xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e16adc2b1eb93d17adec3ba280263a3117294f35)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   if (Context.Target.getCXXABI() == "microsoft")
94     ABI = CreateMicrosoftCXXABI(*this);
95   else
96     ABI = CreateItaniumCXXABI(*this);
97 }
98 
99 void CodeGenModule::Release() {
100   EmitDeferred();
101   EmitCXXGlobalInitFunc();
102   EmitCXXGlobalDtorFunc();
103   if (Runtime)
104     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105       AddGlobalCtor(ObjCInitFunction);
106   EmitCtorList(GlobalCtors, "llvm.global_ctors");
107   EmitCtorList(GlobalDtors, "llvm.global_dtors");
108   EmitAnnotations();
109   EmitLLVMUsed();
110 
111   if (getCodeGenOpts().EmitDeclMetadata)
112     EmitDeclMetadata();
113 }
114 
115 bool CodeGenModule::isTargetDarwin() const {
116   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117 }
118 
119 /// ErrorUnsupported - Print out an error that codegen doesn't support the
120 /// specified stmt yet.
121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                      bool OmitOnError) {
123   if (OmitOnError && getDiags().hasErrorOccurred())
124     return;
125   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                                "cannot compile this %0 yet");
127   std::string Msg = Type;
128   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129     << Msg << S->getSourceRange();
130 }
131 
132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
133 /// specified decl yet.
134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                      bool OmitOnError) {
136   if (OmitOnError && getDiags().hasErrorOccurred())
137     return;
138   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                                "cannot compile this %0 yet");
140   std::string Msg = Type;
141   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142 }
143 
144 LangOptions::VisibilityMode
145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147     if (VD->getStorageClass() == VarDecl::PrivateExtern)
148       return LangOptions::Hidden;
149 
150   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151     switch (attr->getVisibility()) {
152     default: assert(0 && "Unknown visibility!");
153     case VisibilityAttr::DefaultVisibility:
154       return LangOptions::Default;
155     case VisibilityAttr::HiddenVisibility:
156       return LangOptions::Hidden;
157     case VisibilityAttr::ProtectedVisibility:
158       return LangOptions::Protected;
159     }
160   }
161 
162   if (getLangOptions().CPlusPlus) {
163     // Entities subject to an explicit instantiation declaration get default
164     // visibility.
165     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166       if (Function->getTemplateSpecializationKind()
167                                         == TSK_ExplicitInstantiationDeclaration)
168         return LangOptions::Default;
169     } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171       if (ClassSpec->getSpecializationKind()
172                                         == TSK_ExplicitInstantiationDeclaration)
173         return LangOptions::Default;
174     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175       if (Record->getTemplateSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179       if (Var->isStaticDataMember() &&
180           (Var->getTemplateSpecializationKind()
181                                       == TSK_ExplicitInstantiationDeclaration))
182         return LangOptions::Default;
183     }
184 
185     // If -fvisibility-inlines-hidden was provided, then inline C++ member
186     // functions get "hidden" visibility by default.
187     if (getLangOptions().InlineVisibilityHidden)
188       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189         if (Method->isInlined())
190           return LangOptions::Hidden;
191   }
192 
193   // This decl should have the same visibility as its parent.
194   if (const DeclContext *DC = D->getDeclContext())
195     return getDeclVisibilityMode(cast<Decl>(DC));
196 
197   return getLangOptions().getVisibilityMode();
198 }
199 
200 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
201                                         const Decl *D) const {
202   // Internal definitions always have default visibility.
203   if (GV->hasLocalLinkage()) {
204     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
205     return;
206   }
207 
208   switch (getDeclVisibilityMode(D)) {
209   default: assert(0 && "Unknown visibility!");
210   case LangOptions::Default:
211     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
212   case LangOptions::Hidden:
213     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
214   case LangOptions::Protected:
215     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
216   }
217 }
218 
219 /// Set the symbol visibility of type information (vtable and RTTI)
220 /// associated with the given type.
221 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
222                                       const CXXRecordDecl *RD,
223                                       bool IsForRTTI) const {
224   setGlobalVisibility(GV, RD);
225 
226   // We want to drop the visibility to hidden for weak type symbols.
227   // This isn't possible if there might be unresolved references
228   // elsewhere that rely on this symbol being visible.
229 
230   // Preconditions.
231   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
232       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
233     return;
234 
235   // Don't override an explicit visibility attribute.
236   if (RD->hasAttr<VisibilityAttr>())
237     return;
238 
239   switch (RD->getTemplateSpecializationKind()) {
240   // We have to disable the optimization if this is an EI definition
241   // because there might be EI declarations in other shared objects.
242   case TSK_ExplicitInstantiationDefinition:
243   case TSK_ExplicitInstantiationDeclaration:
244     return;
245 
246   // Every use of a non-template or explicitly-specialized class's
247   // type information has to emit it.
248   case TSK_ExplicitSpecialization:
249   case TSK_Undeclared:
250     break;
251 
252   // Implicit instantiations can ignore the possibility of an
253   // explicit instantiation declaration because there necessarily
254   // must be an EI definition somewhere with default visibility.
255   case TSK_ImplicitInstantiation:
256     break;
257   }
258 
259   // If there's a key function, there may be translation units
260   // that don't have the key function's definition.  But ignore
261   // this if we're emitting RTTI under -fno-rtti.
262   if (!IsForRTTI || Features.RTTI)
263     if (Context.getKeyFunction(RD))
264       return;
265 
266   // Otherwise, drop the visibility to hidden.
267   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
268 }
269 
270 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
271   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
272 
273   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
274   if (!Str.empty())
275     return Str;
276 
277   if (!getMangleContext().shouldMangleDeclName(ND)) {
278     IdentifierInfo *II = ND->getIdentifier();
279     assert(II && "Attempt to mangle unnamed decl.");
280 
281     Str = II->getName();
282     return Str;
283   }
284 
285   llvm::SmallString<256> Buffer;
286   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
287     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
288   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
289     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
290   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
291     getMangleContext().mangleBlock(GD, BD, Buffer);
292   else
293     getMangleContext().mangleName(ND, Buffer);
294 
295   // Allocate space for the mangled name.
296   size_t Length = Buffer.size();
297   char *Name = MangledNamesAllocator.Allocate<char>(Length);
298   std::copy(Buffer.begin(), Buffer.end(), Name);
299 
300   Str = llvm::StringRef(Name, Length);
301 
302   return Str;
303 }
304 
305 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
306                                    const BlockDecl *BD) {
307   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
308 }
309 
310 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
311   return getModule().getNamedValue(Name);
312 }
313 
314 /// AddGlobalCtor - Add a function to the list that will be called before
315 /// main() runs.
316 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
317   // FIXME: Type coercion of void()* types.
318   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
319 }
320 
321 /// AddGlobalDtor - Add a function to the list that will be called
322 /// when the module is unloaded.
323 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
324   // FIXME: Type coercion of void()* types.
325   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
326 }
327 
328 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
329   // Ctor function type is void()*.
330   llvm::FunctionType* CtorFTy =
331     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
332                             std::vector<const llvm::Type*>(),
333                             false);
334   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
335 
336   // Get the type of a ctor entry, { i32, void ()* }.
337   llvm::StructType* CtorStructTy =
338     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
339                           llvm::PointerType::getUnqual(CtorFTy), NULL);
340 
341   // Construct the constructor and destructor arrays.
342   std::vector<llvm::Constant*> Ctors;
343   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
344     std::vector<llvm::Constant*> S;
345     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
346                 I->second, false));
347     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
348     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
349   }
350 
351   if (!Ctors.empty()) {
352     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
353     new llvm::GlobalVariable(TheModule, AT, false,
354                              llvm::GlobalValue::AppendingLinkage,
355                              llvm::ConstantArray::get(AT, Ctors),
356                              GlobalName);
357   }
358 }
359 
360 void CodeGenModule::EmitAnnotations() {
361   if (Annotations.empty())
362     return;
363 
364   // Create a new global variable for the ConstantStruct in the Module.
365   llvm::Constant *Array =
366   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
367                                                 Annotations.size()),
368                            Annotations);
369   llvm::GlobalValue *gv =
370   new llvm::GlobalVariable(TheModule, Array->getType(), false,
371                            llvm::GlobalValue::AppendingLinkage, Array,
372                            "llvm.global.annotations");
373   gv->setSection("llvm.metadata");
374 }
375 
376 llvm::GlobalValue::LinkageTypes
377 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
378   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
379 
380   if (Linkage == GVA_Internal)
381     return llvm::Function::InternalLinkage;
382 
383   if (D->hasAttr<DLLExportAttr>())
384     return llvm::Function::DLLExportLinkage;
385 
386   if (D->hasAttr<WeakAttr>())
387     return llvm::Function::WeakAnyLinkage;
388 
389   // In C99 mode, 'inline' functions are guaranteed to have a strong
390   // definition somewhere else, so we can use available_externally linkage.
391   if (Linkage == GVA_C99Inline)
392     return llvm::Function::AvailableExternallyLinkage;
393 
394   // In C++, the compiler has to emit a definition in every translation unit
395   // that references the function.  We should use linkonce_odr because
396   // a) if all references in this translation unit are optimized away, we
397   // don't need to codegen it.  b) if the function persists, it needs to be
398   // merged with other definitions. c) C++ has the ODR, so we know the
399   // definition is dependable.
400   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
401     return llvm::Function::LinkOnceODRLinkage;
402 
403   // An explicit instantiation of a template has weak linkage, since
404   // explicit instantiations can occur in multiple translation units
405   // and must all be equivalent. However, we are not allowed to
406   // throw away these explicit instantiations.
407   if (Linkage == GVA_ExplicitTemplateInstantiation)
408     return llvm::Function::WeakODRLinkage;
409 
410   // Otherwise, we have strong external linkage.
411   assert(Linkage == GVA_StrongExternal);
412   return llvm::Function::ExternalLinkage;
413 }
414 
415 
416 /// SetFunctionDefinitionAttributes - Set attributes for a global.
417 ///
418 /// FIXME: This is currently only done for aliases and functions, but not for
419 /// variables (these details are set in EmitGlobalVarDefinition for variables).
420 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
421                                                     llvm::GlobalValue *GV) {
422   SetCommonAttributes(D, GV);
423 }
424 
425 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
426                                               const CGFunctionInfo &Info,
427                                               llvm::Function *F) {
428   unsigned CallingConv;
429   AttributeListType AttributeList;
430   ConstructAttributeList(Info, D, AttributeList, CallingConv);
431   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
432                                           AttributeList.size()));
433   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
434 }
435 
436 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
437                                                            llvm::Function *F) {
438   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
439     F->addFnAttr(llvm::Attribute::NoUnwind);
440 
441   if (D->hasAttr<AlwaysInlineAttr>())
442     F->addFnAttr(llvm::Attribute::AlwaysInline);
443 
444   if (D->hasAttr<NoInlineAttr>())
445     F->addFnAttr(llvm::Attribute::NoInline);
446 
447   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
448     F->addFnAttr(llvm::Attribute::StackProtect);
449   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
450     F->addFnAttr(llvm::Attribute::StackProtectReq);
451 
452   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
453     unsigned width = Context.Target.getCharWidth();
454     F->setAlignment(AA->getAlignment() / width);
455     while ((AA = AA->getNext<AlignedAttr>()))
456       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
457   }
458   // C++ ABI requires 2-byte alignment for member functions.
459   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
460     F->setAlignment(2);
461 }
462 
463 void CodeGenModule::SetCommonAttributes(const Decl *D,
464                                         llvm::GlobalValue *GV) {
465   setGlobalVisibility(GV, D);
466 
467   if (D->hasAttr<UsedAttr>())
468     AddUsedGlobal(GV);
469 
470   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
471     GV->setSection(SA->getName());
472 
473   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
474 }
475 
476 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
477                                                   llvm::Function *F,
478                                                   const CGFunctionInfo &FI) {
479   SetLLVMFunctionAttributes(D, FI, F);
480   SetLLVMFunctionAttributesForDefinition(D, F);
481 
482   F->setLinkage(llvm::Function::InternalLinkage);
483 
484   SetCommonAttributes(D, F);
485 }
486 
487 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
488                                           llvm::Function *F,
489                                           bool IsIncompleteFunction) {
490   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
491 
492   if (!IsIncompleteFunction)
493     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
494 
495   // Only a few attributes are set on declarations; these may later be
496   // overridden by a definition.
497 
498   if (FD->hasAttr<DLLImportAttr>()) {
499     F->setLinkage(llvm::Function::DLLImportLinkage);
500   } else if (FD->hasAttr<WeakAttr>() ||
501              FD->hasAttr<WeakImportAttr>()) {
502     // "extern_weak" is overloaded in LLVM; we probably should have
503     // separate linkage types for this.
504     F->setLinkage(llvm::Function::ExternalWeakLinkage);
505   } else {
506     F->setLinkage(llvm::Function::ExternalLinkage);
507   }
508 
509   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
510     F->setSection(SA->getName());
511 }
512 
513 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
514   assert(!GV->isDeclaration() &&
515          "Only globals with definition can force usage.");
516   LLVMUsed.push_back(GV);
517 }
518 
519 void CodeGenModule::EmitLLVMUsed() {
520   // Don't create llvm.used if there is no need.
521   if (LLVMUsed.empty())
522     return;
523 
524   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
525 
526   // Convert LLVMUsed to what ConstantArray needs.
527   std::vector<llvm::Constant*> UsedArray;
528   UsedArray.resize(LLVMUsed.size());
529   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
530     UsedArray[i] =
531      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
532                                       i8PTy);
533   }
534 
535   if (UsedArray.empty())
536     return;
537   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
538 
539   llvm::GlobalVariable *GV =
540     new llvm::GlobalVariable(getModule(), ATy, false,
541                              llvm::GlobalValue::AppendingLinkage,
542                              llvm::ConstantArray::get(ATy, UsedArray),
543                              "llvm.used");
544 
545   GV->setSection("llvm.metadata");
546 }
547 
548 void CodeGenModule::EmitDeferred() {
549   // Emit code for any potentially referenced deferred decls.  Since a
550   // previously unused static decl may become used during the generation of code
551   // for a static function, iterate until no  changes are made.
552 
553   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
554     if (!DeferredVTables.empty()) {
555       const CXXRecordDecl *RD = DeferredVTables.back();
556       DeferredVTables.pop_back();
557       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
558       continue;
559     }
560 
561     GlobalDecl D = DeferredDeclsToEmit.back();
562     DeferredDeclsToEmit.pop_back();
563 
564     // Check to see if we've already emitted this.  This is necessary
565     // for a couple of reasons: first, decls can end up in the
566     // deferred-decls queue multiple times, and second, decls can end
567     // up with definitions in unusual ways (e.g. by an extern inline
568     // function acquiring a strong function redefinition).  Just
569     // ignore these cases.
570     //
571     // TODO: That said, looking this up multiple times is very wasteful.
572     llvm::StringRef Name = getMangledName(D);
573     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
574     assert(CGRef && "Deferred decl wasn't referenced?");
575 
576     if (!CGRef->isDeclaration())
577       continue;
578 
579     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
580     // purposes an alias counts as a definition.
581     if (isa<llvm::GlobalAlias>(CGRef))
582       continue;
583 
584     // Otherwise, emit the definition and move on to the next one.
585     EmitGlobalDefinition(D);
586   }
587 }
588 
589 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
590 /// annotation information for a given GlobalValue.  The annotation struct is
591 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
592 /// GlobalValue being annotated.  The second field is the constant string
593 /// created from the AnnotateAttr's annotation.  The third field is a constant
594 /// string containing the name of the translation unit.  The fourth field is
595 /// the line number in the file of the annotated value declaration.
596 ///
597 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
598 ///        appears to.
599 ///
600 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
601                                                 const AnnotateAttr *AA,
602                                                 unsigned LineNo) {
603   llvm::Module *M = &getModule();
604 
605   // get [N x i8] constants for the annotation string, and the filename string
606   // which are the 2nd and 3rd elements of the global annotation structure.
607   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
608   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
609                                                   AA->getAnnotation(), true);
610   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
611                                                   M->getModuleIdentifier(),
612                                                   true);
613 
614   // Get the two global values corresponding to the ConstantArrays we just
615   // created to hold the bytes of the strings.
616   llvm::GlobalValue *annoGV =
617     new llvm::GlobalVariable(*M, anno->getType(), false,
618                              llvm::GlobalValue::PrivateLinkage, anno,
619                              GV->getName());
620   // translation unit name string, emitted into the llvm.metadata section.
621   llvm::GlobalValue *unitGV =
622     new llvm::GlobalVariable(*M, unit->getType(), false,
623                              llvm::GlobalValue::PrivateLinkage, unit,
624                              ".str");
625 
626   // Create the ConstantStruct for the global annotation.
627   llvm::Constant *Fields[4] = {
628     llvm::ConstantExpr::getBitCast(GV, SBP),
629     llvm::ConstantExpr::getBitCast(annoGV, SBP),
630     llvm::ConstantExpr::getBitCast(unitGV, SBP),
631     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
632   };
633   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
634 }
635 
636 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
637   // Never defer when EmitAllDecls is specified.
638   if (Features.EmitAllDecls)
639     return false;
640 
641   return !getContext().DeclMustBeEmitted(Global);
642 }
643 
644 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
645   const AliasAttr *AA = VD->getAttr<AliasAttr>();
646   assert(AA && "No alias?");
647 
648   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
649 
650   // See if there is already something with the target's name in the module.
651   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
652 
653   llvm::Constant *Aliasee;
654   if (isa<llvm::FunctionType>(DeclTy))
655     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
656   else
657     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
658                                     llvm::PointerType::getUnqual(DeclTy), 0);
659   if (!Entry) {
660     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
661     F->setLinkage(llvm::Function::ExternalWeakLinkage);
662     WeakRefReferences.insert(F);
663   }
664 
665   return Aliasee;
666 }
667 
668 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
669   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
670 
671   // Weak references don't produce any output by themselves.
672   if (Global->hasAttr<WeakRefAttr>())
673     return;
674 
675   // If this is an alias definition (which otherwise looks like a declaration)
676   // emit it now.
677   if (Global->hasAttr<AliasAttr>())
678     return EmitAliasDefinition(GD);
679 
680   // Ignore declarations, they will be emitted on their first use.
681   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
682     if (FD->getIdentifier()) {
683       llvm::StringRef Name = FD->getName();
684       if (Name == "_Block_object_assign") {
685         BlockObjectAssignDecl = FD;
686       } else if (Name == "_Block_object_dispose") {
687         BlockObjectDisposeDecl = FD;
688       }
689     }
690 
691     // Forward declarations are emitted lazily on first use.
692     if (!FD->isThisDeclarationADefinition())
693       return;
694   } else {
695     const VarDecl *VD = cast<VarDecl>(Global);
696     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
697 
698     if (VD->getIdentifier()) {
699       llvm::StringRef Name = VD->getName();
700       if (Name == "_NSConcreteGlobalBlock") {
701         NSConcreteGlobalBlockDecl = VD;
702       } else if (Name == "_NSConcreteStackBlock") {
703         NSConcreteStackBlockDecl = VD;
704       }
705     }
706 
707 
708     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
709       return;
710   }
711 
712   // Defer code generation when possible if this is a static definition, inline
713   // function etc.  These we only want to emit if they are used.
714   if (!MayDeferGeneration(Global)) {
715     // Emit the definition if it can't be deferred.
716     EmitGlobalDefinition(GD);
717     return;
718   }
719 
720   // If we're deferring emission of a C++ variable with an
721   // initializer, remember the order in which it appeared in the file.
722   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
723       cast<VarDecl>(Global)->hasInit()) {
724     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
725     CXXGlobalInits.push_back(0);
726   }
727 
728   // If the value has already been used, add it directly to the
729   // DeferredDeclsToEmit list.
730   llvm::StringRef MangledName = getMangledName(GD);
731   if (GetGlobalValue(MangledName))
732     DeferredDeclsToEmit.push_back(GD);
733   else {
734     // Otherwise, remember that we saw a deferred decl with this name.  The
735     // first use of the mangled name will cause it to move into
736     // DeferredDeclsToEmit.
737     DeferredDecls[MangledName] = GD;
738   }
739 }
740 
741 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
742   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
743 
744   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
745                                  Context.getSourceManager(),
746                                  "Generating code for declaration");
747 
748   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
749     // At -O0, don't generate IR for functions with available_externally
750     // linkage.
751     if (CodeGenOpts.OptimizationLevel == 0 &&
752         !Function->hasAttr<AlwaysInlineAttr>() &&
753         getFunctionLinkage(Function)
754                                   == llvm::Function::AvailableExternallyLinkage)
755       return;
756 
757     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
758       if (Method->isVirtual())
759         getVTables().EmitThunks(GD);
760 
761       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
762         return EmitCXXConstructor(CD, GD.getCtorType());
763 
764       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
765         return EmitCXXDestructor(DD, GD.getDtorType());
766     }
767 
768     return EmitGlobalFunctionDefinition(GD);
769   }
770 
771   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
772     return EmitGlobalVarDefinition(VD);
773 
774   assert(0 && "Invalid argument to EmitGlobalDefinition()");
775 }
776 
777 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
778 /// module, create and return an llvm Function with the specified type. If there
779 /// is something in the module with the specified name, return it potentially
780 /// bitcasted to the right type.
781 ///
782 /// If D is non-null, it specifies a decl that correspond to this.  This is used
783 /// to set the attributes on the function when it is first created.
784 llvm::Constant *
785 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
786                                        const llvm::Type *Ty,
787                                        GlobalDecl D) {
788   // Lookup the entry, lazily creating it if necessary.
789   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
790   if (Entry) {
791     if (WeakRefReferences.count(Entry)) {
792       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
793       if (FD && !FD->hasAttr<WeakAttr>())
794         Entry->setLinkage(llvm::Function::ExternalLinkage);
795 
796       WeakRefReferences.erase(Entry);
797     }
798 
799     if (Entry->getType()->getElementType() == Ty)
800       return Entry;
801 
802     // Make sure the result is of the correct type.
803     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
804     return llvm::ConstantExpr::getBitCast(Entry, PTy);
805   }
806 
807   // This function doesn't have a complete type (for example, the return
808   // type is an incomplete struct). Use a fake type instead, and make
809   // sure not to try to set attributes.
810   bool IsIncompleteFunction = false;
811 
812   const llvm::FunctionType *FTy;
813   if (isa<llvm::FunctionType>(Ty)) {
814     FTy = cast<llvm::FunctionType>(Ty);
815   } else {
816     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
817                                   std::vector<const llvm::Type*>(), false);
818     IsIncompleteFunction = true;
819   }
820 
821   llvm::Function *F = llvm::Function::Create(FTy,
822                                              llvm::Function::ExternalLinkage,
823                                              MangledName, &getModule());
824   assert(F->getName() == MangledName && "name was uniqued!");
825   if (D.getDecl())
826     SetFunctionAttributes(D, F, IsIncompleteFunction);
827 
828   // This is the first use or definition of a mangled name.  If there is a
829   // deferred decl with this name, remember that we need to emit it at the end
830   // of the file.
831   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
832   if (DDI != DeferredDecls.end()) {
833     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
834     // list, and remove it from DeferredDecls (since we don't need it anymore).
835     DeferredDeclsToEmit.push_back(DDI->second);
836     DeferredDecls.erase(DDI);
837   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
838     // If this the first reference to a C++ inline function in a class, queue up
839     // the deferred function body for emission.  These are not seen as
840     // top-level declarations.
841     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
842       DeferredDeclsToEmit.push_back(D);
843     // A called constructor which has no definition or declaration need be
844     // synthesized.
845     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
846       if (CD->isImplicit()) {
847         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
848         DeferredDeclsToEmit.push_back(D);
849       }
850     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
851       if (DD->isImplicit()) {
852         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
853         DeferredDeclsToEmit.push_back(D);
854       }
855     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
856       if (MD->isCopyAssignment() && MD->isImplicit()) {
857         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
858         DeferredDeclsToEmit.push_back(D);
859       }
860     }
861   }
862 
863   // Make sure the result is of the requested type.
864   if (!IsIncompleteFunction) {
865     assert(F->getType()->getElementType() == Ty);
866     return F;
867   }
868 
869   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
870   return llvm::ConstantExpr::getBitCast(F, PTy);
871 }
872 
873 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
874 /// non-null, then this function will use the specified type if it has to
875 /// create it (this occurs when we see a definition of the function).
876 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
877                                                  const llvm::Type *Ty) {
878   // If there was no specific requested type, just convert it now.
879   if (!Ty)
880     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
881 
882   llvm::StringRef MangledName = getMangledName(GD);
883   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
884 }
885 
886 /// CreateRuntimeFunction - Create a new runtime function with the specified
887 /// type and name.
888 llvm::Constant *
889 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
890                                      llvm::StringRef Name) {
891   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
892 }
893 
894 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
895   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
896     return false;
897   if (Context.getLangOptions().CPlusPlus &&
898       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
899     // FIXME: We should do something fancier here!
900     return false;
901   }
902   return true;
903 }
904 
905 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
906 /// create and return an llvm GlobalVariable with the specified type.  If there
907 /// is something in the module with the specified name, return it potentially
908 /// bitcasted to the right type.
909 ///
910 /// If D is non-null, it specifies a decl that correspond to this.  This is used
911 /// to set the attributes on the global when it is first created.
912 llvm::Constant *
913 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
914                                      const llvm::PointerType *Ty,
915                                      const VarDecl *D) {
916   // Lookup the entry, lazily creating it if necessary.
917   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
918   if (Entry) {
919     if (WeakRefReferences.count(Entry)) {
920       if (D && !D->hasAttr<WeakAttr>())
921         Entry->setLinkage(llvm::Function::ExternalLinkage);
922 
923       WeakRefReferences.erase(Entry);
924     }
925 
926     if (Entry->getType() == Ty)
927       return Entry;
928 
929     // Make sure the result is of the correct type.
930     return llvm::ConstantExpr::getBitCast(Entry, Ty);
931   }
932 
933   // This is the first use or definition of a mangled name.  If there is a
934   // deferred decl with this name, remember that we need to emit it at the end
935   // of the file.
936   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
937   if (DDI != DeferredDecls.end()) {
938     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
939     // list, and remove it from DeferredDecls (since we don't need it anymore).
940     DeferredDeclsToEmit.push_back(DDI->second);
941     DeferredDecls.erase(DDI);
942   }
943 
944   llvm::GlobalVariable *GV =
945     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
946                              llvm::GlobalValue::ExternalLinkage,
947                              0, MangledName, 0,
948                              false, Ty->getAddressSpace());
949 
950   // Handle things which are present even on external declarations.
951   if (D) {
952     // FIXME: This code is overly simple and should be merged with other global
953     // handling.
954     GV->setConstant(DeclIsConstantGlobal(Context, D));
955 
956     // FIXME: Merge with other attribute handling code.
957     if (D->getStorageClass() == VarDecl::PrivateExtern)
958       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
959 
960     if (D->hasAttr<WeakAttr>() ||
961         D->hasAttr<WeakImportAttr>())
962       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
963 
964     GV->setThreadLocal(D->isThreadSpecified());
965   }
966 
967   return GV;
968 }
969 
970 
971 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
972 /// given global variable.  If Ty is non-null and if the global doesn't exist,
973 /// then it will be greated with the specified type instead of whatever the
974 /// normal requested type would be.
975 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
976                                                   const llvm::Type *Ty) {
977   assert(D->hasGlobalStorage() && "Not a global variable");
978   QualType ASTTy = D->getType();
979   if (Ty == 0)
980     Ty = getTypes().ConvertTypeForMem(ASTTy);
981 
982   const llvm::PointerType *PTy =
983     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
984 
985   llvm::StringRef MangledName = getMangledName(D);
986   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
987 }
988 
989 /// CreateRuntimeVariable - Create a new runtime global variable with the
990 /// specified type and name.
991 llvm::Constant *
992 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
993                                      llvm::StringRef Name) {
994   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
995 }
996 
997 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
998   assert(!D->getInit() && "Cannot emit definite definitions here!");
999 
1000   if (MayDeferGeneration(D)) {
1001     // If we have not seen a reference to this variable yet, place it
1002     // into the deferred declarations table to be emitted if needed
1003     // later.
1004     llvm::StringRef MangledName = getMangledName(D);
1005     if (!GetGlobalValue(MangledName)) {
1006       DeferredDecls[MangledName] = D;
1007       return;
1008     }
1009   }
1010 
1011   // The tentative definition is the only definition.
1012   EmitGlobalVarDefinition(D);
1013 }
1014 
1015 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1016   if (DefinitionRequired)
1017     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1018 }
1019 
1020 llvm::GlobalVariable::LinkageTypes
1021 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1022   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1023     return llvm::GlobalVariable::InternalLinkage;
1024 
1025   if (const CXXMethodDecl *KeyFunction
1026                                     = RD->getASTContext().getKeyFunction(RD)) {
1027     // If this class has a key function, use that to determine the linkage of
1028     // the vtable.
1029     const FunctionDecl *Def = 0;
1030     if (KeyFunction->hasBody(Def))
1031       KeyFunction = cast<CXXMethodDecl>(Def);
1032 
1033     switch (KeyFunction->getTemplateSpecializationKind()) {
1034       case TSK_Undeclared:
1035       case TSK_ExplicitSpecialization:
1036         if (KeyFunction->isInlined())
1037           return llvm::GlobalVariable::WeakODRLinkage;
1038 
1039         return llvm::GlobalVariable::ExternalLinkage;
1040 
1041       case TSK_ImplicitInstantiation:
1042       case TSK_ExplicitInstantiationDefinition:
1043         return llvm::GlobalVariable::WeakODRLinkage;
1044 
1045       case TSK_ExplicitInstantiationDeclaration:
1046         // FIXME: Use available_externally linkage. However, this currently
1047         // breaks LLVM's build due to undefined symbols.
1048         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1049         return llvm::GlobalVariable::WeakODRLinkage;
1050     }
1051   }
1052 
1053   switch (RD->getTemplateSpecializationKind()) {
1054   case TSK_Undeclared:
1055   case TSK_ExplicitSpecialization:
1056   case TSK_ImplicitInstantiation:
1057   case TSK_ExplicitInstantiationDefinition:
1058     return llvm::GlobalVariable::WeakODRLinkage;
1059 
1060   case TSK_ExplicitInstantiationDeclaration:
1061     // FIXME: Use available_externally linkage. However, this currently
1062     // breaks LLVM's build due to undefined symbols.
1063     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1064     return llvm::GlobalVariable::WeakODRLinkage;
1065   }
1066 
1067   // Silence GCC warning.
1068   return llvm::GlobalVariable::WeakODRLinkage;
1069 }
1070 
1071 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1072     return CharUnits::fromQuantity(
1073       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1074 }
1075 
1076 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1077   llvm::Constant *Init = 0;
1078   QualType ASTTy = D->getType();
1079   bool NonConstInit = false;
1080 
1081   const Expr *InitExpr = D->getAnyInitializer();
1082 
1083   if (!InitExpr) {
1084     // This is a tentative definition; tentative definitions are
1085     // implicitly initialized with { 0 }.
1086     //
1087     // Note that tentative definitions are only emitted at the end of
1088     // a translation unit, so they should never have incomplete
1089     // type. In addition, EmitTentativeDefinition makes sure that we
1090     // never attempt to emit a tentative definition if a real one
1091     // exists. A use may still exists, however, so we still may need
1092     // to do a RAUW.
1093     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1094     Init = EmitNullConstant(D->getType());
1095   } else {
1096     Init = EmitConstantExpr(InitExpr, D->getType());
1097     if (!Init) {
1098       QualType T = InitExpr->getType();
1099       if (D->getType()->isReferenceType())
1100         T = D->getType();
1101 
1102       if (getLangOptions().CPlusPlus) {
1103         EmitCXXGlobalVarDeclInitFunc(D);
1104         Init = EmitNullConstant(T);
1105         NonConstInit = true;
1106       } else {
1107         ErrorUnsupported(D, "static initializer");
1108         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1109       }
1110     } else {
1111       // We don't need an initializer, so remove the entry for the delayed
1112       // initializer position (just in case this entry was delayed).
1113       if (getLangOptions().CPlusPlus)
1114         DelayedCXXInitPosition.erase(D);
1115     }
1116   }
1117 
1118   const llvm::Type* InitType = Init->getType();
1119   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1120 
1121   // Strip off a bitcast if we got one back.
1122   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1123     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1124            // all zero index gep.
1125            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1126     Entry = CE->getOperand(0);
1127   }
1128 
1129   // Entry is now either a Function or GlobalVariable.
1130   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1131 
1132   // We have a definition after a declaration with the wrong type.
1133   // We must make a new GlobalVariable* and update everything that used OldGV
1134   // (a declaration or tentative definition) with the new GlobalVariable*
1135   // (which will be a definition).
1136   //
1137   // This happens if there is a prototype for a global (e.g.
1138   // "extern int x[];") and then a definition of a different type (e.g.
1139   // "int x[10];"). This also happens when an initializer has a different type
1140   // from the type of the global (this happens with unions).
1141   if (GV == 0 ||
1142       GV->getType()->getElementType() != InitType ||
1143       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1144 
1145     // Move the old entry aside so that we'll create a new one.
1146     Entry->setName(llvm::StringRef());
1147 
1148     // Make a new global with the correct type, this is now guaranteed to work.
1149     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1150 
1151     // Replace all uses of the old global with the new global
1152     llvm::Constant *NewPtrForOldDecl =
1153         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1154     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1155 
1156     // Erase the old global, since it is no longer used.
1157     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1158   }
1159 
1160   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1161     SourceManager &SM = Context.getSourceManager();
1162     AddAnnotation(EmitAnnotateAttr(GV, AA,
1163                               SM.getInstantiationLineNumber(D->getLocation())));
1164   }
1165 
1166   GV->setInitializer(Init);
1167 
1168   // If it is safe to mark the global 'constant', do so now.
1169   GV->setConstant(false);
1170   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1171     GV->setConstant(true);
1172 
1173   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1174 
1175   // Set the llvm linkage type as appropriate.
1176   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1177   if (Linkage == GVA_Internal)
1178     GV->setLinkage(llvm::Function::InternalLinkage);
1179   else if (D->hasAttr<DLLImportAttr>())
1180     GV->setLinkage(llvm::Function::DLLImportLinkage);
1181   else if (D->hasAttr<DLLExportAttr>())
1182     GV->setLinkage(llvm::Function::DLLExportLinkage);
1183   else if (D->hasAttr<WeakAttr>()) {
1184     if (GV->isConstant())
1185       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1186     else
1187       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1188   } else if (Linkage == GVA_TemplateInstantiation ||
1189              Linkage == GVA_ExplicitTemplateInstantiation)
1190     // FIXME: It seems like we can provide more specific linkage here
1191     // (LinkOnceODR, WeakODR).
1192     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1193   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1194            !D->hasExternalStorage() && !D->getInit() &&
1195            !D->getAttr<SectionAttr>()) {
1196     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1197     // common vars aren't constant even if declared const.
1198     GV->setConstant(false);
1199   } else
1200     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1201 
1202   SetCommonAttributes(D, GV);
1203 
1204   // Emit global variable debug information.
1205   if (CGDebugInfo *DI = getDebugInfo()) {
1206     DI->setLocation(D->getLocation());
1207     DI->EmitGlobalVariable(GV, D);
1208   }
1209 }
1210 
1211 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1212 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1213 /// existing call uses of the old function in the module, this adjusts them to
1214 /// call the new function directly.
1215 ///
1216 /// This is not just a cleanup: the always_inline pass requires direct calls to
1217 /// functions to be able to inline them.  If there is a bitcast in the way, it
1218 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1219 /// run at -O0.
1220 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1221                                                       llvm::Function *NewFn) {
1222   // If we're redefining a global as a function, don't transform it.
1223   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1224   if (OldFn == 0) return;
1225 
1226   const llvm::Type *NewRetTy = NewFn->getReturnType();
1227   llvm::SmallVector<llvm::Value*, 4> ArgList;
1228 
1229   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1230        UI != E; ) {
1231     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1232     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1233     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1234     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1235     llvm::CallSite CS(CI);
1236     if (!CI || !CS.isCallee(I)) continue;
1237 
1238     // If the return types don't match exactly, and if the call isn't dead, then
1239     // we can't transform this call.
1240     if (CI->getType() != NewRetTy && !CI->use_empty())
1241       continue;
1242 
1243     // If the function was passed too few arguments, don't transform.  If extra
1244     // arguments were passed, we silently drop them.  If any of the types
1245     // mismatch, we don't transform.
1246     unsigned ArgNo = 0;
1247     bool DontTransform = false;
1248     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1249          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1250       if (CS.arg_size() == ArgNo ||
1251           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1252         DontTransform = true;
1253         break;
1254       }
1255     }
1256     if (DontTransform)
1257       continue;
1258 
1259     // Okay, we can transform this.  Create the new call instruction and copy
1260     // over the required information.
1261     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1262     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1263                                                      ArgList.end(), "", CI);
1264     ArgList.clear();
1265     if (!NewCall->getType()->isVoidTy())
1266       NewCall->takeName(CI);
1267     NewCall->setAttributes(CI->getAttributes());
1268     NewCall->setCallingConv(CI->getCallingConv());
1269 
1270     // Finally, remove the old call, replacing any uses with the new one.
1271     if (!CI->use_empty())
1272       CI->replaceAllUsesWith(NewCall);
1273 
1274     // Copy debug location attached to CI.
1275     if (!CI->getDebugLoc().isUnknown())
1276       NewCall->setDebugLoc(CI->getDebugLoc());
1277     CI->eraseFromParent();
1278   }
1279 }
1280 
1281 
1282 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1283   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1284   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1285   getMangleContext().mangleInitDiscriminator();
1286   // Get or create the prototype for the function.
1287   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1288 
1289   // Strip off a bitcast if we got one back.
1290   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1291     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1292     Entry = CE->getOperand(0);
1293   }
1294 
1295 
1296   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1297     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1298 
1299     // If the types mismatch then we have to rewrite the definition.
1300     assert(OldFn->isDeclaration() &&
1301            "Shouldn't replace non-declaration");
1302 
1303     // F is the Function* for the one with the wrong type, we must make a new
1304     // Function* and update everything that used F (a declaration) with the new
1305     // Function* (which will be a definition).
1306     //
1307     // This happens if there is a prototype for a function
1308     // (e.g. "int f()") and then a definition of a different type
1309     // (e.g. "int f(int x)").  Move the old function aside so that it
1310     // doesn't interfere with GetAddrOfFunction.
1311     OldFn->setName(llvm::StringRef());
1312     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1313 
1314     // If this is an implementation of a function without a prototype, try to
1315     // replace any existing uses of the function (which may be calls) with uses
1316     // of the new function
1317     if (D->getType()->isFunctionNoProtoType()) {
1318       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1319       OldFn->removeDeadConstantUsers();
1320     }
1321 
1322     // Replace uses of F with the Function we will endow with a body.
1323     if (!Entry->use_empty()) {
1324       llvm::Constant *NewPtrForOldDecl =
1325         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1326       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1327     }
1328 
1329     // Ok, delete the old function now, which is dead.
1330     OldFn->eraseFromParent();
1331 
1332     Entry = NewFn;
1333   }
1334 
1335   llvm::Function *Fn = cast<llvm::Function>(Entry);
1336   setFunctionLinkage(D, Fn);
1337 
1338   CodeGenFunction(*this).GenerateCode(D, Fn);
1339 
1340   SetFunctionDefinitionAttributes(D, Fn);
1341   SetLLVMFunctionAttributesForDefinition(D, Fn);
1342 
1343   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1344     AddGlobalCtor(Fn, CA->getPriority());
1345   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1346     AddGlobalDtor(Fn, DA->getPriority());
1347 }
1348 
1349 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1350   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1351   const AliasAttr *AA = D->getAttr<AliasAttr>();
1352   assert(AA && "Not an alias?");
1353 
1354   llvm::StringRef MangledName = getMangledName(GD);
1355 
1356   // If there is a definition in the module, then it wins over the alias.
1357   // This is dubious, but allow it to be safe.  Just ignore the alias.
1358   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1359   if (Entry && !Entry->isDeclaration())
1360     return;
1361 
1362   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1363 
1364   // Create a reference to the named value.  This ensures that it is emitted
1365   // if a deferred decl.
1366   llvm::Constant *Aliasee;
1367   if (isa<llvm::FunctionType>(DeclTy))
1368     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1369   else
1370     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1371                                     llvm::PointerType::getUnqual(DeclTy), 0);
1372 
1373   // Create the new alias itself, but don't set a name yet.
1374   llvm::GlobalValue *GA =
1375     new llvm::GlobalAlias(Aliasee->getType(),
1376                           llvm::Function::ExternalLinkage,
1377                           "", Aliasee, &getModule());
1378 
1379   if (Entry) {
1380     assert(Entry->isDeclaration());
1381 
1382     // If there is a declaration in the module, then we had an extern followed
1383     // by the alias, as in:
1384     //   extern int test6();
1385     //   ...
1386     //   int test6() __attribute__((alias("test7")));
1387     //
1388     // Remove it and replace uses of it with the alias.
1389     GA->takeName(Entry);
1390 
1391     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1392                                                           Entry->getType()));
1393     Entry->eraseFromParent();
1394   } else {
1395     GA->setName(MangledName);
1396   }
1397 
1398   // Set attributes which are particular to an alias; this is a
1399   // specialization of the attributes which may be set on a global
1400   // variable/function.
1401   if (D->hasAttr<DLLExportAttr>()) {
1402     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1403       // The dllexport attribute is ignored for undefined symbols.
1404       if (FD->hasBody())
1405         GA->setLinkage(llvm::Function::DLLExportLinkage);
1406     } else {
1407       GA->setLinkage(llvm::Function::DLLExportLinkage);
1408     }
1409   } else if (D->hasAttr<WeakAttr>() ||
1410              D->hasAttr<WeakRefAttr>() ||
1411              D->hasAttr<WeakImportAttr>()) {
1412     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1413   }
1414 
1415   SetCommonAttributes(D, GA);
1416 }
1417 
1418 /// getBuiltinLibFunction - Given a builtin id for a function like
1419 /// "__builtin_fabsf", return a Function* for "fabsf".
1420 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1421                                                   unsigned BuiltinID) {
1422   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1423           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1424          "isn't a lib fn");
1425 
1426   // Get the name, skip over the __builtin_ prefix (if necessary).
1427   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1428   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1429     Name += 10;
1430 
1431   const llvm::FunctionType *Ty =
1432     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1433 
1434   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1435 }
1436 
1437 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1438                                             unsigned NumTys) {
1439   return llvm::Intrinsic::getDeclaration(&getModule(),
1440                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1441 }
1442 
1443 
1444 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1445                                            const llvm::Type *SrcType,
1446                                            const llvm::Type *SizeType) {
1447   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1448   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1449 }
1450 
1451 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1452                                             const llvm::Type *SrcType,
1453                                             const llvm::Type *SizeType) {
1454   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1455   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1456 }
1457 
1458 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1459                                            const llvm::Type *SizeType) {
1460   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1461   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1462 }
1463 
1464 static llvm::StringMapEntry<llvm::Constant*> &
1465 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1466                          const StringLiteral *Literal,
1467                          bool TargetIsLSB,
1468                          bool &IsUTF16,
1469                          unsigned &StringLength) {
1470   unsigned NumBytes = Literal->getByteLength();
1471 
1472   // Check for simple case.
1473   if (!Literal->containsNonAsciiOrNull()) {
1474     StringLength = NumBytes;
1475     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1476                                                 StringLength));
1477   }
1478 
1479   // Otherwise, convert the UTF8 literals into a byte string.
1480   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1481   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1482   UTF16 *ToPtr = &ToBuf[0];
1483 
1484   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1485                                                &ToPtr, ToPtr + NumBytes,
1486                                                strictConversion);
1487 
1488   // Check for conversion failure.
1489   if (Result != conversionOK) {
1490     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1491     // this duplicate code.
1492     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1493     StringLength = NumBytes;
1494     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1495                                                 StringLength));
1496   }
1497 
1498   // ConvertUTF8toUTF16 returns the length in ToPtr.
1499   StringLength = ToPtr - &ToBuf[0];
1500 
1501   // Render the UTF-16 string into a byte array and convert to the target byte
1502   // order.
1503   //
1504   // FIXME: This isn't something we should need to do here.
1505   llvm::SmallString<128> AsBytes;
1506   AsBytes.reserve(StringLength * 2);
1507   for (unsigned i = 0; i != StringLength; ++i) {
1508     unsigned short Val = ToBuf[i];
1509     if (TargetIsLSB) {
1510       AsBytes.push_back(Val & 0xFF);
1511       AsBytes.push_back(Val >> 8);
1512     } else {
1513       AsBytes.push_back(Val >> 8);
1514       AsBytes.push_back(Val & 0xFF);
1515     }
1516   }
1517   // Append one extra null character, the second is automatically added by our
1518   // caller.
1519   AsBytes.push_back(0);
1520 
1521   IsUTF16 = true;
1522   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1523 }
1524 
1525 llvm::Constant *
1526 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1527   unsigned StringLength = 0;
1528   bool isUTF16 = false;
1529   llvm::StringMapEntry<llvm::Constant*> &Entry =
1530     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1531                              getTargetData().isLittleEndian(),
1532                              isUTF16, StringLength);
1533 
1534   if (llvm::Constant *C = Entry.getValue())
1535     return C;
1536 
1537   llvm::Constant *Zero =
1538       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1539   llvm::Constant *Zeros[] = { Zero, Zero };
1540 
1541   // If we don't already have it, get __CFConstantStringClassReference.
1542   if (!CFConstantStringClassRef) {
1543     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1544     Ty = llvm::ArrayType::get(Ty, 0);
1545     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1546                                            "__CFConstantStringClassReference");
1547     // Decay array -> ptr
1548     CFConstantStringClassRef =
1549       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1550   }
1551 
1552   QualType CFTy = getContext().getCFConstantStringType();
1553 
1554   const llvm::StructType *STy =
1555     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1556 
1557   std::vector<llvm::Constant*> Fields(4);
1558 
1559   // Class pointer.
1560   Fields[0] = CFConstantStringClassRef;
1561 
1562   // Flags.
1563   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1564   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1565     llvm::ConstantInt::get(Ty, 0x07C8);
1566 
1567   // String pointer.
1568   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1569 
1570   llvm::GlobalValue::LinkageTypes Linkage;
1571   bool isConstant;
1572   if (isUTF16) {
1573     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1574     Linkage = llvm::GlobalValue::InternalLinkage;
1575     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1576     // does make plain ascii ones writable.
1577     isConstant = true;
1578   } else {
1579     Linkage = llvm::GlobalValue::PrivateLinkage;
1580     isConstant = !Features.WritableStrings;
1581   }
1582 
1583   llvm::GlobalVariable *GV =
1584     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1585                              ".str");
1586   if (isUTF16) {
1587     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1588     GV->setAlignment(Align.getQuantity());
1589   }
1590   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1591 
1592   // String length.
1593   Ty = getTypes().ConvertType(getContext().LongTy);
1594   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1595 
1596   // The struct.
1597   C = llvm::ConstantStruct::get(STy, Fields);
1598   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1599                                 llvm::GlobalVariable::PrivateLinkage, C,
1600                                 "_unnamed_cfstring_");
1601   if (const char *Sect = getContext().Target.getCFStringSection())
1602     GV->setSection(Sect);
1603   Entry.setValue(GV);
1604 
1605   return GV;
1606 }
1607 
1608 llvm::Constant *
1609 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1610   unsigned StringLength = 0;
1611   bool isUTF16 = false;
1612   llvm::StringMapEntry<llvm::Constant*> &Entry =
1613     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1614                              getTargetData().isLittleEndian(),
1615                              isUTF16, StringLength);
1616 
1617   if (llvm::Constant *C = Entry.getValue())
1618     return C;
1619 
1620   llvm::Constant *Zero =
1621   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1622   llvm::Constant *Zeros[] = { Zero, Zero };
1623 
1624   // If we don't already have it, get _NSConstantStringClassReference.
1625   if (!NSConstantStringClassRef) {
1626     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1627     Ty = llvm::ArrayType::get(Ty, 0);
1628     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1629                                         Features.ObjCNonFragileABI ?
1630                                         "OBJC_CLASS_$_NSConstantString" :
1631                                         "_NSConstantStringClassReference");
1632     // Decay array -> ptr
1633     NSConstantStringClassRef =
1634       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1635   }
1636 
1637   QualType NSTy = getContext().getNSConstantStringType();
1638 
1639   const llvm::StructType *STy =
1640   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1641 
1642   std::vector<llvm::Constant*> Fields(3);
1643 
1644   // Class pointer.
1645   Fields[0] = NSConstantStringClassRef;
1646 
1647   // String pointer.
1648   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1649 
1650   llvm::GlobalValue::LinkageTypes Linkage;
1651   bool isConstant;
1652   if (isUTF16) {
1653     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1654     Linkage = llvm::GlobalValue::InternalLinkage;
1655     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1656     // does make plain ascii ones writable.
1657     isConstant = true;
1658   } else {
1659     Linkage = llvm::GlobalValue::PrivateLinkage;
1660     isConstant = !Features.WritableStrings;
1661   }
1662 
1663   llvm::GlobalVariable *GV =
1664   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1665                            ".str");
1666   if (isUTF16) {
1667     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1668     GV->setAlignment(Align.getQuantity());
1669   }
1670   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1671 
1672   // String length.
1673   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1674   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1675 
1676   // The struct.
1677   C = llvm::ConstantStruct::get(STy, Fields);
1678   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1679                                 llvm::GlobalVariable::PrivateLinkage, C,
1680                                 "_unnamed_nsstring_");
1681   // FIXME. Fix section.
1682   if (const char *Sect =
1683         Features.ObjCNonFragileABI
1684           ? getContext().Target.getNSStringNonFragileABISection()
1685           : getContext().Target.getNSStringSection())
1686     GV->setSection(Sect);
1687   Entry.setValue(GV);
1688 
1689   return GV;
1690 }
1691 
1692 /// GetStringForStringLiteral - Return the appropriate bytes for a
1693 /// string literal, properly padded to match the literal type.
1694 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1695   const char *StrData = E->getStrData();
1696   unsigned Len = E->getByteLength();
1697 
1698   const ConstantArrayType *CAT =
1699     getContext().getAsConstantArrayType(E->getType());
1700   assert(CAT && "String isn't pointer or array!");
1701 
1702   // Resize the string to the right size.
1703   std::string Str(StrData, StrData+Len);
1704   uint64_t RealLen = CAT->getSize().getZExtValue();
1705 
1706   if (E->isWide())
1707     RealLen *= getContext().Target.getWCharWidth()/8;
1708 
1709   Str.resize(RealLen, '\0');
1710 
1711   return Str;
1712 }
1713 
1714 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1715 /// constant array for the given string literal.
1716 llvm::Constant *
1717 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1718   // FIXME: This can be more efficient.
1719   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1720   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1721   if (S->isWide()) {
1722     llvm::Type *DestTy =
1723         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1724     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1725   }
1726   return C;
1727 }
1728 
1729 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1730 /// array for the given ObjCEncodeExpr node.
1731 llvm::Constant *
1732 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1733   std::string Str;
1734   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1735 
1736   return GetAddrOfConstantCString(Str);
1737 }
1738 
1739 
1740 /// GenerateWritableString -- Creates storage for a string literal.
1741 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1742                                              bool constant,
1743                                              CodeGenModule &CGM,
1744                                              const char *GlobalName) {
1745   // Create Constant for this string literal. Don't add a '\0'.
1746   llvm::Constant *C =
1747       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1748 
1749   // Create a global variable for this string
1750   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1751                                   llvm::GlobalValue::PrivateLinkage,
1752                                   C, GlobalName);
1753 }
1754 
1755 /// GetAddrOfConstantString - Returns a pointer to a character array
1756 /// containing the literal. This contents are exactly that of the
1757 /// given string, i.e. it will not be null terminated automatically;
1758 /// see GetAddrOfConstantCString. Note that whether the result is
1759 /// actually a pointer to an LLVM constant depends on
1760 /// Feature.WriteableStrings.
1761 ///
1762 /// The result has pointer to array type.
1763 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1764                                                        const char *GlobalName) {
1765   bool IsConstant = !Features.WritableStrings;
1766 
1767   // Get the default prefix if a name wasn't specified.
1768   if (!GlobalName)
1769     GlobalName = ".str";
1770 
1771   // Don't share any string literals if strings aren't constant.
1772   if (!IsConstant)
1773     return GenerateStringLiteral(str, false, *this, GlobalName);
1774 
1775   llvm::StringMapEntry<llvm::Constant *> &Entry =
1776     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1777 
1778   if (Entry.getValue())
1779     return Entry.getValue();
1780 
1781   // Create a global variable for this.
1782   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1783   Entry.setValue(C);
1784   return C;
1785 }
1786 
1787 /// GetAddrOfConstantCString - Returns a pointer to a character
1788 /// array containing the literal and a terminating '\-'
1789 /// character. The result has pointer to array type.
1790 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1791                                                         const char *GlobalName){
1792   return GetAddrOfConstantString(str + '\0', GlobalName);
1793 }
1794 
1795 /// EmitObjCPropertyImplementations - Emit information for synthesized
1796 /// properties for an implementation.
1797 void CodeGenModule::EmitObjCPropertyImplementations(const
1798                                                     ObjCImplementationDecl *D) {
1799   for (ObjCImplementationDecl::propimpl_iterator
1800          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1801     ObjCPropertyImplDecl *PID = *i;
1802 
1803     // Dynamic is just for type-checking.
1804     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1805       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1806 
1807       // Determine which methods need to be implemented, some may have
1808       // been overridden. Note that ::isSynthesized is not the method
1809       // we want, that just indicates if the decl came from a
1810       // property. What we want to know is if the method is defined in
1811       // this implementation.
1812       if (!D->getInstanceMethod(PD->getGetterName()))
1813         CodeGenFunction(*this).GenerateObjCGetter(
1814                                  const_cast<ObjCImplementationDecl *>(D), PID);
1815       if (!PD->isReadOnly() &&
1816           !D->getInstanceMethod(PD->getSetterName()))
1817         CodeGenFunction(*this).GenerateObjCSetter(
1818                                  const_cast<ObjCImplementationDecl *>(D), PID);
1819     }
1820   }
1821 }
1822 
1823 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1824 /// for an implementation.
1825 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1826   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1827     return;
1828   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1829   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1830   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1831   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1832   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1833                                                   D->getLocation(),
1834                                                   D->getLocation(), cxxSelector,
1835                                                   getContext().VoidTy, 0,
1836                                                   DC, true, false, true, false,
1837                                                   ObjCMethodDecl::Required);
1838   D->addInstanceMethod(DTORMethod);
1839   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1840 
1841   II = &getContext().Idents.get(".cxx_construct");
1842   cxxSelector = getContext().Selectors.getSelector(0, &II);
1843   // The constructor returns 'self'.
1844   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1845                                                 D->getLocation(),
1846                                                 D->getLocation(), cxxSelector,
1847                                                 getContext().getObjCIdType(), 0,
1848                                                 DC, true, false, true, false,
1849                                                 ObjCMethodDecl::Required);
1850   D->addInstanceMethod(CTORMethod);
1851   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1852 
1853 
1854 }
1855 
1856 /// EmitNamespace - Emit all declarations in a namespace.
1857 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1858   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1859        I != E; ++I)
1860     EmitTopLevelDecl(*I);
1861 }
1862 
1863 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1864 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1865   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1866       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1867     ErrorUnsupported(LSD, "linkage spec");
1868     return;
1869   }
1870 
1871   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1872        I != E; ++I)
1873     EmitTopLevelDecl(*I);
1874 }
1875 
1876 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1877 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1878   // If an error has occurred, stop code generation, but continue
1879   // parsing and semantic analysis (to ensure all warnings and errors
1880   // are emitted).
1881   if (Diags.hasErrorOccurred())
1882     return;
1883 
1884   // Ignore dependent declarations.
1885   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1886     return;
1887 
1888   switch (D->getKind()) {
1889   case Decl::CXXConversion:
1890   case Decl::CXXMethod:
1891   case Decl::Function:
1892     // Skip function templates
1893     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1894       return;
1895 
1896     EmitGlobal(cast<FunctionDecl>(D));
1897     break;
1898 
1899   case Decl::Var:
1900     EmitGlobal(cast<VarDecl>(D));
1901     break;
1902 
1903   // C++ Decls
1904   case Decl::Namespace:
1905     EmitNamespace(cast<NamespaceDecl>(D));
1906     break;
1907     // No code generation needed.
1908   case Decl::UsingShadow:
1909   case Decl::Using:
1910   case Decl::UsingDirective:
1911   case Decl::ClassTemplate:
1912   case Decl::FunctionTemplate:
1913   case Decl::NamespaceAlias:
1914     break;
1915   case Decl::CXXConstructor:
1916     // Skip function templates
1917     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1918       return;
1919 
1920     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1921     break;
1922   case Decl::CXXDestructor:
1923     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1924     break;
1925 
1926   case Decl::StaticAssert:
1927     // Nothing to do.
1928     break;
1929 
1930   // Objective-C Decls
1931 
1932   // Forward declarations, no (immediate) code generation.
1933   case Decl::ObjCClass:
1934   case Decl::ObjCForwardProtocol:
1935   case Decl::ObjCCategory:
1936   case Decl::ObjCInterface:
1937     break;
1938 
1939   case Decl::ObjCProtocol:
1940     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1941     break;
1942 
1943   case Decl::ObjCCategoryImpl:
1944     // Categories have properties but don't support synthesize so we
1945     // can ignore them here.
1946     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1947     break;
1948 
1949   case Decl::ObjCImplementation: {
1950     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1951     EmitObjCPropertyImplementations(OMD);
1952     EmitObjCIvarInitializations(OMD);
1953     Runtime->GenerateClass(OMD);
1954     break;
1955   }
1956   case Decl::ObjCMethod: {
1957     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1958     // If this is not a prototype, emit the body.
1959     if (OMD->getBody())
1960       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1961     break;
1962   }
1963   case Decl::ObjCCompatibleAlias:
1964     // compatibility-alias is a directive and has no code gen.
1965     break;
1966 
1967   case Decl::LinkageSpec:
1968     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1969     break;
1970 
1971   case Decl::FileScopeAsm: {
1972     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1973     llvm::StringRef AsmString = AD->getAsmString()->getString();
1974 
1975     const std::string &S = getModule().getModuleInlineAsm();
1976     if (S.empty())
1977       getModule().setModuleInlineAsm(AsmString);
1978     else
1979       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1980     break;
1981   }
1982 
1983   default:
1984     // Make sure we handled everything we should, every other kind is a
1985     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1986     // function. Need to recode Decl::Kind to do that easily.
1987     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1988   }
1989 }
1990 
1991 /// Turns the given pointer into a constant.
1992 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
1993                                           const void *Ptr) {
1994   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
1995   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
1996   return llvm::ConstantInt::get(i64, PtrInt);
1997 }
1998 
1999 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2000                                    llvm::NamedMDNode *&GlobalMetadata,
2001                                    GlobalDecl D,
2002                                    llvm::GlobalValue *Addr) {
2003   if (!GlobalMetadata)
2004     GlobalMetadata =
2005       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2006 
2007   // TODO: should we report variant information for ctors/dtors?
2008   llvm::Value *Ops[] = {
2009     Addr,
2010     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2011   };
2012   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2013 }
2014 
2015 /// Emits metadata nodes associating all the global values in the
2016 /// current module with the Decls they came from.  This is useful for
2017 /// projects using IR gen as a subroutine.
2018 ///
2019 /// Since there's currently no way to associate an MDNode directly
2020 /// with an llvm::GlobalValue, we create a global named metadata
2021 /// with the name 'clang.global.decl.ptrs'.
2022 void CodeGenModule::EmitDeclMetadata() {
2023   llvm::NamedMDNode *GlobalMetadata = 0;
2024 
2025   // StaticLocalDeclMap
2026   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2027          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2028        I != E; ++I) {
2029     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2030     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2031   }
2032 }
2033 
2034 /// Emits metadata nodes for all the local variables in the current
2035 /// function.
2036 void CodeGenFunction::EmitDeclMetadata() {
2037   if (LocalDeclMap.empty()) return;
2038 
2039   llvm::LLVMContext &Context = getLLVMContext();
2040 
2041   // Find the unique metadata ID for this name.
2042   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2043 
2044   llvm::NamedMDNode *GlobalMetadata = 0;
2045 
2046   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2047          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2048     const Decl *D = I->first;
2049     llvm::Value *Addr = I->second;
2050 
2051     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2052       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2053       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2054     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2055       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2056       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2057     }
2058   }
2059 }
2060 
2061 ///@name Custom Runtime Function Interfaces
2062 ///@{
2063 //
2064 // FIXME: These can be eliminated once we can have clients just get the required
2065 // AST nodes from the builtin tables.
2066 
2067 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2068   if (BlockObjectDispose)
2069     return BlockObjectDispose;
2070 
2071   // If we saw an explicit decl, use that.
2072   if (BlockObjectDisposeDecl) {
2073     return BlockObjectDispose = GetAddrOfFunction(
2074       BlockObjectDisposeDecl,
2075       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2076   }
2077 
2078   // Otherwise construct the function by hand.
2079   const llvm::FunctionType *FTy;
2080   std::vector<const llvm::Type*> ArgTys;
2081   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2082   ArgTys.push_back(PtrToInt8Ty);
2083   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2084   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2085   return BlockObjectDispose =
2086     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2087 }
2088 
2089 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2090   if (BlockObjectAssign)
2091     return BlockObjectAssign;
2092 
2093   // If we saw an explicit decl, use that.
2094   if (BlockObjectAssignDecl) {
2095     return BlockObjectAssign = GetAddrOfFunction(
2096       BlockObjectAssignDecl,
2097       getTypes().GetFunctionType(BlockObjectAssignDecl));
2098   }
2099 
2100   // Otherwise construct the function by hand.
2101   const llvm::FunctionType *FTy;
2102   std::vector<const llvm::Type*> ArgTys;
2103   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2104   ArgTys.push_back(PtrToInt8Ty);
2105   ArgTys.push_back(PtrToInt8Ty);
2106   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2107   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2108   return BlockObjectAssign =
2109     CreateRuntimeFunction(FTy, "_Block_object_assign");
2110 }
2111 
2112 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2113   if (NSConcreteGlobalBlock)
2114     return NSConcreteGlobalBlock;
2115 
2116   // If we saw an explicit decl, use that.
2117   if (NSConcreteGlobalBlockDecl) {
2118     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2119       NSConcreteGlobalBlockDecl,
2120       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2121   }
2122 
2123   // Otherwise construct the variable by hand.
2124   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2125     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2126 }
2127 
2128 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2129   if (NSConcreteStackBlock)
2130     return NSConcreteStackBlock;
2131 
2132   // If we saw an explicit decl, use that.
2133   if (NSConcreteStackBlockDecl) {
2134     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2135       NSConcreteStackBlockDecl,
2136       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2137   }
2138 
2139   // Otherwise construct the variable by hand.
2140   return NSConcreteStackBlock = CreateRuntimeVariable(
2141     PtrToInt8Ty, "_NSConcreteStackBlock");
2142 }
2143 
2144 ///@}
2145