xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision e070fd2ac88f067f3c78a9adc9f2a7d58c0b127b)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/Triple.h"
43 #include "llvm/Target/Mangler.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Support/CallSite.h"
46 #include "llvm/Support/ErrorHandling.h"
47 using namespace clang;
48 using namespace CodeGen;
49 
50 static const char AnnotationSection[] = "llvm.metadata";
51 
52 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57   }
58 
59   llvm_unreachable("invalid C++ ABI kind");
60 }
61 
62 
63 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                              llvm::Module &M, const llvm::TargetData &TD,
65                              DiagnosticsEngine &diags)
66   : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68     ABI(createCXXABI(*this)),
69     Types(*this),
70     TBAA(0),
71     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
73     RRData(0), CFConstantStringClassRef(0),
74     ConstantStringClassRef(0), NSConstantStringType(0),
75     VMContext(M.getContext()),
76     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
77     BlockObjectAssign(0), BlockObjectDispose(0),
78     BlockDescriptorType(0), GenericBlockLiteralType(0) {
79 
80   // Initialize the type cache.
81   llvm::LLVMContext &LLVMContext = M.getContext();
82   VoidTy = llvm::Type::getVoidTy(LLVMContext);
83   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
84   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
85   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
86   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
87   FloatTy = llvm::Type::getFloatTy(LLVMContext);
88   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
89   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
90   PointerAlignInBytes =
91   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
92   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
93   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
94   Int8PtrTy = Int8Ty->getPointerTo(0);
95   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
96 
97   if (Features.ObjC1)
98     createObjCRuntime();
99   if (Features.OpenCL)
100     createOpenCLRuntime();
101   if (Features.CUDA)
102     createCUDARuntime();
103 
104   // Enable TBAA unless it's suppressed.
105   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
106     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
107                            ABI.getMangleContext());
108 
109   // If debug info or coverage generation is enabled, create the CGDebugInfo
110   // object.
111   if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
112       CodeGenOpts.EmitGcovNotes)
113     DebugInfo = new CGDebugInfo(*this);
114 
115   Block.GlobalUniqueCount = 0;
116 
117   if (C.getLangOptions().ObjCAutoRefCount)
118     ARCData = new ARCEntrypoints();
119   RRData = new RREntrypoints();
120 }
121 
122 CodeGenModule::~CodeGenModule() {
123   delete ObjCRuntime;
124   delete OpenCLRuntime;
125   delete CUDARuntime;
126   delete TheTargetCodeGenInfo;
127   delete &ABI;
128   delete TBAA;
129   delete DebugInfo;
130   delete ARCData;
131   delete RRData;
132 }
133 
134 void CodeGenModule::createObjCRuntime() {
135   if (!Features.NeXTRuntime)
136     ObjCRuntime = CreateGNUObjCRuntime(*this);
137   else
138     ObjCRuntime = CreateMacObjCRuntime(*this);
139 }
140 
141 void CodeGenModule::createOpenCLRuntime() {
142   OpenCLRuntime = new CGOpenCLRuntime(*this);
143 }
144 
145 void CodeGenModule::createCUDARuntime() {
146   CUDARuntime = CreateNVCUDARuntime(*this);
147 }
148 
149 void CodeGenModule::Release() {
150   EmitDeferred();
151   EmitCXXGlobalInitFunc();
152   EmitCXXGlobalDtorFunc();
153   if (ObjCRuntime)
154     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
155       AddGlobalCtor(ObjCInitFunction);
156   EmitCtorList(GlobalCtors, "llvm.global_ctors");
157   EmitCtorList(GlobalDtors, "llvm.global_dtors");
158   EmitGlobalAnnotations();
159   EmitLLVMUsed();
160 
161   SimplifyPersonality();
162 
163   if (getCodeGenOpts().EmitDeclMetadata)
164     EmitDeclMetadata();
165 
166   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
167     EmitCoverageFile();
168 
169   if (DebugInfo)
170     DebugInfo->finalize();
171 }
172 
173 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
174   // Make sure that this type is translated.
175   Types.UpdateCompletedType(TD);
176   if (DebugInfo)
177     DebugInfo->UpdateCompletedType(TD);
178 }
179 
180 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
181   if (!TBAA)
182     return 0;
183   return TBAA->getTBAAInfo(QTy);
184 }
185 
186 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
187                                         llvm::MDNode *TBAAInfo) {
188   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
189 }
190 
191 bool CodeGenModule::isTargetDarwin() const {
192   return getContext().getTargetInfo().getTriple().isOSDarwin();
193 }
194 
195 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
196   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
197   getDiags().Report(Context.getFullLoc(loc), diagID);
198 }
199 
200 /// ErrorUnsupported - Print out an error that codegen doesn't support the
201 /// specified stmt yet.
202 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
203                                      bool OmitOnError) {
204   if (OmitOnError && getDiags().hasErrorOccurred())
205     return;
206   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
207                                                "cannot compile this %0 yet");
208   std::string Msg = Type;
209   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
210     << Msg << S->getSourceRange();
211 }
212 
213 /// ErrorUnsupported - Print out an error that codegen doesn't support the
214 /// specified decl yet.
215 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
216                                      bool OmitOnError) {
217   if (OmitOnError && getDiags().hasErrorOccurred())
218     return;
219   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
220                                                "cannot compile this %0 yet");
221   std::string Msg = Type;
222   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
223 }
224 
225 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
226   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
227 }
228 
229 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
230                                         const NamedDecl *D) const {
231   // Internal definitions always have default visibility.
232   if (GV->hasLocalLinkage()) {
233     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
234     return;
235   }
236 
237   // Set visibility for definitions.
238   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
239   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
240     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
241 }
242 
243 /// Set the symbol visibility of type information (vtable and RTTI)
244 /// associated with the given type.
245 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
246                                       const CXXRecordDecl *RD,
247                                       TypeVisibilityKind TVK) const {
248   setGlobalVisibility(GV, RD);
249 
250   if (!CodeGenOpts.HiddenWeakVTables)
251     return;
252 
253   // We never want to drop the visibility for RTTI names.
254   if (TVK == TVK_ForRTTIName)
255     return;
256 
257   // We want to drop the visibility to hidden for weak type symbols.
258   // This isn't possible if there might be unresolved references
259   // elsewhere that rely on this symbol being visible.
260 
261   // This should be kept roughly in sync with setThunkVisibility
262   // in CGVTables.cpp.
263 
264   // Preconditions.
265   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
266       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
267     return;
268 
269   // Don't override an explicit visibility attribute.
270   if (RD->getExplicitVisibility())
271     return;
272 
273   switch (RD->getTemplateSpecializationKind()) {
274   // We have to disable the optimization if this is an EI definition
275   // because there might be EI declarations in other shared objects.
276   case TSK_ExplicitInstantiationDefinition:
277   case TSK_ExplicitInstantiationDeclaration:
278     return;
279 
280   // Every use of a non-template class's type information has to emit it.
281   case TSK_Undeclared:
282     break;
283 
284   // In theory, implicit instantiations can ignore the possibility of
285   // an explicit instantiation declaration because there necessarily
286   // must be an EI definition somewhere with default visibility.  In
287   // practice, it's possible to have an explicit instantiation for
288   // an arbitrary template class, and linkers aren't necessarily able
289   // to deal with mixed-visibility symbols.
290   case TSK_ExplicitSpecialization:
291   case TSK_ImplicitInstantiation:
292     if (!CodeGenOpts.HiddenWeakTemplateVTables)
293       return;
294     break;
295   }
296 
297   // If there's a key function, there may be translation units
298   // that don't have the key function's definition.  But ignore
299   // this if we're emitting RTTI under -fno-rtti.
300   if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
301     if (Context.getKeyFunction(RD))
302       return;
303   }
304 
305   // Otherwise, drop the visibility to hidden.
306   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
307   GV->setUnnamedAddr(true);
308 }
309 
310 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
311   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
312 
313   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
314   if (!Str.empty())
315     return Str;
316 
317   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
318     IdentifierInfo *II = ND->getIdentifier();
319     assert(II && "Attempt to mangle unnamed decl.");
320 
321     Str = II->getName();
322     return Str;
323   }
324 
325   SmallString<256> Buffer;
326   llvm::raw_svector_ostream Out(Buffer);
327   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
328     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
329   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
330     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
331   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
332     getCXXABI().getMangleContext().mangleBlock(BD, Out);
333   else
334     getCXXABI().getMangleContext().mangleName(ND, Out);
335 
336   // Allocate space for the mangled name.
337   Out.flush();
338   size_t Length = Buffer.size();
339   char *Name = MangledNamesAllocator.Allocate<char>(Length);
340   std::copy(Buffer.begin(), Buffer.end(), Name);
341 
342   Str = StringRef(Name, Length);
343 
344   return Str;
345 }
346 
347 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
348                                         const BlockDecl *BD) {
349   MangleContext &MangleCtx = getCXXABI().getMangleContext();
350   const Decl *D = GD.getDecl();
351   llvm::raw_svector_ostream Out(Buffer.getBuffer());
352   if (D == 0)
353     MangleCtx.mangleGlobalBlock(BD, Out);
354   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
355     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
356   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
357     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
358   else
359     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
360 }
361 
362 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
363   return getModule().getNamedValue(Name);
364 }
365 
366 /// AddGlobalCtor - Add a function to the list that will be called before
367 /// main() runs.
368 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
369   // FIXME: Type coercion of void()* types.
370   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
371 }
372 
373 /// AddGlobalDtor - Add a function to the list that will be called
374 /// when the module is unloaded.
375 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
376   // FIXME: Type coercion of void()* types.
377   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
378 }
379 
380 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
381   // Ctor function type is void()*.
382   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
383   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
384 
385   // Get the type of a ctor entry, { i32, void ()* }.
386   llvm::StructType *CtorStructTy =
387     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
388 
389   // Construct the constructor and destructor arrays.
390   SmallVector<llvm::Constant*, 8> Ctors;
391   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
392     llvm::Constant *S[] = {
393       llvm::ConstantInt::get(Int32Ty, I->second, false),
394       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
395     };
396     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
397   }
398 
399   if (!Ctors.empty()) {
400     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
401     new llvm::GlobalVariable(TheModule, AT, false,
402                              llvm::GlobalValue::AppendingLinkage,
403                              llvm::ConstantArray::get(AT, Ctors),
404                              GlobalName);
405   }
406 }
407 
408 llvm::GlobalValue::LinkageTypes
409 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
410   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
411 
412   if (Linkage == GVA_Internal)
413     return llvm::Function::InternalLinkage;
414 
415   if (D->hasAttr<DLLExportAttr>())
416     return llvm::Function::DLLExportLinkage;
417 
418   if (D->hasAttr<WeakAttr>())
419     return llvm::Function::WeakAnyLinkage;
420 
421   // In C99 mode, 'inline' functions are guaranteed to have a strong
422   // definition somewhere else, so we can use available_externally linkage.
423   if (Linkage == GVA_C99Inline)
424     return llvm::Function::AvailableExternallyLinkage;
425 
426   // Note that Apple's kernel linker doesn't support symbol
427   // coalescing, so we need to avoid linkonce and weak linkages there.
428   // Normally, this means we just map to internal, but for explicit
429   // instantiations we'll map to external.
430 
431   // In C++, the compiler has to emit a definition in every translation unit
432   // that references the function.  We should use linkonce_odr because
433   // a) if all references in this translation unit are optimized away, we
434   // don't need to codegen it.  b) if the function persists, it needs to be
435   // merged with other definitions. c) C++ has the ODR, so we know the
436   // definition is dependable.
437   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
438     return !Context.getLangOptions().AppleKext
439              ? llvm::Function::LinkOnceODRLinkage
440              : llvm::Function::InternalLinkage;
441 
442   // An explicit instantiation of a template has weak linkage, since
443   // explicit instantiations can occur in multiple translation units
444   // and must all be equivalent. However, we are not allowed to
445   // throw away these explicit instantiations.
446   if (Linkage == GVA_ExplicitTemplateInstantiation)
447     return !Context.getLangOptions().AppleKext
448              ? llvm::Function::WeakODRLinkage
449              : llvm::Function::ExternalLinkage;
450 
451   // Otherwise, we have strong external linkage.
452   assert(Linkage == GVA_StrongExternal);
453   return llvm::Function::ExternalLinkage;
454 }
455 
456 
457 /// SetFunctionDefinitionAttributes - Set attributes for a global.
458 ///
459 /// FIXME: This is currently only done for aliases and functions, but not for
460 /// variables (these details are set in EmitGlobalVarDefinition for variables).
461 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
462                                                     llvm::GlobalValue *GV) {
463   SetCommonAttributes(D, GV);
464 }
465 
466 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
467                                               const CGFunctionInfo &Info,
468                                               llvm::Function *F) {
469   unsigned CallingConv;
470   AttributeListType AttributeList;
471   ConstructAttributeList(Info, D, AttributeList, CallingConv);
472   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
473                                           AttributeList.size()));
474   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
475 }
476 
477 /// Determines whether the language options require us to model
478 /// unwind exceptions.  We treat -fexceptions as mandating this
479 /// except under the fragile ObjC ABI with only ObjC exceptions
480 /// enabled.  This means, for example, that C with -fexceptions
481 /// enables this.
482 static bool hasUnwindExceptions(const LangOptions &Features) {
483   // If exceptions are completely disabled, obviously this is false.
484   if (!Features.Exceptions) return false;
485 
486   // If C++ exceptions are enabled, this is true.
487   if (Features.CXXExceptions) return true;
488 
489   // If ObjC exceptions are enabled, this depends on the ABI.
490   if (Features.ObjCExceptions) {
491     if (!Features.ObjCNonFragileABI) return false;
492   }
493 
494   return true;
495 }
496 
497 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
498                                                            llvm::Function *F) {
499   if (CodeGenOpts.UnwindTables)
500     F->setHasUWTable();
501 
502   if (!hasUnwindExceptions(Features))
503     F->addFnAttr(llvm::Attribute::NoUnwind);
504 
505   if (D->hasAttr<NakedAttr>()) {
506     // Naked implies noinline: we should not be inlining such functions.
507     F->addFnAttr(llvm::Attribute::Naked);
508     F->addFnAttr(llvm::Attribute::NoInline);
509   }
510 
511   if (D->hasAttr<NoInlineAttr>())
512     F->addFnAttr(llvm::Attribute::NoInline);
513 
514   // (noinline wins over always_inline, and we can't specify both in IR)
515   if (D->hasAttr<AlwaysInlineAttr>() &&
516       !F->hasFnAttr(llvm::Attribute::NoInline))
517     F->addFnAttr(llvm::Attribute::AlwaysInline);
518 
519   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
520     F->setUnnamedAddr(true);
521 
522   if (Features.getStackProtector() == LangOptions::SSPOn)
523     F->addFnAttr(llvm::Attribute::StackProtect);
524   else if (Features.getStackProtector() == LangOptions::SSPReq)
525     F->addFnAttr(llvm::Attribute::StackProtectReq);
526 
527   if (Features.AddressSanitizer) {
528     // When AddressSanitizer is enabled, set AddressSafety attribute
529     // unless __attribute__((no_address_safety_analysis)) is used.
530     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
531       F->addFnAttr(llvm::Attribute::AddressSafety);
532   }
533 
534   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
535   if (alignment)
536     F->setAlignment(alignment);
537 
538   // C++ ABI requires 2-byte alignment for member functions.
539   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
540     F->setAlignment(2);
541 }
542 
543 void CodeGenModule::SetCommonAttributes(const Decl *D,
544                                         llvm::GlobalValue *GV) {
545   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
546     setGlobalVisibility(GV, ND);
547   else
548     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
549 
550   if (D->hasAttr<UsedAttr>())
551     AddUsedGlobal(GV);
552 
553   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
554     GV->setSection(SA->getName());
555 
556   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
557 }
558 
559 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
560                                                   llvm::Function *F,
561                                                   const CGFunctionInfo &FI) {
562   SetLLVMFunctionAttributes(D, FI, F);
563   SetLLVMFunctionAttributesForDefinition(D, F);
564 
565   F->setLinkage(llvm::Function::InternalLinkage);
566 
567   SetCommonAttributes(D, F);
568 }
569 
570 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
571                                           llvm::Function *F,
572                                           bool IsIncompleteFunction) {
573   if (unsigned IID = F->getIntrinsicID()) {
574     // If this is an intrinsic function, set the function's attributes
575     // to the intrinsic's attributes.
576     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
577     return;
578   }
579 
580   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
581 
582   if (!IsIncompleteFunction)
583     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
584 
585   // Only a few attributes are set on declarations; these may later be
586   // overridden by a definition.
587 
588   if (FD->hasAttr<DLLImportAttr>()) {
589     F->setLinkage(llvm::Function::DLLImportLinkage);
590   } else if (FD->hasAttr<WeakAttr>() ||
591              FD->isWeakImported()) {
592     // "extern_weak" is overloaded in LLVM; we probably should have
593     // separate linkage types for this.
594     F->setLinkage(llvm::Function::ExternalWeakLinkage);
595   } else {
596     F->setLinkage(llvm::Function::ExternalLinkage);
597 
598     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
599     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
600       F->setVisibility(GetLLVMVisibility(LV.visibility()));
601     }
602   }
603 
604   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
605     F->setSection(SA->getName());
606 }
607 
608 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
609   assert(!GV->isDeclaration() &&
610          "Only globals with definition can force usage.");
611   LLVMUsed.push_back(GV);
612 }
613 
614 void CodeGenModule::EmitLLVMUsed() {
615   // Don't create llvm.used if there is no need.
616   if (LLVMUsed.empty())
617     return;
618 
619   // Convert LLVMUsed to what ConstantArray needs.
620   SmallVector<llvm::Constant*, 8> UsedArray;
621   UsedArray.resize(LLVMUsed.size());
622   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
623     UsedArray[i] =
624      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
625                                     Int8PtrTy);
626   }
627 
628   if (UsedArray.empty())
629     return;
630   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
631 
632   llvm::GlobalVariable *GV =
633     new llvm::GlobalVariable(getModule(), ATy, false,
634                              llvm::GlobalValue::AppendingLinkage,
635                              llvm::ConstantArray::get(ATy, UsedArray),
636                              "llvm.used");
637 
638   GV->setSection("llvm.metadata");
639 }
640 
641 void CodeGenModule::EmitDeferred() {
642   // Emit code for any potentially referenced deferred decls.  Since a
643   // previously unused static decl may become used during the generation of code
644   // for a static function, iterate until no changes are made.
645 
646   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
647     if (!DeferredVTables.empty()) {
648       const CXXRecordDecl *RD = DeferredVTables.back();
649       DeferredVTables.pop_back();
650       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
651       continue;
652     }
653 
654     GlobalDecl D = DeferredDeclsToEmit.back();
655     DeferredDeclsToEmit.pop_back();
656 
657     // Check to see if we've already emitted this.  This is necessary
658     // for a couple of reasons: first, decls can end up in the
659     // deferred-decls queue multiple times, and second, decls can end
660     // up with definitions in unusual ways (e.g. by an extern inline
661     // function acquiring a strong function redefinition).  Just
662     // ignore these cases.
663     //
664     // TODO: That said, looking this up multiple times is very wasteful.
665     StringRef Name = getMangledName(D);
666     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
667     assert(CGRef && "Deferred decl wasn't referenced?");
668 
669     if (!CGRef->isDeclaration())
670       continue;
671 
672     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
673     // purposes an alias counts as a definition.
674     if (isa<llvm::GlobalAlias>(CGRef))
675       continue;
676 
677     // Otherwise, emit the definition and move on to the next one.
678     EmitGlobalDefinition(D);
679   }
680 }
681 
682 void CodeGenModule::EmitGlobalAnnotations() {
683   if (Annotations.empty())
684     return;
685 
686   // Create a new global variable for the ConstantStruct in the Module.
687   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
688     Annotations[0]->getType(), Annotations.size()), Annotations);
689   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
690     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
691     "llvm.global.annotations");
692   gv->setSection(AnnotationSection);
693 }
694 
695 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
696   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
697   if (i != AnnotationStrings.end())
698     return i->second;
699 
700   // Not found yet, create a new global.
701   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
702   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
703     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
704   gv->setSection(AnnotationSection);
705   gv->setUnnamedAddr(true);
706   AnnotationStrings[Str] = gv;
707   return gv;
708 }
709 
710 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
711   SourceManager &SM = getContext().getSourceManager();
712   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
713   if (PLoc.isValid())
714     return EmitAnnotationString(PLoc.getFilename());
715   return EmitAnnotationString(SM.getBufferName(Loc));
716 }
717 
718 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
719   SourceManager &SM = getContext().getSourceManager();
720   PresumedLoc PLoc = SM.getPresumedLoc(L);
721   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
722     SM.getExpansionLineNumber(L);
723   return llvm::ConstantInt::get(Int32Ty, LineNo);
724 }
725 
726 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
727                                                 const AnnotateAttr *AA,
728                                                 SourceLocation L) {
729   // Get the globals for file name, annotation, and the line number.
730   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
731                  *UnitGV = EmitAnnotationUnit(L),
732                  *LineNoCst = EmitAnnotationLineNo(L);
733 
734   // Create the ConstantStruct for the global annotation.
735   llvm::Constant *Fields[4] = {
736     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
737     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
738     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
739     LineNoCst
740   };
741   return llvm::ConstantStruct::getAnon(Fields);
742 }
743 
744 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
745                                          llvm::GlobalValue *GV) {
746   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
747   // Get the struct elements for these annotations.
748   for (specific_attr_iterator<AnnotateAttr>
749        ai = D->specific_attr_begin<AnnotateAttr>(),
750        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
751     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
752 }
753 
754 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
755   // Never defer when EmitAllDecls is specified.
756   if (Features.EmitAllDecls)
757     return false;
758 
759   return !getContext().DeclMustBeEmitted(Global);
760 }
761 
762 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
763   const AliasAttr *AA = VD->getAttr<AliasAttr>();
764   assert(AA && "No alias?");
765 
766   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
767 
768   // See if there is already something with the target's name in the module.
769   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
770 
771   llvm::Constant *Aliasee;
772   if (isa<llvm::FunctionType>(DeclTy))
773     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
774                                       /*ForVTable=*/false);
775   else
776     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
777                                     llvm::PointerType::getUnqual(DeclTy), 0);
778   if (!Entry) {
779     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
780     F->setLinkage(llvm::Function::ExternalWeakLinkage);
781     WeakRefReferences.insert(F);
782   }
783 
784   return Aliasee;
785 }
786 
787 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
788   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
789 
790   // Weak references don't produce any output by themselves.
791   if (Global->hasAttr<WeakRefAttr>())
792     return;
793 
794   // If this is an alias definition (which otherwise looks like a declaration)
795   // emit it now.
796   if (Global->hasAttr<AliasAttr>())
797     return EmitAliasDefinition(GD);
798 
799   // If this is CUDA, be selective about which declarations we emit.
800   if (Features.CUDA) {
801     if (CodeGenOpts.CUDAIsDevice) {
802       if (!Global->hasAttr<CUDADeviceAttr>() &&
803           !Global->hasAttr<CUDAGlobalAttr>() &&
804           !Global->hasAttr<CUDAConstantAttr>() &&
805           !Global->hasAttr<CUDASharedAttr>())
806         return;
807     } else {
808       if (!Global->hasAttr<CUDAHostAttr>() && (
809             Global->hasAttr<CUDADeviceAttr>() ||
810             Global->hasAttr<CUDAConstantAttr>() ||
811             Global->hasAttr<CUDASharedAttr>()))
812         return;
813     }
814   }
815 
816   // Ignore declarations, they will be emitted on their first use.
817   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
818     // Forward declarations are emitted lazily on first use.
819     if (!FD->doesThisDeclarationHaveABody()) {
820       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
821         return;
822 
823       const FunctionDecl *InlineDefinition = 0;
824       FD->getBody(InlineDefinition);
825 
826       StringRef MangledName = getMangledName(GD);
827       llvm::StringMap<GlobalDecl>::iterator DDI =
828           DeferredDecls.find(MangledName);
829       if (DDI != DeferredDecls.end())
830         DeferredDecls.erase(DDI);
831       EmitGlobalDefinition(InlineDefinition);
832       return;
833     }
834   } else {
835     const VarDecl *VD = cast<VarDecl>(Global);
836     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
837 
838     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
839       return;
840   }
841 
842   // Defer code generation when possible if this is a static definition, inline
843   // function etc.  These we only want to emit if they are used.
844   if (!MayDeferGeneration(Global)) {
845     // Emit the definition if it can't be deferred.
846     EmitGlobalDefinition(GD);
847     return;
848   }
849 
850   // If we're deferring emission of a C++ variable with an
851   // initializer, remember the order in which it appeared in the file.
852   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
853       cast<VarDecl>(Global)->hasInit()) {
854     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
855     CXXGlobalInits.push_back(0);
856   }
857 
858   // If the value has already been used, add it directly to the
859   // DeferredDeclsToEmit list.
860   StringRef MangledName = getMangledName(GD);
861   if (GetGlobalValue(MangledName))
862     DeferredDeclsToEmit.push_back(GD);
863   else {
864     // Otherwise, remember that we saw a deferred decl with this name.  The
865     // first use of the mangled name will cause it to move into
866     // DeferredDeclsToEmit.
867     DeferredDecls[MangledName] = GD;
868   }
869 }
870 
871 namespace {
872   struct FunctionIsDirectlyRecursive :
873     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
874     const StringRef Name;
875     const Builtin::Context &BI;
876     bool Result;
877     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
878       Name(N), BI(C), Result(false) {
879     }
880     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
881 
882     bool TraverseCallExpr(CallExpr *E) {
883       const FunctionDecl *FD = E->getDirectCallee();
884       if (!FD)
885         return true;
886       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
887       if (Attr && Name == Attr->getLabel()) {
888         Result = true;
889         return false;
890       }
891       unsigned BuiltinID = FD->getBuiltinID();
892       if (!BuiltinID)
893         return true;
894       StringRef BuiltinName = BI.GetName(BuiltinID);
895       if (BuiltinName.startswith("__builtin_") &&
896           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
897         Result = true;
898         return false;
899       }
900       return true;
901     }
902   };
903 }
904 
905 // isTriviallyRecursive - Check if this function calls another
906 // decl that, because of the asm attribute or the other decl being a builtin,
907 // ends up pointing to itself.
908 bool
909 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
910   StringRef Name;
911   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
912     // asm labels are a special kind of mangling we have to support.
913     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
914     if (!Attr)
915       return false;
916     Name = Attr->getLabel();
917   } else {
918     Name = FD->getName();
919   }
920 
921   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
922   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
923   return Walker.Result;
924 }
925 
926 bool
927 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
928   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
929     return true;
930   if (CodeGenOpts.OptimizationLevel == 0 &&
931       !F->hasAttr<AlwaysInlineAttr>())
932     return false;
933   // PR9614. Avoid cases where the source code is lying to us. An available
934   // externally function should have an equivalent function somewhere else,
935   // but a function that calls itself is clearly not equivalent to the real
936   // implementation.
937   // This happens in glibc's btowc and in some configure checks.
938   return !isTriviallyRecursive(F);
939 }
940 
941 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
942   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
943 
944   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
945                                  Context.getSourceManager(),
946                                  "Generating code for declaration");
947 
948   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
949     // At -O0, don't generate IR for functions with available_externally
950     // linkage.
951     if (!shouldEmitFunction(Function))
952       return;
953 
954     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
955       // Make sure to emit the definition(s) before we emit the thunks.
956       // This is necessary for the generation of certain thunks.
957       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
958         EmitCXXConstructor(CD, GD.getCtorType());
959       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
960         EmitCXXDestructor(DD, GD.getDtorType());
961       else
962         EmitGlobalFunctionDefinition(GD);
963 
964       if (Method->isVirtual())
965         getVTables().EmitThunks(GD);
966 
967       return;
968     }
969 
970     return EmitGlobalFunctionDefinition(GD);
971   }
972 
973   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
974     return EmitGlobalVarDefinition(VD);
975 
976   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
977 }
978 
979 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
980 /// module, create and return an llvm Function with the specified type. If there
981 /// is something in the module with the specified name, return it potentially
982 /// bitcasted to the right type.
983 ///
984 /// If D is non-null, it specifies a decl that correspond to this.  This is used
985 /// to set the attributes on the function when it is first created.
986 llvm::Constant *
987 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
988                                        llvm::Type *Ty,
989                                        GlobalDecl D, bool ForVTable,
990                                        llvm::Attributes ExtraAttrs) {
991   // Lookup the entry, lazily creating it if necessary.
992   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
993   if (Entry) {
994     if (WeakRefReferences.count(Entry)) {
995       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
996       if (FD && !FD->hasAttr<WeakAttr>())
997         Entry->setLinkage(llvm::Function::ExternalLinkage);
998 
999       WeakRefReferences.erase(Entry);
1000     }
1001 
1002     if (Entry->getType()->getElementType() == Ty)
1003       return Entry;
1004 
1005     // Make sure the result is of the correct type.
1006     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1007   }
1008 
1009   // This function doesn't have a complete type (for example, the return
1010   // type is an incomplete struct). Use a fake type instead, and make
1011   // sure not to try to set attributes.
1012   bool IsIncompleteFunction = false;
1013 
1014   llvm::FunctionType *FTy;
1015   if (isa<llvm::FunctionType>(Ty)) {
1016     FTy = cast<llvm::FunctionType>(Ty);
1017   } else {
1018     FTy = llvm::FunctionType::get(VoidTy, false);
1019     IsIncompleteFunction = true;
1020   }
1021 
1022   llvm::Function *F = llvm::Function::Create(FTy,
1023                                              llvm::Function::ExternalLinkage,
1024                                              MangledName, &getModule());
1025   assert(F->getName() == MangledName && "name was uniqued!");
1026   if (D.getDecl())
1027     SetFunctionAttributes(D, F, IsIncompleteFunction);
1028   if (ExtraAttrs != llvm::Attribute::None)
1029     F->addFnAttr(ExtraAttrs);
1030 
1031   // This is the first use or definition of a mangled name.  If there is a
1032   // deferred decl with this name, remember that we need to emit it at the end
1033   // of the file.
1034   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1035   if (DDI != DeferredDecls.end()) {
1036     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1037     // list, and remove it from DeferredDecls (since we don't need it anymore).
1038     DeferredDeclsToEmit.push_back(DDI->second);
1039     DeferredDecls.erase(DDI);
1040 
1041   // Otherwise, there are cases we have to worry about where we're
1042   // using a declaration for which we must emit a definition but where
1043   // we might not find a top-level definition:
1044   //   - member functions defined inline in their classes
1045   //   - friend functions defined inline in some class
1046   //   - special member functions with implicit definitions
1047   // If we ever change our AST traversal to walk into class methods,
1048   // this will be unnecessary.
1049   //
1050   // We also don't emit a definition for a function if it's going to be an entry
1051   // in a vtable, unless it's already marked as used.
1052   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1053     // Look for a declaration that's lexically in a record.
1054     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1055     do {
1056       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1057         if (FD->isImplicit() && !ForVTable) {
1058           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1059           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1060           break;
1061         } else if (FD->doesThisDeclarationHaveABody()) {
1062           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1063           break;
1064         }
1065       }
1066       FD = FD->getPreviousDecl();
1067     } while (FD);
1068   }
1069 
1070   // Make sure the result is of the requested type.
1071   if (!IsIncompleteFunction) {
1072     assert(F->getType()->getElementType() == Ty);
1073     return F;
1074   }
1075 
1076   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1077   return llvm::ConstantExpr::getBitCast(F, PTy);
1078 }
1079 
1080 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1081 /// non-null, then this function will use the specified type if it has to
1082 /// create it (this occurs when we see a definition of the function).
1083 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1084                                                  llvm::Type *Ty,
1085                                                  bool ForVTable) {
1086   // If there was no specific requested type, just convert it now.
1087   if (!Ty)
1088     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1089 
1090   StringRef MangledName = getMangledName(GD);
1091   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1092 }
1093 
1094 /// CreateRuntimeFunction - Create a new runtime function with the specified
1095 /// type and name.
1096 llvm::Constant *
1097 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1098                                      StringRef Name,
1099                                      llvm::Attributes ExtraAttrs) {
1100   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1101                                  ExtraAttrs);
1102 }
1103 
1104 /// isTypeConstant - Determine whether an object of this type can be emitted
1105 /// as a constant.
1106 ///
1107 /// If ExcludeCtor is true, the duration when the object's constructor runs
1108 /// will not be considered. The caller will need to verify that the object is
1109 /// not written to during its construction.
1110 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1111   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1112     return false;
1113 
1114   if (Context.getLangOptions().CPlusPlus) {
1115     if (const CXXRecordDecl *Record
1116           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1117       return ExcludeCtor && !Record->hasMutableFields() &&
1118              Record->hasTrivialDestructor();
1119   }
1120 
1121   return true;
1122 }
1123 
1124 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1125 /// create and return an llvm GlobalVariable with the specified type.  If there
1126 /// is something in the module with the specified name, return it potentially
1127 /// bitcasted to the right type.
1128 ///
1129 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1130 /// to set the attributes on the global when it is first created.
1131 llvm::Constant *
1132 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1133                                      llvm::PointerType *Ty,
1134                                      const VarDecl *D,
1135                                      bool UnnamedAddr) {
1136   // Lookup the entry, lazily creating it if necessary.
1137   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1138   if (Entry) {
1139     if (WeakRefReferences.count(Entry)) {
1140       if (D && !D->hasAttr<WeakAttr>())
1141         Entry->setLinkage(llvm::Function::ExternalLinkage);
1142 
1143       WeakRefReferences.erase(Entry);
1144     }
1145 
1146     if (UnnamedAddr)
1147       Entry->setUnnamedAddr(true);
1148 
1149     if (Entry->getType() == Ty)
1150       return Entry;
1151 
1152     // Make sure the result is of the correct type.
1153     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1154   }
1155 
1156   // This is the first use or definition of a mangled name.  If there is a
1157   // deferred decl with this name, remember that we need to emit it at the end
1158   // of the file.
1159   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1160   if (DDI != DeferredDecls.end()) {
1161     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1162     // list, and remove it from DeferredDecls (since we don't need it anymore).
1163     DeferredDeclsToEmit.push_back(DDI->second);
1164     DeferredDecls.erase(DDI);
1165   }
1166 
1167   llvm::GlobalVariable *GV =
1168     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1169                              llvm::GlobalValue::ExternalLinkage,
1170                              0, MangledName, 0,
1171                              false, Ty->getAddressSpace());
1172 
1173   // Handle things which are present even on external declarations.
1174   if (D) {
1175     // FIXME: This code is overly simple and should be merged with other global
1176     // handling.
1177     GV->setConstant(isTypeConstant(D->getType(), false));
1178 
1179     // Set linkage and visibility in case we never see a definition.
1180     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1181     if (LV.linkage() != ExternalLinkage) {
1182       // Don't set internal linkage on declarations.
1183     } else {
1184       if (D->hasAttr<DLLImportAttr>())
1185         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1186       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1187         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1188 
1189       // Set visibility on a declaration only if it's explicit.
1190       if (LV.visibilityExplicit())
1191         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1192     }
1193 
1194     GV->setThreadLocal(D->isThreadSpecified());
1195   }
1196 
1197   return GV;
1198 }
1199 
1200 
1201 llvm::GlobalVariable *
1202 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1203                                       llvm::Type *Ty,
1204                                       llvm::GlobalValue::LinkageTypes Linkage) {
1205   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1206   llvm::GlobalVariable *OldGV = 0;
1207 
1208 
1209   if (GV) {
1210     // Check if the variable has the right type.
1211     if (GV->getType()->getElementType() == Ty)
1212       return GV;
1213 
1214     // Because C++ name mangling, the only way we can end up with an already
1215     // existing global with the same name is if it has been declared extern "C".
1216       assert(GV->isDeclaration() && "Declaration has wrong type!");
1217     OldGV = GV;
1218   }
1219 
1220   // Create a new variable.
1221   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1222                                 Linkage, 0, Name);
1223 
1224   if (OldGV) {
1225     // Replace occurrences of the old variable if needed.
1226     GV->takeName(OldGV);
1227 
1228     if (!OldGV->use_empty()) {
1229       llvm::Constant *NewPtrForOldDecl =
1230       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1231       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1232     }
1233 
1234     OldGV->eraseFromParent();
1235   }
1236 
1237   return GV;
1238 }
1239 
1240 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1241 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1242 /// then it will be greated with the specified type instead of whatever the
1243 /// normal requested type would be.
1244 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1245                                                   llvm::Type *Ty) {
1246   assert(D->hasGlobalStorage() && "Not a global variable");
1247   QualType ASTTy = D->getType();
1248   if (Ty == 0)
1249     Ty = getTypes().ConvertTypeForMem(ASTTy);
1250 
1251   llvm::PointerType *PTy =
1252     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1253 
1254   StringRef MangledName = getMangledName(D);
1255   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1256 }
1257 
1258 /// CreateRuntimeVariable - Create a new runtime global variable with the
1259 /// specified type and name.
1260 llvm::Constant *
1261 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1262                                      StringRef Name) {
1263   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1264                                true);
1265 }
1266 
1267 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1268   assert(!D->getInit() && "Cannot emit definite definitions here!");
1269 
1270   if (MayDeferGeneration(D)) {
1271     // If we have not seen a reference to this variable yet, place it
1272     // into the deferred declarations table to be emitted if needed
1273     // later.
1274     StringRef MangledName = getMangledName(D);
1275     if (!GetGlobalValue(MangledName)) {
1276       DeferredDecls[MangledName] = D;
1277       return;
1278     }
1279   }
1280 
1281   // The tentative definition is the only definition.
1282   EmitGlobalVarDefinition(D);
1283 }
1284 
1285 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1286   if (DefinitionRequired)
1287     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1288 }
1289 
1290 llvm::GlobalVariable::LinkageTypes
1291 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1292   if (RD->getLinkage() != ExternalLinkage)
1293     return llvm::GlobalVariable::InternalLinkage;
1294 
1295   if (const CXXMethodDecl *KeyFunction
1296                                     = RD->getASTContext().getKeyFunction(RD)) {
1297     // If this class has a key function, use that to determine the linkage of
1298     // the vtable.
1299     const FunctionDecl *Def = 0;
1300     if (KeyFunction->hasBody(Def))
1301       KeyFunction = cast<CXXMethodDecl>(Def);
1302 
1303     switch (KeyFunction->getTemplateSpecializationKind()) {
1304       case TSK_Undeclared:
1305       case TSK_ExplicitSpecialization:
1306         // When compiling with optimizations turned on, we emit all vtables,
1307         // even if the key function is not defined in the current translation
1308         // unit. If this is the case, use available_externally linkage.
1309         if (!Def && CodeGenOpts.OptimizationLevel)
1310           return llvm::GlobalVariable::AvailableExternallyLinkage;
1311 
1312         if (KeyFunction->isInlined())
1313           return !Context.getLangOptions().AppleKext ?
1314                    llvm::GlobalVariable::LinkOnceODRLinkage :
1315                    llvm::Function::InternalLinkage;
1316 
1317         return llvm::GlobalVariable::ExternalLinkage;
1318 
1319       case TSK_ImplicitInstantiation:
1320         return !Context.getLangOptions().AppleKext ?
1321                  llvm::GlobalVariable::LinkOnceODRLinkage :
1322                  llvm::Function::InternalLinkage;
1323 
1324       case TSK_ExplicitInstantiationDefinition:
1325         return !Context.getLangOptions().AppleKext ?
1326                  llvm::GlobalVariable::WeakODRLinkage :
1327                  llvm::Function::InternalLinkage;
1328 
1329       case TSK_ExplicitInstantiationDeclaration:
1330         // FIXME: Use available_externally linkage. However, this currently
1331         // breaks LLVM's build due to undefined symbols.
1332         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1333         return !Context.getLangOptions().AppleKext ?
1334                  llvm::GlobalVariable::LinkOnceODRLinkage :
1335                  llvm::Function::InternalLinkage;
1336     }
1337   }
1338 
1339   if (Context.getLangOptions().AppleKext)
1340     return llvm::Function::InternalLinkage;
1341 
1342   switch (RD->getTemplateSpecializationKind()) {
1343   case TSK_Undeclared:
1344   case TSK_ExplicitSpecialization:
1345   case TSK_ImplicitInstantiation:
1346     // FIXME: Use available_externally linkage. However, this currently
1347     // breaks LLVM's build due to undefined symbols.
1348     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1349   case TSK_ExplicitInstantiationDeclaration:
1350     return llvm::GlobalVariable::LinkOnceODRLinkage;
1351 
1352   case TSK_ExplicitInstantiationDefinition:
1353       return llvm::GlobalVariable::WeakODRLinkage;
1354   }
1355 
1356   llvm_unreachable("Invalid TemplateSpecializationKind!");
1357 }
1358 
1359 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1360     return Context.toCharUnitsFromBits(
1361       TheTargetData.getTypeStoreSizeInBits(Ty));
1362 }
1363 
1364 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1365   llvm::Constant *Init = 0;
1366   QualType ASTTy = D->getType();
1367   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1368   bool NeedsGlobalCtor = false;
1369   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1370 
1371   const VarDecl *InitDecl;
1372   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1373 
1374   if (!InitExpr) {
1375     // This is a tentative definition; tentative definitions are
1376     // implicitly initialized with { 0 }.
1377     //
1378     // Note that tentative definitions are only emitted at the end of
1379     // a translation unit, so they should never have incomplete
1380     // type. In addition, EmitTentativeDefinition makes sure that we
1381     // never attempt to emit a tentative definition if a real one
1382     // exists. A use may still exists, however, so we still may need
1383     // to do a RAUW.
1384     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1385     Init = EmitNullConstant(D->getType());
1386   } else {
1387     Init = EmitConstantInit(*InitDecl);
1388     if (!Init) {
1389       QualType T = InitExpr->getType();
1390       if (D->getType()->isReferenceType())
1391         T = D->getType();
1392 
1393       if (getLangOptions().CPlusPlus) {
1394         Init = EmitNullConstant(T);
1395         NeedsGlobalCtor = true;
1396       } else {
1397         ErrorUnsupported(D, "static initializer");
1398         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1399       }
1400     } else {
1401       // We don't need an initializer, so remove the entry for the delayed
1402       // initializer position (just in case this entry was delayed) if we
1403       // also don't need to register a destructor.
1404       if (getLangOptions().CPlusPlus && !NeedsGlobalDtor)
1405         DelayedCXXInitPosition.erase(D);
1406     }
1407   }
1408 
1409   llvm::Type* InitType = Init->getType();
1410   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1411 
1412   // Strip off a bitcast if we got one back.
1413   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1414     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1415            // all zero index gep.
1416            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1417     Entry = CE->getOperand(0);
1418   }
1419 
1420   // Entry is now either a Function or GlobalVariable.
1421   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1422 
1423   // We have a definition after a declaration with the wrong type.
1424   // We must make a new GlobalVariable* and update everything that used OldGV
1425   // (a declaration or tentative definition) with the new GlobalVariable*
1426   // (which will be a definition).
1427   //
1428   // This happens if there is a prototype for a global (e.g.
1429   // "extern int x[];") and then a definition of a different type (e.g.
1430   // "int x[10];"). This also happens when an initializer has a different type
1431   // from the type of the global (this happens with unions).
1432   if (GV == 0 ||
1433       GV->getType()->getElementType() != InitType ||
1434       GV->getType()->getAddressSpace() !=
1435         getContext().getTargetAddressSpace(ASTTy)) {
1436 
1437     // Move the old entry aside so that we'll create a new one.
1438     Entry->setName(StringRef());
1439 
1440     // Make a new global with the correct type, this is now guaranteed to work.
1441     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1442 
1443     // Replace all uses of the old global with the new global
1444     llvm::Constant *NewPtrForOldDecl =
1445         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1446     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1447 
1448     // Erase the old global, since it is no longer used.
1449     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1450   }
1451 
1452   if (D->hasAttr<AnnotateAttr>())
1453     AddGlobalAnnotations(D, GV);
1454 
1455   GV->setInitializer(Init);
1456 
1457   // If it is safe to mark the global 'constant', do so now.
1458   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1459                   isTypeConstant(D->getType(), true));
1460 
1461   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1462 
1463   // Set the llvm linkage type as appropriate.
1464   llvm::GlobalValue::LinkageTypes Linkage =
1465     GetLLVMLinkageVarDefinition(D, GV);
1466   GV->setLinkage(Linkage);
1467   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1468     // common vars aren't constant even if declared const.
1469     GV->setConstant(false);
1470 
1471   SetCommonAttributes(D, GV);
1472 
1473   // Emit the initializer function if necessary.
1474   if (NeedsGlobalCtor || NeedsGlobalDtor)
1475     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1476 
1477   // Emit global variable debug information.
1478   if (CGDebugInfo *DI = getModuleDebugInfo())
1479     DI->EmitGlobalVariable(GV, D);
1480 }
1481 
1482 llvm::GlobalValue::LinkageTypes
1483 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1484                                            llvm::GlobalVariable *GV) {
1485   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1486   if (Linkage == GVA_Internal)
1487     return llvm::Function::InternalLinkage;
1488   else if (D->hasAttr<DLLImportAttr>())
1489     return llvm::Function::DLLImportLinkage;
1490   else if (D->hasAttr<DLLExportAttr>())
1491     return llvm::Function::DLLExportLinkage;
1492   else if (D->hasAttr<WeakAttr>()) {
1493     if (GV->isConstant())
1494       return llvm::GlobalVariable::WeakODRLinkage;
1495     else
1496       return llvm::GlobalVariable::WeakAnyLinkage;
1497   } else if (Linkage == GVA_TemplateInstantiation ||
1498              Linkage == GVA_ExplicitTemplateInstantiation)
1499     return llvm::GlobalVariable::WeakODRLinkage;
1500   else if (!getLangOptions().CPlusPlus &&
1501            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1502              D->getAttr<CommonAttr>()) &&
1503            !D->hasExternalStorage() && !D->getInit() &&
1504            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1505            !D->getAttr<WeakImportAttr>()) {
1506     // Thread local vars aren't considered common linkage.
1507     return llvm::GlobalVariable::CommonLinkage;
1508   }
1509   return llvm::GlobalVariable::ExternalLinkage;
1510 }
1511 
1512 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1513 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1514 /// existing call uses of the old function in the module, this adjusts them to
1515 /// call the new function directly.
1516 ///
1517 /// This is not just a cleanup: the always_inline pass requires direct calls to
1518 /// functions to be able to inline them.  If there is a bitcast in the way, it
1519 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1520 /// run at -O0.
1521 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1522                                                       llvm::Function *NewFn) {
1523   // If we're redefining a global as a function, don't transform it.
1524   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1525   if (OldFn == 0) return;
1526 
1527   llvm::Type *NewRetTy = NewFn->getReturnType();
1528   SmallVector<llvm::Value*, 4> ArgList;
1529 
1530   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1531        UI != E; ) {
1532     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1533     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1534     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1535     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1536     llvm::CallSite CS(CI);
1537     if (!CI || !CS.isCallee(I)) continue;
1538 
1539     // If the return types don't match exactly, and if the call isn't dead, then
1540     // we can't transform this call.
1541     if (CI->getType() != NewRetTy && !CI->use_empty())
1542       continue;
1543 
1544     // Get the attribute list.
1545     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1546     llvm::AttrListPtr AttrList = CI->getAttributes();
1547 
1548     // Get any return attributes.
1549     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1550 
1551     // Add the return attributes.
1552     if (RAttrs)
1553       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1554 
1555     // If the function was passed too few arguments, don't transform.  If extra
1556     // arguments were passed, we silently drop them.  If any of the types
1557     // mismatch, we don't transform.
1558     unsigned ArgNo = 0;
1559     bool DontTransform = false;
1560     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1561          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1562       if (CS.arg_size() == ArgNo ||
1563           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1564         DontTransform = true;
1565         break;
1566       }
1567 
1568       // Add any parameter attributes.
1569       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1570         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1571     }
1572     if (DontTransform)
1573       continue;
1574 
1575     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1576       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1577 
1578     // Okay, we can transform this.  Create the new call instruction and copy
1579     // over the required information.
1580     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1581     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1582     ArgList.clear();
1583     if (!NewCall->getType()->isVoidTy())
1584       NewCall->takeName(CI);
1585     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1586                                                   AttrVec.end()));
1587     NewCall->setCallingConv(CI->getCallingConv());
1588 
1589     // Finally, remove the old call, replacing any uses with the new one.
1590     if (!CI->use_empty())
1591       CI->replaceAllUsesWith(NewCall);
1592 
1593     // Copy debug location attached to CI.
1594     if (!CI->getDebugLoc().isUnknown())
1595       NewCall->setDebugLoc(CI->getDebugLoc());
1596     CI->eraseFromParent();
1597   }
1598 }
1599 
1600 
1601 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1602   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1603 
1604   // Compute the function info and LLVM type.
1605   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1606   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1607 
1608   // Get or create the prototype for the function.
1609   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1610 
1611   // Strip off a bitcast if we got one back.
1612   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1613     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1614     Entry = CE->getOperand(0);
1615   }
1616 
1617 
1618   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1619     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1620 
1621     // If the types mismatch then we have to rewrite the definition.
1622     assert(OldFn->isDeclaration() &&
1623            "Shouldn't replace non-declaration");
1624 
1625     // F is the Function* for the one with the wrong type, we must make a new
1626     // Function* and update everything that used F (a declaration) with the new
1627     // Function* (which will be a definition).
1628     //
1629     // This happens if there is a prototype for a function
1630     // (e.g. "int f()") and then a definition of a different type
1631     // (e.g. "int f(int x)").  Move the old function aside so that it
1632     // doesn't interfere with GetAddrOfFunction.
1633     OldFn->setName(StringRef());
1634     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1635 
1636     // If this is an implementation of a function without a prototype, try to
1637     // replace any existing uses of the function (which may be calls) with uses
1638     // of the new function
1639     if (D->getType()->isFunctionNoProtoType()) {
1640       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1641       OldFn->removeDeadConstantUsers();
1642     }
1643 
1644     // Replace uses of F with the Function we will endow with a body.
1645     if (!Entry->use_empty()) {
1646       llvm::Constant *NewPtrForOldDecl =
1647         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1648       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1649     }
1650 
1651     // Ok, delete the old function now, which is dead.
1652     OldFn->eraseFromParent();
1653 
1654     Entry = NewFn;
1655   }
1656 
1657   // We need to set linkage and visibility on the function before
1658   // generating code for it because various parts of IR generation
1659   // want to propagate this information down (e.g. to local static
1660   // declarations).
1661   llvm::Function *Fn = cast<llvm::Function>(Entry);
1662   setFunctionLinkage(D, Fn);
1663 
1664   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1665   setGlobalVisibility(Fn, D);
1666 
1667   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1668 
1669   SetFunctionDefinitionAttributes(D, Fn);
1670   SetLLVMFunctionAttributesForDefinition(D, Fn);
1671 
1672   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1673     AddGlobalCtor(Fn, CA->getPriority());
1674   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1675     AddGlobalDtor(Fn, DA->getPriority());
1676   if (D->hasAttr<AnnotateAttr>())
1677     AddGlobalAnnotations(D, Fn);
1678 }
1679 
1680 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1681   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1682   const AliasAttr *AA = D->getAttr<AliasAttr>();
1683   assert(AA && "Not an alias?");
1684 
1685   StringRef MangledName = getMangledName(GD);
1686 
1687   // If there is a definition in the module, then it wins over the alias.
1688   // This is dubious, but allow it to be safe.  Just ignore the alias.
1689   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1690   if (Entry && !Entry->isDeclaration())
1691     return;
1692 
1693   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1694 
1695   // Create a reference to the named value.  This ensures that it is emitted
1696   // if a deferred decl.
1697   llvm::Constant *Aliasee;
1698   if (isa<llvm::FunctionType>(DeclTy))
1699     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1700                                       /*ForVTable=*/false);
1701   else
1702     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1703                                     llvm::PointerType::getUnqual(DeclTy), 0);
1704 
1705   // Create the new alias itself, but don't set a name yet.
1706   llvm::GlobalValue *GA =
1707     new llvm::GlobalAlias(Aliasee->getType(),
1708                           llvm::Function::ExternalLinkage,
1709                           "", Aliasee, &getModule());
1710 
1711   if (Entry) {
1712     assert(Entry->isDeclaration());
1713 
1714     // If there is a declaration in the module, then we had an extern followed
1715     // by the alias, as in:
1716     //   extern int test6();
1717     //   ...
1718     //   int test6() __attribute__((alias("test7")));
1719     //
1720     // Remove it and replace uses of it with the alias.
1721     GA->takeName(Entry);
1722 
1723     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1724                                                           Entry->getType()));
1725     Entry->eraseFromParent();
1726   } else {
1727     GA->setName(MangledName);
1728   }
1729 
1730   // Set attributes which are particular to an alias; this is a
1731   // specialization of the attributes which may be set on a global
1732   // variable/function.
1733   if (D->hasAttr<DLLExportAttr>()) {
1734     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1735       // The dllexport attribute is ignored for undefined symbols.
1736       if (FD->hasBody())
1737         GA->setLinkage(llvm::Function::DLLExportLinkage);
1738     } else {
1739       GA->setLinkage(llvm::Function::DLLExportLinkage);
1740     }
1741   } else if (D->hasAttr<WeakAttr>() ||
1742              D->hasAttr<WeakRefAttr>() ||
1743              D->isWeakImported()) {
1744     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1745   }
1746 
1747   SetCommonAttributes(D, GA);
1748 }
1749 
1750 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1751                                             ArrayRef<llvm::Type*> Tys) {
1752   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1753                                          Tys);
1754 }
1755 
1756 static llvm::StringMapEntry<llvm::Constant*> &
1757 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1758                          const StringLiteral *Literal,
1759                          bool TargetIsLSB,
1760                          bool &IsUTF16,
1761                          unsigned &StringLength) {
1762   StringRef String = Literal->getString();
1763   unsigned NumBytes = String.size();
1764 
1765   // Check for simple case.
1766   if (!Literal->containsNonAsciiOrNull()) {
1767     StringLength = NumBytes;
1768     return Map.GetOrCreateValue(String);
1769   }
1770 
1771   // Otherwise, convert the UTF8 literals into a byte string.
1772   SmallVector<UTF16, 128> ToBuf(NumBytes);
1773   const UTF8 *FromPtr = (UTF8 *)String.data();
1774   UTF16 *ToPtr = &ToBuf[0];
1775 
1776   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1777                            &ToPtr, ToPtr + NumBytes,
1778                            strictConversion);
1779 
1780   // ConvertUTF8toUTF16 returns the length in ToPtr.
1781   StringLength = ToPtr - &ToBuf[0];
1782 
1783   // Render the UTF-16 string into a byte array and convert to the target byte
1784   // order.
1785   //
1786   // FIXME: This isn't something we should need to do here.
1787   SmallString<128> AsBytes;
1788   AsBytes.reserve(StringLength * 2);
1789   for (unsigned i = 0; i != StringLength; ++i) {
1790     unsigned short Val = ToBuf[i];
1791     if (TargetIsLSB) {
1792       AsBytes.push_back(Val & 0xFF);
1793       AsBytes.push_back(Val >> 8);
1794     } else {
1795       AsBytes.push_back(Val >> 8);
1796       AsBytes.push_back(Val & 0xFF);
1797     }
1798   }
1799   // Append one extra null character, the second is automatically added by our
1800   // caller.
1801   AsBytes.push_back(0);
1802 
1803   IsUTF16 = true;
1804   return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1805 }
1806 
1807 static llvm::StringMapEntry<llvm::Constant*> &
1808 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1809 		       const StringLiteral *Literal,
1810 		       unsigned &StringLength)
1811 {
1812 	StringRef String = Literal->getString();
1813 	StringLength = String.size();
1814 	return Map.GetOrCreateValue(String);
1815 }
1816 
1817 llvm::Constant *
1818 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1819   unsigned StringLength = 0;
1820   bool isUTF16 = false;
1821   llvm::StringMapEntry<llvm::Constant*> &Entry =
1822     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1823                              getTargetData().isLittleEndian(),
1824                              isUTF16, StringLength);
1825 
1826   if (llvm::Constant *C = Entry.getValue())
1827     return C;
1828 
1829   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1830   llvm::Constant *Zeros[] = { Zero, Zero };
1831 
1832   // If we don't already have it, get __CFConstantStringClassReference.
1833   if (!CFConstantStringClassRef) {
1834     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1835     Ty = llvm::ArrayType::get(Ty, 0);
1836     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1837                                            "__CFConstantStringClassReference");
1838     // Decay array -> ptr
1839     CFConstantStringClassRef =
1840       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1841   }
1842 
1843   QualType CFTy = getContext().getCFConstantStringType();
1844 
1845   llvm::StructType *STy =
1846     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1847 
1848   llvm::Constant *Fields[4];
1849 
1850   // Class pointer.
1851   Fields[0] = CFConstantStringClassRef;
1852 
1853   // Flags.
1854   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1855   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1856     llvm::ConstantInt::get(Ty, 0x07C8);
1857 
1858   // String pointer.
1859   llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1860                                                          Entry.getKey());
1861 
1862   llvm::GlobalValue::LinkageTypes Linkage;
1863   if (isUTF16)
1864     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1865     Linkage = llvm::GlobalValue::InternalLinkage;
1866   else
1867     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1868     // when using private linkage. It is not clear if this is a bug in ld
1869     // or a reasonable new restriction.
1870     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1871 
1872   // Note: -fwritable-strings doesn't make the backing store strings of
1873   // CFStrings writable. (See <rdar://problem/10657500>)
1874   llvm::GlobalVariable *GV =
1875     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1876                              Linkage, C, ".str");
1877   GV->setUnnamedAddr(true);
1878   if (isUTF16) {
1879     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1880     GV->setAlignment(Align.getQuantity());
1881   } else {
1882     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1883     GV->setAlignment(Align.getQuantity());
1884   }
1885   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1886 
1887   // String length.
1888   Ty = getTypes().ConvertType(getContext().LongTy);
1889   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1890 
1891   // The struct.
1892   C = llvm::ConstantStruct::get(STy, Fields);
1893   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1894                                 llvm::GlobalVariable::PrivateLinkage, C,
1895                                 "_unnamed_cfstring_");
1896   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1897     GV->setSection(Sect);
1898   Entry.setValue(GV);
1899 
1900   return GV;
1901 }
1902 
1903 static RecordDecl *
1904 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1905                  DeclContext *DC, IdentifierInfo *Id) {
1906   SourceLocation Loc;
1907   if (Ctx.getLangOptions().CPlusPlus)
1908     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1909   else
1910     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1911 }
1912 
1913 llvm::Constant *
1914 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1915   unsigned StringLength = 0;
1916   llvm::StringMapEntry<llvm::Constant*> &Entry =
1917     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1918 
1919   if (llvm::Constant *C = Entry.getValue())
1920     return C;
1921 
1922   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1923   llvm::Constant *Zeros[] = { Zero, Zero };
1924 
1925   // If we don't already have it, get _NSConstantStringClassReference.
1926   if (!ConstantStringClassRef) {
1927     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1928     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1929     llvm::Constant *GV;
1930     if (Features.ObjCNonFragileABI) {
1931       std::string str =
1932         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1933                             : "OBJC_CLASS_$_" + StringClass;
1934       GV = getObjCRuntime().GetClassGlobal(str);
1935       // Make sure the result is of the correct type.
1936       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1937       ConstantStringClassRef =
1938         llvm::ConstantExpr::getBitCast(GV, PTy);
1939     } else {
1940       std::string str =
1941         StringClass.empty() ? "_NSConstantStringClassReference"
1942                             : "_" + StringClass + "ClassReference";
1943       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1944       GV = CreateRuntimeVariable(PTy, str);
1945       // Decay array -> ptr
1946       ConstantStringClassRef =
1947         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1948     }
1949   }
1950 
1951   if (!NSConstantStringType) {
1952     // Construct the type for a constant NSString.
1953     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1954                                      Context.getTranslationUnitDecl(),
1955                                    &Context.Idents.get("__builtin_NSString"));
1956     D->startDefinition();
1957 
1958     QualType FieldTypes[3];
1959 
1960     // const int *isa;
1961     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1962     // const char *str;
1963     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1964     // unsigned int length;
1965     FieldTypes[2] = Context.UnsignedIntTy;
1966 
1967     // Create fields
1968     for (unsigned i = 0; i < 3; ++i) {
1969       FieldDecl *Field = FieldDecl::Create(Context, D,
1970                                            SourceLocation(),
1971                                            SourceLocation(), 0,
1972                                            FieldTypes[i], /*TInfo=*/0,
1973                                            /*BitWidth=*/0,
1974                                            /*Mutable=*/false,
1975                                            /*HasInit=*/false);
1976       Field->setAccess(AS_public);
1977       D->addDecl(Field);
1978     }
1979 
1980     D->completeDefinition();
1981     QualType NSTy = Context.getTagDeclType(D);
1982     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1983   }
1984 
1985   llvm::Constant *Fields[3];
1986 
1987   // Class pointer.
1988   Fields[0] = ConstantStringClassRef;
1989 
1990   // String pointer.
1991   llvm::Constant *C =
1992     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1993 
1994   llvm::GlobalValue::LinkageTypes Linkage;
1995   bool isConstant;
1996   Linkage = llvm::GlobalValue::PrivateLinkage;
1997   isConstant = !Features.WritableStrings;
1998 
1999   llvm::GlobalVariable *GV =
2000   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2001                            ".str");
2002   GV->setUnnamedAddr(true);
2003   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2004   GV->setAlignment(Align.getQuantity());
2005   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2006 
2007   // String length.
2008   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2009   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2010 
2011   // The struct.
2012   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2013   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2014                                 llvm::GlobalVariable::PrivateLinkage, C,
2015                                 "_unnamed_nsstring_");
2016   // FIXME. Fix section.
2017   if (const char *Sect =
2018         Features.ObjCNonFragileABI
2019           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2020           : getContext().getTargetInfo().getNSStringSection())
2021     GV->setSection(Sect);
2022   Entry.setValue(GV);
2023 
2024   return GV;
2025 }
2026 
2027 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2028   if (ObjCFastEnumerationStateType.isNull()) {
2029     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2030                                      Context.getTranslationUnitDecl(),
2031                       &Context.Idents.get("__objcFastEnumerationState"));
2032     D->startDefinition();
2033 
2034     QualType FieldTypes[] = {
2035       Context.UnsignedLongTy,
2036       Context.getPointerType(Context.getObjCIdType()),
2037       Context.getPointerType(Context.UnsignedLongTy),
2038       Context.getConstantArrayType(Context.UnsignedLongTy,
2039                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2040     };
2041 
2042     for (size_t i = 0; i < 4; ++i) {
2043       FieldDecl *Field = FieldDecl::Create(Context,
2044                                            D,
2045                                            SourceLocation(),
2046                                            SourceLocation(), 0,
2047                                            FieldTypes[i], /*TInfo=*/0,
2048                                            /*BitWidth=*/0,
2049                                            /*Mutable=*/false,
2050                                            /*HasInit=*/false);
2051       Field->setAccess(AS_public);
2052       D->addDecl(Field);
2053     }
2054 
2055     D->completeDefinition();
2056     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2057   }
2058 
2059   return ObjCFastEnumerationStateType;
2060 }
2061 
2062 llvm::Constant *
2063 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2064   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2065 
2066   // Don't emit it as the address of the string, emit the string data itself
2067   // as an inline array.
2068   if (E->getCharByteWidth() == 1) {
2069     SmallString<64> Str(E->getString());
2070 
2071     // Resize the string to the right size, which is indicated by its type.
2072     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2073     Str.resize(CAT->getSize().getZExtValue());
2074     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2075   }
2076 
2077   llvm::ArrayType *AType =
2078     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2079   llvm::Type *ElemTy = AType->getElementType();
2080   unsigned NumElements = AType->getNumElements();
2081 
2082   // Wide strings have either 2-byte or 4-byte elements.
2083   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2084     SmallVector<uint16_t, 32> Elements;
2085     Elements.reserve(NumElements);
2086 
2087     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2088       Elements.push_back(E->getCodeUnit(i));
2089     Elements.resize(NumElements);
2090     return llvm::ConstantDataArray::get(VMContext, Elements);
2091   }
2092 
2093   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2094   SmallVector<uint32_t, 32> Elements;
2095   Elements.reserve(NumElements);
2096 
2097   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2098     Elements.push_back(E->getCodeUnit(i));
2099   Elements.resize(NumElements);
2100   return llvm::ConstantDataArray::get(VMContext, Elements);
2101 }
2102 
2103 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2104 /// constant array for the given string literal.
2105 llvm::Constant *
2106 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2107   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2108   if (S->isAscii() || S->isUTF8()) {
2109     SmallString<64> Str(S->getString());
2110 
2111     // Resize the string to the right size, which is indicated by its type.
2112     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2113     Str.resize(CAT->getSize().getZExtValue());
2114     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2115   }
2116 
2117   // FIXME: the following does not memoize wide strings.
2118   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2119   llvm::GlobalVariable *GV =
2120     new llvm::GlobalVariable(getModule(),C->getType(),
2121                              !Features.WritableStrings,
2122                              llvm::GlobalValue::PrivateLinkage,
2123                              C,".str");
2124 
2125   GV->setAlignment(Align.getQuantity());
2126   GV->setUnnamedAddr(true);
2127   return GV;
2128 }
2129 
2130 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2131 /// array for the given ObjCEncodeExpr node.
2132 llvm::Constant *
2133 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2134   std::string Str;
2135   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2136 
2137   return GetAddrOfConstantCString(Str);
2138 }
2139 
2140 
2141 /// GenerateWritableString -- Creates storage for a string literal.
2142 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2143                                              bool constant,
2144                                              CodeGenModule &CGM,
2145                                              const char *GlobalName,
2146                                              unsigned Alignment) {
2147   // Create Constant for this string literal. Don't add a '\0'.
2148   llvm::Constant *C =
2149       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2150 
2151   // Create a global variable for this string
2152   llvm::GlobalVariable *GV =
2153     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2154                              llvm::GlobalValue::PrivateLinkage,
2155                              C, GlobalName);
2156   GV->setAlignment(Alignment);
2157   GV->setUnnamedAddr(true);
2158   return GV;
2159 }
2160 
2161 /// GetAddrOfConstantString - Returns a pointer to a character array
2162 /// containing the literal. This contents are exactly that of the
2163 /// given string, i.e. it will not be null terminated automatically;
2164 /// see GetAddrOfConstantCString. Note that whether the result is
2165 /// actually a pointer to an LLVM constant depends on
2166 /// Feature.WriteableStrings.
2167 ///
2168 /// The result has pointer to array type.
2169 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2170                                                        const char *GlobalName,
2171                                                        unsigned Alignment) {
2172   // Get the default prefix if a name wasn't specified.
2173   if (!GlobalName)
2174     GlobalName = ".str";
2175 
2176   // Don't share any string literals if strings aren't constant.
2177   if (Features.WritableStrings)
2178     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2179 
2180   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2181     ConstantStringMap.GetOrCreateValue(Str);
2182 
2183   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2184     if (Alignment > GV->getAlignment()) {
2185       GV->setAlignment(Alignment);
2186     }
2187     return GV;
2188   }
2189 
2190   // Create a global variable for this.
2191   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2192                                                    Alignment);
2193   Entry.setValue(GV);
2194   return GV;
2195 }
2196 
2197 /// GetAddrOfConstantCString - Returns a pointer to a character
2198 /// array containing the literal and a terminating '\0'
2199 /// character. The result has pointer to array type.
2200 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2201                                                         const char *GlobalName,
2202                                                         unsigned Alignment) {
2203   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2204   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2205 }
2206 
2207 /// EmitObjCPropertyImplementations - Emit information for synthesized
2208 /// properties for an implementation.
2209 void CodeGenModule::EmitObjCPropertyImplementations(const
2210                                                     ObjCImplementationDecl *D) {
2211   for (ObjCImplementationDecl::propimpl_iterator
2212          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2213     ObjCPropertyImplDecl *PID = *i;
2214 
2215     // Dynamic is just for type-checking.
2216     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2217       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2218 
2219       // Determine which methods need to be implemented, some may have
2220       // been overridden. Note that ::isSynthesized is not the method
2221       // we want, that just indicates if the decl came from a
2222       // property. What we want to know is if the method is defined in
2223       // this implementation.
2224       if (!D->getInstanceMethod(PD->getGetterName()))
2225         CodeGenFunction(*this).GenerateObjCGetter(
2226                                  const_cast<ObjCImplementationDecl *>(D), PID);
2227       if (!PD->isReadOnly() &&
2228           !D->getInstanceMethod(PD->getSetterName()))
2229         CodeGenFunction(*this).GenerateObjCSetter(
2230                                  const_cast<ObjCImplementationDecl *>(D), PID);
2231     }
2232   }
2233 }
2234 
2235 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2236   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2237   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2238        ivar; ivar = ivar->getNextIvar())
2239     if (ivar->getType().isDestructedType())
2240       return true;
2241 
2242   return false;
2243 }
2244 
2245 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2246 /// for an implementation.
2247 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2248   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2249   if (needsDestructMethod(D)) {
2250     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2251     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2252     ObjCMethodDecl *DTORMethod =
2253       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2254                              cxxSelector, getContext().VoidTy, 0, D,
2255                              /*isInstance=*/true, /*isVariadic=*/false,
2256                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2257                              /*isDefined=*/false, ObjCMethodDecl::Required);
2258     D->addInstanceMethod(DTORMethod);
2259     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2260     D->setHasCXXStructors(true);
2261   }
2262 
2263   // If the implementation doesn't have any ivar initializers, we don't need
2264   // a .cxx_construct.
2265   if (D->getNumIvarInitializers() == 0)
2266     return;
2267 
2268   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2269   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2270   // The constructor returns 'self'.
2271   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2272                                                 D->getLocation(),
2273                                                 D->getLocation(),
2274                                                 cxxSelector,
2275                                                 getContext().getObjCIdType(), 0,
2276                                                 D, /*isInstance=*/true,
2277                                                 /*isVariadic=*/false,
2278                                                 /*isSynthesized=*/true,
2279                                                 /*isImplicitlyDeclared=*/true,
2280                                                 /*isDefined=*/false,
2281                                                 ObjCMethodDecl::Required);
2282   D->addInstanceMethod(CTORMethod);
2283   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2284   D->setHasCXXStructors(true);
2285 }
2286 
2287 /// EmitNamespace - Emit all declarations in a namespace.
2288 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2289   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2290        I != E; ++I)
2291     EmitTopLevelDecl(*I);
2292 }
2293 
2294 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2295 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2296   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2297       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2298     ErrorUnsupported(LSD, "linkage spec");
2299     return;
2300   }
2301 
2302   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2303        I != E; ++I)
2304     EmitTopLevelDecl(*I);
2305 }
2306 
2307 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2308 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2309   // If an error has occurred, stop code generation, but continue
2310   // parsing and semantic analysis (to ensure all warnings and errors
2311   // are emitted).
2312   if (Diags.hasErrorOccurred())
2313     return;
2314 
2315   // Ignore dependent declarations.
2316   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2317     return;
2318 
2319   switch (D->getKind()) {
2320   case Decl::CXXConversion:
2321   case Decl::CXXMethod:
2322   case Decl::Function:
2323     // Skip function templates
2324     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2325         cast<FunctionDecl>(D)->isLateTemplateParsed())
2326       return;
2327 
2328     EmitGlobal(cast<FunctionDecl>(D));
2329     break;
2330 
2331   case Decl::Var:
2332     EmitGlobal(cast<VarDecl>(D));
2333     break;
2334 
2335   // Indirect fields from global anonymous structs and unions can be
2336   // ignored; only the actual variable requires IR gen support.
2337   case Decl::IndirectField:
2338     break;
2339 
2340   // C++ Decls
2341   case Decl::Namespace:
2342     EmitNamespace(cast<NamespaceDecl>(D));
2343     break;
2344     // No code generation needed.
2345   case Decl::UsingShadow:
2346   case Decl::Using:
2347   case Decl::UsingDirective:
2348   case Decl::ClassTemplate:
2349   case Decl::FunctionTemplate:
2350   case Decl::TypeAliasTemplate:
2351   case Decl::NamespaceAlias:
2352   case Decl::Block:
2353   case Decl::Import:
2354     break;
2355   case Decl::CXXConstructor:
2356     // Skip function templates
2357     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2358         cast<FunctionDecl>(D)->isLateTemplateParsed())
2359       return;
2360 
2361     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2362     break;
2363   case Decl::CXXDestructor:
2364     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2365       return;
2366     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2367     break;
2368 
2369   case Decl::StaticAssert:
2370     // Nothing to do.
2371     break;
2372 
2373   // Objective-C Decls
2374 
2375   // Forward declarations, no (immediate) code generation.
2376   case Decl::ObjCInterface:
2377     break;
2378 
2379   case Decl::ObjCCategory: {
2380     ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2381     if (CD->IsClassExtension() && CD->hasSynthBitfield())
2382       Context.ResetObjCLayout(CD->getClassInterface());
2383     break;
2384   }
2385 
2386   case Decl::ObjCProtocol: {
2387     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2388     if (Proto->isThisDeclarationADefinition())
2389       ObjCRuntime->GenerateProtocol(Proto);
2390     break;
2391   }
2392 
2393   case Decl::ObjCCategoryImpl:
2394     // Categories have properties but don't support synthesize so we
2395     // can ignore them here.
2396     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2397     break;
2398 
2399   case Decl::ObjCImplementation: {
2400     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2401     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2402       Context.ResetObjCLayout(OMD->getClassInterface());
2403     EmitObjCPropertyImplementations(OMD);
2404     EmitObjCIvarInitializations(OMD);
2405     ObjCRuntime->GenerateClass(OMD);
2406     break;
2407   }
2408   case Decl::ObjCMethod: {
2409     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2410     // If this is not a prototype, emit the body.
2411     if (OMD->getBody())
2412       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2413     break;
2414   }
2415   case Decl::ObjCCompatibleAlias:
2416     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2417     break;
2418 
2419   case Decl::LinkageSpec:
2420     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2421     break;
2422 
2423   case Decl::FileScopeAsm: {
2424     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2425     StringRef AsmString = AD->getAsmString()->getString();
2426 
2427     const std::string &S = getModule().getModuleInlineAsm();
2428     if (S.empty())
2429       getModule().setModuleInlineAsm(AsmString);
2430     else if (*--S.end() == '\n')
2431       getModule().setModuleInlineAsm(S + AsmString.str());
2432     else
2433       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2434     break;
2435   }
2436 
2437   default:
2438     // Make sure we handled everything we should, every other kind is a
2439     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2440     // function. Need to recode Decl::Kind to do that easily.
2441     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2442   }
2443 }
2444 
2445 /// Turns the given pointer into a constant.
2446 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2447                                           const void *Ptr) {
2448   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2449   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2450   return llvm::ConstantInt::get(i64, PtrInt);
2451 }
2452 
2453 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2454                                    llvm::NamedMDNode *&GlobalMetadata,
2455                                    GlobalDecl D,
2456                                    llvm::GlobalValue *Addr) {
2457   if (!GlobalMetadata)
2458     GlobalMetadata =
2459       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2460 
2461   // TODO: should we report variant information for ctors/dtors?
2462   llvm::Value *Ops[] = {
2463     Addr,
2464     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2465   };
2466   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2467 }
2468 
2469 /// Emits metadata nodes associating all the global values in the
2470 /// current module with the Decls they came from.  This is useful for
2471 /// projects using IR gen as a subroutine.
2472 ///
2473 /// Since there's currently no way to associate an MDNode directly
2474 /// with an llvm::GlobalValue, we create a global named metadata
2475 /// with the name 'clang.global.decl.ptrs'.
2476 void CodeGenModule::EmitDeclMetadata() {
2477   llvm::NamedMDNode *GlobalMetadata = 0;
2478 
2479   // StaticLocalDeclMap
2480   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2481          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2482        I != E; ++I) {
2483     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2484     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2485   }
2486 }
2487 
2488 /// Emits metadata nodes for all the local variables in the current
2489 /// function.
2490 void CodeGenFunction::EmitDeclMetadata() {
2491   if (LocalDeclMap.empty()) return;
2492 
2493   llvm::LLVMContext &Context = getLLVMContext();
2494 
2495   // Find the unique metadata ID for this name.
2496   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2497 
2498   llvm::NamedMDNode *GlobalMetadata = 0;
2499 
2500   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2501          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2502     const Decl *D = I->first;
2503     llvm::Value *Addr = I->second;
2504 
2505     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2506       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2507       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2508     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2509       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2510       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2511     }
2512   }
2513 }
2514 
2515 void CodeGenModule::EmitCoverageFile() {
2516   if (!getCodeGenOpts().CoverageFile.empty()) {
2517     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2518       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2519       llvm::LLVMContext &Ctx = TheModule.getContext();
2520       llvm::MDString *CoverageFile =
2521           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2522       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2523         llvm::MDNode *CU = CUNode->getOperand(i);
2524         llvm::Value *node[] = { CoverageFile, CU };
2525         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2526         GCov->addOperand(N);
2527       }
2528     }
2529   }
2530 }
2531