1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeNVPTX.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "ConstantEmitter.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/AST/StmtVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/CodeGenOptions.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/FrontendDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ProfileSummary.h" 57 #include "llvm/ProfileData/InstrProfReader.h" 58 #include "llvm/Support/CodeGen.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/ConvertUTF.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MD5.h" 63 #include "llvm/Support/TimeProfiler.h" 64 65 using namespace clang; 66 using namespace CodeGen; 67 68 static llvm::cl::opt<bool> LimitedCoverage( 69 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 70 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 71 llvm::cl::init(false)); 72 73 static const char AnnotationSection[] = "llvm.metadata"; 74 75 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 76 switch (CGM.getTarget().getCXXABI().getKind()) { 77 case TargetCXXABI::Fuchsia: 78 case TargetCXXABI::GenericAArch64: 79 case TargetCXXABI::GenericARM: 80 case TargetCXXABI::iOS: 81 case TargetCXXABI::iOS64: 82 case TargetCXXABI::WatchOS: 83 case TargetCXXABI::GenericMIPS: 84 case TargetCXXABI::GenericItanium: 85 case TargetCXXABI::WebAssembly: 86 return CreateItaniumCXXABI(CGM); 87 case TargetCXXABI::Microsoft: 88 return CreateMicrosoftCXXABI(CGM); 89 } 90 91 llvm_unreachable("invalid C++ ABI kind"); 92 } 93 94 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 95 const PreprocessorOptions &PPO, 96 const CodeGenOptions &CGO, llvm::Module &M, 97 DiagnosticsEngine &diags, 98 CoverageSourceInfo *CoverageInfo) 99 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 100 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 101 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 102 VMContext(M.getContext()), Types(*this), VTables(*this), 103 SanitizerMD(new SanitizerMetadata(*this)) { 104 105 // Initialize the type cache. 106 llvm::LLVMContext &LLVMContext = M.getContext(); 107 VoidTy = llvm::Type::getVoidTy(LLVMContext); 108 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 109 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 110 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 111 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 112 HalfTy = llvm::Type::getHalfTy(LLVMContext); 113 FloatTy = llvm::Type::getFloatTy(LLVMContext); 114 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 115 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 116 PointerAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 118 SizeSizeInBytes = 119 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 120 IntAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 122 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 123 IntPtrTy = llvm::IntegerType::get(LLVMContext, 124 C.getTargetInfo().getMaxPointerWidth()); 125 Int8PtrTy = Int8Ty->getPointerTo(0); 126 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 127 AllocaInt8PtrTy = Int8Ty->getPointerTo( 128 M.getDataLayout().getAllocaAddrSpace()); 129 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 130 131 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 132 133 if (LangOpts.ObjC) 134 createObjCRuntime(); 135 if (LangOpts.OpenCL) 136 createOpenCLRuntime(); 137 if (LangOpts.OpenMP) 138 createOpenMPRuntime(); 139 if (LangOpts.CUDA) 140 createCUDARuntime(); 141 142 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 143 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 144 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 145 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 146 getCXXABI().getMangleContext())); 147 148 // If debug info or coverage generation is enabled, create the CGDebugInfo 149 // object. 150 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 151 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 152 DebugInfo.reset(new CGDebugInfo(*this)); 153 154 Block.GlobalUniqueCount = 0; 155 156 if (C.getLangOpts().ObjC) 157 ObjCData.reset(new ObjCEntrypoints()); 158 159 if (CodeGenOpts.hasProfileClangUse()) { 160 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 161 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 162 if (auto E = ReaderOrErr.takeError()) { 163 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 164 "Could not read profile %0: %1"); 165 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 166 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 167 << EI.message(); 168 }); 169 } else 170 PGOReader = std::move(ReaderOrErr.get()); 171 } 172 173 // If coverage mapping generation is enabled, create the 174 // CoverageMappingModuleGen object. 175 if (CodeGenOpts.CoverageMapping) 176 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 177 } 178 179 CodeGenModule::~CodeGenModule() {} 180 181 void CodeGenModule::createObjCRuntime() { 182 // This is just isGNUFamily(), but we want to force implementors of 183 // new ABIs to decide how best to do this. 184 switch (LangOpts.ObjCRuntime.getKind()) { 185 case ObjCRuntime::GNUstep: 186 case ObjCRuntime::GCC: 187 case ObjCRuntime::ObjFW: 188 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 189 return; 190 191 case ObjCRuntime::FragileMacOSX: 192 case ObjCRuntime::MacOSX: 193 case ObjCRuntime::iOS: 194 case ObjCRuntime::WatchOS: 195 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 196 return; 197 } 198 llvm_unreachable("bad runtime kind"); 199 } 200 201 void CodeGenModule::createOpenCLRuntime() { 202 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 203 } 204 205 void CodeGenModule::createOpenMPRuntime() { 206 // Select a specialized code generation class based on the target, if any. 207 // If it does not exist use the default implementation. 208 switch (getTriple().getArch()) { 209 case llvm::Triple::nvptx: 210 case llvm::Triple::nvptx64: 211 assert(getLangOpts().OpenMPIsDevice && 212 "OpenMP NVPTX is only prepared to deal with device code."); 213 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 214 break; 215 default: 216 if (LangOpts.OpenMPSimd) 217 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 218 else 219 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 220 break; 221 } 222 223 // The OpenMP-IR-Builder should eventually replace the above runtime codegens 224 // but we are not there yet so they both reside in CGModule for now and the 225 // OpenMP-IR-Builder is opt-in only. 226 if (LangOpts.OpenMPIRBuilder) { 227 OMPBuilder.reset(new llvm::OpenMPIRBuilder(TheModule)); 228 OMPBuilder->initialize(); 229 } 230 } 231 232 void CodeGenModule::createCUDARuntime() { 233 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 234 } 235 236 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 237 Replacements[Name] = C; 238 } 239 240 void CodeGenModule::applyReplacements() { 241 for (auto &I : Replacements) { 242 StringRef MangledName = I.first(); 243 llvm::Constant *Replacement = I.second; 244 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 245 if (!Entry) 246 continue; 247 auto *OldF = cast<llvm::Function>(Entry); 248 auto *NewF = dyn_cast<llvm::Function>(Replacement); 249 if (!NewF) { 250 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 251 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 252 } else { 253 auto *CE = cast<llvm::ConstantExpr>(Replacement); 254 assert(CE->getOpcode() == llvm::Instruction::BitCast || 255 CE->getOpcode() == llvm::Instruction::GetElementPtr); 256 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 257 } 258 } 259 260 // Replace old with new, but keep the old order. 261 OldF->replaceAllUsesWith(Replacement); 262 if (NewF) { 263 NewF->removeFromParent(); 264 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 265 NewF); 266 } 267 OldF->eraseFromParent(); 268 } 269 } 270 271 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 272 GlobalValReplacements.push_back(std::make_pair(GV, C)); 273 } 274 275 void CodeGenModule::applyGlobalValReplacements() { 276 for (auto &I : GlobalValReplacements) { 277 llvm::GlobalValue *GV = I.first; 278 llvm::Constant *C = I.second; 279 280 GV->replaceAllUsesWith(C); 281 GV->eraseFromParent(); 282 } 283 } 284 285 // This is only used in aliases that we created and we know they have a 286 // linear structure. 287 static const llvm::GlobalObject *getAliasedGlobal( 288 const llvm::GlobalIndirectSymbol &GIS) { 289 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 290 const llvm::Constant *C = &GIS; 291 for (;;) { 292 C = C->stripPointerCasts(); 293 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 294 return GO; 295 // stripPointerCasts will not walk over weak aliases. 296 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 297 if (!GIS2) 298 return nullptr; 299 if (!Visited.insert(GIS2).second) 300 return nullptr; 301 C = GIS2->getIndirectSymbol(); 302 } 303 } 304 305 void CodeGenModule::checkAliases() { 306 // Check if the constructed aliases are well formed. It is really unfortunate 307 // that we have to do this in CodeGen, but we only construct mangled names 308 // and aliases during codegen. 309 bool Error = false; 310 DiagnosticsEngine &Diags = getDiags(); 311 for (const GlobalDecl &GD : Aliases) { 312 const auto *D = cast<ValueDecl>(GD.getDecl()); 313 SourceLocation Location; 314 bool IsIFunc = D->hasAttr<IFuncAttr>(); 315 if (const Attr *A = D->getDefiningAttr()) 316 Location = A->getLocation(); 317 else 318 llvm_unreachable("Not an alias or ifunc?"); 319 StringRef MangledName = getMangledName(GD); 320 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 321 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 322 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 323 if (!GV) { 324 Error = true; 325 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 326 } else if (GV->isDeclaration()) { 327 Error = true; 328 Diags.Report(Location, diag::err_alias_to_undefined) 329 << IsIFunc << IsIFunc; 330 } else if (IsIFunc) { 331 // Check resolver function type. 332 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 333 GV->getType()->getPointerElementType()); 334 assert(FTy); 335 if (!FTy->getReturnType()->isPointerTy()) 336 Diags.Report(Location, diag::err_ifunc_resolver_return); 337 } 338 339 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 340 llvm::GlobalValue *AliaseeGV; 341 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 342 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 343 else 344 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 345 346 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 347 StringRef AliasSection = SA->getName(); 348 if (AliasSection != AliaseeGV->getSection()) 349 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 350 << AliasSection << IsIFunc << IsIFunc; 351 } 352 353 // We have to handle alias to weak aliases in here. LLVM itself disallows 354 // this since the object semantics would not match the IL one. For 355 // compatibility with gcc we implement it by just pointing the alias 356 // to its aliasee's aliasee. We also warn, since the user is probably 357 // expecting the link to be weak. 358 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 359 if (GA->isInterposable()) { 360 Diags.Report(Location, diag::warn_alias_to_weak_alias) 361 << GV->getName() << GA->getName() << IsIFunc; 362 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 363 GA->getIndirectSymbol(), Alias->getType()); 364 Alias->setIndirectSymbol(Aliasee); 365 } 366 } 367 } 368 if (!Error) 369 return; 370 371 for (const GlobalDecl &GD : Aliases) { 372 StringRef MangledName = getMangledName(GD); 373 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 374 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 375 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 376 Alias->eraseFromParent(); 377 } 378 } 379 380 void CodeGenModule::clear() { 381 DeferredDeclsToEmit.clear(); 382 if (OpenMPRuntime) 383 OpenMPRuntime->clear(); 384 } 385 386 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 387 StringRef MainFile) { 388 if (!hasDiagnostics()) 389 return; 390 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 391 if (MainFile.empty()) 392 MainFile = "<stdin>"; 393 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 394 } else { 395 if (Mismatched > 0) 396 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 397 398 if (Missing > 0) 399 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 400 } 401 } 402 403 void CodeGenModule::Release() { 404 EmitDeferred(); 405 EmitVTablesOpportunistically(); 406 applyGlobalValReplacements(); 407 applyReplacements(); 408 checkAliases(); 409 emitMultiVersionFunctions(); 410 EmitCXXGlobalInitFunc(); 411 EmitCXXGlobalDtorFunc(); 412 registerGlobalDtorsWithAtExit(); 413 EmitCXXThreadLocalInitFunc(); 414 if (ObjCRuntime) 415 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 416 AddGlobalCtor(ObjCInitFunction); 417 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 418 CUDARuntime) { 419 if (llvm::Function *CudaCtorFunction = 420 CUDARuntime->makeModuleCtorFunction()) 421 AddGlobalCtor(CudaCtorFunction); 422 } 423 if (OpenMPRuntime) { 424 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 425 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 426 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 427 } 428 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 429 OpenMPRuntime->clear(); 430 } 431 if (PGOReader) { 432 getModule().setProfileSummary( 433 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 434 llvm::ProfileSummary::PSK_Instr); 435 if (PGOStats.hasDiagnostics()) 436 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 437 } 438 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 439 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 440 EmitGlobalAnnotations(); 441 EmitStaticExternCAliases(); 442 EmitDeferredUnusedCoverageMappings(); 443 if (CoverageMapping) 444 CoverageMapping->emit(); 445 if (CodeGenOpts.SanitizeCfiCrossDso) { 446 CodeGenFunction(*this).EmitCfiCheckFail(); 447 CodeGenFunction(*this).EmitCfiCheckStub(); 448 } 449 emitAtAvailableLinkGuard(); 450 emitLLVMUsed(); 451 if (SanStats) 452 SanStats->finish(); 453 454 if (CodeGenOpts.Autolink && 455 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 456 EmitModuleLinkOptions(); 457 } 458 459 // On ELF we pass the dependent library specifiers directly to the linker 460 // without manipulating them. This is in contrast to other platforms where 461 // they are mapped to a specific linker option by the compiler. This 462 // difference is a result of the greater variety of ELF linkers and the fact 463 // that ELF linkers tend to handle libraries in a more complicated fashion 464 // than on other platforms. This forces us to defer handling the dependent 465 // libs to the linker. 466 // 467 // CUDA/HIP device and host libraries are different. Currently there is no 468 // way to differentiate dependent libraries for host or device. Existing 469 // usage of #pragma comment(lib, *) is intended for host libraries on 470 // Windows. Therefore emit llvm.dependent-libraries only for host. 471 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 472 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 473 for (auto *MD : ELFDependentLibraries) 474 NMD->addOperand(MD); 475 } 476 477 // Record mregparm value now so it is visible through rest of codegen. 478 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 479 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 480 CodeGenOpts.NumRegisterParameters); 481 482 if (CodeGenOpts.DwarfVersion) { 483 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 484 CodeGenOpts.DwarfVersion); 485 } 486 if (CodeGenOpts.EmitCodeView) { 487 // Indicate that we want CodeView in the metadata. 488 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 489 } 490 if (CodeGenOpts.CodeViewGHash) { 491 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 492 } 493 if (CodeGenOpts.ControlFlowGuard) { 494 // Function ID tables and checks for Control Flow Guard (cfguard=2). 495 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 496 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 497 // Function ID tables for Control Flow Guard (cfguard=1). 498 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 499 } 500 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 501 // We don't support LTO with 2 with different StrictVTablePointers 502 // FIXME: we could support it by stripping all the information introduced 503 // by StrictVTablePointers. 504 505 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 506 507 llvm::Metadata *Ops[2] = { 508 llvm::MDString::get(VMContext, "StrictVTablePointers"), 509 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 510 llvm::Type::getInt32Ty(VMContext), 1))}; 511 512 getModule().addModuleFlag(llvm::Module::Require, 513 "StrictVTablePointersRequirement", 514 llvm::MDNode::get(VMContext, Ops)); 515 } 516 if (DebugInfo) 517 // We support a single version in the linked module. The LLVM 518 // parser will drop debug info with a different version number 519 // (and warn about it, too). 520 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 521 llvm::DEBUG_METADATA_VERSION); 522 523 // We need to record the widths of enums and wchar_t, so that we can generate 524 // the correct build attributes in the ARM backend. wchar_size is also used by 525 // TargetLibraryInfo. 526 uint64_t WCharWidth = 527 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 528 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 529 530 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 531 if ( Arch == llvm::Triple::arm 532 || Arch == llvm::Triple::armeb 533 || Arch == llvm::Triple::thumb 534 || Arch == llvm::Triple::thumbeb) { 535 // The minimum width of an enum in bytes 536 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 537 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 538 } 539 540 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 541 StringRef ABIStr = Target.getABI(); 542 llvm::LLVMContext &Ctx = TheModule.getContext(); 543 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 544 llvm::MDString::get(Ctx, ABIStr)); 545 } 546 547 if (CodeGenOpts.SanitizeCfiCrossDso) { 548 // Indicate that we want cross-DSO control flow integrity checks. 549 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 550 } 551 552 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 553 getModule().addModuleFlag(llvm::Module::Override, 554 "CFI Canonical Jump Tables", 555 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 556 } 557 558 if (CodeGenOpts.CFProtectionReturn && 559 Target.checkCFProtectionReturnSupported(getDiags())) { 560 // Indicate that we want to instrument return control flow protection. 561 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 562 1); 563 } 564 565 if (CodeGenOpts.CFProtectionBranch && 566 Target.checkCFProtectionBranchSupported(getDiags())) { 567 // Indicate that we want to instrument branch control flow protection. 568 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 569 1); 570 } 571 572 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 573 // Indicate whether __nvvm_reflect should be configured to flush denormal 574 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 575 // property.) 576 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 577 CodeGenOpts.FP32DenormalMode != 578 llvm::DenormalMode::IEEE); 579 } 580 581 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 582 if (LangOpts.OpenCL) { 583 EmitOpenCLMetadata(); 584 // Emit SPIR version. 585 if (getTriple().isSPIR()) { 586 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 587 // opencl.spir.version named metadata. 588 // C++ is backwards compatible with OpenCL v2.0. 589 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 590 llvm::Metadata *SPIRVerElts[] = { 591 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 592 Int32Ty, Version / 100)), 593 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 594 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 595 llvm::NamedMDNode *SPIRVerMD = 596 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 597 llvm::LLVMContext &Ctx = TheModule.getContext(); 598 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 599 } 600 } 601 602 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 603 assert(PLevel < 3 && "Invalid PIC Level"); 604 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 605 if (Context.getLangOpts().PIE) 606 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 607 } 608 609 if (getCodeGenOpts().CodeModel.size() > 0) { 610 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 611 .Case("tiny", llvm::CodeModel::Tiny) 612 .Case("small", llvm::CodeModel::Small) 613 .Case("kernel", llvm::CodeModel::Kernel) 614 .Case("medium", llvm::CodeModel::Medium) 615 .Case("large", llvm::CodeModel::Large) 616 .Default(~0u); 617 if (CM != ~0u) { 618 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 619 getModule().setCodeModel(codeModel); 620 } 621 } 622 623 if (CodeGenOpts.NoPLT) 624 getModule().setRtLibUseGOT(); 625 626 SimplifyPersonality(); 627 628 if (getCodeGenOpts().EmitDeclMetadata) 629 EmitDeclMetadata(); 630 631 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 632 EmitCoverageFile(); 633 634 if (DebugInfo) 635 DebugInfo->finalize(); 636 637 if (getCodeGenOpts().EmitVersionIdentMetadata) 638 EmitVersionIdentMetadata(); 639 640 if (!getCodeGenOpts().RecordCommandLine.empty()) 641 EmitCommandLineMetadata(); 642 643 EmitTargetMetadata(); 644 } 645 646 void CodeGenModule::EmitOpenCLMetadata() { 647 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 648 // opencl.ocl.version named metadata node. 649 // C++ is backwards compatible with OpenCL v2.0. 650 // FIXME: We might need to add CXX version at some point too? 651 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 652 llvm::Metadata *OCLVerElts[] = { 653 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 654 Int32Ty, Version / 100)), 655 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 656 Int32Ty, (Version % 100) / 10))}; 657 llvm::NamedMDNode *OCLVerMD = 658 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 659 llvm::LLVMContext &Ctx = TheModule.getContext(); 660 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 661 } 662 663 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 664 // Make sure that this type is translated. 665 Types.UpdateCompletedType(TD); 666 } 667 668 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 669 // Make sure that this type is translated. 670 Types.RefreshTypeCacheForClass(RD); 671 } 672 673 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 674 if (!TBAA) 675 return nullptr; 676 return TBAA->getTypeInfo(QTy); 677 } 678 679 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 680 if (!TBAA) 681 return TBAAAccessInfo(); 682 return TBAA->getAccessInfo(AccessType); 683 } 684 685 TBAAAccessInfo 686 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 687 if (!TBAA) 688 return TBAAAccessInfo(); 689 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 690 } 691 692 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 693 if (!TBAA) 694 return nullptr; 695 return TBAA->getTBAAStructInfo(QTy); 696 } 697 698 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 699 if (!TBAA) 700 return nullptr; 701 return TBAA->getBaseTypeInfo(QTy); 702 } 703 704 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 705 if (!TBAA) 706 return nullptr; 707 return TBAA->getAccessTagInfo(Info); 708 } 709 710 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 711 TBAAAccessInfo TargetInfo) { 712 if (!TBAA) 713 return TBAAAccessInfo(); 714 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 715 } 716 717 TBAAAccessInfo 718 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 719 TBAAAccessInfo InfoB) { 720 if (!TBAA) 721 return TBAAAccessInfo(); 722 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 723 } 724 725 TBAAAccessInfo 726 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 727 TBAAAccessInfo SrcInfo) { 728 if (!TBAA) 729 return TBAAAccessInfo(); 730 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 731 } 732 733 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 734 TBAAAccessInfo TBAAInfo) { 735 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 736 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 737 } 738 739 void CodeGenModule::DecorateInstructionWithInvariantGroup( 740 llvm::Instruction *I, const CXXRecordDecl *RD) { 741 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 742 llvm::MDNode::get(getLLVMContext(), {})); 743 } 744 745 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 746 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 747 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 748 } 749 750 /// ErrorUnsupported - Print out an error that codegen doesn't support the 751 /// specified stmt yet. 752 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 753 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 754 "cannot compile this %0 yet"); 755 std::string Msg = Type; 756 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 757 << Msg << S->getSourceRange(); 758 } 759 760 /// ErrorUnsupported - Print out an error that codegen doesn't support the 761 /// specified decl yet. 762 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 763 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 764 "cannot compile this %0 yet"); 765 std::string Msg = Type; 766 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 767 } 768 769 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 770 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 771 } 772 773 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 774 const NamedDecl *D) const { 775 if (GV->hasDLLImportStorageClass()) 776 return; 777 // Internal definitions always have default visibility. 778 if (GV->hasLocalLinkage()) { 779 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 780 return; 781 } 782 if (!D) 783 return; 784 // Set visibility for definitions, and for declarations if requested globally 785 // or set explicitly. 786 LinkageInfo LV = D->getLinkageAndVisibility(); 787 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 788 !GV->isDeclarationForLinker()) 789 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 790 } 791 792 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 793 llvm::GlobalValue *GV) { 794 if (GV->hasLocalLinkage()) 795 return true; 796 797 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 798 return true; 799 800 // DLLImport explicitly marks the GV as external. 801 if (GV->hasDLLImportStorageClass()) 802 return false; 803 804 const llvm::Triple &TT = CGM.getTriple(); 805 if (TT.isWindowsGNUEnvironment()) { 806 // In MinGW, variables without DLLImport can still be automatically 807 // imported from a DLL by the linker; don't mark variables that 808 // potentially could come from another DLL as DSO local. 809 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 810 !GV->isThreadLocal()) 811 return false; 812 } 813 814 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 815 // remain unresolved in the link, they can be resolved to zero, which is 816 // outside the current DSO. 817 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 818 return false; 819 820 // Every other GV is local on COFF. 821 // Make an exception for windows OS in the triple: Some firmware builds use 822 // *-win32-macho triples. This (accidentally?) produced windows relocations 823 // without GOT tables in older clang versions; Keep this behaviour. 824 // FIXME: even thread local variables? 825 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 826 return true; 827 828 // Only handle COFF and ELF for now. 829 if (!TT.isOSBinFormatELF()) 830 return false; 831 832 // If this is not an executable, don't assume anything is local. 833 const auto &CGOpts = CGM.getCodeGenOpts(); 834 llvm::Reloc::Model RM = CGOpts.RelocationModel; 835 const auto &LOpts = CGM.getLangOpts(); 836 if (RM != llvm::Reloc::Static && !LOpts.PIE) 837 return false; 838 839 // A definition cannot be preempted from an executable. 840 if (!GV->isDeclarationForLinker()) 841 return true; 842 843 // Most PIC code sequences that assume that a symbol is local cannot produce a 844 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 845 // depended, it seems worth it to handle it here. 846 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 847 return false; 848 849 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 850 llvm::Triple::ArchType Arch = TT.getArch(); 851 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 852 Arch == llvm::Triple::ppc64le) 853 return false; 854 855 // If we can use copy relocations we can assume it is local. 856 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 857 if (!Var->isThreadLocal() && 858 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 859 return true; 860 861 // If we can use a plt entry as the symbol address we can assume it 862 // is local. 863 // FIXME: This should work for PIE, but the gold linker doesn't support it. 864 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 865 return true; 866 867 // Otherwise don't assue it is local. 868 return false; 869 } 870 871 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 872 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 873 } 874 875 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 876 GlobalDecl GD) const { 877 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 878 // C++ destructors have a few C++ ABI specific special cases. 879 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 880 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 881 return; 882 } 883 setDLLImportDLLExport(GV, D); 884 } 885 886 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 887 const NamedDecl *D) const { 888 if (D && D->isExternallyVisible()) { 889 if (D->hasAttr<DLLImportAttr>()) 890 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 891 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 892 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 893 } 894 } 895 896 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 897 GlobalDecl GD) const { 898 setDLLImportDLLExport(GV, GD); 899 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 900 } 901 902 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 903 const NamedDecl *D) const { 904 setDLLImportDLLExport(GV, D); 905 setGVPropertiesAux(GV, D); 906 } 907 908 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 909 const NamedDecl *D) const { 910 setGlobalVisibility(GV, D); 911 setDSOLocal(GV); 912 GV->setPartition(CodeGenOpts.SymbolPartition); 913 } 914 915 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 916 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 917 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 918 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 919 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 920 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 921 } 922 923 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 924 CodeGenOptions::TLSModel M) { 925 switch (M) { 926 case CodeGenOptions::GeneralDynamicTLSModel: 927 return llvm::GlobalVariable::GeneralDynamicTLSModel; 928 case CodeGenOptions::LocalDynamicTLSModel: 929 return llvm::GlobalVariable::LocalDynamicTLSModel; 930 case CodeGenOptions::InitialExecTLSModel: 931 return llvm::GlobalVariable::InitialExecTLSModel; 932 case CodeGenOptions::LocalExecTLSModel: 933 return llvm::GlobalVariable::LocalExecTLSModel; 934 } 935 llvm_unreachable("Invalid TLS model!"); 936 } 937 938 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 939 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 940 941 llvm::GlobalValue::ThreadLocalMode TLM; 942 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 943 944 // Override the TLS model if it is explicitly specified. 945 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 946 TLM = GetLLVMTLSModel(Attr->getModel()); 947 } 948 949 GV->setThreadLocalMode(TLM); 950 } 951 952 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 953 StringRef Name) { 954 const TargetInfo &Target = CGM.getTarget(); 955 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 956 } 957 958 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 959 const CPUSpecificAttr *Attr, 960 unsigned CPUIndex, 961 raw_ostream &Out) { 962 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 963 // supported. 964 if (Attr) 965 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 966 else if (CGM.getTarget().supportsIFunc()) 967 Out << ".resolver"; 968 } 969 970 static void AppendTargetMangling(const CodeGenModule &CGM, 971 const TargetAttr *Attr, raw_ostream &Out) { 972 if (Attr->isDefaultVersion()) 973 return; 974 975 Out << '.'; 976 const TargetInfo &Target = CGM.getTarget(); 977 ParsedTargetAttr Info = 978 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 979 // Multiversioning doesn't allow "no-${feature}", so we can 980 // only have "+" prefixes here. 981 assert(LHS.startswith("+") && RHS.startswith("+") && 982 "Features should always have a prefix."); 983 return Target.multiVersionSortPriority(LHS.substr(1)) > 984 Target.multiVersionSortPriority(RHS.substr(1)); 985 }); 986 987 bool IsFirst = true; 988 989 if (!Info.Architecture.empty()) { 990 IsFirst = false; 991 Out << "arch_" << Info.Architecture; 992 } 993 994 for (StringRef Feat : Info.Features) { 995 if (!IsFirst) 996 Out << '_'; 997 IsFirst = false; 998 Out << Feat.substr(1); 999 } 1000 } 1001 1002 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1003 const NamedDecl *ND, 1004 bool OmitMultiVersionMangling = false) { 1005 SmallString<256> Buffer; 1006 llvm::raw_svector_ostream Out(Buffer); 1007 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1008 if (MC.shouldMangleDeclName(ND)) { 1009 llvm::raw_svector_ostream Out(Buffer); 1010 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 1011 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 1012 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 1013 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 1014 else 1015 MC.mangleName(ND, Out); 1016 } else { 1017 IdentifierInfo *II = ND->getIdentifier(); 1018 assert(II && "Attempt to mangle unnamed decl."); 1019 const auto *FD = dyn_cast<FunctionDecl>(ND); 1020 1021 if (FD && 1022 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1023 llvm::raw_svector_ostream Out(Buffer); 1024 Out << "__regcall3__" << II->getName(); 1025 } else { 1026 Out << II->getName(); 1027 } 1028 } 1029 1030 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1031 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1032 switch (FD->getMultiVersionKind()) { 1033 case MultiVersionKind::CPUDispatch: 1034 case MultiVersionKind::CPUSpecific: 1035 AppendCPUSpecificCPUDispatchMangling(CGM, 1036 FD->getAttr<CPUSpecificAttr>(), 1037 GD.getMultiVersionIndex(), Out); 1038 break; 1039 case MultiVersionKind::Target: 1040 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1041 break; 1042 case MultiVersionKind::None: 1043 llvm_unreachable("None multiversion type isn't valid here"); 1044 } 1045 } 1046 1047 return Out.str(); 1048 } 1049 1050 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1051 const FunctionDecl *FD) { 1052 if (!FD->isMultiVersion()) 1053 return; 1054 1055 // Get the name of what this would be without the 'target' attribute. This 1056 // allows us to lookup the version that was emitted when this wasn't a 1057 // multiversion function. 1058 std::string NonTargetName = 1059 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1060 GlobalDecl OtherGD; 1061 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1062 assert(OtherGD.getCanonicalDecl() 1063 .getDecl() 1064 ->getAsFunction() 1065 ->isMultiVersion() && 1066 "Other GD should now be a multiversioned function"); 1067 // OtherFD is the version of this function that was mangled BEFORE 1068 // becoming a MultiVersion function. It potentially needs to be updated. 1069 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1070 .getDecl() 1071 ->getAsFunction() 1072 ->getMostRecentDecl(); 1073 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1074 // This is so that if the initial version was already the 'default' 1075 // version, we don't try to update it. 1076 if (OtherName != NonTargetName) { 1077 // Remove instead of erase, since others may have stored the StringRef 1078 // to this. 1079 const auto ExistingRecord = Manglings.find(NonTargetName); 1080 if (ExistingRecord != std::end(Manglings)) 1081 Manglings.remove(&(*ExistingRecord)); 1082 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1083 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1084 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1085 Entry->setName(OtherName); 1086 } 1087 } 1088 } 1089 1090 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1091 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1092 1093 // Some ABIs don't have constructor variants. Make sure that base and 1094 // complete constructors get mangled the same. 1095 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1096 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1097 CXXCtorType OrigCtorType = GD.getCtorType(); 1098 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1099 if (OrigCtorType == Ctor_Base) 1100 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1101 } 1102 } 1103 1104 auto FoundName = MangledDeclNames.find(CanonicalGD); 1105 if (FoundName != MangledDeclNames.end()) 1106 return FoundName->second; 1107 1108 // Keep the first result in the case of a mangling collision. 1109 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1110 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1111 1112 // Adjust kernel stub mangling as we may need to be able to differentiate 1113 // them from the kernel itself (e.g., for HIP). 1114 if (auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) 1115 if (!getLangOpts().CUDAIsDevice && FD->hasAttr<CUDAGlobalAttr>()) 1116 MangledName = getCUDARuntime().getDeviceStubName(MangledName); 1117 1118 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1119 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1120 } 1121 1122 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1123 const BlockDecl *BD) { 1124 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1125 const Decl *D = GD.getDecl(); 1126 1127 SmallString<256> Buffer; 1128 llvm::raw_svector_ostream Out(Buffer); 1129 if (!D) 1130 MangleCtx.mangleGlobalBlock(BD, 1131 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1132 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1133 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1134 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1135 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1136 else 1137 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1138 1139 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1140 return Result.first->first(); 1141 } 1142 1143 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1144 return getModule().getNamedValue(Name); 1145 } 1146 1147 /// AddGlobalCtor - Add a function to the list that will be called before 1148 /// main() runs. 1149 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1150 llvm::Constant *AssociatedData) { 1151 // FIXME: Type coercion of void()* types. 1152 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1153 } 1154 1155 /// AddGlobalDtor - Add a function to the list that will be called 1156 /// when the module is unloaded. 1157 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1158 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1159 DtorsUsingAtExit[Priority].push_back(Dtor); 1160 return; 1161 } 1162 1163 // FIXME: Type coercion of void()* types. 1164 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1165 } 1166 1167 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1168 if (Fns.empty()) return; 1169 1170 // Ctor function type is void()*. 1171 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1172 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1173 TheModule.getDataLayout().getProgramAddressSpace()); 1174 1175 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1176 llvm::StructType *CtorStructTy = llvm::StructType::get( 1177 Int32Ty, CtorPFTy, VoidPtrTy); 1178 1179 // Construct the constructor and destructor arrays. 1180 ConstantInitBuilder builder(*this); 1181 auto ctors = builder.beginArray(CtorStructTy); 1182 for (const auto &I : Fns) { 1183 auto ctor = ctors.beginStruct(CtorStructTy); 1184 ctor.addInt(Int32Ty, I.Priority); 1185 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1186 if (I.AssociatedData) 1187 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1188 else 1189 ctor.addNullPointer(VoidPtrTy); 1190 ctor.finishAndAddTo(ctors); 1191 } 1192 1193 auto list = 1194 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1195 /*constant*/ false, 1196 llvm::GlobalValue::AppendingLinkage); 1197 1198 // The LTO linker doesn't seem to like it when we set an alignment 1199 // on appending variables. Take it off as a workaround. 1200 list->setAlignment(llvm::None); 1201 1202 Fns.clear(); 1203 } 1204 1205 llvm::GlobalValue::LinkageTypes 1206 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1207 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1208 1209 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1210 1211 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1212 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1213 1214 if (isa<CXXConstructorDecl>(D) && 1215 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1216 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1217 // Our approach to inheriting constructors is fundamentally different from 1218 // that used by the MS ABI, so keep our inheriting constructor thunks 1219 // internal rather than trying to pick an unambiguous mangling for them. 1220 return llvm::GlobalValue::InternalLinkage; 1221 } 1222 1223 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1224 } 1225 1226 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1227 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1228 if (!MDS) return nullptr; 1229 1230 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1231 } 1232 1233 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1234 const CGFunctionInfo &Info, 1235 llvm::Function *F) { 1236 unsigned CallingConv; 1237 llvm::AttributeList PAL; 1238 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1239 F->setAttributes(PAL); 1240 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1241 } 1242 1243 static void removeImageAccessQualifier(std::string& TyName) { 1244 std::string ReadOnlyQual("__read_only"); 1245 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1246 if (ReadOnlyPos != std::string::npos) 1247 // "+ 1" for the space after access qualifier. 1248 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1249 else { 1250 std::string WriteOnlyQual("__write_only"); 1251 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1252 if (WriteOnlyPos != std::string::npos) 1253 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1254 else { 1255 std::string ReadWriteQual("__read_write"); 1256 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1257 if (ReadWritePos != std::string::npos) 1258 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1259 } 1260 } 1261 } 1262 1263 // Returns the address space id that should be produced to the 1264 // kernel_arg_addr_space metadata. This is always fixed to the ids 1265 // as specified in the SPIR 2.0 specification in order to differentiate 1266 // for example in clGetKernelArgInfo() implementation between the address 1267 // spaces with targets without unique mapping to the OpenCL address spaces 1268 // (basically all single AS CPUs). 1269 static unsigned ArgInfoAddressSpace(LangAS AS) { 1270 switch (AS) { 1271 case LangAS::opencl_global: return 1; 1272 case LangAS::opencl_constant: return 2; 1273 case LangAS::opencl_local: return 3; 1274 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 1275 default: 1276 return 0; // Assume private. 1277 } 1278 } 1279 1280 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1281 const FunctionDecl *FD, 1282 CodeGenFunction *CGF) { 1283 assert(((FD && CGF) || (!FD && !CGF)) && 1284 "Incorrect use - FD and CGF should either be both null or not!"); 1285 // Create MDNodes that represent the kernel arg metadata. 1286 // Each MDNode is a list in the form of "key", N number of values which is 1287 // the same number of values as their are kernel arguments. 1288 1289 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1290 1291 // MDNode for the kernel argument address space qualifiers. 1292 SmallVector<llvm::Metadata *, 8> addressQuals; 1293 1294 // MDNode for the kernel argument access qualifiers (images only). 1295 SmallVector<llvm::Metadata *, 8> accessQuals; 1296 1297 // MDNode for the kernel argument type names. 1298 SmallVector<llvm::Metadata *, 8> argTypeNames; 1299 1300 // MDNode for the kernel argument base type names. 1301 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1302 1303 // MDNode for the kernel argument type qualifiers. 1304 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1305 1306 // MDNode for the kernel argument names. 1307 SmallVector<llvm::Metadata *, 8> argNames; 1308 1309 if (FD && CGF) 1310 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1311 const ParmVarDecl *parm = FD->getParamDecl(i); 1312 QualType ty = parm->getType(); 1313 std::string typeQuals; 1314 1315 if (ty->isPointerType()) { 1316 QualType pointeeTy = ty->getPointeeType(); 1317 1318 // Get address qualifier. 1319 addressQuals.push_back( 1320 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1321 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1322 1323 // Get argument type name. 1324 std::string typeName = 1325 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1326 1327 // Turn "unsigned type" to "utype" 1328 std::string::size_type pos = typeName.find("unsigned"); 1329 if (pointeeTy.isCanonical() && pos != std::string::npos) 1330 typeName.erase(pos + 1, 8); 1331 1332 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1333 1334 std::string baseTypeName = 1335 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1336 Policy) + 1337 "*"; 1338 1339 // Turn "unsigned type" to "utype" 1340 pos = baseTypeName.find("unsigned"); 1341 if (pos != std::string::npos) 1342 baseTypeName.erase(pos + 1, 8); 1343 1344 argBaseTypeNames.push_back( 1345 llvm::MDString::get(VMContext, baseTypeName)); 1346 1347 // Get argument type qualifiers: 1348 if (ty.isRestrictQualified()) 1349 typeQuals = "restrict"; 1350 if (pointeeTy.isConstQualified() || 1351 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1352 typeQuals += typeQuals.empty() ? "const" : " const"; 1353 if (pointeeTy.isVolatileQualified()) 1354 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1355 } else { 1356 uint32_t AddrSpc = 0; 1357 bool isPipe = ty->isPipeType(); 1358 if (ty->isImageType() || isPipe) 1359 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1360 1361 addressQuals.push_back( 1362 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1363 1364 // Get argument type name. 1365 std::string typeName; 1366 if (isPipe) 1367 typeName = ty.getCanonicalType() 1368 ->castAs<PipeType>() 1369 ->getElementType() 1370 .getAsString(Policy); 1371 else 1372 typeName = ty.getUnqualifiedType().getAsString(Policy); 1373 1374 // Turn "unsigned type" to "utype" 1375 std::string::size_type pos = typeName.find("unsigned"); 1376 if (ty.isCanonical() && pos != std::string::npos) 1377 typeName.erase(pos + 1, 8); 1378 1379 std::string baseTypeName; 1380 if (isPipe) 1381 baseTypeName = ty.getCanonicalType() 1382 ->castAs<PipeType>() 1383 ->getElementType() 1384 .getCanonicalType() 1385 .getAsString(Policy); 1386 else 1387 baseTypeName = 1388 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1389 1390 // Remove access qualifiers on images 1391 // (as they are inseparable from type in clang implementation, 1392 // but OpenCL spec provides a special query to get access qualifier 1393 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1394 if (ty->isImageType()) { 1395 removeImageAccessQualifier(typeName); 1396 removeImageAccessQualifier(baseTypeName); 1397 } 1398 1399 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1400 1401 // Turn "unsigned type" to "utype" 1402 pos = baseTypeName.find("unsigned"); 1403 if (pos != std::string::npos) 1404 baseTypeName.erase(pos + 1, 8); 1405 1406 argBaseTypeNames.push_back( 1407 llvm::MDString::get(VMContext, baseTypeName)); 1408 1409 if (isPipe) 1410 typeQuals = "pipe"; 1411 } 1412 1413 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1414 1415 // Get image and pipe access qualifier: 1416 if (ty->isImageType() || ty->isPipeType()) { 1417 const Decl *PDecl = parm; 1418 if (auto *TD = dyn_cast<TypedefType>(ty)) 1419 PDecl = TD->getDecl(); 1420 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1421 if (A && A->isWriteOnly()) 1422 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1423 else if (A && A->isReadWrite()) 1424 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1425 else 1426 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1427 } else 1428 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1429 1430 // Get argument name. 1431 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1432 } 1433 1434 Fn->setMetadata("kernel_arg_addr_space", 1435 llvm::MDNode::get(VMContext, addressQuals)); 1436 Fn->setMetadata("kernel_arg_access_qual", 1437 llvm::MDNode::get(VMContext, accessQuals)); 1438 Fn->setMetadata("kernel_arg_type", 1439 llvm::MDNode::get(VMContext, argTypeNames)); 1440 Fn->setMetadata("kernel_arg_base_type", 1441 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1442 Fn->setMetadata("kernel_arg_type_qual", 1443 llvm::MDNode::get(VMContext, argTypeQuals)); 1444 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1445 Fn->setMetadata("kernel_arg_name", 1446 llvm::MDNode::get(VMContext, argNames)); 1447 } 1448 1449 /// Determines whether the language options require us to model 1450 /// unwind exceptions. We treat -fexceptions as mandating this 1451 /// except under the fragile ObjC ABI with only ObjC exceptions 1452 /// enabled. This means, for example, that C with -fexceptions 1453 /// enables this. 1454 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1455 // If exceptions are completely disabled, obviously this is false. 1456 if (!LangOpts.Exceptions) return false; 1457 1458 // If C++ exceptions are enabled, this is true. 1459 if (LangOpts.CXXExceptions) return true; 1460 1461 // If ObjC exceptions are enabled, this depends on the ABI. 1462 if (LangOpts.ObjCExceptions) { 1463 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1464 } 1465 1466 return true; 1467 } 1468 1469 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1470 const CXXMethodDecl *MD) { 1471 // Check that the type metadata can ever actually be used by a call. 1472 if (!CGM.getCodeGenOpts().LTOUnit || 1473 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1474 return false; 1475 1476 // Only functions whose address can be taken with a member function pointer 1477 // need this sort of type metadata. 1478 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1479 !isa<CXXDestructorDecl>(MD); 1480 } 1481 1482 std::vector<const CXXRecordDecl *> 1483 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1484 llvm::SetVector<const CXXRecordDecl *> MostBases; 1485 1486 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1487 CollectMostBases = [&](const CXXRecordDecl *RD) { 1488 if (RD->getNumBases() == 0) 1489 MostBases.insert(RD); 1490 for (const CXXBaseSpecifier &B : RD->bases()) 1491 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1492 }; 1493 CollectMostBases(RD); 1494 return MostBases.takeVector(); 1495 } 1496 1497 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1498 llvm::Function *F) { 1499 llvm::AttrBuilder B; 1500 1501 if (CodeGenOpts.UnwindTables) 1502 B.addAttribute(llvm::Attribute::UWTable); 1503 1504 if (!hasUnwindExceptions(LangOpts)) 1505 B.addAttribute(llvm::Attribute::NoUnwind); 1506 1507 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1508 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1509 B.addAttribute(llvm::Attribute::StackProtect); 1510 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1511 B.addAttribute(llvm::Attribute::StackProtectStrong); 1512 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1513 B.addAttribute(llvm::Attribute::StackProtectReq); 1514 } 1515 1516 if (!D) { 1517 // If we don't have a declaration to control inlining, the function isn't 1518 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1519 // disabled, mark the function as noinline. 1520 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1521 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1522 B.addAttribute(llvm::Attribute::NoInline); 1523 1524 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1525 return; 1526 } 1527 1528 // Track whether we need to add the optnone LLVM attribute, 1529 // starting with the default for this optimization level. 1530 bool ShouldAddOptNone = 1531 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1532 // We can't add optnone in the following cases, it won't pass the verifier. 1533 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1534 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1535 1536 // Add optnone, but do so only if the function isn't always_inline. 1537 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1538 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1539 B.addAttribute(llvm::Attribute::OptimizeNone); 1540 1541 // OptimizeNone implies noinline; we should not be inlining such functions. 1542 B.addAttribute(llvm::Attribute::NoInline); 1543 1544 // We still need to handle naked functions even though optnone subsumes 1545 // much of their semantics. 1546 if (D->hasAttr<NakedAttr>()) 1547 B.addAttribute(llvm::Attribute::Naked); 1548 1549 // OptimizeNone wins over OptimizeForSize and MinSize. 1550 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1551 F->removeFnAttr(llvm::Attribute::MinSize); 1552 } else if (D->hasAttr<NakedAttr>()) { 1553 // Naked implies noinline: we should not be inlining such functions. 1554 B.addAttribute(llvm::Attribute::Naked); 1555 B.addAttribute(llvm::Attribute::NoInline); 1556 } else if (D->hasAttr<NoDuplicateAttr>()) { 1557 B.addAttribute(llvm::Attribute::NoDuplicate); 1558 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1559 // Add noinline if the function isn't always_inline. 1560 B.addAttribute(llvm::Attribute::NoInline); 1561 } else if (D->hasAttr<AlwaysInlineAttr>() && 1562 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1563 // (noinline wins over always_inline, and we can't specify both in IR) 1564 B.addAttribute(llvm::Attribute::AlwaysInline); 1565 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1566 // If we're not inlining, then force everything that isn't always_inline to 1567 // carry an explicit noinline attribute. 1568 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1569 B.addAttribute(llvm::Attribute::NoInline); 1570 } else { 1571 // Otherwise, propagate the inline hint attribute and potentially use its 1572 // absence to mark things as noinline. 1573 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1574 // Search function and template pattern redeclarations for inline. 1575 auto CheckForInline = [](const FunctionDecl *FD) { 1576 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1577 return Redecl->isInlineSpecified(); 1578 }; 1579 if (any_of(FD->redecls(), CheckRedeclForInline)) 1580 return true; 1581 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1582 if (!Pattern) 1583 return false; 1584 return any_of(Pattern->redecls(), CheckRedeclForInline); 1585 }; 1586 if (CheckForInline(FD)) { 1587 B.addAttribute(llvm::Attribute::InlineHint); 1588 } else if (CodeGenOpts.getInlining() == 1589 CodeGenOptions::OnlyHintInlining && 1590 !FD->isInlined() && 1591 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1592 B.addAttribute(llvm::Attribute::NoInline); 1593 } 1594 } 1595 } 1596 1597 // Add other optimization related attributes if we are optimizing this 1598 // function. 1599 if (!D->hasAttr<OptimizeNoneAttr>()) { 1600 if (D->hasAttr<ColdAttr>()) { 1601 if (!ShouldAddOptNone) 1602 B.addAttribute(llvm::Attribute::OptimizeForSize); 1603 B.addAttribute(llvm::Attribute::Cold); 1604 } 1605 1606 if (D->hasAttr<MinSizeAttr>()) 1607 B.addAttribute(llvm::Attribute::MinSize); 1608 } 1609 1610 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1611 1612 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1613 if (alignment) 1614 F->setAlignment(llvm::Align(alignment)); 1615 1616 if (!D->hasAttr<AlignedAttr>()) 1617 if (LangOpts.FunctionAlignment) 1618 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1619 1620 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1621 // reserve a bit for differentiating between virtual and non-virtual member 1622 // functions. If the current target's C++ ABI requires this and this is a 1623 // member function, set its alignment accordingly. 1624 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1625 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1626 F->setAlignment(llvm::Align(2)); 1627 } 1628 1629 // In the cross-dso CFI mode with canonical jump tables, we want !type 1630 // attributes on definitions only. 1631 if (CodeGenOpts.SanitizeCfiCrossDso && 1632 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1633 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1634 // Skip available_externally functions. They won't be codegen'ed in the 1635 // current module anyway. 1636 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1637 CreateFunctionTypeMetadataForIcall(FD, F); 1638 } 1639 } 1640 1641 // Emit type metadata on member functions for member function pointer checks. 1642 // These are only ever necessary on definitions; we're guaranteed that the 1643 // definition will be present in the LTO unit as a result of LTO visibility. 1644 auto *MD = dyn_cast<CXXMethodDecl>(D); 1645 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1646 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1647 llvm::Metadata *Id = 1648 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1649 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1650 F->addTypeMetadata(0, Id); 1651 } 1652 } 1653 } 1654 1655 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1656 const Decl *D = GD.getDecl(); 1657 if (dyn_cast_or_null<NamedDecl>(D)) 1658 setGVProperties(GV, GD); 1659 else 1660 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1661 1662 if (D && D->hasAttr<UsedAttr>()) 1663 addUsedGlobal(GV); 1664 1665 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1666 const auto *VD = cast<VarDecl>(D); 1667 if (VD->getType().isConstQualified() && 1668 VD->getStorageDuration() == SD_Static) 1669 addUsedGlobal(GV); 1670 } 1671 } 1672 1673 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1674 llvm::AttrBuilder &Attrs) { 1675 // Add target-cpu and target-features attributes to functions. If 1676 // we have a decl for the function and it has a target attribute then 1677 // parse that and add it to the feature set. 1678 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1679 std::vector<std::string> Features; 1680 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1681 FD = FD ? FD->getMostRecentDecl() : FD; 1682 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1683 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1684 bool AddedAttr = false; 1685 if (TD || SD) { 1686 llvm::StringMap<bool> FeatureMap; 1687 getContext().getFunctionFeatureMap(FeatureMap, GD); 1688 1689 // Produce the canonical string for this set of features. 1690 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1691 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1692 1693 // Now add the target-cpu and target-features to the function. 1694 // While we populated the feature map above, we still need to 1695 // get and parse the target attribute so we can get the cpu for 1696 // the function. 1697 if (TD) { 1698 ParsedTargetAttr ParsedAttr = TD->parse(); 1699 if (ParsedAttr.Architecture != "" && 1700 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1701 TargetCPU = ParsedAttr.Architecture; 1702 } 1703 } else { 1704 // Otherwise just add the existing target cpu and target features to the 1705 // function. 1706 Features = getTarget().getTargetOpts().Features; 1707 } 1708 1709 if (TargetCPU != "") { 1710 Attrs.addAttribute("target-cpu", TargetCPU); 1711 AddedAttr = true; 1712 } 1713 if (!Features.empty()) { 1714 llvm::sort(Features); 1715 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1716 AddedAttr = true; 1717 } 1718 1719 return AddedAttr; 1720 } 1721 1722 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1723 llvm::GlobalObject *GO) { 1724 const Decl *D = GD.getDecl(); 1725 SetCommonAttributes(GD, GO); 1726 1727 if (D) { 1728 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1729 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1730 GV->addAttribute("bss-section", SA->getName()); 1731 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1732 GV->addAttribute("data-section", SA->getName()); 1733 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1734 GV->addAttribute("rodata-section", SA->getName()); 1735 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1736 GV->addAttribute("relro-section", SA->getName()); 1737 } 1738 1739 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1740 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1741 if (!D->getAttr<SectionAttr>()) 1742 F->addFnAttr("implicit-section-name", SA->getName()); 1743 1744 llvm::AttrBuilder Attrs; 1745 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1746 // We know that GetCPUAndFeaturesAttributes will always have the 1747 // newest set, since it has the newest possible FunctionDecl, so the 1748 // new ones should replace the old. 1749 F->removeFnAttr("target-cpu"); 1750 F->removeFnAttr("target-features"); 1751 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1752 } 1753 } 1754 1755 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1756 GO->setSection(CSA->getName()); 1757 else if (const auto *SA = D->getAttr<SectionAttr>()) 1758 GO->setSection(SA->getName()); 1759 } 1760 1761 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1762 } 1763 1764 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1765 llvm::Function *F, 1766 const CGFunctionInfo &FI) { 1767 const Decl *D = GD.getDecl(); 1768 SetLLVMFunctionAttributes(GD, FI, F); 1769 SetLLVMFunctionAttributesForDefinition(D, F); 1770 1771 F->setLinkage(llvm::Function::InternalLinkage); 1772 1773 setNonAliasAttributes(GD, F); 1774 } 1775 1776 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1777 // Set linkage and visibility in case we never see a definition. 1778 LinkageInfo LV = ND->getLinkageAndVisibility(); 1779 // Don't set internal linkage on declarations. 1780 // "extern_weak" is overloaded in LLVM; we probably should have 1781 // separate linkage types for this. 1782 if (isExternallyVisible(LV.getLinkage()) && 1783 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1784 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1785 } 1786 1787 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1788 llvm::Function *F) { 1789 // Only if we are checking indirect calls. 1790 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1791 return; 1792 1793 // Non-static class methods are handled via vtable or member function pointer 1794 // checks elsewhere. 1795 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1796 return; 1797 1798 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1799 F->addTypeMetadata(0, MD); 1800 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1801 1802 // Emit a hash-based bit set entry for cross-DSO calls. 1803 if (CodeGenOpts.SanitizeCfiCrossDso) 1804 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1805 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1806 } 1807 1808 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1809 bool IsIncompleteFunction, 1810 bool IsThunk) { 1811 1812 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1813 // If this is an intrinsic function, set the function's attributes 1814 // to the intrinsic's attributes. 1815 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1816 return; 1817 } 1818 1819 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1820 1821 if (!IsIncompleteFunction) 1822 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1823 1824 // Add the Returned attribute for "this", except for iOS 5 and earlier 1825 // where substantial code, including the libstdc++ dylib, was compiled with 1826 // GCC and does not actually return "this". 1827 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1828 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1829 assert(!F->arg_empty() && 1830 F->arg_begin()->getType() 1831 ->canLosslesslyBitCastTo(F->getReturnType()) && 1832 "unexpected this return"); 1833 F->addAttribute(1, llvm::Attribute::Returned); 1834 } 1835 1836 // Only a few attributes are set on declarations; these may later be 1837 // overridden by a definition. 1838 1839 setLinkageForGV(F, FD); 1840 setGVProperties(F, FD); 1841 1842 // Setup target-specific attributes. 1843 if (!IsIncompleteFunction && F->isDeclaration()) 1844 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1845 1846 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1847 F->setSection(CSA->getName()); 1848 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1849 F->setSection(SA->getName()); 1850 1851 if (FD->isInlineBuiltinDeclaration()) { 1852 F->addAttribute(llvm::AttributeList::FunctionIndex, 1853 llvm::Attribute::NoBuiltin); 1854 } 1855 1856 if (FD->isReplaceableGlobalAllocationFunction()) { 1857 // A replaceable global allocation function does not act like a builtin by 1858 // default, only if it is invoked by a new-expression or delete-expression. 1859 F->addAttribute(llvm::AttributeList::FunctionIndex, 1860 llvm::Attribute::NoBuiltin); 1861 1862 // A sane operator new returns a non-aliasing pointer. 1863 // FIXME: Also add NonNull attribute to the return value 1864 // for the non-nothrow forms? 1865 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1866 if (getCodeGenOpts().AssumeSaneOperatorNew && 1867 (Kind == OO_New || Kind == OO_Array_New)) 1868 F->addAttribute(llvm::AttributeList::ReturnIndex, 1869 llvm::Attribute::NoAlias); 1870 } 1871 1872 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1873 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1874 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1875 if (MD->isVirtual()) 1876 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1877 1878 // Don't emit entries for function declarations in the cross-DSO mode. This 1879 // is handled with better precision by the receiving DSO. But if jump tables 1880 // are non-canonical then we need type metadata in order to produce the local 1881 // jump table. 1882 if (!CodeGenOpts.SanitizeCfiCrossDso || 1883 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1884 CreateFunctionTypeMetadataForIcall(FD, F); 1885 1886 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1887 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1888 1889 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 1890 // Annotate the callback behavior as metadata: 1891 // - The callback callee (as argument number). 1892 // - The callback payloads (as argument numbers). 1893 llvm::LLVMContext &Ctx = F->getContext(); 1894 llvm::MDBuilder MDB(Ctx); 1895 1896 // The payload indices are all but the first one in the encoding. The first 1897 // identifies the callback callee. 1898 int CalleeIdx = *CB->encoding_begin(); 1899 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 1900 F->addMetadata(llvm::LLVMContext::MD_callback, 1901 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 1902 CalleeIdx, PayloadIndices, 1903 /* VarArgsArePassed */ false)})); 1904 } 1905 } 1906 1907 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1908 assert(!GV->isDeclaration() && 1909 "Only globals with definition can force usage."); 1910 LLVMUsed.emplace_back(GV); 1911 } 1912 1913 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1914 assert(!GV->isDeclaration() && 1915 "Only globals with definition can force usage."); 1916 LLVMCompilerUsed.emplace_back(GV); 1917 } 1918 1919 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1920 std::vector<llvm::WeakTrackingVH> &List) { 1921 // Don't create llvm.used if there is no need. 1922 if (List.empty()) 1923 return; 1924 1925 // Convert List to what ConstantArray needs. 1926 SmallVector<llvm::Constant*, 8> UsedArray; 1927 UsedArray.resize(List.size()); 1928 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1929 UsedArray[i] = 1930 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1931 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1932 } 1933 1934 if (UsedArray.empty()) 1935 return; 1936 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1937 1938 auto *GV = new llvm::GlobalVariable( 1939 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1940 llvm::ConstantArray::get(ATy, UsedArray), Name); 1941 1942 GV->setSection("llvm.metadata"); 1943 } 1944 1945 void CodeGenModule::emitLLVMUsed() { 1946 emitUsed(*this, "llvm.used", LLVMUsed); 1947 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1948 } 1949 1950 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1951 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1952 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1953 } 1954 1955 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1956 llvm::SmallString<32> Opt; 1957 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1958 if (Opt.empty()) 1959 return; 1960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1962 } 1963 1964 void CodeGenModule::AddDependentLib(StringRef Lib) { 1965 auto &C = getLLVMContext(); 1966 if (getTarget().getTriple().isOSBinFormatELF()) { 1967 ELFDependentLibraries.push_back( 1968 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 1969 return; 1970 } 1971 1972 llvm::SmallString<24> Opt; 1973 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1974 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1975 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 1976 } 1977 1978 /// Add link options implied by the given module, including modules 1979 /// it depends on, using a postorder walk. 1980 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1981 SmallVectorImpl<llvm::MDNode *> &Metadata, 1982 llvm::SmallPtrSet<Module *, 16> &Visited) { 1983 // Import this module's parent. 1984 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1985 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1986 } 1987 1988 // Import this module's dependencies. 1989 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1990 if (Visited.insert(Mod->Imports[I - 1]).second) 1991 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1992 } 1993 1994 // Add linker options to link against the libraries/frameworks 1995 // described by this module. 1996 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1997 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 1998 1999 // For modules that use export_as for linking, use that module 2000 // name instead. 2001 if (Mod->UseExportAsModuleLinkName) 2002 return; 2003 2004 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2005 // Link against a framework. Frameworks are currently Darwin only, so we 2006 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2007 if (Mod->LinkLibraries[I-1].IsFramework) { 2008 llvm::Metadata *Args[2] = { 2009 llvm::MDString::get(Context, "-framework"), 2010 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2011 2012 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2013 continue; 2014 } 2015 2016 // Link against a library. 2017 if (IsELF) { 2018 llvm::Metadata *Args[2] = { 2019 llvm::MDString::get(Context, "lib"), 2020 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2021 }; 2022 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2023 } else { 2024 llvm::SmallString<24> Opt; 2025 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2026 Mod->LinkLibraries[I - 1].Library, Opt); 2027 auto *OptString = llvm::MDString::get(Context, Opt); 2028 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2029 } 2030 } 2031 } 2032 2033 void CodeGenModule::EmitModuleLinkOptions() { 2034 // Collect the set of all of the modules we want to visit to emit link 2035 // options, which is essentially the imported modules and all of their 2036 // non-explicit child modules. 2037 llvm::SetVector<clang::Module *> LinkModules; 2038 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2039 SmallVector<clang::Module *, 16> Stack; 2040 2041 // Seed the stack with imported modules. 2042 for (Module *M : ImportedModules) { 2043 // Do not add any link flags when an implementation TU of a module imports 2044 // a header of that same module. 2045 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2046 !getLangOpts().isCompilingModule()) 2047 continue; 2048 if (Visited.insert(M).second) 2049 Stack.push_back(M); 2050 } 2051 2052 // Find all of the modules to import, making a little effort to prune 2053 // non-leaf modules. 2054 while (!Stack.empty()) { 2055 clang::Module *Mod = Stack.pop_back_val(); 2056 2057 bool AnyChildren = false; 2058 2059 // Visit the submodules of this module. 2060 for (const auto &SM : Mod->submodules()) { 2061 // Skip explicit children; they need to be explicitly imported to be 2062 // linked against. 2063 if (SM->IsExplicit) 2064 continue; 2065 2066 if (Visited.insert(SM).second) { 2067 Stack.push_back(SM); 2068 AnyChildren = true; 2069 } 2070 } 2071 2072 // We didn't find any children, so add this module to the list of 2073 // modules to link against. 2074 if (!AnyChildren) { 2075 LinkModules.insert(Mod); 2076 } 2077 } 2078 2079 // Add link options for all of the imported modules in reverse topological 2080 // order. We don't do anything to try to order import link flags with respect 2081 // to linker options inserted by things like #pragma comment(). 2082 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2083 Visited.clear(); 2084 for (Module *M : LinkModules) 2085 if (Visited.insert(M).second) 2086 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2087 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2088 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2089 2090 // Add the linker options metadata flag. 2091 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2092 for (auto *MD : LinkerOptionsMetadata) 2093 NMD->addOperand(MD); 2094 } 2095 2096 void CodeGenModule::EmitDeferred() { 2097 // Emit deferred declare target declarations. 2098 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2099 getOpenMPRuntime().emitDeferredTargetDecls(); 2100 2101 // Emit code for any potentially referenced deferred decls. Since a 2102 // previously unused static decl may become used during the generation of code 2103 // for a static function, iterate until no changes are made. 2104 2105 if (!DeferredVTables.empty()) { 2106 EmitDeferredVTables(); 2107 2108 // Emitting a vtable doesn't directly cause more vtables to 2109 // become deferred, although it can cause functions to be 2110 // emitted that then need those vtables. 2111 assert(DeferredVTables.empty()); 2112 } 2113 2114 // Stop if we're out of both deferred vtables and deferred declarations. 2115 if (DeferredDeclsToEmit.empty()) 2116 return; 2117 2118 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2119 // work, it will not interfere with this. 2120 std::vector<GlobalDecl> CurDeclsToEmit; 2121 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2122 2123 for (GlobalDecl &D : CurDeclsToEmit) { 2124 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2125 // to get GlobalValue with exactly the type we need, not something that 2126 // might had been created for another decl with the same mangled name but 2127 // different type. 2128 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2129 GetAddrOfGlobal(D, ForDefinition)); 2130 2131 // In case of different address spaces, we may still get a cast, even with 2132 // IsForDefinition equal to true. Query mangled names table to get 2133 // GlobalValue. 2134 if (!GV) 2135 GV = GetGlobalValue(getMangledName(D)); 2136 2137 // Make sure GetGlobalValue returned non-null. 2138 assert(GV); 2139 2140 // Check to see if we've already emitted this. This is necessary 2141 // for a couple of reasons: first, decls can end up in the 2142 // deferred-decls queue multiple times, and second, decls can end 2143 // up with definitions in unusual ways (e.g. by an extern inline 2144 // function acquiring a strong function redefinition). Just 2145 // ignore these cases. 2146 if (!GV->isDeclaration()) 2147 continue; 2148 2149 // If this is OpenMP, check if it is legal to emit this global normally. 2150 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2151 continue; 2152 2153 // Otherwise, emit the definition and move on to the next one. 2154 EmitGlobalDefinition(D, GV); 2155 2156 // If we found out that we need to emit more decls, do that recursively. 2157 // This has the advantage that the decls are emitted in a DFS and related 2158 // ones are close together, which is convenient for testing. 2159 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2160 EmitDeferred(); 2161 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2162 } 2163 } 2164 } 2165 2166 void CodeGenModule::EmitVTablesOpportunistically() { 2167 // Try to emit external vtables as available_externally if they have emitted 2168 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2169 // is not allowed to create new references to things that need to be emitted 2170 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2171 2172 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2173 && "Only emit opportunistic vtables with optimizations"); 2174 2175 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2176 assert(getVTables().isVTableExternal(RD) && 2177 "This queue should only contain external vtables"); 2178 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2179 VTables.GenerateClassData(RD); 2180 } 2181 OpportunisticVTables.clear(); 2182 } 2183 2184 void CodeGenModule::EmitGlobalAnnotations() { 2185 if (Annotations.empty()) 2186 return; 2187 2188 // Create a new global variable for the ConstantStruct in the Module. 2189 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2190 Annotations[0]->getType(), Annotations.size()), Annotations); 2191 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2192 llvm::GlobalValue::AppendingLinkage, 2193 Array, "llvm.global.annotations"); 2194 gv->setSection(AnnotationSection); 2195 } 2196 2197 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2198 llvm::Constant *&AStr = AnnotationStrings[Str]; 2199 if (AStr) 2200 return AStr; 2201 2202 // Not found yet, create a new global. 2203 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2204 auto *gv = 2205 new llvm::GlobalVariable(getModule(), s->getType(), true, 2206 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2207 gv->setSection(AnnotationSection); 2208 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2209 AStr = gv; 2210 return gv; 2211 } 2212 2213 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2214 SourceManager &SM = getContext().getSourceManager(); 2215 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2216 if (PLoc.isValid()) 2217 return EmitAnnotationString(PLoc.getFilename()); 2218 return EmitAnnotationString(SM.getBufferName(Loc)); 2219 } 2220 2221 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2222 SourceManager &SM = getContext().getSourceManager(); 2223 PresumedLoc PLoc = SM.getPresumedLoc(L); 2224 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2225 SM.getExpansionLineNumber(L); 2226 return llvm::ConstantInt::get(Int32Ty, LineNo); 2227 } 2228 2229 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2230 const AnnotateAttr *AA, 2231 SourceLocation L) { 2232 // Get the globals for file name, annotation, and the line number. 2233 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2234 *UnitGV = EmitAnnotationUnit(L), 2235 *LineNoCst = EmitAnnotationLineNo(L); 2236 2237 llvm::Constant *ASZeroGV = GV; 2238 if (GV->getAddressSpace() != 0) { 2239 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2240 GV, GV->getValueType()->getPointerTo(0)); 2241 } 2242 2243 // Create the ConstantStruct for the global annotation. 2244 llvm::Constant *Fields[4] = { 2245 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2246 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2247 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2248 LineNoCst 2249 }; 2250 return llvm::ConstantStruct::getAnon(Fields); 2251 } 2252 2253 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2254 llvm::GlobalValue *GV) { 2255 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2256 // Get the struct elements for these annotations. 2257 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2258 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2259 } 2260 2261 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2262 llvm::Function *Fn, 2263 SourceLocation Loc) const { 2264 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2265 // Blacklist by function name. 2266 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2267 return true; 2268 // Blacklist by location. 2269 if (Loc.isValid()) 2270 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2271 // If location is unknown, this may be a compiler-generated function. Assume 2272 // it's located in the main file. 2273 auto &SM = Context.getSourceManager(); 2274 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2275 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2276 } 2277 return false; 2278 } 2279 2280 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2281 SourceLocation Loc, QualType Ty, 2282 StringRef Category) const { 2283 // For now globals can be blacklisted only in ASan and KASan. 2284 const SanitizerMask EnabledAsanMask = 2285 LangOpts.Sanitize.Mask & 2286 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2287 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2288 SanitizerKind::MemTag); 2289 if (!EnabledAsanMask) 2290 return false; 2291 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2292 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2293 return true; 2294 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2295 return true; 2296 // Check global type. 2297 if (!Ty.isNull()) { 2298 // Drill down the array types: if global variable of a fixed type is 2299 // blacklisted, we also don't instrument arrays of them. 2300 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2301 Ty = AT->getElementType(); 2302 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2303 // We allow to blacklist only record types (classes, structs etc.) 2304 if (Ty->isRecordType()) { 2305 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2306 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2307 return true; 2308 } 2309 } 2310 return false; 2311 } 2312 2313 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2314 StringRef Category) const { 2315 const auto &XRayFilter = getContext().getXRayFilter(); 2316 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2317 auto Attr = ImbueAttr::NONE; 2318 if (Loc.isValid()) 2319 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2320 if (Attr == ImbueAttr::NONE) 2321 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2322 switch (Attr) { 2323 case ImbueAttr::NONE: 2324 return false; 2325 case ImbueAttr::ALWAYS: 2326 Fn->addFnAttr("function-instrument", "xray-always"); 2327 break; 2328 case ImbueAttr::ALWAYS_ARG1: 2329 Fn->addFnAttr("function-instrument", "xray-always"); 2330 Fn->addFnAttr("xray-log-args", "1"); 2331 break; 2332 case ImbueAttr::NEVER: 2333 Fn->addFnAttr("function-instrument", "xray-never"); 2334 break; 2335 } 2336 return true; 2337 } 2338 2339 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2340 // Never defer when EmitAllDecls is specified. 2341 if (LangOpts.EmitAllDecls) 2342 return true; 2343 2344 if (CodeGenOpts.KeepStaticConsts) { 2345 const auto *VD = dyn_cast<VarDecl>(Global); 2346 if (VD && VD->getType().isConstQualified() && 2347 VD->getStorageDuration() == SD_Static) 2348 return true; 2349 } 2350 2351 return getContext().DeclMustBeEmitted(Global); 2352 } 2353 2354 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2355 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2356 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2357 // Implicit template instantiations may change linkage if they are later 2358 // explicitly instantiated, so they should not be emitted eagerly. 2359 return false; 2360 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2361 // not emit them eagerly unless we sure that the function must be emitted on 2362 // the host. 2363 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2364 !LangOpts.OpenMPIsDevice && 2365 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2366 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2367 return false; 2368 } 2369 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2370 if (Context.getInlineVariableDefinitionKind(VD) == 2371 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2372 // A definition of an inline constexpr static data member may change 2373 // linkage later if it's redeclared outside the class. 2374 return false; 2375 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2376 // codegen for global variables, because they may be marked as threadprivate. 2377 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2378 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2379 !isTypeConstant(Global->getType(), false) && 2380 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2381 return false; 2382 2383 return true; 2384 } 2385 2386 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2387 const CXXUuidofExpr* E) { 2388 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2389 // well-formed. 2390 StringRef Uuid = E->getUuidStr(); 2391 std::string Name = "_GUID_" + Uuid.lower(); 2392 std::replace(Name.begin(), Name.end(), '-', '_'); 2393 2394 // The UUID descriptor should be pointer aligned. 2395 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2396 2397 // Look for an existing global. 2398 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2399 return ConstantAddress(GV, Alignment); 2400 2401 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2402 assert(Init && "failed to initialize as constant"); 2403 2404 auto *GV = new llvm::GlobalVariable( 2405 getModule(), Init->getType(), 2406 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2407 if (supportsCOMDAT()) 2408 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2409 setDSOLocal(GV); 2410 return ConstantAddress(GV, Alignment); 2411 } 2412 2413 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2414 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2415 assert(AA && "No alias?"); 2416 2417 CharUnits Alignment = getContext().getDeclAlign(VD); 2418 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2419 2420 // See if there is already something with the target's name in the module. 2421 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2422 if (Entry) { 2423 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2424 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2425 return ConstantAddress(Ptr, Alignment); 2426 } 2427 2428 llvm::Constant *Aliasee; 2429 if (isa<llvm::FunctionType>(DeclTy)) 2430 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2431 GlobalDecl(cast<FunctionDecl>(VD)), 2432 /*ForVTable=*/false); 2433 else 2434 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2435 llvm::PointerType::getUnqual(DeclTy), 2436 nullptr); 2437 2438 auto *F = cast<llvm::GlobalValue>(Aliasee); 2439 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2440 WeakRefReferences.insert(F); 2441 2442 return ConstantAddress(Aliasee, Alignment); 2443 } 2444 2445 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2446 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2447 2448 // Weak references don't produce any output by themselves. 2449 if (Global->hasAttr<WeakRefAttr>()) 2450 return; 2451 2452 // If this is an alias definition (which otherwise looks like a declaration) 2453 // emit it now. 2454 if (Global->hasAttr<AliasAttr>()) 2455 return EmitAliasDefinition(GD); 2456 2457 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2458 if (Global->hasAttr<IFuncAttr>()) 2459 return emitIFuncDefinition(GD); 2460 2461 // If this is a cpu_dispatch multiversion function, emit the resolver. 2462 if (Global->hasAttr<CPUDispatchAttr>()) 2463 return emitCPUDispatchDefinition(GD); 2464 2465 // If this is CUDA, be selective about which declarations we emit. 2466 if (LangOpts.CUDA) { 2467 if (LangOpts.CUDAIsDevice) { 2468 if (!Global->hasAttr<CUDADeviceAttr>() && 2469 !Global->hasAttr<CUDAGlobalAttr>() && 2470 !Global->hasAttr<CUDAConstantAttr>() && 2471 !Global->hasAttr<CUDASharedAttr>() && 2472 !(LangOpts.HIP && Global->hasAttr<HIPPinnedShadowAttr>())) 2473 return; 2474 } else { 2475 // We need to emit host-side 'shadows' for all global 2476 // device-side variables because the CUDA runtime needs their 2477 // size and host-side address in order to provide access to 2478 // their device-side incarnations. 2479 2480 // So device-only functions are the only things we skip. 2481 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2482 Global->hasAttr<CUDADeviceAttr>()) 2483 return; 2484 2485 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2486 "Expected Variable or Function"); 2487 } 2488 } 2489 2490 if (LangOpts.OpenMP) { 2491 // If this is OpenMP, check if it is legal to emit this global normally. 2492 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2493 return; 2494 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2495 if (MustBeEmitted(Global)) 2496 EmitOMPDeclareReduction(DRD); 2497 return; 2498 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2499 if (MustBeEmitted(Global)) 2500 EmitOMPDeclareMapper(DMD); 2501 return; 2502 } 2503 } 2504 2505 // Ignore declarations, they will be emitted on their first use. 2506 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2507 // Forward declarations are emitted lazily on first use. 2508 if (!FD->doesThisDeclarationHaveABody()) { 2509 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2510 return; 2511 2512 StringRef MangledName = getMangledName(GD); 2513 2514 // Compute the function info and LLVM type. 2515 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2516 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2517 2518 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2519 /*DontDefer=*/false); 2520 return; 2521 } 2522 } else { 2523 const auto *VD = cast<VarDecl>(Global); 2524 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2525 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2526 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2527 if (LangOpts.OpenMP) { 2528 // Emit declaration of the must-be-emitted declare target variable. 2529 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2530 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2531 bool UnifiedMemoryEnabled = 2532 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2533 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2534 !UnifiedMemoryEnabled) { 2535 (void)GetAddrOfGlobalVar(VD); 2536 } else { 2537 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2538 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2539 UnifiedMemoryEnabled)) && 2540 "Link clause or to clause with unified memory expected."); 2541 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2542 } 2543 2544 return; 2545 } 2546 } 2547 // If this declaration may have caused an inline variable definition to 2548 // change linkage, make sure that it's emitted. 2549 if (Context.getInlineVariableDefinitionKind(VD) == 2550 ASTContext::InlineVariableDefinitionKind::Strong) 2551 GetAddrOfGlobalVar(VD); 2552 return; 2553 } 2554 } 2555 2556 // Defer code generation to first use when possible, e.g. if this is an inline 2557 // function. If the global must always be emitted, do it eagerly if possible 2558 // to benefit from cache locality. 2559 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2560 // Emit the definition if it can't be deferred. 2561 EmitGlobalDefinition(GD); 2562 return; 2563 } 2564 2565 // Check if this must be emitted as declare variant. 2566 if (LangOpts.OpenMP && isa<FunctionDecl>(Global) && OpenMPRuntime && 2567 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/false)) 2568 return; 2569 2570 // If we're deferring emission of a C++ variable with an 2571 // initializer, remember the order in which it appeared in the file. 2572 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2573 cast<VarDecl>(Global)->hasInit()) { 2574 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2575 CXXGlobalInits.push_back(nullptr); 2576 } 2577 2578 StringRef MangledName = getMangledName(GD); 2579 if (GetGlobalValue(MangledName) != nullptr) { 2580 // The value has already been used and should therefore be emitted. 2581 addDeferredDeclToEmit(GD); 2582 } else if (MustBeEmitted(Global)) { 2583 // The value must be emitted, but cannot be emitted eagerly. 2584 assert(!MayBeEmittedEagerly(Global)); 2585 addDeferredDeclToEmit(GD); 2586 } else { 2587 // Otherwise, remember that we saw a deferred decl with this name. The 2588 // first use of the mangled name will cause it to move into 2589 // DeferredDeclsToEmit. 2590 DeferredDecls[MangledName] = GD; 2591 } 2592 } 2593 2594 // Check if T is a class type with a destructor that's not dllimport. 2595 static bool HasNonDllImportDtor(QualType T) { 2596 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2597 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2598 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2599 return true; 2600 2601 return false; 2602 } 2603 2604 namespace { 2605 struct FunctionIsDirectlyRecursive 2606 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2607 const StringRef Name; 2608 const Builtin::Context &BI; 2609 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2610 : Name(N), BI(C) {} 2611 2612 bool VisitCallExpr(const CallExpr *E) { 2613 const FunctionDecl *FD = E->getDirectCallee(); 2614 if (!FD) 2615 return false; 2616 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2617 if (Attr && Name == Attr->getLabel()) 2618 return true; 2619 unsigned BuiltinID = FD->getBuiltinID(); 2620 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2621 return false; 2622 StringRef BuiltinName = BI.getName(BuiltinID); 2623 if (BuiltinName.startswith("__builtin_") && 2624 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2625 return true; 2626 } 2627 return false; 2628 } 2629 2630 bool VisitStmt(const Stmt *S) { 2631 for (const Stmt *Child : S->children()) 2632 if (Child && this->Visit(Child)) 2633 return true; 2634 return false; 2635 } 2636 }; 2637 2638 // Make sure we're not referencing non-imported vars or functions. 2639 struct DLLImportFunctionVisitor 2640 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2641 bool SafeToInline = true; 2642 2643 bool shouldVisitImplicitCode() const { return true; } 2644 2645 bool VisitVarDecl(VarDecl *VD) { 2646 if (VD->getTLSKind()) { 2647 // A thread-local variable cannot be imported. 2648 SafeToInline = false; 2649 return SafeToInline; 2650 } 2651 2652 // A variable definition might imply a destructor call. 2653 if (VD->isThisDeclarationADefinition()) 2654 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2655 2656 return SafeToInline; 2657 } 2658 2659 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2660 if (const auto *D = E->getTemporary()->getDestructor()) 2661 SafeToInline = D->hasAttr<DLLImportAttr>(); 2662 return SafeToInline; 2663 } 2664 2665 bool VisitDeclRefExpr(DeclRefExpr *E) { 2666 ValueDecl *VD = E->getDecl(); 2667 if (isa<FunctionDecl>(VD)) 2668 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2669 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2670 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2671 return SafeToInline; 2672 } 2673 2674 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2675 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2676 return SafeToInline; 2677 } 2678 2679 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2680 CXXMethodDecl *M = E->getMethodDecl(); 2681 if (!M) { 2682 // Call through a pointer to member function. This is safe to inline. 2683 SafeToInline = true; 2684 } else { 2685 SafeToInline = M->hasAttr<DLLImportAttr>(); 2686 } 2687 return SafeToInline; 2688 } 2689 2690 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2691 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2692 return SafeToInline; 2693 } 2694 2695 bool VisitCXXNewExpr(CXXNewExpr *E) { 2696 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2697 return SafeToInline; 2698 } 2699 }; 2700 } 2701 2702 // isTriviallyRecursive - Check if this function calls another 2703 // decl that, because of the asm attribute or the other decl being a builtin, 2704 // ends up pointing to itself. 2705 bool 2706 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2707 StringRef Name; 2708 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2709 // asm labels are a special kind of mangling we have to support. 2710 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2711 if (!Attr) 2712 return false; 2713 Name = Attr->getLabel(); 2714 } else { 2715 Name = FD->getName(); 2716 } 2717 2718 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2719 const Stmt *Body = FD->getBody(); 2720 return Body ? Walker.Visit(Body) : false; 2721 } 2722 2723 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2724 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2725 return true; 2726 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2727 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2728 return false; 2729 2730 if (F->hasAttr<DLLImportAttr>()) { 2731 // Check whether it would be safe to inline this dllimport function. 2732 DLLImportFunctionVisitor Visitor; 2733 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2734 if (!Visitor.SafeToInline) 2735 return false; 2736 2737 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2738 // Implicit destructor invocations aren't captured in the AST, so the 2739 // check above can't see them. Check for them manually here. 2740 for (const Decl *Member : Dtor->getParent()->decls()) 2741 if (isa<FieldDecl>(Member)) 2742 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2743 return false; 2744 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2745 if (HasNonDllImportDtor(B.getType())) 2746 return false; 2747 } 2748 } 2749 2750 // PR9614. Avoid cases where the source code is lying to us. An available 2751 // externally function should have an equivalent function somewhere else, 2752 // but a function that calls itself is clearly not equivalent to the real 2753 // implementation. 2754 // This happens in glibc's btowc and in some configure checks. 2755 return !isTriviallyRecursive(F); 2756 } 2757 2758 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2759 return CodeGenOpts.OptimizationLevel > 0; 2760 } 2761 2762 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2763 llvm::GlobalValue *GV) { 2764 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2765 2766 if (FD->isCPUSpecificMultiVersion()) { 2767 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2768 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2769 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2770 // Requires multiple emits. 2771 } else 2772 EmitGlobalFunctionDefinition(GD, GV); 2773 } 2774 2775 void CodeGenModule::emitOpenMPDeviceFunctionRedefinition( 2776 GlobalDecl OldGD, GlobalDecl NewGD, llvm::GlobalValue *GV) { 2777 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 2778 OpenMPRuntime && "Expected OpenMP device mode."); 2779 const auto *D = cast<FunctionDecl>(OldGD.getDecl()); 2780 2781 // Compute the function info and LLVM type. 2782 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(OldGD); 2783 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2784 2785 // Get or create the prototype for the function. 2786 if (!GV || (GV->getType()->getElementType() != Ty)) { 2787 GV = cast<llvm::GlobalValue>(GetOrCreateLLVMFunction( 2788 getMangledName(OldGD), Ty, GlobalDecl(), /*ForVTable=*/false, 2789 /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), 2790 ForDefinition)); 2791 SetFunctionAttributes(OldGD, cast<llvm::Function>(GV), 2792 /*IsIncompleteFunction=*/false, 2793 /*IsThunk=*/false); 2794 } 2795 // We need to set linkage and visibility on the function before 2796 // generating code for it because various parts of IR generation 2797 // want to propagate this information down (e.g. to local static 2798 // declarations). 2799 auto *Fn = cast<llvm::Function>(GV); 2800 setFunctionLinkage(OldGD, Fn); 2801 2802 // FIXME: this is redundant with part of 2803 // setFunctionDefinitionAttributes 2804 setGVProperties(Fn, OldGD); 2805 2806 MaybeHandleStaticInExternC(D, Fn); 2807 2808 maybeSetTrivialComdat(*D, *Fn); 2809 2810 CodeGenFunction(*this).GenerateCode(NewGD, Fn, FI); 2811 2812 setNonAliasAttributes(OldGD, Fn); 2813 SetLLVMFunctionAttributesForDefinition(D, Fn); 2814 2815 if (D->hasAttr<AnnotateAttr>()) 2816 AddGlobalAnnotations(D, Fn); 2817 } 2818 2819 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2820 const auto *D = cast<ValueDecl>(GD.getDecl()); 2821 2822 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2823 Context.getSourceManager(), 2824 "Generating code for declaration"); 2825 2826 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2827 // At -O0, don't generate IR for functions with available_externally 2828 // linkage. 2829 if (!shouldEmitFunction(GD)) 2830 return; 2831 2832 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2833 std::string Name; 2834 llvm::raw_string_ostream OS(Name); 2835 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2836 /*Qualified=*/true); 2837 return Name; 2838 }); 2839 2840 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2841 // Make sure to emit the definition(s) before we emit the thunks. 2842 // This is necessary for the generation of certain thunks. 2843 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2844 ABI->emitCXXStructor(GD); 2845 else if (FD->isMultiVersion()) 2846 EmitMultiVersionFunctionDefinition(GD, GV); 2847 else 2848 EmitGlobalFunctionDefinition(GD, GV); 2849 2850 if (Method->isVirtual()) 2851 getVTables().EmitThunks(GD); 2852 2853 return; 2854 } 2855 2856 if (FD->isMultiVersion()) 2857 return EmitMultiVersionFunctionDefinition(GD, GV); 2858 return EmitGlobalFunctionDefinition(GD, GV); 2859 } 2860 2861 if (const auto *VD = dyn_cast<VarDecl>(D)) 2862 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2863 2864 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2865 } 2866 2867 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2868 llvm::Function *NewFn); 2869 2870 static unsigned 2871 TargetMVPriority(const TargetInfo &TI, 2872 const CodeGenFunction::MultiVersionResolverOption &RO) { 2873 unsigned Priority = 0; 2874 for (StringRef Feat : RO.Conditions.Features) 2875 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2876 2877 if (!RO.Conditions.Architecture.empty()) 2878 Priority = std::max( 2879 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2880 return Priority; 2881 } 2882 2883 void CodeGenModule::emitMultiVersionFunctions() { 2884 for (GlobalDecl GD : MultiVersionFuncs) { 2885 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2886 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2887 getContext().forEachMultiversionedFunctionVersion( 2888 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2889 GlobalDecl CurGD{ 2890 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2891 StringRef MangledName = getMangledName(CurGD); 2892 llvm::Constant *Func = GetGlobalValue(MangledName); 2893 if (!Func) { 2894 if (CurFD->isDefined()) { 2895 EmitGlobalFunctionDefinition(CurGD, nullptr); 2896 Func = GetGlobalValue(MangledName); 2897 } else { 2898 const CGFunctionInfo &FI = 2899 getTypes().arrangeGlobalDeclaration(GD); 2900 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2901 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2902 /*DontDefer=*/false, ForDefinition); 2903 } 2904 assert(Func && "This should have just been created"); 2905 } 2906 2907 const auto *TA = CurFD->getAttr<TargetAttr>(); 2908 llvm::SmallVector<StringRef, 8> Feats; 2909 TA->getAddedFeatures(Feats); 2910 2911 Options.emplace_back(cast<llvm::Function>(Func), 2912 TA->getArchitecture(), Feats); 2913 }); 2914 2915 llvm::Function *ResolverFunc; 2916 const TargetInfo &TI = getTarget(); 2917 2918 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 2919 ResolverFunc = cast<llvm::Function>( 2920 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2921 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2922 } else { 2923 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2924 } 2925 2926 if (supportsCOMDAT()) 2927 ResolverFunc->setComdat( 2928 getModule().getOrInsertComdat(ResolverFunc->getName())); 2929 2930 llvm::stable_sort( 2931 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2932 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2933 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2934 }); 2935 CodeGenFunction CGF(*this); 2936 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2937 } 2938 } 2939 2940 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2941 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2942 assert(FD && "Not a FunctionDecl?"); 2943 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2944 assert(DD && "Not a cpu_dispatch Function?"); 2945 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 2946 2947 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2948 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2949 DeclTy = getTypes().GetFunctionType(FInfo); 2950 } 2951 2952 StringRef ResolverName = getMangledName(GD); 2953 2954 llvm::Type *ResolverType; 2955 GlobalDecl ResolverGD; 2956 if (getTarget().supportsIFunc()) 2957 ResolverType = llvm::FunctionType::get( 2958 llvm::PointerType::get(DeclTy, 2959 Context.getTargetAddressSpace(FD->getType())), 2960 false); 2961 else { 2962 ResolverType = DeclTy; 2963 ResolverGD = GD; 2964 } 2965 2966 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2967 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2968 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 2969 if (supportsCOMDAT()) 2970 ResolverFunc->setComdat( 2971 getModule().getOrInsertComdat(ResolverFunc->getName())); 2972 2973 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2974 const TargetInfo &Target = getTarget(); 2975 unsigned Index = 0; 2976 for (const IdentifierInfo *II : DD->cpus()) { 2977 // Get the name of the target function so we can look it up/create it. 2978 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2979 getCPUSpecificMangling(*this, II->getName()); 2980 2981 llvm::Constant *Func = GetGlobalValue(MangledName); 2982 2983 if (!Func) { 2984 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 2985 if (ExistingDecl.getDecl() && 2986 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 2987 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 2988 Func = GetGlobalValue(MangledName); 2989 } else { 2990 if (!ExistingDecl.getDecl()) 2991 ExistingDecl = GD.getWithMultiVersionIndex(Index); 2992 2993 Func = GetOrCreateLLVMFunction( 2994 MangledName, DeclTy, ExistingDecl, 2995 /*ForVTable=*/false, /*DontDefer=*/true, 2996 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2997 } 2998 } 2999 3000 llvm::SmallVector<StringRef, 32> Features; 3001 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3002 llvm::transform(Features, Features.begin(), 3003 [](StringRef Str) { return Str.substr(1); }); 3004 Features.erase(std::remove_if( 3005 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3006 return !Target.validateCpuSupports(Feat); 3007 }), Features.end()); 3008 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3009 ++Index; 3010 } 3011 3012 llvm::sort( 3013 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3014 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3015 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3016 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3017 }); 3018 3019 // If the list contains multiple 'default' versions, such as when it contains 3020 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3021 // always run on at least a 'pentium'). We do this by deleting the 'least 3022 // advanced' (read, lowest mangling letter). 3023 while (Options.size() > 1 && 3024 CodeGenFunction::GetX86CpuSupportsMask( 3025 (Options.end() - 2)->Conditions.Features) == 0) { 3026 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3027 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3028 if (LHSName.compare(RHSName) < 0) 3029 Options.erase(Options.end() - 2); 3030 else 3031 Options.erase(Options.end() - 1); 3032 } 3033 3034 CodeGenFunction CGF(*this); 3035 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3036 3037 if (getTarget().supportsIFunc()) { 3038 std::string AliasName = getMangledNameImpl( 3039 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3040 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3041 if (!AliasFunc) { 3042 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3043 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3044 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3045 auto *GA = llvm::GlobalAlias::create( 3046 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3047 GA->setLinkage(llvm::Function::WeakODRLinkage); 3048 SetCommonAttributes(GD, GA); 3049 } 3050 } 3051 } 3052 3053 /// If a dispatcher for the specified mangled name is not in the module, create 3054 /// and return an llvm Function with the specified type. 3055 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3056 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3057 std::string MangledName = 3058 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3059 3060 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3061 // a separate resolver). 3062 std::string ResolverName = MangledName; 3063 if (getTarget().supportsIFunc()) 3064 ResolverName += ".ifunc"; 3065 else if (FD->isTargetMultiVersion()) 3066 ResolverName += ".resolver"; 3067 3068 // If this already exists, just return that one. 3069 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3070 return ResolverGV; 3071 3072 // Since this is the first time we've created this IFunc, make sure 3073 // that we put this multiversioned function into the list to be 3074 // replaced later if necessary (target multiversioning only). 3075 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3076 MultiVersionFuncs.push_back(GD); 3077 3078 if (getTarget().supportsIFunc()) { 3079 llvm::Type *ResolverType = llvm::FunctionType::get( 3080 llvm::PointerType::get( 3081 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3082 false); 3083 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3084 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3085 /*ForVTable=*/false); 3086 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3087 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3088 GIF->setName(ResolverName); 3089 SetCommonAttributes(FD, GIF); 3090 3091 return GIF; 3092 } 3093 3094 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3095 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3096 assert(isa<llvm::GlobalValue>(Resolver) && 3097 "Resolver should be created for the first time"); 3098 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3099 return Resolver; 3100 } 3101 3102 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3103 /// module, create and return an llvm Function with the specified type. If there 3104 /// is something in the module with the specified name, return it potentially 3105 /// bitcasted to the right type. 3106 /// 3107 /// If D is non-null, it specifies a decl that correspond to this. This is used 3108 /// to set the attributes on the function when it is first created. 3109 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3110 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3111 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3112 ForDefinition_t IsForDefinition) { 3113 const Decl *D = GD.getDecl(); 3114 3115 // Any attempts to use a MultiVersion function should result in retrieving 3116 // the iFunc instead. Name Mangling will handle the rest of the changes. 3117 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3118 // For the device mark the function as one that should be emitted. 3119 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3120 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3121 !DontDefer && !IsForDefinition) { 3122 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3123 GlobalDecl GDDef; 3124 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3125 GDDef = GlobalDecl(CD, GD.getCtorType()); 3126 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3127 GDDef = GlobalDecl(DD, GD.getDtorType()); 3128 else 3129 GDDef = GlobalDecl(FDDef); 3130 EmitGlobal(GDDef); 3131 } 3132 } 3133 // Check if this must be emitted as declare variant and emit reference to 3134 // the the declare variant function. 3135 if (LangOpts.OpenMP && OpenMPRuntime) 3136 (void)OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true); 3137 3138 if (FD->isMultiVersion()) { 3139 const auto *TA = FD->getAttr<TargetAttr>(); 3140 if (TA && TA->isDefaultVersion()) 3141 UpdateMultiVersionNames(GD, FD); 3142 if (!IsForDefinition) 3143 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3144 } 3145 } 3146 3147 // Lookup the entry, lazily creating it if necessary. 3148 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3149 if (Entry) { 3150 if (WeakRefReferences.erase(Entry)) { 3151 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3152 if (FD && !FD->hasAttr<WeakAttr>()) 3153 Entry->setLinkage(llvm::Function::ExternalLinkage); 3154 } 3155 3156 // Handle dropped DLL attributes. 3157 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3158 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3159 setDSOLocal(Entry); 3160 } 3161 3162 // If there are two attempts to define the same mangled name, issue an 3163 // error. 3164 if (IsForDefinition && !Entry->isDeclaration()) { 3165 GlobalDecl OtherGD; 3166 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3167 // to make sure that we issue an error only once. 3168 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3169 (GD.getCanonicalDecl().getDecl() != 3170 OtherGD.getCanonicalDecl().getDecl()) && 3171 DiagnosedConflictingDefinitions.insert(GD).second) { 3172 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3173 << MangledName; 3174 getDiags().Report(OtherGD.getDecl()->getLocation(), 3175 diag::note_previous_definition); 3176 } 3177 } 3178 3179 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3180 (Entry->getType()->getElementType() == Ty)) { 3181 return Entry; 3182 } 3183 3184 // Make sure the result is of the correct type. 3185 // (If function is requested for a definition, we always need to create a new 3186 // function, not just return a bitcast.) 3187 if (!IsForDefinition) 3188 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3189 } 3190 3191 // This function doesn't have a complete type (for example, the return 3192 // type is an incomplete struct). Use a fake type instead, and make 3193 // sure not to try to set attributes. 3194 bool IsIncompleteFunction = false; 3195 3196 llvm::FunctionType *FTy; 3197 if (isa<llvm::FunctionType>(Ty)) { 3198 FTy = cast<llvm::FunctionType>(Ty); 3199 } else { 3200 FTy = llvm::FunctionType::get(VoidTy, false); 3201 IsIncompleteFunction = true; 3202 } 3203 3204 llvm::Function *F = 3205 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3206 Entry ? StringRef() : MangledName, &getModule()); 3207 3208 // If we already created a function with the same mangled name (but different 3209 // type) before, take its name and add it to the list of functions to be 3210 // replaced with F at the end of CodeGen. 3211 // 3212 // This happens if there is a prototype for a function (e.g. "int f()") and 3213 // then a definition of a different type (e.g. "int f(int x)"). 3214 if (Entry) { 3215 F->takeName(Entry); 3216 3217 // This might be an implementation of a function without a prototype, in 3218 // which case, try to do special replacement of calls which match the new 3219 // prototype. The really key thing here is that we also potentially drop 3220 // arguments from the call site so as to make a direct call, which makes the 3221 // inliner happier and suppresses a number of optimizer warnings (!) about 3222 // dropping arguments. 3223 if (!Entry->use_empty()) { 3224 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3225 Entry->removeDeadConstantUsers(); 3226 } 3227 3228 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3229 F, Entry->getType()->getElementType()->getPointerTo()); 3230 addGlobalValReplacement(Entry, BC); 3231 } 3232 3233 assert(F->getName() == MangledName && "name was uniqued!"); 3234 if (D) 3235 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3236 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3237 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3238 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3239 } 3240 3241 if (!DontDefer) { 3242 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3243 // each other bottoming out with the base dtor. Therefore we emit non-base 3244 // dtors on usage, even if there is no dtor definition in the TU. 3245 if (D && isa<CXXDestructorDecl>(D) && 3246 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3247 GD.getDtorType())) 3248 addDeferredDeclToEmit(GD); 3249 3250 // This is the first use or definition of a mangled name. If there is a 3251 // deferred decl with this name, remember that we need to emit it at the end 3252 // of the file. 3253 auto DDI = DeferredDecls.find(MangledName); 3254 if (DDI != DeferredDecls.end()) { 3255 // Move the potentially referenced deferred decl to the 3256 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3257 // don't need it anymore). 3258 addDeferredDeclToEmit(DDI->second); 3259 DeferredDecls.erase(DDI); 3260 3261 // Otherwise, there are cases we have to worry about where we're 3262 // using a declaration for which we must emit a definition but where 3263 // we might not find a top-level definition: 3264 // - member functions defined inline in their classes 3265 // - friend functions defined inline in some class 3266 // - special member functions with implicit definitions 3267 // If we ever change our AST traversal to walk into class methods, 3268 // this will be unnecessary. 3269 // 3270 // We also don't emit a definition for a function if it's going to be an 3271 // entry in a vtable, unless it's already marked as used. 3272 } else if (getLangOpts().CPlusPlus && D) { 3273 // Look for a declaration that's lexically in a record. 3274 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3275 FD = FD->getPreviousDecl()) { 3276 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3277 if (FD->doesThisDeclarationHaveABody()) { 3278 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3279 break; 3280 } 3281 } 3282 } 3283 } 3284 } 3285 3286 // Make sure the result is of the requested type. 3287 if (!IsIncompleteFunction) { 3288 assert(F->getType()->getElementType() == Ty); 3289 return F; 3290 } 3291 3292 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3293 return llvm::ConstantExpr::getBitCast(F, PTy); 3294 } 3295 3296 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3297 /// non-null, then this function will use the specified type if it has to 3298 /// create it (this occurs when we see a definition of the function). 3299 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3300 llvm::Type *Ty, 3301 bool ForVTable, 3302 bool DontDefer, 3303 ForDefinition_t IsForDefinition) { 3304 // If there was no specific requested type, just convert it now. 3305 if (!Ty) { 3306 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3307 Ty = getTypes().ConvertType(FD->getType()); 3308 } 3309 3310 // Devirtualized destructor calls may come through here instead of via 3311 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3312 // of the complete destructor when necessary. 3313 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3314 if (getTarget().getCXXABI().isMicrosoft() && 3315 GD.getDtorType() == Dtor_Complete && 3316 DD->getParent()->getNumVBases() == 0) 3317 GD = GlobalDecl(DD, Dtor_Base); 3318 } 3319 3320 StringRef MangledName = getMangledName(GD); 3321 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3322 /*IsThunk=*/false, llvm::AttributeList(), 3323 IsForDefinition); 3324 } 3325 3326 static const FunctionDecl * 3327 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3328 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3329 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3330 3331 IdentifierInfo &CII = C.Idents.get(Name); 3332 for (const auto &Result : DC->lookup(&CII)) 3333 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3334 return FD; 3335 3336 if (!C.getLangOpts().CPlusPlus) 3337 return nullptr; 3338 3339 // Demangle the premangled name from getTerminateFn() 3340 IdentifierInfo &CXXII = 3341 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3342 ? C.Idents.get("terminate") 3343 : C.Idents.get(Name); 3344 3345 for (const auto &N : {"__cxxabiv1", "std"}) { 3346 IdentifierInfo &NS = C.Idents.get(N); 3347 for (const auto &Result : DC->lookup(&NS)) { 3348 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3349 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3350 for (const auto &Result : LSD->lookup(&NS)) 3351 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3352 break; 3353 3354 if (ND) 3355 for (const auto &Result : ND->lookup(&CXXII)) 3356 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3357 return FD; 3358 } 3359 } 3360 3361 return nullptr; 3362 } 3363 3364 /// CreateRuntimeFunction - Create a new runtime function with the specified 3365 /// type and name. 3366 llvm::FunctionCallee 3367 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3368 llvm::AttributeList ExtraAttrs, bool Local, 3369 bool AssumeConvergent) { 3370 if (AssumeConvergent) { 3371 ExtraAttrs = 3372 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3373 llvm::Attribute::Convergent); 3374 } 3375 3376 llvm::Constant *C = 3377 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3378 /*DontDefer=*/false, /*IsThunk=*/false, 3379 ExtraAttrs); 3380 3381 if (auto *F = dyn_cast<llvm::Function>(C)) { 3382 if (F->empty()) { 3383 F->setCallingConv(getRuntimeCC()); 3384 3385 // In Windows Itanium environments, try to mark runtime functions 3386 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3387 // will link their standard library statically or dynamically. Marking 3388 // functions imported when they are not imported can cause linker errors 3389 // and warnings. 3390 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3391 !getCodeGenOpts().LTOVisibilityPublicStd) { 3392 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3393 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3394 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3395 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3396 } 3397 } 3398 setDSOLocal(F); 3399 } 3400 } 3401 3402 return {FTy, C}; 3403 } 3404 3405 /// isTypeConstant - Determine whether an object of this type can be emitted 3406 /// as a constant. 3407 /// 3408 /// If ExcludeCtor is true, the duration when the object's constructor runs 3409 /// will not be considered. The caller will need to verify that the object is 3410 /// not written to during its construction. 3411 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3412 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3413 return false; 3414 3415 if (Context.getLangOpts().CPlusPlus) { 3416 if (const CXXRecordDecl *Record 3417 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3418 return ExcludeCtor && !Record->hasMutableFields() && 3419 Record->hasTrivialDestructor(); 3420 } 3421 3422 return true; 3423 } 3424 3425 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3426 /// create and return an llvm GlobalVariable with the specified type. If there 3427 /// is something in the module with the specified name, return it potentially 3428 /// bitcasted to the right type. 3429 /// 3430 /// If D is non-null, it specifies a decl that correspond to this. This is used 3431 /// to set the attributes on the global when it is first created. 3432 /// 3433 /// If IsForDefinition is true, it is guaranteed that an actual global with 3434 /// type Ty will be returned, not conversion of a variable with the same 3435 /// mangled name but some other type. 3436 llvm::Constant * 3437 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3438 llvm::PointerType *Ty, 3439 const VarDecl *D, 3440 ForDefinition_t IsForDefinition) { 3441 // Lookup the entry, lazily creating it if necessary. 3442 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3443 if (Entry) { 3444 if (WeakRefReferences.erase(Entry)) { 3445 if (D && !D->hasAttr<WeakAttr>()) 3446 Entry->setLinkage(llvm::Function::ExternalLinkage); 3447 } 3448 3449 // Handle dropped DLL attributes. 3450 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3451 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3452 3453 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3454 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3455 3456 if (Entry->getType() == Ty) 3457 return Entry; 3458 3459 // If there are two attempts to define the same mangled name, issue an 3460 // error. 3461 if (IsForDefinition && !Entry->isDeclaration()) { 3462 GlobalDecl OtherGD; 3463 const VarDecl *OtherD; 3464 3465 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3466 // to make sure that we issue an error only once. 3467 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3468 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3469 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3470 OtherD->hasInit() && 3471 DiagnosedConflictingDefinitions.insert(D).second) { 3472 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3473 << MangledName; 3474 getDiags().Report(OtherGD.getDecl()->getLocation(), 3475 diag::note_previous_definition); 3476 } 3477 } 3478 3479 // Make sure the result is of the correct type. 3480 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3481 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3482 3483 // (If global is requested for a definition, we always need to create a new 3484 // global, not just return a bitcast.) 3485 if (!IsForDefinition) 3486 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3487 } 3488 3489 auto AddrSpace = GetGlobalVarAddressSpace(D); 3490 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3491 3492 auto *GV = new llvm::GlobalVariable( 3493 getModule(), Ty->getElementType(), false, 3494 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3495 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3496 3497 // If we already created a global with the same mangled name (but different 3498 // type) before, take its name and remove it from its parent. 3499 if (Entry) { 3500 GV->takeName(Entry); 3501 3502 if (!Entry->use_empty()) { 3503 llvm::Constant *NewPtrForOldDecl = 3504 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3505 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3506 } 3507 3508 Entry->eraseFromParent(); 3509 } 3510 3511 // This is the first use or definition of a mangled name. If there is a 3512 // deferred decl with this name, remember that we need to emit it at the end 3513 // of the file. 3514 auto DDI = DeferredDecls.find(MangledName); 3515 if (DDI != DeferredDecls.end()) { 3516 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3517 // list, and remove it from DeferredDecls (since we don't need it anymore). 3518 addDeferredDeclToEmit(DDI->second); 3519 DeferredDecls.erase(DDI); 3520 } 3521 3522 // Handle things which are present even on external declarations. 3523 if (D) { 3524 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3525 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3526 3527 // FIXME: This code is overly simple and should be merged with other global 3528 // handling. 3529 GV->setConstant(isTypeConstant(D->getType(), false)); 3530 3531 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3532 3533 setLinkageForGV(GV, D); 3534 3535 if (D->getTLSKind()) { 3536 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3537 CXXThreadLocals.push_back(D); 3538 setTLSMode(GV, *D); 3539 } 3540 3541 setGVProperties(GV, D); 3542 3543 // If required by the ABI, treat declarations of static data members with 3544 // inline initializers as definitions. 3545 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3546 EmitGlobalVarDefinition(D); 3547 } 3548 3549 // Emit section information for extern variables. 3550 if (D->hasExternalStorage()) { 3551 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3552 GV->setSection(SA->getName()); 3553 } 3554 3555 // Handle XCore specific ABI requirements. 3556 if (getTriple().getArch() == llvm::Triple::xcore && 3557 D->getLanguageLinkage() == CLanguageLinkage && 3558 D->getType().isConstant(Context) && 3559 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3560 GV->setSection(".cp.rodata"); 3561 3562 // Check if we a have a const declaration with an initializer, we may be 3563 // able to emit it as available_externally to expose it's value to the 3564 // optimizer. 3565 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3566 D->getType().isConstQualified() && !GV->hasInitializer() && 3567 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3568 const auto *Record = 3569 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3570 bool HasMutableFields = Record && Record->hasMutableFields(); 3571 if (!HasMutableFields) { 3572 const VarDecl *InitDecl; 3573 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3574 if (InitExpr) { 3575 ConstantEmitter emitter(*this); 3576 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3577 if (Init) { 3578 auto *InitType = Init->getType(); 3579 if (GV->getType()->getElementType() != InitType) { 3580 // The type of the initializer does not match the definition. 3581 // This happens when an initializer has a different type from 3582 // the type of the global (because of padding at the end of a 3583 // structure for instance). 3584 GV->setName(StringRef()); 3585 // Make a new global with the correct type, this is now guaranteed 3586 // to work. 3587 auto *NewGV = cast<llvm::GlobalVariable>( 3588 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3589 ->stripPointerCasts()); 3590 3591 // Erase the old global, since it is no longer used. 3592 GV->eraseFromParent(); 3593 GV = NewGV; 3594 } else { 3595 GV->setInitializer(Init); 3596 GV->setConstant(true); 3597 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3598 } 3599 emitter.finalize(GV); 3600 } 3601 } 3602 } 3603 } 3604 } 3605 3606 if (GV->isDeclaration()) 3607 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3608 3609 LangAS ExpectedAS = 3610 D ? D->getType().getAddressSpace() 3611 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3612 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3613 Ty->getPointerAddressSpace()); 3614 if (AddrSpace != ExpectedAS) 3615 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3616 ExpectedAS, Ty); 3617 3618 return GV; 3619 } 3620 3621 llvm::Constant * 3622 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3623 ForDefinition_t IsForDefinition) { 3624 const Decl *D = GD.getDecl(); 3625 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3626 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3627 /*DontDefer=*/false, IsForDefinition); 3628 else if (isa<CXXMethodDecl>(D)) { 3629 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3630 cast<CXXMethodDecl>(D)); 3631 auto Ty = getTypes().GetFunctionType(*FInfo); 3632 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3633 IsForDefinition); 3634 } else if (isa<FunctionDecl>(D)) { 3635 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3636 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3637 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3638 IsForDefinition); 3639 } else 3640 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3641 IsForDefinition); 3642 } 3643 3644 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3645 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3646 unsigned Alignment) { 3647 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3648 llvm::GlobalVariable *OldGV = nullptr; 3649 3650 if (GV) { 3651 // Check if the variable has the right type. 3652 if (GV->getType()->getElementType() == Ty) 3653 return GV; 3654 3655 // Because C++ name mangling, the only way we can end up with an already 3656 // existing global with the same name is if it has been declared extern "C". 3657 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3658 OldGV = GV; 3659 } 3660 3661 // Create a new variable. 3662 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3663 Linkage, nullptr, Name); 3664 3665 if (OldGV) { 3666 // Replace occurrences of the old variable if needed. 3667 GV->takeName(OldGV); 3668 3669 if (!OldGV->use_empty()) { 3670 llvm::Constant *NewPtrForOldDecl = 3671 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3672 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3673 } 3674 3675 OldGV->eraseFromParent(); 3676 } 3677 3678 if (supportsCOMDAT() && GV->isWeakForLinker() && 3679 !GV->hasAvailableExternallyLinkage()) 3680 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3681 3682 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3683 3684 return GV; 3685 } 3686 3687 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3688 /// given global variable. If Ty is non-null and if the global doesn't exist, 3689 /// then it will be created with the specified type instead of whatever the 3690 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3691 /// that an actual global with type Ty will be returned, not conversion of a 3692 /// variable with the same mangled name but some other type. 3693 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3694 llvm::Type *Ty, 3695 ForDefinition_t IsForDefinition) { 3696 assert(D->hasGlobalStorage() && "Not a global variable"); 3697 QualType ASTTy = D->getType(); 3698 if (!Ty) 3699 Ty = getTypes().ConvertTypeForMem(ASTTy); 3700 3701 llvm::PointerType *PTy = 3702 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3703 3704 StringRef MangledName = getMangledName(D); 3705 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3706 } 3707 3708 /// CreateRuntimeVariable - Create a new runtime global variable with the 3709 /// specified type and name. 3710 llvm::Constant * 3711 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3712 StringRef Name) { 3713 auto PtrTy = 3714 getContext().getLangOpts().OpenCL 3715 ? llvm::PointerType::get( 3716 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3717 : llvm::PointerType::getUnqual(Ty); 3718 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3719 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3720 return Ret; 3721 } 3722 3723 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3724 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3725 3726 StringRef MangledName = getMangledName(D); 3727 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3728 3729 // We already have a definition, not declaration, with the same mangled name. 3730 // Emitting of declaration is not required (and actually overwrites emitted 3731 // definition). 3732 if (GV && !GV->isDeclaration()) 3733 return; 3734 3735 // If we have not seen a reference to this variable yet, place it into the 3736 // deferred declarations table to be emitted if needed later. 3737 if (!MustBeEmitted(D) && !GV) { 3738 DeferredDecls[MangledName] = D; 3739 return; 3740 } 3741 3742 // The tentative definition is the only definition. 3743 EmitGlobalVarDefinition(D); 3744 } 3745 3746 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3747 EmitExternalVarDeclaration(D); 3748 } 3749 3750 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3751 return Context.toCharUnitsFromBits( 3752 getDataLayout().getTypeStoreSizeInBits(Ty)); 3753 } 3754 3755 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3756 LangAS AddrSpace = LangAS::Default; 3757 if (LangOpts.OpenCL) { 3758 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3759 assert(AddrSpace == LangAS::opencl_global || 3760 AddrSpace == LangAS::opencl_constant || 3761 AddrSpace == LangAS::opencl_local || 3762 AddrSpace >= LangAS::FirstTargetAddressSpace); 3763 return AddrSpace; 3764 } 3765 3766 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3767 if (D && D->hasAttr<CUDAConstantAttr>()) 3768 return LangAS::cuda_constant; 3769 else if (D && D->hasAttr<CUDASharedAttr>()) 3770 return LangAS::cuda_shared; 3771 else if (D && D->hasAttr<CUDADeviceAttr>()) 3772 return LangAS::cuda_device; 3773 else if (D && D->getType().isConstQualified()) 3774 return LangAS::cuda_constant; 3775 else 3776 return LangAS::cuda_device; 3777 } 3778 3779 if (LangOpts.OpenMP) { 3780 LangAS AS; 3781 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3782 return AS; 3783 } 3784 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3785 } 3786 3787 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3788 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3789 if (LangOpts.OpenCL) 3790 return LangAS::opencl_constant; 3791 if (auto AS = getTarget().getConstantAddressSpace()) 3792 return AS.getValue(); 3793 return LangAS::Default; 3794 } 3795 3796 // In address space agnostic languages, string literals are in default address 3797 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3798 // emitted in constant address space in LLVM IR. To be consistent with other 3799 // parts of AST, string literal global variables in constant address space 3800 // need to be casted to default address space before being put into address 3801 // map and referenced by other part of CodeGen. 3802 // In OpenCL, string literals are in constant address space in AST, therefore 3803 // they should not be casted to default address space. 3804 static llvm::Constant * 3805 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3806 llvm::GlobalVariable *GV) { 3807 llvm::Constant *Cast = GV; 3808 if (!CGM.getLangOpts().OpenCL) { 3809 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3810 if (AS != LangAS::Default) 3811 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3812 CGM, GV, AS.getValue(), LangAS::Default, 3813 GV->getValueType()->getPointerTo( 3814 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3815 } 3816 } 3817 return Cast; 3818 } 3819 3820 template<typename SomeDecl> 3821 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3822 llvm::GlobalValue *GV) { 3823 if (!getLangOpts().CPlusPlus) 3824 return; 3825 3826 // Must have 'used' attribute, or else inline assembly can't rely on 3827 // the name existing. 3828 if (!D->template hasAttr<UsedAttr>()) 3829 return; 3830 3831 // Must have internal linkage and an ordinary name. 3832 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3833 return; 3834 3835 // Must be in an extern "C" context. Entities declared directly within 3836 // a record are not extern "C" even if the record is in such a context. 3837 const SomeDecl *First = D->getFirstDecl(); 3838 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3839 return; 3840 3841 // OK, this is an internal linkage entity inside an extern "C" linkage 3842 // specification. Make a note of that so we can give it the "expected" 3843 // mangled name if nothing else is using that name. 3844 std::pair<StaticExternCMap::iterator, bool> R = 3845 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3846 3847 // If we have multiple internal linkage entities with the same name 3848 // in extern "C" regions, none of them gets that name. 3849 if (!R.second) 3850 R.first->second = nullptr; 3851 } 3852 3853 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3854 if (!CGM.supportsCOMDAT()) 3855 return false; 3856 3857 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3858 // them being "merged" by the COMDAT Folding linker optimization. 3859 if (D.hasAttr<CUDAGlobalAttr>()) 3860 return false; 3861 3862 if (D.hasAttr<SelectAnyAttr>()) 3863 return true; 3864 3865 GVALinkage Linkage; 3866 if (auto *VD = dyn_cast<VarDecl>(&D)) 3867 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3868 else 3869 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3870 3871 switch (Linkage) { 3872 case GVA_Internal: 3873 case GVA_AvailableExternally: 3874 case GVA_StrongExternal: 3875 return false; 3876 case GVA_DiscardableODR: 3877 case GVA_StrongODR: 3878 return true; 3879 } 3880 llvm_unreachable("No such linkage"); 3881 } 3882 3883 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3884 llvm::GlobalObject &GO) { 3885 if (!shouldBeInCOMDAT(*this, D)) 3886 return; 3887 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3888 } 3889 3890 /// Pass IsTentative as true if you want to create a tentative definition. 3891 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3892 bool IsTentative) { 3893 // OpenCL global variables of sampler type are translated to function calls, 3894 // therefore no need to be translated. 3895 QualType ASTTy = D->getType(); 3896 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3897 return; 3898 3899 // If this is OpenMP device, check if it is legal to emit this global 3900 // normally. 3901 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3902 OpenMPRuntime->emitTargetGlobalVariable(D)) 3903 return; 3904 3905 llvm::Constant *Init = nullptr; 3906 bool NeedsGlobalCtor = false; 3907 bool NeedsGlobalDtor = 3908 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 3909 3910 const VarDecl *InitDecl; 3911 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3912 3913 Optional<ConstantEmitter> emitter; 3914 3915 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3916 // as part of their declaration." Sema has already checked for 3917 // error cases, so we just need to set Init to UndefValue. 3918 bool IsCUDASharedVar = 3919 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 3920 // Shadows of initialized device-side global variables are also left 3921 // undefined. 3922 bool IsCUDAShadowVar = 3923 !getLangOpts().CUDAIsDevice && 3924 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 3925 D->hasAttr<CUDASharedAttr>()); 3926 // HIP pinned shadow of initialized host-side global variables are also 3927 // left undefined. 3928 bool IsHIPPinnedShadowVar = 3929 getLangOpts().CUDAIsDevice && D->hasAttr<HIPPinnedShadowAttr>(); 3930 if (getLangOpts().CUDA && 3931 (IsCUDASharedVar || IsCUDAShadowVar || IsHIPPinnedShadowVar)) 3932 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3933 else if (!InitExpr) { 3934 // This is a tentative definition; tentative definitions are 3935 // implicitly initialized with { 0 }. 3936 // 3937 // Note that tentative definitions are only emitted at the end of 3938 // a translation unit, so they should never have incomplete 3939 // type. In addition, EmitTentativeDefinition makes sure that we 3940 // never attempt to emit a tentative definition if a real one 3941 // exists. A use may still exists, however, so we still may need 3942 // to do a RAUW. 3943 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3944 Init = EmitNullConstant(D->getType()); 3945 } else { 3946 initializedGlobalDecl = GlobalDecl(D); 3947 emitter.emplace(*this); 3948 Init = emitter->tryEmitForInitializer(*InitDecl); 3949 3950 if (!Init) { 3951 QualType T = InitExpr->getType(); 3952 if (D->getType()->isReferenceType()) 3953 T = D->getType(); 3954 3955 if (getLangOpts().CPlusPlus) { 3956 Init = EmitNullConstant(T); 3957 NeedsGlobalCtor = true; 3958 } else { 3959 ErrorUnsupported(D, "static initializer"); 3960 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3961 } 3962 } else { 3963 // We don't need an initializer, so remove the entry for the delayed 3964 // initializer position (just in case this entry was delayed) if we 3965 // also don't need to register a destructor. 3966 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3967 DelayedCXXInitPosition.erase(D); 3968 } 3969 } 3970 3971 llvm::Type* InitType = Init->getType(); 3972 llvm::Constant *Entry = 3973 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3974 3975 // Strip off pointer casts if we got them. 3976 Entry = Entry->stripPointerCasts(); 3977 3978 // Entry is now either a Function or GlobalVariable. 3979 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3980 3981 // We have a definition after a declaration with the wrong type. 3982 // We must make a new GlobalVariable* and update everything that used OldGV 3983 // (a declaration or tentative definition) with the new GlobalVariable* 3984 // (which will be a definition). 3985 // 3986 // This happens if there is a prototype for a global (e.g. 3987 // "extern int x[];") and then a definition of a different type (e.g. 3988 // "int x[10];"). This also happens when an initializer has a different type 3989 // from the type of the global (this happens with unions). 3990 if (!GV || GV->getType()->getElementType() != InitType || 3991 GV->getType()->getAddressSpace() != 3992 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3993 3994 // Move the old entry aside so that we'll create a new one. 3995 Entry->setName(StringRef()); 3996 3997 // Make a new global with the correct type, this is now guaranteed to work. 3998 GV = cast<llvm::GlobalVariable>( 3999 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4000 ->stripPointerCasts()); 4001 4002 // Replace all uses of the old global with the new global 4003 llvm::Constant *NewPtrForOldDecl = 4004 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4005 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4006 4007 // Erase the old global, since it is no longer used. 4008 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4009 } 4010 4011 MaybeHandleStaticInExternC(D, GV); 4012 4013 if (D->hasAttr<AnnotateAttr>()) 4014 AddGlobalAnnotations(D, GV); 4015 4016 // Set the llvm linkage type as appropriate. 4017 llvm::GlobalValue::LinkageTypes Linkage = 4018 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4019 4020 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4021 // the device. [...]" 4022 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4023 // __device__, declares a variable that: [...] 4024 // Is accessible from all the threads within the grid and from the host 4025 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4026 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4027 if (GV && LangOpts.CUDA) { 4028 if (LangOpts.CUDAIsDevice) { 4029 if (Linkage != llvm::GlobalValue::InternalLinkage && 4030 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4031 GV->setExternallyInitialized(true); 4032 } else { 4033 // Host-side shadows of external declarations of device-side 4034 // global variables become internal definitions. These have to 4035 // be internal in order to prevent name conflicts with global 4036 // host variables with the same name in a different TUs. 4037 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4038 D->hasAttr<HIPPinnedShadowAttr>()) { 4039 Linkage = llvm::GlobalValue::InternalLinkage; 4040 4041 // Shadow variables and their properties must be registered 4042 // with CUDA runtime. 4043 unsigned Flags = 0; 4044 if (!D->hasDefinition()) 4045 Flags |= CGCUDARuntime::ExternDeviceVar; 4046 if (D->hasAttr<CUDAConstantAttr>()) 4047 Flags |= CGCUDARuntime::ConstantDeviceVar; 4048 // Extern global variables will be registered in the TU where they are 4049 // defined. 4050 if (!D->hasExternalStorage()) 4051 getCUDARuntime().registerDeviceVar(D, *GV, Flags); 4052 } else if (D->hasAttr<CUDASharedAttr>()) 4053 // __shared__ variables are odd. Shadows do get created, but 4054 // they are not registered with the CUDA runtime, so they 4055 // can't really be used to access their device-side 4056 // counterparts. It's not clear yet whether it's nvcc's bug or 4057 // a feature, but we've got to do the same for compatibility. 4058 Linkage = llvm::GlobalValue::InternalLinkage; 4059 } 4060 } 4061 4062 if (!IsHIPPinnedShadowVar) 4063 GV->setInitializer(Init); 4064 if (emitter) emitter->finalize(GV); 4065 4066 // If it is safe to mark the global 'constant', do so now. 4067 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4068 isTypeConstant(D->getType(), true)); 4069 4070 // If it is in a read-only section, mark it 'constant'. 4071 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4072 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4073 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4074 GV->setConstant(true); 4075 } 4076 4077 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4078 4079 // On Darwin, if the normal linkage of a C++ thread_local variable is 4080 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 4081 // copies within a linkage unit; otherwise, the backing variable has 4082 // internal linkage and all accesses should just be calls to the 4083 // Itanium-specified entry point, which has the normal linkage of the 4084 // variable. This is to preserve the ability to change the implementation 4085 // behind the scenes. 4086 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 4087 Context.getTargetInfo().getTriple().isOSDarwin() && 4088 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 4089 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 4090 Linkage = llvm::GlobalValue::InternalLinkage; 4091 4092 GV->setLinkage(Linkage); 4093 if (D->hasAttr<DLLImportAttr>()) 4094 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4095 else if (D->hasAttr<DLLExportAttr>()) 4096 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4097 else 4098 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4099 4100 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4101 // common vars aren't constant even if declared const. 4102 GV->setConstant(false); 4103 // Tentative definition of global variables may be initialized with 4104 // non-zero null pointers. In this case they should have weak linkage 4105 // since common linkage must have zero initializer and must not have 4106 // explicit section therefore cannot have non-zero initial value. 4107 if (!GV->getInitializer()->isNullValue()) 4108 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4109 } 4110 4111 setNonAliasAttributes(D, GV); 4112 4113 if (D->getTLSKind() && !GV->isThreadLocal()) { 4114 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4115 CXXThreadLocals.push_back(D); 4116 setTLSMode(GV, *D); 4117 } 4118 4119 maybeSetTrivialComdat(*D, *GV); 4120 4121 // Emit the initializer function if necessary. 4122 if (NeedsGlobalCtor || NeedsGlobalDtor) 4123 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4124 4125 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4126 4127 // Emit global variable debug information. 4128 if (CGDebugInfo *DI = getModuleDebugInfo()) 4129 if (getCodeGenOpts().hasReducedDebugInfo()) 4130 DI->EmitGlobalVariable(GV, D); 4131 } 4132 4133 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4134 if (CGDebugInfo *DI = getModuleDebugInfo()) 4135 if (getCodeGenOpts().hasReducedDebugInfo()) { 4136 QualType ASTTy = D->getType(); 4137 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4138 llvm::PointerType *PTy = 4139 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4140 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4141 DI->EmitExternalVariable( 4142 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4143 } 4144 } 4145 4146 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4147 CodeGenModule &CGM, const VarDecl *D, 4148 bool NoCommon) { 4149 // Don't give variables common linkage if -fno-common was specified unless it 4150 // was overridden by a NoCommon attribute. 4151 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4152 return true; 4153 4154 // C11 6.9.2/2: 4155 // A declaration of an identifier for an object that has file scope without 4156 // an initializer, and without a storage-class specifier or with the 4157 // storage-class specifier static, constitutes a tentative definition. 4158 if (D->getInit() || D->hasExternalStorage()) 4159 return true; 4160 4161 // A variable cannot be both common and exist in a section. 4162 if (D->hasAttr<SectionAttr>()) 4163 return true; 4164 4165 // A variable cannot be both common and exist in a section. 4166 // We don't try to determine which is the right section in the front-end. 4167 // If no specialized section name is applicable, it will resort to default. 4168 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4169 D->hasAttr<PragmaClangDataSectionAttr>() || 4170 D->hasAttr<PragmaClangRelroSectionAttr>() || 4171 D->hasAttr<PragmaClangRodataSectionAttr>()) 4172 return true; 4173 4174 // Thread local vars aren't considered common linkage. 4175 if (D->getTLSKind()) 4176 return true; 4177 4178 // Tentative definitions marked with WeakImportAttr are true definitions. 4179 if (D->hasAttr<WeakImportAttr>()) 4180 return true; 4181 4182 // A variable cannot be both common and exist in a comdat. 4183 if (shouldBeInCOMDAT(CGM, *D)) 4184 return true; 4185 4186 // Declarations with a required alignment do not have common linkage in MSVC 4187 // mode. 4188 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4189 if (D->hasAttr<AlignedAttr>()) 4190 return true; 4191 QualType VarType = D->getType(); 4192 if (Context.isAlignmentRequired(VarType)) 4193 return true; 4194 4195 if (const auto *RT = VarType->getAs<RecordType>()) { 4196 const RecordDecl *RD = RT->getDecl(); 4197 for (const FieldDecl *FD : RD->fields()) { 4198 if (FD->isBitField()) 4199 continue; 4200 if (FD->hasAttr<AlignedAttr>()) 4201 return true; 4202 if (Context.isAlignmentRequired(FD->getType())) 4203 return true; 4204 } 4205 } 4206 } 4207 4208 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4209 // common symbols, so symbols with greater alignment requirements cannot be 4210 // common. 4211 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4212 // alignments for common symbols via the aligncomm directive, so this 4213 // restriction only applies to MSVC environments. 4214 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4215 Context.getTypeAlignIfKnown(D->getType()) > 4216 Context.toBits(CharUnits::fromQuantity(32))) 4217 return true; 4218 4219 return false; 4220 } 4221 4222 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4223 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4224 if (Linkage == GVA_Internal) 4225 return llvm::Function::InternalLinkage; 4226 4227 if (D->hasAttr<WeakAttr>()) { 4228 if (IsConstantVariable) 4229 return llvm::GlobalVariable::WeakODRLinkage; 4230 else 4231 return llvm::GlobalVariable::WeakAnyLinkage; 4232 } 4233 4234 if (const auto *FD = D->getAsFunction()) 4235 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4236 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4237 4238 // We are guaranteed to have a strong definition somewhere else, 4239 // so we can use available_externally linkage. 4240 if (Linkage == GVA_AvailableExternally) 4241 return llvm::GlobalValue::AvailableExternallyLinkage; 4242 4243 // Note that Apple's kernel linker doesn't support symbol 4244 // coalescing, so we need to avoid linkonce and weak linkages there. 4245 // Normally, this means we just map to internal, but for explicit 4246 // instantiations we'll map to external. 4247 4248 // In C++, the compiler has to emit a definition in every translation unit 4249 // that references the function. We should use linkonce_odr because 4250 // a) if all references in this translation unit are optimized away, we 4251 // don't need to codegen it. b) if the function persists, it needs to be 4252 // merged with other definitions. c) C++ has the ODR, so we know the 4253 // definition is dependable. 4254 if (Linkage == GVA_DiscardableODR) 4255 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4256 : llvm::Function::InternalLinkage; 4257 4258 // An explicit instantiation of a template has weak linkage, since 4259 // explicit instantiations can occur in multiple translation units 4260 // and must all be equivalent. However, we are not allowed to 4261 // throw away these explicit instantiations. 4262 // 4263 // We don't currently support CUDA device code spread out across multiple TUs, 4264 // so say that CUDA templates are either external (for kernels) or internal. 4265 // This lets llvm perform aggressive inter-procedural optimizations. 4266 if (Linkage == GVA_StrongODR) { 4267 if (Context.getLangOpts().AppleKext) 4268 return llvm::Function::ExternalLinkage; 4269 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4270 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4271 : llvm::Function::InternalLinkage; 4272 return llvm::Function::WeakODRLinkage; 4273 } 4274 4275 // C++ doesn't have tentative definitions and thus cannot have common 4276 // linkage. 4277 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4278 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4279 CodeGenOpts.NoCommon)) 4280 return llvm::GlobalVariable::CommonLinkage; 4281 4282 // selectany symbols are externally visible, so use weak instead of 4283 // linkonce. MSVC optimizes away references to const selectany globals, so 4284 // all definitions should be the same and ODR linkage should be used. 4285 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4286 if (D->hasAttr<SelectAnyAttr>()) 4287 return llvm::GlobalVariable::WeakODRLinkage; 4288 4289 // Otherwise, we have strong external linkage. 4290 assert(Linkage == GVA_StrongExternal); 4291 return llvm::GlobalVariable::ExternalLinkage; 4292 } 4293 4294 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4295 const VarDecl *VD, bool IsConstant) { 4296 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4297 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4298 } 4299 4300 /// Replace the uses of a function that was declared with a non-proto type. 4301 /// We want to silently drop extra arguments from call sites 4302 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4303 llvm::Function *newFn) { 4304 // Fast path. 4305 if (old->use_empty()) return; 4306 4307 llvm::Type *newRetTy = newFn->getReturnType(); 4308 SmallVector<llvm::Value*, 4> newArgs; 4309 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4310 4311 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4312 ui != ue; ) { 4313 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4314 llvm::User *user = use->getUser(); 4315 4316 // Recognize and replace uses of bitcasts. Most calls to 4317 // unprototyped functions will use bitcasts. 4318 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4319 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4320 replaceUsesOfNonProtoConstant(bitcast, newFn); 4321 continue; 4322 } 4323 4324 // Recognize calls to the function. 4325 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4326 if (!callSite) continue; 4327 if (!callSite->isCallee(&*use)) 4328 continue; 4329 4330 // If the return types don't match exactly, then we can't 4331 // transform this call unless it's dead. 4332 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4333 continue; 4334 4335 // Get the call site's attribute list. 4336 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4337 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4338 4339 // If the function was passed too few arguments, don't transform. 4340 unsigned newNumArgs = newFn->arg_size(); 4341 if (callSite->arg_size() < newNumArgs) 4342 continue; 4343 4344 // If extra arguments were passed, we silently drop them. 4345 // If any of the types mismatch, we don't transform. 4346 unsigned argNo = 0; 4347 bool dontTransform = false; 4348 for (llvm::Argument &A : newFn->args()) { 4349 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4350 dontTransform = true; 4351 break; 4352 } 4353 4354 // Add any parameter attributes. 4355 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4356 argNo++; 4357 } 4358 if (dontTransform) 4359 continue; 4360 4361 // Okay, we can transform this. Create the new call instruction and copy 4362 // over the required information. 4363 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4364 4365 // Copy over any operand bundles. 4366 callSite->getOperandBundlesAsDefs(newBundles); 4367 4368 llvm::CallBase *newCall; 4369 if (dyn_cast<llvm::CallInst>(callSite)) { 4370 newCall = 4371 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4372 } else { 4373 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4374 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4375 oldInvoke->getUnwindDest(), newArgs, 4376 newBundles, "", callSite); 4377 } 4378 newArgs.clear(); // for the next iteration 4379 4380 if (!newCall->getType()->isVoidTy()) 4381 newCall->takeName(callSite); 4382 newCall->setAttributes(llvm::AttributeList::get( 4383 newFn->getContext(), oldAttrs.getFnAttributes(), 4384 oldAttrs.getRetAttributes(), newArgAttrs)); 4385 newCall->setCallingConv(callSite->getCallingConv()); 4386 4387 // Finally, remove the old call, replacing any uses with the new one. 4388 if (!callSite->use_empty()) 4389 callSite->replaceAllUsesWith(newCall); 4390 4391 // Copy debug location attached to CI. 4392 if (callSite->getDebugLoc()) 4393 newCall->setDebugLoc(callSite->getDebugLoc()); 4394 4395 callSite->eraseFromParent(); 4396 } 4397 } 4398 4399 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4400 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4401 /// existing call uses of the old function in the module, this adjusts them to 4402 /// call the new function directly. 4403 /// 4404 /// This is not just a cleanup: the always_inline pass requires direct calls to 4405 /// functions to be able to inline them. If there is a bitcast in the way, it 4406 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4407 /// run at -O0. 4408 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4409 llvm::Function *NewFn) { 4410 // If we're redefining a global as a function, don't transform it. 4411 if (!isa<llvm::Function>(Old)) return; 4412 4413 replaceUsesOfNonProtoConstant(Old, NewFn); 4414 } 4415 4416 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4417 auto DK = VD->isThisDeclarationADefinition(); 4418 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4419 return; 4420 4421 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4422 // If we have a definition, this might be a deferred decl. If the 4423 // instantiation is explicit, make sure we emit it at the end. 4424 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4425 GetAddrOfGlobalVar(VD); 4426 4427 EmitTopLevelDecl(VD); 4428 } 4429 4430 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4431 llvm::GlobalValue *GV) { 4432 // Check if this must be emitted as declare variant. 4433 if (LangOpts.OpenMP && OpenMPRuntime && 4434 OpenMPRuntime->emitDeclareVariant(GD, /*IsForDefinition=*/true)) 4435 return; 4436 4437 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4438 4439 // Compute the function info and LLVM type. 4440 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4441 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4442 4443 // Get or create the prototype for the function. 4444 if (!GV || (GV->getType()->getElementType() != Ty)) 4445 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4446 /*DontDefer=*/true, 4447 ForDefinition)); 4448 4449 // Already emitted. 4450 if (!GV->isDeclaration()) 4451 return; 4452 4453 // We need to set linkage and visibility on the function before 4454 // generating code for it because various parts of IR generation 4455 // want to propagate this information down (e.g. to local static 4456 // declarations). 4457 auto *Fn = cast<llvm::Function>(GV); 4458 setFunctionLinkage(GD, Fn); 4459 4460 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4461 setGVProperties(Fn, GD); 4462 4463 MaybeHandleStaticInExternC(D, Fn); 4464 4465 4466 maybeSetTrivialComdat(*D, *Fn); 4467 4468 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 4469 4470 setNonAliasAttributes(GD, Fn); 4471 SetLLVMFunctionAttributesForDefinition(D, Fn); 4472 4473 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4474 AddGlobalCtor(Fn, CA->getPriority()); 4475 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4476 AddGlobalDtor(Fn, DA->getPriority()); 4477 if (D->hasAttr<AnnotateAttr>()) 4478 AddGlobalAnnotations(D, Fn); 4479 } 4480 4481 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4482 const auto *D = cast<ValueDecl>(GD.getDecl()); 4483 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4484 assert(AA && "Not an alias?"); 4485 4486 StringRef MangledName = getMangledName(GD); 4487 4488 if (AA->getAliasee() == MangledName) { 4489 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4490 return; 4491 } 4492 4493 // If there is a definition in the module, then it wins over the alias. 4494 // This is dubious, but allow it to be safe. Just ignore the alias. 4495 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4496 if (Entry && !Entry->isDeclaration()) 4497 return; 4498 4499 Aliases.push_back(GD); 4500 4501 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4502 4503 // Create a reference to the named value. This ensures that it is emitted 4504 // if a deferred decl. 4505 llvm::Constant *Aliasee; 4506 llvm::GlobalValue::LinkageTypes LT; 4507 if (isa<llvm::FunctionType>(DeclTy)) { 4508 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4509 /*ForVTable=*/false); 4510 LT = getFunctionLinkage(GD); 4511 } else { 4512 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4513 llvm::PointerType::getUnqual(DeclTy), 4514 /*D=*/nullptr); 4515 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4516 D->getType().isConstQualified()); 4517 } 4518 4519 // Create the new alias itself, but don't set a name yet. 4520 auto *GA = 4521 llvm::GlobalAlias::create(DeclTy, 0, LT, "", Aliasee, &getModule()); 4522 4523 if (Entry) { 4524 if (GA->getAliasee() == Entry) { 4525 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4526 return; 4527 } 4528 4529 assert(Entry->isDeclaration()); 4530 4531 // If there is a declaration in the module, then we had an extern followed 4532 // by the alias, as in: 4533 // extern int test6(); 4534 // ... 4535 // int test6() __attribute__((alias("test7"))); 4536 // 4537 // Remove it and replace uses of it with the alias. 4538 GA->takeName(Entry); 4539 4540 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4541 Entry->getType())); 4542 Entry->eraseFromParent(); 4543 } else { 4544 GA->setName(MangledName); 4545 } 4546 4547 // Set attributes which are particular to an alias; this is a 4548 // specialization of the attributes which may be set on a global 4549 // variable/function. 4550 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4551 D->isWeakImported()) { 4552 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4553 } 4554 4555 if (const auto *VD = dyn_cast<VarDecl>(D)) 4556 if (VD->getTLSKind()) 4557 setTLSMode(GA, *VD); 4558 4559 SetCommonAttributes(GD, GA); 4560 } 4561 4562 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4563 const auto *D = cast<ValueDecl>(GD.getDecl()); 4564 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4565 assert(IFA && "Not an ifunc?"); 4566 4567 StringRef MangledName = getMangledName(GD); 4568 4569 if (IFA->getResolver() == MangledName) { 4570 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4571 return; 4572 } 4573 4574 // Report an error if some definition overrides ifunc. 4575 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4576 if (Entry && !Entry->isDeclaration()) { 4577 GlobalDecl OtherGD; 4578 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4579 DiagnosedConflictingDefinitions.insert(GD).second) { 4580 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4581 << MangledName; 4582 Diags.Report(OtherGD.getDecl()->getLocation(), 4583 diag::note_previous_definition); 4584 } 4585 return; 4586 } 4587 4588 Aliases.push_back(GD); 4589 4590 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4591 llvm::Constant *Resolver = 4592 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4593 /*ForVTable=*/false); 4594 llvm::GlobalIFunc *GIF = 4595 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4596 "", Resolver, &getModule()); 4597 if (Entry) { 4598 if (GIF->getResolver() == Entry) { 4599 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4600 return; 4601 } 4602 assert(Entry->isDeclaration()); 4603 4604 // If there is a declaration in the module, then we had an extern followed 4605 // by the ifunc, as in: 4606 // extern int test(); 4607 // ... 4608 // int test() __attribute__((ifunc("resolver"))); 4609 // 4610 // Remove it and replace uses of it with the ifunc. 4611 GIF->takeName(Entry); 4612 4613 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4614 Entry->getType())); 4615 Entry->eraseFromParent(); 4616 } else 4617 GIF->setName(MangledName); 4618 4619 SetCommonAttributes(GD, GIF); 4620 } 4621 4622 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4623 ArrayRef<llvm::Type*> Tys) { 4624 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4625 Tys); 4626 } 4627 4628 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4629 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4630 const StringLiteral *Literal, bool TargetIsLSB, 4631 bool &IsUTF16, unsigned &StringLength) { 4632 StringRef String = Literal->getString(); 4633 unsigned NumBytes = String.size(); 4634 4635 // Check for simple case. 4636 if (!Literal->containsNonAsciiOrNull()) { 4637 StringLength = NumBytes; 4638 return *Map.insert(std::make_pair(String, nullptr)).first; 4639 } 4640 4641 // Otherwise, convert the UTF8 literals into a string of shorts. 4642 IsUTF16 = true; 4643 4644 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4645 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4646 llvm::UTF16 *ToPtr = &ToBuf[0]; 4647 4648 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4649 ToPtr + NumBytes, llvm::strictConversion); 4650 4651 // ConvertUTF8toUTF16 returns the length in ToPtr. 4652 StringLength = ToPtr - &ToBuf[0]; 4653 4654 // Add an explicit null. 4655 *ToPtr = 0; 4656 return *Map.insert(std::make_pair( 4657 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4658 (StringLength + 1) * 2), 4659 nullptr)).first; 4660 } 4661 4662 ConstantAddress 4663 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4664 unsigned StringLength = 0; 4665 bool isUTF16 = false; 4666 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4667 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4668 getDataLayout().isLittleEndian(), isUTF16, 4669 StringLength); 4670 4671 if (auto *C = Entry.second) 4672 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4673 4674 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4675 llvm::Constant *Zeros[] = { Zero, Zero }; 4676 4677 const ASTContext &Context = getContext(); 4678 const llvm::Triple &Triple = getTriple(); 4679 4680 const auto CFRuntime = getLangOpts().CFRuntime; 4681 const bool IsSwiftABI = 4682 static_cast<unsigned>(CFRuntime) >= 4683 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4684 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4685 4686 // If we don't already have it, get __CFConstantStringClassReference. 4687 if (!CFConstantStringClassRef) { 4688 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4689 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4690 Ty = llvm::ArrayType::get(Ty, 0); 4691 4692 switch (CFRuntime) { 4693 default: break; 4694 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4695 case LangOptions::CoreFoundationABI::Swift5_0: 4696 CFConstantStringClassName = 4697 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4698 : "$s10Foundation19_NSCFConstantStringCN"; 4699 Ty = IntPtrTy; 4700 break; 4701 case LangOptions::CoreFoundationABI::Swift4_2: 4702 CFConstantStringClassName = 4703 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4704 : "$S10Foundation19_NSCFConstantStringCN"; 4705 Ty = IntPtrTy; 4706 break; 4707 case LangOptions::CoreFoundationABI::Swift4_1: 4708 CFConstantStringClassName = 4709 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4710 : "__T010Foundation19_NSCFConstantStringCN"; 4711 Ty = IntPtrTy; 4712 break; 4713 } 4714 4715 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4716 4717 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4718 llvm::GlobalValue *GV = nullptr; 4719 4720 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4721 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4722 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4723 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4724 4725 const VarDecl *VD = nullptr; 4726 for (const auto &Result : DC->lookup(&II)) 4727 if ((VD = dyn_cast<VarDecl>(Result))) 4728 break; 4729 4730 if (Triple.isOSBinFormatELF()) { 4731 if (!VD) 4732 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4733 } else { 4734 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4735 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4736 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4737 else 4738 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4739 } 4740 4741 setDSOLocal(GV); 4742 } 4743 } 4744 4745 // Decay array -> ptr 4746 CFConstantStringClassRef = 4747 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4748 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4749 } 4750 4751 QualType CFTy = Context.getCFConstantStringType(); 4752 4753 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4754 4755 ConstantInitBuilder Builder(*this); 4756 auto Fields = Builder.beginStruct(STy); 4757 4758 // Class pointer. 4759 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4760 4761 // Flags. 4762 if (IsSwiftABI) { 4763 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4764 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4765 } else { 4766 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4767 } 4768 4769 // String pointer. 4770 llvm::Constant *C = nullptr; 4771 if (isUTF16) { 4772 auto Arr = llvm::makeArrayRef( 4773 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4774 Entry.first().size() / 2); 4775 C = llvm::ConstantDataArray::get(VMContext, Arr); 4776 } else { 4777 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4778 } 4779 4780 // Note: -fwritable-strings doesn't make the backing store strings of 4781 // CFStrings writable. (See <rdar://problem/10657500>) 4782 auto *GV = 4783 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4784 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4785 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4786 // Don't enforce the target's minimum global alignment, since the only use 4787 // of the string is via this class initializer. 4788 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4789 : Context.getTypeAlignInChars(Context.CharTy); 4790 GV->setAlignment(Align.getAsAlign()); 4791 4792 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4793 // Without it LLVM can merge the string with a non unnamed_addr one during 4794 // LTO. Doing that changes the section it ends in, which surprises ld64. 4795 if (Triple.isOSBinFormatMachO()) 4796 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4797 : "__TEXT,__cstring,cstring_literals"); 4798 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4799 // the static linker to adjust permissions to read-only later on. 4800 else if (Triple.isOSBinFormatELF()) 4801 GV->setSection(".rodata"); 4802 4803 // String. 4804 llvm::Constant *Str = 4805 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4806 4807 if (isUTF16) 4808 // Cast the UTF16 string to the correct type. 4809 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4810 Fields.add(Str); 4811 4812 // String length. 4813 llvm::IntegerType *LengthTy = 4814 llvm::IntegerType::get(getModule().getContext(), 4815 Context.getTargetInfo().getLongWidth()); 4816 if (IsSwiftABI) { 4817 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4818 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4819 LengthTy = Int32Ty; 4820 else 4821 LengthTy = IntPtrTy; 4822 } 4823 Fields.addInt(LengthTy, StringLength); 4824 4825 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4826 // properly aligned on 32-bit platforms. 4827 CharUnits Alignment = 4828 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 4829 4830 // The struct. 4831 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4832 /*isConstant=*/false, 4833 llvm::GlobalVariable::PrivateLinkage); 4834 GV->addAttribute("objc_arc_inert"); 4835 switch (Triple.getObjectFormat()) { 4836 case llvm::Triple::UnknownObjectFormat: 4837 llvm_unreachable("unknown file format"); 4838 case llvm::Triple::XCOFF: 4839 llvm_unreachable("XCOFF is not yet implemented"); 4840 case llvm::Triple::COFF: 4841 case llvm::Triple::ELF: 4842 case llvm::Triple::Wasm: 4843 GV->setSection("cfstring"); 4844 break; 4845 case llvm::Triple::MachO: 4846 GV->setSection("__DATA,__cfstring"); 4847 break; 4848 } 4849 Entry.second = GV; 4850 4851 return ConstantAddress(GV, Alignment); 4852 } 4853 4854 bool CodeGenModule::getExpressionLocationsEnabled() const { 4855 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4856 } 4857 4858 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4859 if (ObjCFastEnumerationStateType.isNull()) { 4860 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4861 D->startDefinition(); 4862 4863 QualType FieldTypes[] = { 4864 Context.UnsignedLongTy, 4865 Context.getPointerType(Context.getObjCIdType()), 4866 Context.getPointerType(Context.UnsignedLongTy), 4867 Context.getConstantArrayType(Context.UnsignedLongTy, 4868 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 4869 }; 4870 4871 for (size_t i = 0; i < 4; ++i) { 4872 FieldDecl *Field = FieldDecl::Create(Context, 4873 D, 4874 SourceLocation(), 4875 SourceLocation(), nullptr, 4876 FieldTypes[i], /*TInfo=*/nullptr, 4877 /*BitWidth=*/nullptr, 4878 /*Mutable=*/false, 4879 ICIS_NoInit); 4880 Field->setAccess(AS_public); 4881 D->addDecl(Field); 4882 } 4883 4884 D->completeDefinition(); 4885 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4886 } 4887 4888 return ObjCFastEnumerationStateType; 4889 } 4890 4891 llvm::Constant * 4892 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4893 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4894 4895 // Don't emit it as the address of the string, emit the string data itself 4896 // as an inline array. 4897 if (E->getCharByteWidth() == 1) { 4898 SmallString<64> Str(E->getString()); 4899 4900 // Resize the string to the right size, which is indicated by its type. 4901 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4902 Str.resize(CAT->getSize().getZExtValue()); 4903 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4904 } 4905 4906 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4907 llvm::Type *ElemTy = AType->getElementType(); 4908 unsigned NumElements = AType->getNumElements(); 4909 4910 // Wide strings have either 2-byte or 4-byte elements. 4911 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4912 SmallVector<uint16_t, 32> Elements; 4913 Elements.reserve(NumElements); 4914 4915 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4916 Elements.push_back(E->getCodeUnit(i)); 4917 Elements.resize(NumElements); 4918 return llvm::ConstantDataArray::get(VMContext, Elements); 4919 } 4920 4921 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4922 SmallVector<uint32_t, 32> Elements; 4923 Elements.reserve(NumElements); 4924 4925 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4926 Elements.push_back(E->getCodeUnit(i)); 4927 Elements.resize(NumElements); 4928 return llvm::ConstantDataArray::get(VMContext, Elements); 4929 } 4930 4931 static llvm::GlobalVariable * 4932 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4933 CodeGenModule &CGM, StringRef GlobalName, 4934 CharUnits Alignment) { 4935 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4936 CGM.getStringLiteralAddressSpace()); 4937 4938 llvm::Module &M = CGM.getModule(); 4939 // Create a global variable for this string 4940 auto *GV = new llvm::GlobalVariable( 4941 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4942 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4943 GV->setAlignment(Alignment.getAsAlign()); 4944 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4945 if (GV->isWeakForLinker()) { 4946 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4947 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4948 } 4949 CGM.setDSOLocal(GV); 4950 4951 return GV; 4952 } 4953 4954 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4955 /// constant array for the given string literal. 4956 ConstantAddress 4957 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4958 StringRef Name) { 4959 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4960 4961 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4962 llvm::GlobalVariable **Entry = nullptr; 4963 if (!LangOpts.WritableStrings) { 4964 Entry = &ConstantStringMap[C]; 4965 if (auto GV = *Entry) { 4966 if (Alignment.getQuantity() > GV->getAlignment()) 4967 GV->setAlignment(Alignment.getAsAlign()); 4968 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4969 Alignment); 4970 } 4971 } 4972 4973 SmallString<256> MangledNameBuffer; 4974 StringRef GlobalVariableName; 4975 llvm::GlobalValue::LinkageTypes LT; 4976 4977 // Mangle the string literal if that's how the ABI merges duplicate strings. 4978 // Don't do it if they are writable, since we don't want writes in one TU to 4979 // affect strings in another. 4980 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4981 !LangOpts.WritableStrings) { 4982 llvm::raw_svector_ostream Out(MangledNameBuffer); 4983 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4984 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4985 GlobalVariableName = MangledNameBuffer; 4986 } else { 4987 LT = llvm::GlobalValue::PrivateLinkage; 4988 GlobalVariableName = Name; 4989 } 4990 4991 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4992 if (Entry) 4993 *Entry = GV; 4994 4995 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4996 QualType()); 4997 4998 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4999 Alignment); 5000 } 5001 5002 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5003 /// array for the given ObjCEncodeExpr node. 5004 ConstantAddress 5005 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5006 std::string Str; 5007 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5008 5009 return GetAddrOfConstantCString(Str); 5010 } 5011 5012 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5013 /// the literal and a terminating '\0' character. 5014 /// The result has pointer to array type. 5015 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5016 const std::string &Str, const char *GlobalName) { 5017 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5018 CharUnits Alignment = 5019 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5020 5021 llvm::Constant *C = 5022 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5023 5024 // Don't share any string literals if strings aren't constant. 5025 llvm::GlobalVariable **Entry = nullptr; 5026 if (!LangOpts.WritableStrings) { 5027 Entry = &ConstantStringMap[C]; 5028 if (auto GV = *Entry) { 5029 if (Alignment.getQuantity() > GV->getAlignment()) 5030 GV->setAlignment(Alignment.getAsAlign()); 5031 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5032 Alignment); 5033 } 5034 } 5035 5036 // Get the default prefix if a name wasn't specified. 5037 if (!GlobalName) 5038 GlobalName = ".str"; 5039 // Create a global variable for this. 5040 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5041 GlobalName, Alignment); 5042 if (Entry) 5043 *Entry = GV; 5044 5045 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5046 Alignment); 5047 } 5048 5049 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5050 const MaterializeTemporaryExpr *E, const Expr *Init) { 5051 assert((E->getStorageDuration() == SD_Static || 5052 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5053 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5054 5055 // If we're not materializing a subobject of the temporary, keep the 5056 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5057 QualType MaterializedType = Init->getType(); 5058 if (Init == E->getSubExpr()) 5059 MaterializedType = E->getType(); 5060 5061 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5062 5063 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5064 return ConstantAddress(Slot, Align); 5065 5066 // FIXME: If an externally-visible declaration extends multiple temporaries, 5067 // we need to give each temporary the same name in every translation unit (and 5068 // we also need to make the temporaries externally-visible). 5069 SmallString<256> Name; 5070 llvm::raw_svector_ostream Out(Name); 5071 getCXXABI().getMangleContext().mangleReferenceTemporary( 5072 VD, E->getManglingNumber(), Out); 5073 5074 APValue *Value = nullptr; 5075 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5076 // If the initializer of the extending declaration is a constant 5077 // initializer, we should have a cached constant initializer for this 5078 // temporary. Note that this might have a different value from the value 5079 // computed by evaluating the initializer if the surrounding constant 5080 // expression modifies the temporary. 5081 Value = E->getOrCreateValue(false); 5082 } 5083 5084 // Try evaluating it now, it might have a constant initializer. 5085 Expr::EvalResult EvalResult; 5086 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5087 !EvalResult.hasSideEffects()) 5088 Value = &EvalResult.Val; 5089 5090 LangAS AddrSpace = 5091 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5092 5093 Optional<ConstantEmitter> emitter; 5094 llvm::Constant *InitialValue = nullptr; 5095 bool Constant = false; 5096 llvm::Type *Type; 5097 if (Value) { 5098 // The temporary has a constant initializer, use it. 5099 emitter.emplace(*this); 5100 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5101 MaterializedType); 5102 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5103 Type = InitialValue->getType(); 5104 } else { 5105 // No initializer, the initialization will be provided when we 5106 // initialize the declaration which performed lifetime extension. 5107 Type = getTypes().ConvertTypeForMem(MaterializedType); 5108 } 5109 5110 // Create a global variable for this lifetime-extended temporary. 5111 llvm::GlobalValue::LinkageTypes Linkage = 5112 getLLVMLinkageVarDefinition(VD, Constant); 5113 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5114 const VarDecl *InitVD; 5115 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5116 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5117 // Temporaries defined inside a class get linkonce_odr linkage because the 5118 // class can be defined in multiple translation units. 5119 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5120 } else { 5121 // There is no need for this temporary to have external linkage if the 5122 // VarDecl has external linkage. 5123 Linkage = llvm::GlobalVariable::InternalLinkage; 5124 } 5125 } 5126 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5127 auto *GV = new llvm::GlobalVariable( 5128 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5129 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5130 if (emitter) emitter->finalize(GV); 5131 setGVProperties(GV, VD); 5132 GV->setAlignment(Align.getAsAlign()); 5133 if (supportsCOMDAT() && GV->isWeakForLinker()) 5134 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5135 if (VD->getTLSKind()) 5136 setTLSMode(GV, *VD); 5137 llvm::Constant *CV = GV; 5138 if (AddrSpace != LangAS::Default) 5139 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5140 *this, GV, AddrSpace, LangAS::Default, 5141 Type->getPointerTo( 5142 getContext().getTargetAddressSpace(LangAS::Default))); 5143 MaterializedGlobalTemporaryMap[E] = CV; 5144 return ConstantAddress(CV, Align); 5145 } 5146 5147 /// EmitObjCPropertyImplementations - Emit information for synthesized 5148 /// properties for an implementation. 5149 void CodeGenModule::EmitObjCPropertyImplementations(const 5150 ObjCImplementationDecl *D) { 5151 for (const auto *PID : D->property_impls()) { 5152 // Dynamic is just for type-checking. 5153 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5154 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5155 5156 // Determine which methods need to be implemented, some may have 5157 // been overridden. Note that ::isPropertyAccessor is not the method 5158 // we want, that just indicates if the decl came from a 5159 // property. What we want to know is if the method is defined in 5160 // this implementation. 5161 auto *Getter = PID->getGetterMethodDecl(); 5162 if (!Getter || Getter->isSynthesizedAccessorStub()) 5163 CodeGenFunction(*this).GenerateObjCGetter( 5164 const_cast<ObjCImplementationDecl *>(D), PID); 5165 auto *Setter = PID->getSetterMethodDecl(); 5166 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5167 CodeGenFunction(*this).GenerateObjCSetter( 5168 const_cast<ObjCImplementationDecl *>(D), PID); 5169 } 5170 } 5171 } 5172 5173 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5174 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5175 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5176 ivar; ivar = ivar->getNextIvar()) 5177 if (ivar->getType().isDestructedType()) 5178 return true; 5179 5180 return false; 5181 } 5182 5183 static bool AllTrivialInitializers(CodeGenModule &CGM, 5184 ObjCImplementationDecl *D) { 5185 CodeGenFunction CGF(CGM); 5186 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5187 E = D->init_end(); B != E; ++B) { 5188 CXXCtorInitializer *CtorInitExp = *B; 5189 Expr *Init = CtorInitExp->getInit(); 5190 if (!CGF.isTrivialInitializer(Init)) 5191 return false; 5192 } 5193 return true; 5194 } 5195 5196 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5197 /// for an implementation. 5198 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5199 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5200 if (needsDestructMethod(D)) { 5201 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5202 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5203 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5204 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5205 getContext().VoidTy, nullptr, D, 5206 /*isInstance=*/true, /*isVariadic=*/false, 5207 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5208 /*isImplicitlyDeclared=*/true, 5209 /*isDefined=*/false, ObjCMethodDecl::Required); 5210 D->addInstanceMethod(DTORMethod); 5211 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5212 D->setHasDestructors(true); 5213 } 5214 5215 // If the implementation doesn't have any ivar initializers, we don't need 5216 // a .cxx_construct. 5217 if (D->getNumIvarInitializers() == 0 || 5218 AllTrivialInitializers(*this, D)) 5219 return; 5220 5221 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5222 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5223 // The constructor returns 'self'. 5224 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5225 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5226 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5227 /*isVariadic=*/false, 5228 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5229 /*isImplicitlyDeclared=*/true, 5230 /*isDefined=*/false, ObjCMethodDecl::Required); 5231 D->addInstanceMethod(CTORMethod); 5232 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5233 D->setHasNonZeroConstructors(true); 5234 } 5235 5236 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5237 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5238 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5239 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5240 ErrorUnsupported(LSD, "linkage spec"); 5241 return; 5242 } 5243 5244 EmitDeclContext(LSD); 5245 } 5246 5247 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5248 for (auto *I : DC->decls()) { 5249 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5250 // are themselves considered "top-level", so EmitTopLevelDecl on an 5251 // ObjCImplDecl does not recursively visit them. We need to do that in 5252 // case they're nested inside another construct (LinkageSpecDecl / 5253 // ExportDecl) that does stop them from being considered "top-level". 5254 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5255 for (auto *M : OID->methods()) 5256 EmitTopLevelDecl(M); 5257 } 5258 5259 EmitTopLevelDecl(I); 5260 } 5261 } 5262 5263 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5264 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5265 // Ignore dependent declarations. 5266 if (D->isTemplated()) 5267 return; 5268 5269 switch (D->getKind()) { 5270 case Decl::CXXConversion: 5271 case Decl::CXXMethod: 5272 case Decl::Function: 5273 EmitGlobal(cast<FunctionDecl>(D)); 5274 // Always provide some coverage mapping 5275 // even for the functions that aren't emitted. 5276 AddDeferredUnusedCoverageMapping(D); 5277 break; 5278 5279 case Decl::CXXDeductionGuide: 5280 // Function-like, but does not result in code emission. 5281 break; 5282 5283 case Decl::Var: 5284 case Decl::Decomposition: 5285 case Decl::VarTemplateSpecialization: 5286 EmitGlobal(cast<VarDecl>(D)); 5287 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5288 for (auto *B : DD->bindings()) 5289 if (auto *HD = B->getHoldingVar()) 5290 EmitGlobal(HD); 5291 break; 5292 5293 // Indirect fields from global anonymous structs and unions can be 5294 // ignored; only the actual variable requires IR gen support. 5295 case Decl::IndirectField: 5296 break; 5297 5298 // C++ Decls 5299 case Decl::Namespace: 5300 EmitDeclContext(cast<NamespaceDecl>(D)); 5301 break; 5302 case Decl::ClassTemplateSpecialization: { 5303 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5304 if (DebugInfo && 5305 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 5306 Spec->hasDefinition()) 5307 DebugInfo->completeTemplateDefinition(*Spec); 5308 } LLVM_FALLTHROUGH; 5309 case Decl::CXXRecord: 5310 if (DebugInfo) { 5311 if (auto *ES = D->getASTContext().getExternalSource()) 5312 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5313 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 5314 } 5315 // Emit any static data members, they may be definitions. 5316 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 5317 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5318 EmitTopLevelDecl(I); 5319 break; 5320 // No code generation needed. 5321 case Decl::UsingShadow: 5322 case Decl::ClassTemplate: 5323 case Decl::VarTemplate: 5324 case Decl::Concept: 5325 case Decl::VarTemplatePartialSpecialization: 5326 case Decl::FunctionTemplate: 5327 case Decl::TypeAliasTemplate: 5328 case Decl::Block: 5329 case Decl::Empty: 5330 case Decl::Binding: 5331 break; 5332 case Decl::Using: // using X; [C++] 5333 if (CGDebugInfo *DI = getModuleDebugInfo()) 5334 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5335 return; 5336 case Decl::NamespaceAlias: 5337 if (CGDebugInfo *DI = getModuleDebugInfo()) 5338 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5339 return; 5340 case Decl::UsingDirective: // using namespace X; [C++] 5341 if (CGDebugInfo *DI = getModuleDebugInfo()) 5342 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5343 return; 5344 case Decl::CXXConstructor: 5345 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5346 break; 5347 case Decl::CXXDestructor: 5348 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5349 break; 5350 5351 case Decl::StaticAssert: 5352 // Nothing to do. 5353 break; 5354 5355 // Objective-C Decls 5356 5357 // Forward declarations, no (immediate) code generation. 5358 case Decl::ObjCInterface: 5359 case Decl::ObjCCategory: 5360 break; 5361 5362 case Decl::ObjCProtocol: { 5363 auto *Proto = cast<ObjCProtocolDecl>(D); 5364 if (Proto->isThisDeclarationADefinition()) 5365 ObjCRuntime->GenerateProtocol(Proto); 5366 break; 5367 } 5368 5369 case Decl::ObjCCategoryImpl: 5370 // Categories have properties but don't support synthesize so we 5371 // can ignore them here. 5372 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5373 break; 5374 5375 case Decl::ObjCImplementation: { 5376 auto *OMD = cast<ObjCImplementationDecl>(D); 5377 EmitObjCPropertyImplementations(OMD); 5378 EmitObjCIvarInitializations(OMD); 5379 ObjCRuntime->GenerateClass(OMD); 5380 // Emit global variable debug information. 5381 if (CGDebugInfo *DI = getModuleDebugInfo()) 5382 if (getCodeGenOpts().hasReducedDebugInfo()) 5383 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5384 OMD->getClassInterface()), OMD->getLocation()); 5385 break; 5386 } 5387 case Decl::ObjCMethod: { 5388 auto *OMD = cast<ObjCMethodDecl>(D); 5389 // If this is not a prototype, emit the body. 5390 if (OMD->getBody()) 5391 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5392 break; 5393 } 5394 case Decl::ObjCCompatibleAlias: 5395 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5396 break; 5397 5398 case Decl::PragmaComment: { 5399 const auto *PCD = cast<PragmaCommentDecl>(D); 5400 switch (PCD->getCommentKind()) { 5401 case PCK_Unknown: 5402 llvm_unreachable("unexpected pragma comment kind"); 5403 case PCK_Linker: 5404 AppendLinkerOptions(PCD->getArg()); 5405 break; 5406 case PCK_Lib: 5407 AddDependentLib(PCD->getArg()); 5408 break; 5409 case PCK_Compiler: 5410 case PCK_ExeStr: 5411 case PCK_User: 5412 break; // We ignore all of these. 5413 } 5414 break; 5415 } 5416 5417 case Decl::PragmaDetectMismatch: { 5418 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5419 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5420 break; 5421 } 5422 5423 case Decl::LinkageSpec: 5424 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5425 break; 5426 5427 case Decl::FileScopeAsm: { 5428 // File-scope asm is ignored during device-side CUDA compilation. 5429 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5430 break; 5431 // File-scope asm is ignored during device-side OpenMP compilation. 5432 if (LangOpts.OpenMPIsDevice) 5433 break; 5434 auto *AD = cast<FileScopeAsmDecl>(D); 5435 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5436 break; 5437 } 5438 5439 case Decl::Import: { 5440 auto *Import = cast<ImportDecl>(D); 5441 5442 // If we've already imported this module, we're done. 5443 if (!ImportedModules.insert(Import->getImportedModule())) 5444 break; 5445 5446 // Emit debug information for direct imports. 5447 if (!Import->getImportedOwningModule()) { 5448 if (CGDebugInfo *DI = getModuleDebugInfo()) 5449 DI->EmitImportDecl(*Import); 5450 } 5451 5452 // Find all of the submodules and emit the module initializers. 5453 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5454 SmallVector<clang::Module *, 16> Stack; 5455 Visited.insert(Import->getImportedModule()); 5456 Stack.push_back(Import->getImportedModule()); 5457 5458 while (!Stack.empty()) { 5459 clang::Module *Mod = Stack.pop_back_val(); 5460 if (!EmittedModuleInitializers.insert(Mod).second) 5461 continue; 5462 5463 for (auto *D : Context.getModuleInitializers(Mod)) 5464 EmitTopLevelDecl(D); 5465 5466 // Visit the submodules of this module. 5467 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5468 SubEnd = Mod->submodule_end(); 5469 Sub != SubEnd; ++Sub) { 5470 // Skip explicit children; they need to be explicitly imported to emit 5471 // the initializers. 5472 if ((*Sub)->IsExplicit) 5473 continue; 5474 5475 if (Visited.insert(*Sub).second) 5476 Stack.push_back(*Sub); 5477 } 5478 } 5479 break; 5480 } 5481 5482 case Decl::Export: 5483 EmitDeclContext(cast<ExportDecl>(D)); 5484 break; 5485 5486 case Decl::OMPThreadPrivate: 5487 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5488 break; 5489 5490 case Decl::OMPAllocate: 5491 break; 5492 5493 case Decl::OMPDeclareReduction: 5494 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5495 break; 5496 5497 case Decl::OMPDeclareMapper: 5498 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5499 break; 5500 5501 case Decl::OMPRequires: 5502 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5503 break; 5504 5505 default: 5506 // Make sure we handled everything we should, every other kind is a 5507 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5508 // function. Need to recode Decl::Kind to do that easily. 5509 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5510 break; 5511 } 5512 } 5513 5514 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5515 // Do we need to generate coverage mapping? 5516 if (!CodeGenOpts.CoverageMapping) 5517 return; 5518 switch (D->getKind()) { 5519 case Decl::CXXConversion: 5520 case Decl::CXXMethod: 5521 case Decl::Function: 5522 case Decl::ObjCMethod: 5523 case Decl::CXXConstructor: 5524 case Decl::CXXDestructor: { 5525 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5526 return; 5527 SourceManager &SM = getContext().getSourceManager(); 5528 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5529 return; 5530 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5531 if (I == DeferredEmptyCoverageMappingDecls.end()) 5532 DeferredEmptyCoverageMappingDecls[D] = true; 5533 break; 5534 } 5535 default: 5536 break; 5537 }; 5538 } 5539 5540 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5541 // Do we need to generate coverage mapping? 5542 if (!CodeGenOpts.CoverageMapping) 5543 return; 5544 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5545 if (Fn->isTemplateInstantiation()) 5546 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5547 } 5548 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5549 if (I == DeferredEmptyCoverageMappingDecls.end()) 5550 DeferredEmptyCoverageMappingDecls[D] = false; 5551 else 5552 I->second = false; 5553 } 5554 5555 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5556 // We call takeVector() here to avoid use-after-free. 5557 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5558 // we deserialize function bodies to emit coverage info for them, and that 5559 // deserializes more declarations. How should we handle that case? 5560 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5561 if (!Entry.second) 5562 continue; 5563 const Decl *D = Entry.first; 5564 switch (D->getKind()) { 5565 case Decl::CXXConversion: 5566 case Decl::CXXMethod: 5567 case Decl::Function: 5568 case Decl::ObjCMethod: { 5569 CodeGenPGO PGO(*this); 5570 GlobalDecl GD(cast<FunctionDecl>(D)); 5571 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5572 getFunctionLinkage(GD)); 5573 break; 5574 } 5575 case Decl::CXXConstructor: { 5576 CodeGenPGO PGO(*this); 5577 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5578 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5579 getFunctionLinkage(GD)); 5580 break; 5581 } 5582 case Decl::CXXDestructor: { 5583 CodeGenPGO PGO(*this); 5584 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5585 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5586 getFunctionLinkage(GD)); 5587 break; 5588 } 5589 default: 5590 break; 5591 }; 5592 } 5593 } 5594 5595 /// Turns the given pointer into a constant. 5596 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5597 const void *Ptr) { 5598 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5599 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5600 return llvm::ConstantInt::get(i64, PtrInt); 5601 } 5602 5603 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5604 llvm::NamedMDNode *&GlobalMetadata, 5605 GlobalDecl D, 5606 llvm::GlobalValue *Addr) { 5607 if (!GlobalMetadata) 5608 GlobalMetadata = 5609 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5610 5611 // TODO: should we report variant information for ctors/dtors? 5612 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5613 llvm::ConstantAsMetadata::get(GetPointerConstant( 5614 CGM.getLLVMContext(), D.getDecl()))}; 5615 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5616 } 5617 5618 /// For each function which is declared within an extern "C" region and marked 5619 /// as 'used', but has internal linkage, create an alias from the unmangled 5620 /// name to the mangled name if possible. People expect to be able to refer 5621 /// to such functions with an unmangled name from inline assembly within the 5622 /// same translation unit. 5623 void CodeGenModule::EmitStaticExternCAliases() { 5624 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5625 return; 5626 for (auto &I : StaticExternCValues) { 5627 IdentifierInfo *Name = I.first; 5628 llvm::GlobalValue *Val = I.second; 5629 if (Val && !getModule().getNamedValue(Name->getName())) 5630 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5631 } 5632 } 5633 5634 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5635 GlobalDecl &Result) const { 5636 auto Res = Manglings.find(MangledName); 5637 if (Res == Manglings.end()) 5638 return false; 5639 Result = Res->getValue(); 5640 return true; 5641 } 5642 5643 /// Emits metadata nodes associating all the global values in the 5644 /// current module with the Decls they came from. This is useful for 5645 /// projects using IR gen as a subroutine. 5646 /// 5647 /// Since there's currently no way to associate an MDNode directly 5648 /// with an llvm::GlobalValue, we create a global named metadata 5649 /// with the name 'clang.global.decl.ptrs'. 5650 void CodeGenModule::EmitDeclMetadata() { 5651 llvm::NamedMDNode *GlobalMetadata = nullptr; 5652 5653 for (auto &I : MangledDeclNames) { 5654 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5655 // Some mangled names don't necessarily have an associated GlobalValue 5656 // in this module, e.g. if we mangled it for DebugInfo. 5657 if (Addr) 5658 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5659 } 5660 } 5661 5662 /// Emits metadata nodes for all the local variables in the current 5663 /// function. 5664 void CodeGenFunction::EmitDeclMetadata() { 5665 if (LocalDeclMap.empty()) return; 5666 5667 llvm::LLVMContext &Context = getLLVMContext(); 5668 5669 // Find the unique metadata ID for this name. 5670 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5671 5672 llvm::NamedMDNode *GlobalMetadata = nullptr; 5673 5674 for (auto &I : LocalDeclMap) { 5675 const Decl *D = I.first; 5676 llvm::Value *Addr = I.second.getPointer(); 5677 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5678 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5679 Alloca->setMetadata( 5680 DeclPtrKind, llvm::MDNode::get( 5681 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5682 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5683 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5684 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5685 } 5686 } 5687 } 5688 5689 void CodeGenModule::EmitVersionIdentMetadata() { 5690 llvm::NamedMDNode *IdentMetadata = 5691 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5692 std::string Version = getClangFullVersion(); 5693 llvm::LLVMContext &Ctx = TheModule.getContext(); 5694 5695 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5696 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5697 } 5698 5699 void CodeGenModule::EmitCommandLineMetadata() { 5700 llvm::NamedMDNode *CommandLineMetadata = 5701 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5702 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5703 llvm::LLVMContext &Ctx = TheModule.getContext(); 5704 5705 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5706 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5707 } 5708 5709 void CodeGenModule::EmitTargetMetadata() { 5710 // Warning, new MangledDeclNames may be appended within this loop. 5711 // We rely on MapVector insertions adding new elements to the end 5712 // of the container. 5713 // FIXME: Move this loop into the one target that needs it, and only 5714 // loop over those declarations for which we couldn't emit the target 5715 // metadata when we emitted the declaration. 5716 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5717 auto Val = *(MangledDeclNames.begin() + I); 5718 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5719 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5720 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5721 } 5722 } 5723 5724 void CodeGenModule::EmitCoverageFile() { 5725 if (getCodeGenOpts().CoverageDataFile.empty() && 5726 getCodeGenOpts().CoverageNotesFile.empty()) 5727 return; 5728 5729 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5730 if (!CUNode) 5731 return; 5732 5733 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5734 llvm::LLVMContext &Ctx = TheModule.getContext(); 5735 auto *CoverageDataFile = 5736 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5737 auto *CoverageNotesFile = 5738 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5739 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5740 llvm::MDNode *CU = CUNode->getOperand(i); 5741 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5742 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5743 } 5744 } 5745 5746 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5747 // Sema has checked that all uuid strings are of the form 5748 // "12345678-1234-1234-1234-1234567890ab". 5749 assert(Uuid.size() == 36); 5750 for (unsigned i = 0; i < 36; ++i) { 5751 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5752 else assert(isHexDigit(Uuid[i])); 5753 } 5754 5755 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5756 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5757 5758 llvm::Constant *Field3[8]; 5759 for (unsigned Idx = 0; Idx < 8; ++Idx) 5760 Field3[Idx] = llvm::ConstantInt::get( 5761 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5762 5763 llvm::Constant *Fields[4] = { 5764 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5765 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5766 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5767 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5768 }; 5769 5770 return llvm::ConstantStruct::getAnon(Fields); 5771 } 5772 5773 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5774 bool ForEH) { 5775 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5776 // FIXME: should we even be calling this method if RTTI is disabled 5777 // and it's not for EH? 5778 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5779 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5780 getTriple().isNVPTX())) 5781 return llvm::Constant::getNullValue(Int8PtrTy); 5782 5783 if (ForEH && Ty->isObjCObjectPointerType() && 5784 LangOpts.ObjCRuntime.isGNUFamily()) 5785 return ObjCRuntime->GetEHType(Ty); 5786 5787 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5788 } 5789 5790 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5791 // Do not emit threadprivates in simd-only mode. 5792 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5793 return; 5794 for (auto RefExpr : D->varlists()) { 5795 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5796 bool PerformInit = 5797 VD->getAnyInitializer() && 5798 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5799 /*ForRef=*/false); 5800 5801 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5802 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5803 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5804 CXXGlobalInits.push_back(InitFunction); 5805 } 5806 } 5807 5808 llvm::Metadata * 5809 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5810 StringRef Suffix) { 5811 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5812 if (InternalId) 5813 return InternalId; 5814 5815 if (isExternallyVisible(T->getLinkage())) { 5816 std::string OutName; 5817 llvm::raw_string_ostream Out(OutName); 5818 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5819 Out << Suffix; 5820 5821 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5822 } else { 5823 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5824 llvm::ArrayRef<llvm::Metadata *>()); 5825 } 5826 5827 return InternalId; 5828 } 5829 5830 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5831 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5832 } 5833 5834 llvm::Metadata * 5835 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5836 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5837 } 5838 5839 // Generalize pointer types to a void pointer with the qualifiers of the 5840 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5841 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5842 // 'void *'. 5843 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5844 if (!Ty->isPointerType()) 5845 return Ty; 5846 5847 return Ctx.getPointerType( 5848 QualType(Ctx.VoidTy).withCVRQualifiers( 5849 Ty->getPointeeType().getCVRQualifiers())); 5850 } 5851 5852 // Apply type generalization to a FunctionType's return and argument types 5853 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5854 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5855 SmallVector<QualType, 8> GeneralizedParams; 5856 for (auto &Param : FnType->param_types()) 5857 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5858 5859 return Ctx.getFunctionType( 5860 GeneralizeType(Ctx, FnType->getReturnType()), 5861 GeneralizedParams, FnType->getExtProtoInfo()); 5862 } 5863 5864 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5865 return Ctx.getFunctionNoProtoType( 5866 GeneralizeType(Ctx, FnType->getReturnType())); 5867 5868 llvm_unreachable("Encountered unknown FunctionType"); 5869 } 5870 5871 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5872 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5873 GeneralizedMetadataIdMap, ".generalized"); 5874 } 5875 5876 /// Returns whether this module needs the "all-vtables" type identifier. 5877 bool CodeGenModule::NeedAllVtablesTypeId() const { 5878 // Returns true if at least one of vtable-based CFI checkers is enabled and 5879 // is not in the trapping mode. 5880 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5881 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5882 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5883 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5884 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5885 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5886 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5887 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5888 } 5889 5890 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5891 CharUnits Offset, 5892 const CXXRecordDecl *RD) { 5893 llvm::Metadata *MD = 5894 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5895 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5896 5897 if (CodeGenOpts.SanitizeCfiCrossDso) 5898 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5899 VTable->addTypeMetadata(Offset.getQuantity(), 5900 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5901 5902 if (NeedAllVtablesTypeId()) { 5903 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5904 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5905 } 5906 } 5907 5908 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5909 if (!SanStats) 5910 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 5911 5912 return *SanStats; 5913 } 5914 llvm::Value * 5915 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5916 CodeGenFunction &CGF) { 5917 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5918 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5919 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5920 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5921 "__translate_sampler_initializer"), 5922 {C}); 5923 } 5924