xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e0fc1a80cba8b91e3943f3287e7dcf68c6bb9b7f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenPGO.h"
23 #include "CodeGenTBAA.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclCXX.h"
28 #include "clang/AST/DeclObjC.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/CharInfo.h"
35 #include "clang/Basic/Diagnostic.h"
36 #include "clang/Basic/Module.h"
37 #include "clang/Basic/SourceManager.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/Version.h"
40 #include "clang/Frontend/CodeGenOptions.h"
41 #include "clang/Sema/SemaDiagnostic.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/IR/CallingConv.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CallSite.h"
50 #include "llvm/Support/ConvertUTF.h"
51 #include "llvm/Support/ErrorHandling.h"
52 
53 using namespace clang;
54 using namespace CodeGen;
55 
56 static const char AnnotationSection[] = "llvm.metadata";
57 
58 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
59   switch (CGM.getTarget().getCXXABI().getKind()) {
60   case TargetCXXABI::GenericAArch64:
61   case TargetCXXABI::GenericARM:
62   case TargetCXXABI::iOS:
63   case TargetCXXABI::GenericItanium:
64     return CreateItaniumCXXABI(CGM);
65   case TargetCXXABI::Microsoft:
66     return CreateMicrosoftCXXABI(CGM);
67   }
68 
69   llvm_unreachable("invalid C++ ABI kind");
70 }
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              llvm::Module &M, const llvm::DataLayout &TD,
74                              DiagnosticsEngine &diags)
75     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
76       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
77       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
78       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
79       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
80       NoObjCARCExceptionsMetadata(0), RRData(0), PGOData(0),
81       CFConstantStringClassRef(0),
82       ConstantStringClassRef(0), NSConstantStringType(0),
83       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
84       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
85       LifetimeStartFn(0), LifetimeEndFn(0),
86       SanitizerBlacklist(
87           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
88       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
89                                           : LangOpts.Sanitize) {
90 
91   // Initialize the type cache.
92   llvm::LLVMContext &LLVMContext = M.getContext();
93   VoidTy = llvm::Type::getVoidTy(LLVMContext);
94   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
95   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
96   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
97   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
98   FloatTy = llvm::Type::getFloatTy(LLVMContext);
99   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
100   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
101   PointerAlignInBytes =
102   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
103   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
104   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
105   Int8PtrTy = Int8Ty->getPointerTo(0);
106   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
107 
108   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
109 
110   if (LangOpts.ObjC1)
111     createObjCRuntime();
112   if (LangOpts.OpenCL)
113     createOpenCLRuntime();
114   if (LangOpts.CUDA)
115     createCUDARuntime();
116 
117   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
118   if (SanOpts.Thread ||
119       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
120     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
121                            getCXXABI().getMangleContext());
122 
123   // If debug info or coverage generation is enabled, create the CGDebugInfo
124   // object.
125   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
126       CodeGenOpts.EmitGcovArcs ||
127       CodeGenOpts.EmitGcovNotes)
128     DebugInfo = new CGDebugInfo(*this);
129 
130   Block.GlobalUniqueCount = 0;
131 
132   if (C.getLangOpts().ObjCAutoRefCount)
133     ARCData = new ARCEntrypoints();
134   RRData = new RREntrypoints();
135 
136   if (!CodeGenOpts.InstrProfileInput.empty())
137     PGOData = new PGOProfileData(*this, CodeGenOpts.InstrProfileInput);
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete TBAA;
146   delete DebugInfo;
147   delete ARCData;
148   delete RRData;
149 }
150 
151 void CodeGenModule::createObjCRuntime() {
152   // This is just isGNUFamily(), but we want to force implementors of
153   // new ABIs to decide how best to do this.
154   switch (LangOpts.ObjCRuntime.getKind()) {
155   case ObjCRuntime::GNUstep:
156   case ObjCRuntime::GCC:
157   case ObjCRuntime::ObjFW:
158     ObjCRuntime = CreateGNUObjCRuntime(*this);
159     return;
160 
161   case ObjCRuntime::FragileMacOSX:
162   case ObjCRuntime::MacOSX:
163   case ObjCRuntime::iOS:
164     ObjCRuntime = CreateMacObjCRuntime(*this);
165     return;
166   }
167   llvm_unreachable("bad runtime kind");
168 }
169 
170 void CodeGenModule::createOpenCLRuntime() {
171   OpenCLRuntime = new CGOpenCLRuntime(*this);
172 }
173 
174 void CodeGenModule::createCUDARuntime() {
175   CUDARuntime = CreateNVCUDARuntime(*this);
176 }
177 
178 void CodeGenModule::applyReplacements() {
179   for (ReplacementsTy::iterator I = Replacements.begin(),
180                                 E = Replacements.end();
181        I != E; ++I) {
182     StringRef MangledName = I->first();
183     llvm::Constant *Replacement = I->second;
184     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
185     if (!Entry)
186       continue;
187     llvm::Function *OldF = cast<llvm::Function>(Entry);
188     llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement);
189     if (!NewF) {
190       if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
191         NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal());
192       } else {
193         llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement);
194         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
195                CE->getOpcode() == llvm::Instruction::GetElementPtr);
196         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
197       }
198     }
199 
200     // Replace old with new, but keep the old order.
201     OldF->replaceAllUsesWith(Replacement);
202     if (NewF) {
203       NewF->removeFromParent();
204       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
205     }
206     OldF->eraseFromParent();
207   }
208 }
209 
210 void CodeGenModule::checkAliases() {
211   bool Error = false;
212   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
213          E = Aliases.end(); I != E; ++I) {
214     const GlobalDecl &GD = *I;
215     const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
216     const AliasAttr *AA = D->getAttr<AliasAttr>();
217     StringRef MangledName = getMangledName(GD);
218     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
219     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
220     llvm::GlobalValue *GV = Alias->getAliasedGlobal();
221     if (GV->isDeclaration()) {
222       Error = true;
223       getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined);
224     } else if (!Alias->resolveAliasedGlobal(/*stopOnWeak*/ false)) {
225       Error = true;
226       getDiags().Report(AA->getLocation(), diag::err_cyclic_alias);
227     }
228   }
229   if (!Error)
230     return;
231 
232   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
233          E = Aliases.end(); I != E; ++I) {
234     const GlobalDecl &GD = *I;
235     StringRef MangledName = getMangledName(GD);
236     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
237     llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry);
238     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
239     Alias->eraseFromParent();
240   }
241 }
242 
243 void CodeGenModule::clear() {
244   DeferredDeclsToEmit.clear();
245 }
246 
247 void CodeGenModule::Release() {
248   EmitDeferred();
249   applyReplacements();
250   checkAliases();
251   EmitCXXGlobalInitFunc();
252   EmitCXXGlobalDtorFunc();
253   EmitCXXThreadLocalInitFunc();
254   if (ObjCRuntime)
255     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
256       AddGlobalCtor(ObjCInitFunction);
257   EmitCtorList(GlobalCtors, "llvm.global_ctors");
258   EmitCtorList(GlobalDtors, "llvm.global_dtors");
259   EmitGlobalAnnotations();
260   EmitStaticExternCAliases();
261   EmitLLVMUsed();
262 
263   if (CodeGenOpts.Autolink &&
264       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
265     EmitModuleLinkOptions();
266   }
267   if (CodeGenOpts.DwarfVersion)
268     // We actually want the latest version when there are conflicts.
269     // We can change from Warning to Latest if such mode is supported.
270     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
271                               CodeGenOpts.DwarfVersion);
272   if (DebugInfo)
273     // We support a single version in the linked module: error out when
274     // modules do not have the same version. We are going to implement dropping
275     // debug info when the version number is not up-to-date. Once that is
276     // done, the bitcode linker is not going to see modules with different
277     // version numbers.
278     getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version",
279                               llvm::DEBUG_METADATA_VERSION);
280 
281   SimplifyPersonality();
282 
283   if (getCodeGenOpts().EmitDeclMetadata)
284     EmitDeclMetadata();
285 
286   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
287     EmitCoverageFile();
288 
289   if (DebugInfo)
290     DebugInfo->finalize();
291 
292   EmitVersionIdentMetadata();
293 }
294 
295 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
296   // Make sure that this type is translated.
297   Types.UpdateCompletedType(TD);
298 }
299 
300 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
301   if (!TBAA)
302     return 0;
303   return TBAA->getTBAAInfo(QTy);
304 }
305 
306 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
307   if (!TBAA)
308     return 0;
309   return TBAA->getTBAAInfoForVTablePtr();
310 }
311 
312 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
313   if (!TBAA)
314     return 0;
315   return TBAA->getTBAAStructInfo(QTy);
316 }
317 
318 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
319   if (!TBAA)
320     return 0;
321   return TBAA->getTBAAStructTypeInfo(QTy);
322 }
323 
324 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
325                                                   llvm::MDNode *AccessN,
326                                                   uint64_t O) {
327   if (!TBAA)
328     return 0;
329   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
330 }
331 
332 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
333 /// and struct-path aware TBAA, the tag has the same format:
334 /// base type, access type and offset.
335 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
336 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
337                                         llvm::MDNode *TBAAInfo,
338                                         bool ConvertTypeToTag) {
339   if (ConvertTypeToTag && TBAA)
340     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
341                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
342   else
343     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
344 }
345 
346 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
347   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
348   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
349 }
350 
351 /// ErrorUnsupported - Print out an error that codegen doesn't support the
352 /// specified stmt yet.
353 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
354   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
355                                                "cannot compile this %0 yet");
356   std::string Msg = Type;
357   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
358     << Msg << S->getSourceRange();
359 }
360 
361 /// ErrorUnsupported - Print out an error that codegen doesn't support the
362 /// specified decl yet.
363 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
364   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
365                                                "cannot compile this %0 yet");
366   std::string Msg = Type;
367   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
368 }
369 
370 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
371   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
372 }
373 
374 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
375                                         const NamedDecl *D) const {
376   // Internal definitions always have default visibility.
377   if (GV->hasLocalLinkage()) {
378     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
379     return;
380   }
381 
382   // Set visibility for definitions.
383   LinkageInfo LV = D->getLinkageAndVisibility();
384   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
385     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
386 }
387 
388 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
389   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
390       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
391       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
392       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
393       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
394 }
395 
396 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
397     CodeGenOptions::TLSModel M) {
398   switch (M) {
399   case CodeGenOptions::GeneralDynamicTLSModel:
400     return llvm::GlobalVariable::GeneralDynamicTLSModel;
401   case CodeGenOptions::LocalDynamicTLSModel:
402     return llvm::GlobalVariable::LocalDynamicTLSModel;
403   case CodeGenOptions::InitialExecTLSModel:
404     return llvm::GlobalVariable::InitialExecTLSModel;
405   case CodeGenOptions::LocalExecTLSModel:
406     return llvm::GlobalVariable::LocalExecTLSModel;
407   }
408   llvm_unreachable("Invalid TLS model!");
409 }
410 
411 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
412                                const VarDecl &D) const {
413   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
414 
415   llvm::GlobalVariable::ThreadLocalMode TLM;
416   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
417 
418   // Override the TLS model if it is explicitly specified.
419   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
420     TLM = GetLLVMTLSModel(Attr->getModel());
421   }
422 
423   GV->setThreadLocalMode(TLM);
424 }
425 
426 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
427   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
428 
429   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
430   if (!Str.empty())
431     return Str;
432 
433   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
434     IdentifierInfo *II = ND->getIdentifier();
435     assert(II && "Attempt to mangle unnamed decl.");
436 
437     Str = II->getName();
438     return Str;
439   }
440 
441   SmallString<256> Buffer;
442   llvm::raw_svector_ostream Out(Buffer);
443   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
444     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
445   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
446     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
447   else
448     getCXXABI().getMangleContext().mangleName(ND, Out);
449 
450   // Allocate space for the mangled name.
451   Out.flush();
452   size_t Length = Buffer.size();
453   char *Name = MangledNamesAllocator.Allocate<char>(Length);
454   std::copy(Buffer.begin(), Buffer.end(), Name);
455 
456   Str = StringRef(Name, Length);
457 
458   return Str;
459 }
460 
461 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
462                                         const BlockDecl *BD) {
463   MangleContext &MangleCtx = getCXXABI().getMangleContext();
464   const Decl *D = GD.getDecl();
465   llvm::raw_svector_ostream Out(Buffer.getBuffer());
466   if (D == 0)
467     MangleCtx.mangleGlobalBlock(BD,
468       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
469   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
470     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
471   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
472     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
473   else
474     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
475 }
476 
477 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
478   return getModule().getNamedValue(Name);
479 }
480 
481 /// AddGlobalCtor - Add a function to the list that will be called before
482 /// main() runs.
483 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
484   // FIXME: Type coercion of void()* types.
485   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
486 }
487 
488 /// AddGlobalDtor - Add a function to the list that will be called
489 /// when the module is unloaded.
490 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
491   // FIXME: Type coercion of void()* types.
492   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
493 }
494 
495 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
496   // Ctor function type is void()*.
497   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
498   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
499 
500   // Get the type of a ctor entry, { i32, void ()* }.
501   llvm::StructType *CtorStructTy =
502     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
503 
504   // Construct the constructor and destructor arrays.
505   SmallVector<llvm::Constant*, 8> Ctors;
506   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
507     llvm::Constant *S[] = {
508       llvm::ConstantInt::get(Int32Ty, I->second, false),
509       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
510     };
511     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
512   }
513 
514   if (!Ctors.empty()) {
515     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
516     new llvm::GlobalVariable(TheModule, AT, false,
517                              llvm::GlobalValue::AppendingLinkage,
518                              llvm::ConstantArray::get(AT, Ctors),
519                              GlobalName);
520   }
521 }
522 
523 llvm::GlobalValue::LinkageTypes
524 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
525   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
526 
527   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
528 
529   if (Linkage == GVA_Internal)
530     return llvm::Function::InternalLinkage;
531 
532   if (D->hasAttr<DLLExportAttr>())
533     return llvm::Function::ExternalLinkage;
534 
535   if (D->hasAttr<WeakAttr>())
536     return llvm::Function::WeakAnyLinkage;
537 
538   // In C99 mode, 'inline' functions are guaranteed to have a strong
539   // definition somewhere else, so we can use available_externally linkage.
540   if (Linkage == GVA_C99Inline)
541     return llvm::Function::AvailableExternallyLinkage;
542 
543   // Note that Apple's kernel linker doesn't support symbol
544   // coalescing, so we need to avoid linkonce and weak linkages there.
545   // Normally, this means we just map to internal, but for explicit
546   // instantiations we'll map to external.
547 
548   // In C++, the compiler has to emit a definition in every translation unit
549   // that references the function.  We should use linkonce_odr because
550   // a) if all references in this translation unit are optimized away, we
551   // don't need to codegen it.  b) if the function persists, it needs to be
552   // merged with other definitions. c) C++ has the ODR, so we know the
553   // definition is dependable.
554   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
555     return !Context.getLangOpts().AppleKext
556              ? llvm::Function::LinkOnceODRLinkage
557              : llvm::Function::InternalLinkage;
558 
559   // An explicit instantiation of a template has weak linkage, since
560   // explicit instantiations can occur in multiple translation units
561   // and must all be equivalent. However, we are not allowed to
562   // throw away these explicit instantiations.
563   if (Linkage == GVA_ExplicitTemplateInstantiation)
564     return !Context.getLangOpts().AppleKext
565              ? llvm::Function::WeakODRLinkage
566              : llvm::Function::ExternalLinkage;
567 
568   // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks
569   // emitted on an as-needed basis.
570   if (isa<CXXDestructorDecl>(D) &&
571       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
572                                          GD.getDtorType()))
573     return llvm::Function::LinkOnceODRLinkage;
574 
575   // Otherwise, we have strong external linkage.
576   assert(Linkage == GVA_StrongExternal);
577   return llvm::Function::ExternalLinkage;
578 }
579 
580 
581 /// SetFunctionDefinitionAttributes - Set attributes for a global.
582 ///
583 /// FIXME: This is currently only done for aliases and functions, but not for
584 /// variables (these details are set in EmitGlobalVarDefinition for variables).
585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
586                                                     llvm::GlobalValue *GV) {
587   SetCommonAttributes(D, GV);
588 }
589 
590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
591                                               const CGFunctionInfo &Info,
592                                               llvm::Function *F) {
593   unsigned CallingConv;
594   AttributeListType AttributeList;
595   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
596   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
597   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
598 }
599 
600 /// Determines whether the language options require us to model
601 /// unwind exceptions.  We treat -fexceptions as mandating this
602 /// except under the fragile ObjC ABI with only ObjC exceptions
603 /// enabled.  This means, for example, that C with -fexceptions
604 /// enables this.
605 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
606   // If exceptions are completely disabled, obviously this is false.
607   if (!LangOpts.Exceptions) return false;
608 
609   // If C++ exceptions are enabled, this is true.
610   if (LangOpts.CXXExceptions) return true;
611 
612   // If ObjC exceptions are enabled, this depends on the ABI.
613   if (LangOpts.ObjCExceptions) {
614     return LangOpts.ObjCRuntime.hasUnwindExceptions();
615   }
616 
617   return true;
618 }
619 
620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
621                                                            llvm::Function *F) {
622   llvm::AttrBuilder B;
623 
624   if (CodeGenOpts.UnwindTables)
625     B.addAttribute(llvm::Attribute::UWTable);
626 
627   if (!hasUnwindExceptions(LangOpts))
628     B.addAttribute(llvm::Attribute::NoUnwind);
629 
630   if (D->hasAttr<NakedAttr>()) {
631     // Naked implies noinline: we should not be inlining such functions.
632     B.addAttribute(llvm::Attribute::Naked);
633     B.addAttribute(llvm::Attribute::NoInline);
634   } else if (D->hasAttr<NoInlineAttr>()) {
635     B.addAttribute(llvm::Attribute::NoInline);
636   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
637               D->hasAttr<ForceInlineAttr>()) &&
638              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
639                                               llvm::Attribute::NoInline)) {
640     // (noinline wins over always_inline, and we can't specify both in IR)
641     B.addAttribute(llvm::Attribute::AlwaysInline);
642   }
643 
644   if (D->hasAttr<ColdAttr>()) {
645     B.addAttribute(llvm::Attribute::OptimizeForSize);
646     B.addAttribute(llvm::Attribute::Cold);
647   }
648 
649   if (D->hasAttr<MinSizeAttr>())
650     B.addAttribute(llvm::Attribute::MinSize);
651 
652   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
653     B.addAttribute(llvm::Attribute::StackProtect);
654   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
655     B.addAttribute(llvm::Attribute::StackProtectStrong);
656   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
657     B.addAttribute(llvm::Attribute::StackProtectReq);
658 
659   // Add sanitizer attributes if function is not blacklisted.
660   if (!SanitizerBlacklist->isIn(*F)) {
661     // When AddressSanitizer is enabled, set SanitizeAddress attribute
662     // unless __attribute__((no_sanitize_address)) is used.
663     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
664       B.addAttribute(llvm::Attribute::SanitizeAddress);
665     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
666     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
667       B.addAttribute(llvm::Attribute::SanitizeThread);
668     }
669     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
670     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
671       B.addAttribute(llvm::Attribute::SanitizeMemory);
672   }
673 
674   F->addAttributes(llvm::AttributeSet::FunctionIndex,
675                    llvm::AttributeSet::get(
676                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
677 
678   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
679     F->setUnnamedAddr(true);
680   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
681     if (MD->isVirtual())
682       F->setUnnamedAddr(true);
683 
684   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
685   if (alignment)
686     F->setAlignment(alignment);
687 
688   // C++ ABI requires 2-byte alignment for member functions.
689   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
690     F->setAlignment(2);
691 }
692 
693 void CodeGenModule::SetCommonAttributes(const Decl *D,
694                                         llvm::GlobalValue *GV) {
695   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
696     setGlobalVisibility(GV, ND);
697   else
698     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
699 
700   if (D->hasAttr<UsedAttr>())
701     AddUsedGlobal(GV);
702 
703   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
704     GV->setSection(SA->getName());
705 
706   // Alias cannot have attributes. Filter them here.
707   if (!isa<llvm::GlobalAlias>(GV))
708     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
709 }
710 
711 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
712                                                   llvm::Function *F,
713                                                   const CGFunctionInfo &FI) {
714   SetLLVMFunctionAttributes(D, FI, F);
715   SetLLVMFunctionAttributesForDefinition(D, F);
716 
717   F->setLinkage(llvm::Function::InternalLinkage);
718 
719   SetCommonAttributes(D, F);
720 }
721 
722 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
723                                           llvm::Function *F,
724                                           bool IsIncompleteFunction) {
725   if (unsigned IID = F->getIntrinsicID()) {
726     // If this is an intrinsic function, set the function's attributes
727     // to the intrinsic's attributes.
728     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
729                                                     (llvm::Intrinsic::ID)IID));
730     return;
731   }
732 
733   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
734 
735   if (!IsIncompleteFunction)
736     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
737 
738   if (getCXXABI().HasThisReturn(GD)) {
739     assert(!F->arg_empty() &&
740            F->arg_begin()->getType()
741              ->canLosslesslyBitCastTo(F->getReturnType()) &&
742            "unexpected this return");
743     F->addAttribute(1, llvm::Attribute::Returned);
744   }
745 
746   // Only a few attributes are set on declarations; these may later be
747   // overridden by a definition.
748 
749   if (FD->hasAttr<DLLImportAttr>()) {
750     F->setLinkage(llvm::Function::ExternalLinkage);
751     F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
752   } else if (FD->hasAttr<WeakAttr>() ||
753              FD->isWeakImported()) {
754     // "extern_weak" is overloaded in LLVM; we probably should have
755     // separate linkage types for this.
756     F->setLinkage(llvm::Function::ExternalWeakLinkage);
757   } else {
758     F->setLinkage(llvm::Function::ExternalLinkage);
759     if (FD->hasAttr<DLLExportAttr>())
760       F->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
761 
762     LinkageInfo LV = FD->getLinkageAndVisibility();
763     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
764       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
765     }
766   }
767 
768   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
769     F->setSection(SA->getName());
770 
771   // A replaceable global allocation function does not act like a builtin by
772   // default, only if it is invoked by a new-expression or delete-expression.
773   if (FD->isReplaceableGlobalAllocationFunction())
774     F->addAttribute(llvm::AttributeSet::FunctionIndex,
775                     llvm::Attribute::NoBuiltin);
776 }
777 
778 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
779   assert(!GV->isDeclaration() &&
780          "Only globals with definition can force usage.");
781   LLVMUsed.push_back(GV);
782 }
783 
784 void CodeGenModule::EmitLLVMUsed() {
785   // Don't create llvm.used if there is no need.
786   if (LLVMUsed.empty())
787     return;
788 
789   // Convert LLVMUsed to what ConstantArray needs.
790   SmallVector<llvm::Constant*, 8> UsedArray;
791   UsedArray.resize(LLVMUsed.size());
792   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
793     UsedArray[i] =
794      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
795                                     Int8PtrTy);
796   }
797 
798   if (UsedArray.empty())
799     return;
800   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
801 
802   llvm::GlobalVariable *GV =
803     new llvm::GlobalVariable(getModule(), ATy, false,
804                              llvm::GlobalValue::AppendingLinkage,
805                              llvm::ConstantArray::get(ATy, UsedArray),
806                              "llvm.used");
807 
808   GV->setSection("llvm.metadata");
809 }
810 
811 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
812   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
813   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
814 }
815 
816 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
817   llvm::SmallString<32> Opt;
818   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
819   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
820   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
821 }
822 
823 void CodeGenModule::AddDependentLib(StringRef Lib) {
824   llvm::SmallString<24> Opt;
825   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
826   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
827   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
828 }
829 
830 /// \brief Add link options implied by the given module, including modules
831 /// it depends on, using a postorder walk.
832 static void addLinkOptionsPostorder(CodeGenModule &CGM,
833                                     Module *Mod,
834                                     SmallVectorImpl<llvm::Value *> &Metadata,
835                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
836   // Import this module's parent.
837   if (Mod->Parent && Visited.insert(Mod->Parent)) {
838     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
839   }
840 
841   // Import this module's dependencies.
842   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
843     if (Visited.insert(Mod->Imports[I-1]))
844       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
845   }
846 
847   // Add linker options to link against the libraries/frameworks
848   // described by this module.
849   llvm::LLVMContext &Context = CGM.getLLVMContext();
850   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
851     // Link against a framework.  Frameworks are currently Darwin only, so we
852     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
853     if (Mod->LinkLibraries[I-1].IsFramework) {
854       llvm::Value *Args[2] = {
855         llvm::MDString::get(Context, "-framework"),
856         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
857       };
858 
859       Metadata.push_back(llvm::MDNode::get(Context, Args));
860       continue;
861     }
862 
863     // Link against a library.
864     llvm::SmallString<24> Opt;
865     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
866       Mod->LinkLibraries[I-1].Library, Opt);
867     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
868     Metadata.push_back(llvm::MDNode::get(Context, OptString));
869   }
870 }
871 
872 void CodeGenModule::EmitModuleLinkOptions() {
873   // Collect the set of all of the modules we want to visit to emit link
874   // options, which is essentially the imported modules and all of their
875   // non-explicit child modules.
876   llvm::SetVector<clang::Module *> LinkModules;
877   llvm::SmallPtrSet<clang::Module *, 16> Visited;
878   SmallVector<clang::Module *, 16> Stack;
879 
880   // Seed the stack with imported modules.
881   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
882                                                MEnd = ImportedModules.end();
883        M != MEnd; ++M) {
884     if (Visited.insert(*M))
885       Stack.push_back(*M);
886   }
887 
888   // Find all of the modules to import, making a little effort to prune
889   // non-leaf modules.
890   while (!Stack.empty()) {
891     clang::Module *Mod = Stack.pop_back_val();
892 
893     bool AnyChildren = false;
894 
895     // Visit the submodules of this module.
896     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
897                                         SubEnd = Mod->submodule_end();
898          Sub != SubEnd; ++Sub) {
899       // Skip explicit children; they need to be explicitly imported to be
900       // linked against.
901       if ((*Sub)->IsExplicit)
902         continue;
903 
904       if (Visited.insert(*Sub)) {
905         Stack.push_back(*Sub);
906         AnyChildren = true;
907       }
908     }
909 
910     // We didn't find any children, so add this module to the list of
911     // modules to link against.
912     if (!AnyChildren) {
913       LinkModules.insert(Mod);
914     }
915   }
916 
917   // Add link options for all of the imported modules in reverse topological
918   // order.  We don't do anything to try to order import link flags with respect
919   // to linker options inserted by things like #pragma comment().
920   SmallVector<llvm::Value *, 16> MetadataArgs;
921   Visited.clear();
922   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
923                                                MEnd = LinkModules.end();
924        M != MEnd; ++M) {
925     if (Visited.insert(*M))
926       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
927   }
928   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
929   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
930 
931   // Add the linker options metadata flag.
932   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
933                             llvm::MDNode::get(getLLVMContext(),
934                                               LinkerOptionsMetadata));
935 }
936 
937 void CodeGenModule::EmitDeferred() {
938   // Emit code for any potentially referenced deferred decls.  Since a
939   // previously unused static decl may become used during the generation of code
940   // for a static function, iterate until no changes are made.
941 
942   while (true) {
943     if (!DeferredVTables.empty()) {
944       EmitDeferredVTables();
945 
946       // Emitting a v-table doesn't directly cause more v-tables to
947       // become deferred, although it can cause functions to be
948       // emitted that then need those v-tables.
949       assert(DeferredVTables.empty());
950     }
951 
952     // Stop if we're out of both deferred v-tables and deferred declarations.
953     if (DeferredDeclsToEmit.empty()) break;
954 
955     DeferredGlobal &G = DeferredDeclsToEmit.back();
956     GlobalDecl D = G.GD;
957     llvm::GlobalValue *GV = G.GV;
958     DeferredDeclsToEmit.pop_back();
959 
960     assert(GV == GetGlobalValue(getMangledName(D)));
961     // Check to see if we've already emitted this.  This is necessary
962     // for a couple of reasons: first, decls can end up in the
963     // deferred-decls queue multiple times, and second, decls can end
964     // up with definitions in unusual ways (e.g. by an extern inline
965     // function acquiring a strong function redefinition).  Just
966     // ignore these cases.
967     if(!GV->isDeclaration())
968       continue;
969 
970     // Otherwise, emit the definition and move on to the next one.
971     EmitGlobalDefinition(D, GV);
972   }
973 }
974 
975 void CodeGenModule::EmitGlobalAnnotations() {
976   if (Annotations.empty())
977     return;
978 
979   // Create a new global variable for the ConstantStruct in the Module.
980   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
981     Annotations[0]->getType(), Annotations.size()), Annotations);
982   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
983     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
984     "llvm.global.annotations");
985   gv->setSection(AnnotationSection);
986 }
987 
988 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
989   llvm::Constant *&AStr = AnnotationStrings[Str];
990   if (AStr)
991     return AStr;
992 
993   // Not found yet, create a new global.
994   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
995   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
996     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
997   gv->setSection(AnnotationSection);
998   gv->setUnnamedAddr(true);
999   AStr = gv;
1000   return gv;
1001 }
1002 
1003 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1004   SourceManager &SM = getContext().getSourceManager();
1005   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1006   if (PLoc.isValid())
1007     return EmitAnnotationString(PLoc.getFilename());
1008   return EmitAnnotationString(SM.getBufferName(Loc));
1009 }
1010 
1011 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1012   SourceManager &SM = getContext().getSourceManager();
1013   PresumedLoc PLoc = SM.getPresumedLoc(L);
1014   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1015     SM.getExpansionLineNumber(L);
1016   return llvm::ConstantInt::get(Int32Ty, LineNo);
1017 }
1018 
1019 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1020                                                 const AnnotateAttr *AA,
1021                                                 SourceLocation L) {
1022   // Get the globals for file name, annotation, and the line number.
1023   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1024                  *UnitGV = EmitAnnotationUnit(L),
1025                  *LineNoCst = EmitAnnotationLineNo(L);
1026 
1027   // Create the ConstantStruct for the global annotation.
1028   llvm::Constant *Fields[4] = {
1029     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1030     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1031     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1032     LineNoCst
1033   };
1034   return llvm::ConstantStruct::getAnon(Fields);
1035 }
1036 
1037 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1038                                          llvm::GlobalValue *GV) {
1039   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1040   // Get the struct elements for these annotations.
1041   for (specific_attr_iterator<AnnotateAttr>
1042        ai = D->specific_attr_begin<AnnotateAttr>(),
1043        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1044     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1045 }
1046 
1047 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1048   // Never defer when EmitAllDecls is specified.
1049   if (LangOpts.EmitAllDecls)
1050     return false;
1051 
1052   return !getContext().DeclMustBeEmitted(Global);
1053 }
1054 
1055 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1056     const CXXUuidofExpr* E) {
1057   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1058   // well-formed.
1059   StringRef Uuid = E->getUuidAsStringRef(Context);
1060   std::string Name = "_GUID_" + Uuid.lower();
1061   std::replace(Name.begin(), Name.end(), '-', '_');
1062 
1063   // Look for an existing global.
1064   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1065     return GV;
1066 
1067   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1068   assert(Init && "failed to initialize as constant");
1069 
1070   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1071       getModule(), Init->getType(),
1072       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1073   return GV;
1074 }
1075 
1076 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1077   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1078   assert(AA && "No alias?");
1079 
1080   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1081 
1082   // See if there is already something with the target's name in the module.
1083   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1084   if (Entry) {
1085     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1086     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1087   }
1088 
1089   llvm::Constant *Aliasee;
1090   if (isa<llvm::FunctionType>(DeclTy))
1091     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1092                                       GlobalDecl(cast<FunctionDecl>(VD)),
1093                                       /*ForVTable=*/false);
1094   else
1095     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1096                                     llvm::PointerType::getUnqual(DeclTy), 0);
1097 
1098   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1099   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1100   WeakRefReferences.insert(F);
1101 
1102   return Aliasee;
1103 }
1104 
1105 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1106   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1107 
1108   // Weak references don't produce any output by themselves.
1109   if (Global->hasAttr<WeakRefAttr>())
1110     return;
1111 
1112   // If this is an alias definition (which otherwise looks like a declaration)
1113   // emit it now.
1114   if (Global->hasAttr<AliasAttr>())
1115     return EmitAliasDefinition(GD);
1116 
1117   // If this is CUDA, be selective about which declarations we emit.
1118   if (LangOpts.CUDA) {
1119     if (CodeGenOpts.CUDAIsDevice) {
1120       if (!Global->hasAttr<CUDADeviceAttr>() &&
1121           !Global->hasAttr<CUDAGlobalAttr>() &&
1122           !Global->hasAttr<CUDAConstantAttr>() &&
1123           !Global->hasAttr<CUDASharedAttr>())
1124         return;
1125     } else {
1126       if (!Global->hasAttr<CUDAHostAttr>() && (
1127             Global->hasAttr<CUDADeviceAttr>() ||
1128             Global->hasAttr<CUDAConstantAttr>() ||
1129             Global->hasAttr<CUDASharedAttr>()))
1130         return;
1131     }
1132   }
1133 
1134   // Ignore declarations, they will be emitted on their first use.
1135   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1136     // Forward declarations are emitted lazily on first use.
1137     if (!FD->doesThisDeclarationHaveABody()) {
1138       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1139         return;
1140 
1141       const FunctionDecl *InlineDefinition = 0;
1142       FD->getBody(InlineDefinition);
1143 
1144       StringRef MangledName = getMangledName(GD);
1145       DeferredDecls.erase(MangledName);
1146       EmitGlobalDefinition(InlineDefinition);
1147       return;
1148     }
1149   } else {
1150     const VarDecl *VD = cast<VarDecl>(Global);
1151     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1152 
1153     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1154       return;
1155   }
1156 
1157   // Defer code generation when possible if this is a static definition, inline
1158   // function etc.  These we only want to emit if they are used.
1159   if (!MayDeferGeneration(Global)) {
1160     // Emit the definition if it can't be deferred.
1161     EmitGlobalDefinition(GD);
1162     return;
1163   }
1164 
1165   // If we're deferring emission of a C++ variable with an
1166   // initializer, remember the order in which it appeared in the file.
1167   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1168       cast<VarDecl>(Global)->hasInit()) {
1169     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1170     CXXGlobalInits.push_back(0);
1171   }
1172 
1173   // If the value has already been used, add it directly to the
1174   // DeferredDeclsToEmit list.
1175   StringRef MangledName = getMangledName(GD);
1176   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName))
1177     addDeferredDeclToEmit(GV, GD);
1178   else {
1179     // Otherwise, remember that we saw a deferred decl with this name.  The
1180     // first use of the mangled name will cause it to move into
1181     // DeferredDeclsToEmit.
1182     DeferredDecls[MangledName] = GD;
1183   }
1184 }
1185 
1186 namespace {
1187   struct FunctionIsDirectlyRecursive :
1188     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1189     const StringRef Name;
1190     const Builtin::Context &BI;
1191     bool Result;
1192     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1193       Name(N), BI(C), Result(false) {
1194     }
1195     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1196 
1197     bool TraverseCallExpr(CallExpr *E) {
1198       const FunctionDecl *FD = E->getDirectCallee();
1199       if (!FD)
1200         return true;
1201       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1202       if (Attr && Name == Attr->getLabel()) {
1203         Result = true;
1204         return false;
1205       }
1206       unsigned BuiltinID = FD->getBuiltinID();
1207       if (!BuiltinID)
1208         return true;
1209       StringRef BuiltinName = BI.GetName(BuiltinID);
1210       if (BuiltinName.startswith("__builtin_") &&
1211           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1212         Result = true;
1213         return false;
1214       }
1215       return true;
1216     }
1217   };
1218 }
1219 
1220 // isTriviallyRecursive - Check if this function calls another
1221 // decl that, because of the asm attribute or the other decl being a builtin,
1222 // ends up pointing to itself.
1223 bool
1224 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1225   StringRef Name;
1226   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1227     // asm labels are a special kind of mangling we have to support.
1228     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1229     if (!Attr)
1230       return false;
1231     Name = Attr->getLabel();
1232   } else {
1233     Name = FD->getName();
1234   }
1235 
1236   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1237   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1238   return Walker.Result;
1239 }
1240 
1241 bool
1242 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1243   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1244     return true;
1245   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1246   if (CodeGenOpts.OptimizationLevel == 0 &&
1247       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1248     return false;
1249   // PR9614. Avoid cases where the source code is lying to us. An available
1250   // externally function should have an equivalent function somewhere else,
1251   // but a function that calls itself is clearly not equivalent to the real
1252   // implementation.
1253   // This happens in glibc's btowc and in some configure checks.
1254   return !isTriviallyRecursive(F);
1255 }
1256 
1257 /// If the type for the method's class was generated by
1258 /// CGDebugInfo::createContextChain(), the cache contains only a
1259 /// limited DIType without any declarations. Since EmitFunctionStart()
1260 /// needs to find the canonical declaration for each method, we need
1261 /// to construct the complete type prior to emitting the method.
1262 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1263   if (!D->isInstance())
1264     return;
1265 
1266   if (CGDebugInfo *DI = getModuleDebugInfo())
1267     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1268       const PointerType *ThisPtr =
1269         cast<PointerType>(D->getThisType(getContext()));
1270       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1271     }
1272 }
1273 
1274 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1275   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1276 
1277   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1278                                  Context.getSourceManager(),
1279                                  "Generating code for declaration");
1280 
1281   if (isa<FunctionDecl>(D)) {
1282     // At -O0, don't generate IR for functions with available_externally
1283     // linkage.
1284     if (!shouldEmitFunction(GD))
1285       return;
1286 
1287     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1288       CompleteDIClassType(Method);
1289       // Make sure to emit the definition(s) before we emit the thunks.
1290       // This is necessary for the generation of certain thunks.
1291       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1292         EmitCXXConstructor(CD, GD.getCtorType());
1293       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1294         EmitCXXDestructor(DD, GD.getDtorType());
1295       else
1296         EmitGlobalFunctionDefinition(GD, GV);
1297 
1298       if (Method->isVirtual())
1299         getVTables().EmitThunks(GD);
1300 
1301       return;
1302     }
1303 
1304     return EmitGlobalFunctionDefinition(GD, GV);
1305   }
1306 
1307   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1308     return EmitGlobalVarDefinition(VD);
1309 
1310   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1311 }
1312 
1313 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1314 /// module, create and return an llvm Function with the specified type. If there
1315 /// is something in the module with the specified name, return it potentially
1316 /// bitcasted to the right type.
1317 ///
1318 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1319 /// to set the attributes on the function when it is first created.
1320 llvm::Constant *
1321 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1322                                        llvm::Type *Ty,
1323                                        GlobalDecl GD, bool ForVTable,
1324                                        bool DontDefer,
1325                                        llvm::AttributeSet ExtraAttrs) {
1326   const Decl *D = GD.getDecl();
1327 
1328   // Lookup the entry, lazily creating it if necessary.
1329   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1330   if (Entry) {
1331     if (WeakRefReferences.erase(Entry)) {
1332       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1333       if (FD && !FD->hasAttr<WeakAttr>())
1334         Entry->setLinkage(llvm::Function::ExternalLinkage);
1335     }
1336 
1337     if (Entry->getType()->getElementType() == Ty)
1338       return Entry;
1339 
1340     // Make sure the result is of the correct type.
1341     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1342   }
1343 
1344   // This function doesn't have a complete type (for example, the return
1345   // type is an incomplete struct). Use a fake type instead, and make
1346   // sure not to try to set attributes.
1347   bool IsIncompleteFunction = false;
1348 
1349   llvm::FunctionType *FTy;
1350   if (isa<llvm::FunctionType>(Ty)) {
1351     FTy = cast<llvm::FunctionType>(Ty);
1352   } else {
1353     FTy = llvm::FunctionType::get(VoidTy, false);
1354     IsIncompleteFunction = true;
1355   }
1356 
1357   llvm::Function *F = llvm::Function::Create(FTy,
1358                                              llvm::Function::ExternalLinkage,
1359                                              MangledName, &getModule());
1360   assert(F->getName() == MangledName && "name was uniqued!");
1361   if (D)
1362     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1363   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1364     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1365     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1366                      llvm::AttributeSet::get(VMContext,
1367                                              llvm::AttributeSet::FunctionIndex,
1368                                              B));
1369   }
1370 
1371   if (!DontDefer) {
1372     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1373     // each other bottoming out with the base dtor.  Therefore we emit non-base
1374     // dtors on usage, even if there is no dtor definition in the TU.
1375     if (D && isa<CXXDestructorDecl>(D) &&
1376         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1377                                            GD.getDtorType()))
1378       addDeferredDeclToEmit(F, GD);
1379 
1380     // This is the first use or definition of a mangled name.  If there is a
1381     // deferred decl with this name, remember that we need to emit it at the end
1382     // of the file.
1383     llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1384     if (DDI != DeferredDecls.end()) {
1385       // Move the potentially referenced deferred decl to the
1386       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1387       // don't need it anymore).
1388       addDeferredDeclToEmit(F, DDI->second);
1389       DeferredDecls.erase(DDI);
1390 
1391       // Otherwise, if this is a sized deallocation function, emit a weak
1392       // definition
1393       // for it at the end of the translation unit.
1394     } else if (D && cast<FunctionDecl>(D)
1395                         ->getCorrespondingUnsizedGlobalDeallocationFunction()) {
1396       addDeferredDeclToEmit(F, GD);
1397 
1398       // Otherwise, there are cases we have to worry about where we're
1399       // using a declaration for which we must emit a definition but where
1400       // we might not find a top-level definition:
1401       //   - member functions defined inline in their classes
1402       //   - friend functions defined inline in some class
1403       //   - special member functions with implicit definitions
1404       // If we ever change our AST traversal to walk into class methods,
1405       // this will be unnecessary.
1406       //
1407       // We also don't emit a definition for a function if it's going to be an
1408       // entry
1409       // in a vtable, unless it's already marked as used.
1410     } else if (getLangOpts().CPlusPlus && D) {
1411       // Look for a declaration that's lexically in a record.
1412       const FunctionDecl *FD = cast<FunctionDecl>(D);
1413       FD = FD->getMostRecentDecl();
1414       do {
1415         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1416           if (FD->isImplicit() && !ForVTable) {
1417             assert(FD->isUsed() &&
1418                    "Sema didn't mark implicit function as used!");
1419             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1420             break;
1421           } else if (FD->doesThisDeclarationHaveABody()) {
1422             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1423             break;
1424           }
1425         }
1426         FD = FD->getPreviousDecl();
1427       } while (FD);
1428     }
1429   }
1430 
1431   // Make sure the result is of the requested type.
1432   if (!IsIncompleteFunction) {
1433     assert(F->getType()->getElementType() == Ty);
1434     return F;
1435   }
1436 
1437   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1438   return llvm::ConstantExpr::getBitCast(F, PTy);
1439 }
1440 
1441 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1442 /// non-null, then this function will use the specified type if it has to
1443 /// create it (this occurs when we see a definition of the function).
1444 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1445                                                  llvm::Type *Ty,
1446                                                  bool ForVTable,
1447                                                  bool DontDefer) {
1448   // If there was no specific requested type, just convert it now.
1449   if (!Ty)
1450     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1451 
1452   StringRef MangledName = getMangledName(GD);
1453   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1454 }
1455 
1456 /// CreateRuntimeFunction - Create a new runtime function with the specified
1457 /// type and name.
1458 llvm::Constant *
1459 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1460                                      StringRef Name,
1461                                      llvm::AttributeSet ExtraAttrs) {
1462   llvm::Constant *C =
1463       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1464                               /*DontDefer=*/false, ExtraAttrs);
1465   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1466     if (F->empty())
1467       F->setCallingConv(getRuntimeCC());
1468   return C;
1469 }
1470 
1471 /// isTypeConstant - Determine whether an object of this type can be emitted
1472 /// as a constant.
1473 ///
1474 /// If ExcludeCtor is true, the duration when the object's constructor runs
1475 /// will not be considered. The caller will need to verify that the object is
1476 /// not written to during its construction.
1477 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1478   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1479     return false;
1480 
1481   if (Context.getLangOpts().CPlusPlus) {
1482     if (const CXXRecordDecl *Record
1483           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1484       return ExcludeCtor && !Record->hasMutableFields() &&
1485              Record->hasTrivialDestructor();
1486   }
1487 
1488   return true;
1489 }
1490 
1491 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1492 /// create and return an llvm GlobalVariable with the specified type.  If there
1493 /// is something in the module with the specified name, return it potentially
1494 /// bitcasted to the right type.
1495 ///
1496 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1497 /// to set the attributes on the global when it is first created.
1498 llvm::Constant *
1499 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1500                                      llvm::PointerType *Ty,
1501                                      const VarDecl *D,
1502                                      bool UnnamedAddr) {
1503   // Lookup the entry, lazily creating it if necessary.
1504   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1505   if (Entry) {
1506     if (WeakRefReferences.erase(Entry)) {
1507       if (D && !D->hasAttr<WeakAttr>())
1508         Entry->setLinkage(llvm::Function::ExternalLinkage);
1509     }
1510 
1511     if (UnnamedAddr)
1512       Entry->setUnnamedAddr(true);
1513 
1514     if (Entry->getType() == Ty)
1515       return Entry;
1516 
1517     // Make sure the result is of the correct type.
1518     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1519       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1520 
1521     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1522   }
1523 
1524   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1525   llvm::GlobalVariable *GV =
1526     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1527                              llvm::GlobalValue::ExternalLinkage,
1528                              0, MangledName, 0,
1529                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1530 
1531   // This is the first use or definition of a mangled name.  If there is a
1532   // deferred decl with this name, remember that we need to emit it at the end
1533   // of the file.
1534   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1535   if (DDI != DeferredDecls.end()) {
1536     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1537     // list, and remove it from DeferredDecls (since we don't need it anymore).
1538     addDeferredDeclToEmit(GV, DDI->second);
1539     DeferredDecls.erase(DDI);
1540   }
1541 
1542   // Handle things which are present even on external declarations.
1543   if (D) {
1544     // FIXME: This code is overly simple and should be merged with other global
1545     // handling.
1546     GV->setConstant(isTypeConstant(D->getType(), false));
1547 
1548     // Set linkage and visibility in case we never see a definition.
1549     LinkageInfo LV = D->getLinkageAndVisibility();
1550     if (LV.getLinkage() != ExternalLinkage) {
1551       // Don't set internal linkage on declarations.
1552     } else {
1553       if (D->hasAttr<DLLImportAttr>()) {
1554         GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1555         GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1556       } else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1557         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1558 
1559       // Set visibility on a declaration only if it's explicit.
1560       if (LV.isVisibilityExplicit())
1561         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1562     }
1563 
1564     if (D->getTLSKind()) {
1565       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1566         CXXThreadLocals.push_back(std::make_pair(D, GV));
1567       setTLSMode(GV, *D);
1568     }
1569 
1570     // If required by the ABI, treat declarations of static data members with
1571     // inline initializers as definitions.
1572     if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1573         D->isStaticDataMember() && D->hasInit() &&
1574         !D->isThisDeclarationADefinition())
1575       EmitGlobalVarDefinition(D);
1576   }
1577 
1578   if (AddrSpace != Ty->getAddressSpace())
1579     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1580 
1581   return GV;
1582 }
1583 
1584 
1585 llvm::GlobalVariable *
1586 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1587                                       llvm::Type *Ty,
1588                                       llvm::GlobalValue::LinkageTypes Linkage) {
1589   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1590   llvm::GlobalVariable *OldGV = 0;
1591 
1592 
1593   if (GV) {
1594     // Check if the variable has the right type.
1595     if (GV->getType()->getElementType() == Ty)
1596       return GV;
1597 
1598     // Because C++ name mangling, the only way we can end up with an already
1599     // existing global with the same name is if it has been declared extern "C".
1600     assert(GV->isDeclaration() && "Declaration has wrong type!");
1601     OldGV = GV;
1602   }
1603 
1604   // Create a new variable.
1605   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1606                                 Linkage, 0, Name);
1607 
1608   if (OldGV) {
1609     // Replace occurrences of the old variable if needed.
1610     GV->takeName(OldGV);
1611 
1612     if (!OldGV->use_empty()) {
1613       llvm::Constant *NewPtrForOldDecl =
1614       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1615       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1616     }
1617 
1618     OldGV->eraseFromParent();
1619   }
1620 
1621   return GV;
1622 }
1623 
1624 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1625 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1626 /// then it will be created with the specified type instead of whatever the
1627 /// normal requested type would be.
1628 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1629                                                   llvm::Type *Ty) {
1630   assert(D->hasGlobalStorage() && "Not a global variable");
1631   QualType ASTTy = D->getType();
1632   if (Ty == 0)
1633     Ty = getTypes().ConvertTypeForMem(ASTTy);
1634 
1635   llvm::PointerType *PTy =
1636     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1637 
1638   StringRef MangledName = getMangledName(D);
1639   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1640 }
1641 
1642 /// CreateRuntimeVariable - Create a new runtime global variable with the
1643 /// specified type and name.
1644 llvm::Constant *
1645 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1646                                      StringRef Name) {
1647   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1648                                true);
1649 }
1650 
1651 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1652   assert(!D->getInit() && "Cannot emit definite definitions here!");
1653 
1654   if (MayDeferGeneration(D)) {
1655     // If we have not seen a reference to this variable yet, place it
1656     // into the deferred declarations table to be emitted if needed
1657     // later.
1658     StringRef MangledName = getMangledName(D);
1659     if (!GetGlobalValue(MangledName)) {
1660       DeferredDecls[MangledName] = D;
1661       return;
1662     }
1663   }
1664 
1665   // The tentative definition is the only definition.
1666   EmitGlobalVarDefinition(D);
1667 }
1668 
1669 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1670     return Context.toCharUnitsFromBits(
1671       TheDataLayout.getTypeStoreSizeInBits(Ty));
1672 }
1673 
1674 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1675                                                  unsigned AddrSpace) {
1676   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1677     if (D->hasAttr<CUDAConstantAttr>())
1678       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1679     else if (D->hasAttr<CUDASharedAttr>())
1680       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1681     else
1682       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1683   }
1684 
1685   return AddrSpace;
1686 }
1687 
1688 template<typename SomeDecl>
1689 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1690                                                llvm::GlobalValue *GV) {
1691   if (!getLangOpts().CPlusPlus)
1692     return;
1693 
1694   // Must have 'used' attribute, or else inline assembly can't rely on
1695   // the name existing.
1696   if (!D->template hasAttr<UsedAttr>())
1697     return;
1698 
1699   // Must have internal linkage and an ordinary name.
1700   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1701     return;
1702 
1703   // Must be in an extern "C" context. Entities declared directly within
1704   // a record are not extern "C" even if the record is in such a context.
1705   const SomeDecl *First = D->getFirstDecl();
1706   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1707     return;
1708 
1709   // OK, this is an internal linkage entity inside an extern "C" linkage
1710   // specification. Make a note of that so we can give it the "expected"
1711   // mangled name if nothing else is using that name.
1712   std::pair<StaticExternCMap::iterator, bool> R =
1713       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1714 
1715   // If we have multiple internal linkage entities with the same name
1716   // in extern "C" regions, none of them gets that name.
1717   if (!R.second)
1718     R.first->second = 0;
1719 }
1720 
1721 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1722   llvm::Constant *Init = 0;
1723   QualType ASTTy = D->getType();
1724   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1725   bool NeedsGlobalCtor = false;
1726   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1727 
1728   const VarDecl *InitDecl;
1729   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1730 
1731   if (!InitExpr) {
1732     // This is a tentative definition; tentative definitions are
1733     // implicitly initialized with { 0 }.
1734     //
1735     // Note that tentative definitions are only emitted at the end of
1736     // a translation unit, so they should never have incomplete
1737     // type. In addition, EmitTentativeDefinition makes sure that we
1738     // never attempt to emit a tentative definition if a real one
1739     // exists. A use may still exists, however, so we still may need
1740     // to do a RAUW.
1741     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1742     Init = EmitNullConstant(D->getType());
1743   } else {
1744     initializedGlobalDecl = GlobalDecl(D);
1745     Init = EmitConstantInit(*InitDecl);
1746 
1747     if (!Init) {
1748       QualType T = InitExpr->getType();
1749       if (D->getType()->isReferenceType())
1750         T = D->getType();
1751 
1752       if (getLangOpts().CPlusPlus) {
1753         Init = EmitNullConstant(T);
1754         NeedsGlobalCtor = true;
1755       } else {
1756         ErrorUnsupported(D, "static initializer");
1757         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1758       }
1759     } else {
1760       // We don't need an initializer, so remove the entry for the delayed
1761       // initializer position (just in case this entry was delayed) if we
1762       // also don't need to register a destructor.
1763       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1764         DelayedCXXInitPosition.erase(D);
1765     }
1766   }
1767 
1768   llvm::Type* InitType = Init->getType();
1769   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1770 
1771   // Strip off a bitcast if we got one back.
1772   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1773     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1774            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
1775            // All zero index gep.
1776            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1777     Entry = CE->getOperand(0);
1778   }
1779 
1780   // Entry is now either a Function or GlobalVariable.
1781   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1782 
1783   // We have a definition after a declaration with the wrong type.
1784   // We must make a new GlobalVariable* and update everything that used OldGV
1785   // (a declaration or tentative definition) with the new GlobalVariable*
1786   // (which will be a definition).
1787   //
1788   // This happens if there is a prototype for a global (e.g.
1789   // "extern int x[];") and then a definition of a different type (e.g.
1790   // "int x[10];"). This also happens when an initializer has a different type
1791   // from the type of the global (this happens with unions).
1792   if (GV == 0 ||
1793       GV->getType()->getElementType() != InitType ||
1794       GV->getType()->getAddressSpace() !=
1795        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1796 
1797     // Move the old entry aside so that we'll create a new one.
1798     Entry->setName(StringRef());
1799 
1800     // Make a new global with the correct type, this is now guaranteed to work.
1801     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1802 
1803     // Replace all uses of the old global with the new global
1804     llvm::Constant *NewPtrForOldDecl =
1805         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1806     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1807 
1808     // Erase the old global, since it is no longer used.
1809     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1810   }
1811 
1812   MaybeHandleStaticInExternC(D, GV);
1813 
1814   if (D->hasAttr<AnnotateAttr>())
1815     AddGlobalAnnotations(D, GV);
1816 
1817   GV->setInitializer(Init);
1818 
1819   // If it is safe to mark the global 'constant', do so now.
1820   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1821                   isTypeConstant(D->getType(), true));
1822 
1823   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1824 
1825   // Set the llvm linkage type as appropriate.
1826   llvm::GlobalValue::LinkageTypes Linkage =
1827     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1828   GV->setLinkage(Linkage);
1829   if (D->hasAttr<DLLImportAttr>())
1830     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1831   else if (D->hasAttr<DLLExportAttr>())
1832     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1833 
1834   // If required by the ABI, give definitions of static data members with inline
1835   // initializers linkonce_odr linkage.
1836   if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() &&
1837       D->isStaticDataMember() && InitExpr &&
1838       !InitDecl->isThisDeclarationADefinition())
1839     GV->setLinkage(llvm::GlobalVariable::LinkOnceODRLinkage);
1840 
1841   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1842     // common vars aren't constant even if declared const.
1843     GV->setConstant(false);
1844 
1845   SetCommonAttributes(D, GV);
1846 
1847   // Emit the initializer function if necessary.
1848   if (NeedsGlobalCtor || NeedsGlobalDtor)
1849     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1850 
1851   // If we are compiling with ASan, add metadata indicating dynamically
1852   // initialized globals.
1853   if (SanOpts.Address && NeedsGlobalCtor) {
1854     llvm::Module &M = getModule();
1855 
1856     llvm::NamedMDNode *DynamicInitializers =
1857         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1858     llvm::Value *GlobalToAdd[] = { GV };
1859     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1860     DynamicInitializers->addOperand(ThisGlobal);
1861   }
1862 
1863   // Emit global variable debug information.
1864   if (CGDebugInfo *DI = getModuleDebugInfo())
1865     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1866       DI->EmitGlobalVariable(GV, D);
1867 }
1868 
1869 llvm::GlobalValue::LinkageTypes
1870 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1871   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1872   if (Linkage == GVA_Internal)
1873     return llvm::Function::InternalLinkage;
1874   else if (D->hasAttr<DLLImportAttr>())
1875     return llvm::Function::ExternalLinkage;
1876   else if (D->hasAttr<DLLExportAttr>())
1877     return llvm::Function::ExternalLinkage;
1878   else if (D->hasAttr<SelectAnyAttr>()) {
1879     // selectany symbols are externally visible, so use weak instead of
1880     // linkonce.  MSVC optimizes away references to const selectany globals, so
1881     // all definitions should be the same and ODR linkage should be used.
1882     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1883     return llvm::GlobalVariable::WeakODRLinkage;
1884   } else if (D->hasAttr<WeakAttr>()) {
1885     if (isConstant)
1886       return llvm::GlobalVariable::WeakODRLinkage;
1887     else
1888       return llvm::GlobalVariable::WeakAnyLinkage;
1889   } else if (Linkage == GVA_TemplateInstantiation ||
1890              Linkage == GVA_ExplicitTemplateInstantiation)
1891     return llvm::GlobalVariable::WeakODRLinkage;
1892   else if (!getLangOpts().CPlusPlus &&
1893            ((!CodeGenOpts.NoCommon && !D->hasAttr<NoCommonAttr>()) ||
1894              D->hasAttr<CommonAttr>()) &&
1895            !D->hasExternalStorage() && !D->getInit() &&
1896            !D->hasAttr<SectionAttr>() && !D->getTLSKind() &&
1897            !D->hasAttr<WeakImportAttr>()) {
1898     // Thread local vars aren't considered common linkage.
1899     return llvm::GlobalVariable::CommonLinkage;
1900   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1901              getTarget().getTriple().isMacOSX())
1902     // On Darwin, the backing variable for a C++11 thread_local variable always
1903     // has internal linkage; all accesses should just be calls to the
1904     // Itanium-specified entry point, which has the normal linkage of the
1905     // variable.
1906     return llvm::GlobalValue::InternalLinkage;
1907   return llvm::GlobalVariable::ExternalLinkage;
1908 }
1909 
1910 /// Replace the uses of a function that was declared with a non-proto type.
1911 /// We want to silently drop extra arguments from call sites
1912 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1913                                           llvm::Function *newFn) {
1914   // Fast path.
1915   if (old->use_empty()) return;
1916 
1917   llvm::Type *newRetTy = newFn->getReturnType();
1918   SmallVector<llvm::Value*, 4> newArgs;
1919 
1920   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1921          ui != ue; ) {
1922     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1923     llvm::User *user = *use;
1924 
1925     // Recognize and replace uses of bitcasts.  Most calls to
1926     // unprototyped functions will use bitcasts.
1927     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1928       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1929         replaceUsesOfNonProtoConstant(bitcast, newFn);
1930       continue;
1931     }
1932 
1933     // Recognize calls to the function.
1934     llvm::CallSite callSite(user);
1935     if (!callSite) continue;
1936     if (!callSite.isCallee(use)) continue;
1937 
1938     // If the return types don't match exactly, then we can't
1939     // transform this call unless it's dead.
1940     if (callSite->getType() != newRetTy && !callSite->use_empty())
1941       continue;
1942 
1943     // Get the call site's attribute list.
1944     SmallVector<llvm::AttributeSet, 8> newAttrs;
1945     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1946 
1947     // Collect any return attributes from the call.
1948     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1949       newAttrs.push_back(
1950         llvm::AttributeSet::get(newFn->getContext(),
1951                                 oldAttrs.getRetAttributes()));
1952 
1953     // If the function was passed too few arguments, don't transform.
1954     unsigned newNumArgs = newFn->arg_size();
1955     if (callSite.arg_size() < newNumArgs) continue;
1956 
1957     // If extra arguments were passed, we silently drop them.
1958     // If any of the types mismatch, we don't transform.
1959     unsigned argNo = 0;
1960     bool dontTransform = false;
1961     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1962            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1963       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1964         dontTransform = true;
1965         break;
1966       }
1967 
1968       // Add any parameter attributes.
1969       if (oldAttrs.hasAttributes(argNo + 1))
1970         newAttrs.
1971           push_back(llvm::
1972                     AttributeSet::get(newFn->getContext(),
1973                                       oldAttrs.getParamAttributes(argNo + 1)));
1974     }
1975     if (dontTransform)
1976       continue;
1977 
1978     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1979       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1980                                                  oldAttrs.getFnAttributes()));
1981 
1982     // Okay, we can transform this.  Create the new call instruction and copy
1983     // over the required information.
1984     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1985 
1986     llvm::CallSite newCall;
1987     if (callSite.isCall()) {
1988       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1989                                        callSite.getInstruction());
1990     } else {
1991       llvm::InvokeInst *oldInvoke =
1992         cast<llvm::InvokeInst>(callSite.getInstruction());
1993       newCall = llvm::InvokeInst::Create(newFn,
1994                                          oldInvoke->getNormalDest(),
1995                                          oldInvoke->getUnwindDest(),
1996                                          newArgs, "",
1997                                          callSite.getInstruction());
1998     }
1999     newArgs.clear(); // for the next iteration
2000 
2001     if (!newCall->getType()->isVoidTy())
2002       newCall->takeName(callSite.getInstruction());
2003     newCall.setAttributes(
2004                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2005     newCall.setCallingConv(callSite.getCallingConv());
2006 
2007     // Finally, remove the old call, replacing any uses with the new one.
2008     if (!callSite->use_empty())
2009       callSite->replaceAllUsesWith(newCall.getInstruction());
2010 
2011     // Copy debug location attached to CI.
2012     if (!callSite->getDebugLoc().isUnknown())
2013       newCall->setDebugLoc(callSite->getDebugLoc());
2014     callSite->eraseFromParent();
2015   }
2016 }
2017 
2018 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2019 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2020 /// existing call uses of the old function in the module, this adjusts them to
2021 /// call the new function directly.
2022 ///
2023 /// This is not just a cleanup: the always_inline pass requires direct calls to
2024 /// functions to be able to inline them.  If there is a bitcast in the way, it
2025 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2026 /// run at -O0.
2027 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2028                                                       llvm::Function *NewFn) {
2029   // If we're redefining a global as a function, don't transform it.
2030   if (!isa<llvm::Function>(Old)) return;
2031 
2032   replaceUsesOfNonProtoConstant(Old, NewFn);
2033 }
2034 
2035 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2036   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2037   // If we have a definition, this might be a deferred decl. If the
2038   // instantiation is explicit, make sure we emit it at the end.
2039   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2040     GetAddrOfGlobalVar(VD);
2041 
2042   EmitTopLevelDecl(VD);
2043 }
2044 
2045 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2046                                                  llvm::GlobalValue *GV) {
2047   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2048 
2049   // Compute the function info and LLVM type.
2050   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2051   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2052 
2053   // Get or create the prototype for the function.
2054   llvm::Constant *Entry =
2055       GV ? GV
2056          : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2057 
2058   // Strip off a bitcast if we got one back.
2059   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2060     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2061     Entry = CE->getOperand(0);
2062   }
2063 
2064   if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) {
2065     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2066     return;
2067   }
2068 
2069   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2070     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2071 
2072     // If the types mismatch then we have to rewrite the definition.
2073     assert(OldFn->isDeclaration() &&
2074            "Shouldn't replace non-declaration");
2075 
2076     // F is the Function* for the one with the wrong type, we must make a new
2077     // Function* and update everything that used F (a declaration) with the new
2078     // Function* (which will be a definition).
2079     //
2080     // This happens if there is a prototype for a function
2081     // (e.g. "int f()") and then a definition of a different type
2082     // (e.g. "int f(int x)").  Move the old function aside so that it
2083     // doesn't interfere with GetAddrOfFunction.
2084     OldFn->setName(StringRef());
2085     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2086 
2087     // This might be an implementation of a function without a
2088     // prototype, in which case, try to do special replacement of
2089     // calls which match the new prototype.  The really key thing here
2090     // is that we also potentially drop arguments from the call site
2091     // so as to make a direct call, which makes the inliner happier
2092     // and suppresses a number of optimizer warnings (!) about
2093     // dropping arguments.
2094     if (!OldFn->use_empty()) {
2095       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2096       OldFn->removeDeadConstantUsers();
2097     }
2098 
2099     // Replace uses of F with the Function we will endow with a body.
2100     if (!Entry->use_empty()) {
2101       llvm::Constant *NewPtrForOldDecl =
2102         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2103       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2104     }
2105 
2106     // Ok, delete the old function now, which is dead.
2107     OldFn->eraseFromParent();
2108 
2109     Entry = NewFn;
2110   }
2111 
2112   // We need to set linkage and visibility on the function before
2113   // generating code for it because various parts of IR generation
2114   // want to propagate this information down (e.g. to local static
2115   // declarations).
2116   llvm::Function *Fn = cast<llvm::Function>(Entry);
2117   setFunctionLinkage(GD, Fn);
2118 
2119   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2120   setGlobalVisibility(Fn, D);
2121 
2122   MaybeHandleStaticInExternC(D, Fn);
2123 
2124   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2125 
2126   SetFunctionDefinitionAttributes(D, Fn);
2127   SetLLVMFunctionAttributesForDefinition(D, Fn);
2128 
2129   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2130     AddGlobalCtor(Fn, CA->getPriority());
2131   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2132     AddGlobalDtor(Fn, DA->getPriority());
2133   if (D->hasAttr<AnnotateAttr>())
2134     AddGlobalAnnotations(D, Fn);
2135 
2136   llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this);
2137   if (PGOInit)
2138     AddGlobalCtor(PGOInit, 0);
2139 }
2140 
2141 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2142   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2143   const AliasAttr *AA = D->getAttr<AliasAttr>();
2144   assert(AA && "Not an alias?");
2145 
2146   StringRef MangledName = getMangledName(GD);
2147 
2148   // If there is a definition in the module, then it wins over the alias.
2149   // This is dubious, but allow it to be safe.  Just ignore the alias.
2150   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2151   if (Entry && !Entry->isDeclaration())
2152     return;
2153 
2154   Aliases.push_back(GD);
2155 
2156   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2157 
2158   // Create a reference to the named value.  This ensures that it is emitted
2159   // if a deferred decl.
2160   llvm::Constant *Aliasee;
2161   if (isa<llvm::FunctionType>(DeclTy))
2162     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2163                                       /*ForVTable=*/false);
2164   else
2165     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2166                                     llvm::PointerType::getUnqual(DeclTy), 0);
2167 
2168   // Create the new alias itself, but don't set a name yet.
2169   llvm::GlobalValue *GA =
2170     new llvm::GlobalAlias(Aliasee->getType(),
2171                           llvm::Function::ExternalLinkage,
2172                           "", Aliasee, &getModule());
2173 
2174   if (Entry) {
2175     assert(Entry->isDeclaration());
2176 
2177     // If there is a declaration in the module, then we had an extern followed
2178     // by the alias, as in:
2179     //   extern int test6();
2180     //   ...
2181     //   int test6() __attribute__((alias("test7")));
2182     //
2183     // Remove it and replace uses of it with the alias.
2184     GA->takeName(Entry);
2185 
2186     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2187                                                           Entry->getType()));
2188     Entry->eraseFromParent();
2189   } else {
2190     GA->setName(MangledName);
2191   }
2192 
2193   // Set attributes which are particular to an alias; this is a
2194   // specialization of the attributes which may be set on a global
2195   // variable/function.
2196   if (D->hasAttr<DLLExportAttr>()) {
2197     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2198       // The dllexport attribute is ignored for undefined symbols.
2199       if (FD->hasBody())
2200         GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2201     } else {
2202       GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2203     }
2204   } else if (D->hasAttr<WeakAttr>() ||
2205              D->hasAttr<WeakRefAttr>() ||
2206              D->isWeakImported()) {
2207     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2208   }
2209 
2210   SetCommonAttributes(D, GA);
2211 }
2212 
2213 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2214                                             ArrayRef<llvm::Type*> Tys) {
2215   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2216                                          Tys);
2217 }
2218 
2219 static llvm::StringMapEntry<llvm::Constant*> &
2220 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2221                          const StringLiteral *Literal,
2222                          bool TargetIsLSB,
2223                          bool &IsUTF16,
2224                          unsigned &StringLength) {
2225   StringRef String = Literal->getString();
2226   unsigned NumBytes = String.size();
2227 
2228   // Check for simple case.
2229   if (!Literal->containsNonAsciiOrNull()) {
2230     StringLength = NumBytes;
2231     return Map.GetOrCreateValue(String);
2232   }
2233 
2234   // Otherwise, convert the UTF8 literals into a string of shorts.
2235   IsUTF16 = true;
2236 
2237   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2238   const UTF8 *FromPtr = (const UTF8 *)String.data();
2239   UTF16 *ToPtr = &ToBuf[0];
2240 
2241   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2242                            &ToPtr, ToPtr + NumBytes,
2243                            strictConversion);
2244 
2245   // ConvertUTF8toUTF16 returns the length in ToPtr.
2246   StringLength = ToPtr - &ToBuf[0];
2247 
2248   // Add an explicit null.
2249   *ToPtr = 0;
2250   return Map.
2251     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2252                                (StringLength + 1) * 2));
2253 }
2254 
2255 static llvm::StringMapEntry<llvm::Constant*> &
2256 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2257                        const StringLiteral *Literal,
2258                        unsigned &StringLength) {
2259   StringRef String = Literal->getString();
2260   StringLength = String.size();
2261   return Map.GetOrCreateValue(String);
2262 }
2263 
2264 llvm::Constant *
2265 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2266   unsigned StringLength = 0;
2267   bool isUTF16 = false;
2268   llvm::StringMapEntry<llvm::Constant*> &Entry =
2269     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2270                              getDataLayout().isLittleEndian(),
2271                              isUTF16, StringLength);
2272 
2273   if (llvm::Constant *C = Entry.getValue())
2274     return C;
2275 
2276   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2277   llvm::Constant *Zeros[] = { Zero, Zero };
2278   llvm::Value *V;
2279 
2280   // If we don't already have it, get __CFConstantStringClassReference.
2281   if (!CFConstantStringClassRef) {
2282     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2283     Ty = llvm::ArrayType::get(Ty, 0);
2284     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2285                                            "__CFConstantStringClassReference");
2286     // Decay array -> ptr
2287     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2288     CFConstantStringClassRef = V;
2289   }
2290   else
2291     V = CFConstantStringClassRef;
2292 
2293   QualType CFTy = getContext().getCFConstantStringType();
2294 
2295   llvm::StructType *STy =
2296     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2297 
2298   llvm::Constant *Fields[4];
2299 
2300   // Class pointer.
2301   Fields[0] = cast<llvm::ConstantExpr>(V);
2302 
2303   // Flags.
2304   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2305   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2306     llvm::ConstantInt::get(Ty, 0x07C8);
2307 
2308   // String pointer.
2309   llvm::Constant *C = 0;
2310   if (isUTF16) {
2311     ArrayRef<uint16_t> Arr =
2312       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2313                                      const_cast<char *>(Entry.getKey().data())),
2314                                    Entry.getKey().size() / 2);
2315     C = llvm::ConstantDataArray::get(VMContext, Arr);
2316   } else {
2317     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2318   }
2319 
2320   // Note: -fwritable-strings doesn't make the backing store strings of
2321   // CFStrings writable. (See <rdar://problem/10657500>)
2322   llvm::GlobalVariable *GV =
2323       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2324                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2325   GV->setUnnamedAddr(true);
2326   // Don't enforce the target's minimum global alignment, since the only use
2327   // of the string is via this class initializer.
2328   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2329   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2330   // that changes the section it ends in, which surprises ld64.
2331   if (isUTF16) {
2332     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2333     GV->setAlignment(Align.getQuantity());
2334     GV->setSection("__TEXT,__ustring");
2335   } else {
2336     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2337     GV->setAlignment(Align.getQuantity());
2338     GV->setSection("__TEXT,__cstring,cstring_literals");
2339   }
2340 
2341   // String.
2342   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2343 
2344   if (isUTF16)
2345     // Cast the UTF16 string to the correct type.
2346     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2347 
2348   // String length.
2349   Ty = getTypes().ConvertType(getContext().LongTy);
2350   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2351 
2352   // The struct.
2353   C = llvm::ConstantStruct::get(STy, Fields);
2354   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2355                                 llvm::GlobalVariable::PrivateLinkage, C,
2356                                 "_unnamed_cfstring_");
2357   GV->setSection("__DATA,__cfstring");
2358   Entry.setValue(GV);
2359 
2360   return GV;
2361 }
2362 
2363 llvm::Constant *
2364 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2365   unsigned StringLength = 0;
2366   llvm::StringMapEntry<llvm::Constant*> &Entry =
2367     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2368 
2369   if (llvm::Constant *C = Entry.getValue())
2370     return C;
2371 
2372   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2373   llvm::Constant *Zeros[] = { Zero, Zero };
2374   llvm::Value *V;
2375   // If we don't already have it, get _NSConstantStringClassReference.
2376   if (!ConstantStringClassRef) {
2377     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2378     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2379     llvm::Constant *GV;
2380     if (LangOpts.ObjCRuntime.isNonFragile()) {
2381       std::string str =
2382         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2383                             : "OBJC_CLASS_$_" + StringClass;
2384       GV = getObjCRuntime().GetClassGlobal(str);
2385       // Make sure the result is of the correct type.
2386       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2387       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2388       ConstantStringClassRef = V;
2389     } else {
2390       std::string str =
2391         StringClass.empty() ? "_NSConstantStringClassReference"
2392                             : "_" + StringClass + "ClassReference";
2393       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2394       GV = CreateRuntimeVariable(PTy, str);
2395       // Decay array -> ptr
2396       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2397       ConstantStringClassRef = V;
2398     }
2399   }
2400   else
2401     V = ConstantStringClassRef;
2402 
2403   if (!NSConstantStringType) {
2404     // Construct the type for a constant NSString.
2405     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2406     D->startDefinition();
2407 
2408     QualType FieldTypes[3];
2409 
2410     // const int *isa;
2411     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2412     // const char *str;
2413     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2414     // unsigned int length;
2415     FieldTypes[2] = Context.UnsignedIntTy;
2416 
2417     // Create fields
2418     for (unsigned i = 0; i < 3; ++i) {
2419       FieldDecl *Field = FieldDecl::Create(Context, D,
2420                                            SourceLocation(),
2421                                            SourceLocation(), 0,
2422                                            FieldTypes[i], /*TInfo=*/0,
2423                                            /*BitWidth=*/0,
2424                                            /*Mutable=*/false,
2425                                            ICIS_NoInit);
2426       Field->setAccess(AS_public);
2427       D->addDecl(Field);
2428     }
2429 
2430     D->completeDefinition();
2431     QualType NSTy = Context.getTagDeclType(D);
2432     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2433   }
2434 
2435   llvm::Constant *Fields[3];
2436 
2437   // Class pointer.
2438   Fields[0] = cast<llvm::ConstantExpr>(V);
2439 
2440   // String pointer.
2441   llvm::Constant *C =
2442     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2443 
2444   llvm::GlobalValue::LinkageTypes Linkage;
2445   bool isConstant;
2446   Linkage = llvm::GlobalValue::PrivateLinkage;
2447   isConstant = !LangOpts.WritableStrings;
2448 
2449   llvm::GlobalVariable *GV =
2450   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2451                            ".str");
2452   GV->setUnnamedAddr(true);
2453   // Don't enforce the target's minimum global alignment, since the only use
2454   // of the string is via this class initializer.
2455   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2456   GV->setAlignment(Align.getQuantity());
2457   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2458 
2459   // String length.
2460   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2461   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2462 
2463   // The struct.
2464   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2465   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2466                                 llvm::GlobalVariable::PrivateLinkage, C,
2467                                 "_unnamed_nsstring_");
2468   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2469   const char *NSStringNonFragileABISection =
2470       "__DATA,__objc_stringobj,regular,no_dead_strip";
2471   // FIXME. Fix section.
2472   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2473                      ? NSStringNonFragileABISection
2474                      : NSStringSection);
2475   Entry.setValue(GV);
2476 
2477   return GV;
2478 }
2479 
2480 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2481   if (ObjCFastEnumerationStateType.isNull()) {
2482     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2483     D->startDefinition();
2484 
2485     QualType FieldTypes[] = {
2486       Context.UnsignedLongTy,
2487       Context.getPointerType(Context.getObjCIdType()),
2488       Context.getPointerType(Context.UnsignedLongTy),
2489       Context.getConstantArrayType(Context.UnsignedLongTy,
2490                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2491     };
2492 
2493     for (size_t i = 0; i < 4; ++i) {
2494       FieldDecl *Field = FieldDecl::Create(Context,
2495                                            D,
2496                                            SourceLocation(),
2497                                            SourceLocation(), 0,
2498                                            FieldTypes[i], /*TInfo=*/0,
2499                                            /*BitWidth=*/0,
2500                                            /*Mutable=*/false,
2501                                            ICIS_NoInit);
2502       Field->setAccess(AS_public);
2503       D->addDecl(Field);
2504     }
2505 
2506     D->completeDefinition();
2507     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2508   }
2509 
2510   return ObjCFastEnumerationStateType;
2511 }
2512 
2513 llvm::Constant *
2514 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2515   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2516 
2517   // Don't emit it as the address of the string, emit the string data itself
2518   // as an inline array.
2519   if (E->getCharByteWidth() == 1) {
2520     SmallString<64> Str(E->getString());
2521 
2522     // Resize the string to the right size, which is indicated by its type.
2523     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2524     Str.resize(CAT->getSize().getZExtValue());
2525     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2526   }
2527 
2528   llvm::ArrayType *AType =
2529     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2530   llvm::Type *ElemTy = AType->getElementType();
2531   unsigned NumElements = AType->getNumElements();
2532 
2533   // Wide strings have either 2-byte or 4-byte elements.
2534   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2535     SmallVector<uint16_t, 32> Elements;
2536     Elements.reserve(NumElements);
2537 
2538     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2539       Elements.push_back(E->getCodeUnit(i));
2540     Elements.resize(NumElements);
2541     return llvm::ConstantDataArray::get(VMContext, Elements);
2542   }
2543 
2544   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2545   SmallVector<uint32_t, 32> Elements;
2546   Elements.reserve(NumElements);
2547 
2548   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2549     Elements.push_back(E->getCodeUnit(i));
2550   Elements.resize(NumElements);
2551   return llvm::ConstantDataArray::get(VMContext, Elements);
2552 }
2553 
2554 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2555 /// constant array for the given string literal.
2556 llvm::Constant *
2557 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2558   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2559   if (S->isAscii() || S->isUTF8()) {
2560     SmallString<64> Str(S->getString());
2561 
2562     // Resize the string to the right size, which is indicated by its type.
2563     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2564     Str.resize(CAT->getSize().getZExtValue());
2565     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2566   }
2567 
2568   // FIXME: the following does not memoize wide strings.
2569   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2570   llvm::GlobalVariable *GV =
2571     new llvm::GlobalVariable(getModule(),C->getType(),
2572                              !LangOpts.WritableStrings,
2573                              llvm::GlobalValue::PrivateLinkage,
2574                              C,".str");
2575 
2576   GV->setAlignment(Align.getQuantity());
2577   GV->setUnnamedAddr(true);
2578   return GV;
2579 }
2580 
2581 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2582 /// array for the given ObjCEncodeExpr node.
2583 llvm::Constant *
2584 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2585   std::string Str;
2586   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2587 
2588   return GetAddrOfConstantCString(Str);
2589 }
2590 
2591 
2592 /// GenerateWritableString -- Creates storage for a string literal.
2593 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2594                                              bool constant,
2595                                              CodeGenModule &CGM,
2596                                              const char *GlobalName,
2597                                              unsigned Alignment) {
2598   // Create Constant for this string literal. Don't add a '\0'.
2599   llvm::Constant *C =
2600       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2601 
2602   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
2603   unsigned AddrSpace = 0;
2604   if (CGM.getLangOpts().OpenCL)
2605     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2606 
2607   // Create a global variable for this string
2608   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
2609       CGM.getModule(), C->getType(), constant,
2610       llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0,
2611       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2612   GV->setAlignment(Alignment);
2613   GV->setUnnamedAddr(true);
2614   return GV;
2615 }
2616 
2617 /// GetAddrOfConstantString - Returns a pointer to a character array
2618 /// containing the literal. This contents are exactly that of the
2619 /// given string, i.e. it will not be null terminated automatically;
2620 /// see GetAddrOfConstantCString. Note that whether the result is
2621 /// actually a pointer to an LLVM constant depends on
2622 /// Feature.WriteableStrings.
2623 ///
2624 /// The result has pointer to array type.
2625 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2626                                                        const char *GlobalName,
2627                                                        unsigned Alignment) {
2628   // Get the default prefix if a name wasn't specified.
2629   if (!GlobalName)
2630     GlobalName = ".str";
2631 
2632   if (Alignment == 0)
2633     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2634       .getQuantity();
2635 
2636   // Don't share any string literals if strings aren't constant.
2637   if (LangOpts.WritableStrings)
2638     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2639 
2640   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2641     ConstantStringMap.GetOrCreateValue(Str);
2642 
2643   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2644     if (Alignment > GV->getAlignment()) {
2645       GV->setAlignment(Alignment);
2646     }
2647     return GV;
2648   }
2649 
2650   // Create a global variable for this.
2651   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2652                                                    Alignment);
2653   Entry.setValue(GV);
2654   return GV;
2655 }
2656 
2657 /// GetAddrOfConstantCString - Returns a pointer to a character
2658 /// array containing the literal and a terminating '\0'
2659 /// character. The result has pointer to array type.
2660 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2661                                                         const char *GlobalName,
2662                                                         unsigned Alignment) {
2663   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2664   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2665 }
2666 
2667 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2668     const MaterializeTemporaryExpr *E, const Expr *Init) {
2669   assert((E->getStorageDuration() == SD_Static ||
2670           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2671   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2672 
2673   // If we're not materializing a subobject of the temporary, keep the
2674   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2675   QualType MaterializedType = Init->getType();
2676   if (Init == E->GetTemporaryExpr())
2677     MaterializedType = E->getType();
2678 
2679   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2680   if (Slot)
2681     return Slot;
2682 
2683   // FIXME: If an externally-visible declaration extends multiple temporaries,
2684   // we need to give each temporary the same name in every translation unit (and
2685   // we also need to make the temporaries externally-visible).
2686   SmallString<256> Name;
2687   llvm::raw_svector_ostream Out(Name);
2688   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2689   Out.flush();
2690 
2691   APValue *Value = 0;
2692   if (E->getStorageDuration() == SD_Static) {
2693     // We might have a cached constant initializer for this temporary. Note
2694     // that this might have a different value from the value computed by
2695     // evaluating the initializer if the surrounding constant expression
2696     // modifies the temporary.
2697     Value = getContext().getMaterializedTemporaryValue(E, false);
2698     if (Value && Value->isUninit())
2699       Value = 0;
2700   }
2701 
2702   // Try evaluating it now, it might have a constant initializer.
2703   Expr::EvalResult EvalResult;
2704   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2705       !EvalResult.hasSideEffects())
2706     Value = &EvalResult.Val;
2707 
2708   llvm::Constant *InitialValue = 0;
2709   bool Constant = false;
2710   llvm::Type *Type;
2711   if (Value) {
2712     // The temporary has a constant initializer, use it.
2713     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2714     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2715     Type = InitialValue->getType();
2716   } else {
2717     // No initializer, the initialization will be provided when we
2718     // initialize the declaration which performed lifetime extension.
2719     Type = getTypes().ConvertTypeForMem(MaterializedType);
2720   }
2721 
2722   // Create a global variable for this lifetime-extended temporary.
2723   llvm::GlobalVariable *GV =
2724     new llvm::GlobalVariable(getModule(), Type, Constant,
2725                              llvm::GlobalValue::PrivateLinkage,
2726                              InitialValue, Name.c_str());
2727   GV->setAlignment(
2728       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2729   if (VD->getTLSKind())
2730     setTLSMode(GV, *VD);
2731   Slot = GV;
2732   return GV;
2733 }
2734 
2735 /// EmitObjCPropertyImplementations - Emit information for synthesized
2736 /// properties for an implementation.
2737 void CodeGenModule::EmitObjCPropertyImplementations(const
2738                                                     ObjCImplementationDecl *D) {
2739   for (ObjCImplementationDecl::propimpl_iterator
2740          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2741     ObjCPropertyImplDecl *PID = *i;
2742 
2743     // Dynamic is just for type-checking.
2744     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2745       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2746 
2747       // Determine which methods need to be implemented, some may have
2748       // been overridden. Note that ::isPropertyAccessor is not the method
2749       // we want, that just indicates if the decl came from a
2750       // property. What we want to know is if the method is defined in
2751       // this implementation.
2752       if (!D->getInstanceMethod(PD->getGetterName()))
2753         CodeGenFunction(*this).GenerateObjCGetter(
2754                                  const_cast<ObjCImplementationDecl *>(D), PID);
2755       if (!PD->isReadOnly() &&
2756           !D->getInstanceMethod(PD->getSetterName()))
2757         CodeGenFunction(*this).GenerateObjCSetter(
2758                                  const_cast<ObjCImplementationDecl *>(D), PID);
2759     }
2760   }
2761 }
2762 
2763 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2764   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2765   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2766        ivar; ivar = ivar->getNextIvar())
2767     if (ivar->getType().isDestructedType())
2768       return true;
2769 
2770   return false;
2771 }
2772 
2773 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2774 /// for an implementation.
2775 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2776   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2777   if (needsDestructMethod(D)) {
2778     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2779     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2780     ObjCMethodDecl *DTORMethod =
2781       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2782                              cxxSelector, getContext().VoidTy, 0, D,
2783                              /*isInstance=*/true, /*isVariadic=*/false,
2784                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2785                              /*isDefined=*/false, ObjCMethodDecl::Required);
2786     D->addInstanceMethod(DTORMethod);
2787     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2788     D->setHasDestructors(true);
2789   }
2790 
2791   // If the implementation doesn't have any ivar initializers, we don't need
2792   // a .cxx_construct.
2793   if (D->getNumIvarInitializers() == 0)
2794     return;
2795 
2796   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2797   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2798   // The constructor returns 'self'.
2799   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2800                                                 D->getLocation(),
2801                                                 D->getLocation(),
2802                                                 cxxSelector,
2803                                                 getContext().getObjCIdType(), 0,
2804                                                 D, /*isInstance=*/true,
2805                                                 /*isVariadic=*/false,
2806                                                 /*isPropertyAccessor=*/true,
2807                                                 /*isImplicitlyDeclared=*/true,
2808                                                 /*isDefined=*/false,
2809                                                 ObjCMethodDecl::Required);
2810   D->addInstanceMethod(CTORMethod);
2811   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2812   D->setHasNonZeroConstructors(true);
2813 }
2814 
2815 /// EmitNamespace - Emit all declarations in a namespace.
2816 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2817   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2818        I != E; ++I) {
2819     if (const VarDecl *VD = dyn_cast<VarDecl>(*I))
2820       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2821           VD->getTemplateSpecializationKind() != TSK_Undeclared)
2822         continue;
2823     EmitTopLevelDecl(*I);
2824   }
2825 }
2826 
2827 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2828 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2829   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2830       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2831     ErrorUnsupported(LSD, "linkage spec");
2832     return;
2833   }
2834 
2835   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2836        I != E; ++I) {
2837     // Meta-data for ObjC class includes references to implemented methods.
2838     // Generate class's method definitions first.
2839     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2840       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2841            MEnd = OID->meth_end();
2842            M != MEnd; ++M)
2843         EmitTopLevelDecl(*M);
2844     }
2845     EmitTopLevelDecl(*I);
2846   }
2847 }
2848 
2849 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2850 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2851   // Ignore dependent declarations.
2852   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2853     return;
2854 
2855   switch (D->getKind()) {
2856   case Decl::CXXConversion:
2857   case Decl::CXXMethod:
2858   case Decl::Function:
2859     // Skip function templates
2860     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2861         cast<FunctionDecl>(D)->isLateTemplateParsed())
2862       return;
2863 
2864     EmitGlobal(cast<FunctionDecl>(D));
2865     break;
2866 
2867   case Decl::Var:
2868     // Skip variable templates
2869     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2870       return;
2871   case Decl::VarTemplateSpecialization:
2872     EmitGlobal(cast<VarDecl>(D));
2873     break;
2874 
2875   // Indirect fields from global anonymous structs and unions can be
2876   // ignored; only the actual variable requires IR gen support.
2877   case Decl::IndirectField:
2878     break;
2879 
2880   // C++ Decls
2881   case Decl::Namespace:
2882     EmitNamespace(cast<NamespaceDecl>(D));
2883     break;
2884     // No code generation needed.
2885   case Decl::UsingShadow:
2886   case Decl::Using:
2887   case Decl::ClassTemplate:
2888   case Decl::VarTemplate:
2889   case Decl::VarTemplatePartialSpecialization:
2890   case Decl::FunctionTemplate:
2891   case Decl::TypeAliasTemplate:
2892   case Decl::Block:
2893   case Decl::Empty:
2894     break;
2895   case Decl::NamespaceAlias:
2896     if (CGDebugInfo *DI = getModuleDebugInfo())
2897         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2898     return;
2899   case Decl::UsingDirective: // using namespace X; [C++]
2900     if (CGDebugInfo *DI = getModuleDebugInfo())
2901       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2902     return;
2903   case Decl::CXXConstructor:
2904     // Skip function templates
2905     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2906         cast<FunctionDecl>(D)->isLateTemplateParsed())
2907       return;
2908 
2909     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2910     break;
2911   case Decl::CXXDestructor:
2912     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2913       return;
2914     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2915     break;
2916 
2917   case Decl::StaticAssert:
2918     // Nothing to do.
2919     break;
2920 
2921   // Objective-C Decls
2922 
2923   // Forward declarations, no (immediate) code generation.
2924   case Decl::ObjCInterface:
2925   case Decl::ObjCCategory:
2926     break;
2927 
2928   case Decl::ObjCProtocol: {
2929     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2930     if (Proto->isThisDeclarationADefinition())
2931       ObjCRuntime->GenerateProtocol(Proto);
2932     break;
2933   }
2934 
2935   case Decl::ObjCCategoryImpl:
2936     // Categories have properties but don't support synthesize so we
2937     // can ignore them here.
2938     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2939     break;
2940 
2941   case Decl::ObjCImplementation: {
2942     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2943     EmitObjCPropertyImplementations(OMD);
2944     EmitObjCIvarInitializations(OMD);
2945     ObjCRuntime->GenerateClass(OMD);
2946     // Emit global variable debug information.
2947     if (CGDebugInfo *DI = getModuleDebugInfo())
2948       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2949         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2950             OMD->getClassInterface()), OMD->getLocation());
2951     break;
2952   }
2953   case Decl::ObjCMethod: {
2954     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2955     // If this is not a prototype, emit the body.
2956     if (OMD->getBody())
2957       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2958     break;
2959   }
2960   case Decl::ObjCCompatibleAlias:
2961     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2962     break;
2963 
2964   case Decl::LinkageSpec:
2965     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2966     break;
2967 
2968   case Decl::FileScopeAsm: {
2969     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2970     StringRef AsmString = AD->getAsmString()->getString();
2971 
2972     const std::string &S = getModule().getModuleInlineAsm();
2973     if (S.empty())
2974       getModule().setModuleInlineAsm(AsmString);
2975     else if (S.end()[-1] == '\n')
2976       getModule().setModuleInlineAsm(S + AsmString.str());
2977     else
2978       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2979     break;
2980   }
2981 
2982   case Decl::Import: {
2983     ImportDecl *Import = cast<ImportDecl>(D);
2984 
2985     // Ignore import declarations that come from imported modules.
2986     if (clang::Module *Owner = Import->getOwningModule()) {
2987       if (getLangOpts().CurrentModule.empty() ||
2988           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2989         break;
2990     }
2991 
2992     ImportedModules.insert(Import->getImportedModule());
2993     break;
2994  }
2995 
2996   default:
2997     // Make sure we handled everything we should, every other kind is a
2998     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2999     // function. Need to recode Decl::Kind to do that easily.
3000     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3001   }
3002 }
3003 
3004 /// Turns the given pointer into a constant.
3005 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3006                                           const void *Ptr) {
3007   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3008   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3009   return llvm::ConstantInt::get(i64, PtrInt);
3010 }
3011 
3012 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3013                                    llvm::NamedMDNode *&GlobalMetadata,
3014                                    GlobalDecl D,
3015                                    llvm::GlobalValue *Addr) {
3016   if (!GlobalMetadata)
3017     GlobalMetadata =
3018       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3019 
3020   // TODO: should we report variant information for ctors/dtors?
3021   llvm::Value *Ops[] = {
3022     Addr,
3023     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3024   };
3025   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3026 }
3027 
3028 /// For each function which is declared within an extern "C" region and marked
3029 /// as 'used', but has internal linkage, create an alias from the unmangled
3030 /// name to the mangled name if possible. People expect to be able to refer
3031 /// to such functions with an unmangled name from inline assembly within the
3032 /// same translation unit.
3033 void CodeGenModule::EmitStaticExternCAliases() {
3034   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3035                                   E = StaticExternCValues.end();
3036        I != E; ++I) {
3037     IdentifierInfo *Name = I->first;
3038     llvm::GlobalValue *Val = I->second;
3039     if (Val && !getModule().getNamedValue(Name->getName()))
3040       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3041                                           Name->getName(), Val, &getModule()));
3042   }
3043 }
3044 
3045 /// Emits metadata nodes associating all the global values in the
3046 /// current module with the Decls they came from.  This is useful for
3047 /// projects using IR gen as a subroutine.
3048 ///
3049 /// Since there's currently no way to associate an MDNode directly
3050 /// with an llvm::GlobalValue, we create a global named metadata
3051 /// with the name 'clang.global.decl.ptrs'.
3052 void CodeGenModule::EmitDeclMetadata() {
3053   llvm::NamedMDNode *GlobalMetadata = 0;
3054 
3055   // StaticLocalDeclMap
3056   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3057          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3058        I != E; ++I) {
3059     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3060     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3061   }
3062 }
3063 
3064 /// Emits metadata nodes for all the local variables in the current
3065 /// function.
3066 void CodeGenFunction::EmitDeclMetadata() {
3067   if (LocalDeclMap.empty()) return;
3068 
3069   llvm::LLVMContext &Context = getLLVMContext();
3070 
3071   // Find the unique metadata ID for this name.
3072   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3073 
3074   llvm::NamedMDNode *GlobalMetadata = 0;
3075 
3076   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3077          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3078     const Decl *D = I->first;
3079     llvm::Value *Addr = I->second;
3080 
3081     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3082       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3083       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3084     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3085       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3086       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3087     }
3088   }
3089 }
3090 
3091 void CodeGenModule::EmitVersionIdentMetadata() {
3092   llvm::NamedMDNode *IdentMetadata =
3093     TheModule.getOrInsertNamedMetadata("llvm.ident");
3094   std::string Version = getClangFullVersion();
3095   llvm::LLVMContext &Ctx = TheModule.getContext();
3096 
3097   llvm::Value *IdentNode[] = {
3098     llvm::MDString::get(Ctx, Version)
3099   };
3100   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3101 }
3102 
3103 void CodeGenModule::EmitCoverageFile() {
3104   if (!getCodeGenOpts().CoverageFile.empty()) {
3105     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3106       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3107       llvm::LLVMContext &Ctx = TheModule.getContext();
3108       llvm::MDString *CoverageFile =
3109           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3110       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3111         llvm::MDNode *CU = CUNode->getOperand(i);
3112         llvm::Value *node[] = { CoverageFile, CU };
3113         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3114         GCov->addOperand(N);
3115       }
3116     }
3117   }
3118 }
3119 
3120 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3121                                                      QualType GuidType) {
3122   // Sema has checked that all uuid strings are of the form
3123   // "12345678-1234-1234-1234-1234567890ab".
3124   assert(Uuid.size() == 36);
3125   for (unsigned i = 0; i < 36; ++i) {
3126     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3127     else                                         assert(isHexDigit(Uuid[i]));
3128   }
3129 
3130   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3131 
3132   llvm::Constant *Field3[8];
3133   for (unsigned Idx = 0; Idx < 8; ++Idx)
3134     Field3[Idx] = llvm::ConstantInt::get(
3135         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3136 
3137   llvm::Constant *Fields[4] = {
3138     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3139     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3140     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3141     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3142   };
3143 
3144   return llvm::ConstantStruct::getAnon(Fields);
3145 }
3146