasee)->addFnAttr( 730 llvm::Attribute::DisableSanitizerInstrumentation); 731 } 732 if (!Error) 733 return; 734 735 for (const GlobalDecl &GD : Aliases) { 736 StringRef MangledName = getMangledName(GD); 737 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 738 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 739 Alias->eraseFromParent(); 740 } 741 } 742 743 void CodeGenModule::clear() { 744 DeferredDeclsToEmit.clear(); 745 EmittedDeferredDecls.clear(); 746 DeferredAnnotations.clear(); 747 if (OpenMPRuntime) 748 OpenMPRuntime->clear(); 749 } 750 751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 752 StringRef MainFile) { 753 if (!hasDiagnostics()) 754 return; 755 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 756 if (MainFile.empty()) 757 MainFile = "<stdin>"; 758 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 759 } else { 760 if (Mismatched > 0) 761 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 762 763 if (Missing > 0) 764 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 765 } 766 } 767 768 static std::optional<llvm::GlobalValue::VisibilityTypes> 769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 770 // Map to LLVM visibility. 771 switch (K) { 772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 773 return std::nullopt; 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 775 return llvm::GlobalValue::DefaultVisibility; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 777 return llvm::GlobalValue::HiddenVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 779 return llvm::GlobalValue::ProtectedVisibility; 780 } 781 llvm_unreachable("unknown option value!"); 782 } 783 784 void setLLVMVisibility(llvm::GlobalValue &GV, 785 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 786 if (!V) 787 return; 788 789 // Reset DSO locality before setting the visibility. This removes 790 // any effects that visibility options and annotations may have 791 // had on the DSO locality. Setting the visibility will implicitly set 792 // appropriate globals to DSO Local; however, this will be pessimistic 793 // w.r.t. to the normal compiler IRGen. 794 GV.setDSOLocal(false); 795 GV.setVisibility(*V); 796 } 797 798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 799 llvm::Module &M) { 800 if (!LO.VisibilityFromDLLStorageClass) 801 return; 802 803 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 804 getLLVMVisibility(LO.getDLLExportVisibility()); 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> 807 NoDLLStorageClassVisibility = 808 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 809 810 std::optional<llvm::GlobalValue::VisibilityTypes> 811 ExternDeclDLLImportVisibility = 812 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 813 814 std::optional<llvm::GlobalValue::VisibilityTypes> 815 ExternDeclNoDLLStorageClassVisibility = 816 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 817 818 for (llvm::GlobalValue &GV : M.global_values()) { 819 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 820 continue; 821 822 if (GV.isDeclarationForLinker()) 823 setLLVMVisibility(GV, GV.getDLLStorageClass() == 824 llvm::GlobalValue::DLLImportStorageClass 825 ? ExternDeclDLLImportVisibility 826 : ExternDeclNoDLLStorageClassVisibility); 827 else 828 setLLVMVisibility(GV, GV.getDLLStorageClass() == 829 llvm::GlobalValue::DLLExportStorageClass 830 ? DLLExportVisibility 831 : NoDLLStorageClassVisibility); 832 833 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 834 } 835 } 836 837 static bool isStackProtectorOn(const LangOptions &LangOpts, 838 const llvm::Triple &Triple, 839 clang::LangOptions::StackProtectorMode Mode) { 840 if (Triple.isAMDGPU() || Triple.isNVPTX()) 841 return false; 842 return LangOpts.getStackProtector() == Mode; 843 } 844 845 void CodeGenModule::Release() { 846 Module *Primary = getContext().getCurrentNamedModule(); 847 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 848 EmitModuleInitializers(Primary); 849 EmitDeferred(); 850 DeferredDecls.insert(EmittedDeferredDecls.begin(), 851 EmittedDeferredDecls.end()); 852 EmittedDeferredDecls.clear(); 853 EmitVTablesOpportunistically(); 854 applyGlobalValReplacements(); 855 applyReplacements(); 856 emitMultiVersionFunctions(); 857 858 if (Context.getLangOpts().IncrementalExtensions && 859 GlobalTopLevelStmtBlockInFlight.first) { 860 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 861 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 862 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 863 } 864 865 // Module implementations are initialized the same way as a regular TU that 866 // imports one or more modules. 867 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 868 EmitCXXModuleInitFunc(Primary); 869 else 870 EmitCXXGlobalInitFunc(); 871 EmitCXXGlobalCleanUpFunc(); 872 registerGlobalDtorsWithAtExit(); 873 EmitCXXThreadLocalInitFunc(); 874 if (ObjCRuntime) 875 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 876 AddGlobalCtor(ObjCInitFunction); 877 if (Context.getLangOpts().CUDA && CUDARuntime) { 878 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 879 AddGlobalCtor(CudaCtorFunction); 880 } 881 if (OpenMPRuntime) { 882 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 883 OpenMPRuntime->clear(); 884 } 885 if (PGOReader) { 886 getModule().setProfileSummary( 887 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 888 llvm::ProfileSummary::PSK_Instr); 889 if (PGOStats.hasDiagnostics()) 890 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 891 } 892 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 893 return L.LexOrder < R.LexOrder; 894 }); 895 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 896 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 897 EmitGlobalAnnotations(); 898 EmitStaticExternCAliases(); 899 checkAliases(); 900 EmitDeferredUnusedCoverageMappings(); 901 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 902 CodeGenPGO(*this).setProfileVersion(getModule()); 903 if (CoverageMapping) 904 CoverageMapping->emit(); 905 if (CodeGenOpts.SanitizeCfiCrossDso) { 906 CodeGenFunction(*this).EmitCfiCheckFail(); 907 CodeGenFunction(*this).EmitCfiCheckStub(); 908 } 909 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 910 finalizeKCFITypes(); 911 emitAtAvailableLinkGuard(); 912 if (Context.getTargetInfo().getTriple().isWasm()) 913 EmitMainVoidAlias(); 914 915 if (getTriple().isAMDGPU() || 916 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 917 // Emit amdhsa_code_object_version module flag, which is code object version 918 // times 100. 919 if (getTarget().getTargetOpts().CodeObjectVersion != 920 llvm::CodeObjectVersionKind::COV_None) { 921 getModule().addModuleFlag(llvm::Module::Error, 922 "amdhsa_code_object_version", 923 getTarget().getTargetOpts().CodeObjectVersion); 924 } 925 926 // Currently, "-mprintf-kind" option is only supported for HIP 927 if (LangOpts.HIP) { 928 auto *MDStr = llvm::MDString::get( 929 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 930 TargetOptions::AMDGPUPrintfKind::Hostcall) 931 ? "hostcall" 932 : "buffered"); 933 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 934 MDStr); 935 } 936 } 937 938 // Emit a global array containing all external kernels or device variables 939 // used by host functions and mark it as used for CUDA/HIP. This is necessary 940 // to get kernels or device variables in archives linked in even if these 941 // kernels or device variables are only used in host functions. 942 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 943 SmallVector<llvm::Constant *, 8> UsedArray; 944 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 945 GlobalDecl GD; 946 if (auto *FD = dyn_cast<FunctionDecl>(D)) 947 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 948 else 949 GD = GlobalDecl(D); 950 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 951 GetAddrOfGlobal(GD), Int8PtrTy)); 952 } 953 954 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 955 956 auto *GV = new llvm::GlobalVariable( 957 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 958 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 959 addCompilerUsedGlobal(GV); 960 } 961 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 962 // Emit a unique ID so that host and device binaries from the same 963 // compilation unit can be associated. 964 auto *GV = new llvm::GlobalVariable( 965 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 966 llvm::Constant::getNullValue(Int8Ty), 967 "__hip_cuid_" + getContext().getCUIDHash()); 968 addCompilerUsedGlobal(GV); 969 } 970 emitLLVMUsed(); 971 if (SanStats) 972 SanStats->finish(); 973 974 if (CodeGenOpts.Autolink && 975 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 976 EmitModuleLinkOptions(); 977 } 978 979 // On ELF we pass the dependent library specifiers directly to the linker 980 // without manipulating them. This is in contrast to other platforms where 981 // they are mapped to a specific linker option by the compiler. This 982 // difference is a result of the greater variety of ELF linkers and the fact 983 // that ELF linkers tend to handle libraries in a more complicated fashion 984 // than on other platforms. This forces us to defer handling the dependent 985 // libs to the linker. 986 // 987 // CUDA/HIP device and host libraries are different. Currently there is no 988 // way to differentiate dependent libraries for host or device. Existing 989 // usage of #pragma comment(lib, *) is intended for host libraries on 990 // Windows. Therefore emit llvm.dependent-libraries only for host. 991 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 992 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 993 for (auto *MD : ELFDependentLibraries) 994 NMD->addOperand(MD); 995 } 996 997 if (CodeGenOpts.DwarfVersion) { 998 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 999 CodeGenOpts.DwarfVersion); 1000 } 1001 1002 if (CodeGenOpts.Dwarf64) 1003 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1004 1005 if (Context.getLangOpts().SemanticInterposition) 1006 // Require various optimization to respect semantic interposition. 1007 getModule().setSemanticInterposition(true); 1008 1009 if (CodeGenOpts.EmitCodeView) { 1010 // Indicate that we want CodeView in the metadata. 1011 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1012 } 1013 if (CodeGenOpts.CodeViewGHash) { 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1015 } 1016 if (CodeGenOpts.ControlFlowGuard) { 1017 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1018 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1019 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1020 // Function ID tables for Control Flow Guard (cfguard=1). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1022 } 1023 if (CodeGenOpts.EHContGuard) { 1024 // Function ID tables for EH Continuation Guard. 1025 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1026 } 1027 if (Context.getLangOpts().Kernel) { 1028 // Note if we are compiling with /kernel. 1029 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1030 } 1031 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1032 // We don't support LTO with 2 with different StrictVTablePointers 1033 // FIXME: we could support it by stripping all the information introduced 1034 // by StrictVTablePointers. 1035 1036 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1037 1038 llvm::Metadata *Ops[2] = { 1039 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1040 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1041 llvm::Type::getInt32Ty(VMContext), 1))}; 1042 1043 getModule().addModuleFlag(llvm::Module::Require, 1044 "StrictVTablePointersRequirement", 1045 llvm::MDNode::get(VMContext, Ops)); 1046 } 1047 if (getModuleDebugInfo()) 1048 // We support a single version in the linked module. The LLVM 1049 // parser will drop debug info with a different version number 1050 // (and warn about it, too). 1051 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1052 llvm::DEBUG_METADATA_VERSION); 1053 1054 // We need to record the widths of enums and wchar_t, so that we can generate 1055 // the correct build attributes in the ARM backend. wchar_size is also used by 1056 // TargetLibraryInfo. 1057 uint64_t WCharWidth = 1058 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1059 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1060 1061 if (getTriple().isOSzOS()) { 1062 getModule().addModuleFlag(llvm::Module::Warning, 1063 "zos_product_major_version", 1064 uint32_t(CLANG_VERSION_MAJOR)); 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_minor_version", 1067 uint32_t(CLANG_VERSION_MINOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1069 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1070 std::string ProductId = getClangVendor() + "clang"; 1071 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1072 llvm::MDString::get(VMContext, ProductId)); 1073 1074 // Record the language because we need it for the PPA2. 1075 StringRef lang_str = languageToString( 1076 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1077 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1078 llvm::MDString::get(VMContext, lang_str)); 1079 1080 time_t TT = PreprocessorOpts.SourceDateEpoch 1081 ? *PreprocessorOpts.SourceDateEpoch 1082 : std::time(nullptr); 1083 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1084 static_cast<uint64_t>(TT)); 1085 1086 // Multiple modes will be supported here. 1087 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1088 llvm::MDString::get(VMContext, "ascii")); 1089 } 1090 1091 llvm::Triple T = Context.getTargetInfo().getTriple(); 1092 if (T.isARM() || T.isThumb()) { 1093 // The minimum width of an enum in bytes 1094 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1095 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1096 } 1097 1098 if (T.isRISCV()) { 1099 StringRef ABIStr = Target.getABI(); 1100 llvm::LLVMContext &Ctx = TheModule.getContext(); 1101 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1102 llvm::MDString::get(Ctx, ABIStr)); 1103 1104 // Add the canonical ISA string as metadata so the backend can set the ELF 1105 // attributes correctly. We use AppendUnique so LTO will keep all of the 1106 // unique ISA strings that were linked together. 1107 const std::vector<std::string> &Features = 1108 getTarget().getTargetOpts().Features; 1109 auto ParseResult = 1110 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1111 if (!errorToBool(ParseResult.takeError())) 1112 getModule().addModuleFlag( 1113 llvm::Module::AppendUnique, "riscv-isa", 1114 llvm::MDNode::get( 1115 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1116 } 1117 1118 if (CodeGenOpts.SanitizeCfiCrossDso) { 1119 // Indicate that we want cross-DSO control flow integrity checks. 1120 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1121 } 1122 1123 if (CodeGenOpts.WholeProgramVTables) { 1124 // Indicate whether VFE was enabled for this module, so that the 1125 // vcall_visibility metadata added under whole program vtables is handled 1126 // appropriately in the optimizer. 1127 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1128 CodeGenOpts.VirtualFunctionElimination); 1129 } 1130 1131 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1132 getModule().addModuleFlag(llvm::Module::Override, 1133 "CFI Canonical Jump Tables", 1134 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1135 } 1136 1137 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) { 1138 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers", 1139 1); 1140 } 1141 1142 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1143 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1144 // KCFI assumes patchable-function-prefix is the same for all indirectly 1145 // called functions. Store the expected offset for code generation. 1146 if (CodeGenOpts.PatchableFunctionEntryOffset) 1147 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1148 CodeGenOpts.PatchableFunctionEntryOffset); 1149 } 1150 1151 if (CodeGenOpts.CFProtectionReturn && 1152 Target.checkCFProtectionReturnSupported(getDiags())) { 1153 // Indicate that we want to instrument return control flow protection. 1154 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1155 1); 1156 } 1157 1158 if (CodeGenOpts.CFProtectionBranch && 1159 Target.checkCFProtectionBranchSupported(getDiags())) { 1160 // Indicate that we want to instrument branch control flow protection. 1161 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1162 1); 1163 } 1164 1165 if (CodeGenOpts.FunctionReturnThunks) 1166 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1167 1168 if (CodeGenOpts.IndirectBranchCSPrefix) 1169 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1170 1171 // Add module metadata for return address signing (ignoring 1172 // non-leaf/all) and stack tagging. These are actually turned on by function 1173 // attributes, but we use module metadata to emit build attributes. This is 1174 // needed for LTO, where the function attributes are inside bitcode 1175 // serialised into a global variable by the time build attributes are 1176 // emitted, so we can't access them. LTO objects could be compiled with 1177 // different flags therefore module flags are set to "Min" behavior to achieve 1178 // the same end result of the normal build where e.g BTI is off if any object 1179 // doesn't support it. 1180 if (Context.getTargetInfo().hasFeature("ptrauth") && 1181 LangOpts.getSignReturnAddressScope() != 1182 LangOptions::SignReturnAddressScopeKind::None) 1183 getModule().addModuleFlag(llvm::Module::Override, 1184 "sign-return-address-buildattr", 1); 1185 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1186 getModule().addModuleFlag(llvm::Module::Override, 1187 "tag-stack-memory-buildattr", 1); 1188 1189 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1190 if (LangOpts.BranchTargetEnforcement) 1191 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1192 1); 1193 if (LangOpts.BranchProtectionPAuthLR) 1194 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1195 1); 1196 if (LangOpts.GuardedControlStack) 1197 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1198 if (LangOpts.hasSignReturnAddress()) 1199 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1200 if (LangOpts.isSignReturnAddressScopeAll()) 1201 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1202 1); 1203 if (!LangOpts.isSignReturnAddressWithAKey()) 1204 getModule().addModuleFlag(llvm::Module::Min, 1205 "sign-return-address-with-bkey", 1); 1206 1207 if (getTriple().isOSLinux()) { 1208 assert(getTriple().isOSBinFormatELF()); 1209 using namespace llvm::ELF; 1210 uint64_t PAuthABIVersion = 1211 (LangOpts.PointerAuthIntrinsics 1212 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1213 (LangOpts.PointerAuthCalls 1214 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1215 (LangOpts.PointerAuthReturns 1216 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1217 (LangOpts.PointerAuthAuthTraps 1218 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1219 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1220 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1221 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1222 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1223 (LangOpts.PointerAuthInitFini 1224 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1225 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1226 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1227 (LangOpts.PointerAuthELFGOT 1228 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1229 (LangOpts.PointerAuthIndirectGotos 1230 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1231 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1232 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1233 (LangOpts.PointerAuthFunctionTypeDiscrimination 1234 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1235 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1236 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1237 "Update when new enum items are defined"); 1238 if (PAuthABIVersion != 0) { 1239 getModule().addModuleFlag(llvm::Module::Error, 1240 "aarch64-elf-pauthabi-platform", 1241 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1242 getModule().addModuleFlag(llvm::Module::Error, 1243 "aarch64-elf-pauthabi-version", 1244 PAuthABIVersion); 1245 } 1246 } 1247 } 1248 1249 if (CodeGenOpts.StackClashProtector) 1250 getModule().addModuleFlag( 1251 llvm::Module::Override, "probe-stack", 1252 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1253 1254 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1255 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1256 CodeGenOpts.StackProbeSize); 1257 1258 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1259 llvm::LLVMContext &Ctx = TheModule.getContext(); 1260 getModule().addModuleFlag( 1261 llvm::Module::Error, "MemProfProfileFilename", 1262 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1263 } 1264 1265 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1266 // Indicate whether __nvvm_reflect should be configured to flush denormal 1267 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1268 // property.) 1269 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1270 CodeGenOpts.FP32DenormalMode.Output != 1271 llvm::DenormalMode::IEEE); 1272 } 1273 1274 if (LangOpts.EHAsynch) 1275 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1276 1277 // Indicate whether this Module was compiled with -fopenmp 1278 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1279 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1280 if (getLangOpts().OpenMPIsTargetDevice) 1281 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1282 LangOpts.OpenMP); 1283 1284 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1285 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1286 EmitOpenCLMetadata(); 1287 // Emit SPIR version. 1288 if (getTriple().isSPIR()) { 1289 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1290 // opencl.spir.version named metadata. 1291 // C++ for OpenCL has a distinct mapping for version compatibility with 1292 // OpenCL. 1293 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1294 llvm::Metadata *SPIRVerElts[] = { 1295 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1296 Int32Ty, Version / 100)), 1297 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1298 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1299 llvm::NamedMDNode *SPIRVerMD = 1300 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1301 llvm::LLVMContext &Ctx = TheModule.getContext(); 1302 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1303 } 1304 } 1305 1306 // HLSL related end of code gen work items. 1307 if (LangOpts.HLSL) 1308 getHLSLRuntime().finishCodeGen(); 1309 1310 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1311 assert(PLevel < 3 && "Invalid PIC Level"); 1312 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1313 if (Context.getLangOpts().PIE) 1314 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1315 } 1316 1317 if (getCodeGenOpts().CodeModel.size() > 0) { 1318 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1319 .Case("tiny", llvm::CodeModel::Tiny) 1320 .Case("small", llvm::CodeModel::Small) 1321 .Case("kernel", llvm::CodeModel::Kernel) 1322 .Case("medium", llvm::CodeModel::Medium) 1323 .Case("large", llvm::CodeModel::Large) 1324 .Default(~0u); 1325 if (CM != ~0u) { 1326 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1327 getModule().setCodeModel(codeModel); 1328 1329 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1330 Context.getTargetInfo().getTriple().getArch() == 1331 llvm::Triple::x86_64) { 1332 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1333 } 1334 } 1335 } 1336 1337 if (CodeGenOpts.NoPLT) 1338 getModule().setRtLibUseGOT(); 1339 if (getTriple().isOSBinFormatELF() && 1340 CodeGenOpts.DirectAccessExternalData != 1341 getModule().getDirectAccessExternalData()) { 1342 getModule().setDirectAccessExternalData( 1343 CodeGenOpts.DirectAccessExternalData); 1344 } 1345 if (CodeGenOpts.UnwindTables) 1346 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1347 1348 switch (CodeGenOpts.getFramePointer()) { 1349 case CodeGenOptions::FramePointerKind::None: 1350 // 0 ("none") is the default. 1351 break; 1352 case CodeGenOptions::FramePointerKind::Reserved: 1353 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1354 break; 1355 case CodeGenOptions::FramePointerKind::NonLeaf: 1356 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1357 break; 1358 case CodeGenOptions::FramePointerKind::All: 1359 getModule().setFramePointer(llvm::FramePointerKind::All); 1360 break; 1361 } 1362 1363 SimplifyPersonality(); 1364 1365 if (getCodeGenOpts().EmitDeclMetadata) 1366 EmitDeclMetadata(); 1367 1368 if (getCodeGenOpts().CoverageNotesFile.size() || 1369 getCodeGenOpts().CoverageDataFile.size()) 1370 EmitCoverageFile(); 1371 1372 if (CGDebugInfo *DI = getModuleDebugInfo()) 1373 DI->finalize(); 1374 1375 if (getCodeGenOpts().EmitVersionIdentMetadata) 1376 EmitVersionIdentMetadata(); 1377 1378 if (!getCodeGenOpts().RecordCommandLine.empty()) 1379 EmitCommandLineMetadata(); 1380 1381 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1382 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1383 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1384 getModule().setStackProtectorGuardReg( 1385 getCodeGenOpts().StackProtectorGuardReg); 1386 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1387 getModule().setStackProtectorGuardSymbol( 1388 getCodeGenOpts().StackProtectorGuardSymbol); 1389 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1390 getModule().setStackProtectorGuardOffset( 1391 getCodeGenOpts().StackProtectorGuardOffset); 1392 if (getCodeGenOpts().StackAlignment) 1393 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1394 if (getCodeGenOpts().SkipRaxSetup) 1395 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1396 if (getLangOpts().RegCall4) 1397 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1398 1399 if (getContext().getTargetInfo().getMaxTLSAlign()) 1400 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1401 getContext().getTargetInfo().getMaxTLSAlign()); 1402 1403 getTargetCodeGenInfo().emitTargetGlobals(*this); 1404 1405 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1406 1407 EmitBackendOptionsMetadata(getCodeGenOpts()); 1408 1409 // If there is device offloading code embed it in the host now. 1410 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1411 1412 // Set visibility from DLL storage class 1413 // We do this at the end of LLVM IR generation; after any operation 1414 // that might affect the DLL storage class or the visibility, and 1415 // before anything that might act on these. 1416 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1417 1418 // Check the tail call symbols are truly undefined. 1419 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1420 for (auto &I : MustTailCallUndefinedGlobals) { 1421 if (!I.first->isDefined()) 1422 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1423 else { 1424 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1425 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1426 if (!Entry || Entry->isWeakForLinker() || 1427 Entry->isDeclarationForLinker()) 1428 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1429 } 1430 } 1431 } 1432 } 1433 1434 void CodeGenModule::EmitOpenCLMetadata() { 1435 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1436 // opencl.ocl.version named metadata node. 1437 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1438 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1439 1440 auto EmitVersion = [this](StringRef MDName, int Version) { 1441 llvm::Metadata *OCLVerElts[] = { 1442 llvm::ConstantAsMetadata::get( 1443 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1444 llvm::ConstantAsMetadata::get( 1445 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1446 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1447 llvm::LLVMContext &Ctx = TheModule.getContext(); 1448 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1449 }; 1450 1451 EmitVersion("opencl.ocl.version", CLVersion); 1452 if (LangOpts.OpenCLCPlusPlus) { 1453 // In addition to the OpenCL compatible version, emit the C++ version. 1454 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1455 } 1456 } 1457 1458 void CodeGenModule::EmitBackendOptionsMetadata( 1459 const CodeGenOptions &CodeGenOpts) { 1460 if (getTriple().isRISCV()) { 1461 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1462 CodeGenOpts.SmallDataLimit); 1463 } 1464 } 1465 1466 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1467 // Make sure that this type is translated. 1468 Types.UpdateCompletedType(TD); 1469 } 1470 1471 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1472 // Make sure that this type is translated. 1473 Types.RefreshTypeCacheForClass(RD); 1474 } 1475 1476 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1477 if (!TBAA) 1478 return nullptr; 1479 return TBAA->getTypeInfo(QTy); 1480 } 1481 1482 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1483 if (!TBAA) 1484 return TBAAAccessInfo(); 1485 if (getLangOpts().CUDAIsDevice) { 1486 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1487 // access info. 1488 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1489 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1490 nullptr) 1491 return TBAAAccessInfo(); 1492 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1493 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1494 nullptr) 1495 return TBAAAccessInfo(); 1496 } 1497 } 1498 return TBAA->getAccessInfo(AccessType); 1499 } 1500 1501 TBAAAccessInfo 1502 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1503 if (!TBAA) 1504 return TBAAAccessInfo(); 1505 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1506 } 1507 1508 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1509 if (!TBAA) 1510 return nullptr; 1511 return TBAA->getTBAAStructInfo(QTy); 1512 } 1513 1514 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1515 if (!TBAA) 1516 return nullptr; 1517 return TBAA->getBaseTypeInfo(QTy); 1518 } 1519 1520 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1521 if (!TBAA) 1522 return nullptr; 1523 return TBAA->getAccessTagInfo(Info); 1524 } 1525 1526 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1527 TBAAAccessInfo TargetInfo) { 1528 if (!TBAA) 1529 return TBAAAccessInfo(); 1530 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1531 } 1532 1533 TBAAAccessInfo 1534 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1535 TBAAAccessInfo InfoB) { 1536 if (!TBAA) 1537 return TBAAAccessInfo(); 1538 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1539 } 1540 1541 TBAAAccessInfo 1542 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1543 TBAAAccessInfo SrcInfo) { 1544 if (!TBAA) 1545 return TBAAAccessInfo(); 1546 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1547 } 1548 1549 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1550 TBAAAccessInfo TBAAInfo) { 1551 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1552 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1553 } 1554 1555 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1556 llvm::Instruction *I, const CXXRecordDecl *RD) { 1557 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1558 llvm::MDNode::get(getLLVMContext(), {})); 1559 } 1560 1561 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1562 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1563 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1564 } 1565 1566 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1567 /// specified stmt yet. 1568 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1569 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1570 "cannot compile this %0 yet"); 1571 std::string Msg = Type; 1572 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1573 << Msg << S->getSourceRange(); 1574 } 1575 1576 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1577 /// specified decl yet. 1578 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1579 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1580 "cannot compile this %0 yet"); 1581 std::string Msg = Type; 1582 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1583 } 1584 1585 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1586 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1587 } 1588 1589 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1590 const NamedDecl *D) const { 1591 // Internal definitions always have default visibility. 1592 if (GV->hasLocalLinkage()) { 1593 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1594 return; 1595 } 1596 if (!D) 1597 return; 1598 1599 // Set visibility for definitions, and for declarations if requested globally 1600 // or set explicitly. 1601 LinkageInfo LV = D->getLinkageAndVisibility(); 1602 1603 // OpenMP declare target variables must be visible to the host so they can 1604 // be registered. We require protected visibility unless the variable has 1605 // the DT_nohost modifier and does not need to be registered. 1606 if (Context.getLangOpts().OpenMP && 1607 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1608 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1609 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1610 OMPDeclareTargetDeclAttr::DT_NoHost && 1611 LV.getVisibility() == HiddenVisibility) { 1612 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1613 return; 1614 } 1615 1616 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1617 // Reject incompatible dlllstorage and visibility annotations. 1618 if (!LV.isVisibilityExplicit()) 1619 return; 1620 if (GV->hasDLLExportStorageClass()) { 1621 if (LV.getVisibility() == HiddenVisibility) 1622 getDiags().Report(D->getLocation(), 1623 diag::err_hidden_visibility_dllexport); 1624 } else if (LV.getVisibility() != DefaultVisibility) { 1625 getDiags().Report(D->getLocation(), 1626 diag::err_non_default_visibility_dllimport); 1627 } 1628 return; 1629 } 1630 1631 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1632 !GV->isDeclarationForLinker()) 1633 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1634 } 1635 1636 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1637 llvm::GlobalValue *GV) { 1638 if (GV->hasLocalLinkage()) 1639 return true; 1640 1641 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1642 return true; 1643 1644 // DLLImport explicitly marks the GV as external. 1645 if (GV->hasDLLImportStorageClass()) 1646 return false; 1647 1648 const llvm::Triple &TT = CGM.getTriple(); 1649 const auto &CGOpts = CGM.getCodeGenOpts(); 1650 if (TT.isWindowsGNUEnvironment()) { 1651 // In MinGW, variables without DLLImport can still be automatically 1652 // imported from a DLL by the linker; don't mark variables that 1653 // potentially could come from another DLL as DSO local. 1654 1655 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1656 // (and this actually happens in the public interface of libstdc++), so 1657 // such variables can't be marked as DSO local. (Native TLS variables 1658 // can't be dllimported at all, though.) 1659 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1660 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1661 CGOpts.AutoImport) 1662 return false; 1663 } 1664 1665 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1666 // remain unresolved in the link, they can be resolved to zero, which is 1667 // outside the current DSO. 1668 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1669 return false; 1670 1671 // Every other GV is local on COFF. 1672 // Make an exception for windows OS in the triple: Some firmware builds use 1673 // *-win32-macho triples. This (accidentally?) produced windows relocations 1674 // without GOT tables in older clang versions; Keep this behaviour. 1675 // FIXME: even thread local variables? 1676 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1677 return true; 1678 1679 // Only handle COFF and ELF for now. 1680 if (!TT.isOSBinFormatELF()) 1681 return false; 1682 1683 // If this is not an executable, don't assume anything is local. 1684 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1685 const auto &LOpts = CGM.getLangOpts(); 1686 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1687 // On ELF, if -fno-semantic-interposition is specified and the target 1688 // supports local aliases, there will be neither CC1 1689 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1690 // dso_local on the function if using a local alias is preferable (can avoid 1691 // PLT indirection). 1692 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1693 return false; 1694 return !(CGM.getLangOpts().SemanticInterposition || 1695 CGM.getLangOpts().HalfNoSemanticInterposition); 1696 } 1697 1698 // A definition cannot be preempted from an executable. 1699 if (!GV->isDeclarationForLinker()) 1700 return true; 1701 1702 // Most PIC code sequences that assume that a symbol is local cannot produce a 1703 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1704 // depended, it seems worth it to handle it here. 1705 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1706 return false; 1707 1708 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1709 if (TT.isPPC64()) 1710 return false; 1711 1712 if (CGOpts.DirectAccessExternalData) { 1713 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1714 // for non-thread-local variables. If the symbol is not defined in the 1715 // executable, a copy relocation will be needed at link time. dso_local is 1716 // excluded for thread-local variables because they generally don't support 1717 // copy relocations. 1718 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1719 if (!Var->isThreadLocal()) 1720 return true; 1721 1722 // -fno-pic sets dso_local on a function declaration to allow direct 1723 // accesses when taking its address (similar to a data symbol). If the 1724 // function is not defined in the executable, a canonical PLT entry will be 1725 // needed at link time. -fno-direct-access-external-data can avoid the 1726 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1727 // it could just cause trouble without providing perceptible benefits. 1728 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1729 return true; 1730 } 1731 1732 // If we can use copy relocations we can assume it is local. 1733 1734 // Otherwise don't assume it is local. 1735 return false; 1736 } 1737 1738 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1739 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1740 } 1741 1742 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1743 GlobalDecl GD) const { 1744 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1745 // C++ destructors have a few C++ ABI specific special cases. 1746 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1747 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1748 return; 1749 } 1750 setDLLImportDLLExport(GV, D); 1751 } 1752 1753 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1754 const NamedDecl *D) const { 1755 if (D && D->isExternallyVisible()) { 1756 if (D->hasAttr<DLLImportAttr>()) 1757 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1758 else if ((D->hasAttr<DLLExportAttr>() || 1759 shouldMapVisibilityToDLLExport(D)) && 1760 !GV->isDeclarationForLinker()) 1761 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1762 } 1763 } 1764 1765 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1766 GlobalDecl GD) const { 1767 setDLLImportDLLExport(GV, GD); 1768 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1769 } 1770 1771 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1772 const NamedDecl *D) const { 1773 setDLLImportDLLExport(GV, D); 1774 setGVPropertiesAux(GV, D); 1775 } 1776 1777 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1778 const NamedDecl *D) const { 1779 setGlobalVisibility(GV, D); 1780 setDSOLocal(GV); 1781 GV->setPartition(CodeGenOpts.SymbolPartition); 1782 } 1783 1784 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1785 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1786 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1787 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1788 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1789 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1790 } 1791 1792 llvm::GlobalVariable::ThreadLocalMode 1793 CodeGenModule::GetDefaultLLVMTLSModel() const { 1794 switch (CodeGenOpts.getDefaultTLSModel()) { 1795 case CodeGenOptions::GeneralDynamicTLSModel: 1796 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1797 case CodeGenOptions::LocalDynamicTLSModel: 1798 return llvm::GlobalVariable::LocalDynamicTLSModel; 1799 case CodeGenOptions::InitialExecTLSModel: 1800 return llvm::GlobalVariable::InitialExecTLSModel; 1801 case CodeGenOptions::LocalExecTLSModel: 1802 return llvm::GlobalVariable::LocalExecTLSModel; 1803 } 1804 llvm_unreachable("Invalid TLS model!"); 1805 } 1806 1807 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1808 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1809 1810 llvm::GlobalValue::ThreadLocalMode TLM; 1811 TLM = GetDefaultLLVMTLSModel(); 1812 1813 // Override the TLS model if it is explicitly specified. 1814 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1815 TLM = GetLLVMTLSModel(Attr->getModel()); 1816 } 1817 1818 GV->setThreadLocalMode(TLM); 1819 } 1820 1821 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1822 StringRef Name) { 1823 const TargetInfo &Target = CGM.getTarget(); 1824 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1825 } 1826 1827 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1828 const CPUSpecificAttr *Attr, 1829 unsigned CPUIndex, 1830 raw_ostream &Out) { 1831 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1832 // supported. 1833 if (Attr) 1834 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1835 else if (CGM.getTarget().supportsIFunc()) 1836 Out << ".resolver"; 1837 } 1838 1839 // Returns true if GD is a function decl with internal linkage and 1840 // needs a unique suffix after the mangled name. 1841 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1842 CodeGenModule &CGM) { 1843 const Decl *D = GD.getDecl(); 1844 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1845 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1846 } 1847 1848 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1849 const NamedDecl *ND, 1850 bool OmitMultiVersionMangling = false) { 1851 SmallString<256> Buffer; 1852 llvm::raw_svector_ostream Out(Buffer); 1853 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1854 if (!CGM.getModuleNameHash().empty()) 1855 MC.needsUniqueInternalLinkageNames(); 1856 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1857 if (ShouldMangle) 1858 MC.mangleName(GD.getWithDecl(ND), Out); 1859 else { 1860 IdentifierInfo *II = ND->getIdentifier(); 1861 assert(II && "Attempt to mangle unnamed decl."); 1862 const auto *FD = dyn_cast<FunctionDecl>(ND); 1863 1864 if (FD && 1865 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1866 if (CGM.getLangOpts().RegCall4) 1867 Out << "__regcall4__" << II->getName(); 1868 else 1869 Out << "__regcall3__" << II->getName(); 1870 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1871 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1872 Out << "__device_stub__" << II->getName(); 1873 } else { 1874 Out << II->getName(); 1875 } 1876 } 1877 1878 // Check if the module name hash should be appended for internal linkage 1879 // symbols. This should come before multi-version target suffixes are 1880 // appended. This is to keep the name and module hash suffix of the 1881 // internal linkage function together. The unique suffix should only be 1882 // added when name mangling is done to make sure that the final name can 1883 // be properly demangled. For example, for C functions without prototypes, 1884 // name mangling is not done and the unique suffix should not be appeneded 1885 // then. 1886 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1887 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1888 "Hash computed when not explicitly requested"); 1889 Out << CGM.getModuleNameHash(); 1890 } 1891 1892 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1893 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1894 switch (FD->getMultiVersionKind()) { 1895 case MultiVersionKind::CPUDispatch: 1896 case MultiVersionKind::CPUSpecific: 1897 AppendCPUSpecificCPUDispatchMangling(CGM, 1898 FD->getAttr<CPUSpecificAttr>(), 1899 GD.getMultiVersionIndex(), Out); 1900 break; 1901 case MultiVersionKind::Target: { 1902 auto *Attr = FD->getAttr<TargetAttr>(); 1903 assert(Attr && "Expected TargetAttr to be present " 1904 "for attribute mangling"); 1905 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1906 Info.appendAttributeMangling(Attr, Out); 1907 break; 1908 } 1909 case MultiVersionKind::TargetVersion: { 1910 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1911 assert(Attr && "Expected TargetVersionAttr to be present " 1912 "for attribute mangling"); 1913 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1914 Info.appendAttributeMangling(Attr, Out); 1915 break; 1916 } 1917 case MultiVersionKind::TargetClones: { 1918 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1919 assert(Attr && "Expected TargetClonesAttr to be present " 1920 "for attribute mangling"); 1921 unsigned Index = GD.getMultiVersionIndex(); 1922 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1923 Info.appendAttributeMangling(Attr, Index, Out); 1924 break; 1925 } 1926 case MultiVersionKind::None: 1927 llvm_unreachable("None multiversion type isn't valid here"); 1928 } 1929 } 1930 1931 // Make unique name for device side static file-scope variable for HIP. 1932 if (CGM.getContext().shouldExternalize(ND) && 1933 CGM.getLangOpts().GPURelocatableDeviceCode && 1934 CGM.getLangOpts().CUDAIsDevice) 1935 CGM.printPostfixForExternalizedDecl(Out, ND); 1936 1937 return std::string(Out.str()); 1938 } 1939 1940 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1941 const FunctionDecl *FD, 1942 StringRef &CurName) { 1943 if (!FD->isMultiVersion()) 1944 return; 1945 1946 // Get the name of what this would be without the 'target' attribute. This 1947 // allows us to lookup the version that was emitted when this wasn't a 1948 // multiversion function. 1949 std::string NonTargetName = 1950 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1951 GlobalDecl OtherGD; 1952 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1953 assert(OtherGD.getCanonicalDecl() 1954 .getDecl() 1955 ->getAsFunction() 1956 ->isMultiVersion() && 1957 "Other GD should now be a multiversioned function"); 1958 // OtherFD is the version of this function that was mangled BEFORE 1959 // becoming a MultiVersion function. It potentially needs to be updated. 1960 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1961 .getDecl() 1962 ->getAsFunction() 1963 ->getMostRecentDecl(); 1964 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1965 // This is so that if the initial version was already the 'default' 1966 // version, we don't try to update it. 1967 if (OtherName != NonTargetName) { 1968 // Remove instead of erase, since others may have stored the StringRef 1969 // to this. 1970 const auto ExistingRecord = Manglings.find(NonTargetName); 1971 if (ExistingRecord != std::end(Manglings)) 1972 Manglings.remove(&(*ExistingRecord)); 1973 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1974 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1975 Result.first->first(); 1976 // If this is the current decl is being created, make sure we update the name. 1977 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1978 CurName = OtherNameRef; 1979 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1980 Entry->setName(OtherName); 1981 } 1982 } 1983 } 1984 1985 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1986 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1987 1988 // Some ABIs don't have constructor variants. Make sure that base and 1989 // complete constructors get mangled the same. 1990 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1991 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1992 CXXCtorType OrigCtorType = GD.getCtorType(); 1993 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1994 if (OrigCtorType == Ctor_Base) 1995 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1996 } 1997 } 1998 1999 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 2000 // static device variable depends on whether the variable is referenced by 2001 // a host or device host function. Therefore the mangled name cannot be 2002 // cached. 2003 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 2004 auto FoundName = MangledDeclNames.find(CanonicalGD); 2005 if (FoundName != MangledDeclNames.end()) 2006 return FoundName->second; 2007 } 2008 2009 // Keep the first result in the case of a mangling collision. 2010 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2011 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2012 2013 // Ensure either we have different ABIs between host and device compilations, 2014 // says host compilation following MSVC ABI but device compilation follows 2015 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2016 // mangling should be the same after name stubbing. The later checking is 2017 // very important as the device kernel name being mangled in host-compilation 2018 // is used to resolve the device binaries to be executed. Inconsistent naming 2019 // result in undefined behavior. Even though we cannot check that naming 2020 // directly between host- and device-compilations, the host- and 2021 // device-mangling in host compilation could help catching certain ones. 2022 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2023 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2024 (getContext().getAuxTargetInfo() && 2025 (getContext().getAuxTargetInfo()->getCXXABI() != 2026 getContext().getTargetInfo().getCXXABI())) || 2027 getCUDARuntime().getDeviceSideName(ND) == 2028 getMangledNameImpl( 2029 *this, 2030 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2031 ND)); 2032 2033 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2034 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2035 } 2036 2037 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2038 const BlockDecl *BD) { 2039 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2040 const Decl *D = GD.getDecl(); 2041 2042 SmallString<256> Buffer; 2043 llvm::raw_svector_ostream Out(Buffer); 2044 if (!D) 2045 MangleCtx.mangleGlobalBlock(BD, 2046 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2047 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2048 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2049 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2050 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2051 else 2052 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2053 2054 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2055 return Result.first->first(); 2056 } 2057 2058 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2059 auto it = MangledDeclNames.begin(); 2060 while (it != MangledDeclNames.end()) { 2061 if (it->second == Name) 2062 return it->first; 2063 it++; 2064 } 2065 return GlobalDecl(); 2066 } 2067 2068 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2069 return getModule().getNamedValue(Name); 2070 } 2071 2072 /// AddGlobalCtor - Add a function to the list that will be called before 2073 /// main() runs. 2074 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2075 unsigned LexOrder, 2076 llvm::Constant *AssociatedData) { 2077 // FIXME: Type coercion of void()* types. 2078 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2079 } 2080 2081 /// AddGlobalDtor - Add a function to the list that will be called 2082 /// when the module is unloaded. 2083 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2084 bool IsDtorAttrFunc) { 2085 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2086 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2087 DtorsUsingAtExit[Priority].push_back(Dtor); 2088 return; 2089 } 2090 2091 // FIXME: Type coercion of void()* types. 2092 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2093 } 2094 2095 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2096 if (Fns.empty()) return; 2097 2098 const PointerAuthSchema &InitFiniAuthSchema = 2099 getCodeGenOpts().PointerAuth.InitFiniPointers; 2100 2101 // Ctor function type is ptr. 2102 llvm::PointerType *PtrTy = llvm::PointerType::get( 2103 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2104 2105 // Get the type of a ctor entry, { i32, ptr, ptr }. 2106 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2107 2108 // Construct the constructor and destructor arrays. 2109 ConstantInitBuilder Builder(*this); 2110 auto Ctors = Builder.beginArray(CtorStructTy); 2111 for (const auto &I : Fns) { 2112 auto Ctor = Ctors.beginStruct(CtorStructTy); 2113 Ctor.addInt(Int32Ty, I.Priority); 2114 if (InitFiniAuthSchema) { 2115 llvm::Constant *StorageAddress = 2116 (InitFiniAuthSchema.isAddressDiscriminated() 2117 ? llvm::ConstantExpr::getIntToPtr( 2118 llvm::ConstantInt::get( 2119 IntPtrTy, 2120 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2121 PtrTy) 2122 : nullptr); 2123 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2124 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2125 llvm::ConstantInt::get( 2126 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2127 Ctor.add(SignedCtorPtr); 2128 } else { 2129 Ctor.add(I.Initializer); 2130 } 2131 if (I.AssociatedData) 2132 Ctor.add(I.AssociatedData); 2133 else 2134 Ctor.addNullPointer(PtrTy); 2135 Ctor.finishAndAddTo(Ctors); 2136 } 2137 2138 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2139 /*constant*/ false, 2140 llvm::GlobalValue::AppendingLinkage); 2141 2142 // The LTO linker doesn't seem to like it when we set an alignment 2143 // on appending variables. Take it off as a workaround. 2144 List->setAlignment(std::nullopt); 2145 2146 Fns.clear(); 2147 } 2148 2149 llvm::GlobalValue::LinkageTypes 2150 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2151 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2152 2153 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2154 2155 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2156 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2157 2158 return getLLVMLinkageForDeclarator(D, Linkage); 2159 } 2160 2161 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2162 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2163 if (!MDS) return nullptr; 2164 2165 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2166 } 2167 2168 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2169 if (auto *FnType = T->getAs<FunctionProtoType>()) 2170 T = getContext().getFunctionType( 2171 FnType->getReturnType(), FnType->getParamTypes(), 2172 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2173 2174 std::string OutName; 2175 llvm::raw_string_ostream Out(OutName); 2176 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2177 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2178 2179 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2180 Out << ".normalized"; 2181 2182 return llvm::ConstantInt::get(Int32Ty, 2183 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2184 } 2185 2186 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2187 const CGFunctionInfo &Info, 2188 llvm::Function *F, bool IsThunk) { 2189 unsigned CallingConv; 2190 llvm::AttributeList PAL; 2191 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2192 /*AttrOnCallSite=*/false, IsThunk); 2193 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2194 getTarget().getTriple().isWindowsArm64EC()) { 2195 SourceLocation Loc; 2196 if (const Decl *D = GD.getDecl()) 2197 Loc = D->getLocation(); 2198 2199 Error(Loc, "__vectorcall calling convention is not currently supported"); 2200 } 2201 F->setAttributes(PAL); 2202 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2203 } 2204 2205 static void removeImageAccessQualifier(std::string& TyName) { 2206 std::string ReadOnlyQual("__read_only"); 2207 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2208 if (ReadOnlyPos != std::string::npos) 2209 // "+ 1" for the space after access qualifier. 2210 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2211 else { 2212 std::string WriteOnlyQual("__write_only"); 2213 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2214 if (WriteOnlyPos != std::string::npos) 2215 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2216 else { 2217 std::string ReadWriteQual("__read_write"); 2218 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2219 if (ReadWritePos != std::string::npos) 2220 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2221 } 2222 } 2223 } 2224 2225 // Returns the address space id that should be produced to the 2226 // kernel_arg_addr_space metadata. This is always fixed to the ids 2227 // as specified in the SPIR 2.0 specification in order to differentiate 2228 // for example in clGetKernelArgInfo() implementation between the address 2229 // spaces with targets without unique mapping to the OpenCL address spaces 2230 // (basically all single AS CPUs). 2231 static unsigned ArgInfoAddressSpace(LangAS AS) { 2232 switch (AS) { 2233 case LangAS::opencl_global: 2234 return 1; 2235 case LangAS::opencl_constant: 2236 return 2; 2237 case LangAS::opencl_local: 2238 return 3; 2239 case LangAS::opencl_generic: 2240 return 4; // Not in SPIR 2.0 specs. 2241 case LangAS::opencl_global_device: 2242 return 5; 2243 case LangAS::opencl_global_host: 2244 return 6; 2245 default: 2246 return 0; // Assume private. 2247 } 2248 } 2249 2250 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2251 const FunctionDecl *FD, 2252 CodeGenFunction *CGF) { 2253 assert(((FD && CGF) || (!FD && !CGF)) && 2254 "Incorrect use - FD and CGF should either be both null or not!"); 2255 // Create MDNodes that represent the kernel arg metadata. 2256 // Each MDNode is a list in the form of "key", N number of values which is 2257 // the same number of values as their are kernel arguments. 2258 2259 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2260 2261 // MDNode for the kernel argument address space qualifiers. 2262 SmallVector<llvm::Metadata *, 8> addressQuals; 2263 2264 // MDNode for the kernel argument access qualifiers (images only). 2265 SmallVector<llvm::Metadata *, 8> accessQuals; 2266 2267 // MDNode for the kernel argument type names. 2268 SmallVector<llvm::Metadata *, 8> argTypeNames; 2269 2270 // MDNode for the kernel argument base type names. 2271 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2272 2273 // MDNode for the kernel argument type qualifiers. 2274 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2275 2276 // MDNode for the kernel argument names. 2277 SmallVector<llvm::Metadata *, 8> argNames; 2278 2279 if (FD && CGF) 2280 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2281 const ParmVarDecl *parm = FD->getParamDecl(i); 2282 // Get argument name. 2283 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2284 2285 if (!getLangOpts().OpenCL) 2286 continue; 2287 QualType ty = parm->getType(); 2288 std::string typeQuals; 2289 2290 // Get image and pipe access qualifier: 2291 if (ty->isImageType() || ty->isPipeType()) { 2292 const Decl *PDecl = parm; 2293 if (const auto *TD = ty->getAs<TypedefType>()) 2294 PDecl = TD->getDecl(); 2295 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2296 if (A && A->isWriteOnly()) 2297 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2298 else if (A && A->isReadWrite()) 2299 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2300 else 2301 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2302 } else 2303 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2304 2305 auto getTypeSpelling = [&](QualType Ty) { 2306 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2307 2308 if (Ty.isCanonical()) { 2309 StringRef typeNameRef = typeName; 2310 // Turn "unsigned type" to "utype" 2311 if (typeNameRef.consume_front("unsigned ")) 2312 return std::string("u") + typeNameRef.str(); 2313 if (typeNameRef.consume_front("signed ")) 2314 return typeNameRef.str(); 2315 } 2316 2317 return typeName; 2318 }; 2319 2320 if (ty->isPointerType()) { 2321 QualType pointeeTy = ty->getPointeeType(); 2322 2323 // Get address qualifier. 2324 addressQuals.push_back( 2325 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2326 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2327 2328 // Get argument type name. 2329 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2330 std::string baseTypeName = 2331 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2332 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2333 argBaseTypeNames.push_back( 2334 llvm::MDString::get(VMContext, baseTypeName)); 2335 2336 // Get argument type qualifiers: 2337 if (ty.isRestrictQualified()) 2338 typeQuals = "restrict"; 2339 if (pointeeTy.isConstQualified() || 2340 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2341 typeQuals += typeQuals.empty() ? "const" : " const"; 2342 if (pointeeTy.isVolatileQualified()) 2343 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2344 } else { 2345 uint32_t AddrSpc = 0; 2346 bool isPipe = ty->isPipeType(); 2347 if (ty->isImageType() || isPipe) 2348 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2349 2350 addressQuals.push_back( 2351 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2352 2353 // Get argument type name. 2354 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2355 std::string typeName = getTypeSpelling(ty); 2356 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2357 2358 // Remove access qualifiers on images 2359 // (as they are inseparable from type in clang implementation, 2360 // but OpenCL spec provides a special query to get access qualifier 2361 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2362 if (ty->isImageType()) { 2363 removeImageAccessQualifier(typeName); 2364 removeImageAccessQualifier(baseTypeName); 2365 } 2366 2367 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2368 argBaseTypeNames.push_back( 2369 llvm::MDString::get(VMContext, baseTypeName)); 2370 2371 if (isPipe) 2372 typeQuals = "pipe"; 2373 } 2374 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2375 } 2376 2377 if (getLangOpts().OpenCL) { 2378 Fn->setMetadata("kernel_arg_addr_space", 2379 llvm::MDNode::get(VMContext, addressQuals)); 2380 Fn->setMetadata("kernel_arg_access_qual", 2381 llvm::MDNode::get(VMContext, accessQuals)); 2382 Fn->setMetadata("kernel_arg_type", 2383 llvm::MDNode::get(VMContext, argTypeNames)); 2384 Fn->setMetadata("kernel_arg_base_type", 2385 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2386 Fn->setMetadata("kernel_arg_type_qual", 2387 llvm::MDNode::get(VMContext, argTypeQuals)); 2388 } 2389 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2390 getCodeGenOpts().HIPSaveKernelArgName) 2391 Fn->setMetadata("kernel_arg_name", 2392 llvm::MDNode::get(VMContext, argNames)); 2393 } 2394 2395 /// Determines whether the language options require us to model 2396 /// unwind exceptions. We treat -fexceptions as mandating this 2397 /// except under the fragile ObjC ABI with only ObjC exceptions 2398 /// enabled. This means, for example, that C with -fexceptions 2399 /// enables this. 2400 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2401 // If exceptions are completely disabled, obviously this is false. 2402 if (!LangOpts.Exceptions) return false; 2403 2404 // If C++ exceptions are enabled, this is true. 2405 if (LangOpts.CXXExceptions) return true; 2406 2407 // If ObjC exceptions are enabled, this depends on the ABI. 2408 if (LangOpts.ObjCExceptions) { 2409 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2410 } 2411 2412 return true; 2413 } 2414 2415 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2416 const CXXMethodDecl *MD) { 2417 // Check that the type metadata can ever actually be used by a call. 2418 if (!CGM.getCodeGenOpts().LTOUnit || 2419 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2420 return false; 2421 2422 // Only functions whose address can be taken with a member function pointer 2423 // need this sort of type metadata. 2424 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2425 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2426 } 2427 2428 SmallVector<const CXXRecordDecl *, 0> 2429 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2430 llvm::SetVector<const CXXRecordDecl *> MostBases; 2431 2432 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2433 CollectMostBases = [&](const CXXRecordDecl *RD) { 2434 if (RD->getNumBases() == 0) 2435 MostBases.insert(RD); 2436 for (const CXXBaseSpecifier &B : RD->bases()) 2437 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2438 }; 2439 CollectMostBases(RD); 2440 return MostBases.takeVector(); 2441 } 2442 2443 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2444 llvm::Function *F) { 2445 llvm::AttrBuilder B(F->getContext()); 2446 2447 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2448 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2449 2450 if (CodeGenOpts.StackClashProtector) 2451 B.addAttribute("probe-stack", "inline-asm"); 2452 2453 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2454 B.addAttribute("stack-probe-size", 2455 std::to_string(CodeGenOpts.StackProbeSize)); 2456 2457 if (!hasUnwindExceptions(LangOpts)) 2458 B.addAttribute(llvm::Attribute::NoUnwind); 2459 2460 if (D && D->hasAttr<NoStackProtectorAttr>()) 2461 ; // Do nothing. 2462 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2463 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2464 B.addAttribute(llvm::Attribute::StackProtectStrong); 2465 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2466 B.addAttribute(llvm::Attribute::StackProtect); 2467 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2468 B.addAttribute(llvm::Attribute::StackProtectStrong); 2469 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2470 B.addAttribute(llvm::Attribute::StackProtectReq); 2471 2472 if (!D) { 2473 // If we don't have a declaration to control inlining, the function isn't 2474 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2475 // disabled, mark the function as noinline. 2476 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2477 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2478 B.addAttribute(llvm::Attribute::NoInline); 2479 2480 F->addFnAttrs(B); 2481 return; 2482 } 2483 2484 // Handle SME attributes that apply to function definitions, 2485 // rather than to function prototypes. 2486 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2487 B.addAttribute("aarch64_pstate_sm_body"); 2488 2489 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2490 if (Attr->isNewZA()) 2491 B.addAttribute("aarch64_new_za"); 2492 if (Attr->isNewZT0()) 2493 B.addAttribute("aarch64_new_zt0"); 2494 } 2495 2496 // Track whether we need to add the optnone LLVM attribute, 2497 // starting with the default for this optimization level. 2498 bool ShouldAddOptNone = 2499 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2500 // We can't add optnone in the following cases, it won't pass the verifier. 2501 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2502 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2503 2504 // Add optnone, but do so only if the function isn't always_inline. 2505 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2506 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2507 B.addAttribute(llvm::Attribute::OptimizeNone); 2508 2509 // OptimizeNone implies noinline; we should not be inlining such functions. 2510 B.addAttribute(llvm::Attribute::NoInline); 2511 2512 // We still need to handle naked functions even though optnone subsumes 2513 // much of their semantics. 2514 if (D->hasAttr<NakedAttr>()) 2515 B.addAttribute(llvm::Attribute::Naked); 2516 2517 // OptimizeNone wins over OptimizeForSize and MinSize. 2518 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2519 F->removeFnAttr(llvm::Attribute::MinSize); 2520 } else if (D->hasAttr<NakedAttr>()) { 2521 // Naked implies noinline: we should not be inlining such functions. 2522 B.addAttribute(llvm::Attribute::Naked); 2523 B.addAttribute(llvm::Attribute::NoInline); 2524 } else if (D->hasAttr<NoDuplicateAttr>()) { 2525 B.addAttribute(llvm::Attribute::NoDuplicate); 2526 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2527 // Add noinline if the function isn't always_inline. 2528 B.addAttribute(llvm::Attribute::NoInline); 2529 } else if (D->hasAttr<AlwaysInlineAttr>() && 2530 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2531 // (noinline wins over always_inline, and we can't specify both in IR) 2532 B.addAttribute(llvm::Attribute::AlwaysInline); 2533 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2534 // If we're not inlining, then force everything that isn't always_inline to 2535 // carry an explicit noinline attribute. 2536 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2537 B.addAttribute(llvm::Attribute::NoInline); 2538 } else { 2539 // Otherwise, propagate the inline hint attribute and potentially use its 2540 // absence to mark things as noinline. 2541 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2542 // Search function and template pattern redeclarations for inline. 2543 auto CheckForInline = [](const FunctionDecl *FD) { 2544 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2545 return Redecl->isInlineSpecified(); 2546 }; 2547 if (any_of(FD->redecls(), CheckRedeclForInline)) 2548 return true; 2549 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2550 if (!Pattern) 2551 return false; 2552 return any_of(Pattern->redecls(), CheckRedeclForInline); 2553 }; 2554 if (CheckForInline(FD)) { 2555 B.addAttribute(llvm::Attribute::InlineHint); 2556 } else if (CodeGenOpts.getInlining() == 2557 CodeGenOptions::OnlyHintInlining && 2558 !FD->isInlined() && 2559 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2560 B.addAttribute(llvm::Attribute::NoInline); 2561 } 2562 } 2563 } 2564 2565 // Add other optimization related attributes if we are optimizing this 2566 // function. 2567 if (!D->hasAttr<OptimizeNoneAttr>()) { 2568 if (D->hasAttr<ColdAttr>()) { 2569 if (!ShouldAddOptNone) 2570 B.addAttribute(llvm::Attribute::OptimizeForSize); 2571 B.addAttribute(llvm::Attribute::Cold); 2572 } 2573 if (D->hasAttr<HotAttr>()) 2574 B.addAttribute(llvm::Attribute::Hot); 2575 if (D->hasAttr<MinSizeAttr>()) 2576 B.addAttribute(llvm::Attribute::MinSize); 2577 } 2578 2579 F->addFnAttrs(B); 2580 2581 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2582 if (alignment) 2583 F->setAlignment(llvm::Align(alignment)); 2584 2585 if (!D->hasAttr<AlignedAttr>()) 2586 if (LangOpts.FunctionAlignment) 2587 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2588 2589 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2590 // reserve a bit for differentiating between virtual and non-virtual member 2591 // functions. If the current target's C++ ABI requires this and this is a 2592 // member function, set its alignment accordingly. 2593 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2594 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2595 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2596 } 2597 2598 // In the cross-dso CFI mode with canonical jump tables, we want !type 2599 // attributes on definitions only. 2600 if (CodeGenOpts.SanitizeCfiCrossDso && 2601 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2602 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2603 // Skip available_externally functions. They won't be codegen'ed in the 2604 // current module anyway. 2605 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2606 CreateFunctionTypeMetadataForIcall(FD, F); 2607 } 2608 } 2609 2610 // Emit type metadata on member functions for member function pointer checks. 2611 // These are only ever necessary on definitions; we're guaranteed that the 2612 // definition will be present in the LTO unit as a result of LTO visibility. 2613 auto *MD = dyn_cast<CXXMethodDecl>(D); 2614 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2615 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2616 llvm::Metadata *Id = 2617 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2618 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2619 F->addTypeMetadata(0, Id); 2620 } 2621 } 2622 } 2623 2624 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2625 const Decl *D = GD.getDecl(); 2626 if (isa_and_nonnull<NamedDecl>(D)) 2627 setGVProperties(GV, GD); 2628 else 2629 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2630 2631 if (D && D->hasAttr<UsedAttr>()) 2632 addUsedOrCompilerUsedGlobal(GV); 2633 2634 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2635 VD && 2636 ((CodeGenOpts.KeepPersistentStorageVariables && 2637 (VD->getStorageDuration() == SD_Static || 2638 VD->getStorageDuration() == SD_Thread)) || 2639 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2640 VD->getType().isConstQualified()))) 2641 addUsedOrCompilerUsedGlobal(GV); 2642 } 2643 2644 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2645 llvm::AttrBuilder &Attrs, 2646 bool SetTargetFeatures) { 2647 // Add target-cpu and target-features attributes to functions. If 2648 // we have a decl for the function and it has a target attribute then 2649 // parse that and add it to the feature set. 2650 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2651 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2652 std::vector<std::string> Features; 2653 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2654 FD = FD ? FD->getMostRecentDecl() : FD; 2655 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2656 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2657 assert((!TD || !TV) && "both target_version and target specified"); 2658 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2659 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2660 bool AddedAttr = false; 2661 if (TD || TV || SD || TC) { 2662 llvm::StringMap<bool> FeatureMap; 2663 getContext().getFunctionFeatureMap(FeatureMap, GD); 2664 2665 // Produce the canonical string for this set of features. 2666 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2667 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2668 2669 // Now add the target-cpu and target-features to the function. 2670 // While we populated the feature map above, we still need to 2671 // get and parse the target attribute so we can get the cpu for 2672 // the function. 2673 if (TD) { 2674 ParsedTargetAttr ParsedAttr = 2675 Target.parseTargetAttr(TD->getFeaturesStr()); 2676 if (!ParsedAttr.CPU.empty() && 2677 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2678 TargetCPU = ParsedAttr.CPU; 2679 TuneCPU = ""; // Clear the tune CPU. 2680 } 2681 if (!ParsedAttr.Tune.empty() && 2682 getTarget().isValidCPUName(ParsedAttr.Tune)) 2683 TuneCPU = ParsedAttr.Tune; 2684 } 2685 2686 if (SD) { 2687 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2688 // favor this processor. 2689 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2690 } 2691 } else { 2692 // Otherwise just add the existing target cpu and target features to the 2693 // function. 2694 Features = getTarget().getTargetOpts().Features; 2695 } 2696 2697 if (!TargetCPU.empty()) { 2698 Attrs.addAttribute("target-cpu", TargetCPU); 2699 AddedAttr = true; 2700 } 2701 if (!TuneCPU.empty()) { 2702 Attrs.addAttribute("tune-cpu", TuneCPU); 2703 AddedAttr = true; 2704 } 2705 if (!Features.empty() && SetTargetFeatures) { 2706 llvm::erase_if(Features, [&](const std::string& F) { 2707 return getTarget().isReadOnlyFeature(F.substr(1)); 2708 }); 2709 llvm::sort(Features); 2710 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2711 AddedAttr = true; 2712 } 2713 2714 return AddedAttr; 2715 } 2716 2717 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2718 llvm::GlobalObject *GO) { 2719 const Decl *D = GD.getDecl(); 2720 SetCommonAttributes(GD, GO); 2721 2722 if (D) { 2723 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2724 if (D->hasAttr<RetainAttr>()) 2725 addUsedGlobal(GV); 2726 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2727 GV->addAttribute("bss-section", SA->getName()); 2728 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2729 GV->addAttribute("data-section", SA->getName()); 2730 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2731 GV->addAttribute("rodata-section", SA->getName()); 2732 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2733 GV->addAttribute("relro-section", SA->getName()); 2734 } 2735 2736 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2737 if (D->hasAttr<RetainAttr>()) 2738 addUsedGlobal(F); 2739 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2740 if (!D->getAttr<SectionAttr>()) 2741 F->setSection(SA->getName()); 2742 2743 llvm::AttrBuilder Attrs(F->getContext()); 2744 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2745 // We know that GetCPUAndFeaturesAttributes will always have the 2746 // newest set, since it has the newest possible FunctionDecl, so the 2747 // new ones should replace the old. 2748 llvm::AttributeMask RemoveAttrs; 2749 RemoveAttrs.addAttribute("target-cpu"); 2750 RemoveAttrs.addAttribute("target-features"); 2751 RemoveAttrs.addAttribute("tune-cpu"); 2752 F->removeFnAttrs(RemoveAttrs); 2753 F->addFnAttrs(Attrs); 2754 } 2755 } 2756 2757 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2758 GO->setSection(CSA->getName()); 2759 else if (const auto *SA = D->getAttr<SectionAttr>()) 2760 GO->setSection(SA->getName()); 2761 } 2762 2763 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2764 } 2765 2766 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2767 llvm::Function *F, 2768 const CGFunctionInfo &FI) { 2769 const Decl *D = GD.getDecl(); 2770 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2771 SetLLVMFunctionAttributesForDefinition(D, F); 2772 2773 F->setLinkage(llvm::Function::InternalLinkage); 2774 2775 setNonAliasAttributes(GD, F); 2776 } 2777 2778 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2779 // Set linkage and visibility in case we never see a definition. 2780 LinkageInfo LV = ND->getLinkageAndVisibility(); 2781 // Don't set internal linkage on declarations. 2782 // "extern_weak" is overloaded in LLVM; we probably should have 2783 // separate linkage types for this. 2784 if (isExternallyVisible(LV.getLinkage()) && 2785 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2786 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2787 } 2788 2789 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2790 llvm::Function *F) { 2791 // Only if we are checking indirect calls. 2792 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2793 return; 2794 2795 // Non-static class methods are handled via vtable or member function pointer 2796 // checks elsewhere. 2797 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2798 return; 2799 2800 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2801 F->addTypeMetadata(0, MD); 2802 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2803 2804 // Emit a hash-based bit set entry for cross-DSO calls. 2805 if (CodeGenOpts.SanitizeCfiCrossDso) 2806 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2807 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2808 } 2809 2810 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2811 llvm::LLVMContext &Ctx = F->getContext(); 2812 llvm::MDBuilder MDB(Ctx); 2813 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2814 llvm::MDNode::get( 2815 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2816 } 2817 2818 static bool allowKCFIIdentifier(StringRef Name) { 2819 // KCFI type identifier constants are only necessary for external assembly 2820 // functions, which means it's safe to skip unusual names. Subset of 2821 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2822 return llvm::all_of(Name, [](const char &C) { 2823 return llvm::isAlnum(C) || C == '_' || C == '.'; 2824 }); 2825 } 2826 2827 void CodeGenModule::finalizeKCFITypes() { 2828 llvm::Module &M = getModule(); 2829 for (auto &F : M.functions()) { 2830 // Remove KCFI type metadata from non-address-taken local functions. 2831 bool AddressTaken = F.hasAddressTaken(); 2832 if (!AddressTaken && F.hasLocalLinkage()) 2833 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2834 2835 // Generate a constant with the expected KCFI type identifier for all 2836 // address-taken function declarations to support annotating indirectly 2837 // called assembly functions. 2838 if (!AddressTaken || !F.isDeclaration()) 2839 continue; 2840 2841 const llvm::ConstantInt *Type; 2842 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2843 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2844 else 2845 continue; 2846 2847 StringRef Name = F.getName(); 2848 if (!allowKCFIIdentifier(Name)) 2849 continue; 2850 2851 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2852 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2853 .str(); 2854 M.appendModuleInlineAsm(Asm); 2855 } 2856 } 2857 2858 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2859 bool IsIncompleteFunction, 2860 bool IsThunk) { 2861 2862 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2863 // If this is an intrinsic function, set the function's attributes 2864 // to the intrinsic's attributes. 2865 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2866 return; 2867 } 2868 2869 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2870 2871 if (!IsIncompleteFunction) 2872 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2873 IsThunk); 2874 2875 // Add the Returned attribute for "this", except for iOS 5 and earlier 2876 // where substantial code, including the libstdc++ dylib, was compiled with 2877 // GCC and does not actually return "this". 2878 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2879 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2880 assert(!F->arg_empty() && 2881 F->arg_begin()->getType() 2882 ->canLosslesslyBitCastTo(F->getReturnType()) && 2883 "unexpected this return"); 2884 F->addParamAttr(0, llvm::Attribute::Returned); 2885 } 2886 2887 // Only a few attributes are set on declarations; these may later be 2888 // overridden by a definition. 2889 2890 setLinkageForGV(F, FD); 2891 setGVProperties(F, FD); 2892 2893 // Setup target-specific attributes. 2894 if (!IsIncompleteFunction && F->isDeclaration()) 2895 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2896 2897 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2898 F->setSection(CSA->getName()); 2899 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2900 F->setSection(SA->getName()); 2901 2902 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2903 if (EA->isError()) 2904 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2905 else if (EA->isWarning()) 2906 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2907 } 2908 2909 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2910 if (FD->isInlineBuiltinDeclaration()) { 2911 const FunctionDecl *FDBody; 2912 bool HasBody = FD->hasBody(FDBody); 2913 (void)HasBody; 2914 assert(HasBody && "Inline builtin declarations should always have an " 2915 "available body!"); 2916 if (shouldEmitFunction(FDBody)) 2917 F->addFnAttr(llvm::Attribute::NoBuiltin); 2918 } 2919 2920 if (FD->isReplaceableGlobalAllocationFunction()) { 2921 // A replaceable global allocation function does not act like a builtin by 2922 // default, only if it is invoked by a new-expression or delete-expression. 2923 F->addFnAttr(llvm::Attribute::NoBuiltin); 2924 } 2925 2926 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2927 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2928 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2929 if (MD->isVirtual()) 2930 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2931 2932 // Don't emit entries for function declarations in the cross-DSO mode. This 2933 // is handled with better precision by the receiving DSO. But if jump tables 2934 // are non-canonical then we need type metadata in order to produce the local 2935 // jump table. 2936 if (!CodeGenOpts.SanitizeCfiCrossDso || 2937 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2938 CreateFunctionTypeMetadataForIcall(FD, F); 2939 2940 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2941 setKCFIType(FD, F); 2942 2943 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2944 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2945 2946 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2947 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2948 2949 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2950 // Annotate the callback behavior as metadata: 2951 // - The callback callee (as argument number). 2952 // - The callback payloads (as argument numbers). 2953 llvm::LLVMContext &Ctx = F->getContext(); 2954 llvm::MDBuilder MDB(Ctx); 2955 2956 // The payload indices are all but the first one in the encoding. The first 2957 // identifies the callback callee. 2958 int CalleeIdx = *CB->encoding_begin(); 2959 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2960 F->addMetadata(llvm::LLVMContext::MD_callback, 2961 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2962 CalleeIdx, PayloadIndices, 2963 /* VarArgsArePassed */ false)})); 2964 } 2965 } 2966 2967 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2968 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2969 "Only globals with definition can force usage."); 2970 LLVMUsed.emplace_back(GV); 2971 } 2972 2973 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2974 assert(!GV->isDeclaration() && 2975 "Only globals with definition can force usage."); 2976 LLVMCompilerUsed.emplace_back(GV); 2977 } 2978 2979 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2980 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2981 "Only globals with definition can force usage."); 2982 if (getTriple().isOSBinFormatELF()) 2983 LLVMCompilerUsed.emplace_back(GV); 2984 else 2985 LLVMUsed.emplace_back(GV); 2986 } 2987 2988 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2989 std::vector<llvm::WeakTrackingVH> &List) { 2990 // Don't create llvm.used if there is no need. 2991 if (List.empty()) 2992 return; 2993 2994 // Convert List to what ConstantArray needs. 2995 SmallVector<llvm::Constant*, 8> UsedArray; 2996 UsedArray.resize(List.size()); 2997 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2998 UsedArray[i] = 2999 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 3000 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 3001 } 3002 3003 if (UsedArray.empty()) 3004 return; 3005 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3006 3007 auto *GV = new llvm::GlobalVariable( 3008 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3009 llvm::ConstantArray::get(ATy, UsedArray), Name); 3010 3011 GV->setSection("llvm.metadata"); 3012 } 3013 3014 void CodeGenModule::emitLLVMUsed() { 3015 emitUsed(*this, "llvm.used", LLVMUsed); 3016 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3017 } 3018 3019 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3020 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3021 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3022 } 3023 3024 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3025 llvm::SmallString<32> Opt; 3026 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3027 if (Opt.empty()) 3028 return; 3029 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3030 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3031 } 3032 3033 void CodeGenModule::AddDependentLib(StringRef Lib) { 3034 auto &C = getLLVMContext(); 3035 if (getTarget().getTriple().isOSBinFormatELF()) { 3036 ELFDependentLibraries.push_back( 3037 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3038 return; 3039 } 3040 3041 llvm::SmallString<24> Opt; 3042 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3043 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3044 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3045 } 3046 3047 /// Add link options implied by the given module, including modules 3048 /// it depends on, using a postorder walk. 3049 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3050 SmallVectorImpl<llvm::MDNode *> &Metadata, 3051 llvm::SmallPtrSet<Module *, 16> &Visited) { 3052 // Import this module's parent. 3053 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3054 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3055 } 3056 3057 // Import this module's dependencies. 3058 for (Module *Import : llvm::reverse(Mod->Imports)) { 3059 if (Visited.insert(Import).second) 3060 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3061 } 3062 3063 // Add linker options to link against the libraries/frameworks 3064 // described by this module. 3065 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3066 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3067 3068 // For modules that use export_as for linking, use that module 3069 // name instead. 3070 if (Mod->UseExportAsModuleLinkName) 3071 return; 3072 3073 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3074 // Link against a framework. Frameworks are currently Darwin only, so we 3075 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3076 if (LL.IsFramework) { 3077 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3078 llvm::MDString::get(Context, LL.Library)}; 3079 3080 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3081 continue; 3082 } 3083 3084 // Link against a library. 3085 if (IsELF) { 3086 llvm::Metadata *Args[2] = { 3087 llvm::MDString::get(Context, "lib"), 3088 llvm::MDString::get(Context, LL.Library), 3089 }; 3090 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3091 } else { 3092 llvm::SmallString<24> Opt; 3093 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3094 auto *OptString = llvm::MDString::get(Context, Opt); 3095 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3096 } 3097 } 3098 } 3099 3100 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3101 assert(Primary->isNamedModuleUnit() && 3102 "We should only emit module initializers for named modules."); 3103 3104 // Emit the initializers in the order that sub-modules appear in the 3105 // source, first Global Module Fragments, if present. 3106 if (auto GMF = Primary->getGlobalModuleFragment()) { 3107 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3108 if (isa<ImportDecl>(D)) 3109 continue; 3110 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3111 EmitTopLevelDecl(D); 3112 } 3113 } 3114 // Second any associated with the module, itself. 3115 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3116 // Skip import decls, the inits for those are called explicitly. 3117 if (isa<ImportDecl>(D)) 3118 continue; 3119 EmitTopLevelDecl(D); 3120 } 3121 // Third any associated with the Privat eMOdule Fragment, if present. 3122 if (auto PMF = Primary->getPrivateModuleFragment()) { 3123 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3124 // Skip import decls, the inits for those are called explicitly. 3125 if (isa<ImportDecl>(D)) 3126 continue; 3127 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3128 EmitTopLevelDecl(D); 3129 } 3130 } 3131 } 3132 3133 void CodeGenModule::EmitModuleLinkOptions() { 3134 // Collect the set of all of the modules we want to visit to emit link 3135 // options, which is essentially the imported modules and all of their 3136 // non-explicit child modules. 3137 llvm::SetVector<clang::Module *> LinkModules; 3138 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3139 SmallVector<clang::Module *, 16> Stack; 3140 3141 // Seed the stack with imported modules. 3142 for (Module *M : ImportedModules) { 3143 // Do not add any link flags when an implementation TU of a module imports 3144 // a header of that same module. 3145 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3146 !getLangOpts().isCompilingModule()) 3147 continue; 3148 if (Visited.insert(M).second) 3149 Stack.push_back(M); 3150 } 3151 3152 // Find all of the modules to import, making a little effort to prune 3153 // non-leaf modules. 3154 while (!Stack.empty()) { 3155 clang::Module *Mod = Stack.pop_back_val(); 3156 3157 bool AnyChildren = false; 3158 3159 // Visit the submodules of this module. 3160 for (const auto &SM : Mod->submodules()) { 3161 // Skip explicit children; they need to be explicitly imported to be 3162 // linked against. 3163 if (SM->IsExplicit) 3164 continue; 3165 3166 if (Visited.insert(SM).second) { 3167 Stack.push_back(SM); 3168 AnyChildren = true; 3169 } 3170 } 3171 3172 // We didn't find any children, so add this module to the list of 3173 // modules to link against. 3174 if (!AnyChildren) { 3175 LinkModules.insert(Mod); 3176 } 3177 } 3178 3179 // Add link options for all of the imported modules in reverse topological 3180 // order. We don't do anything to try to order import link flags with respect 3181 // to linker options inserted by things like #pragma comment(). 3182 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3183 Visited.clear(); 3184 for (Module *M : LinkModules) 3185 if (Visited.insert(M).second) 3186 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3187 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3188 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3189 3190 // Add the linker options metadata flag. 3191 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3192 for (auto *MD : LinkerOptionsMetadata) 3193 NMD->addOperand(MD); 3194 } 3195 3196 void CodeGenModule::EmitDeferred() { 3197 // Emit deferred declare target declarations. 3198 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3199 getOpenMPRuntime().emitDeferredTargetDecls(); 3200 3201 // Emit code for any potentially referenced deferred decls. Since a 3202 // previously unused static decl may become used during the generation of code 3203 // for a static function, iterate until no changes are made. 3204 3205 if (!DeferredVTables.empty()) { 3206 EmitDeferredVTables(); 3207 3208 // Emitting a vtable doesn't directly cause more vtables to 3209 // become deferred, although it can cause functions to be 3210 // emitted that then need those vtables. 3211 assert(DeferredVTables.empty()); 3212 } 3213 3214 // Emit CUDA/HIP static device variables referenced by host code only. 3215 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3216 // needed for further handling. 3217 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3218 llvm::append_range(DeferredDeclsToEmit, 3219 getContext().CUDADeviceVarODRUsedByHost); 3220 3221 // Stop if we're out of both deferred vtables and deferred declarations. 3222 if (DeferredDeclsToEmit.empty()) 3223 return; 3224 3225 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3226 // work, it will not interfere with this. 3227 std::vector<GlobalDecl> CurDeclsToEmit; 3228 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3229 3230 for (GlobalDecl &D : CurDeclsToEmit) { 3231 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3232 // to get GlobalValue with exactly the type we need, not something that 3233 // might had been created for another decl with the same mangled name but 3234 // different type. 3235 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3236 GetAddrOfGlobal(D, ForDefinition)); 3237 3238 // In case of different address spaces, we may still get a cast, even with 3239 // IsForDefinition equal to true. Query mangled names table to get 3240 // GlobalValue. 3241 if (!GV) 3242 GV = GetGlobalValue(getMangledName(D)); 3243 3244 // Make sure GetGlobalValue returned non-null. 3245 assert(GV); 3246 3247 // Check to see if we've already emitted this. This is necessary 3248 // for a couple of reasons: first, decls can end up in the 3249 // deferred-decls queue multiple times, and second, decls can end 3250 // up with definitions in unusual ways (e.g. by an extern inline 3251 // function acquiring a strong function redefinition). Just 3252 // ignore these cases. 3253 if (!GV->isDeclaration()) 3254 continue; 3255 3256 // If this is OpenMP, check if it is legal to emit this global normally. 3257 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3258 continue; 3259 3260 // Otherwise, emit the definition and move on to the next one. 3261 EmitGlobalDefinition(D, GV); 3262 3263 // If we found out that we need to emit more decls, do that recursively. 3264 // This has the advantage that the decls are emitted in a DFS and related 3265 // ones are close together, which is convenient for testing. 3266 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3267 EmitDeferred(); 3268 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3269 } 3270 } 3271 } 3272 3273 void CodeGenModule::EmitVTablesOpportunistically() { 3274 // Try to emit external vtables as available_externally if they have emitted 3275 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3276 // is not allowed to create new references to things that need to be emitted 3277 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3278 3279 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3280 && "Only emit opportunistic vtables with optimizations"); 3281 3282 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3283 assert(getVTables().isVTableExternal(RD) && 3284 "This queue should only contain external vtables"); 3285 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3286 VTables.GenerateClassData(RD); 3287 } 3288 OpportunisticVTables.clear(); 3289 } 3290 3291 void CodeGenModule::EmitGlobalAnnotations() { 3292 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3293 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3294 if (GV) 3295 AddGlobalAnnotations(VD, GV); 3296 } 3297 DeferredAnnotations.clear(); 3298 3299 if (Annotations.empty()) 3300 return; 3301 3302 // Create a new global variable for the ConstantStruct in the Module. 3303 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3304 Annotations[0]->getType(), Annotations.size()), Annotations); 3305 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3306 llvm::GlobalValue::AppendingLinkage, 3307 Array, "llvm.global.annotations"); 3308 gv->setSection(AnnotationSection); 3309 } 3310 3311 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3312 llvm::Constant *&AStr = AnnotationStrings[Str]; 3313 if (AStr) 3314 return AStr; 3315 3316 // Not found yet, create a new global. 3317 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3318 auto *gv = new llvm::GlobalVariable( 3319 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3320 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3321 ConstGlobalsPtrTy->getAddressSpace()); 3322 gv->setSection(AnnotationSection); 3323 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3324 AStr = gv; 3325 return gv; 3326 } 3327 3328 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3329 SourceManager &SM = getContext().getSourceManager(); 3330 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3331 if (PLoc.isValid()) 3332 return EmitAnnotationString(PLoc.getFilename()); 3333 return EmitAnnotationString(SM.getBufferName(Loc)); 3334 } 3335 3336 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3337 SourceManager &SM = getContext().getSourceManager(); 3338 PresumedLoc PLoc = SM.getPresumedLoc(L); 3339 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3340 SM.getExpansionLineNumber(L); 3341 return llvm::ConstantInt::get(Int32Ty, LineNo); 3342 } 3343 3344 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3345 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3346 if (Exprs.empty()) 3347 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3348 3349 llvm::FoldingSetNodeID ID; 3350 for (Expr *E : Exprs) { 3351 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3352 } 3353 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3354 if (Lookup) 3355 return Lookup; 3356 3357 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3358 LLVMArgs.reserve(Exprs.size()); 3359 ConstantEmitter ConstEmiter(*this); 3360 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3361 const auto *CE = cast<clang::ConstantExpr>(E); 3362 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3363 CE->getType()); 3364 }); 3365 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3366 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3367 llvm::GlobalValue::PrivateLinkage, Struct, 3368 ".args"); 3369 GV->setSection(AnnotationSection); 3370 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3371 3372 Lookup = GV; 3373 return GV; 3374 } 3375 3376 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3377 const AnnotateAttr *AA, 3378 SourceLocation L) { 3379 // Get the globals for file name, annotation, and the line number. 3380 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3381 *UnitGV = EmitAnnotationUnit(L), 3382 *LineNoCst = EmitAnnotationLineNo(L), 3383 *Args = EmitAnnotationArgs(AA); 3384 3385 llvm::Constant *GVInGlobalsAS = GV; 3386 if (GV->getAddressSpace() != 3387 getDataLayout().getDefaultGlobalsAddressSpace()) { 3388 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3389 GV, 3390 llvm::PointerType::get( 3391 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3392 } 3393 3394 // Create the ConstantStruct for the global annotation. 3395 llvm::Constant *Fields[] = { 3396 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3397 }; 3398 return llvm::ConstantStruct::getAnon(Fields); 3399 } 3400 3401 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3402 llvm::GlobalValue *GV) { 3403 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3404 // Get the struct elements for these annotations. 3405 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3406 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3407 } 3408 3409 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3410 SourceLocation Loc) const { 3411 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3412 // NoSanitize by function name. 3413 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3414 return true; 3415 // NoSanitize by location. Check "mainfile" prefix. 3416 auto &SM = Context.getSourceManager(); 3417 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3418 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3419 return true; 3420 3421 // Check "src" prefix. 3422 if (Loc.isValid()) 3423 return NoSanitizeL.containsLocation(Kind, Loc); 3424 // If location is unknown, this may be a compiler-generated function. Assume 3425 // it's located in the main file. 3426 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3427 } 3428 3429 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3430 llvm::GlobalVariable *GV, 3431 SourceLocation Loc, QualType Ty, 3432 StringRef Category) const { 3433 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3434 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3435 return true; 3436 auto &SM = Context.getSourceManager(); 3437 if (NoSanitizeL.containsMainFile( 3438 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3439 Category)) 3440 return true; 3441 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3442 return true; 3443 3444 // Check global type. 3445 if (!Ty.isNull()) { 3446 // Drill down the array types: if global variable of a fixed type is 3447 // not sanitized, we also don't instrument arrays of them. 3448 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3449 Ty = AT->getElementType(); 3450 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3451 // Only record types (classes, structs etc.) are ignored. 3452 if (Ty->isRecordType()) { 3453 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3454 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3455 return true; 3456 } 3457 } 3458 return false; 3459 } 3460 3461 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3462 StringRef Category) const { 3463 const auto &XRayFilter = getContext().getXRayFilter(); 3464 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3465 auto Attr = ImbueAttr::NONE; 3466 if (Loc.isValid()) 3467 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3468 if (Attr == ImbueAttr::NONE) 3469 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3470 switch (Attr) { 3471 case ImbueAttr::NONE: 3472 return false; 3473 case ImbueAttr::ALWAYS: 3474 Fn->addFnAttr("function-instrument", "xray-always"); 3475 break; 3476 case ImbueAttr::ALWAYS_ARG1: 3477 Fn->addFnAttr("function-instrument", "xray-always"); 3478 Fn->addFnAttr("xray-log-args", "1"); 3479 break; 3480 case ImbueAttr::NEVER: 3481 Fn->addFnAttr("function-instrument", "xray-never"); 3482 break; 3483 } 3484 return true; 3485 } 3486 3487 ProfileList::ExclusionType 3488 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3489 SourceLocation Loc) const { 3490 const auto &ProfileList = getContext().getProfileList(); 3491 // If the profile list is empty, then instrument everything. 3492 if (ProfileList.isEmpty()) 3493 return ProfileList::Allow; 3494 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3495 // First, check the function name. 3496 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3497 return *V; 3498 // Next, check the source location. 3499 if (Loc.isValid()) 3500 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3501 return *V; 3502 // If location is unknown, this may be a compiler-generated function. Assume 3503 // it's located in the main file. 3504 auto &SM = Context.getSourceManager(); 3505 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3506 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3507 return *V; 3508 return ProfileList.getDefault(Kind); 3509 } 3510 3511 ProfileList::ExclusionType 3512 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3513 SourceLocation Loc) const { 3514 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3515 if (V != ProfileList::Allow) 3516 return V; 3517 3518 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3519 if (NumGroups > 1) { 3520 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3521 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3522 return ProfileList::Skip; 3523 } 3524 return ProfileList::Allow; 3525 } 3526 3527 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3528 // Never defer when EmitAllDecls is specified. 3529 if (LangOpts.EmitAllDecls) 3530 return true; 3531 3532 const auto *VD = dyn_cast<VarDecl>(Global); 3533 if (VD && 3534 ((CodeGenOpts.KeepPersistentStorageVariables && 3535 (VD->getStorageDuration() == SD_Static || 3536 VD->getStorageDuration() == SD_Thread)) || 3537 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3538 VD->getType().isConstQualified()))) 3539 return true; 3540 3541 return getContext().DeclMustBeEmitted(Global); 3542 } 3543 3544 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3545 // In OpenMP 5.0 variables and function may be marked as 3546 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3547 // that they must be emitted on the host/device. To be sure we need to have 3548 // seen a declare target with an explicit mentioning of the function, we know 3549 // we have if the level of the declare target attribute is -1. Note that we 3550 // check somewhere else if we should emit this at all. 3551 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3552 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3553 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3554 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3555 return false; 3556 } 3557 3558 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3559 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3560 // Implicit template instantiations may change linkage if they are later 3561 // explicitly instantiated, so they should not be emitted eagerly. 3562 return false; 3563 // Defer until all versions have been semantically checked. 3564 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3565 return false; 3566 } 3567 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3568 if (Context.getInlineVariableDefinitionKind(VD) == 3569 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3570 // A definition of an inline constexpr static data member may change 3571 // linkage later if it's redeclared outside the class. 3572 return false; 3573 if (CXX20ModuleInits && VD->getOwningModule() && 3574 !VD->getOwningModule()->isModuleMapModule()) { 3575 // For CXX20, module-owned initializers need to be deferred, since it is 3576 // not known at this point if they will be run for the current module or 3577 // as part of the initializer for an imported one. 3578 return false; 3579 } 3580 } 3581 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3582 // codegen for global variables, because they may be marked as threadprivate. 3583 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3584 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3585 !Global->getType().isConstantStorage(getContext(), false, false) && 3586 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3587 return false; 3588 3589 return true; 3590 } 3591 3592 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3593 StringRef Name = getMangledName(GD); 3594 3595 // The UUID descriptor should be pointer aligned. 3596 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3597 3598 // Look for an existing global. 3599 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3600 return ConstantAddress(GV, GV->getValueType(), Alignment); 3601 3602 ConstantEmitter Emitter(*this); 3603 llvm::Constant *Init; 3604 3605 APValue &V = GD->getAsAPValue(); 3606 if (!V.isAbsent()) { 3607 // If possible, emit the APValue version of the initializer. In particular, 3608 // this gets the type of the constant right. 3609 Init = Emitter.emitForInitializer( 3610 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3611 } else { 3612 // As a fallback, directly construct the constant. 3613 // FIXME: This may get padding wrong under esoteric struct layout rules. 3614 // MSVC appears to create a complete type 'struct __s_GUID' that it 3615 // presumably uses to represent these constants. 3616 MSGuidDecl::Parts Parts = GD->getParts(); 3617 llvm::Constant *Fields[4] = { 3618 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3619 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3620 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3621 llvm::ConstantDataArray::getRaw( 3622 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3623 Int8Ty)}; 3624 Init = llvm::ConstantStruct::getAnon(Fields); 3625 } 3626 3627 auto *GV = new llvm::GlobalVariable( 3628 getModule(), Init->getType(), 3629 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3630 if (supportsCOMDAT()) 3631 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3632 setDSOLocal(GV); 3633 3634 if (!V.isAbsent()) { 3635 Emitter.finalize(GV); 3636 return ConstantAddress(GV, GV->getValueType(), Alignment); 3637 } 3638 3639 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3640 return ConstantAddress(GV, Ty, Alignment); 3641 } 3642 3643 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3644 const UnnamedGlobalConstantDecl *GCD) { 3645 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3646 3647 llvm::GlobalVariable **Entry = nullptr; 3648 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3649 if (*Entry) 3650 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3651 3652 ConstantEmitter Emitter(*this); 3653 llvm::Constant *Init; 3654 3655 const APValue &V = GCD->getValue(); 3656 3657 assert(!V.isAbsent()); 3658 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3659 GCD->getType()); 3660 3661 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3662 /*isConstant=*/true, 3663 llvm::GlobalValue::PrivateLinkage, Init, 3664 ".constant"); 3665 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3666 GV->setAlignment(Alignment.getAsAlign()); 3667 3668 Emitter.finalize(GV); 3669 3670 *Entry = GV; 3671 return ConstantAddress(GV, GV->getValueType(), Alignment); 3672 } 3673 3674 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3675 const TemplateParamObjectDecl *TPO) { 3676 StringRef Name = getMangledName(TPO); 3677 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3678 3679 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3680 return ConstantAddress(GV, GV->getValueType(), Alignment); 3681 3682 ConstantEmitter Emitter(*this); 3683 llvm::Constant *Init = Emitter.emitForInitializer( 3684 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3685 3686 if (!Init) { 3687 ErrorUnsupported(TPO, "template parameter object"); 3688 return ConstantAddress::invalid(); 3689 } 3690 3691 llvm::GlobalValue::LinkageTypes Linkage = 3692 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3693 ? llvm::GlobalValue::LinkOnceODRLinkage 3694 : llvm::GlobalValue::InternalLinkage; 3695 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3696 /*isConstant=*/true, Linkage, Init, Name); 3697 setGVProperties(GV, TPO); 3698 if (supportsCOMDAT()) 3699 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3700 Emitter.finalize(GV); 3701 3702 return ConstantAddress(GV, GV->getValueType(), Alignment); 3703 } 3704 3705 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3706 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3707 assert(AA && "No alias?"); 3708 3709 CharUnits Alignment = getContext().getDeclAlign(VD); 3710 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3711 3712 // See if there is already something with the target's name in the module. 3713 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3714 if (Entry) 3715 return ConstantAddress(Entry, DeclTy, Alignment); 3716 3717 llvm::Constant *Aliasee; 3718 if (isa<llvm::FunctionType>(DeclTy)) 3719 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3720 GlobalDecl(cast<FunctionDecl>(VD)), 3721 /*ForVTable=*/false); 3722 else 3723 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3724 nullptr); 3725 3726 auto *F = cast<llvm::GlobalValue>(Aliasee); 3727 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3728 WeakRefReferences.insert(F); 3729 3730 return ConstantAddress(Aliasee, DeclTy, Alignment); 3731 } 3732 3733 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3734 if (!D) 3735 return false; 3736 if (auto *A = D->getAttr<AttrT>()) 3737 return A->isImplicit(); 3738 return D->isImplicit(); 3739 } 3740 3741 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3742 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3743 // We need to emit host-side 'shadows' for all global 3744 // device-side variables because the CUDA runtime needs their 3745 // size and host-side address in order to provide access to 3746 // their device-side incarnations. 3747 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3748 Global->hasAttr<CUDAConstantAttr>() || 3749 Global->hasAttr<CUDASharedAttr>() || 3750 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3751 Global->getType()->isCUDADeviceBuiltinTextureType(); 3752 } 3753 3754 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3755 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3756 3757 // Weak references don't produce any output by themselves. 3758 if (Global->hasAttr<WeakRefAttr>()) 3759 return; 3760 3761 // If this is an alias definition (which otherwise looks like a declaration) 3762 // emit it now. 3763 if (Global->hasAttr<AliasAttr>()) 3764 return EmitAliasDefinition(GD); 3765 3766 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3767 if (Global->hasAttr<IFuncAttr>()) 3768 return emitIFuncDefinition(GD); 3769 3770 // If this is a cpu_dispatch multiversion function, emit the resolver. 3771 if (Global->hasAttr<CPUDispatchAttr>()) 3772 return emitCPUDispatchDefinition(GD); 3773 3774 // If this is CUDA, be selective about which declarations we emit. 3775 // Non-constexpr non-lambda implicit host device functions are not emitted 3776 // unless they are used on device side. 3777 if (LangOpts.CUDA) { 3778 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3779 "Expected Variable or Function"); 3780 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3781 if (!shouldEmitCUDAGlobalVar(VD)) 3782 return; 3783 } else if (LangOpts.CUDAIsDevice) { 3784 const auto *FD = dyn_cast<FunctionDecl>(Global); 3785 if ((!Global->hasAttr<CUDADeviceAttr>() || 3786 (LangOpts.OffloadImplicitHostDeviceTemplates && 3787 hasImplicitAttr<CUDAHostAttr>(FD) && 3788 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3789 !isLambdaCallOperator(FD) && 3790 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3791 !Global->hasAttr<CUDAGlobalAttr>() && 3792 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3793 !Global->hasAttr<CUDAHostAttr>())) 3794 return; 3795 // Device-only functions are the only things we skip. 3796 } else if (!Global->hasAttr<CUDAHostAttr>() && 3797 Global->hasAttr<CUDADeviceAttr>()) 3798 return; 3799 } 3800 3801 if (LangOpts.OpenMP) { 3802 // If this is OpenMP, check if it is legal to emit this global normally. 3803 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3804 return; 3805 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3806 if (MustBeEmitted(Global)) 3807 EmitOMPDeclareReduction(DRD); 3808 return; 3809 } 3810 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3811 if (MustBeEmitted(Global)) 3812 EmitOMPDeclareMapper(DMD); 3813 return; 3814 } 3815 } 3816 3817 // Ignore declarations, they will be emitted on their first use. 3818 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3819 // Update deferred annotations with the latest declaration if the function 3820 // function was already used or defined. 3821 if (FD->hasAttr<AnnotateAttr>()) { 3822 StringRef MangledName = getMangledName(GD); 3823 if (GetGlobalValue(MangledName)) 3824 DeferredAnnotations[MangledName] = FD; 3825 } 3826 3827 // Forward declarations are emitted lazily on first use. 3828 if (!FD->doesThisDeclarationHaveABody()) { 3829 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3830 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3831 return; 3832 3833 StringRef MangledName = getMangledName(GD); 3834 3835 // Compute the function info and LLVM type. 3836 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3837 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3838 3839 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3840 /*DontDefer=*/false); 3841 return; 3842 } 3843 } else { 3844 const auto *VD = cast<VarDecl>(Global); 3845 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3846 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3847 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3848 if (LangOpts.OpenMP) { 3849 // Emit declaration of the must-be-emitted declare target variable. 3850 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3851 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3852 3853 // If this variable has external storage and doesn't require special 3854 // link handling we defer to its canonical definition. 3855 if (VD->hasExternalStorage() && 3856 Res != OMPDeclareTargetDeclAttr::MT_Link) 3857 return; 3858 3859 bool UnifiedMemoryEnabled = 3860 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3861 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3862 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3863 !UnifiedMemoryEnabled) { 3864 (void)GetAddrOfGlobalVar(VD); 3865 } else { 3866 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3867 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3868 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3869 UnifiedMemoryEnabled)) && 3870 "Link clause or to clause with unified memory expected."); 3871 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3872 } 3873 3874 return; 3875 } 3876 } 3877 // If this declaration may have caused an inline variable definition to 3878 // change linkage, make sure that it's emitted. 3879 if (Context.getInlineVariableDefinitionKind(VD) == 3880 ASTContext::InlineVariableDefinitionKind::Strong) 3881 GetAddrOfGlobalVar(VD); 3882 return; 3883 } 3884 } 3885 3886 // Defer code generation to first use when possible, e.g. if this is an inline 3887 // function. If the global must always be emitted, do it eagerly if possible 3888 // to benefit from cache locality. 3889 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3890 // Emit the definition if it can't be deferred. 3891 EmitGlobalDefinition(GD); 3892 addEmittedDeferredDecl(GD); 3893 return; 3894 } 3895 3896 // If we're deferring emission of a C++ variable with an 3897 // initializer, remember the order in which it appeared in the file. 3898 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3899 cast<VarDecl>(Global)->hasInit()) { 3900 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3901 CXXGlobalInits.push_back(nullptr); 3902 } 3903 3904 StringRef MangledName = getMangledName(GD); 3905 if (GetGlobalValue(MangledName) != nullptr) { 3906 // The value has already been used and should therefore be emitted. 3907 addDeferredDeclToEmit(GD); 3908 } else if (MustBeEmitted(Global)) { 3909 // The value must be emitted, but cannot be emitted eagerly. 3910 assert(!MayBeEmittedEagerly(Global)); 3911 addDeferredDeclToEmit(GD); 3912 } else { 3913 // Otherwise, remember that we saw a deferred decl with this name. The 3914 // first use of the mangled name will cause it to move into 3915 // DeferredDeclsToEmit. 3916 DeferredDecls[MangledName] = GD; 3917 } 3918 } 3919 3920 // Check if T is a class type with a destructor that's not dllimport. 3921 static bool HasNonDllImportDtor(QualType T) { 3922 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3923 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3924 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3925 return true; 3926 3927 return false; 3928 } 3929 3930 namespace { 3931 struct FunctionIsDirectlyRecursive 3932 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3933 const StringRef Name; 3934 const Builtin::Context &BI; 3935 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3936 : Name(N), BI(C) {} 3937 3938 bool VisitCallExpr(const CallExpr *E) { 3939 const FunctionDecl *FD = E->getDirectCallee(); 3940 if (!FD) 3941 return false; 3942 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3943 if (Attr && Name == Attr->getLabel()) 3944 return true; 3945 unsigned BuiltinID = FD->getBuiltinID(); 3946 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3947 return false; 3948 StringRef BuiltinName = BI.getName(BuiltinID); 3949 if (BuiltinName.starts_with("__builtin_") && 3950 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3951 return true; 3952 } 3953 return false; 3954 } 3955 3956 bool VisitStmt(const Stmt *S) { 3957 for (const Stmt *Child : S->children()) 3958 if (Child && this->Visit(Child)) 3959 return true; 3960 return false; 3961 } 3962 }; 3963 3964 // Make sure we're not referencing non-imported vars or functions. 3965 struct DLLImportFunctionVisitor 3966 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3967 bool SafeToInline = true; 3968 3969 bool shouldVisitImplicitCode() const { return true; } 3970 3971 bool VisitVarDecl(VarDecl *VD) { 3972 if (VD->getTLSKind()) { 3973 // A thread-local variable cannot be imported. 3974 SafeToInline = false; 3975 return SafeToInline; 3976 } 3977 3978 // A variable definition might imply a destructor call. 3979 if (VD->isThisDeclarationADefinition()) 3980 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3981 3982 return SafeToInline; 3983 } 3984 3985 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3986 if (const auto *D = E->getTemporary()->getDestructor()) 3987 SafeToInline = D->hasAttr<DLLImportAttr>(); 3988 return SafeToInline; 3989 } 3990 3991 bool VisitDeclRefExpr(DeclRefExpr *E) { 3992 ValueDecl *VD = E->getDecl(); 3993 if (isa<FunctionDecl>(VD)) 3994 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3995 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3996 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3997 return SafeToInline; 3998 } 3999 4000 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 4001 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 4002 return SafeToInline; 4003 } 4004 4005 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4006 CXXMethodDecl *M = E->getMethodDecl(); 4007 if (!M) { 4008 // Call through a pointer to member function. This is safe to inline. 4009 SafeToInline = true; 4010 } else { 4011 SafeToInline = M->hasAttr<DLLImportAttr>(); 4012 } 4013 return SafeToInline; 4014 } 4015 4016 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4017 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4018 return SafeToInline; 4019 } 4020 4021 bool VisitCXXNewExpr(CXXNewExpr *E) { 4022 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4023 return SafeToInline; 4024 } 4025 }; 4026 } 4027 4028 // isTriviallyRecursive - Check if this function calls another 4029 // decl that, because of the asm attribute or the other decl being a builtin, 4030 // ends up pointing to itself. 4031 bool 4032 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4033 StringRef Name; 4034 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4035 // asm labels are a special kind of mangling we have to support. 4036 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4037 if (!Attr) 4038 return false; 4039 Name = Attr->getLabel(); 4040 } else { 4041 Name = FD->getName(); 4042 } 4043 4044 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4045 const Stmt *Body = FD->getBody(); 4046 return Body ? Walker.Visit(Body) : false; 4047 } 4048 4049 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4050 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4051 return true; 4052 4053 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4054 // Inline builtins declaration must be emitted. They often are fortified 4055 // functions. 4056 if (F->isInlineBuiltinDeclaration()) 4057 return true; 4058 4059 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4060 return false; 4061 4062 // We don't import function bodies from other named module units since that 4063 // behavior may break ABI compatibility of the current unit. 4064 if (const Module *M = F->getOwningModule(); 4065 M && M->getTopLevelModule()->isNamedModule() && 4066 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4067 // There are practices to mark template member function as always-inline 4068 // and mark the template as extern explicit instantiation but not give 4069 // the definition for member function. So we have to emit the function 4070 // from explicitly instantiation with always-inline. 4071 // 4072 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4073 // 4074 // TODO: Maybe it is better to give it a warning if we call a non-inline 4075 // function from other module units which is marked as always-inline. 4076 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4077 return false; 4078 } 4079 } 4080 4081 if (F->hasAttr<NoInlineAttr>()) 4082 return false; 4083 4084 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4085 // Check whether it would be safe to inline this dllimport function. 4086 DLLImportFunctionVisitor Visitor; 4087 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4088 if (!Visitor.SafeToInline) 4089 return false; 4090 4091 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4092 // Implicit destructor invocations aren't captured in the AST, so the 4093 // check above can't see them. Check for them manually here. 4094 for (const Decl *Member : Dtor->getParent()->decls()) 4095 if (isa<FieldDecl>(Member)) 4096 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4097 return false; 4098 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4099 if (HasNonDllImportDtor(B.getType())) 4100 return false; 4101 } 4102 } 4103 4104 // PR9614. Avoid cases where the source code is lying to us. An available 4105 // externally function should have an equivalent function somewhere else, 4106 // but a function that calls itself through asm label/`__builtin_` trickery is 4107 // clearly not equivalent to the real implementation. 4108 // This happens in glibc's btowc and in some configure checks. 4109 return !isTriviallyRecursive(F); 4110 } 4111 4112 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4113 return CodeGenOpts.OptimizationLevel > 0; 4114 } 4115 4116 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4117 llvm::GlobalValue *GV) { 4118 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4119 4120 if (FD->isCPUSpecificMultiVersion()) { 4121 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4122 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4123 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4124 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4125 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4126 // AArch64 favors the default target version over the clone if any. 4127 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4128 TC->isFirstOfVersion(I)) 4129 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4130 // Ensure that the resolver function is also emitted. 4131 GetOrCreateMultiVersionResolver(GD); 4132 } else 4133 EmitGlobalFunctionDefinition(GD, GV); 4134 4135 // Defer the resolver emission until we can reason whether the TU 4136 // contains a default target version implementation. 4137 if (FD->isTargetVersionMultiVersion()) 4138 AddDeferredMultiVersionResolverToEmit(GD); 4139 } 4140 4141 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4142 const auto *D = cast<ValueDecl>(GD.getDecl()); 4143 4144 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4145 Context.getSourceManager(), 4146 "Generating code for declaration"); 4147 4148 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4149 // At -O0, don't generate IR for functions with available_externally 4150 // linkage. 4151 if (!shouldEmitFunction(GD)) 4152 return; 4153 4154 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4155 std::string Name; 4156 llvm::raw_string_ostream OS(Name); 4157 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4158 /*Qualified=*/true); 4159 return Name; 4160 }); 4161 4162 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4163 // Make sure to emit the definition(s) before we emit the thunks. 4164 // This is necessary for the generation of certain thunks. 4165 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4166 ABI->emitCXXStructor(GD); 4167 else if (FD->isMultiVersion()) 4168 EmitMultiVersionFunctionDefinition(GD, GV); 4169 else 4170 EmitGlobalFunctionDefinition(GD, GV); 4171 4172 if (Method->isVirtual()) 4173 getVTables().EmitThunks(GD); 4174 4175 return; 4176 } 4177 4178 if (FD->isMultiVersion()) 4179 return EmitMultiVersionFunctionDefinition(GD, GV); 4180 return EmitGlobalFunctionDefinition(GD, GV); 4181 } 4182 4183 if (const auto *VD = dyn_cast<VarDecl>(D)) 4184 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4185 4186 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4187 } 4188 4189 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4190 llvm::Function *NewFn); 4191 4192 static unsigned 4193 TargetMVPriority(const TargetInfo &TI, 4194 const CodeGenFunction::MultiVersionResolverOption &RO) { 4195 unsigned Priority = 0; 4196 unsigned NumFeatures = 0; 4197 for (StringRef Feat : RO.Conditions.Features) { 4198 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4199 NumFeatures++; 4200 } 4201 4202 if (!RO.Conditions.Architecture.empty()) 4203 Priority = std::max( 4204 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4205 4206 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4207 4208 return Priority; 4209 } 4210 4211 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4212 // TU can forward declare the function without causing problems. Particularly 4213 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4214 // work with internal linkage functions, so that the same function name can be 4215 // used with internal linkage in multiple TUs. 4216 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4217 GlobalDecl GD) { 4218 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4219 if (FD->getFormalLinkage() == Linkage::Internal) 4220 return llvm::GlobalValue::InternalLinkage; 4221 return llvm::GlobalValue::WeakODRLinkage; 4222 } 4223 4224 void CodeGenModule::emitMultiVersionFunctions() { 4225 std::vector<GlobalDecl> MVFuncsToEmit; 4226 MultiVersionFuncs.swap(MVFuncsToEmit); 4227 for (GlobalDecl GD : MVFuncsToEmit) { 4228 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4229 assert(FD && "Expected a FunctionDecl"); 4230 4231 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4232 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4233 StringRef MangledName = getMangledName(CurGD); 4234 llvm::Constant *Func = GetGlobalValue(MangledName); 4235 if (!Func) { 4236 if (Decl->isDefined()) { 4237 EmitGlobalFunctionDefinition(CurGD, nullptr); 4238 Func = GetGlobalValue(MangledName); 4239 } else { 4240 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4241 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4242 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4243 /*DontDefer=*/false, ForDefinition); 4244 } 4245 assert(Func && "This should have just been created"); 4246 } 4247 return cast<llvm::Function>(Func); 4248 }; 4249 4250 // For AArch64, a resolver is only emitted if a function marked with 4251 // target_version("default")) or target_clones() is present and defined 4252 // in this TU. For other architectures it is always emitted. 4253 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4254 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4255 4256 getContext().forEachMultiversionedFunctionVersion( 4257 FD, [&](const FunctionDecl *CurFD) { 4258 llvm::SmallVector<StringRef, 8> Feats; 4259 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4260 4261 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4262 TA->getAddedFeatures(Feats); 4263 llvm::Function *Func = createFunction(CurFD); 4264 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4265 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4266 if (TVA->isDefaultVersion() && IsDefined) 4267 ShouldEmitResolver = true; 4268 TVA->getFeatures(Feats); 4269 llvm::Function *Func = createFunction(CurFD); 4270 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4271 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4272 if (IsDefined) 4273 ShouldEmitResolver = true; 4274 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4275 if (!TC->isFirstOfVersion(I)) 4276 continue; 4277 4278 llvm::Function *Func = createFunction(CurFD, I); 4279 StringRef Architecture; 4280 Feats.clear(); 4281 if (getTarget().getTriple().isAArch64()) 4282 TC->getFeatures(Feats, I); 4283 else { 4284 StringRef Version = TC->getFeatureStr(I); 4285 if (Version.starts_with("arch=")) 4286 Architecture = Version.drop_front(sizeof("arch=") - 1); 4287 else if (Version != "default") 4288 Feats.push_back(Version); 4289 } 4290 Options.emplace_back(Func, Architecture, Feats); 4291 } 4292 } else 4293 llvm_unreachable("unexpected MultiVersionKind"); 4294 }); 4295 4296 if (!ShouldEmitResolver) 4297 continue; 4298 4299 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4300 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4301 ResolverConstant = IFunc->getResolver(); 4302 if (FD->isTargetClonesMultiVersion() && 4303 !getTarget().getTriple().isAArch64()) { 4304 std::string MangledName = getMangledNameImpl( 4305 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4306 if (!GetGlobalValue(MangledName + ".ifunc")) { 4307 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4308 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4309 // In prior versions of Clang, the mangling for ifuncs incorrectly 4310 // included an .ifunc suffix. This alias is generated for backward 4311 // compatibility. It is deprecated, and may be removed in the future. 4312 auto *Alias = llvm::GlobalAlias::create( 4313 DeclTy, 0, getMultiversionLinkage(*this, GD), 4314 MangledName + ".ifunc", IFunc, &getModule()); 4315 SetCommonAttributes(FD, Alias); 4316 } 4317 } 4318 } 4319 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4320 4321 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4322 4323 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4324 ResolverFunc->setComdat( 4325 getModule().getOrInsertComdat(ResolverFunc->getName())); 4326 4327 const TargetInfo &TI = getTarget(); 4328 llvm::stable_sort( 4329 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4330 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4331 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4332 }); 4333 CodeGenFunction CGF(*this); 4334 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4335 } 4336 4337 // Ensure that any additions to the deferred decls list caused by emitting a 4338 // variant are emitted. This can happen when the variant itself is inline and 4339 // calls a function without linkage. 4340 if (!MVFuncsToEmit.empty()) 4341 EmitDeferred(); 4342 4343 // Ensure that any additions to the multiversion funcs list from either the 4344 // deferred decls or the multiversion functions themselves are emitted. 4345 if (!MultiVersionFuncs.empty()) 4346 emitMultiVersionFunctions(); 4347 } 4348 4349 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4350 llvm::Constant *New) { 4351 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4352 New->takeName(Old); 4353 Old->replaceAllUsesWith(New); 4354 Old->eraseFromParent(); 4355 } 4356 4357 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4358 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4359 assert(FD && "Not a FunctionDecl?"); 4360 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4361 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4362 assert(DD && "Not a cpu_dispatch Function?"); 4363 4364 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4365 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4366 4367 StringRef ResolverName = getMangledName(GD); 4368 UpdateMultiVersionNames(GD, FD, ResolverName); 4369 4370 llvm::Type *ResolverType; 4371 GlobalDecl ResolverGD; 4372 if (getTarget().supportsIFunc()) { 4373 ResolverType = llvm::FunctionType::get( 4374 llvm::PointerType::get(DeclTy, 4375 getTypes().getTargetAddressSpace(FD->getType())), 4376 false); 4377 } 4378 else { 4379 ResolverType = DeclTy; 4380 ResolverGD = GD; 4381 } 4382 4383 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4384 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4385 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4386 if (supportsCOMDAT()) 4387 ResolverFunc->setComdat( 4388 getModule().getOrInsertComdat(ResolverFunc->getName())); 4389 4390 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4391 const TargetInfo &Target = getTarget(); 4392 unsigned Index = 0; 4393 for (const IdentifierInfo *II : DD->cpus()) { 4394 // Get the name of the target function so we can look it up/create it. 4395 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4396 getCPUSpecificMangling(*this, II->getName()); 4397 4398 llvm::Constant *Func = GetGlobalValue(MangledName); 4399 4400 if (!Func) { 4401 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4402 if (ExistingDecl.getDecl() && 4403 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4404 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4405 Func = GetGlobalValue(MangledName); 4406 } else { 4407 if (!ExistingDecl.getDecl()) 4408 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4409 4410 Func = GetOrCreateLLVMFunction( 4411 MangledName, DeclTy, ExistingDecl, 4412 /*ForVTable=*/false, /*DontDefer=*/true, 4413 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4414 } 4415 } 4416 4417 llvm::SmallVector<StringRef, 32> Features; 4418 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4419 llvm::transform(Features, Features.begin(), 4420 [](StringRef Str) { return Str.substr(1); }); 4421 llvm::erase_if(Features, [&Target](StringRef Feat) { 4422 return !Target.validateCpuSupports(Feat); 4423 }); 4424 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4425 ++Index; 4426 } 4427 4428 llvm::stable_sort( 4429 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4430 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4431 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4432 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4433 }); 4434 4435 // If the list contains multiple 'default' versions, such as when it contains 4436 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4437 // always run on at least a 'pentium'). We do this by deleting the 'least 4438 // advanced' (read, lowest mangling letter). 4439 while (Options.size() > 1 && 4440 llvm::all_of(llvm::X86::getCpuSupportsMask( 4441 (Options.end() - 2)->Conditions.Features), 4442 [](auto X) { return X == 0; })) { 4443 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4444 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4445 if (LHSName.compare(RHSName) < 0) 4446 Options.erase(Options.end() - 2); 4447 else 4448 Options.erase(Options.end() - 1); 4449 } 4450 4451 CodeGenFunction CGF(*this); 4452 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4453 4454 if (getTarget().supportsIFunc()) { 4455 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4456 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4457 4458 // Fix up function declarations that were created for cpu_specific before 4459 // cpu_dispatch was known 4460 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4461 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4462 &getModule()); 4463 replaceDeclarationWith(IFunc, GI); 4464 IFunc = GI; 4465 } 4466 4467 std::string AliasName = getMangledNameImpl( 4468 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4469 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4470 if (!AliasFunc) { 4471 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4472 &getModule()); 4473 SetCommonAttributes(GD, GA); 4474 } 4475 } 4476 } 4477 4478 /// Adds a declaration to the list of multi version functions if not present. 4479 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4480 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4481 assert(FD && "Not a FunctionDecl?"); 4482 4483 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4484 std::string MangledName = 4485 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4486 if (!DeferredResolversToEmit.insert(MangledName).second) 4487 return; 4488 } 4489 MultiVersionFuncs.push_back(GD); 4490 } 4491 4492 /// If a dispatcher for the specified mangled name is not in the module, create 4493 /// and return it. The dispatcher is either an llvm Function with the specified 4494 /// type, or a global ifunc. 4495 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4496 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4497 assert(FD && "Not a FunctionDecl?"); 4498 4499 std::string MangledName = 4500 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4501 4502 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4503 // a separate resolver). 4504 std::string ResolverName = MangledName; 4505 if (getTarget().supportsIFunc()) { 4506 switch (FD->getMultiVersionKind()) { 4507 case MultiVersionKind::None: 4508 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4509 case MultiVersionKind::Target: 4510 case MultiVersionKind::CPUSpecific: 4511 case MultiVersionKind::CPUDispatch: 4512 ResolverName += ".ifunc"; 4513 break; 4514 case MultiVersionKind::TargetClones: 4515 case MultiVersionKind::TargetVersion: 4516 break; 4517 } 4518 } else if (FD->isTargetMultiVersion()) { 4519 ResolverName += ".resolver"; 4520 } 4521 4522 // If the resolver has already been created, just return it. This lookup may 4523 // yield a function declaration instead of a resolver on AArch64. That is 4524 // because we didn't know whether a resolver will be generated when we first 4525 // encountered a use of the symbol named after this resolver. Therefore, 4526 // targets which support ifuncs should not return here unless we actually 4527 // found an ifunc. 4528 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4529 if (ResolverGV && 4530 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4531 return ResolverGV; 4532 4533 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4534 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4535 4536 // The resolver needs to be created. For target and target_clones, defer 4537 // creation until the end of the TU. 4538 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4539 AddDeferredMultiVersionResolverToEmit(GD); 4540 4541 // For cpu_specific, don't create an ifunc yet because we don't know if the 4542 // cpu_dispatch will be emitted in this translation unit. 4543 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4544 llvm::Type *ResolverType = llvm::FunctionType::get( 4545 llvm::PointerType::get(DeclTy, 4546 getTypes().getTargetAddressSpace(FD->getType())), 4547 false); 4548 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4549 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4550 /*ForVTable=*/false); 4551 llvm::GlobalIFunc *GIF = 4552 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4553 "", Resolver, &getModule()); 4554 GIF->setName(ResolverName); 4555 SetCommonAttributes(FD, GIF); 4556 if (ResolverGV) 4557 replaceDeclarationWith(ResolverGV, GIF); 4558 return GIF; 4559 } 4560 4561 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4562 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4563 assert(isa<llvm::GlobalValue>(Resolver) && 4564 "Resolver should be created for the first time"); 4565 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4566 if (ResolverGV) 4567 replaceDeclarationWith(ResolverGV, Resolver); 4568 return Resolver; 4569 } 4570 4571 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4572 const llvm::GlobalValue *GV) const { 4573 auto SC = GV->getDLLStorageClass(); 4574 if (SC == llvm::GlobalValue::DefaultStorageClass) 4575 return false; 4576 const Decl *MRD = D->getMostRecentDecl(); 4577 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4578 !MRD->hasAttr<DLLImportAttr>()) || 4579 (SC == llvm::GlobalValue::DLLExportStorageClass && 4580 !MRD->hasAttr<DLLExportAttr>())) && 4581 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4582 } 4583 4584 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4585 /// module, create and return an llvm Function with the specified type. If there 4586 /// is something in the module with the specified name, return it potentially 4587 /// bitcasted to the right type. 4588 /// 4589 /// If D is non-null, it specifies a decl that correspond to this. This is used 4590 /// to set the attributes on the function when it is first created. 4591 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4592 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4593 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4594 ForDefinition_t IsForDefinition) { 4595 const Decl *D = GD.getDecl(); 4596 4597 std::string NameWithoutMultiVersionMangling; 4598 // Any attempts to use a MultiVersion function should result in retrieving 4599 // the iFunc instead. Name Mangling will handle the rest of the changes. 4600 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4601 // For the device mark the function as one that should be emitted. 4602 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4603 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4604 !DontDefer && !IsForDefinition) { 4605 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4606 GlobalDecl GDDef; 4607 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4608 GDDef = GlobalDecl(CD, GD.getCtorType()); 4609 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4610 GDDef = GlobalDecl(DD, GD.getDtorType()); 4611 else 4612 GDDef = GlobalDecl(FDDef); 4613 EmitGlobal(GDDef); 4614 } 4615 } 4616 4617 if (FD->isMultiVersion()) { 4618 UpdateMultiVersionNames(GD, FD, MangledName); 4619 if (!IsForDefinition) { 4620 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4621 // function is used. Instead we defer the emission until we see a 4622 // default definition. In the meantime we just reference the symbol 4623 // without FMV mangling (it may or may not be replaced later). 4624 if (getTarget().getTriple().isAArch64()) { 4625 AddDeferredMultiVersionResolverToEmit(GD); 4626 NameWithoutMultiVersionMangling = getMangledNameImpl( 4627 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4628 } else 4629 return GetOrCreateMultiVersionResolver(GD); 4630 } 4631 } 4632 } 4633 4634 if (!NameWithoutMultiVersionMangling.empty()) 4635 MangledName = NameWithoutMultiVersionMangling; 4636 4637 // Lookup the entry, lazily creating it if necessary. 4638 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4639 if (Entry) { 4640 if (WeakRefReferences.erase(Entry)) { 4641 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4642 if (FD && !FD->hasAttr<WeakAttr>()) 4643 Entry->setLinkage(llvm::Function::ExternalLinkage); 4644 } 4645 4646 // Handle dropped DLL attributes. 4647 if (D && shouldDropDLLAttribute(D, Entry)) { 4648 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4649 setDSOLocal(Entry); 4650 } 4651 4652 // If there are two attempts to define the same mangled name, issue an 4653 // error. 4654 if (IsForDefinition && !Entry->isDeclaration()) { 4655 GlobalDecl OtherGD; 4656 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4657 // to make sure that we issue an error only once. 4658 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4659 (GD.getCanonicalDecl().getDecl() != 4660 OtherGD.getCanonicalDecl().getDecl()) && 4661 DiagnosedConflictingDefinitions.insert(GD).second) { 4662 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4663 << MangledName; 4664 getDiags().Report(OtherGD.getDecl()->getLocation(), 4665 diag::note_previous_definition); 4666 } 4667 } 4668 4669 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4670 (Entry->getValueType() == Ty)) { 4671 return Entry; 4672 } 4673 4674 // Make sure the result is of the correct type. 4675 // (If function is requested for a definition, we always need to create a new 4676 // function, not just return a bitcast.) 4677 if (!IsForDefinition) 4678 return Entry; 4679 } 4680 4681 // This function doesn't have a complete type (for example, the return 4682 // type is an incomplete struct). Use a fake type instead, and make 4683 // sure not to try to set attributes. 4684 bool IsIncompleteFunction = false; 4685 4686 llvm::FunctionType *FTy; 4687 if (isa<llvm::FunctionType>(Ty)) { 4688 FTy = cast<llvm::FunctionType>(Ty); 4689 } else { 4690 FTy = llvm::FunctionType::get(VoidTy, false); 4691 IsIncompleteFunction = true; 4692 } 4693 4694 llvm::Function *F = 4695 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4696 Entry ? StringRef() : MangledName, &getModule()); 4697 4698 // Store the declaration associated with this function so it is potentially 4699 // updated by further declarations or definitions and emitted at the end. 4700 if (D && D->hasAttr<AnnotateAttr>()) 4701 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4702 4703 // If we already created a function with the same mangled name (but different 4704 // type) before, take its name and add it to the list of functions to be 4705 // replaced with F at the end of CodeGen. 4706 // 4707 // This happens if there is a prototype for a function (e.g. "int f()") and 4708 // then a definition of a different type (e.g. "int f(int x)"). 4709 if (Entry) { 4710 F->takeName(Entry); 4711 4712 // This might be an implementation of a function without a prototype, in 4713 // which case, try to do special replacement of calls which match the new 4714 // prototype. The really key thing here is that we also potentially drop 4715 // arguments from the call site so as to make a direct call, which makes the 4716 // inliner happier and suppresses a number of optimizer warnings (!) about 4717 // dropping arguments. 4718 if (!Entry->use_empty()) { 4719 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4720 Entry->removeDeadConstantUsers(); 4721 } 4722 4723 addGlobalValReplacement(Entry, F); 4724 } 4725 4726 assert(F->getName() == MangledName && "name was uniqued!"); 4727 if (D) 4728 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4729 if (ExtraAttrs.hasFnAttrs()) { 4730 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4731 F->addFnAttrs(B); 4732 } 4733 4734 if (!DontDefer) { 4735 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4736 // each other bottoming out with the base dtor. Therefore we emit non-base 4737 // dtors on usage, even if there is no dtor definition in the TU. 4738 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4739 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4740 GD.getDtorType())) 4741 addDeferredDeclToEmit(GD); 4742 4743 // This is the first use or definition of a mangled name. If there is a 4744 // deferred decl with this name, remember that we need to emit it at the end 4745 // of the file. 4746 auto DDI = DeferredDecls.find(MangledName); 4747 if (DDI != DeferredDecls.end()) { 4748 // Move the potentially referenced deferred decl to the 4749 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4750 // don't need it anymore). 4751 addDeferredDeclToEmit(DDI->second); 4752 DeferredDecls.erase(DDI); 4753 4754 // Otherwise, there are cases we have to worry about where we're 4755 // using a declaration for which we must emit a definition but where 4756 // we might not find a top-level definition: 4757 // - member functions defined inline in their classes 4758 // - friend functions defined inline in some class 4759 // - special member functions with implicit definitions 4760 // If we ever change our AST traversal to walk into class methods, 4761 // this will be unnecessary. 4762 // 4763 // We also don't emit a definition for a function if it's going to be an 4764 // entry in a vtable, unless it's already marked as used. 4765 } else if (getLangOpts().CPlusPlus && D) { 4766 // Look for a declaration that's lexically in a record. 4767 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4768 FD = FD->getPreviousDecl()) { 4769 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4770 if (FD->doesThisDeclarationHaveABody()) { 4771 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4772 break; 4773 } 4774 } 4775 } 4776 } 4777 } 4778 4779 // Make sure the result is of the requested type. 4780 if (!IsIncompleteFunction) { 4781 assert(F->getFunctionType() == Ty); 4782 return F; 4783 } 4784 4785 return F; 4786 } 4787 4788 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4789 /// non-null, then this function will use the specified type if it has to 4790 /// create it (this occurs when we see a definition of the function). 4791 llvm::Constant * 4792 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4793 bool DontDefer, 4794 ForDefinition_t IsForDefinition) { 4795 // If there was no specific requested type, just convert it now. 4796 if (!Ty) { 4797 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4798 Ty = getTypes().ConvertType(FD->getType()); 4799 } 4800 4801 // Devirtualized destructor calls may come through here instead of via 4802 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4803 // of the complete destructor when necessary. 4804 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4805 if (getTarget().getCXXABI().isMicrosoft() && 4806 GD.getDtorType() == Dtor_Complete && 4807 DD->getParent()->getNumVBases() == 0) 4808 GD = GlobalDecl(DD, Dtor_Base); 4809 } 4810 4811 StringRef MangledName = getMangledName(GD); 4812 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4813 /*IsThunk=*/false, llvm::AttributeList(), 4814 IsForDefinition); 4815 // Returns kernel handle for HIP kernel stub function. 4816 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4817 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4818 auto *Handle = getCUDARuntime().getKernelHandle( 4819 cast<llvm::Function>(F->stripPointerCasts()), GD); 4820 if (IsForDefinition) 4821 return F; 4822 return Handle; 4823 } 4824 return F; 4825 } 4826 4827 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4828 llvm::GlobalValue *F = 4829 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4830 4831 return llvm::NoCFIValue::get(F); 4832 } 4833 4834 static const FunctionDecl * 4835 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4836 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4837 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4838 4839 IdentifierInfo &CII = C.Idents.get(Name); 4840 for (const auto *Result : DC->lookup(&CII)) 4841 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4842 return FD; 4843 4844 if (!C.getLangOpts().CPlusPlus) 4845 return nullptr; 4846 4847 // Demangle the premangled name from getTerminateFn() 4848 IdentifierInfo &CXXII = 4849 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4850 ? C.Idents.get("terminate") 4851 : C.Idents.get(Name); 4852 4853 for (const auto &N : {"__cxxabiv1", "std"}) { 4854 IdentifierInfo &NS = C.Idents.get(N); 4855 for (const auto *Result : DC->lookup(&NS)) { 4856 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4857 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4858 for (const auto *Result : LSD->lookup(&NS)) 4859 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4860 break; 4861 4862 if (ND) 4863 for (const auto *Result : ND->lookup(&CXXII)) 4864 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4865 return FD; 4866 } 4867 } 4868 4869 return nullptr; 4870 } 4871 4872 /// CreateRuntimeFunction - Create a new runtime function with the specified 4873 /// type and name. 4874 llvm::FunctionCallee 4875 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4876 llvm::AttributeList ExtraAttrs, bool Local, 4877 bool AssumeConvergent) { 4878 if (AssumeConvergent) { 4879 ExtraAttrs = 4880 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4881 } 4882 4883 llvm::Constant *C = 4884 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4885 /*DontDefer=*/false, /*IsThunk=*/false, 4886 ExtraAttrs); 4887 4888 if (auto *F = dyn_cast<llvm::Function>(C)) { 4889 if (F->empty()) { 4890 F->setCallingConv(getRuntimeCC()); 4891 4892 // In Windows Itanium environments, try to mark runtime functions 4893 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4894 // will link their standard library statically or dynamically. Marking 4895 // functions imported when they are not imported can cause linker errors 4896 // and warnings. 4897 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4898 !getCodeGenOpts().LTOVisibilityPublicStd) { 4899 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4900 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4901 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4902 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4903 } 4904 } 4905 setDSOLocal(F); 4906 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4907 // of trying to approximate the attributes using the LLVM function 4908 // signature. This requires revising the API of CreateRuntimeFunction(). 4909 markRegisterParameterAttributes(F); 4910 } 4911 } 4912 4913 return {FTy, C}; 4914 } 4915 4916 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4917 /// create and return an llvm GlobalVariable with the specified type and address 4918 /// space. If there is something in the module with the specified name, return 4919 /// it potentially bitcasted to the right type. 4920 /// 4921 /// If D is non-null, it specifies a decl that correspond to this. This is used 4922 /// to set the attributes on the global when it is first created. 4923 /// 4924 /// If IsForDefinition is true, it is guaranteed that an actual global with 4925 /// type Ty will be returned, not conversion of a variable with the same 4926 /// mangled name but some other type. 4927 llvm::Constant * 4928 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4929 LangAS AddrSpace, const VarDecl *D, 4930 ForDefinition_t IsForDefinition) { 4931 // Lookup the entry, lazily creating it if necessary. 4932 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4933 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4934 if (Entry) { 4935 if (WeakRefReferences.erase(Entry)) { 4936 if (D && !D->hasAttr<WeakAttr>()) 4937 Entry->setLinkage(llvm::Function::ExternalLinkage); 4938 } 4939 4940 // Handle dropped DLL attributes. 4941 if (D && shouldDropDLLAttribute(D, Entry)) 4942 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4943 4944 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4945 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4946 4947 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4948 return Entry; 4949 4950 // If there are two attempts to define the same mangled name, issue an 4951 // error. 4952 if (IsForDefinition && !Entry->isDeclaration()) { 4953 GlobalDecl OtherGD; 4954 const VarDecl *OtherD; 4955 4956 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4957 // to make sure that we issue an error only once. 4958 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4959 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4960 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4961 OtherD->hasInit() && 4962 DiagnosedConflictingDefinitions.insert(D).second) { 4963 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4964 << MangledName; 4965 getDiags().Report(OtherGD.getDecl()->getLocation(), 4966 diag::note_previous_definition); 4967 } 4968 } 4969 4970 // Make sure the result is of the correct type. 4971 if (Entry->getType()->getAddressSpace() != TargetAS) 4972 return llvm::ConstantExpr::getAddrSpaceCast( 4973 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4974 4975 // (If global is requested for a definition, we always need to create a new 4976 // global, not just return a bitcast.) 4977 if (!IsForDefinition) 4978 return Entry; 4979 } 4980 4981 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4982 4983 auto *GV = new llvm::GlobalVariable( 4984 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4985 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4986 getContext().getTargetAddressSpace(DAddrSpace)); 4987 4988 // If we already created a global with the same mangled name (but different 4989 // type) before, take its name and remove it from its parent. 4990 if (Entry) { 4991 GV->takeName(Entry); 4992 4993 if (!Entry->use_empty()) { 4994 Entry->replaceAllUsesWith(GV); 4995 } 4996 4997 Entry->eraseFromParent(); 4998 } 4999 5000 // This is the first use or definition of a mangled name. If there is a 5001 // deferred decl with this name, remember that we need to emit it at the end 5002 // of the file. 5003 auto DDI = DeferredDecls.find(MangledName); 5004 if (DDI != DeferredDecls.end()) { 5005 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5006 // list, and remove it from DeferredDecls (since we don't need it anymore). 5007 addDeferredDeclToEmit(DDI->second); 5008 DeferredDecls.erase(DDI); 5009 } 5010 5011 // Handle things which are present even on external declarations. 5012 if (D) { 5013 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5014 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5015 5016 // FIXME: This code is overly simple and should be merged with other global 5017 // handling. 5018 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5019 5020 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5021 5022 setLinkageForGV(GV, D); 5023 5024 if (D->getTLSKind()) { 5025 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5026 CXXThreadLocals.push_back(D); 5027 setTLSMode(GV, *D); 5028 } 5029 5030 setGVProperties(GV, D); 5031 5032 // If required by the ABI, treat declarations of static data members with 5033 // inline initializers as definitions. 5034 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5035 EmitGlobalVarDefinition(D); 5036 } 5037 5038 // Emit section information for extern variables. 5039 if (D->hasExternalStorage()) { 5040 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5041 GV->setSection(SA->getName()); 5042 } 5043 5044 // Handle XCore specific ABI requirements. 5045 if (getTriple().getArch() == llvm::Triple::xcore && 5046 D->getLanguageLinkage() == CLanguageLinkage && 5047 D->getType().isConstant(Context) && 5048 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5049 GV->setSection(".cp.rodata"); 5050 5051 // Handle code model attribute 5052 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5053 GV->setCodeModel(CMA->getModel()); 5054 5055 // Check if we a have a const declaration with an initializer, we may be 5056 // able to emit it as available_externally to expose it's value to the 5057 // optimizer. 5058 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5059 D->getType().isConstQualified() && !GV->hasInitializer() && 5060 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5061 const auto *Record = 5062 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5063 bool HasMutableFields = Record && Record->hasMutableFields(); 5064 if (!HasMutableFields) { 5065 const VarDecl *InitDecl; 5066 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5067 if (InitExpr) { 5068 ConstantEmitter emitter(*this); 5069 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5070 if (Init) { 5071 auto *InitType = Init->getType(); 5072 if (GV->getValueType() != InitType) { 5073 // The type of the initializer does not match the definition. 5074 // This happens when an initializer has a different type from 5075 // the type of the global (because of padding at the end of a 5076 // structure for instance). 5077 GV->setName(StringRef()); 5078 // Make a new global with the correct type, this is now guaranteed 5079 // to work. 5080 auto *NewGV = cast<llvm::GlobalVariable>( 5081 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5082 ->stripPointerCasts()); 5083 5084 // Erase the old global, since it is no longer used. 5085 GV->eraseFromParent(); 5086 GV = NewGV; 5087 } else { 5088 GV->setInitializer(Init); 5089 GV->setConstant(true); 5090 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5091 } 5092 emitter.finalize(GV); 5093 } 5094 } 5095 } 5096 } 5097 } 5098 5099 if (D && 5100 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5101 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5102 // External HIP managed variables needed to be recorded for transformation 5103 // in both device and host compilations. 5104 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5105 D->hasExternalStorage()) 5106 getCUDARuntime().handleVarRegistration(D, *GV); 5107 } 5108 5109 if (D) 5110 SanitizerMD->reportGlobal(GV, *D); 5111 5112 LangAS ExpectedAS = 5113 D ? D->getType().getAddressSpace() 5114 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5115 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5116 if (DAddrSpace != ExpectedAS) { 5117 return getTargetCodeGenInfo().performAddrSpaceCast( 5118 *this, GV, DAddrSpace, ExpectedAS, 5119 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5120 } 5121 5122 return GV; 5123 } 5124 5125 llvm::Constant * 5126 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5127 const Decl *D = GD.getDecl(); 5128 5129 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5130 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5131 /*DontDefer=*/false, IsForDefinition); 5132 5133 if (isa<CXXMethodDecl>(D)) { 5134 auto FInfo = 5135 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5136 auto Ty = getTypes().GetFunctionType(*FInfo); 5137 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5138 IsForDefinition); 5139 } 5140 5141 if (isa<FunctionDecl>(D)) { 5142 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5143 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5144 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5145 IsForDefinition); 5146 } 5147 5148 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5149 } 5150 5151 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5152 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5153 llvm::Align Alignment) { 5154 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5155 llvm::GlobalVariable *OldGV = nullptr; 5156 5157 if (GV) { 5158 // Check if the variable has the right type. 5159 if (GV->getValueType() == Ty) 5160 return GV; 5161 5162 // Because C++ name mangling, the only way we can end up with an already 5163 // existing global with the same name is if it has been declared extern "C". 5164 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5165 OldGV = GV; 5166 } 5167 5168 // Create a new variable. 5169 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5170 Linkage, nullptr, Name); 5171 5172 if (OldGV) { 5173 // Replace occurrences of the old variable if needed. 5174 GV->takeName(OldGV); 5175 5176 if (!OldGV->use_empty()) { 5177 OldGV->replaceAllUsesWith(GV); 5178 } 5179 5180 OldGV->eraseFromParent(); 5181 } 5182 5183 if (supportsCOMDAT() && GV->isWeakForLinker() && 5184 !GV->hasAvailableExternallyLinkage()) 5185 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5186 5187 GV->setAlignment(Alignment); 5188 5189 return GV; 5190 } 5191 5192 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5193 /// given global variable. If Ty is non-null and if the global doesn't exist, 5194 /// then it will be created with the specified type instead of whatever the 5195 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5196 /// that an actual global with type Ty will be returned, not conversion of a 5197 /// variable with the same mangled name but some other type. 5198 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5199 llvm::Type *Ty, 5200 ForDefinition_t IsForDefinition) { 5201 assert(D->hasGlobalStorage() && "Not a global variable"); 5202 QualType ASTTy = D->getType(); 5203 if (!Ty) 5204 Ty = getTypes().ConvertTypeForMem(ASTTy); 5205 5206 StringRef MangledName = getMangledName(D); 5207 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5208 IsForDefinition); 5209 } 5210 5211 /// CreateRuntimeVariable - Create a new runtime global variable with the 5212 /// specified type and name. 5213 llvm::Constant * 5214 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5215 StringRef Name) { 5216 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5217 : LangAS::Default; 5218 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5219 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5220 return Ret; 5221 } 5222 5223 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5224 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5225 5226 StringRef MangledName = getMangledName(D); 5227 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5228 5229 // We already have a definition, not declaration, with the same mangled name. 5230 // Emitting of declaration is not required (and actually overwrites emitted 5231 // definition). 5232 if (GV && !GV->isDeclaration()) 5233 return; 5234 5235 // If we have not seen a reference to this variable yet, place it into the 5236 // deferred declarations table to be emitted if needed later. 5237 if (!MustBeEmitted(D) && !GV) { 5238 DeferredDecls[MangledName] = D; 5239 return; 5240 } 5241 5242 // The tentative definition is the only definition. 5243 EmitGlobalVarDefinition(D); 5244 } 5245 5246 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5247 if (auto const *V = dyn_cast<const VarDecl>(D)) 5248 EmitExternalVarDeclaration(V); 5249 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5250 EmitExternalFunctionDeclaration(FD); 5251 } 5252 5253 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5254 return Context.toCharUnitsFromBits( 5255 getDataLayout().getTypeStoreSizeInBits(Ty)); 5256 } 5257 5258 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5259 if (LangOpts.OpenCL) { 5260 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5261 assert(AS == LangAS::opencl_global || 5262 AS == LangAS::opencl_global_device || 5263 AS == LangAS::opencl_global_host || 5264 AS == LangAS::opencl_constant || 5265 AS == LangAS::opencl_local || 5266 AS >= LangAS::FirstTargetAddressSpace); 5267 return AS; 5268 } 5269 5270 if (LangOpts.SYCLIsDevice && 5271 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5272 return LangAS::sycl_global; 5273 5274 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5275 if (D) { 5276 if (D->hasAttr<CUDAConstantAttr>()) 5277 return LangAS::cuda_constant; 5278 if (D->hasAttr<CUDASharedAttr>()) 5279 return LangAS::cuda_shared; 5280 if (D->hasAttr<CUDADeviceAttr>()) 5281 return LangAS::cuda_device; 5282 if (D->getType().isConstQualified()) 5283 return LangAS::cuda_constant; 5284 } 5285 return LangAS::cuda_device; 5286 } 5287 5288 if (LangOpts.OpenMP) { 5289 LangAS AS; 5290 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5291 return AS; 5292 } 5293 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5294 } 5295 5296 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5297 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5298 if (LangOpts.OpenCL) 5299 return LangAS::opencl_constant; 5300 if (LangOpts.SYCLIsDevice) 5301 return LangAS::sycl_global; 5302 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5303 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5304 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5305 // with OpVariable instructions with Generic storage class which is not 5306 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5307 // UniformConstant storage class is not viable as pointers to it may not be 5308 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5309 return LangAS::cuda_device; 5310 if (auto AS = getTarget().getConstantAddressSpace()) 5311 return *AS; 5312 return LangAS::Default; 5313 } 5314 5315 // In address space agnostic languages, string literals are in default address 5316 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5317 // emitted in constant address space in LLVM IR. To be consistent with other 5318 // parts of AST, string literal global variables in constant address space 5319 // need to be casted to default address space before being put into address 5320 // map and referenced by other part of CodeGen. 5321 // In OpenCL, string literals are in constant address space in AST, therefore 5322 // they should not be casted to default address space. 5323 static llvm::Constant * 5324 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5325 llvm::GlobalVariable *GV) { 5326 llvm::Constant *Cast = GV; 5327 if (!CGM.getLangOpts().OpenCL) { 5328 auto AS = CGM.GetGlobalConstantAddressSpace(); 5329 if (AS != LangAS::Default) 5330 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5331 CGM, GV, AS, LangAS::Default, 5332 llvm::PointerType::get( 5333 CGM.getLLVMContext(), 5334 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5335 } 5336 return Cast; 5337 } 5338 5339 template<typename SomeDecl> 5340 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5341 llvm::GlobalValue *GV) { 5342 if (!getLangOpts().CPlusPlus) 5343 return; 5344 5345 // Must have 'used' attribute, or else inline assembly can't rely on 5346 // the name existing. 5347 if (!D->template hasAttr<UsedAttr>()) 5348 return; 5349 5350 // Must have internal linkage and an ordinary name. 5351 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5352 return; 5353 5354 // Must be in an extern "C" context. Entities declared directly within 5355 // a record are not extern "C" even if the record is in such a context. 5356 const SomeDecl *First = D->getFirstDecl(); 5357 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5358 return; 5359 5360 // OK, this is an internal linkage entity inside an extern "C" linkage 5361 // specification. Make a note of that so we can give it the "expected" 5362 // mangled name if nothing else is using that name. 5363 std::pair<StaticExternCMap::iterator, bool> R = 5364 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5365 5366 // If we have multiple internal linkage entities with the same name 5367 // in extern "C" regions, none of them gets that name. 5368 if (!R.second) 5369 R.first->second = nullptr; 5370 } 5371 5372 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5373 if (!CGM.supportsCOMDAT()) 5374 return false; 5375 5376 if (D.hasAttr<SelectAnyAttr>()) 5377 return true; 5378 5379 GVALinkage Linkage; 5380 if (auto *VD = dyn_cast<VarDecl>(&D)) 5381 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5382 else 5383 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5384 5385 switch (Linkage) { 5386 case GVA_Internal: 5387 case GVA_AvailableExternally: 5388 case GVA_StrongExternal: 5389 return false; 5390 case GVA_DiscardableODR: 5391 case GVA_StrongODR: 5392 return true; 5393 } 5394 llvm_unreachable("No such linkage"); 5395 } 5396 5397 bool CodeGenModule::supportsCOMDAT() const { 5398 return getTriple().supportsCOMDAT(); 5399 } 5400 5401 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5402 llvm::GlobalObject &GO) { 5403 if (!shouldBeInCOMDAT(*this, D)) 5404 return; 5405 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5406 } 5407 5408 /// Pass IsTentative as true if you want to create a tentative definition. 5409 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5410 bool IsTentative) { 5411 // OpenCL global variables of sampler type are translated to function calls, 5412 // therefore no need to be translated. 5413 QualType ASTTy = D->getType(); 5414 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5415 return; 5416 5417 // If this is OpenMP device, check if it is legal to emit this global 5418 // normally. 5419 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5420 OpenMPRuntime->emitTargetGlobalVariable(D)) 5421 return; 5422 5423 llvm::TrackingVH<llvm::Constant> Init; 5424 bool NeedsGlobalCtor = false; 5425 // Whether the definition of the variable is available externally. 5426 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5427 // since this is the job for its original source. 5428 bool IsDefinitionAvailableExternally = 5429 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5430 bool NeedsGlobalDtor = 5431 !IsDefinitionAvailableExternally && 5432 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5433 5434 // It is helpless to emit the definition for an available_externally variable 5435 // which can't be marked as const. 5436 // We don't need to check if it needs global ctor or dtor. See the above 5437 // comment for ideas. 5438 if (IsDefinitionAvailableExternally && 5439 (!D->hasConstantInitialization() || 5440 // TODO: Update this when we have interface to check constexpr 5441 // destructor. 5442 D->needsDestruction(getContext()) || 5443 !D->getType().isConstantStorage(getContext(), true, true))) 5444 return; 5445 5446 const VarDecl *InitDecl; 5447 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5448 5449 std::optional<ConstantEmitter> emitter; 5450 5451 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5452 // as part of their declaration." Sema has already checked for 5453 // error cases, so we just need to set Init to UndefValue. 5454 bool IsCUDASharedVar = 5455 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5456 // Shadows of initialized device-side global variables are also left 5457 // undefined. 5458 // Managed Variables should be initialized on both host side and device side. 5459 bool IsCUDAShadowVar = 5460 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5461 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5462 D->hasAttr<CUDASharedAttr>()); 5463 bool IsCUDADeviceShadowVar = 5464 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5465 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5466 D->getType()->isCUDADeviceBuiltinTextureType()); 5467 if (getLangOpts().CUDA && 5468 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5469 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5470 else if (D->hasAttr<LoaderUninitializedAttr>()) 5471 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5472 else if (!InitExpr) { 5473 // This is a tentative definition; tentative definitions are 5474 // implicitly initialized with { 0 }. 5475 // 5476 // Note that tentative definitions are only emitted at the end of 5477 // a translation unit, so they should never have incomplete 5478 // type. In addition, EmitTentativeDefinition makes sure that we 5479 // never attempt to emit a tentative definition if a real one 5480 // exists. A use may still exists, however, so we still may need 5481 // to do a RAUW. 5482 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5483 Init = EmitNullConstant(D->getType()); 5484 } else { 5485 initializedGlobalDecl = GlobalDecl(D); 5486 emitter.emplace(*this); 5487 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5488 if (!Initializer) { 5489 QualType T = InitExpr->getType(); 5490 if (D->getType()->isReferenceType()) 5491 T = D->getType(); 5492 5493 if (getLangOpts().CPlusPlus) { 5494 if (InitDecl->hasFlexibleArrayInit(getContext())) 5495 ErrorUnsupported(D, "flexible array initializer"); 5496 Init = EmitNullConstant(T); 5497 5498 if (!IsDefinitionAvailableExternally) 5499 NeedsGlobalCtor = true; 5500 } else { 5501 ErrorUnsupported(D, "static initializer"); 5502 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5503 } 5504 } else { 5505 Init = Initializer; 5506 // We don't need an initializer, so remove the entry for the delayed 5507 // initializer position (just in case this entry was delayed) if we 5508 // also don't need to register a destructor. 5509 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5510 DelayedCXXInitPosition.erase(D); 5511 5512 #ifndef NDEBUG 5513 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5514 InitDecl->getFlexibleArrayInitChars(getContext()); 5515 CharUnits CstSize = CharUnits::fromQuantity( 5516 getDataLayout().getTypeAllocSize(Init->getType())); 5517 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5518 #endif 5519 } 5520 } 5521 5522 llvm::Type* InitType = Init->getType(); 5523 llvm::Constant *Entry = 5524 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5525 5526 // Strip off pointer casts if we got them. 5527 Entry = Entry->stripPointerCasts(); 5528 5529 // Entry is now either a Function or GlobalVariable. 5530 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5531 5532 // We have a definition after a declaration with the wrong type. 5533 // We must make a new GlobalVariable* and update everything that used OldGV 5534 // (a declaration or tentative definition) with the new GlobalVariable* 5535 // (which will be a definition). 5536 // 5537 // This happens if there is a prototype for a global (e.g. 5538 // "extern int x[];") and then a definition of a different type (e.g. 5539 // "int x[10];"). This also happens when an initializer has a different type 5540 // from the type of the global (this happens with unions). 5541 if (!GV || GV->getValueType() != InitType || 5542 GV->getType()->getAddressSpace() != 5543 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5544 5545 // Move the old entry aside so that we'll create a new one. 5546 Entry->setName(StringRef()); 5547 5548 // Make a new global with the correct type, this is now guaranteed to work. 5549 GV = cast<llvm::GlobalVariable>( 5550 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5551 ->stripPointerCasts()); 5552 5553 // Replace all uses of the old global with the new global 5554 llvm::Constant *NewPtrForOldDecl = 5555 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5556 Entry->getType()); 5557 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5558 5559 // Erase the old global, since it is no longer used. 5560 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5561 } 5562 5563 MaybeHandleStaticInExternC(D, GV); 5564 5565 if (D->hasAttr<AnnotateAttr>()) 5566 AddGlobalAnnotations(D, GV); 5567 5568 // Set the llvm linkage type as appropriate. 5569 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5570 5571 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5572 // the device. [...]" 5573 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5574 // __device__, declares a variable that: [...] 5575 // Is accessible from all the threads within the grid and from the host 5576 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5577 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5578 if (LangOpts.CUDA) { 5579 if (LangOpts.CUDAIsDevice) { 5580 if (Linkage != llvm::GlobalValue::InternalLinkage && 5581 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5582 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5583 D->getType()->isCUDADeviceBuiltinTextureType())) 5584 GV->setExternallyInitialized(true); 5585 } else { 5586 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5587 } 5588 getCUDARuntime().handleVarRegistration(D, *GV); 5589 } 5590 5591 GV->setInitializer(Init); 5592 if (emitter) 5593 emitter->finalize(GV); 5594 5595 // If it is safe to mark the global 'constant', do so now. 5596 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5597 D->getType().isConstantStorage(getContext(), true, true)); 5598 5599 // If it is in a read-only section, mark it 'constant'. 5600 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5601 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5602 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5603 GV->setConstant(true); 5604 } 5605 5606 CharUnits AlignVal = getContext().getDeclAlign(D); 5607 // Check for alignment specifed in an 'omp allocate' directive. 5608 if (std::optional<CharUnits> AlignValFromAllocate = 5609 getOMPAllocateAlignment(D)) 5610 AlignVal = *AlignValFromAllocate; 5611 GV->setAlignment(AlignVal.getAsAlign()); 5612 5613 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5614 // function is only defined alongside the variable, not also alongside 5615 // callers. Normally, all accesses to a thread_local go through the 5616 // thread-wrapper in order to ensure initialization has occurred, underlying 5617 // variable will never be used other than the thread-wrapper, so it can be 5618 // converted to internal linkage. 5619 // 5620 // However, if the variable has the 'constinit' attribute, it _can_ be 5621 // referenced directly, without calling the thread-wrapper, so the linkage 5622 // must not be changed. 5623 // 5624 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5625 // weak or linkonce, the de-duplication semantics are important to preserve, 5626 // so we don't change the linkage. 5627 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5628 Linkage == llvm::GlobalValue::ExternalLinkage && 5629 Context.getTargetInfo().getTriple().isOSDarwin() && 5630 !D->hasAttr<ConstInitAttr>()) 5631 Linkage = llvm::GlobalValue::InternalLinkage; 5632 5633 GV->setLinkage(Linkage); 5634 if (D->hasAttr<DLLImportAttr>()) 5635 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5636 else if (D->hasAttr<DLLExportAttr>()) 5637 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5638 else 5639 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5640 5641 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5642 // common vars aren't constant even if declared const. 5643 GV->setConstant(false); 5644 // Tentative definition of global variables may be initialized with 5645 // non-zero null pointers. In this case they should have weak linkage 5646 // since common linkage must have zero initializer and must not have 5647 // explicit section therefore cannot have non-zero initial value. 5648 if (!GV->getInitializer()->isNullValue()) 5649 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5650 } 5651 5652 setNonAliasAttributes(D, GV); 5653 5654 if (D->getTLSKind() && !GV->isThreadLocal()) { 5655 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5656 CXXThreadLocals.push_back(D); 5657 setTLSMode(GV, *D); 5658 } 5659 5660 maybeSetTrivialComdat(*D, *GV); 5661 5662 // Emit the initializer function if necessary. 5663 if (NeedsGlobalCtor || NeedsGlobalDtor) 5664 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5665 5666 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5667 5668 // Emit global variable debug information. 5669 if (CGDebugInfo *DI = getModuleDebugInfo()) 5670 if (getCodeGenOpts().hasReducedDebugInfo()) 5671 DI->EmitGlobalVariable(GV, D); 5672 } 5673 5674 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5675 if (CGDebugInfo *DI = getModuleDebugInfo()) 5676 if (getCodeGenOpts().hasReducedDebugInfo()) { 5677 QualType ASTTy = D->getType(); 5678 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5679 llvm::Constant *GV = 5680 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5681 DI->EmitExternalVariable( 5682 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5683 } 5684 } 5685 5686 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5687 if (CGDebugInfo *DI = getModuleDebugInfo()) 5688 if (getCodeGenOpts().hasReducedDebugInfo()) { 5689 auto *Ty = getTypes().ConvertType(FD->getType()); 5690 StringRef MangledName = getMangledName(FD); 5691 auto *Fn = cast<llvm::Function>( 5692 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5693 if (!Fn->getSubprogram()) 5694 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5695 } 5696 } 5697 5698 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5699 CodeGenModule &CGM, const VarDecl *D, 5700 bool NoCommon) { 5701 // Don't give variables common linkage if -fno-common was specified unless it 5702 // was overridden by a NoCommon attribute. 5703 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5704 return true; 5705 5706 // C11 6.9.2/2: 5707 // A declaration of an identifier for an object that has file scope without 5708 // an initializer, and without a storage-class specifier or with the 5709 // storage-class specifier static, constitutes a tentative definition. 5710 if (D->getInit() || D->hasExternalStorage()) 5711 return true; 5712 5713 // A variable cannot be both common and exist in a section. 5714 if (D->hasAttr<SectionAttr>()) 5715 return true; 5716 5717 // A variable cannot be both common and exist in a section. 5718 // We don't try to determine which is the right section in the front-end. 5719 // If no specialized section name is applicable, it will resort to default. 5720 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5721 D->hasAttr<PragmaClangDataSectionAttr>() || 5722 D->hasAttr<PragmaClangRelroSectionAttr>() || 5723 D->hasAttr<PragmaClangRodataSectionAttr>()) 5724 return true; 5725 5726 // Thread local vars aren't considered common linkage. 5727 if (D->getTLSKind()) 5728 return true; 5729 5730 // Tentative definitions marked with WeakImportAttr are true definitions. 5731 if (D->hasAttr<WeakImportAttr>()) 5732 return true; 5733 5734 // A variable cannot be both common and exist in a comdat. 5735 if (shouldBeInCOMDAT(CGM, *D)) 5736 return true; 5737 5738 // Declarations with a required alignment do not have common linkage in MSVC 5739 // mode. 5740 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5741 if (D->hasAttr<AlignedAttr>()) 5742 return true; 5743 QualType VarType = D->getType(); 5744 if (Context.isAlignmentRequired(VarType)) 5745 return true; 5746 5747 if (const auto *RT = VarType->getAs<RecordType>()) { 5748 const RecordDecl *RD = RT->getDecl(); 5749 for (const FieldDecl *FD : RD->fields()) { 5750 if (FD->isBitField()) 5751 continue; 5752 if (FD->hasAttr<AlignedAttr>()) 5753 return true; 5754 if (Context.isAlignmentRequired(FD->getType())) 5755 return true; 5756 } 5757 } 5758 } 5759 5760 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5761 // common symbols, so symbols with greater alignment requirements cannot be 5762 // common. 5763 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5764 // alignments for common symbols via the aligncomm directive, so this 5765 // restriction only applies to MSVC environments. 5766 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5767 Context.getTypeAlignIfKnown(D->getType()) > 5768 Context.toBits(CharUnits::fromQuantity(32))) 5769 return true; 5770 5771 return false; 5772 } 5773 5774 llvm::GlobalValue::LinkageTypes 5775 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5776 GVALinkage Linkage) { 5777 if (Linkage == GVA_Internal) 5778 return llvm::Function::InternalLinkage; 5779 5780 if (D->hasAttr<WeakAttr>()) 5781 return llvm::GlobalVariable::WeakAnyLinkage; 5782 5783 if (const auto *FD = D->getAsFunction()) 5784 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5785 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5786 5787 // We are guaranteed to have a strong definition somewhere else, 5788 // so we can use available_externally linkage. 5789 if (Linkage == GVA_AvailableExternally) 5790 return llvm::GlobalValue::AvailableExternallyLinkage; 5791 5792 // Note that Apple's kernel linker doesn't support symbol 5793 // coalescing, so we need to avoid linkonce and weak linkages there. 5794 // Normally, this means we just map to internal, but for explicit 5795 // instantiations we'll map to external. 5796 5797 // In C++, the compiler has to emit a definition in every translation unit 5798 // that references the function. We should use linkonce_odr because 5799 // a) if all references in this translation unit are optimized away, we 5800 // don't need to codegen it. b) if the function persists, it needs to be 5801 // merged with other definitions. c) C++ has the ODR, so we know the 5802 // definition is dependable. 5803 if (Linkage == GVA_DiscardableODR) 5804 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5805 : llvm::Function::InternalLinkage; 5806 5807 // An explicit instantiation of a template has weak linkage, since 5808 // explicit instantiations can occur in multiple translation units 5809 // and must all be equivalent. However, we are not allowed to 5810 // throw away these explicit instantiations. 5811 // 5812 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5813 // so say that CUDA templates are either external (for kernels) or internal. 5814 // This lets llvm perform aggressive inter-procedural optimizations. For 5815 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5816 // therefore we need to follow the normal linkage paradigm. 5817 if (Linkage == GVA_StrongODR) { 5818 if (getLangOpts().AppleKext) 5819 return llvm::Function::ExternalLinkage; 5820 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5821 !getLangOpts().GPURelocatableDeviceCode) 5822 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5823 : llvm::Function::InternalLinkage; 5824 return llvm::Function::WeakODRLinkage; 5825 } 5826 5827 // C++ doesn't have tentative definitions and thus cannot have common 5828 // linkage. 5829 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5830 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5831 CodeGenOpts.NoCommon)) 5832 return llvm::GlobalVariable::CommonLinkage; 5833 5834 // selectany symbols are externally visible, so use weak instead of 5835 // linkonce. MSVC optimizes away references to const selectany globals, so 5836 // all definitions should be the same and ODR linkage should be used. 5837 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5838 if (D->hasAttr<SelectAnyAttr>()) 5839 return llvm::GlobalVariable::WeakODRLinkage; 5840 5841 // Otherwise, we have strong external linkage. 5842 assert(Linkage == GVA_StrongExternal); 5843 return llvm::GlobalVariable::ExternalLinkage; 5844 } 5845 5846 llvm::GlobalValue::LinkageTypes 5847 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5848 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5849 return getLLVMLinkageForDeclarator(VD, Linkage); 5850 } 5851 5852 /// Replace the uses of a function that was declared with a non-proto type. 5853 /// We want to silently drop extra arguments from call sites 5854 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5855 llvm::Function *newFn) { 5856 // Fast path. 5857 if (old->use_empty()) 5858 return; 5859 5860 llvm::Type *newRetTy = newFn->getReturnType(); 5861 SmallVector<llvm::Value *, 4> newArgs; 5862 5863 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5864 5865 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5866 ui != ue; ui++) { 5867 llvm::User *user = ui->getUser(); 5868 5869 // Recognize and replace uses of bitcasts. Most calls to 5870 // unprototyped functions will use bitcasts. 5871 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5872 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5873 replaceUsesOfNonProtoConstant(bitcast, newFn); 5874 continue; 5875 } 5876 5877 // Recognize calls to the function. 5878 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5879 if (!callSite) 5880 continue; 5881 if (!callSite->isCallee(&*ui)) 5882 continue; 5883 5884 // If the return types don't match exactly, then we can't 5885 // transform this call unless it's dead. 5886 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5887 continue; 5888 5889 // Get the call site's attribute list. 5890 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5891 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5892 5893 // If the function was passed too few arguments, don't transform. 5894 unsigned newNumArgs = newFn->arg_size(); 5895 if (callSite->arg_size() < newNumArgs) 5896 continue; 5897 5898 // If extra arguments were passed, we silently drop them. 5899 // If any of the types mismatch, we don't transform. 5900 unsigned argNo = 0; 5901 bool dontTransform = false; 5902 for (llvm::Argument &A : newFn->args()) { 5903 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5904 dontTransform = true; 5905 break; 5906 } 5907 5908 // Add any parameter attributes. 5909 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5910 argNo++; 5911 } 5912 if (dontTransform) 5913 continue; 5914 5915 // Okay, we can transform this. Create the new call instruction and copy 5916 // over the required information. 5917 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5918 5919 // Copy over any operand bundles. 5920 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5921 callSite->getOperandBundlesAsDefs(newBundles); 5922 5923 llvm::CallBase *newCall; 5924 if (isa<llvm::CallInst>(callSite)) { 5925 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5926 callSite->getIterator()); 5927 } else { 5928 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5929 newCall = llvm::InvokeInst::Create( 5930 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5931 newArgs, newBundles, "", callSite->getIterator()); 5932 } 5933 newArgs.clear(); // for the next iteration 5934 5935 if (!newCall->getType()->isVoidTy()) 5936 newCall->takeName(callSite); 5937 newCall->setAttributes( 5938 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5939 oldAttrs.getRetAttrs(), newArgAttrs)); 5940 newCall->setCallingConv(callSite->getCallingConv()); 5941 5942 // Finally, remove the old call, replacing any uses with the new one. 5943 if (!callSite->use_empty()) 5944 callSite->replaceAllUsesWith(newCall); 5945 5946 // Copy debug location attached to CI. 5947 if (callSite->getDebugLoc()) 5948 newCall->setDebugLoc(callSite->getDebugLoc()); 5949 5950 callSitesToBeRemovedFromParent.push_back(callSite); 5951 } 5952 5953 for (auto *callSite : callSitesToBeRemovedFromParent) { 5954 callSite->eraseFromParent(); 5955 } 5956 } 5957 5958 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5959 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5960 /// existing call uses of the old function in the module, this adjusts them to 5961 /// call the new function directly. 5962 /// 5963 /// This is not just a cleanup: the always_inline pass requires direct calls to 5964 /// functions to be able to inline them. If there is a bitcast in the way, it 5965 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5966 /// run at -O0. 5967 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5968 llvm::Function *NewFn) { 5969 // If we're redefining a global as a function, don't transform it. 5970 if (!isa<llvm::Function>(Old)) return; 5971 5972 replaceUsesOfNonProtoConstant(Old, NewFn); 5973 } 5974 5975 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5976 auto DK = VD->isThisDeclarationADefinition(); 5977 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5978 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5979 return; 5980 5981 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5982 // If we have a definition, this might be a deferred decl. If the 5983 // instantiation is explicit, make sure we emit it at the end. 5984 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5985 GetAddrOfGlobalVar(VD); 5986 5987 EmitTopLevelDecl(VD); 5988 } 5989 5990 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5991 llvm::GlobalValue *GV) { 5992 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5993 5994 // Compute the function info and LLVM type. 5995 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5996 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5997 5998 // Get or create the prototype for the function. 5999 if (!GV || (GV->getValueType() != Ty)) 6000 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 6001 /*DontDefer=*/true, 6002 ForDefinition)); 6003 6004 // Already emitted. 6005 if (!GV->isDeclaration()) 6006 return; 6007 6008 // We need to set linkage and visibility on the function before 6009 // generating code for it because various parts of IR generation 6010 // want to propagate this information down (e.g. to local static 6011 // declarations). 6012 auto *Fn = cast<llvm::Function>(GV); 6013 setFunctionLinkage(GD, Fn); 6014 6015 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6016 setGVProperties(Fn, GD); 6017 6018 MaybeHandleStaticInExternC(D, Fn); 6019 6020 maybeSetTrivialComdat(*D, *Fn); 6021 6022 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6023 6024 setNonAliasAttributes(GD, Fn); 6025 SetLLVMFunctionAttributesForDefinition(D, Fn); 6026 6027 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6028 AddGlobalCtor(Fn, CA->getPriority()); 6029 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6030 AddGlobalDtor(Fn, DA->getPriority(), true); 6031 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6032 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6033 } 6034 6035 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6036 const auto *D = cast<ValueDecl>(GD.getDecl()); 6037 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6038 assert(AA && "Not an alias?"); 6039 6040 StringRef MangledName = getMangledName(GD); 6041 6042 if (AA->getAliasee() == MangledName) { 6043 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6044 return; 6045 } 6046 6047 // If there is a definition in the module, then it wins over the alias. 6048 // This is dubious, but allow it to be safe. Just ignore the alias. 6049 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6050 if (Entry && !Entry->isDeclaration()) 6051 return; 6052 6053 Aliases.push_back(GD); 6054 6055 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6056 6057 // Create a reference to the named value. This ensures that it is emitted 6058 // if a deferred decl. 6059 llvm::Constant *Aliasee; 6060 llvm::GlobalValue::LinkageTypes LT; 6061 if (isa<llvm::FunctionType>(DeclTy)) { 6062 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6063 /*ForVTable=*/false); 6064 LT = getFunctionLinkage(GD); 6065 } else { 6066 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6067 /*D=*/nullptr); 6068 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6069 LT = getLLVMLinkageVarDefinition(VD); 6070 else 6071 LT = getFunctionLinkage(GD); 6072 } 6073 6074 // Create the new alias itself, but don't set a name yet. 6075 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6076 auto *GA = 6077 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6078 6079 if (Entry) { 6080 if (GA->getAliasee() == Entry) { 6081 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6082 return; 6083 } 6084 6085 assert(Entry->isDeclaration()); 6086 6087 // If there is a declaration in the module, then we had an extern followed 6088 // by the alias, as in: 6089 // extern int test6(); 6090 // ... 6091 // int test6() __attribute__((alias("test7"))); 6092 // 6093 // Remove it and replace uses of it with the alias. 6094 GA->takeName(Entry); 6095 6096 Entry->replaceAllUsesWith(GA); 6097 Entry->eraseFromParent(); 6098 } else { 6099 GA->setName(MangledName); 6100 } 6101 6102 // Set attributes which are particular to an alias; this is a 6103 // specialization of the attributes which may be set on a global 6104 // variable/function. 6105 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6106 D->isWeakImported()) { 6107 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6108 } 6109 6110 if (const auto *VD = dyn_cast<VarDecl>(D)) 6111 if (VD->getTLSKind()) 6112 setTLSMode(GA, *VD); 6113 6114 SetCommonAttributes(GD, GA); 6115 6116 // Emit global alias debug information. 6117 if (isa<VarDecl>(D)) 6118 if (CGDebugInfo *DI = getModuleDebugInfo()) 6119 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6120 } 6121 6122 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6123 const auto *D = cast<ValueDecl>(GD.getDecl()); 6124 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6125 assert(IFA && "Not an ifunc?"); 6126 6127 StringRef MangledName = getMangledName(GD); 6128 6129 if (IFA->getResolver() == MangledName) { 6130 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6131 return; 6132 } 6133 6134 // Report an error if some definition overrides ifunc. 6135 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6136 if (Entry && !Entry->isDeclaration()) { 6137 GlobalDecl OtherGD; 6138 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6139 DiagnosedConflictingDefinitions.insert(GD).second) { 6140 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6141 << MangledName; 6142 Diags.Report(OtherGD.getDecl()->getLocation(), 6143 diag::note_previous_definition); 6144 } 6145 return; 6146 } 6147 6148 Aliases.push_back(GD); 6149 6150 // The resolver might not be visited yet. Specify a dummy non-function type to 6151 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6152 // was emitted) or the whole function will be replaced (if the resolver has 6153 // not been emitted). 6154 llvm::Constant *Resolver = 6155 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6156 /*ForVTable=*/false); 6157 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6158 llvm::GlobalIFunc *GIF = 6159 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6160 "", Resolver, &getModule()); 6161 if (Entry) { 6162 if (GIF->getResolver() == Entry) { 6163 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6164 return; 6165 } 6166 assert(Entry->isDeclaration()); 6167 6168 // If there is a declaration in the module, then we had an extern followed 6169 // by the ifunc, as in: 6170 // extern int test(); 6171 // ... 6172 // int test() __attribute__((ifunc("resolver"))); 6173 // 6174 // Remove it and replace uses of it with the ifunc. 6175 GIF->takeName(Entry); 6176 6177 Entry->replaceAllUsesWith(GIF); 6178 Entry->eraseFromParent(); 6179 } else 6180 GIF->setName(MangledName); 6181 SetCommonAttributes(GD, GIF); 6182 } 6183 6184 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6185 ArrayRef<llvm::Type*> Tys) { 6186 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6187 Tys); 6188 } 6189 6190 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6191 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6192 const StringLiteral *Literal, bool TargetIsLSB, 6193 bool &IsUTF16, unsigned &StringLength) { 6194 StringRef String = Literal->getString(); 6195 unsigned NumBytes = String.size(); 6196 6197 // Check for simple case. 6198 if (!Literal->containsNonAsciiOrNull()) { 6199 StringLength = NumBytes; 6200 return *Map.insert(std::make_pair(String, nullptr)).first; 6201 } 6202 6203 // Otherwise, convert the UTF8 literals into a string of shorts. 6204 IsUTF16 = true; 6205 6206 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6207 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6208 llvm::UTF16 *ToPtr = &ToBuf[0]; 6209 6210 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6211 ToPtr + NumBytes, llvm::strictConversion); 6212 6213 // ConvertUTF8toUTF16 returns the length in ToPtr. 6214 StringLength = ToPtr - &ToBuf[0]; 6215 6216 // Add an explicit null. 6217 *ToPtr = 0; 6218 return *Map.insert(std::make_pair( 6219 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6220 (StringLength + 1) * 2), 6221 nullptr)).first; 6222 } 6223 6224 ConstantAddress 6225 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6226 unsigned StringLength = 0; 6227 bool isUTF16 = false; 6228 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6229 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6230 getDataLayout().isLittleEndian(), isUTF16, 6231 StringLength); 6232 6233 if (auto *C = Entry.second) 6234 return ConstantAddress( 6235 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6236 6237 const ASTContext &Context = getContext(); 6238 const llvm::Triple &Triple = getTriple(); 6239 6240 const auto CFRuntime = getLangOpts().CFRuntime; 6241 const bool IsSwiftABI = 6242 static_cast<unsigned>(CFRuntime) >= 6243 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6244 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6245 6246 // If we don't already have it, get __CFConstantStringClassReference. 6247 if (!CFConstantStringClassRef) { 6248 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6249 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6250 Ty = llvm::ArrayType::get(Ty, 0); 6251 6252 switch (CFRuntime) { 6253 default: break; 6254 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6255 case LangOptions::CoreFoundationABI::Swift5_0: 6256 CFConstantStringClassName = 6257 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6258 : "$s10Foundation19_NSCFConstantStringCN"; 6259 Ty = IntPtrTy; 6260 break; 6261 case LangOptions::CoreFoundationABI::Swift4_2: 6262 CFConstantStringClassName = 6263 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6264 : "$S10Foundation19_NSCFConstantStringCN"; 6265 Ty = IntPtrTy; 6266 break; 6267 case LangOptions::CoreFoundationABI::Swift4_1: 6268 CFConstantStringClassName = 6269 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6270 : "__T010Foundation19_NSCFConstantStringCN"; 6271 Ty = IntPtrTy; 6272 break; 6273 } 6274 6275 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6276 6277 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6278 llvm::GlobalValue *GV = nullptr; 6279 6280 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6281 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6282 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6283 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6284 6285 const VarDecl *VD = nullptr; 6286 for (const auto *Result : DC->lookup(&II)) 6287 if ((VD = dyn_cast<VarDecl>(Result))) 6288 break; 6289 6290 if (Triple.isOSBinFormatELF()) { 6291 if (!VD) 6292 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6293 } else { 6294 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6295 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6296 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6297 else 6298 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6299 } 6300 6301 setDSOLocal(GV); 6302 } 6303 } 6304 6305 // Decay array -> ptr 6306 CFConstantStringClassRef = 6307 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6308 } 6309 6310 QualType CFTy = Context.getCFConstantStringType(); 6311 6312 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6313 6314 ConstantInitBuilder Builder(*this); 6315 auto Fields = Builder.beginStruct(STy); 6316 6317 // Class pointer. 6318 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6319 6320 // Flags. 6321 if (IsSwiftABI) { 6322 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6323 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6324 } else { 6325 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6326 } 6327 6328 // String pointer. 6329 llvm::Constant *C = nullptr; 6330 if (isUTF16) { 6331 auto Arr = llvm::ArrayRef( 6332 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6333 Entry.first().size() / 2); 6334 C = llvm::ConstantDataArray::get(VMContext, Arr); 6335 } else { 6336 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6337 } 6338 6339 // Note: -fwritable-strings doesn't make the backing store strings of 6340 // CFStrings writable. 6341 auto *GV = 6342 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6343 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6344 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6345 // Don't enforce the target's minimum global alignment, since the only use 6346 // of the string is via this class initializer. 6347 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6348 : Context.getTypeAlignInChars(Context.CharTy); 6349 GV->setAlignment(Align.getAsAlign()); 6350 6351 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6352 // Without it LLVM can merge the string with a non unnamed_addr one during 6353 // LTO. Doing that changes the section it ends in, which surprises ld64. 6354 if (Triple.isOSBinFormatMachO()) 6355 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6356 : "__TEXT,__cstring,cstring_literals"); 6357 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6358 // the static linker to adjust permissions to read-only later on. 6359 else if (Triple.isOSBinFormatELF()) 6360 GV->setSection(".rodata"); 6361 6362 // String. 6363 Fields.add(GV); 6364 6365 // String length. 6366 llvm::IntegerType *LengthTy = 6367 llvm::IntegerType::get(getModule().getContext(), 6368 Context.getTargetInfo().getLongWidth()); 6369 if (IsSwiftABI) { 6370 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6371 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6372 LengthTy = Int32Ty; 6373 else 6374 LengthTy = IntPtrTy; 6375 } 6376 Fields.addInt(LengthTy, StringLength); 6377 6378 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6379 // properly aligned on 32-bit platforms. 6380 CharUnits Alignment = 6381 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6382 6383 // The struct. 6384 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6385 /*isConstant=*/false, 6386 llvm::GlobalVariable::PrivateLinkage); 6387 GV->addAttribute("objc_arc_inert"); 6388 switch (Triple.getObjectFormat()) { 6389 case llvm::Triple::UnknownObjectFormat: 6390 llvm_unreachable("unknown file format"); 6391 case llvm::Triple::DXContainer: 6392 case llvm::Triple::GOFF: 6393 case llvm::Triple::SPIRV: 6394 case llvm::Triple::XCOFF: 6395 llvm_unreachable("unimplemented"); 6396 case llvm::Triple::COFF: 6397 case llvm::Triple::ELF: 6398 case llvm::Triple::Wasm: 6399 GV->setSection("cfstring"); 6400 break; 6401 case llvm::Triple::MachO: 6402 GV->setSection("__DATA,__cfstring"); 6403 break; 6404 } 6405 Entry.second = GV; 6406 6407 return ConstantAddress(GV, GV->getValueType(), Alignment); 6408 } 6409 6410 bool CodeGenModule::getExpressionLocationsEnabled() const { 6411 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6412 } 6413 6414 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6415 if (ObjCFastEnumerationStateType.isNull()) { 6416 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6417 D->startDefinition(); 6418 6419 QualType FieldTypes[] = { 6420 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6421 Context.getPointerType(Context.UnsignedLongTy), 6422 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6423 nullptr, ArraySizeModifier::Normal, 0)}; 6424 6425 for (size_t i = 0; i < 4; ++i) { 6426 FieldDecl *Field = FieldDecl::Create(Context, 6427 D, 6428 SourceLocation(), 6429 SourceLocation(), nullptr, 6430 FieldTypes[i], /*TInfo=*/nullptr, 6431 /*BitWidth=*/nullptr, 6432 /*Mutable=*/false, 6433 ICIS_NoInit); 6434 Field->setAccess(AS_public); 6435 D->addDecl(Field); 6436 } 6437 6438 D->completeDefinition(); 6439 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6440 } 6441 6442 return ObjCFastEnumerationStateType; 6443 } 6444 6445 llvm::Constant * 6446 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6447 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6448 6449 // Don't emit it as the address of the string, emit the string data itself 6450 // as an inline array. 6451 if (E->getCharByteWidth() == 1) { 6452 SmallString<64> Str(E->getString()); 6453 6454 // Resize the string to the right size, which is indicated by its type. 6455 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6456 assert(CAT && "String literal not of constant array type!"); 6457 Str.resize(CAT->getZExtSize()); 6458 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6459 } 6460 6461 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6462 llvm::Type *ElemTy = AType->getElementType(); 6463 unsigned NumElements = AType->getNumElements(); 6464 6465 // Wide strings have either 2-byte or 4-byte elements. 6466 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6467 SmallVector<uint16_t, 32> Elements; 6468 Elements.reserve(NumElements); 6469 6470 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6471 Elements.push_back(E->getCodeUnit(i)); 6472 Elements.resize(NumElements); 6473 return llvm::ConstantDataArray::get(VMContext, Elements); 6474 } 6475 6476 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6477 SmallVector<uint32_t, 32> Elements; 6478 Elements.reserve(NumElements); 6479 6480 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6481 Elements.push_back(E->getCodeUnit(i)); 6482 Elements.resize(NumElements); 6483 return llvm::ConstantDataArray::get(VMContext, Elements); 6484 } 6485 6486 static llvm::GlobalVariable * 6487 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6488 CodeGenModule &CGM, StringRef GlobalName, 6489 CharUnits Alignment) { 6490 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6491 CGM.GetGlobalConstantAddressSpace()); 6492 6493 llvm::Module &M = CGM.getModule(); 6494 // Create a global variable for this string 6495 auto *GV = new llvm::GlobalVariable( 6496 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6497 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6498 GV->setAlignment(Alignment.getAsAlign()); 6499 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6500 if (GV->isWeakForLinker()) { 6501 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6502 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6503 } 6504 CGM.setDSOLocal(GV); 6505 6506 return GV; 6507 } 6508 6509 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6510 /// constant array for the given string literal. 6511 ConstantAddress 6512 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6513 StringRef Name) { 6514 CharUnits Alignment = 6515 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6516 6517 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6518 llvm::GlobalVariable **Entry = nullptr; 6519 if (!LangOpts.WritableStrings) { 6520 Entry = &ConstantStringMap[C]; 6521 if (auto GV = *Entry) { 6522 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6523 GV->setAlignment(Alignment.getAsAlign()); 6524 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6525 GV->getValueType(), Alignment); 6526 } 6527 } 6528 6529 SmallString<256> MangledNameBuffer; 6530 StringRef GlobalVariableName; 6531 llvm::GlobalValue::LinkageTypes LT; 6532 6533 // Mangle the string literal if that's how the ABI merges duplicate strings. 6534 // Don't do it if they are writable, since we don't want writes in one TU to 6535 // affect strings in another. 6536 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6537 !LangOpts.WritableStrings) { 6538 llvm::raw_svector_ostream Out(MangledNameBuffer); 6539 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6540 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6541 GlobalVariableName = MangledNameBuffer; 6542 } else { 6543 LT = llvm::GlobalValue::PrivateLinkage; 6544 GlobalVariableName = Name; 6545 } 6546 6547 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6548 6549 CGDebugInfo *DI = getModuleDebugInfo(); 6550 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6551 DI->AddStringLiteralDebugInfo(GV, S); 6552 6553 if (Entry) 6554 *Entry = GV; 6555 6556 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6557 6558 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6559 GV->getValueType(), Alignment); 6560 } 6561 6562 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6563 /// array for the given ObjCEncodeExpr node. 6564 ConstantAddress 6565 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6566 std::string Str; 6567 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6568 6569 return GetAddrOfConstantCString(Str); 6570 } 6571 6572 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6573 /// the literal and a terminating '\0' character. 6574 /// The result has pointer to array type. 6575 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6576 const std::string &Str, const char *GlobalName) { 6577 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6578 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6579 getContext().CharTy, /*VD=*/nullptr); 6580 6581 llvm::Constant *C = 6582 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6583 6584 // Don't share any string literals if strings aren't constant. 6585 llvm::GlobalVariable **Entry = nullptr; 6586 if (!LangOpts.WritableStrings) { 6587 Entry = &ConstantStringMap[C]; 6588 if (auto GV = *Entry) { 6589 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6590 GV->setAlignment(Alignment.getAsAlign()); 6591 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6592 GV->getValueType(), Alignment); 6593 } 6594 } 6595 6596 // Get the default prefix if a name wasn't specified. 6597 if (!GlobalName) 6598 GlobalName = ".str"; 6599 // Create a global variable for this. 6600 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6601 GlobalName, Alignment); 6602 if (Entry) 6603 *Entry = GV; 6604 6605 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6606 GV->getValueType(), Alignment); 6607 } 6608 6609 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6610 const MaterializeTemporaryExpr *E, const Expr *Init) { 6611 assert((E->getStorageDuration() == SD_Static || 6612 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6613 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6614 6615 // If we're not materializing a subobject of the temporary, keep the 6616 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6617 QualType MaterializedType = Init->getType(); 6618 if (Init == E->getSubExpr()) 6619 MaterializedType = E->getType(); 6620 6621 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6622 6623 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6624 if (!InsertResult.second) { 6625 // We've seen this before: either we already created it or we're in the 6626 // process of doing so. 6627 if (!InsertResult.first->second) { 6628 // We recursively re-entered this function, probably during emission of 6629 // the initializer. Create a placeholder. We'll clean this up in the 6630 // outer call, at the end of this function. 6631 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6632 InsertResult.first->second = new llvm::GlobalVariable( 6633 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6634 nullptr); 6635 } 6636 return ConstantAddress(InsertResult.first->second, 6637 llvm::cast<llvm::GlobalVariable>( 6638 InsertResult.first->second->stripPointerCasts()) 6639 ->getValueType(), 6640 Align); 6641 } 6642 6643 // FIXME: If an externally-visible declaration extends multiple temporaries, 6644 // we need to give each temporary the same name in every translation unit (and 6645 // we also need to make the temporaries externally-visible). 6646 SmallString<256> Name; 6647 llvm::raw_svector_ostream Out(Name); 6648 getCXXABI().getMangleContext().mangleReferenceTemporary( 6649 VD, E->getManglingNumber(), Out); 6650 6651 APValue *Value = nullptr; 6652 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6653 // If the initializer of the extending declaration is a constant 6654 // initializer, we should have a cached constant initializer for this 6655 // temporary. Note that this might have a different value from the value 6656 // computed by evaluating the initializer if the surrounding constant 6657 // expression modifies the temporary. 6658 Value = E->getOrCreateValue(false); 6659 } 6660 6661 // Try evaluating it now, it might have a constant initializer. 6662 Expr::EvalResult EvalResult; 6663 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6664 !EvalResult.hasSideEffects()) 6665 Value = &EvalResult.Val; 6666 6667 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6668 6669 std::optional<ConstantEmitter> emitter; 6670 llvm::Constant *InitialValue = nullptr; 6671 bool Constant = false; 6672 llvm::Type *Type; 6673 if (Value) { 6674 // The temporary has a constant initializer, use it. 6675 emitter.emplace(*this); 6676 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6677 MaterializedType); 6678 Constant = 6679 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6680 /*ExcludeDtor*/ false); 6681 Type = InitialValue->getType(); 6682 } else { 6683 // No initializer, the initialization will be provided when we 6684 // initialize the declaration which performed lifetime extension. 6685 Type = getTypes().ConvertTypeForMem(MaterializedType); 6686 } 6687 6688 // Create a global variable for this lifetime-extended temporary. 6689 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6690 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6691 const VarDecl *InitVD; 6692 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6693 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6694 // Temporaries defined inside a class get linkonce_odr linkage because the 6695 // class can be defined in multiple translation units. 6696 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6697 } else { 6698 // There is no need for this temporary to have external linkage if the 6699 // VarDecl has external linkage. 6700 Linkage = llvm::GlobalVariable::InternalLinkage; 6701 } 6702 } 6703 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6704 auto *GV = new llvm::GlobalVariable( 6705 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6706 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6707 if (emitter) emitter->finalize(GV); 6708 // Don't assign dllimport or dllexport to local linkage globals. 6709 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6710 setGVProperties(GV, VD); 6711 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6712 // The reference temporary should never be dllexport. 6713 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6714 } 6715 GV->setAlignment(Align.getAsAlign()); 6716 if (supportsCOMDAT() && GV->isWeakForLinker()) 6717 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6718 if (VD->getTLSKind()) 6719 setTLSMode(GV, *VD); 6720 llvm::Constant *CV = GV; 6721 if (AddrSpace != LangAS::Default) 6722 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6723 *this, GV, AddrSpace, LangAS::Default, 6724 llvm::PointerType::get( 6725 getLLVMContext(), 6726 getContext().getTargetAddressSpace(LangAS::Default))); 6727 6728 // Update the map with the new temporary. If we created a placeholder above, 6729 // replace it with the new global now. 6730 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6731 if (Entry) { 6732 Entry->replaceAllUsesWith(CV); 6733 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6734 } 6735 Entry = CV; 6736 6737 return ConstantAddress(CV, Type, Align); 6738 } 6739 6740 /// EmitObjCPropertyImplementations - Emit information for synthesized 6741 /// properties for an implementation. 6742 void CodeGenModule::EmitObjCPropertyImplementations(const 6743 ObjCImplementationDecl *D) { 6744 for (const auto *PID : D->property_impls()) { 6745 // Dynamic is just for type-checking. 6746 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6747 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6748 6749 // Determine which methods need to be implemented, some may have 6750 // been overridden. Note that ::isPropertyAccessor is not the method 6751 // we want, that just indicates if the decl came from a 6752 // property. What we want to know is if the method is defined in 6753 // this implementation. 6754 auto *Getter = PID->getGetterMethodDecl(); 6755 if (!Getter || Getter->isSynthesizedAccessorStub()) 6756 CodeGenFunction(*this).GenerateObjCGetter( 6757 const_cast<ObjCImplementationDecl *>(D), PID); 6758 auto *Setter = PID->getSetterMethodDecl(); 6759 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6760 CodeGenFunction(*this).GenerateObjCSetter( 6761 const_cast<ObjCImplementationDecl *>(D), PID); 6762 } 6763 } 6764 } 6765 6766 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6767 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6768 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6769 ivar; ivar = ivar->getNextIvar()) 6770 if (ivar->getType().isDestructedType()) 6771 return true; 6772 6773 return false; 6774 } 6775 6776 static bool AllTrivialInitializers(CodeGenModule &CGM, 6777 ObjCImplementationDecl *D) { 6778 CodeGenFunction CGF(CGM); 6779 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6780 E = D->init_end(); B != E; ++B) { 6781 CXXCtorInitializer *CtorInitExp = *B; 6782 Expr *Init = CtorInitExp->getInit(); 6783 if (!CGF.isTrivialInitializer(Init)) 6784 return false; 6785 } 6786 return true; 6787 } 6788 6789 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6790 /// for an implementation. 6791 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6792 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6793 if (needsDestructMethod(D)) { 6794 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6795 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6796 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6797 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6798 getContext().VoidTy, nullptr, D, 6799 /*isInstance=*/true, /*isVariadic=*/false, 6800 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6801 /*isImplicitlyDeclared=*/true, 6802 /*isDefined=*/false, ObjCImplementationControl::Required); 6803 D->addInstanceMethod(DTORMethod); 6804 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6805 D->setHasDestructors(true); 6806 } 6807 6808 // If the implementation doesn't have any ivar initializers, we don't need 6809 // a .cxx_construct. 6810 if (D->getNumIvarInitializers() == 0 || 6811 AllTrivialInitializers(*this, D)) 6812 return; 6813 6814 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6815 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6816 // The constructor returns 'self'. 6817 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6818 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6819 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6820 /*isVariadic=*/false, 6821 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6822 /*isImplicitlyDeclared=*/true, 6823 /*isDefined=*/false, ObjCImplementationControl::Required); 6824 D->addInstanceMethod(CTORMethod); 6825 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6826 D->setHasNonZeroConstructors(true); 6827 } 6828 6829 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6830 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6831 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6832 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6833 ErrorUnsupported(LSD, "linkage spec"); 6834 return; 6835 } 6836 6837 EmitDeclContext(LSD); 6838 } 6839 6840 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6841 // Device code should not be at top level. 6842 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6843 return; 6844 6845 std::unique_ptr<CodeGenFunction> &CurCGF = 6846 GlobalTopLevelStmtBlockInFlight.first; 6847 6848 // We emitted a top-level stmt but after it there is initialization. 6849 // Stop squashing the top-level stmts into a single function. 6850 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6851 CurCGF->FinishFunction(D->getEndLoc()); 6852 CurCGF = nullptr; 6853 } 6854 6855 if (!CurCGF) { 6856 // void __stmts__N(void) 6857 // FIXME: Ask the ABI name mangler to pick a name. 6858 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6859 FunctionArgList Args; 6860 QualType RetTy = getContext().VoidTy; 6861 const CGFunctionInfo &FnInfo = 6862 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6863 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6864 llvm::Function *Fn = llvm::Function::Create( 6865 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6866 6867 CurCGF.reset(new CodeGenFunction(*this)); 6868 GlobalTopLevelStmtBlockInFlight.second = D; 6869 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6870 D->getBeginLoc(), D->getBeginLoc()); 6871 CXXGlobalInits.push_back(Fn); 6872 } 6873 6874 CurCGF->EmitStmt(D->getStmt()); 6875 } 6876 6877 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6878 for (auto *I : DC->decls()) { 6879 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6880 // are themselves considered "top-level", so EmitTopLevelDecl on an 6881 // ObjCImplDecl does not recursively visit them. We need to do that in 6882 // case they're nested inside another construct (LinkageSpecDecl / 6883 // ExportDecl) that does stop them from being considered "top-level". 6884 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6885 for (auto *M : OID->methods()) 6886 EmitTopLevelDecl(M); 6887 } 6888 6889 EmitTopLevelDecl(I); 6890 } 6891 } 6892 6893 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6894 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6895 // Ignore dependent declarations. 6896 if (D->isTemplated()) 6897 return; 6898 6899 // Consteval function shouldn't be emitted. 6900 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6901 return; 6902 6903 switch (D->getKind()) { 6904 case Decl::CXXConversion: 6905 case Decl::CXXMethod: 6906 case Decl::Function: 6907 EmitGlobal(cast<FunctionDecl>(D)); 6908 // Always provide some coverage mapping 6909 // even for the functions that aren't emitted. 6910 AddDeferredUnusedCoverageMapping(D); 6911 break; 6912 6913 case Decl::CXXDeductionGuide: 6914 // Function-like, but does not result in code emission. 6915 break; 6916 6917 case Decl::Var: 6918 case Decl::Decomposition: 6919 case Decl::VarTemplateSpecialization: 6920 EmitGlobal(cast<VarDecl>(D)); 6921 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6922 for (auto *B : DD->bindings()) 6923 if (auto *HD = B->getHoldingVar()) 6924 EmitGlobal(HD); 6925 break; 6926 6927 // Indirect fields from global anonymous structs and unions can be 6928 // ignored; only the actual variable requires IR gen support. 6929 case Decl::IndirectField: 6930 break; 6931 6932 // C++ Decls 6933 case Decl::Namespace: 6934 EmitDeclContext(cast<NamespaceDecl>(D)); 6935 break; 6936 case Decl::ClassTemplateSpecialization: { 6937 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6938 if (CGDebugInfo *DI = getModuleDebugInfo()) 6939 if (Spec->getSpecializationKind() == 6940 TSK_ExplicitInstantiationDefinition && 6941 Spec->hasDefinition()) 6942 DI->completeTemplateDefinition(*Spec); 6943 } [[fallthrough]]; 6944 case Decl::CXXRecord: { 6945 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6946 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6947 if (CRD->hasDefinition()) 6948 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6949 if (auto *ES = D->getASTContext().getExternalSource()) 6950 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6951 DI->completeUnusedClass(*CRD); 6952 } 6953 // Emit any static data members, they may be definitions. 6954 for (auto *I : CRD->decls()) 6955 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6956 EmitTopLevelDecl(I); 6957 break; 6958 } 6959 // No code generation needed. 6960 case Decl::UsingShadow: 6961 case Decl::ClassTemplate: 6962 case Decl::VarTemplate: 6963 case Decl::Concept: 6964 case Decl::VarTemplatePartialSpecialization: 6965 case Decl::FunctionTemplate: 6966 case Decl::TypeAliasTemplate: 6967 case Decl::Block: 6968 case Decl::Empty: 6969 case Decl::Binding: 6970 break; 6971 case Decl::Using: // using X; [C++] 6972 if (CGDebugInfo *DI = getModuleDebugInfo()) 6973 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6974 break; 6975 case Decl::UsingEnum: // using enum X; [C++] 6976 if (CGDebugInfo *DI = getModuleDebugInfo()) 6977 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6978 break; 6979 case Decl::NamespaceAlias: 6980 if (CGDebugInfo *DI = getModuleDebugInfo()) 6981 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6982 break; 6983 case Decl::UsingDirective: // using namespace X; [C++] 6984 if (CGDebugInfo *DI = getModuleDebugInfo()) 6985 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6986 break; 6987 case Decl::CXXConstructor: 6988 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6989 break; 6990 case Decl::CXXDestructor: 6991 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6992 break; 6993 6994 case Decl::StaticAssert: 6995 // Nothing to do. 6996 break; 6997 6998 // Objective-C Decls 6999 7000 // Forward declarations, no (immediate) code generation. 7001 case Decl::ObjCInterface: 7002 case Decl::ObjCCategory: 7003 break; 7004 7005 case Decl::ObjCProtocol: { 7006 auto *Proto = cast<ObjCProtocolDecl>(D); 7007 if (Proto->isThisDeclarationADefinition()) 7008 ObjCRuntime->GenerateProtocol(Proto); 7009 break; 7010 } 7011 7012 case Decl::ObjCCategoryImpl: 7013 // Categories have properties but don't support synthesize so we 7014 // can ignore them here. 7015 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7016 break; 7017 7018 case Decl::ObjCImplementation: { 7019 auto *OMD = cast<ObjCImplementationDecl>(D); 7020 EmitObjCPropertyImplementations(OMD); 7021 EmitObjCIvarInitializations(OMD); 7022 ObjCRuntime->GenerateClass(OMD); 7023 // Emit global variable debug information. 7024 if (CGDebugInfo *DI = getModuleDebugInfo()) 7025 if (getCodeGenOpts().hasReducedDebugInfo()) 7026 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7027 OMD->getClassInterface()), OMD->getLocation()); 7028 break; 7029 } 7030 case Decl::ObjCMethod: { 7031 auto *OMD = cast<ObjCMethodDecl>(D); 7032 // If this is not a prototype, emit the body. 7033 if (OMD->getBody()) 7034 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7035 break; 7036 } 7037 case Decl::ObjCCompatibleAlias: 7038 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7039 break; 7040 7041 case Decl::PragmaComment: { 7042 const auto *PCD = cast<PragmaCommentDecl>(D); 7043 switch (PCD->getCommentKind()) { 7044 case PCK_Unknown: 7045 llvm_unreachable("unexpected pragma comment kind"); 7046 case PCK_Linker: 7047 AppendLinkerOptions(PCD->getArg()); 7048 break; 7049 case PCK_Lib: 7050 AddDependentLib(PCD->getArg()); 7051 break; 7052 case PCK_Compiler: 7053 case PCK_ExeStr: 7054 case PCK_User: 7055 break; // We ignore all of these. 7056 } 7057 break; 7058 } 7059 7060 case Decl::PragmaDetectMismatch: { 7061 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7062 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7063 break; 7064 } 7065 7066 case Decl::LinkageSpec: 7067 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7068 break; 7069 7070 case Decl::FileScopeAsm: { 7071 // File-scope asm is ignored during device-side CUDA compilation. 7072 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7073 break; 7074 // File-scope asm is ignored during device-side OpenMP compilation. 7075 if (LangOpts.OpenMPIsTargetDevice) 7076 break; 7077 // File-scope asm is ignored during device-side SYCL compilation. 7078 if (LangOpts.SYCLIsDevice) 7079 break; 7080 auto *AD = cast<FileScopeAsmDecl>(D); 7081 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7082 break; 7083 } 7084 7085 case Decl::TopLevelStmt: 7086 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7087 break; 7088 7089 case Decl::Import: { 7090 auto *Import = cast<ImportDecl>(D); 7091 7092 // If we've already imported this module, we're done. 7093 if (!ImportedModules.insert(Import->getImportedModule())) 7094 break; 7095 7096 // Emit debug information for direct imports. 7097 if (!Import->getImportedOwningModule()) { 7098 if (CGDebugInfo *DI = getModuleDebugInfo()) 7099 DI->EmitImportDecl(*Import); 7100 } 7101 7102 // For C++ standard modules we are done - we will call the module 7103 // initializer for imported modules, and that will likewise call those for 7104 // any imports it has. 7105 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7106 !Import->getImportedOwningModule()->isModuleMapModule()) 7107 break; 7108 7109 // For clang C++ module map modules the initializers for sub-modules are 7110 // emitted here. 7111 7112 // Find all of the submodules and emit the module initializers. 7113 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7114 SmallVector<clang::Module *, 16> Stack; 7115 Visited.insert(Import->getImportedModule()); 7116 Stack.push_back(Import->getImportedModule()); 7117 7118 while (!Stack.empty()) { 7119 clang::Module *Mod = Stack.pop_back_val(); 7120 if (!EmittedModuleInitializers.insert(Mod).second) 7121 continue; 7122 7123 for (auto *D : Context.getModuleInitializers(Mod)) 7124 EmitTopLevelDecl(D); 7125 7126 // Visit the submodules of this module. 7127 for (auto *Submodule : Mod->submodules()) { 7128 // Skip explicit children; they need to be explicitly imported to emit 7129 // the initializers. 7130 if (Submodule->IsExplicit) 7131 continue; 7132 7133 if (Visited.insert(Submodule).second) 7134 Stack.push_back(Submodule); 7135 } 7136 } 7137 break; 7138 } 7139 7140 case Decl::Export: 7141 EmitDeclContext(cast<ExportDecl>(D)); 7142 break; 7143 7144 case Decl::OMPThreadPrivate: 7145 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7146 break; 7147 7148 case Decl::OMPAllocate: 7149 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7150 break; 7151 7152 case Decl::OMPDeclareReduction: 7153 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7154 break; 7155 7156 case Decl::OMPDeclareMapper: 7157 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7158 break; 7159 7160 case Decl::OMPRequires: 7161 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7162 break; 7163 7164 case Decl::Typedef: 7165 case Decl::TypeAlias: // using foo = bar; [C++11] 7166 if (CGDebugInfo *DI = getModuleDebugInfo()) 7167 DI->EmitAndRetainType( 7168 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7169 break; 7170 7171 case Decl::Record: 7172 if (CGDebugInfo *DI = getModuleDebugInfo()) 7173 if (cast<RecordDecl>(D)->getDefinition()) 7174 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7175 break; 7176 7177 case Decl::Enum: 7178 if (CGDebugInfo *DI = getModuleDebugInfo()) 7179 if (cast<EnumDecl>(D)->getDefinition()) 7180 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7181 break; 7182 7183 case Decl::HLSLBuffer: 7184 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7185 break; 7186 7187 default: 7188 // Make sure we handled everything we should, every other kind is a 7189 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7190 // function. Need to recode Decl::Kind to do that easily. 7191 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7192 break; 7193 } 7194 } 7195 7196 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7197 // Do we need to generate coverage mapping? 7198 if (!CodeGenOpts.CoverageMapping) 7199 return; 7200 switch (D->getKind()) { 7201 case Decl::CXXConversion: 7202 case Decl::CXXMethod: 7203 case Decl::Function: 7204 case Decl::ObjCMethod: 7205 case Decl::CXXConstructor: 7206 case Decl::CXXDestructor: { 7207 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7208 break; 7209 SourceManager &SM = getContext().getSourceManager(); 7210 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7211 break; 7212 if (!llvm::coverage::SystemHeadersCoverage && 7213 SM.isInSystemHeader(D->getBeginLoc())) 7214 break; 7215 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7216 break; 7217 } 7218 default: 7219 break; 7220 }; 7221 } 7222 7223 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7224 // Do we need to generate coverage mapping? 7225 if (!CodeGenOpts.CoverageMapping) 7226 return; 7227 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7228 if (Fn->isTemplateInstantiation()) 7229 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7230 } 7231 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7232 } 7233 7234 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7235 // We call takeVector() here to avoid use-after-free. 7236 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7237 // we deserialize function bodies to emit coverage info for them, and that 7238 // deserializes more declarations. How should we handle that case? 7239 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7240 if (!Entry.second) 7241 continue; 7242 const Decl *D = Entry.first; 7243 switch (D->getKind()) { 7244 case Decl::CXXConversion: 7245 case Decl::CXXMethod: 7246 case Decl::Function: 7247 case Decl::ObjCMethod: { 7248 CodeGenPGO PGO(*this); 7249 GlobalDecl GD(cast<FunctionDecl>(D)); 7250 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7251 getFunctionLinkage(GD)); 7252 break; 7253 } 7254 case Decl::CXXConstructor: { 7255 CodeGenPGO PGO(*this); 7256 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7257 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7258 getFunctionLinkage(GD)); 7259 break; 7260 } 7261 case Decl::CXXDestructor: { 7262 CodeGenPGO PGO(*this); 7263 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7264 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7265 getFunctionLinkage(GD)); 7266 break; 7267 } 7268 default: 7269 break; 7270 }; 7271 } 7272 } 7273 7274 void CodeGenModule::EmitMainVoidAlias() { 7275 // In order to transition away from "__original_main" gracefully, emit an 7276 // alias for "main" in the no-argument case so that libc can detect when 7277 // new-style no-argument main is in used. 7278 if (llvm::Function *F = getModule().getFunction("main")) { 7279 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7280 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7281 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7282 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7283 } 7284 } 7285 } 7286 7287 /// Turns the given pointer into a constant. 7288 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7289 const void *Ptr) { 7290 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7291 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7292 return llvm::ConstantInt::get(i64, PtrInt); 7293 } 7294 7295 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7296 llvm::NamedMDNode *&GlobalMetadata, 7297 GlobalDecl D, 7298 llvm::GlobalValue *Addr) { 7299 if (!GlobalMetadata) 7300 GlobalMetadata = 7301 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7302 7303 // TODO: should we report variant information for ctors/dtors? 7304 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7305 llvm::ConstantAsMetadata::get(GetPointerConstant( 7306 CGM.getLLVMContext(), D.getDecl()))}; 7307 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7308 } 7309 7310 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7311 llvm::GlobalValue *CppFunc) { 7312 // Store the list of ifuncs we need to replace uses in. 7313 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7314 // List of ConstantExprs that we should be able to delete when we're done 7315 // here. 7316 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7317 7318 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7319 if (Elem == CppFunc) 7320 return false; 7321 7322 // First make sure that all users of this are ifuncs (or ifuncs via a 7323 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7324 // later. 7325 for (llvm::User *User : Elem->users()) { 7326 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7327 // ifunc directly. In any other case, just give up, as we don't know what we 7328 // could break by changing those. 7329 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7330 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7331 return false; 7332 7333 for (llvm::User *CEUser : ConstExpr->users()) { 7334 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7335 IFuncs.push_back(IFunc); 7336 } else { 7337 return false; 7338 } 7339 } 7340 CEs.push_back(ConstExpr); 7341 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7342 IFuncs.push_back(IFunc); 7343 } else { 7344 // This user is one we don't know how to handle, so fail redirection. This 7345 // will result in an ifunc retaining a resolver name that will ultimately 7346 // fail to be resolved to a defined function. 7347 return false; 7348 } 7349 } 7350 7351 // Now we know this is a valid case where we can do this alias replacement, we 7352 // need to remove all of the references to Elem (and the bitcasts!) so we can 7353 // delete it. 7354 for (llvm::GlobalIFunc *IFunc : IFuncs) 7355 IFunc->setResolver(nullptr); 7356 for (llvm::ConstantExpr *ConstExpr : CEs) 7357 ConstExpr->destroyConstant(); 7358 7359 // We should now be out of uses for the 'old' version of this function, so we 7360 // can erase it as well. 7361 Elem->eraseFromParent(); 7362 7363 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7364 // The type of the resolver is always just a function-type that returns the 7365 // type of the IFunc, so create that here. If the type of the actual 7366 // resolver doesn't match, it just gets bitcast to the right thing. 7367 auto *ResolverTy = 7368 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7369 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7370 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7371 IFunc->setResolver(Resolver); 7372 } 7373 return true; 7374 } 7375 7376 /// For each function which is declared within an extern "C" region and marked 7377 /// as 'used', but has internal linkage, create an alias from the unmangled 7378 /// name to the mangled name if possible. People expect to be able to refer 7379 /// to such functions with an unmangled name from inline assembly within the 7380 /// same translation unit. 7381 void CodeGenModule::EmitStaticExternCAliases() { 7382 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7383 return; 7384 for (auto &I : StaticExternCValues) { 7385 const IdentifierInfo *Name = I.first; 7386 llvm::GlobalValue *Val = I.second; 7387 7388 // If Val is null, that implies there were multiple declarations that each 7389 // had a claim to the unmangled name. In this case, generation of the alias 7390 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7391 if (!Val) 7392 break; 7393 7394 llvm::GlobalValue *ExistingElem = 7395 getModule().getNamedValue(Name->getName()); 7396 7397 // If there is either not something already by this name, or we were able to 7398 // replace all uses from IFuncs, create the alias. 7399 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7400 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7401 } 7402 } 7403 7404 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7405 GlobalDecl &Result) const { 7406 auto Res = Manglings.find(MangledName); 7407 if (Res == Manglings.end()) 7408 return false; 7409 Result = Res->getValue(); 7410 return true; 7411 } 7412 7413 /// Emits metadata nodes associating all the global values in the 7414 /// current module with the Decls they came from. This is useful for 7415 /// projects using IR gen as a subroutine. 7416 /// 7417 /// Since there's currently no way to associate an MDNode directly 7418 /// with an llvm::GlobalValue, we create a global named metadata 7419 /// with the name 'clang.global.decl.ptrs'. 7420 void CodeGenModule::EmitDeclMetadata() { 7421 llvm::NamedMDNode *GlobalMetadata = nullptr; 7422 7423 for (auto &I : MangledDeclNames) { 7424 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7425 // Some mangled names don't necessarily have an associated GlobalValue 7426 // in this module, e.g. if we mangled it for DebugInfo. 7427 if (Addr) 7428 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7429 } 7430 } 7431 7432 /// Emits metadata nodes for all the local variables in the current 7433 /// function. 7434 void CodeGenFunction::EmitDeclMetadata() { 7435 if (LocalDeclMap.empty()) return; 7436 7437 llvm::LLVMContext &Context = getLLVMContext(); 7438 7439 // Find the unique metadata ID for this name. 7440 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7441 7442 llvm::NamedMDNode *GlobalMetadata = nullptr; 7443 7444 for (auto &I : LocalDeclMap) { 7445 const Decl *D = I.first; 7446 llvm::Value *Addr = I.second.emitRawPointer(*this); 7447 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7448 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7449 Alloca->setMetadata( 7450 DeclPtrKind, llvm::MDNode::get( 7451 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7452 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7453 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7454 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7455 } 7456 } 7457 } 7458 7459 void CodeGenModule::EmitVersionIdentMetadata() { 7460 llvm::NamedMDNode *IdentMetadata = 7461 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7462 std::string Version = getClangFullVersion(); 7463 llvm::LLVMContext &Ctx = TheModule.getContext(); 7464 7465 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7466 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7467 } 7468 7469 void CodeGenModule::EmitCommandLineMetadata() { 7470 llvm::NamedMDNode *CommandLineMetadata = 7471 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7472 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7473 llvm::LLVMContext &Ctx = TheModule.getContext(); 7474 7475 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7476 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7477 } 7478 7479 void CodeGenModule::EmitCoverageFile() { 7480 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7481 if (!CUNode) 7482 return; 7483 7484 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7485 llvm::LLVMContext &Ctx = TheModule.getContext(); 7486 auto *CoverageDataFile = 7487 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7488 auto *CoverageNotesFile = 7489 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7490 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7491 llvm::MDNode *CU = CUNode->getOperand(i); 7492 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7493 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7494 } 7495 } 7496 7497 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7498 bool ForEH) { 7499 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7500 // FIXME: should we even be calling this method if RTTI is disabled 7501 // and it's not for EH? 7502 if (!shouldEmitRTTI(ForEH)) 7503 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7504 7505 if (ForEH && Ty->isObjCObjectPointerType() && 7506 LangOpts.ObjCRuntime.isGNUFamily()) 7507 return ObjCRuntime->GetEHType(Ty); 7508 7509 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7510 } 7511 7512 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7513 // Do not emit threadprivates in simd-only mode. 7514 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7515 return; 7516 for (auto RefExpr : D->varlist()) { 7517 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7518 bool PerformInit = 7519 VD->getAnyInitializer() && 7520 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7521 /*ForRef=*/false); 7522 7523 Address Addr(GetAddrOfGlobalVar(VD), 7524 getTypes().ConvertTypeForMem(VD->getType()), 7525 getContext().getDeclAlign(VD)); 7526 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7527 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7528 CXXGlobalInits.push_back(InitFunction); 7529 } 7530 } 7531 7532 llvm::Metadata * 7533 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7534 StringRef Suffix) { 7535 if (auto *FnType = T->getAs<FunctionProtoType>()) 7536 T = getContext().getFunctionType( 7537 FnType->getReturnType(), FnType->getParamTypes(), 7538 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7539 7540 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7541 if (InternalId) 7542 return InternalId; 7543 7544 if (isExternallyVisible(T->getLinkage())) { 7545 std::string OutName; 7546 llvm::raw_string_ostream Out(OutName); 7547 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7548 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7549 7550 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7551 Out << ".normalized"; 7552 7553 Out << Suffix; 7554 7555 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7556 } else { 7557 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7558 llvm::ArrayRef<llvm::Metadata *>()); 7559 } 7560 7561 return InternalId; 7562 } 7563 7564 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7565 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7566 } 7567 7568 llvm::Metadata * 7569 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7570 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7571 } 7572 7573 // Generalize pointer types to a void pointer with the qualifiers of the 7574 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7575 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7576 // 'void *'. 7577 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7578 if (!Ty->isPointerType()) 7579 return Ty; 7580 7581 return Ctx.getPointerType( 7582 QualType(Ctx.VoidTy).withCVRQualifiers( 7583 Ty->getPointeeType().getCVRQualifiers())); 7584 } 7585 7586 // Apply type generalization to a FunctionType's return and argument types 7587 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7588 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7589 SmallVector<QualType, 8> GeneralizedParams; 7590 for (auto &Param : FnType->param_types()) 7591 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7592 7593 return Ctx.getFunctionType( 7594 GeneralizeType(Ctx, FnType->getReturnType()), 7595 GeneralizedParams, FnType->getExtProtoInfo()); 7596 } 7597 7598 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7599 return Ctx.getFunctionNoProtoType( 7600 GeneralizeType(Ctx, FnType->getReturnType())); 7601 7602 llvm_unreachable("Encountered unknown FunctionType"); 7603 } 7604 7605 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7606 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7607 GeneralizedMetadataIdMap, ".generalized"); 7608 } 7609 7610 /// Returns whether this module needs the "all-vtables" type identifier. 7611 bool CodeGenModule::NeedAllVtablesTypeId() const { 7612 // Returns true if at least one of vtable-based CFI checkers is enabled and 7613 // is not in the trapping mode. 7614 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7615 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7616 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7617 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7618 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7619 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7620 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7621 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7622 } 7623 7624 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7625 CharUnits Offset, 7626 const CXXRecordDecl *RD) { 7627 llvm::Metadata *MD = 7628 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7629 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7630 7631 if (CodeGenOpts.SanitizeCfiCrossDso) 7632 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7633 VTable->addTypeMetadata(Offset.getQuantity(), 7634 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7635 7636 if (NeedAllVtablesTypeId()) { 7637 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7638 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7639 } 7640 } 7641 7642 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7643 if (!SanStats) 7644 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7645 7646 return *SanStats; 7647 } 7648 7649 llvm::Value * 7650 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7651 CodeGenFunction &CGF) { 7652 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7653 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7654 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7655 auto *Call = CGF.EmitRuntimeCall( 7656 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7657 return Call; 7658 } 7659 7660 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7661 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7662 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7663 /* forPointeeType= */ true); 7664 } 7665 7666 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7667 LValueBaseInfo *BaseInfo, 7668 TBAAAccessInfo *TBAAInfo, 7669 bool forPointeeType) { 7670 if (TBAAInfo) 7671 *TBAAInfo = getTBAAAccessInfo(T); 7672 7673 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7674 // that doesn't return the information we need to compute BaseInfo. 7675 7676 // Honor alignment typedef attributes even on incomplete types. 7677 // We also honor them straight for C++ class types, even as pointees; 7678 // there's an expressivity gap here. 7679 if (auto TT = T->getAs<TypedefType>()) { 7680 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7681 if (BaseInfo) 7682 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7683 return getContext().toCharUnitsFromBits(Align); 7684 } 7685 } 7686 7687 bool AlignForArray = T->isArrayType(); 7688 7689 // Analyze the base element type, so we don't get confused by incomplete 7690 // array types. 7691 T = getContext().getBaseElementType(T); 7692 7693 if (T->isIncompleteType()) { 7694 // We could try to replicate the logic from 7695 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7696 // type is incomplete, so it's impossible to test. We could try to reuse 7697 // getTypeAlignIfKnown, but that doesn't return the information we need 7698 // to set BaseInfo. So just ignore the possibility that the alignment is 7699 // greater than one. 7700 if (BaseInfo) 7701 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7702 return CharUnits::One(); 7703 } 7704 7705 if (BaseInfo) 7706 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7707 7708 CharUnits Alignment; 7709 const CXXRecordDecl *RD; 7710 if (T.getQualifiers().hasUnaligned()) { 7711 Alignment = CharUnits::One(); 7712 } else if (forPointeeType && !AlignForArray && 7713 (RD = T->getAsCXXRecordDecl())) { 7714 // For C++ class pointees, we don't know whether we're pointing at a 7715 // base or a complete object, so we generally need to use the 7716 // non-virtual alignment. 7717 Alignment = getClassPointerAlignment(RD); 7718 } else { 7719 Alignment = getContext().getTypeAlignInChars(T); 7720 } 7721 7722 // Cap to the global maximum type alignment unless the alignment 7723 // was somehow explicit on the type. 7724 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7725 if (Alignment.getQuantity() > MaxAlign && 7726 !getContext().isAlignmentRequired(T)) 7727 Alignment = CharUnits::fromQuantity(MaxAlign); 7728 } 7729 return Alignment; 7730 } 7731 7732 bool CodeGenModule::stopAutoInit() { 7733 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7734 if (StopAfter) { 7735 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7736 // used 7737 if (NumAutoVarInit >= StopAfter) { 7738 return true; 7739 } 7740 if (!NumAutoVarInit) { 7741 unsigned DiagID = getDiags().getCustomDiagID( 7742 DiagnosticsEngine::Warning, 7743 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7744 "number of times ftrivial-auto-var-init=%1 gets applied."); 7745 getDiags().Report(DiagID) 7746 << StopAfter 7747 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7748 LangOptions::TrivialAutoVarInitKind::Zero 7749 ? "zero" 7750 : "pattern"); 7751 } 7752 ++NumAutoVarInit; 7753 } 7754 return false; 7755 } 7756 7757 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7758 const Decl *D) const { 7759 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7760 // postfix beginning with '.' since the symbol name can be demangled. 7761 if (LangOpts.HIP) 7762 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7763 else 7764 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7765 7766 // If the CUID is not specified we try to generate a unique postfix. 7767 if (getLangOpts().CUID.empty()) { 7768 SourceManager &SM = getContext().getSourceManager(); 7769 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7770 assert(PLoc.isValid() && "Source location is expected to be valid."); 7771 7772 // Get the hash of the user defined macros. 7773 llvm::MD5 Hash; 7774 llvm::MD5::MD5Result Result; 7775 for (const auto &Arg : PreprocessorOpts.Macros) 7776 Hash.update(Arg.first); 7777 Hash.final(Result); 7778 7779 // Get the UniqueID for the file containing the decl. 7780 llvm::sys::fs::UniqueID ID; 7781 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7782 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7783 assert(PLoc.isValid() && "Source location is expected to be valid."); 7784 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7785 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7786 << PLoc.getFilename() << EC.message(); 7787 } 7788 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7789 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7790 } else { 7791 OS << getContext().getCUIDHash(); 7792 } 7793 } 7794 7795 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7796 assert(DeferredDeclsToEmit.empty() && 7797 "Should have emitted all decls deferred to emit."); 7798 assert(NewBuilder->DeferredDecls.empty() && 7799 "Newly created module should not have deferred decls"); 7800 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7801 assert(EmittedDeferredDecls.empty() && 7802 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7803 7804 assert(NewBuilder->DeferredVTables.empty() && 7805 "Newly created module should not have deferred vtables"); 7806 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7807 7808 assert(NewBuilder->MangledDeclNames.empty() && 7809 "Newly created module should not have mangled decl names"); 7810 assert(NewBuilder->Manglings.empty() && 7811 "Newly created module should not have manglings"); 7812 NewBuilder->Manglings = std::move(Manglings); 7813 7814 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7815 7816 NewBuilder->TBAA = std::move(TBAA); 7817 7818 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7819 } 7820