1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 54 VMContext(M.getContext()), 55 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 56 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 57 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 58 BlockObjectAssign(0), BlockObjectDispose(0){ 59 60 if (!Features.ObjC1) 61 Runtime = 0; 62 else if (!Features.NeXTRuntime) 63 Runtime = CreateGNUObjCRuntime(*this); 64 else if (Features.ObjCNonFragileABI) 65 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 66 else 67 Runtime = CreateMacObjCRuntime(*this); 68 69 if (!Features.CPlusPlus) 70 ABI = 0; 71 else createCXXABI(); 72 73 // If debug info generation is enabled, create the CGDebugInfo object. 74 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 75 } 76 77 CodeGenModule::~CodeGenModule() { 78 delete Runtime; 79 delete ABI; 80 delete DebugInfo; 81 } 82 83 void CodeGenModule::createObjCRuntime() { 84 if (!Features.NeXTRuntime) 85 Runtime = CreateGNUObjCRuntime(*this); 86 else if (Features.ObjCNonFragileABI) 87 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 88 else 89 Runtime = CreateMacObjCRuntime(*this); 90 } 91 92 void CodeGenModule::createCXXABI() { 93 if (Context.Target.getCXXABI() == "microsoft") 94 ABI = CreateMicrosoftCXXABI(*this); 95 else 96 ABI = CreateItaniumCXXABI(*this); 97 } 98 99 void CodeGenModule::Release() { 100 EmitDeferred(); 101 EmitCXXGlobalInitFunc(); 102 EmitCXXGlobalDtorFunc(); 103 if (Runtime) 104 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 105 AddGlobalCtor(ObjCInitFunction); 106 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 107 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 108 EmitAnnotations(); 109 EmitLLVMUsed(); 110 111 if (getCodeGenOpts().EmitDeclMetadata) 112 EmitDeclMetadata(); 113 } 114 115 bool CodeGenModule::isTargetDarwin() const { 116 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 117 } 118 119 /// ErrorUnsupported - Print out an error that codegen doesn't support the 120 /// specified stmt yet. 121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 122 bool OmitOnError) { 123 if (OmitOnError && getDiags().hasErrorOccurred()) 124 return; 125 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 126 "cannot compile this %0 yet"); 127 std::string Msg = Type; 128 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 129 << Msg << S->getSourceRange(); 130 } 131 132 /// ErrorUnsupported - Print out an error that codegen doesn't support the 133 /// specified decl yet. 134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 135 bool OmitOnError) { 136 if (OmitOnError && getDiags().hasErrorOccurred()) 137 return; 138 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 139 "cannot compile this %0 yet"); 140 std::string Msg = Type; 141 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 142 } 143 144 LangOptions::VisibilityMode 145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 146 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 147 if (VD->getStorageClass() == VarDecl::PrivateExtern) 148 return LangOptions::Hidden; 149 150 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 151 switch (attr->getVisibility()) { 152 default: assert(0 && "Unknown visibility!"); 153 case VisibilityAttr::DefaultVisibility: 154 return LangOptions::Default; 155 case VisibilityAttr::HiddenVisibility: 156 return LangOptions::Hidden; 157 case VisibilityAttr::ProtectedVisibility: 158 return LangOptions::Protected; 159 } 160 } 161 162 if (getLangOptions().CPlusPlus) { 163 // Entities subject to an explicit instantiation declaration get default 164 // visibility. 165 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 166 if (Function->getTemplateSpecializationKind() 167 == TSK_ExplicitInstantiationDeclaration) 168 return LangOptions::Default; 169 } else if (const ClassTemplateSpecializationDecl *ClassSpec 170 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 171 if (ClassSpec->getSpecializationKind() 172 == TSK_ExplicitInstantiationDeclaration) 173 return LangOptions::Default; 174 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 175 if (Record->getTemplateSpecializationKind() 176 == TSK_ExplicitInstantiationDeclaration) 177 return LangOptions::Default; 178 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 179 if (Var->isStaticDataMember() && 180 (Var->getTemplateSpecializationKind() 181 == TSK_ExplicitInstantiationDeclaration)) 182 return LangOptions::Default; 183 } 184 185 // If -fvisibility-inlines-hidden was provided, then inline C++ member 186 // functions get "hidden" visibility by default. 187 if (getLangOptions().InlineVisibilityHidden) 188 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 189 if (Method->isInlined()) 190 return LangOptions::Hidden; 191 } 192 193 // This decl should have the same visibility as its parent. 194 if (const DeclContext *DC = D->getDeclContext()) 195 return getDeclVisibilityMode(cast<Decl>(DC)); 196 197 return getLangOptions().getVisibilityMode(); 198 } 199 200 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 201 const Decl *D) const { 202 // Internal definitions always have default visibility. 203 if (GV->hasLocalLinkage()) { 204 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 205 return; 206 } 207 208 switch (getDeclVisibilityMode(D)) { 209 default: assert(0 && "Unknown visibility!"); 210 case LangOptions::Default: 211 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 212 case LangOptions::Hidden: 213 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 214 case LangOptions::Protected: 215 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 216 } 217 } 218 219 /// Set the symbol visibility of type information (vtable and RTTI) 220 /// associated with the given type. 221 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 222 const CXXRecordDecl *RD, 223 bool IsForRTTI) const { 224 setGlobalVisibility(GV, RD); 225 226 // We want to drop the visibility to hidden for weak type symbols. 227 // This isn't possible if there might be unresolved references 228 // elsewhere that rely on this symbol being visible. 229 230 // Preconditions. 231 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 232 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 233 return; 234 235 // Don't override an explicit visibility attribute. 236 if (RD->hasAttr<VisibilityAttr>()) 237 return; 238 239 switch (RD->getTemplateSpecializationKind()) { 240 // We have to disable the optimization if this is an EI definition 241 // because there might be EI declarations in other shared objects. 242 case TSK_ExplicitInstantiationDefinition: 243 case TSK_ExplicitInstantiationDeclaration: 244 return; 245 246 // Every use of a non-template or explicitly-specialized class's 247 // type information has to emit it. 248 case TSK_ExplicitSpecialization: 249 case TSK_Undeclared: 250 break; 251 252 // Implicit instantiations can ignore the possibility of an 253 // explicit instantiation declaration because there necessarily 254 // must be an EI definition somewhere with default visibility. 255 case TSK_ImplicitInstantiation: 256 break; 257 } 258 259 // If there's a key function, there may be translation units 260 // that don't have the key function's definition. But ignore 261 // this if we're emitting RTTI under -fno-rtti. 262 if (!IsForRTTI || Features.RTTI) 263 if (Context.getKeyFunction(RD)) 264 return; 265 266 // Otherwise, drop the visibility to hidden. 267 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 268 } 269 270 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 271 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 272 273 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 274 if (!Str.empty()) 275 return Str; 276 277 if (!getMangleContext().shouldMangleDeclName(ND)) { 278 IdentifierInfo *II = ND->getIdentifier(); 279 assert(II && "Attempt to mangle unnamed decl."); 280 281 Str = II->getName(); 282 return Str; 283 } 284 285 llvm::SmallString<256> Buffer; 286 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 287 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 288 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 289 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 290 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 291 getMangleContext().mangleBlock(GD, BD, Buffer); 292 else 293 getMangleContext().mangleName(ND, Buffer); 294 295 // Allocate space for the mangled name. 296 size_t Length = Buffer.size(); 297 char *Name = MangledNamesAllocator.Allocate<char>(Length); 298 std::copy(Buffer.begin(), Buffer.end(), Name); 299 300 Str = llvm::StringRef(Name, Length); 301 302 return Str; 303 } 304 305 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 306 const BlockDecl *BD) { 307 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 308 } 309 310 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 311 return getModule().getNamedValue(Name); 312 } 313 314 /// AddGlobalCtor - Add a function to the list that will be called before 315 /// main() runs. 316 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 317 // FIXME: Type coercion of void()* types. 318 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 319 } 320 321 /// AddGlobalDtor - Add a function to the list that will be called 322 /// when the module is unloaded. 323 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 324 // FIXME: Type coercion of void()* types. 325 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 326 } 327 328 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 329 // Ctor function type is void()*. 330 llvm::FunctionType* CtorFTy = 331 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 332 std::vector<const llvm::Type*>(), 333 false); 334 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 335 336 // Get the type of a ctor entry, { i32, void ()* }. 337 llvm::StructType* CtorStructTy = 338 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 339 llvm::PointerType::getUnqual(CtorFTy), NULL); 340 341 // Construct the constructor and destructor arrays. 342 std::vector<llvm::Constant*> Ctors; 343 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 344 std::vector<llvm::Constant*> S; 345 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 346 I->second, false)); 347 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 348 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 349 } 350 351 if (!Ctors.empty()) { 352 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 353 new llvm::GlobalVariable(TheModule, AT, false, 354 llvm::GlobalValue::AppendingLinkage, 355 llvm::ConstantArray::get(AT, Ctors), 356 GlobalName); 357 } 358 } 359 360 void CodeGenModule::EmitAnnotations() { 361 if (Annotations.empty()) 362 return; 363 364 // Create a new global variable for the ConstantStruct in the Module. 365 llvm::Constant *Array = 366 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 367 Annotations.size()), 368 Annotations); 369 llvm::GlobalValue *gv = 370 new llvm::GlobalVariable(TheModule, Array->getType(), false, 371 llvm::GlobalValue::AppendingLinkage, Array, 372 "llvm.global.annotations"); 373 gv->setSection("llvm.metadata"); 374 } 375 376 llvm::GlobalValue::LinkageTypes 377 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 378 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 379 380 if (Linkage == GVA_Internal) 381 return llvm::Function::InternalLinkage; 382 383 if (D->hasAttr<DLLExportAttr>()) 384 return llvm::Function::DLLExportLinkage; 385 386 if (D->hasAttr<WeakAttr>()) 387 return llvm::Function::WeakAnyLinkage; 388 389 // In C99 mode, 'inline' functions are guaranteed to have a strong 390 // definition somewhere else, so we can use available_externally linkage. 391 if (Linkage == GVA_C99Inline) 392 return llvm::Function::AvailableExternallyLinkage; 393 394 // In C++, the compiler has to emit a definition in every translation unit 395 // that references the function. We should use linkonce_odr because 396 // a) if all references in this translation unit are optimized away, we 397 // don't need to codegen it. b) if the function persists, it needs to be 398 // merged with other definitions. c) C++ has the ODR, so we know the 399 // definition is dependable. 400 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 401 return llvm::Function::LinkOnceODRLinkage; 402 403 // An explicit instantiation of a template has weak linkage, since 404 // explicit instantiations can occur in multiple translation units 405 // and must all be equivalent. However, we are not allowed to 406 // throw away these explicit instantiations. 407 if (Linkage == GVA_ExplicitTemplateInstantiation) 408 return llvm::Function::WeakODRLinkage; 409 410 // Otherwise, we have strong external linkage. 411 assert(Linkage == GVA_StrongExternal); 412 return llvm::Function::ExternalLinkage; 413 } 414 415 416 /// SetFunctionDefinitionAttributes - Set attributes for a global. 417 /// 418 /// FIXME: This is currently only done for aliases and functions, but not for 419 /// variables (these details are set in EmitGlobalVarDefinition for variables). 420 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 421 llvm::GlobalValue *GV) { 422 SetCommonAttributes(D, GV); 423 } 424 425 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 426 const CGFunctionInfo &Info, 427 llvm::Function *F) { 428 unsigned CallingConv; 429 AttributeListType AttributeList; 430 ConstructAttributeList(Info, D, AttributeList, CallingConv); 431 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 432 AttributeList.size())); 433 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 434 } 435 436 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 437 llvm::Function *F) { 438 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 439 F->addFnAttr(llvm::Attribute::NoUnwind); 440 441 if (D->hasAttr<AlwaysInlineAttr>()) 442 F->addFnAttr(llvm::Attribute::AlwaysInline); 443 444 if (D->hasAttr<NoInlineAttr>()) 445 F->addFnAttr(llvm::Attribute::NoInline); 446 447 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 448 F->addFnAttr(llvm::Attribute::StackProtect); 449 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 450 F->addFnAttr(llvm::Attribute::StackProtectReq); 451 452 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 453 unsigned width = Context.Target.getCharWidth(); 454 F->setAlignment(AA->getAlignment() / width); 455 while ((AA = AA->getNext<AlignedAttr>())) 456 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 457 } 458 // C++ ABI requires 2-byte alignment for member functions. 459 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 460 F->setAlignment(2); 461 } 462 463 void CodeGenModule::SetCommonAttributes(const Decl *D, 464 llvm::GlobalValue *GV) { 465 setGlobalVisibility(GV, D); 466 467 if (D->hasAttr<UsedAttr>()) 468 AddUsedGlobal(GV); 469 470 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 471 GV->setSection(SA->getName()); 472 473 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 474 } 475 476 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 477 llvm::Function *F, 478 const CGFunctionInfo &FI) { 479 SetLLVMFunctionAttributes(D, FI, F); 480 SetLLVMFunctionAttributesForDefinition(D, F); 481 482 F->setLinkage(llvm::Function::InternalLinkage); 483 484 SetCommonAttributes(D, F); 485 } 486 487 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 488 llvm::Function *F, 489 bool IsIncompleteFunction) { 490 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 491 492 if (!IsIncompleteFunction) 493 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 494 495 // Only a few attributes are set on declarations; these may later be 496 // overridden by a definition. 497 498 if (FD->hasAttr<DLLImportAttr>()) { 499 F->setLinkage(llvm::Function::DLLImportLinkage); 500 } else if (FD->hasAttr<WeakAttr>() || 501 FD->hasAttr<WeakImportAttr>()) { 502 // "extern_weak" is overloaded in LLVM; we probably should have 503 // separate linkage types for this. 504 F->setLinkage(llvm::Function::ExternalWeakLinkage); 505 } else { 506 F->setLinkage(llvm::Function::ExternalLinkage); 507 } 508 509 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 510 F->setSection(SA->getName()); 511 } 512 513 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 514 assert(!GV->isDeclaration() && 515 "Only globals with definition can force usage."); 516 LLVMUsed.push_back(GV); 517 } 518 519 void CodeGenModule::EmitLLVMUsed() { 520 // Don't create llvm.used if there is no need. 521 if (LLVMUsed.empty()) 522 return; 523 524 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 525 526 // Convert LLVMUsed to what ConstantArray needs. 527 std::vector<llvm::Constant*> UsedArray; 528 UsedArray.resize(LLVMUsed.size()); 529 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 530 UsedArray[i] = 531 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 532 i8PTy); 533 } 534 535 if (UsedArray.empty()) 536 return; 537 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 538 539 llvm::GlobalVariable *GV = 540 new llvm::GlobalVariable(getModule(), ATy, false, 541 llvm::GlobalValue::AppendingLinkage, 542 llvm::ConstantArray::get(ATy, UsedArray), 543 "llvm.used"); 544 545 GV->setSection("llvm.metadata"); 546 } 547 548 void CodeGenModule::EmitDeferred() { 549 // Emit code for any potentially referenced deferred decls. Since a 550 // previously unused static decl may become used during the generation of code 551 // for a static function, iterate until no changes are made. 552 553 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 554 if (!DeferredVTables.empty()) { 555 const CXXRecordDecl *RD = DeferredVTables.back(); 556 DeferredVTables.pop_back(); 557 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 558 continue; 559 } 560 561 GlobalDecl D = DeferredDeclsToEmit.back(); 562 DeferredDeclsToEmit.pop_back(); 563 564 // Check to see if we've already emitted this. This is necessary 565 // for a couple of reasons: first, decls can end up in the 566 // deferred-decls queue multiple times, and second, decls can end 567 // up with definitions in unusual ways (e.g. by an extern inline 568 // function acquiring a strong function redefinition). Just 569 // ignore these cases. 570 // 571 // TODO: That said, looking this up multiple times is very wasteful. 572 llvm::StringRef Name = getMangledName(D); 573 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 574 assert(CGRef && "Deferred decl wasn't referenced?"); 575 576 if (!CGRef->isDeclaration()) 577 continue; 578 579 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 580 // purposes an alias counts as a definition. 581 if (isa<llvm::GlobalAlias>(CGRef)) 582 continue; 583 584 // Otherwise, emit the definition and move on to the next one. 585 EmitGlobalDefinition(D); 586 } 587 } 588 589 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 590 /// annotation information for a given GlobalValue. The annotation struct is 591 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 592 /// GlobalValue being annotated. The second field is the constant string 593 /// created from the AnnotateAttr's annotation. The third field is a constant 594 /// string containing the name of the translation unit. The fourth field is 595 /// the line number in the file of the annotated value declaration. 596 /// 597 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 598 /// appears to. 599 /// 600 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 601 const AnnotateAttr *AA, 602 unsigned LineNo) { 603 llvm::Module *M = &getModule(); 604 605 // get [N x i8] constants for the annotation string, and the filename string 606 // which are the 2nd and 3rd elements of the global annotation structure. 607 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 608 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 609 AA->getAnnotation(), true); 610 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 611 M->getModuleIdentifier(), 612 true); 613 614 // Get the two global values corresponding to the ConstantArrays we just 615 // created to hold the bytes of the strings. 616 llvm::GlobalValue *annoGV = 617 new llvm::GlobalVariable(*M, anno->getType(), false, 618 llvm::GlobalValue::PrivateLinkage, anno, 619 GV->getName()); 620 // translation unit name string, emitted into the llvm.metadata section. 621 llvm::GlobalValue *unitGV = 622 new llvm::GlobalVariable(*M, unit->getType(), false, 623 llvm::GlobalValue::PrivateLinkage, unit, 624 ".str"); 625 626 // Create the ConstantStruct for the global annotation. 627 llvm::Constant *Fields[4] = { 628 llvm::ConstantExpr::getBitCast(GV, SBP), 629 llvm::ConstantExpr::getBitCast(annoGV, SBP), 630 llvm::ConstantExpr::getBitCast(unitGV, SBP), 631 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 632 }; 633 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 634 } 635 636 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 637 // Never defer when EmitAllDecls is specified. 638 if (Features.EmitAllDecls) 639 return false; 640 641 return !getContext().DeclMustBeEmitted(Global); 642 } 643 644 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 645 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 646 assert(AA && "No alias?"); 647 648 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 649 650 // See if there is already something with the target's name in the module. 651 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 652 653 llvm::Constant *Aliasee; 654 if (isa<llvm::FunctionType>(DeclTy)) 655 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 656 else 657 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 658 llvm::PointerType::getUnqual(DeclTy), 0); 659 if (!Entry) { 660 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 661 F->setLinkage(llvm::Function::ExternalWeakLinkage); 662 WeakRefReferences.insert(F); 663 } 664 665 return Aliasee; 666 } 667 668 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 669 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 670 671 // Weak references don't produce any output by themselves. 672 if (Global->hasAttr<WeakRefAttr>()) 673 return; 674 675 // If this is an alias definition (which otherwise looks like a declaration) 676 // emit it now. 677 if (Global->hasAttr<AliasAttr>()) 678 return EmitAliasDefinition(GD); 679 680 // Ignore declarations, they will be emitted on their first use. 681 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 682 if (FD->getIdentifier()) { 683 llvm::StringRef Name = FD->getName(); 684 if (Name == "_Block_object_assign") { 685 BlockObjectAssignDecl = FD; 686 } else if (Name == "_Block_object_dispose") { 687 BlockObjectDisposeDecl = FD; 688 } 689 } 690 691 // Forward declarations are emitted lazily on first use. 692 if (!FD->isThisDeclarationADefinition()) 693 return; 694 } else { 695 const VarDecl *VD = cast<VarDecl>(Global); 696 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 697 698 if (VD->getIdentifier()) { 699 llvm::StringRef Name = VD->getName(); 700 if (Name == "_NSConcreteGlobalBlock") { 701 NSConcreteGlobalBlockDecl = VD; 702 } else if (Name == "_NSConcreteStackBlock") { 703 NSConcreteStackBlockDecl = VD; 704 } 705 } 706 707 708 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 709 return; 710 } 711 712 // Defer code generation when possible if this is a static definition, inline 713 // function etc. These we only want to emit if they are used. 714 if (!MayDeferGeneration(Global)) { 715 // Emit the definition if it can't be deferred. 716 EmitGlobalDefinition(GD); 717 return; 718 } 719 720 // If we're deferring emission of a C++ variable with an 721 // initializer, remember the order in which it appeared in the file. 722 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 723 cast<VarDecl>(Global)->hasInit()) { 724 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 725 CXXGlobalInits.push_back(0); 726 } 727 728 // If the value has already been used, add it directly to the 729 // DeferredDeclsToEmit list. 730 llvm::StringRef MangledName = getMangledName(GD); 731 if (GetGlobalValue(MangledName)) 732 DeferredDeclsToEmit.push_back(GD); 733 else { 734 // Otherwise, remember that we saw a deferred decl with this name. The 735 // first use of the mangled name will cause it to move into 736 // DeferredDeclsToEmit. 737 DeferredDecls[MangledName] = GD; 738 } 739 } 740 741 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 742 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 743 744 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 745 Context.getSourceManager(), 746 "Generating code for declaration"); 747 748 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 749 // At -O0, don't generate IR for functions with available_externally 750 // linkage. 751 if (CodeGenOpts.OptimizationLevel == 0 && 752 !Function->hasAttr<AlwaysInlineAttr>() && 753 getFunctionLinkage(Function) 754 == llvm::Function::AvailableExternallyLinkage) 755 return; 756 757 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 758 if (Method->isVirtual()) 759 getVTables().EmitThunks(GD); 760 761 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 762 return EmitCXXConstructor(CD, GD.getCtorType()); 763 764 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 765 return EmitCXXDestructor(DD, GD.getDtorType()); 766 } 767 768 return EmitGlobalFunctionDefinition(GD); 769 } 770 771 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 772 return EmitGlobalVarDefinition(VD); 773 774 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 775 } 776 777 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 778 /// module, create and return an llvm Function with the specified type. If there 779 /// is something in the module with the specified name, return it potentially 780 /// bitcasted to the right type. 781 /// 782 /// If D is non-null, it specifies a decl that correspond to this. This is used 783 /// to set the attributes on the function when it is first created. 784 llvm::Constant * 785 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 786 const llvm::Type *Ty, 787 GlobalDecl D) { 788 // Lookup the entry, lazily creating it if necessary. 789 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 790 if (Entry) { 791 if (WeakRefReferences.count(Entry)) { 792 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 793 if (FD && !FD->hasAttr<WeakAttr>()) 794 Entry->setLinkage(llvm::Function::ExternalLinkage); 795 796 WeakRefReferences.erase(Entry); 797 } 798 799 if (Entry->getType()->getElementType() == Ty) 800 return Entry; 801 802 // Make sure the result is of the correct type. 803 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 804 return llvm::ConstantExpr::getBitCast(Entry, PTy); 805 } 806 807 // This function doesn't have a complete type (for example, the return 808 // type is an incomplete struct). Use a fake type instead, and make 809 // sure not to try to set attributes. 810 bool IsIncompleteFunction = false; 811 812 const llvm::FunctionType *FTy; 813 if (isa<llvm::FunctionType>(Ty)) { 814 FTy = cast<llvm::FunctionType>(Ty); 815 } else { 816 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 817 std::vector<const llvm::Type*>(), false); 818 IsIncompleteFunction = true; 819 } 820 821 llvm::Function *F = llvm::Function::Create(FTy, 822 llvm::Function::ExternalLinkage, 823 MangledName, &getModule()); 824 assert(F->getName() == MangledName && "name was uniqued!"); 825 if (D.getDecl()) 826 SetFunctionAttributes(D, F, IsIncompleteFunction); 827 828 // This is the first use or definition of a mangled name. If there is a 829 // deferred decl with this name, remember that we need to emit it at the end 830 // of the file. 831 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 832 if (DDI != DeferredDecls.end()) { 833 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 834 // list, and remove it from DeferredDecls (since we don't need it anymore). 835 DeferredDeclsToEmit.push_back(DDI->second); 836 DeferredDecls.erase(DDI); 837 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 838 // If this the first reference to a C++ inline function in a class, queue up 839 // the deferred function body for emission. These are not seen as 840 // top-level declarations. 841 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 842 DeferredDeclsToEmit.push_back(D); 843 // A called constructor which has no definition or declaration need be 844 // synthesized. 845 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 846 if (CD->isImplicit()) { 847 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 848 DeferredDeclsToEmit.push_back(D); 849 } 850 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 851 if (DD->isImplicit()) { 852 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 853 DeferredDeclsToEmit.push_back(D); 854 } 855 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 856 if (MD->isCopyAssignment() && MD->isImplicit()) { 857 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 858 DeferredDeclsToEmit.push_back(D); 859 } 860 } 861 } 862 863 // Make sure the result is of the requested type. 864 if (!IsIncompleteFunction) { 865 assert(F->getType()->getElementType() == Ty); 866 return F; 867 } 868 869 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 870 return llvm::ConstantExpr::getBitCast(F, PTy); 871 } 872 873 /// GetAddrOfFunction - Return the address of the given function. If Ty is 874 /// non-null, then this function will use the specified type if it has to 875 /// create it (this occurs when we see a definition of the function). 876 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 877 const llvm::Type *Ty) { 878 // If there was no specific requested type, just convert it now. 879 if (!Ty) 880 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 881 882 llvm::StringRef MangledName = getMangledName(GD); 883 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 884 } 885 886 /// CreateRuntimeFunction - Create a new runtime function with the specified 887 /// type and name. 888 llvm::Constant * 889 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 890 llvm::StringRef Name) { 891 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 892 } 893 894 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 895 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 896 return false; 897 if (Context.getLangOptions().CPlusPlus && 898 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 899 // FIXME: We should do something fancier here! 900 return false; 901 } 902 return true; 903 } 904 905 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 906 /// create and return an llvm GlobalVariable with the specified type. If there 907 /// is something in the module with the specified name, return it potentially 908 /// bitcasted to the right type. 909 /// 910 /// If D is non-null, it specifies a decl that correspond to this. This is used 911 /// to set the attributes on the global when it is first created. 912 llvm::Constant * 913 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 914 const llvm::PointerType *Ty, 915 const VarDecl *D) { 916 // Lookup the entry, lazily creating it if necessary. 917 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 918 if (Entry) { 919 if (WeakRefReferences.count(Entry)) { 920 if (D && !D->hasAttr<WeakAttr>()) 921 Entry->setLinkage(llvm::Function::ExternalLinkage); 922 923 WeakRefReferences.erase(Entry); 924 } 925 926 if (Entry->getType() == Ty) 927 return Entry; 928 929 // Make sure the result is of the correct type. 930 return llvm::ConstantExpr::getBitCast(Entry, Ty); 931 } 932 933 // This is the first use or definition of a mangled name. If there is a 934 // deferred decl with this name, remember that we need to emit it at the end 935 // of the file. 936 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 937 if (DDI != DeferredDecls.end()) { 938 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 939 // list, and remove it from DeferredDecls (since we don't need it anymore). 940 DeferredDeclsToEmit.push_back(DDI->second); 941 DeferredDecls.erase(DDI); 942 } 943 944 llvm::GlobalVariable *GV = 945 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 946 llvm::GlobalValue::ExternalLinkage, 947 0, MangledName, 0, 948 false, Ty->getAddressSpace()); 949 950 // Handle things which are present even on external declarations. 951 if (D) { 952 // FIXME: This code is overly simple and should be merged with other global 953 // handling. 954 GV->setConstant(DeclIsConstantGlobal(Context, D)); 955 956 // FIXME: Merge with other attribute handling code. 957 if (D->getStorageClass() == VarDecl::PrivateExtern) 958 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 959 960 if (D->hasAttr<WeakAttr>() || 961 D->hasAttr<WeakImportAttr>()) 962 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 963 964 GV->setThreadLocal(D->isThreadSpecified()); 965 } 966 967 return GV; 968 } 969 970 971 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 972 /// given global variable. If Ty is non-null and if the global doesn't exist, 973 /// then it will be greated with the specified type instead of whatever the 974 /// normal requested type would be. 975 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 976 const llvm::Type *Ty) { 977 assert(D->hasGlobalStorage() && "Not a global variable"); 978 QualType ASTTy = D->getType(); 979 if (Ty == 0) 980 Ty = getTypes().ConvertTypeForMem(ASTTy); 981 982 const llvm::PointerType *PTy = 983 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 984 985 llvm::StringRef MangledName = getMangledName(D); 986 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 987 } 988 989 /// CreateRuntimeVariable - Create a new runtime global variable with the 990 /// specified type and name. 991 llvm::Constant * 992 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 993 llvm::StringRef Name) { 994 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 995 } 996 997 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 998 assert(!D->getInit() && "Cannot emit definite definitions here!"); 999 1000 if (MayDeferGeneration(D)) { 1001 // If we have not seen a reference to this variable yet, place it 1002 // into the deferred declarations table to be emitted if needed 1003 // later. 1004 llvm::StringRef MangledName = getMangledName(D); 1005 if (!GetGlobalValue(MangledName)) { 1006 DeferredDecls[MangledName] = D; 1007 return; 1008 } 1009 } 1010 1011 // The tentative definition is the only definition. 1012 EmitGlobalVarDefinition(D); 1013 } 1014 1015 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1016 if (DefinitionRequired) 1017 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1018 } 1019 1020 llvm::GlobalVariable::LinkageTypes 1021 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1022 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1023 return llvm::GlobalVariable::InternalLinkage; 1024 1025 if (const CXXMethodDecl *KeyFunction 1026 = RD->getASTContext().getKeyFunction(RD)) { 1027 // If this class has a key function, use that to determine the linkage of 1028 // the vtable. 1029 const FunctionDecl *Def = 0; 1030 if (KeyFunction->hasBody(Def)) 1031 KeyFunction = cast<CXXMethodDecl>(Def); 1032 1033 switch (KeyFunction->getTemplateSpecializationKind()) { 1034 case TSK_Undeclared: 1035 case TSK_ExplicitSpecialization: 1036 if (KeyFunction->isInlined()) 1037 return llvm::GlobalVariable::WeakODRLinkage; 1038 1039 return llvm::GlobalVariable::ExternalLinkage; 1040 1041 case TSK_ImplicitInstantiation: 1042 case TSK_ExplicitInstantiationDefinition: 1043 return llvm::GlobalVariable::WeakODRLinkage; 1044 1045 case TSK_ExplicitInstantiationDeclaration: 1046 // FIXME: Use available_externally linkage. However, this currently 1047 // breaks LLVM's build due to undefined symbols. 1048 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1049 return llvm::GlobalVariable::WeakODRLinkage; 1050 } 1051 } 1052 1053 switch (RD->getTemplateSpecializationKind()) { 1054 case TSK_Undeclared: 1055 case TSK_ExplicitSpecialization: 1056 case TSK_ImplicitInstantiation: 1057 case TSK_ExplicitInstantiationDefinition: 1058 return llvm::GlobalVariable::WeakODRLinkage; 1059 1060 case TSK_ExplicitInstantiationDeclaration: 1061 // FIXME: Use available_externally linkage. However, this currently 1062 // breaks LLVM's build due to undefined symbols. 1063 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1064 return llvm::GlobalVariable::WeakODRLinkage; 1065 } 1066 1067 // Silence GCC warning. 1068 return llvm::GlobalVariable::WeakODRLinkage; 1069 } 1070 1071 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1072 return CharUnits::fromQuantity( 1073 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1074 } 1075 1076 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1077 llvm::Constant *Init = 0; 1078 QualType ASTTy = D->getType(); 1079 bool NonConstInit = false; 1080 1081 const Expr *InitExpr = D->getAnyInitializer(); 1082 1083 if (!InitExpr) { 1084 // This is a tentative definition; tentative definitions are 1085 // implicitly initialized with { 0 }. 1086 // 1087 // Note that tentative definitions are only emitted at the end of 1088 // a translation unit, so they should never have incomplete 1089 // type. In addition, EmitTentativeDefinition makes sure that we 1090 // never attempt to emit a tentative definition if a real one 1091 // exists. A use may still exists, however, so we still may need 1092 // to do a RAUW. 1093 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1094 Init = EmitNullConstant(D->getType()); 1095 } else { 1096 Init = EmitConstantExpr(InitExpr, D->getType()); 1097 if (!Init) { 1098 QualType T = InitExpr->getType(); 1099 if (D->getType()->isReferenceType()) 1100 T = D->getType(); 1101 1102 if (getLangOptions().CPlusPlus) { 1103 EmitCXXGlobalVarDeclInitFunc(D); 1104 Init = EmitNullConstant(T); 1105 NonConstInit = true; 1106 } else { 1107 ErrorUnsupported(D, "static initializer"); 1108 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1109 } 1110 } else { 1111 // We don't need an initializer, so remove the entry for the delayed 1112 // initializer position (just in case this entry was delayed). 1113 if (getLangOptions().CPlusPlus) 1114 DelayedCXXInitPosition.erase(D); 1115 } 1116 } 1117 1118 const llvm::Type* InitType = Init->getType(); 1119 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1120 1121 // Strip off a bitcast if we got one back. 1122 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1123 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1124 // all zero index gep. 1125 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1126 Entry = CE->getOperand(0); 1127 } 1128 1129 // Entry is now either a Function or GlobalVariable. 1130 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1131 1132 // We have a definition after a declaration with the wrong type. 1133 // We must make a new GlobalVariable* and update everything that used OldGV 1134 // (a declaration or tentative definition) with the new GlobalVariable* 1135 // (which will be a definition). 1136 // 1137 // This happens if there is a prototype for a global (e.g. 1138 // "extern int x[];") and then a definition of a different type (e.g. 1139 // "int x[10];"). This also happens when an initializer has a different type 1140 // from the type of the global (this happens with unions). 1141 if (GV == 0 || 1142 GV->getType()->getElementType() != InitType || 1143 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1144 1145 // Move the old entry aside so that we'll create a new one. 1146 Entry->setName(llvm::StringRef()); 1147 1148 // Make a new global with the correct type, this is now guaranteed to work. 1149 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1150 1151 // Replace all uses of the old global with the new global 1152 llvm::Constant *NewPtrForOldDecl = 1153 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1154 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1155 1156 // Erase the old global, since it is no longer used. 1157 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1158 } 1159 1160 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1161 SourceManager &SM = Context.getSourceManager(); 1162 AddAnnotation(EmitAnnotateAttr(GV, AA, 1163 SM.getInstantiationLineNumber(D->getLocation()))); 1164 } 1165 1166 GV->setInitializer(Init); 1167 1168 // If it is safe to mark the global 'constant', do so now. 1169 GV->setConstant(false); 1170 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1171 GV->setConstant(true); 1172 1173 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1174 1175 // Set the llvm linkage type as appropriate. 1176 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1177 if (Linkage == GVA_Internal) 1178 GV->setLinkage(llvm::Function::InternalLinkage); 1179 else if (D->hasAttr<DLLImportAttr>()) 1180 GV->setLinkage(llvm::Function::DLLImportLinkage); 1181 else if (D->hasAttr<DLLExportAttr>()) 1182 GV->setLinkage(llvm::Function::DLLExportLinkage); 1183 else if (D->hasAttr<WeakAttr>()) { 1184 if (GV->isConstant()) 1185 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1186 else 1187 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1188 } else if (Linkage == GVA_TemplateInstantiation || 1189 Linkage == GVA_ExplicitTemplateInstantiation) 1190 // FIXME: It seems like we can provide more specific linkage here 1191 // (LinkOnceODR, WeakODR). 1192 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1193 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1194 !D->hasExternalStorage() && !D->getInit() && 1195 !D->getAttr<SectionAttr>()) { 1196 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1197 // common vars aren't constant even if declared const. 1198 GV->setConstant(false); 1199 } else 1200 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1201 1202 SetCommonAttributes(D, GV); 1203 1204 // Emit global variable debug information. 1205 if (CGDebugInfo *DI = getDebugInfo()) { 1206 DI->setLocation(D->getLocation()); 1207 DI->EmitGlobalVariable(GV, D); 1208 } 1209 } 1210 1211 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1212 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1213 /// existing call uses of the old function in the module, this adjusts them to 1214 /// call the new function directly. 1215 /// 1216 /// This is not just a cleanup: the always_inline pass requires direct calls to 1217 /// functions to be able to inline them. If there is a bitcast in the way, it 1218 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1219 /// run at -O0. 1220 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1221 llvm::Function *NewFn) { 1222 // If we're redefining a global as a function, don't transform it. 1223 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1224 if (OldFn == 0) return; 1225 1226 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1227 llvm::SmallVector<llvm::Value*, 4> ArgList; 1228 1229 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1230 UI != E; ) { 1231 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1232 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1233 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1234 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1235 llvm::CallSite CS(CI); 1236 if (!CI || !CS.isCallee(I)) continue; 1237 1238 // If the return types don't match exactly, and if the call isn't dead, then 1239 // we can't transform this call. 1240 if (CI->getType() != NewRetTy && !CI->use_empty()) 1241 continue; 1242 1243 // If the function was passed too few arguments, don't transform. If extra 1244 // arguments were passed, we silently drop them. If any of the types 1245 // mismatch, we don't transform. 1246 unsigned ArgNo = 0; 1247 bool DontTransform = false; 1248 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1249 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1250 if (CS.arg_size() == ArgNo || 1251 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1252 DontTransform = true; 1253 break; 1254 } 1255 } 1256 if (DontTransform) 1257 continue; 1258 1259 // Okay, we can transform this. Create the new call instruction and copy 1260 // over the required information. 1261 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1262 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1263 ArgList.end(), "", CI); 1264 ArgList.clear(); 1265 if (!NewCall->getType()->isVoidTy()) 1266 NewCall->takeName(CI); 1267 NewCall->setAttributes(CI->getAttributes()); 1268 NewCall->setCallingConv(CI->getCallingConv()); 1269 1270 // Finally, remove the old call, replacing any uses with the new one. 1271 if (!CI->use_empty()) 1272 CI->replaceAllUsesWith(NewCall); 1273 1274 // Copy debug location attached to CI. 1275 if (!CI->getDebugLoc().isUnknown()) 1276 NewCall->setDebugLoc(CI->getDebugLoc()); 1277 CI->eraseFromParent(); 1278 } 1279 } 1280 1281 1282 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1283 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1284 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1285 getMangleContext().mangleInitDiscriminator(); 1286 // Get or create the prototype for the function. 1287 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1288 1289 // Strip off a bitcast if we got one back. 1290 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1291 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1292 Entry = CE->getOperand(0); 1293 } 1294 1295 1296 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1297 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1298 1299 // If the types mismatch then we have to rewrite the definition. 1300 assert(OldFn->isDeclaration() && 1301 "Shouldn't replace non-declaration"); 1302 1303 // F is the Function* for the one with the wrong type, we must make a new 1304 // Function* and update everything that used F (a declaration) with the new 1305 // Function* (which will be a definition). 1306 // 1307 // This happens if there is a prototype for a function 1308 // (e.g. "int f()") and then a definition of a different type 1309 // (e.g. "int f(int x)"). Move the old function aside so that it 1310 // doesn't interfere with GetAddrOfFunction. 1311 OldFn->setName(llvm::StringRef()); 1312 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1313 1314 // If this is an implementation of a function without a prototype, try to 1315 // replace any existing uses of the function (which may be calls) with uses 1316 // of the new function 1317 if (D->getType()->isFunctionNoProtoType()) { 1318 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1319 OldFn->removeDeadConstantUsers(); 1320 } 1321 1322 // Replace uses of F with the Function we will endow with a body. 1323 if (!Entry->use_empty()) { 1324 llvm::Constant *NewPtrForOldDecl = 1325 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1326 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1327 } 1328 1329 // Ok, delete the old function now, which is dead. 1330 OldFn->eraseFromParent(); 1331 1332 Entry = NewFn; 1333 } 1334 1335 llvm::Function *Fn = cast<llvm::Function>(Entry); 1336 setFunctionLinkage(D, Fn); 1337 1338 CodeGenFunction(*this).GenerateCode(D, Fn); 1339 1340 SetFunctionDefinitionAttributes(D, Fn); 1341 SetLLVMFunctionAttributesForDefinition(D, Fn); 1342 1343 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1344 AddGlobalCtor(Fn, CA->getPriority()); 1345 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1346 AddGlobalDtor(Fn, DA->getPriority()); 1347 } 1348 1349 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1350 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1351 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1352 assert(AA && "Not an alias?"); 1353 1354 llvm::StringRef MangledName = getMangledName(GD); 1355 1356 // If there is a definition in the module, then it wins over the alias. 1357 // This is dubious, but allow it to be safe. Just ignore the alias. 1358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1359 if (Entry && !Entry->isDeclaration()) 1360 return; 1361 1362 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1363 1364 // Create a reference to the named value. This ensures that it is emitted 1365 // if a deferred decl. 1366 llvm::Constant *Aliasee; 1367 if (isa<llvm::FunctionType>(DeclTy)) 1368 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1369 else 1370 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1371 llvm::PointerType::getUnqual(DeclTy), 0); 1372 1373 // Create the new alias itself, but don't set a name yet. 1374 llvm::GlobalValue *GA = 1375 new llvm::GlobalAlias(Aliasee->getType(), 1376 llvm::Function::ExternalLinkage, 1377 "", Aliasee, &getModule()); 1378 1379 if (Entry) { 1380 assert(Entry->isDeclaration()); 1381 1382 // If there is a declaration in the module, then we had an extern followed 1383 // by the alias, as in: 1384 // extern int test6(); 1385 // ... 1386 // int test6() __attribute__((alias("test7"))); 1387 // 1388 // Remove it and replace uses of it with the alias. 1389 GA->takeName(Entry); 1390 1391 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1392 Entry->getType())); 1393 Entry->eraseFromParent(); 1394 } else { 1395 GA->setName(MangledName); 1396 } 1397 1398 // Set attributes which are particular to an alias; this is a 1399 // specialization of the attributes which may be set on a global 1400 // variable/function. 1401 if (D->hasAttr<DLLExportAttr>()) { 1402 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1403 // The dllexport attribute is ignored for undefined symbols. 1404 if (FD->hasBody()) 1405 GA->setLinkage(llvm::Function::DLLExportLinkage); 1406 } else { 1407 GA->setLinkage(llvm::Function::DLLExportLinkage); 1408 } 1409 } else if (D->hasAttr<WeakAttr>() || 1410 D->hasAttr<WeakRefAttr>() || 1411 D->hasAttr<WeakImportAttr>()) { 1412 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1413 } 1414 1415 SetCommonAttributes(D, GA); 1416 } 1417 1418 /// getBuiltinLibFunction - Given a builtin id for a function like 1419 /// "__builtin_fabsf", return a Function* for "fabsf". 1420 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1421 unsigned BuiltinID) { 1422 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1423 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1424 "isn't a lib fn"); 1425 1426 // Get the name, skip over the __builtin_ prefix (if necessary). 1427 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1428 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1429 Name += 10; 1430 1431 const llvm::FunctionType *Ty = 1432 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1433 1434 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1435 } 1436 1437 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1438 unsigned NumTys) { 1439 return llvm::Intrinsic::getDeclaration(&getModule(), 1440 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1441 } 1442 1443 1444 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1445 const llvm::Type *SrcType, 1446 const llvm::Type *SizeType) { 1447 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1448 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1449 } 1450 1451 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1452 const llvm::Type *SrcType, 1453 const llvm::Type *SizeType) { 1454 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1455 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1456 } 1457 1458 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1459 const llvm::Type *SizeType) { 1460 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1461 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1462 } 1463 1464 static llvm::StringMapEntry<llvm::Constant*> & 1465 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1466 const StringLiteral *Literal, 1467 bool TargetIsLSB, 1468 bool &IsUTF16, 1469 unsigned &StringLength) { 1470 unsigned NumBytes = Literal->getByteLength(); 1471 1472 // Check for simple case. 1473 if (!Literal->containsNonAsciiOrNull()) { 1474 StringLength = NumBytes; 1475 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1476 StringLength)); 1477 } 1478 1479 // Otherwise, convert the UTF8 literals into a byte string. 1480 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1481 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1482 UTF16 *ToPtr = &ToBuf[0]; 1483 1484 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1485 &ToPtr, ToPtr + NumBytes, 1486 strictConversion); 1487 1488 // Check for conversion failure. 1489 if (Result != conversionOK) { 1490 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1491 // this duplicate code. 1492 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1493 StringLength = NumBytes; 1494 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1495 StringLength)); 1496 } 1497 1498 // ConvertUTF8toUTF16 returns the length in ToPtr. 1499 StringLength = ToPtr - &ToBuf[0]; 1500 1501 // Render the UTF-16 string into a byte array and convert to the target byte 1502 // order. 1503 // 1504 // FIXME: This isn't something we should need to do here. 1505 llvm::SmallString<128> AsBytes; 1506 AsBytes.reserve(StringLength * 2); 1507 for (unsigned i = 0; i != StringLength; ++i) { 1508 unsigned short Val = ToBuf[i]; 1509 if (TargetIsLSB) { 1510 AsBytes.push_back(Val & 0xFF); 1511 AsBytes.push_back(Val >> 8); 1512 } else { 1513 AsBytes.push_back(Val >> 8); 1514 AsBytes.push_back(Val & 0xFF); 1515 } 1516 } 1517 // Append one extra null character, the second is automatically added by our 1518 // caller. 1519 AsBytes.push_back(0); 1520 1521 IsUTF16 = true; 1522 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1523 } 1524 1525 llvm::Constant * 1526 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1527 unsigned StringLength = 0; 1528 bool isUTF16 = false; 1529 llvm::StringMapEntry<llvm::Constant*> &Entry = 1530 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1531 getTargetData().isLittleEndian(), 1532 isUTF16, StringLength); 1533 1534 if (llvm::Constant *C = Entry.getValue()) 1535 return C; 1536 1537 llvm::Constant *Zero = 1538 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1539 llvm::Constant *Zeros[] = { Zero, Zero }; 1540 1541 // If we don't already have it, get __CFConstantStringClassReference. 1542 if (!CFConstantStringClassRef) { 1543 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1544 Ty = llvm::ArrayType::get(Ty, 0); 1545 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1546 "__CFConstantStringClassReference"); 1547 // Decay array -> ptr 1548 CFConstantStringClassRef = 1549 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1550 } 1551 1552 QualType CFTy = getContext().getCFConstantStringType(); 1553 1554 const llvm::StructType *STy = 1555 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1556 1557 std::vector<llvm::Constant*> Fields(4); 1558 1559 // Class pointer. 1560 Fields[0] = CFConstantStringClassRef; 1561 1562 // Flags. 1563 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1564 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1565 llvm::ConstantInt::get(Ty, 0x07C8); 1566 1567 // String pointer. 1568 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1569 1570 llvm::GlobalValue::LinkageTypes Linkage; 1571 bool isConstant; 1572 if (isUTF16) { 1573 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1574 Linkage = llvm::GlobalValue::InternalLinkage; 1575 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1576 // does make plain ascii ones writable. 1577 isConstant = true; 1578 } else { 1579 Linkage = llvm::GlobalValue::PrivateLinkage; 1580 isConstant = !Features.WritableStrings; 1581 } 1582 1583 llvm::GlobalVariable *GV = 1584 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1585 ".str"); 1586 if (isUTF16) { 1587 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1588 GV->setAlignment(Align.getQuantity()); 1589 } 1590 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1591 1592 // String length. 1593 Ty = getTypes().ConvertType(getContext().LongTy); 1594 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1595 1596 // The struct. 1597 C = llvm::ConstantStruct::get(STy, Fields); 1598 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1599 llvm::GlobalVariable::PrivateLinkage, C, 1600 "_unnamed_cfstring_"); 1601 if (const char *Sect = getContext().Target.getCFStringSection()) 1602 GV->setSection(Sect); 1603 Entry.setValue(GV); 1604 1605 return GV; 1606 } 1607 1608 llvm::Constant * 1609 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1610 unsigned StringLength = 0; 1611 bool isUTF16 = false; 1612 llvm::StringMapEntry<llvm::Constant*> &Entry = 1613 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1614 getTargetData().isLittleEndian(), 1615 isUTF16, StringLength); 1616 1617 if (llvm::Constant *C = Entry.getValue()) 1618 return C; 1619 1620 llvm::Constant *Zero = 1621 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1622 llvm::Constant *Zeros[] = { Zero, Zero }; 1623 1624 // If we don't already have it, get _NSConstantStringClassReference. 1625 if (!NSConstantStringClassRef) { 1626 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1627 Ty = llvm::ArrayType::get(Ty, 0); 1628 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1629 Features.ObjCNonFragileABI ? 1630 "OBJC_CLASS_$_NSConstantString" : 1631 "_NSConstantStringClassReference"); 1632 // Decay array -> ptr 1633 NSConstantStringClassRef = 1634 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1635 } 1636 1637 QualType NSTy = getContext().getNSConstantStringType(); 1638 1639 const llvm::StructType *STy = 1640 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1641 1642 std::vector<llvm::Constant*> Fields(3); 1643 1644 // Class pointer. 1645 Fields[0] = NSConstantStringClassRef; 1646 1647 // String pointer. 1648 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1649 1650 llvm::GlobalValue::LinkageTypes Linkage; 1651 bool isConstant; 1652 if (isUTF16) { 1653 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1654 Linkage = llvm::GlobalValue::InternalLinkage; 1655 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1656 // does make plain ascii ones writable. 1657 isConstant = true; 1658 } else { 1659 Linkage = llvm::GlobalValue::PrivateLinkage; 1660 isConstant = !Features.WritableStrings; 1661 } 1662 1663 llvm::GlobalVariable *GV = 1664 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1665 ".str"); 1666 if (isUTF16) { 1667 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1668 GV->setAlignment(Align.getQuantity()); 1669 } 1670 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1671 1672 // String length. 1673 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1674 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1675 1676 // The struct. 1677 C = llvm::ConstantStruct::get(STy, Fields); 1678 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1679 llvm::GlobalVariable::PrivateLinkage, C, 1680 "_unnamed_nsstring_"); 1681 // FIXME. Fix section. 1682 if (const char *Sect = 1683 Features.ObjCNonFragileABI 1684 ? getContext().Target.getNSStringNonFragileABISection() 1685 : getContext().Target.getNSStringSection()) 1686 GV->setSection(Sect); 1687 Entry.setValue(GV); 1688 1689 return GV; 1690 } 1691 1692 /// GetStringForStringLiteral - Return the appropriate bytes for a 1693 /// string literal, properly padded to match the literal type. 1694 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1695 const char *StrData = E->getStrData(); 1696 unsigned Len = E->getByteLength(); 1697 1698 const ConstantArrayType *CAT = 1699 getContext().getAsConstantArrayType(E->getType()); 1700 assert(CAT && "String isn't pointer or array!"); 1701 1702 // Resize the string to the right size. 1703 std::string Str(StrData, StrData+Len); 1704 uint64_t RealLen = CAT->getSize().getZExtValue(); 1705 1706 if (E->isWide()) 1707 RealLen *= getContext().Target.getWCharWidth()/8; 1708 1709 Str.resize(RealLen, '\0'); 1710 1711 return Str; 1712 } 1713 1714 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1715 /// constant array for the given string literal. 1716 llvm::Constant * 1717 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1718 // FIXME: This can be more efficient. 1719 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1720 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1721 if (S->isWide()) { 1722 llvm::Type *DestTy = 1723 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1724 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1725 } 1726 return C; 1727 } 1728 1729 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1730 /// array for the given ObjCEncodeExpr node. 1731 llvm::Constant * 1732 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1733 std::string Str; 1734 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1735 1736 return GetAddrOfConstantCString(Str); 1737 } 1738 1739 1740 /// GenerateWritableString -- Creates storage for a string literal. 1741 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1742 bool constant, 1743 CodeGenModule &CGM, 1744 const char *GlobalName) { 1745 // Create Constant for this string literal. Don't add a '\0'. 1746 llvm::Constant *C = 1747 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1748 1749 // Create a global variable for this string 1750 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1751 llvm::GlobalValue::PrivateLinkage, 1752 C, GlobalName); 1753 } 1754 1755 /// GetAddrOfConstantString - Returns a pointer to a character array 1756 /// containing the literal. This contents are exactly that of the 1757 /// given string, i.e. it will not be null terminated automatically; 1758 /// see GetAddrOfConstantCString. Note that whether the result is 1759 /// actually a pointer to an LLVM constant depends on 1760 /// Feature.WriteableStrings. 1761 /// 1762 /// The result has pointer to array type. 1763 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1764 const char *GlobalName) { 1765 bool IsConstant = !Features.WritableStrings; 1766 1767 // Get the default prefix if a name wasn't specified. 1768 if (!GlobalName) 1769 GlobalName = ".str"; 1770 1771 // Don't share any string literals if strings aren't constant. 1772 if (!IsConstant) 1773 return GenerateStringLiteral(str, false, *this, GlobalName); 1774 1775 llvm::StringMapEntry<llvm::Constant *> &Entry = 1776 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1777 1778 if (Entry.getValue()) 1779 return Entry.getValue(); 1780 1781 // Create a global variable for this. 1782 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1783 Entry.setValue(C); 1784 return C; 1785 } 1786 1787 /// GetAddrOfConstantCString - Returns a pointer to a character 1788 /// array containing the literal and a terminating '\-' 1789 /// character. The result has pointer to array type. 1790 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1791 const char *GlobalName){ 1792 return GetAddrOfConstantString(str + '\0', GlobalName); 1793 } 1794 1795 /// EmitObjCPropertyImplementations - Emit information for synthesized 1796 /// properties for an implementation. 1797 void CodeGenModule::EmitObjCPropertyImplementations(const 1798 ObjCImplementationDecl *D) { 1799 for (ObjCImplementationDecl::propimpl_iterator 1800 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1801 ObjCPropertyImplDecl *PID = *i; 1802 1803 // Dynamic is just for type-checking. 1804 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1805 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1806 1807 // Determine which methods need to be implemented, some may have 1808 // been overridden. Note that ::isSynthesized is not the method 1809 // we want, that just indicates if the decl came from a 1810 // property. What we want to know is if the method is defined in 1811 // this implementation. 1812 if (!D->getInstanceMethod(PD->getGetterName())) 1813 CodeGenFunction(*this).GenerateObjCGetter( 1814 const_cast<ObjCImplementationDecl *>(D), PID); 1815 if (!PD->isReadOnly() && 1816 !D->getInstanceMethod(PD->getSetterName())) 1817 CodeGenFunction(*this).GenerateObjCSetter( 1818 const_cast<ObjCImplementationDecl *>(D), PID); 1819 } 1820 } 1821 } 1822 1823 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1824 /// for an implementation. 1825 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1826 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1827 return; 1828 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1829 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1830 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1831 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1832 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1833 D->getLocation(), 1834 D->getLocation(), cxxSelector, 1835 getContext().VoidTy, 0, 1836 DC, true, false, true, false, 1837 ObjCMethodDecl::Required); 1838 D->addInstanceMethod(DTORMethod); 1839 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1840 1841 II = &getContext().Idents.get(".cxx_construct"); 1842 cxxSelector = getContext().Selectors.getSelector(0, &II); 1843 // The constructor returns 'self'. 1844 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1845 D->getLocation(), 1846 D->getLocation(), cxxSelector, 1847 getContext().getObjCIdType(), 0, 1848 DC, true, false, true, false, 1849 ObjCMethodDecl::Required); 1850 D->addInstanceMethod(CTORMethod); 1851 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1852 1853 1854 } 1855 1856 /// EmitNamespace - Emit all declarations in a namespace. 1857 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1858 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1859 I != E; ++I) 1860 EmitTopLevelDecl(*I); 1861 } 1862 1863 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1864 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1865 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1866 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1867 ErrorUnsupported(LSD, "linkage spec"); 1868 return; 1869 } 1870 1871 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1872 I != E; ++I) 1873 EmitTopLevelDecl(*I); 1874 } 1875 1876 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1877 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1878 // If an error has occurred, stop code generation, but continue 1879 // parsing and semantic analysis (to ensure all warnings and errors 1880 // are emitted). 1881 if (Diags.hasErrorOccurred()) 1882 return; 1883 1884 // Ignore dependent declarations. 1885 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1886 return; 1887 1888 switch (D->getKind()) { 1889 case Decl::CXXConversion: 1890 case Decl::CXXMethod: 1891 case Decl::Function: 1892 // Skip function templates 1893 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1894 return; 1895 1896 EmitGlobal(cast<FunctionDecl>(D)); 1897 break; 1898 1899 case Decl::Var: 1900 EmitGlobal(cast<VarDecl>(D)); 1901 break; 1902 1903 // C++ Decls 1904 case Decl::Namespace: 1905 EmitNamespace(cast<NamespaceDecl>(D)); 1906 break; 1907 // No code generation needed. 1908 case Decl::UsingShadow: 1909 case Decl::Using: 1910 case Decl::UsingDirective: 1911 case Decl::ClassTemplate: 1912 case Decl::FunctionTemplate: 1913 case Decl::NamespaceAlias: 1914 break; 1915 case Decl::CXXConstructor: 1916 // Skip function templates 1917 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1918 return; 1919 1920 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1921 break; 1922 case Decl::CXXDestructor: 1923 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1924 break; 1925 1926 case Decl::StaticAssert: 1927 // Nothing to do. 1928 break; 1929 1930 // Objective-C Decls 1931 1932 // Forward declarations, no (immediate) code generation. 1933 case Decl::ObjCClass: 1934 case Decl::ObjCForwardProtocol: 1935 case Decl::ObjCCategory: 1936 case Decl::ObjCInterface: 1937 break; 1938 1939 case Decl::ObjCProtocol: 1940 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1941 break; 1942 1943 case Decl::ObjCCategoryImpl: 1944 // Categories have properties but don't support synthesize so we 1945 // can ignore them here. 1946 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1947 break; 1948 1949 case Decl::ObjCImplementation: { 1950 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1951 EmitObjCPropertyImplementations(OMD); 1952 EmitObjCIvarInitializations(OMD); 1953 Runtime->GenerateClass(OMD); 1954 break; 1955 } 1956 case Decl::ObjCMethod: { 1957 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1958 // If this is not a prototype, emit the body. 1959 if (OMD->getBody()) 1960 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1961 break; 1962 } 1963 case Decl::ObjCCompatibleAlias: 1964 // compatibility-alias is a directive and has no code gen. 1965 break; 1966 1967 case Decl::LinkageSpec: 1968 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1969 break; 1970 1971 case Decl::FileScopeAsm: { 1972 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1973 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1974 1975 const std::string &S = getModule().getModuleInlineAsm(); 1976 if (S.empty()) 1977 getModule().setModuleInlineAsm(AsmString); 1978 else 1979 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1980 break; 1981 } 1982 1983 default: 1984 // Make sure we handled everything we should, every other kind is a 1985 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1986 // function. Need to recode Decl::Kind to do that easily. 1987 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1988 } 1989 } 1990 1991 /// Turns the given pointer into a constant. 1992 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 1993 const void *Ptr) { 1994 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 1995 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 1996 return llvm::ConstantInt::get(i64, PtrInt); 1997 } 1998 1999 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2000 llvm::NamedMDNode *&GlobalMetadata, 2001 GlobalDecl D, 2002 llvm::GlobalValue *Addr) { 2003 if (!GlobalMetadata) 2004 GlobalMetadata = 2005 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2006 2007 // TODO: should we report variant information for ctors/dtors? 2008 llvm::Value *Ops[] = { 2009 Addr, 2010 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2011 }; 2012 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2013 } 2014 2015 /// Emits metadata nodes associating all the global values in the 2016 /// current module with the Decls they came from. This is useful for 2017 /// projects using IR gen as a subroutine. 2018 /// 2019 /// Since there's currently no way to associate an MDNode directly 2020 /// with an llvm::GlobalValue, we create a global named metadata 2021 /// with the name 'clang.global.decl.ptrs'. 2022 void CodeGenModule::EmitDeclMetadata() { 2023 llvm::NamedMDNode *GlobalMetadata = 0; 2024 2025 // StaticLocalDeclMap 2026 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2027 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2028 I != E; ++I) { 2029 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2030 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2031 } 2032 } 2033 2034 /// Emits metadata nodes for all the local variables in the current 2035 /// function. 2036 void CodeGenFunction::EmitDeclMetadata() { 2037 if (LocalDeclMap.empty()) return; 2038 2039 llvm::LLVMContext &Context = getLLVMContext(); 2040 2041 // Find the unique metadata ID for this name. 2042 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2043 2044 llvm::NamedMDNode *GlobalMetadata = 0; 2045 2046 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2047 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2048 const Decl *D = I->first; 2049 llvm::Value *Addr = I->second; 2050 2051 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2052 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2053 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2054 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2055 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2056 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2057 } 2058 } 2059 } 2060 2061 ///@name Custom Runtime Function Interfaces 2062 ///@{ 2063 // 2064 // FIXME: These can be eliminated once we can have clients just get the required 2065 // AST nodes from the builtin tables. 2066 2067 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2068 if (BlockObjectDispose) 2069 return BlockObjectDispose; 2070 2071 // If we saw an explicit decl, use that. 2072 if (BlockObjectDisposeDecl) { 2073 return BlockObjectDispose = GetAddrOfFunction( 2074 BlockObjectDisposeDecl, 2075 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2076 } 2077 2078 // Otherwise construct the function by hand. 2079 const llvm::FunctionType *FTy; 2080 std::vector<const llvm::Type*> ArgTys; 2081 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2082 ArgTys.push_back(PtrToInt8Ty); 2083 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2084 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2085 return BlockObjectDispose = 2086 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2087 } 2088 2089 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2090 if (BlockObjectAssign) 2091 return BlockObjectAssign; 2092 2093 // If we saw an explicit decl, use that. 2094 if (BlockObjectAssignDecl) { 2095 return BlockObjectAssign = GetAddrOfFunction( 2096 BlockObjectAssignDecl, 2097 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2098 } 2099 2100 // Otherwise construct the function by hand. 2101 const llvm::FunctionType *FTy; 2102 std::vector<const llvm::Type*> ArgTys; 2103 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2104 ArgTys.push_back(PtrToInt8Ty); 2105 ArgTys.push_back(PtrToInt8Ty); 2106 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2107 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2108 return BlockObjectAssign = 2109 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2110 } 2111 2112 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2113 if (NSConcreteGlobalBlock) 2114 return NSConcreteGlobalBlock; 2115 2116 // If we saw an explicit decl, use that. 2117 if (NSConcreteGlobalBlockDecl) { 2118 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2119 NSConcreteGlobalBlockDecl, 2120 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2121 } 2122 2123 // Otherwise construct the variable by hand. 2124 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2125 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2126 } 2127 2128 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2129 if (NSConcreteStackBlock) 2130 return NSConcreteStackBlock; 2131 2132 // If we saw an explicit decl, use that. 2133 if (NSConcreteStackBlockDecl) { 2134 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2135 NSConcreteStackBlockDecl, 2136 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2137 } 2138 2139 // Otherwise construct the variable by hand. 2140 return NSConcreteStackBlock = CreateRuntimeVariable( 2141 PtrToInt8Ty, "_NSConcreteStackBlock"); 2142 } 2143 2144 ///@} 2145