1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 81 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 82 OpenCLRuntime(0), OpenMPRuntime(nullptr), CUDARuntime(0), DebugInfo(0), 83 ARCData(0), NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr), 84 CFConstantStringClassRef(0), 85 ConstantStringClassRef(0), NSConstantStringType(0), 86 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 87 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 88 LifetimeStartFn(0), LifetimeEndFn(0), 89 SanitizerBlacklist( 90 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 91 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 92 : LangOpts.Sanitize) { 93 94 // Initialize the type cache. 95 llvm::LLVMContext &LLVMContext = M.getContext(); 96 VoidTy = llvm::Type::getVoidTy(LLVMContext); 97 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 98 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 99 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 100 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 101 FloatTy = llvm::Type::getFloatTy(LLVMContext); 102 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 103 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 104 PointerAlignInBytes = 105 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 106 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 107 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 108 Int8PtrTy = Int8Ty->getPointerTo(0); 109 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 110 111 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 112 113 if (LangOpts.ObjC1) 114 createObjCRuntime(); 115 if (LangOpts.OpenCL) 116 createOpenCLRuntime(); 117 if (LangOpts.OpenMP) 118 createOpenMPRuntime(); 119 if (LangOpts.CUDA) 120 createCUDARuntime(); 121 122 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 123 if (SanOpts.Thread || 124 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 125 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 126 getCXXABI().getMangleContext()); 127 128 // If debug info or coverage generation is enabled, create the CGDebugInfo 129 // object. 130 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 131 CodeGenOpts.EmitGcovArcs || 132 CodeGenOpts.EmitGcovNotes) 133 DebugInfo = new CGDebugInfo(*this); 134 135 Block.GlobalUniqueCount = 0; 136 137 if (C.getLangOpts().ObjCAutoRefCount) 138 ARCData = new ARCEntrypoints(); 139 RRData = new RREntrypoints(); 140 141 if (!CodeGenOpts.InstrProfileInput.empty()) { 142 if (llvm::error_code EC = llvm::IndexedInstrProfReader::create( 143 CodeGenOpts.InstrProfileInput, PGOReader)) { 144 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 145 "Could not read profile: %0"); 146 getDiags().Report(DiagID) << EC.message(); 147 } 148 } 149 } 150 151 CodeGenModule::~CodeGenModule() { 152 delete ObjCRuntime; 153 delete OpenCLRuntime; 154 delete OpenMPRuntime; 155 delete CUDARuntime; 156 delete TheTargetCodeGenInfo; 157 delete TBAA; 158 delete DebugInfo; 159 delete ARCData; 160 delete RRData; 161 } 162 163 void CodeGenModule::createObjCRuntime() { 164 // This is just isGNUFamily(), but we want to force implementors of 165 // new ABIs to decide how best to do this. 166 switch (LangOpts.ObjCRuntime.getKind()) { 167 case ObjCRuntime::GNUstep: 168 case ObjCRuntime::GCC: 169 case ObjCRuntime::ObjFW: 170 ObjCRuntime = CreateGNUObjCRuntime(*this); 171 return; 172 173 case ObjCRuntime::FragileMacOSX: 174 case ObjCRuntime::MacOSX: 175 case ObjCRuntime::iOS: 176 ObjCRuntime = CreateMacObjCRuntime(*this); 177 return; 178 } 179 llvm_unreachable("bad runtime kind"); 180 } 181 182 void CodeGenModule::createOpenCLRuntime() { 183 OpenCLRuntime = new CGOpenCLRuntime(*this); 184 } 185 186 void CodeGenModule::createOpenMPRuntime() { 187 OpenMPRuntime = new CGOpenMPRuntime(*this); 188 } 189 190 void CodeGenModule::createCUDARuntime() { 191 CUDARuntime = CreateNVCUDARuntime(*this); 192 } 193 194 void CodeGenModule::applyReplacements() { 195 for (ReplacementsTy::iterator I = Replacements.begin(), 196 E = Replacements.end(); 197 I != E; ++I) { 198 StringRef MangledName = I->first(); 199 llvm::Constant *Replacement = I->second; 200 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 201 if (!Entry) 202 continue; 203 llvm::Function *OldF = cast<llvm::Function>(Entry); 204 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 205 if (!NewF) { 206 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 207 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 208 } else { 209 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 210 assert(CE->getOpcode() == llvm::Instruction::BitCast || 211 CE->getOpcode() == llvm::Instruction::GetElementPtr); 212 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 213 } 214 } 215 216 // Replace old with new, but keep the old order. 217 OldF->replaceAllUsesWith(Replacement); 218 if (NewF) { 219 NewF->removeFromParent(); 220 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 221 } 222 OldF->eraseFromParent(); 223 } 224 } 225 226 void CodeGenModule::checkAliases() { 227 // Check if the constructed aliases are well formed. It is really unfortunate 228 // that we have to do this in CodeGen, but we only construct mangled names 229 // and aliases during codegen. 230 bool Error = false; 231 DiagnosticsEngine &Diags = getDiags(); 232 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 233 E = Aliases.end(); I != E; ++I) { 234 const GlobalDecl &GD = *I; 235 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 236 const AliasAttr *AA = D->getAttr<AliasAttr>(); 237 StringRef MangledName = getMangledName(GD); 238 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 239 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 240 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 241 if (!GV) { 242 Error = true; 243 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 244 } else if (GV->isDeclaration()) { 245 Error = true; 246 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 247 } 248 249 llvm::Constant *Aliasee = Alias->getAliasee(); 250 llvm::GlobalValue *AliaseeGV; 251 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 252 assert((CE->getOpcode() == llvm::Instruction::BitCast || 253 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 254 "Unsupported aliasee"); 255 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 256 } else { 257 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 258 } 259 260 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 261 StringRef AliasSection = SA->getName(); 262 if (AliasSection != AliaseeGV->getSection()) 263 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 264 << AliasSection; 265 } 266 267 // We have to handle alias to weak aliases in here. LLVM itself disallows 268 // this since the object semantics would not match the IL one. For 269 // compatibility with gcc we implement it by just pointing the alias 270 // to its aliasee's aliasee. We also warn, since the user is probably 271 // expecting the link to be weak. 272 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 273 if (GA->mayBeOverridden()) { 274 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 275 << GA->getAliasedGlobal()->getName() << GA->getName(); 276 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 277 GA->getAliasee(), Alias->getType()); 278 Alias->setAliasee(Aliasee); 279 } 280 } 281 } 282 if (!Error) 283 return; 284 285 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 286 E = Aliases.end(); I != E; ++I) { 287 const GlobalDecl &GD = *I; 288 StringRef MangledName = getMangledName(GD); 289 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 290 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 291 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 292 Alias->eraseFromParent(); 293 } 294 } 295 296 void CodeGenModule::clear() { 297 DeferredDeclsToEmit.clear(); 298 } 299 300 void CodeGenModule::Release() { 301 EmitDeferred(); 302 applyReplacements(); 303 checkAliases(); 304 EmitCXXGlobalInitFunc(); 305 EmitCXXGlobalDtorFunc(); 306 EmitCXXThreadLocalInitFunc(); 307 if (ObjCRuntime) 308 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 309 AddGlobalCtor(ObjCInitFunction); 310 if (getCodeGenOpts().ProfileInstrGenerate) 311 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 312 AddGlobalCtor(PGOInit, 0); 313 if (PGOReader && PGOStats.isOutOfDate()) 314 getDiags().Report(diag::warn_profile_data_out_of_date) 315 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 316 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 317 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 318 EmitGlobalAnnotations(); 319 EmitStaticExternCAliases(); 320 emitLLVMUsed(); 321 322 if (CodeGenOpts.Autolink && 323 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 324 EmitModuleLinkOptions(); 325 } 326 if (CodeGenOpts.DwarfVersion) 327 // We actually want the latest version when there are conflicts. 328 // We can change from Warning to Latest if such mode is supported. 329 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 330 CodeGenOpts.DwarfVersion); 331 if (DebugInfo) 332 // We support a single version in the linked module: error out when 333 // modules do not have the same version. We are going to implement dropping 334 // debug info when the version number is not up-to-date. Once that is 335 // done, the bitcode linker is not going to see modules with different 336 // version numbers. 337 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 338 llvm::DEBUG_METADATA_VERSION); 339 340 SimplifyPersonality(); 341 342 if (getCodeGenOpts().EmitDeclMetadata) 343 EmitDeclMetadata(); 344 345 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 346 EmitCoverageFile(); 347 348 if (DebugInfo) 349 DebugInfo->finalize(); 350 351 EmitVersionIdentMetadata(); 352 } 353 354 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 355 // Make sure that this type is translated. 356 Types.UpdateCompletedType(TD); 357 } 358 359 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 360 if (!TBAA) 361 return 0; 362 return TBAA->getTBAAInfo(QTy); 363 } 364 365 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 366 if (!TBAA) 367 return 0; 368 return TBAA->getTBAAInfoForVTablePtr(); 369 } 370 371 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 372 if (!TBAA) 373 return 0; 374 return TBAA->getTBAAStructInfo(QTy); 375 } 376 377 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 378 if (!TBAA) 379 return 0; 380 return TBAA->getTBAAStructTypeInfo(QTy); 381 } 382 383 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 384 llvm::MDNode *AccessN, 385 uint64_t O) { 386 if (!TBAA) 387 return 0; 388 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 389 } 390 391 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 392 /// and struct-path aware TBAA, the tag has the same format: 393 /// base type, access type and offset. 394 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 395 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 396 llvm::MDNode *TBAAInfo, 397 bool ConvertTypeToTag) { 398 if (ConvertTypeToTag && TBAA) 399 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 400 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 401 else 402 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 403 } 404 405 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 406 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 407 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 408 } 409 410 /// ErrorUnsupported - Print out an error that codegen doesn't support the 411 /// specified stmt yet. 412 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 413 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 414 "cannot compile this %0 yet"); 415 std::string Msg = Type; 416 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 417 << Msg << S->getSourceRange(); 418 } 419 420 /// ErrorUnsupported - Print out an error that codegen doesn't support the 421 /// specified decl yet. 422 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 423 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 424 "cannot compile this %0 yet"); 425 std::string Msg = Type; 426 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 427 } 428 429 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 430 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 431 } 432 433 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 434 const NamedDecl *D) const { 435 // Internal definitions always have default visibility. 436 if (GV->hasLocalLinkage()) { 437 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 438 return; 439 } 440 441 // Set visibility for definitions. 442 LinkageInfo LV = D->getLinkageAndVisibility(); 443 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 444 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 445 } 446 447 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 448 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 449 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 450 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 451 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 452 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 453 } 454 455 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 456 CodeGenOptions::TLSModel M) { 457 switch (M) { 458 case CodeGenOptions::GeneralDynamicTLSModel: 459 return llvm::GlobalVariable::GeneralDynamicTLSModel; 460 case CodeGenOptions::LocalDynamicTLSModel: 461 return llvm::GlobalVariable::LocalDynamicTLSModel; 462 case CodeGenOptions::InitialExecTLSModel: 463 return llvm::GlobalVariable::InitialExecTLSModel; 464 case CodeGenOptions::LocalExecTLSModel: 465 return llvm::GlobalVariable::LocalExecTLSModel; 466 } 467 llvm_unreachable("Invalid TLS model!"); 468 } 469 470 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 471 const VarDecl &D) const { 472 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 473 474 llvm::GlobalVariable::ThreadLocalMode TLM; 475 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 476 477 // Override the TLS model if it is explicitly specified. 478 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 479 TLM = GetLLVMTLSModel(Attr->getModel()); 480 } 481 482 GV->setThreadLocalMode(TLM); 483 } 484 485 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 486 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 487 488 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 489 if (!Str.empty()) 490 return Str; 491 492 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 493 IdentifierInfo *II = ND->getIdentifier(); 494 assert(II && "Attempt to mangle unnamed decl."); 495 496 Str = II->getName(); 497 return Str; 498 } 499 500 SmallString<256> Buffer; 501 llvm::raw_svector_ostream Out(Buffer); 502 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 503 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 504 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 505 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 506 else 507 getCXXABI().getMangleContext().mangleName(ND, Out); 508 509 // Allocate space for the mangled name. 510 Out.flush(); 511 size_t Length = Buffer.size(); 512 char *Name = MangledNamesAllocator.Allocate<char>(Length); 513 std::copy(Buffer.begin(), Buffer.end(), Name); 514 515 Str = StringRef(Name, Length); 516 517 return Str; 518 } 519 520 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 521 const BlockDecl *BD) { 522 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 523 const Decl *D = GD.getDecl(); 524 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 525 if (D == 0) 526 MangleCtx.mangleGlobalBlock(BD, 527 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 528 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 529 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 530 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 531 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 532 else 533 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 534 } 535 536 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 537 return getModule().getNamedValue(Name); 538 } 539 540 /// AddGlobalCtor - Add a function to the list that will be called before 541 /// main() runs. 542 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 543 // FIXME: Type coercion of void()* types. 544 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 545 } 546 547 /// AddGlobalDtor - Add a function to the list that will be called 548 /// when the module is unloaded. 549 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 550 // FIXME: Type coercion of void()* types. 551 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 552 } 553 554 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 555 // Ctor function type is void()*. 556 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 557 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 558 559 // Get the type of a ctor entry, { i32, void ()* }. 560 llvm::StructType *CtorStructTy = 561 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 562 563 // Construct the constructor and destructor arrays. 564 SmallVector<llvm::Constant*, 8> Ctors; 565 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 566 llvm::Constant *S[] = { 567 llvm::ConstantInt::get(Int32Ty, I->second, false), 568 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 569 }; 570 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 571 } 572 573 if (!Ctors.empty()) { 574 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 575 new llvm::GlobalVariable(TheModule, AT, false, 576 llvm::GlobalValue::AppendingLinkage, 577 llvm::ConstantArray::get(AT, Ctors), 578 GlobalName); 579 } 580 } 581 582 llvm::GlobalValue::LinkageTypes 583 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 584 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 585 586 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 587 588 bool UseThunkForDtorVariant = 589 isa<CXXDestructorDecl>(D) && 590 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 591 GD.getDtorType()); 592 593 return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false, 594 UseThunkForDtorVariant); 595 } 596 597 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 598 llvm::Function *F) { 599 setNonAliasAttributes(D, F); 600 } 601 602 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 603 const CGFunctionInfo &Info, 604 llvm::Function *F) { 605 unsigned CallingConv; 606 AttributeListType AttributeList; 607 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 608 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 609 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 610 } 611 612 /// Determines whether the language options require us to model 613 /// unwind exceptions. We treat -fexceptions as mandating this 614 /// except under the fragile ObjC ABI with only ObjC exceptions 615 /// enabled. This means, for example, that C with -fexceptions 616 /// enables this. 617 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 618 // If exceptions are completely disabled, obviously this is false. 619 if (!LangOpts.Exceptions) return false; 620 621 // If C++ exceptions are enabled, this is true. 622 if (LangOpts.CXXExceptions) return true; 623 624 // If ObjC exceptions are enabled, this depends on the ABI. 625 if (LangOpts.ObjCExceptions) { 626 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 627 } 628 629 return true; 630 } 631 632 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 633 llvm::Function *F) { 634 llvm::AttrBuilder B; 635 636 if (CodeGenOpts.UnwindTables) 637 B.addAttribute(llvm::Attribute::UWTable); 638 639 if (!hasUnwindExceptions(LangOpts)) 640 B.addAttribute(llvm::Attribute::NoUnwind); 641 642 if (D->hasAttr<NakedAttr>()) { 643 // Naked implies noinline: we should not be inlining such functions. 644 B.addAttribute(llvm::Attribute::Naked); 645 B.addAttribute(llvm::Attribute::NoInline); 646 } else if (D->hasAttr<OptimizeNoneAttr>()) { 647 // OptimizeNone implies noinline; we should not be inlining such functions. 648 B.addAttribute(llvm::Attribute::OptimizeNone); 649 B.addAttribute(llvm::Attribute::NoInline); 650 } else if (D->hasAttr<NoDuplicateAttr>()) { 651 B.addAttribute(llvm::Attribute::NoDuplicate); 652 } else if (D->hasAttr<NoInlineAttr>()) { 653 B.addAttribute(llvm::Attribute::NoInline); 654 } else if (D->hasAttr<AlwaysInlineAttr>() && 655 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 656 llvm::Attribute::NoInline)) { 657 // (noinline wins over always_inline, and we can't specify both in IR) 658 B.addAttribute(llvm::Attribute::AlwaysInline); 659 } 660 661 if (D->hasAttr<ColdAttr>()) { 662 B.addAttribute(llvm::Attribute::OptimizeForSize); 663 B.addAttribute(llvm::Attribute::Cold); 664 } 665 666 if (D->hasAttr<MinSizeAttr>()) 667 B.addAttribute(llvm::Attribute::MinSize); 668 669 if (D->hasAttr<OptimizeNoneAttr>()) { 670 // OptimizeNone wins over OptimizeForSize and MinSize. 671 B.removeAttribute(llvm::Attribute::OptimizeForSize); 672 B.removeAttribute(llvm::Attribute::MinSize); 673 } 674 675 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 676 B.addAttribute(llvm::Attribute::StackProtect); 677 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 678 B.addAttribute(llvm::Attribute::StackProtectStrong); 679 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 680 B.addAttribute(llvm::Attribute::StackProtectReq); 681 682 // Add sanitizer attributes if function is not blacklisted. 683 if (!SanitizerBlacklist->isIn(*F)) { 684 // When AddressSanitizer is enabled, set SanitizeAddress attribute 685 // unless __attribute__((no_sanitize_address)) is used. 686 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 687 B.addAttribute(llvm::Attribute::SanitizeAddress); 688 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 689 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 690 B.addAttribute(llvm::Attribute::SanitizeThread); 691 } 692 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 693 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 694 B.addAttribute(llvm::Attribute::SanitizeMemory); 695 } 696 697 F->addAttributes(llvm::AttributeSet::FunctionIndex, 698 llvm::AttributeSet::get( 699 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 700 701 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 702 F->setUnnamedAddr(true); 703 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 704 if (MD->isVirtual()) 705 F->setUnnamedAddr(true); 706 707 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 708 if (alignment) 709 F->setAlignment(alignment); 710 711 // C++ ABI requires 2-byte alignment for member functions. 712 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 713 F->setAlignment(2); 714 } 715 716 void CodeGenModule::SetCommonAttributes(const Decl *D, 717 llvm::GlobalValue *GV) { 718 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 719 setGlobalVisibility(GV, ND); 720 else 721 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 722 723 if (D->hasAttr<UsedAttr>()) 724 addUsedGlobal(GV); 725 } 726 727 void CodeGenModule::setNonAliasAttributes(const Decl *D, 728 llvm::GlobalValue *GV) { 729 assert(!isa<llvm::GlobalAlias>(GV)); 730 SetCommonAttributes(D, GV); 731 732 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 733 GV->setSection(SA->getName()); 734 735 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 736 } 737 738 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 739 llvm::Function *F, 740 const CGFunctionInfo &FI) { 741 SetLLVMFunctionAttributes(D, FI, F); 742 SetLLVMFunctionAttributesForDefinition(D, F); 743 744 F->setLinkage(llvm::Function::InternalLinkage); 745 746 setNonAliasAttributes(D, F); 747 } 748 749 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 750 const NamedDecl *ND) { 751 // Set linkage and visibility in case we never see a definition. 752 LinkageInfo LV = ND->getLinkageAndVisibility(); 753 if (LV.getLinkage() != ExternalLinkage) { 754 // Don't set internal linkage on declarations. 755 } else { 756 if (ND->hasAttr<DLLImportAttr>()) { 757 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 758 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 759 } else if (ND->hasAttr<DLLExportAttr>()) { 760 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 761 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 762 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 763 // "extern_weak" is overloaded in LLVM; we probably should have 764 // separate linkage types for this. 765 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 766 } 767 768 // Set visibility on a declaration only if it's explicit. 769 if (LV.isVisibilityExplicit()) 770 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 771 } 772 } 773 774 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 775 llvm::Function *F, 776 bool IsIncompleteFunction) { 777 if (unsigned IID = F->getIntrinsicID()) { 778 // If this is an intrinsic function, set the function's attributes 779 // to the intrinsic's attributes. 780 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 781 (llvm::Intrinsic::ID)IID)); 782 return; 783 } 784 785 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 786 787 if (!IsIncompleteFunction) 788 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 789 790 // Add the Returned attribute for "this", except for iOS 5 and earlier 791 // where substantial code, including the libstdc++ dylib, was compiled with 792 // GCC and does not actually return "this". 793 if (getCXXABI().HasThisReturn(GD) && 794 !(getTarget().getTriple().isiOS() && 795 getTarget().getTriple().isOSVersionLT(6))) { 796 assert(!F->arg_empty() && 797 F->arg_begin()->getType() 798 ->canLosslesslyBitCastTo(F->getReturnType()) && 799 "unexpected this return"); 800 F->addAttribute(1, llvm::Attribute::Returned); 801 } 802 803 // Only a few attributes are set on declarations; these may later be 804 // overridden by a definition. 805 806 setLinkageAndVisibilityForGV(F, FD); 807 808 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 809 F->setSection(SA->getName()); 810 811 // A replaceable global allocation function does not act like a builtin by 812 // default, only if it is invoked by a new-expression or delete-expression. 813 if (FD->isReplaceableGlobalAllocationFunction()) 814 F->addAttribute(llvm::AttributeSet::FunctionIndex, 815 llvm::Attribute::NoBuiltin); 816 } 817 818 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 819 assert(!GV->isDeclaration() && 820 "Only globals with definition can force usage."); 821 LLVMUsed.push_back(GV); 822 } 823 824 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 825 assert(!GV->isDeclaration() && 826 "Only globals with definition can force usage."); 827 LLVMCompilerUsed.push_back(GV); 828 } 829 830 static void emitUsed(CodeGenModule &CGM, StringRef Name, 831 std::vector<llvm::WeakVH> &List) { 832 // Don't create llvm.used if there is no need. 833 if (List.empty()) 834 return; 835 836 // Convert List to what ConstantArray needs. 837 SmallVector<llvm::Constant*, 8> UsedArray; 838 UsedArray.resize(List.size()); 839 for (unsigned i = 0, e = List.size(); i != e; ++i) { 840 UsedArray[i] = 841 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 842 CGM.Int8PtrTy); 843 } 844 845 if (UsedArray.empty()) 846 return; 847 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 848 849 llvm::GlobalVariable *GV = 850 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 851 llvm::GlobalValue::AppendingLinkage, 852 llvm::ConstantArray::get(ATy, UsedArray), 853 Name); 854 855 GV->setSection("llvm.metadata"); 856 } 857 858 void CodeGenModule::emitLLVMUsed() { 859 emitUsed(*this, "llvm.used", LLVMUsed); 860 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 861 } 862 863 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 864 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 865 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 866 } 867 868 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 869 llvm::SmallString<32> Opt; 870 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 871 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 872 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 873 } 874 875 void CodeGenModule::AddDependentLib(StringRef Lib) { 876 llvm::SmallString<24> Opt; 877 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 878 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 879 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 880 } 881 882 /// \brief Add link options implied by the given module, including modules 883 /// it depends on, using a postorder walk. 884 static void addLinkOptionsPostorder(CodeGenModule &CGM, 885 Module *Mod, 886 SmallVectorImpl<llvm::Value *> &Metadata, 887 llvm::SmallPtrSet<Module *, 16> &Visited) { 888 // Import this module's parent. 889 if (Mod->Parent && Visited.insert(Mod->Parent)) { 890 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 891 } 892 893 // Import this module's dependencies. 894 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 895 if (Visited.insert(Mod->Imports[I-1])) 896 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 897 } 898 899 // Add linker options to link against the libraries/frameworks 900 // described by this module. 901 llvm::LLVMContext &Context = CGM.getLLVMContext(); 902 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 903 // Link against a framework. Frameworks are currently Darwin only, so we 904 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 905 if (Mod->LinkLibraries[I-1].IsFramework) { 906 llvm::Value *Args[2] = { 907 llvm::MDString::get(Context, "-framework"), 908 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 909 }; 910 911 Metadata.push_back(llvm::MDNode::get(Context, Args)); 912 continue; 913 } 914 915 // Link against a library. 916 llvm::SmallString<24> Opt; 917 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 918 Mod->LinkLibraries[I-1].Library, Opt); 919 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 920 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 921 } 922 } 923 924 void CodeGenModule::EmitModuleLinkOptions() { 925 // Collect the set of all of the modules we want to visit to emit link 926 // options, which is essentially the imported modules and all of their 927 // non-explicit child modules. 928 llvm::SetVector<clang::Module *> LinkModules; 929 llvm::SmallPtrSet<clang::Module *, 16> Visited; 930 SmallVector<clang::Module *, 16> Stack; 931 932 // Seed the stack with imported modules. 933 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 934 MEnd = ImportedModules.end(); 935 M != MEnd; ++M) { 936 if (Visited.insert(*M)) 937 Stack.push_back(*M); 938 } 939 940 // Find all of the modules to import, making a little effort to prune 941 // non-leaf modules. 942 while (!Stack.empty()) { 943 clang::Module *Mod = Stack.pop_back_val(); 944 945 bool AnyChildren = false; 946 947 // Visit the submodules of this module. 948 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 949 SubEnd = Mod->submodule_end(); 950 Sub != SubEnd; ++Sub) { 951 // Skip explicit children; they need to be explicitly imported to be 952 // linked against. 953 if ((*Sub)->IsExplicit) 954 continue; 955 956 if (Visited.insert(*Sub)) { 957 Stack.push_back(*Sub); 958 AnyChildren = true; 959 } 960 } 961 962 // We didn't find any children, so add this module to the list of 963 // modules to link against. 964 if (!AnyChildren) { 965 LinkModules.insert(Mod); 966 } 967 } 968 969 // Add link options for all of the imported modules in reverse topological 970 // order. We don't do anything to try to order import link flags with respect 971 // to linker options inserted by things like #pragma comment(). 972 SmallVector<llvm::Value *, 16> MetadataArgs; 973 Visited.clear(); 974 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 975 MEnd = LinkModules.end(); 976 M != MEnd; ++M) { 977 if (Visited.insert(*M)) 978 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 979 } 980 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 981 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 982 983 // Add the linker options metadata flag. 984 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 985 llvm::MDNode::get(getLLVMContext(), 986 LinkerOptionsMetadata)); 987 } 988 989 void CodeGenModule::EmitDeferred() { 990 // Emit code for any potentially referenced deferred decls. Since a 991 // previously unused static decl may become used during the generation of code 992 // for a static function, iterate until no changes are made. 993 994 while (true) { 995 if (!DeferredVTables.empty()) { 996 EmitDeferredVTables(); 997 998 // Emitting a v-table doesn't directly cause more v-tables to 999 // become deferred, although it can cause functions to be 1000 // emitted that then need those v-tables. 1001 assert(DeferredVTables.empty()); 1002 } 1003 1004 // Stop if we're out of both deferred v-tables and deferred declarations. 1005 if (DeferredDeclsToEmit.empty()) break; 1006 1007 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1008 GlobalDecl D = G.GD; 1009 llvm::GlobalValue *GV = G.GV; 1010 DeferredDeclsToEmit.pop_back(); 1011 1012 assert(GV == GetGlobalValue(getMangledName(D))); 1013 // Check to see if we've already emitted this. This is necessary 1014 // for a couple of reasons: first, decls can end up in the 1015 // deferred-decls queue multiple times, and second, decls can end 1016 // up with definitions in unusual ways (e.g. by an extern inline 1017 // function acquiring a strong function redefinition). Just 1018 // ignore these cases. 1019 if(!GV->isDeclaration()) 1020 continue; 1021 1022 // Otherwise, emit the definition and move on to the next one. 1023 EmitGlobalDefinition(D, GV); 1024 } 1025 } 1026 1027 void CodeGenModule::EmitGlobalAnnotations() { 1028 if (Annotations.empty()) 1029 return; 1030 1031 // Create a new global variable for the ConstantStruct in the Module. 1032 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1033 Annotations[0]->getType(), Annotations.size()), Annotations); 1034 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1035 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1036 "llvm.global.annotations"); 1037 gv->setSection(AnnotationSection); 1038 } 1039 1040 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1041 llvm::Constant *&AStr = AnnotationStrings[Str]; 1042 if (AStr) 1043 return AStr; 1044 1045 // Not found yet, create a new global. 1046 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1047 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1048 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1049 gv->setSection(AnnotationSection); 1050 gv->setUnnamedAddr(true); 1051 AStr = gv; 1052 return gv; 1053 } 1054 1055 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1056 SourceManager &SM = getContext().getSourceManager(); 1057 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1058 if (PLoc.isValid()) 1059 return EmitAnnotationString(PLoc.getFilename()); 1060 return EmitAnnotationString(SM.getBufferName(Loc)); 1061 } 1062 1063 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1064 SourceManager &SM = getContext().getSourceManager(); 1065 PresumedLoc PLoc = SM.getPresumedLoc(L); 1066 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1067 SM.getExpansionLineNumber(L); 1068 return llvm::ConstantInt::get(Int32Ty, LineNo); 1069 } 1070 1071 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1072 const AnnotateAttr *AA, 1073 SourceLocation L) { 1074 // Get the globals for file name, annotation, and the line number. 1075 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1076 *UnitGV = EmitAnnotationUnit(L), 1077 *LineNoCst = EmitAnnotationLineNo(L); 1078 1079 // Create the ConstantStruct for the global annotation. 1080 llvm::Constant *Fields[4] = { 1081 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1082 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1083 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1084 LineNoCst 1085 }; 1086 return llvm::ConstantStruct::getAnon(Fields); 1087 } 1088 1089 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1090 llvm::GlobalValue *GV) { 1091 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1092 // Get the struct elements for these annotations. 1093 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1094 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1095 } 1096 1097 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1098 // Never defer when EmitAllDecls is specified. 1099 if (LangOpts.EmitAllDecls) 1100 return false; 1101 1102 return !getContext().DeclMustBeEmitted(Global); 1103 } 1104 1105 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1106 const CXXUuidofExpr* E) { 1107 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1108 // well-formed. 1109 StringRef Uuid = E->getUuidAsStringRef(Context); 1110 std::string Name = "_GUID_" + Uuid.lower(); 1111 std::replace(Name.begin(), Name.end(), '-', '_'); 1112 1113 // Look for an existing global. 1114 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1115 return GV; 1116 1117 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1118 assert(Init && "failed to initialize as constant"); 1119 1120 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1121 getModule(), Init->getType(), 1122 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1123 return GV; 1124 } 1125 1126 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1127 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1128 assert(AA && "No alias?"); 1129 1130 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1131 1132 // See if there is already something with the target's name in the module. 1133 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1134 if (Entry) { 1135 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1136 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1137 } 1138 1139 llvm::Constant *Aliasee; 1140 if (isa<llvm::FunctionType>(DeclTy)) 1141 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1142 GlobalDecl(cast<FunctionDecl>(VD)), 1143 /*ForVTable=*/false); 1144 else 1145 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1146 llvm::PointerType::getUnqual(DeclTy), 0); 1147 1148 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1149 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1150 WeakRefReferences.insert(F); 1151 1152 return Aliasee; 1153 } 1154 1155 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1156 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1157 1158 // Weak references don't produce any output by themselves. 1159 if (Global->hasAttr<WeakRefAttr>()) 1160 return; 1161 1162 // If this is an alias definition (which otherwise looks like a declaration) 1163 // emit it now. 1164 if (Global->hasAttr<AliasAttr>()) 1165 return EmitAliasDefinition(GD); 1166 1167 // If this is CUDA, be selective about which declarations we emit. 1168 if (LangOpts.CUDA) { 1169 if (CodeGenOpts.CUDAIsDevice) { 1170 if (!Global->hasAttr<CUDADeviceAttr>() && 1171 !Global->hasAttr<CUDAGlobalAttr>() && 1172 !Global->hasAttr<CUDAConstantAttr>() && 1173 !Global->hasAttr<CUDASharedAttr>()) 1174 return; 1175 } else { 1176 if (!Global->hasAttr<CUDAHostAttr>() && ( 1177 Global->hasAttr<CUDADeviceAttr>() || 1178 Global->hasAttr<CUDAConstantAttr>() || 1179 Global->hasAttr<CUDASharedAttr>())) 1180 return; 1181 } 1182 } 1183 1184 // Ignore declarations, they will be emitted on their first use. 1185 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1186 // Forward declarations are emitted lazily on first use. 1187 if (!FD->doesThisDeclarationHaveABody()) { 1188 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1189 return; 1190 1191 StringRef MangledName = getMangledName(GD); 1192 1193 // Compute the function info and LLVM type. 1194 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1195 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1196 1197 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1198 /*DontDefer=*/false); 1199 return; 1200 } 1201 } else { 1202 const VarDecl *VD = cast<VarDecl>(Global); 1203 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1204 1205 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1206 return; 1207 } 1208 1209 // Defer code generation when possible if this is a static definition, inline 1210 // function etc. These we only want to emit if they are used. 1211 if (!MayDeferGeneration(Global)) { 1212 // Emit the definition if it can't be deferred. 1213 EmitGlobalDefinition(GD); 1214 return; 1215 } 1216 1217 // If we're deferring emission of a C++ variable with an 1218 // initializer, remember the order in which it appeared in the file. 1219 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1220 cast<VarDecl>(Global)->hasInit()) { 1221 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1222 CXXGlobalInits.push_back(0); 1223 } 1224 1225 // If the value has already been used, add it directly to the 1226 // DeferredDeclsToEmit list. 1227 StringRef MangledName = getMangledName(GD); 1228 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1229 addDeferredDeclToEmit(GV, GD); 1230 else { 1231 // Otherwise, remember that we saw a deferred decl with this name. The 1232 // first use of the mangled name will cause it to move into 1233 // DeferredDeclsToEmit. 1234 DeferredDecls[MangledName] = GD; 1235 } 1236 } 1237 1238 namespace { 1239 struct FunctionIsDirectlyRecursive : 1240 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1241 const StringRef Name; 1242 const Builtin::Context &BI; 1243 bool Result; 1244 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1245 Name(N), BI(C), Result(false) { 1246 } 1247 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1248 1249 bool TraverseCallExpr(CallExpr *E) { 1250 const FunctionDecl *FD = E->getDirectCallee(); 1251 if (!FD) 1252 return true; 1253 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1254 if (Attr && Name == Attr->getLabel()) { 1255 Result = true; 1256 return false; 1257 } 1258 unsigned BuiltinID = FD->getBuiltinID(); 1259 if (!BuiltinID) 1260 return true; 1261 StringRef BuiltinName = BI.GetName(BuiltinID); 1262 if (BuiltinName.startswith("__builtin_") && 1263 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1264 Result = true; 1265 return false; 1266 } 1267 return true; 1268 } 1269 }; 1270 } 1271 1272 // isTriviallyRecursive - Check if this function calls another 1273 // decl that, because of the asm attribute or the other decl being a builtin, 1274 // ends up pointing to itself. 1275 bool 1276 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1277 StringRef Name; 1278 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1279 // asm labels are a special kind of mangling we have to support. 1280 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1281 if (!Attr) 1282 return false; 1283 Name = Attr->getLabel(); 1284 } else { 1285 Name = FD->getName(); 1286 } 1287 1288 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1289 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1290 return Walker.Result; 1291 } 1292 1293 bool 1294 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1295 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1296 return true; 1297 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1298 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1299 return false; 1300 // PR9614. Avoid cases where the source code is lying to us. An available 1301 // externally function should have an equivalent function somewhere else, 1302 // but a function that calls itself is clearly not equivalent to the real 1303 // implementation. 1304 // This happens in glibc's btowc and in some configure checks. 1305 return !isTriviallyRecursive(F); 1306 } 1307 1308 /// If the type for the method's class was generated by 1309 /// CGDebugInfo::createContextChain(), the cache contains only a 1310 /// limited DIType without any declarations. Since EmitFunctionStart() 1311 /// needs to find the canonical declaration for each method, we need 1312 /// to construct the complete type prior to emitting the method. 1313 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1314 if (!D->isInstance()) 1315 return; 1316 1317 if (CGDebugInfo *DI = getModuleDebugInfo()) 1318 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1319 const PointerType *ThisPtr = 1320 cast<PointerType>(D->getThisType(getContext())); 1321 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1322 } 1323 } 1324 1325 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1326 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1327 1328 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1329 Context.getSourceManager(), 1330 "Generating code for declaration"); 1331 1332 if (isa<FunctionDecl>(D)) { 1333 // At -O0, don't generate IR for functions with available_externally 1334 // linkage. 1335 if (!shouldEmitFunction(GD)) 1336 return; 1337 1338 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1339 CompleteDIClassType(Method); 1340 // Make sure to emit the definition(s) before we emit the thunks. 1341 // This is necessary for the generation of certain thunks. 1342 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1343 EmitCXXConstructor(CD, GD.getCtorType()); 1344 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1345 EmitCXXDestructor(DD, GD.getDtorType()); 1346 else 1347 EmitGlobalFunctionDefinition(GD, GV); 1348 1349 if (Method->isVirtual()) 1350 getVTables().EmitThunks(GD); 1351 1352 return; 1353 } 1354 1355 return EmitGlobalFunctionDefinition(GD, GV); 1356 } 1357 1358 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1359 return EmitGlobalVarDefinition(VD); 1360 1361 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1362 } 1363 1364 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1365 /// module, create and return an llvm Function with the specified type. If there 1366 /// is something in the module with the specified name, return it potentially 1367 /// bitcasted to the right type. 1368 /// 1369 /// If D is non-null, it specifies a decl that correspond to this. This is used 1370 /// to set the attributes on the function when it is first created. 1371 llvm::Constant * 1372 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1373 llvm::Type *Ty, 1374 GlobalDecl GD, bool ForVTable, 1375 bool DontDefer, 1376 llvm::AttributeSet ExtraAttrs) { 1377 const Decl *D = GD.getDecl(); 1378 1379 // Lookup the entry, lazily creating it if necessary. 1380 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1381 if (Entry) { 1382 if (WeakRefReferences.erase(Entry)) { 1383 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1384 if (FD && !FD->hasAttr<WeakAttr>()) 1385 Entry->setLinkage(llvm::Function::ExternalLinkage); 1386 } 1387 1388 if (Entry->getType()->getElementType() == Ty) 1389 return Entry; 1390 1391 // Make sure the result is of the correct type. 1392 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1393 } 1394 1395 // This function doesn't have a complete type (for example, the return 1396 // type is an incomplete struct). Use a fake type instead, and make 1397 // sure not to try to set attributes. 1398 bool IsIncompleteFunction = false; 1399 1400 llvm::FunctionType *FTy; 1401 if (isa<llvm::FunctionType>(Ty)) { 1402 FTy = cast<llvm::FunctionType>(Ty); 1403 } else { 1404 FTy = llvm::FunctionType::get(VoidTy, false); 1405 IsIncompleteFunction = true; 1406 } 1407 1408 llvm::Function *F = llvm::Function::Create(FTy, 1409 llvm::Function::ExternalLinkage, 1410 MangledName, &getModule()); 1411 assert(F->getName() == MangledName && "name was uniqued!"); 1412 if (D) 1413 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1414 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1415 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1416 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1417 llvm::AttributeSet::get(VMContext, 1418 llvm::AttributeSet::FunctionIndex, 1419 B)); 1420 } 1421 1422 if (!DontDefer) { 1423 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1424 // each other bottoming out with the base dtor. Therefore we emit non-base 1425 // dtors on usage, even if there is no dtor definition in the TU. 1426 if (D && isa<CXXDestructorDecl>(D) && 1427 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1428 GD.getDtorType())) 1429 addDeferredDeclToEmit(F, GD); 1430 1431 // This is the first use or definition of a mangled name. If there is a 1432 // deferred decl with this name, remember that we need to emit it at the end 1433 // of the file. 1434 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1435 if (DDI != DeferredDecls.end()) { 1436 // Move the potentially referenced deferred decl to the 1437 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1438 // don't need it anymore). 1439 addDeferredDeclToEmit(F, DDI->second); 1440 DeferredDecls.erase(DDI); 1441 1442 // Otherwise, if this is a sized deallocation function, emit a weak 1443 // definition 1444 // for it at the end of the translation unit. 1445 } else if (D && cast<FunctionDecl>(D) 1446 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1447 addDeferredDeclToEmit(F, GD); 1448 1449 // Otherwise, there are cases we have to worry about where we're 1450 // using a declaration for which we must emit a definition but where 1451 // we might not find a top-level definition: 1452 // - member functions defined inline in their classes 1453 // - friend functions defined inline in some class 1454 // - special member functions with implicit definitions 1455 // If we ever change our AST traversal to walk into class methods, 1456 // this will be unnecessary. 1457 // 1458 // We also don't emit a definition for a function if it's going to be an 1459 // entry 1460 // in a vtable, unless it's already marked as used. 1461 } else if (getLangOpts().CPlusPlus && D) { 1462 // Look for a declaration that's lexically in a record. 1463 const FunctionDecl *FD = cast<FunctionDecl>(D); 1464 FD = FD->getMostRecentDecl(); 1465 do { 1466 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1467 if (FD->isImplicit() && !ForVTable) { 1468 assert(FD->isUsed() && 1469 "Sema didn't mark implicit function as used!"); 1470 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1471 break; 1472 } else if (FD->doesThisDeclarationHaveABody()) { 1473 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1474 break; 1475 } 1476 } 1477 FD = FD->getPreviousDecl(); 1478 } while (FD); 1479 } 1480 } 1481 1482 getTargetCodeGenInfo().emitTargetMD(D, F, *this); 1483 1484 // Make sure the result is of the requested type. 1485 if (!IsIncompleteFunction) { 1486 assert(F->getType()->getElementType() == Ty); 1487 return F; 1488 } 1489 1490 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1491 return llvm::ConstantExpr::getBitCast(F, PTy); 1492 } 1493 1494 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1495 /// non-null, then this function will use the specified type if it has to 1496 /// create it (this occurs when we see a definition of the function). 1497 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1498 llvm::Type *Ty, 1499 bool ForVTable, 1500 bool DontDefer) { 1501 // If there was no specific requested type, just convert it now. 1502 if (!Ty) 1503 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1504 1505 StringRef MangledName = getMangledName(GD); 1506 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1507 } 1508 1509 /// CreateRuntimeFunction - Create a new runtime function with the specified 1510 /// type and name. 1511 llvm::Constant * 1512 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1513 StringRef Name, 1514 llvm::AttributeSet ExtraAttrs) { 1515 llvm::Constant *C = 1516 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1517 /*DontDefer=*/false, ExtraAttrs); 1518 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1519 if (F->empty()) 1520 F->setCallingConv(getRuntimeCC()); 1521 return C; 1522 } 1523 1524 /// isTypeConstant - Determine whether an object of this type can be emitted 1525 /// as a constant. 1526 /// 1527 /// If ExcludeCtor is true, the duration when the object's constructor runs 1528 /// will not be considered. The caller will need to verify that the object is 1529 /// not written to during its construction. 1530 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1531 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1532 return false; 1533 1534 if (Context.getLangOpts().CPlusPlus) { 1535 if (const CXXRecordDecl *Record 1536 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1537 return ExcludeCtor && !Record->hasMutableFields() && 1538 Record->hasTrivialDestructor(); 1539 } 1540 1541 return true; 1542 } 1543 1544 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1545 if (!VD->isStaticDataMember()) 1546 return false; 1547 const VarDecl *InitDecl; 1548 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1549 if (!InitExpr) 1550 return false; 1551 if (InitDecl->isThisDeclarationADefinition()) 1552 return false; 1553 return true; 1554 } 1555 1556 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1557 /// create and return an llvm GlobalVariable with the specified type. If there 1558 /// is something in the module with the specified name, return it potentially 1559 /// bitcasted to the right type. 1560 /// 1561 /// If D is non-null, it specifies a decl that correspond to this. This is used 1562 /// to set the attributes on the global when it is first created. 1563 llvm::Constant * 1564 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1565 llvm::PointerType *Ty, 1566 const VarDecl *D, 1567 bool UnnamedAddr) { 1568 // Lookup the entry, lazily creating it if necessary. 1569 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1570 if (Entry) { 1571 if (WeakRefReferences.erase(Entry)) { 1572 if (D && !D->hasAttr<WeakAttr>()) 1573 Entry->setLinkage(llvm::Function::ExternalLinkage); 1574 } 1575 1576 if (UnnamedAddr) 1577 Entry->setUnnamedAddr(true); 1578 1579 if (Entry->getType() == Ty) 1580 return Entry; 1581 1582 // Make sure the result is of the correct type. 1583 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1584 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1585 1586 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1587 } 1588 1589 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1590 llvm::GlobalVariable *GV = 1591 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1592 llvm::GlobalValue::ExternalLinkage, 1593 0, MangledName, 0, 1594 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1595 1596 // This is the first use or definition of a mangled name. If there is a 1597 // deferred decl with this name, remember that we need to emit it at the end 1598 // of the file. 1599 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1600 if (DDI != DeferredDecls.end()) { 1601 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1602 // list, and remove it from DeferredDecls (since we don't need it anymore). 1603 addDeferredDeclToEmit(GV, DDI->second); 1604 DeferredDecls.erase(DDI); 1605 } 1606 1607 // Handle things which are present even on external declarations. 1608 if (D) { 1609 // FIXME: This code is overly simple and should be merged with other global 1610 // handling. 1611 GV->setConstant(isTypeConstant(D->getType(), false)); 1612 1613 setLinkageAndVisibilityForGV(GV, D); 1614 1615 if (D->getTLSKind()) { 1616 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1617 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1618 setTLSMode(GV, *D); 1619 } 1620 1621 // If required by the ABI, treat declarations of static data members with 1622 // inline initializers as definitions. 1623 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1624 isVarDeclInlineInitializedStaticDataMember(D)) 1625 EmitGlobalVarDefinition(D); 1626 1627 // Handle XCore specific ABI requirements. 1628 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1629 D->getLanguageLinkage() == CLanguageLinkage && 1630 D->getType().isConstant(Context) && 1631 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1632 GV->setSection(".cp.rodata"); 1633 } 1634 1635 if (AddrSpace != Ty->getAddressSpace()) 1636 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1637 1638 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 1639 1640 return GV; 1641 } 1642 1643 1644 llvm::GlobalVariable * 1645 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1646 llvm::Type *Ty, 1647 llvm::GlobalValue::LinkageTypes Linkage) { 1648 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1649 llvm::GlobalVariable *OldGV = 0; 1650 1651 1652 if (GV) { 1653 // Check if the variable has the right type. 1654 if (GV->getType()->getElementType() == Ty) 1655 return GV; 1656 1657 // Because C++ name mangling, the only way we can end up with an already 1658 // existing global with the same name is if it has been declared extern "C". 1659 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1660 OldGV = GV; 1661 } 1662 1663 // Create a new variable. 1664 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1665 Linkage, 0, Name); 1666 1667 if (OldGV) { 1668 // Replace occurrences of the old variable if needed. 1669 GV->takeName(OldGV); 1670 1671 if (!OldGV->use_empty()) { 1672 llvm::Constant *NewPtrForOldDecl = 1673 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1674 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1675 } 1676 1677 OldGV->eraseFromParent(); 1678 } 1679 1680 return GV; 1681 } 1682 1683 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1684 /// given global variable. If Ty is non-null and if the global doesn't exist, 1685 /// then it will be created with the specified type instead of whatever the 1686 /// normal requested type would be. 1687 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1688 llvm::Type *Ty) { 1689 assert(D->hasGlobalStorage() && "Not a global variable"); 1690 QualType ASTTy = D->getType(); 1691 if (Ty == 0) 1692 Ty = getTypes().ConvertTypeForMem(ASTTy); 1693 1694 llvm::PointerType *PTy = 1695 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1696 1697 StringRef MangledName = getMangledName(D); 1698 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1699 } 1700 1701 /// CreateRuntimeVariable - Create a new runtime global variable with the 1702 /// specified type and name. 1703 llvm::Constant * 1704 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1705 StringRef Name) { 1706 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1707 true); 1708 } 1709 1710 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1711 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1712 1713 if (MayDeferGeneration(D)) { 1714 // If we have not seen a reference to this variable yet, place it 1715 // into the deferred declarations table to be emitted if needed 1716 // later. 1717 StringRef MangledName = getMangledName(D); 1718 if (!GetGlobalValue(MangledName)) { 1719 DeferredDecls[MangledName] = D; 1720 return; 1721 } 1722 } 1723 1724 // The tentative definition is the only definition. 1725 EmitGlobalVarDefinition(D); 1726 } 1727 1728 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1729 return Context.toCharUnitsFromBits( 1730 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1731 } 1732 1733 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1734 unsigned AddrSpace) { 1735 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1736 if (D->hasAttr<CUDAConstantAttr>()) 1737 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1738 else if (D->hasAttr<CUDASharedAttr>()) 1739 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1740 else 1741 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1742 } 1743 1744 return AddrSpace; 1745 } 1746 1747 template<typename SomeDecl> 1748 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1749 llvm::GlobalValue *GV) { 1750 if (!getLangOpts().CPlusPlus) 1751 return; 1752 1753 // Must have 'used' attribute, or else inline assembly can't rely on 1754 // the name existing. 1755 if (!D->template hasAttr<UsedAttr>()) 1756 return; 1757 1758 // Must have internal linkage and an ordinary name. 1759 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1760 return; 1761 1762 // Must be in an extern "C" context. Entities declared directly within 1763 // a record are not extern "C" even if the record is in such a context. 1764 const SomeDecl *First = D->getFirstDecl(); 1765 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1766 return; 1767 1768 // OK, this is an internal linkage entity inside an extern "C" linkage 1769 // specification. Make a note of that so we can give it the "expected" 1770 // mangled name if nothing else is using that name. 1771 std::pair<StaticExternCMap::iterator, bool> R = 1772 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1773 1774 // If we have multiple internal linkage entities with the same name 1775 // in extern "C" regions, none of them gets that name. 1776 if (!R.second) 1777 R.first->second = 0; 1778 } 1779 1780 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1781 llvm::Constant *Init = 0; 1782 QualType ASTTy = D->getType(); 1783 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1784 bool NeedsGlobalCtor = false; 1785 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1786 1787 const VarDecl *InitDecl; 1788 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1789 1790 if (!InitExpr) { 1791 // This is a tentative definition; tentative definitions are 1792 // implicitly initialized with { 0 }. 1793 // 1794 // Note that tentative definitions are only emitted at the end of 1795 // a translation unit, so they should never have incomplete 1796 // type. In addition, EmitTentativeDefinition makes sure that we 1797 // never attempt to emit a tentative definition if a real one 1798 // exists. A use may still exists, however, so we still may need 1799 // to do a RAUW. 1800 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1801 Init = EmitNullConstant(D->getType()); 1802 } else { 1803 initializedGlobalDecl = GlobalDecl(D); 1804 Init = EmitConstantInit(*InitDecl); 1805 1806 if (!Init) { 1807 QualType T = InitExpr->getType(); 1808 if (D->getType()->isReferenceType()) 1809 T = D->getType(); 1810 1811 if (getLangOpts().CPlusPlus) { 1812 Init = EmitNullConstant(T); 1813 NeedsGlobalCtor = true; 1814 } else { 1815 ErrorUnsupported(D, "static initializer"); 1816 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1817 } 1818 } else { 1819 // We don't need an initializer, so remove the entry for the delayed 1820 // initializer position (just in case this entry was delayed) if we 1821 // also don't need to register a destructor. 1822 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1823 DelayedCXXInitPosition.erase(D); 1824 } 1825 } 1826 1827 llvm::Type* InitType = Init->getType(); 1828 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1829 1830 // Strip off a bitcast if we got one back. 1831 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1832 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1833 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1834 // All zero index gep. 1835 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1836 Entry = CE->getOperand(0); 1837 } 1838 1839 // Entry is now either a Function or GlobalVariable. 1840 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1841 1842 // We have a definition after a declaration with the wrong type. 1843 // We must make a new GlobalVariable* and update everything that used OldGV 1844 // (a declaration or tentative definition) with the new GlobalVariable* 1845 // (which will be a definition). 1846 // 1847 // This happens if there is a prototype for a global (e.g. 1848 // "extern int x[];") and then a definition of a different type (e.g. 1849 // "int x[10];"). This also happens when an initializer has a different type 1850 // from the type of the global (this happens with unions). 1851 if (GV == 0 || 1852 GV->getType()->getElementType() != InitType || 1853 GV->getType()->getAddressSpace() != 1854 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1855 1856 // Move the old entry aside so that we'll create a new one. 1857 Entry->setName(StringRef()); 1858 1859 // Make a new global with the correct type, this is now guaranteed to work. 1860 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1861 1862 // Replace all uses of the old global with the new global 1863 llvm::Constant *NewPtrForOldDecl = 1864 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1865 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1866 1867 // Erase the old global, since it is no longer used. 1868 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1869 } 1870 1871 MaybeHandleStaticInExternC(D, GV); 1872 1873 if (D->hasAttr<AnnotateAttr>()) 1874 AddGlobalAnnotations(D, GV); 1875 1876 GV->setInitializer(Init); 1877 1878 // If it is safe to mark the global 'constant', do so now. 1879 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1880 isTypeConstant(D->getType(), true)); 1881 1882 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1883 1884 // Set the llvm linkage type as appropriate. 1885 llvm::GlobalValue::LinkageTypes Linkage = 1886 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1887 GV->setLinkage(Linkage); 1888 if (D->hasAttr<DLLImportAttr>()) 1889 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1890 else if (D->hasAttr<DLLExportAttr>()) 1891 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1892 1893 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1894 // common vars aren't constant even if declared const. 1895 GV->setConstant(false); 1896 1897 setNonAliasAttributes(D, GV); 1898 1899 // Emit the initializer function if necessary. 1900 if (NeedsGlobalCtor || NeedsGlobalDtor) 1901 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1902 1903 // If we are compiling with ASan, add metadata indicating dynamically 1904 // initialized globals. 1905 if (SanOpts.Address && NeedsGlobalCtor) { 1906 llvm::Module &M = getModule(); 1907 1908 llvm::NamedMDNode *DynamicInitializers = 1909 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1910 llvm::Value *GlobalToAdd[] = { GV }; 1911 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1912 DynamicInitializers->addOperand(ThisGlobal); 1913 } 1914 1915 // Emit global variable debug information. 1916 if (CGDebugInfo *DI = getModuleDebugInfo()) 1917 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1918 DI->EmitGlobalVariable(GV, D); 1919 } 1920 1921 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1922 // Don't give variables common linkage if -fno-common was specified unless it 1923 // was overridden by a NoCommon attribute. 1924 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1925 return true; 1926 1927 // C11 6.9.2/2: 1928 // A declaration of an identifier for an object that has file scope without 1929 // an initializer, and without a storage-class specifier or with the 1930 // storage-class specifier static, constitutes a tentative definition. 1931 if (D->getInit() || D->hasExternalStorage()) 1932 return true; 1933 1934 // A variable cannot be both common and exist in a section. 1935 if (D->hasAttr<SectionAttr>()) 1936 return true; 1937 1938 // Thread local vars aren't considered common linkage. 1939 if (D->getTLSKind()) 1940 return true; 1941 1942 // Tentative definitions marked with WeakImportAttr are true definitions. 1943 if (D->hasAttr<WeakImportAttr>()) 1944 return true; 1945 1946 return false; 1947 } 1948 1949 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator( 1950 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable, 1951 bool UseThunkForDtorVariant) { 1952 if (Linkage == GVA_Internal) 1953 return llvm::Function::InternalLinkage; 1954 1955 if (D->hasAttr<WeakAttr>()) { 1956 if (IsConstantVariable) 1957 return llvm::GlobalVariable::WeakODRLinkage; 1958 else 1959 return llvm::GlobalVariable::WeakAnyLinkage; 1960 } 1961 1962 // We are guaranteed to have a strong definition somewhere else, 1963 // so we can use available_externally linkage. 1964 if (Linkage == GVA_AvailableExternally) 1965 return llvm::Function::AvailableExternallyLinkage; 1966 1967 // LinkOnceODRLinkage is insufficient if the symbol is required to exist in 1968 // the symbol table. Promote the linkage to WeakODRLinkage to preserve the 1969 // semantics of LinkOnceODRLinkage while providing visibility in the symbol 1970 // table. 1971 llvm::GlobalValue::LinkageTypes OnceLinkage = 1972 llvm::GlobalValue::LinkOnceODRLinkage; 1973 if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>()) 1974 OnceLinkage = llvm::GlobalVariable::WeakODRLinkage; 1975 1976 // Note that Apple's kernel linker doesn't support symbol 1977 // coalescing, so we need to avoid linkonce and weak linkages there. 1978 // Normally, this means we just map to internal, but for explicit 1979 // instantiations we'll map to external. 1980 1981 // In C++, the compiler has to emit a definition in every translation unit 1982 // that references the function. We should use linkonce_odr because 1983 // a) if all references in this translation unit are optimized away, we 1984 // don't need to codegen it. b) if the function persists, it needs to be 1985 // merged with other definitions. c) C++ has the ODR, so we know the 1986 // definition is dependable. 1987 if (Linkage == GVA_DiscardableODR) 1988 return !Context.getLangOpts().AppleKext ? OnceLinkage 1989 : llvm::Function::InternalLinkage; 1990 1991 // An explicit instantiation of a template has weak linkage, since 1992 // explicit instantiations can occur in multiple translation units 1993 // and must all be equivalent. However, we are not allowed to 1994 // throw away these explicit instantiations. 1995 if (Linkage == GVA_StrongODR) 1996 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 1997 : llvm::Function::ExternalLinkage; 1998 1999 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 2000 // emitted on an as-needed basis. 2001 if (UseThunkForDtorVariant) 2002 return OnceLinkage; 2003 2004 // If required by the ABI, give definitions of static data members with inline 2005 // initializers at least linkonce_odr linkage. 2006 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 2007 isa<VarDecl>(D) && 2008 isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D))) 2009 return OnceLinkage; 2010 2011 // C++ doesn't have tentative definitions and thus cannot have common 2012 // linkage. 2013 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2014 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2015 return llvm::GlobalVariable::CommonLinkage; 2016 2017 // selectany symbols are externally visible, so use weak instead of 2018 // linkonce. MSVC optimizes away references to const selectany globals, so 2019 // all definitions should be the same and ODR linkage should be used. 2020 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2021 if (D->hasAttr<SelectAnyAttr>()) 2022 return llvm::GlobalVariable::WeakODRLinkage; 2023 2024 // Otherwise, we have strong external linkage. 2025 assert(Linkage == GVA_StrongExternal); 2026 return llvm::GlobalVariable::ExternalLinkage; 2027 } 2028 2029 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2030 const VarDecl *VD, bool IsConstant) { 2031 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2032 return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant, 2033 /*UseThunkForDtorVariant=*/false); 2034 } 2035 2036 /// Replace the uses of a function that was declared with a non-proto type. 2037 /// We want to silently drop extra arguments from call sites 2038 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2039 llvm::Function *newFn) { 2040 // Fast path. 2041 if (old->use_empty()) return; 2042 2043 llvm::Type *newRetTy = newFn->getReturnType(); 2044 SmallVector<llvm::Value*, 4> newArgs; 2045 2046 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2047 ui != ue; ) { 2048 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2049 llvm::User *user = use->getUser(); 2050 2051 // Recognize and replace uses of bitcasts. Most calls to 2052 // unprototyped functions will use bitcasts. 2053 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2054 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2055 replaceUsesOfNonProtoConstant(bitcast, newFn); 2056 continue; 2057 } 2058 2059 // Recognize calls to the function. 2060 llvm::CallSite callSite(user); 2061 if (!callSite) continue; 2062 if (!callSite.isCallee(&*use)) continue; 2063 2064 // If the return types don't match exactly, then we can't 2065 // transform this call unless it's dead. 2066 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2067 continue; 2068 2069 // Get the call site's attribute list. 2070 SmallVector<llvm::AttributeSet, 8> newAttrs; 2071 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2072 2073 // Collect any return attributes from the call. 2074 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2075 newAttrs.push_back( 2076 llvm::AttributeSet::get(newFn->getContext(), 2077 oldAttrs.getRetAttributes())); 2078 2079 // If the function was passed too few arguments, don't transform. 2080 unsigned newNumArgs = newFn->arg_size(); 2081 if (callSite.arg_size() < newNumArgs) continue; 2082 2083 // If extra arguments were passed, we silently drop them. 2084 // If any of the types mismatch, we don't transform. 2085 unsigned argNo = 0; 2086 bool dontTransform = false; 2087 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2088 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2089 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2090 dontTransform = true; 2091 break; 2092 } 2093 2094 // Add any parameter attributes. 2095 if (oldAttrs.hasAttributes(argNo + 1)) 2096 newAttrs. 2097 push_back(llvm:: 2098 AttributeSet::get(newFn->getContext(), 2099 oldAttrs.getParamAttributes(argNo + 1))); 2100 } 2101 if (dontTransform) 2102 continue; 2103 2104 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2105 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2106 oldAttrs.getFnAttributes())); 2107 2108 // Okay, we can transform this. Create the new call instruction and copy 2109 // over the required information. 2110 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2111 2112 llvm::CallSite newCall; 2113 if (callSite.isCall()) { 2114 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2115 callSite.getInstruction()); 2116 } else { 2117 llvm::InvokeInst *oldInvoke = 2118 cast<llvm::InvokeInst>(callSite.getInstruction()); 2119 newCall = llvm::InvokeInst::Create(newFn, 2120 oldInvoke->getNormalDest(), 2121 oldInvoke->getUnwindDest(), 2122 newArgs, "", 2123 callSite.getInstruction()); 2124 } 2125 newArgs.clear(); // for the next iteration 2126 2127 if (!newCall->getType()->isVoidTy()) 2128 newCall->takeName(callSite.getInstruction()); 2129 newCall.setAttributes( 2130 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2131 newCall.setCallingConv(callSite.getCallingConv()); 2132 2133 // Finally, remove the old call, replacing any uses with the new one. 2134 if (!callSite->use_empty()) 2135 callSite->replaceAllUsesWith(newCall.getInstruction()); 2136 2137 // Copy debug location attached to CI. 2138 if (!callSite->getDebugLoc().isUnknown()) 2139 newCall->setDebugLoc(callSite->getDebugLoc()); 2140 callSite->eraseFromParent(); 2141 } 2142 } 2143 2144 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2145 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2146 /// existing call uses of the old function in the module, this adjusts them to 2147 /// call the new function directly. 2148 /// 2149 /// This is not just a cleanup: the always_inline pass requires direct calls to 2150 /// functions to be able to inline them. If there is a bitcast in the way, it 2151 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2152 /// run at -O0. 2153 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2154 llvm::Function *NewFn) { 2155 // If we're redefining a global as a function, don't transform it. 2156 if (!isa<llvm::Function>(Old)) return; 2157 2158 replaceUsesOfNonProtoConstant(Old, NewFn); 2159 } 2160 2161 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2162 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2163 // If we have a definition, this might be a deferred decl. If the 2164 // instantiation is explicit, make sure we emit it at the end. 2165 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2166 GetAddrOfGlobalVar(VD); 2167 2168 EmitTopLevelDecl(VD); 2169 } 2170 2171 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2172 llvm::GlobalValue *GV) { 2173 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2174 2175 // Compute the function info and LLVM type. 2176 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2177 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2178 2179 // Get or create the prototype for the function. 2180 if (!GV) { 2181 llvm::Constant *C = 2182 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2183 2184 // Strip off a bitcast if we got one back. 2185 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2186 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2187 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2188 } else { 2189 GV = cast<llvm::GlobalValue>(C); 2190 } 2191 } 2192 2193 if (!GV->isDeclaration()) { 2194 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2195 return; 2196 } 2197 2198 if (GV->getType()->getElementType() != Ty) { 2199 // If the types mismatch then we have to rewrite the definition. 2200 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2201 2202 // F is the Function* for the one with the wrong type, we must make a new 2203 // Function* and update everything that used F (a declaration) with the new 2204 // Function* (which will be a definition). 2205 // 2206 // This happens if there is a prototype for a function 2207 // (e.g. "int f()") and then a definition of a different type 2208 // (e.g. "int f(int x)"). Move the old function aside so that it 2209 // doesn't interfere with GetAddrOfFunction. 2210 GV->setName(StringRef()); 2211 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2212 2213 // This might be an implementation of a function without a 2214 // prototype, in which case, try to do special replacement of 2215 // calls which match the new prototype. The really key thing here 2216 // is that we also potentially drop arguments from the call site 2217 // so as to make a direct call, which makes the inliner happier 2218 // and suppresses a number of optimizer warnings (!) about 2219 // dropping arguments. 2220 if (!GV->use_empty()) { 2221 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2222 GV->removeDeadConstantUsers(); 2223 } 2224 2225 // Replace uses of F with the Function we will endow with a body. 2226 if (!GV->use_empty()) { 2227 llvm::Constant *NewPtrForOldDecl = 2228 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2229 GV->replaceAllUsesWith(NewPtrForOldDecl); 2230 } 2231 2232 // Ok, delete the old function now, which is dead. 2233 GV->eraseFromParent(); 2234 2235 GV = NewFn; 2236 } 2237 2238 // We need to set linkage and visibility on the function before 2239 // generating code for it because various parts of IR generation 2240 // want to propagate this information down (e.g. to local static 2241 // declarations). 2242 llvm::Function *Fn = cast<llvm::Function>(GV); 2243 setFunctionLinkage(GD, Fn); 2244 2245 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2246 setGlobalVisibility(Fn, D); 2247 2248 MaybeHandleStaticInExternC(D, Fn); 2249 2250 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2251 2252 setFunctionDefinitionAttributes(D, Fn); 2253 SetLLVMFunctionAttributesForDefinition(D, Fn); 2254 2255 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2256 AddGlobalCtor(Fn, CA->getPriority()); 2257 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2258 AddGlobalDtor(Fn, DA->getPriority()); 2259 if (D->hasAttr<AnnotateAttr>()) 2260 AddGlobalAnnotations(D, Fn); 2261 } 2262 2263 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2264 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2265 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2266 assert(AA && "Not an alias?"); 2267 2268 StringRef MangledName = getMangledName(GD); 2269 2270 // If there is a definition in the module, then it wins over the alias. 2271 // This is dubious, but allow it to be safe. Just ignore the alias. 2272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2273 if (Entry && !Entry->isDeclaration()) 2274 return; 2275 2276 Aliases.push_back(GD); 2277 2278 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2279 2280 // Create a reference to the named value. This ensures that it is emitted 2281 // if a deferred decl. 2282 llvm::Constant *Aliasee; 2283 if (isa<llvm::FunctionType>(DeclTy)) 2284 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2285 /*ForVTable=*/false); 2286 else 2287 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2288 llvm::PointerType::getUnqual(DeclTy), 0); 2289 2290 // Create the new alias itself, but don't set a name yet. 2291 llvm::GlobalValue *GA = 2292 new llvm::GlobalAlias(Aliasee->getType(), 2293 llvm::Function::ExternalLinkage, 2294 "", Aliasee, &getModule()); 2295 2296 if (Entry) { 2297 assert(Entry->isDeclaration()); 2298 2299 // If there is a declaration in the module, then we had an extern followed 2300 // by the alias, as in: 2301 // extern int test6(); 2302 // ... 2303 // int test6() __attribute__((alias("test7"))); 2304 // 2305 // Remove it and replace uses of it with the alias. 2306 GA->takeName(Entry); 2307 2308 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2309 Entry->getType())); 2310 Entry->eraseFromParent(); 2311 } else { 2312 GA->setName(MangledName); 2313 } 2314 2315 // Set attributes which are particular to an alias; this is a 2316 // specialization of the attributes which may be set on a global 2317 // variable/function. 2318 if (D->hasAttr<DLLExportAttr>()) { 2319 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2320 // The dllexport attribute is ignored for undefined symbols. 2321 if (FD->hasBody()) 2322 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2323 } else { 2324 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2325 } 2326 } else if (D->hasAttr<WeakAttr>() || 2327 D->hasAttr<WeakRefAttr>() || 2328 D->isWeakImported()) { 2329 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2330 } 2331 2332 SetCommonAttributes(D, GA); 2333 } 2334 2335 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2336 ArrayRef<llvm::Type*> Tys) { 2337 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2338 Tys); 2339 } 2340 2341 static llvm::StringMapEntry<llvm::Constant*> & 2342 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2343 const StringLiteral *Literal, 2344 bool TargetIsLSB, 2345 bool &IsUTF16, 2346 unsigned &StringLength) { 2347 StringRef String = Literal->getString(); 2348 unsigned NumBytes = String.size(); 2349 2350 // Check for simple case. 2351 if (!Literal->containsNonAsciiOrNull()) { 2352 StringLength = NumBytes; 2353 return Map.GetOrCreateValue(String); 2354 } 2355 2356 // Otherwise, convert the UTF8 literals into a string of shorts. 2357 IsUTF16 = true; 2358 2359 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2360 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2361 UTF16 *ToPtr = &ToBuf[0]; 2362 2363 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2364 &ToPtr, ToPtr + NumBytes, 2365 strictConversion); 2366 2367 // ConvertUTF8toUTF16 returns the length in ToPtr. 2368 StringLength = ToPtr - &ToBuf[0]; 2369 2370 // Add an explicit null. 2371 *ToPtr = 0; 2372 return Map. 2373 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2374 (StringLength + 1) * 2)); 2375 } 2376 2377 static llvm::StringMapEntry<llvm::Constant*> & 2378 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2379 const StringLiteral *Literal, 2380 unsigned &StringLength) { 2381 StringRef String = Literal->getString(); 2382 StringLength = String.size(); 2383 return Map.GetOrCreateValue(String); 2384 } 2385 2386 llvm::Constant * 2387 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2388 unsigned StringLength = 0; 2389 bool isUTF16 = false; 2390 llvm::StringMapEntry<llvm::Constant*> &Entry = 2391 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2392 getDataLayout().isLittleEndian(), 2393 isUTF16, StringLength); 2394 2395 if (llvm::Constant *C = Entry.getValue()) 2396 return C; 2397 2398 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2399 llvm::Constant *Zeros[] = { Zero, Zero }; 2400 llvm::Value *V; 2401 2402 // If we don't already have it, get __CFConstantStringClassReference. 2403 if (!CFConstantStringClassRef) { 2404 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2405 Ty = llvm::ArrayType::get(Ty, 0); 2406 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2407 "__CFConstantStringClassReference"); 2408 // Decay array -> ptr 2409 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2410 CFConstantStringClassRef = V; 2411 } 2412 else 2413 V = CFConstantStringClassRef; 2414 2415 QualType CFTy = getContext().getCFConstantStringType(); 2416 2417 llvm::StructType *STy = 2418 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2419 2420 llvm::Constant *Fields[4]; 2421 2422 // Class pointer. 2423 Fields[0] = cast<llvm::ConstantExpr>(V); 2424 2425 // Flags. 2426 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2427 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2428 llvm::ConstantInt::get(Ty, 0x07C8); 2429 2430 // String pointer. 2431 llvm::Constant *C = 0; 2432 if (isUTF16) { 2433 ArrayRef<uint16_t> Arr = 2434 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2435 const_cast<char *>(Entry.getKey().data())), 2436 Entry.getKey().size() / 2); 2437 C = llvm::ConstantDataArray::get(VMContext, Arr); 2438 } else { 2439 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2440 } 2441 2442 // Note: -fwritable-strings doesn't make the backing store strings of 2443 // CFStrings writable. (See <rdar://problem/10657500>) 2444 llvm::GlobalVariable *GV = 2445 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2446 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2447 GV->setUnnamedAddr(true); 2448 // Don't enforce the target's minimum global alignment, since the only use 2449 // of the string is via this class initializer. 2450 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2451 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2452 // that changes the section it ends in, which surprises ld64. 2453 if (isUTF16) { 2454 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2455 GV->setAlignment(Align.getQuantity()); 2456 GV->setSection("__TEXT,__ustring"); 2457 } else { 2458 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2459 GV->setAlignment(Align.getQuantity()); 2460 GV->setSection("__TEXT,__cstring,cstring_literals"); 2461 } 2462 2463 // String. 2464 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2465 2466 if (isUTF16) 2467 // Cast the UTF16 string to the correct type. 2468 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2469 2470 // String length. 2471 Ty = getTypes().ConvertType(getContext().LongTy); 2472 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2473 2474 // The struct. 2475 C = llvm::ConstantStruct::get(STy, Fields); 2476 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2477 llvm::GlobalVariable::PrivateLinkage, C, 2478 "_unnamed_cfstring_"); 2479 GV->setSection("__DATA,__cfstring"); 2480 Entry.setValue(GV); 2481 2482 return GV; 2483 } 2484 2485 llvm::Constant * 2486 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2487 unsigned StringLength = 0; 2488 llvm::StringMapEntry<llvm::Constant*> &Entry = 2489 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2490 2491 if (llvm::Constant *C = Entry.getValue()) 2492 return C; 2493 2494 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2495 llvm::Constant *Zeros[] = { Zero, Zero }; 2496 llvm::Value *V; 2497 // If we don't already have it, get _NSConstantStringClassReference. 2498 if (!ConstantStringClassRef) { 2499 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2500 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2501 llvm::Constant *GV; 2502 if (LangOpts.ObjCRuntime.isNonFragile()) { 2503 std::string str = 2504 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2505 : "OBJC_CLASS_$_" + StringClass; 2506 GV = getObjCRuntime().GetClassGlobal(str); 2507 // Make sure the result is of the correct type. 2508 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2509 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2510 ConstantStringClassRef = V; 2511 } else { 2512 std::string str = 2513 StringClass.empty() ? "_NSConstantStringClassReference" 2514 : "_" + StringClass + "ClassReference"; 2515 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2516 GV = CreateRuntimeVariable(PTy, str); 2517 // Decay array -> ptr 2518 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2519 ConstantStringClassRef = V; 2520 } 2521 } 2522 else 2523 V = ConstantStringClassRef; 2524 2525 if (!NSConstantStringType) { 2526 // Construct the type for a constant NSString. 2527 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2528 D->startDefinition(); 2529 2530 QualType FieldTypes[3]; 2531 2532 // const int *isa; 2533 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2534 // const char *str; 2535 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2536 // unsigned int length; 2537 FieldTypes[2] = Context.UnsignedIntTy; 2538 2539 // Create fields 2540 for (unsigned i = 0; i < 3; ++i) { 2541 FieldDecl *Field = FieldDecl::Create(Context, D, 2542 SourceLocation(), 2543 SourceLocation(), 0, 2544 FieldTypes[i], /*TInfo=*/0, 2545 /*BitWidth=*/0, 2546 /*Mutable=*/false, 2547 ICIS_NoInit); 2548 Field->setAccess(AS_public); 2549 D->addDecl(Field); 2550 } 2551 2552 D->completeDefinition(); 2553 QualType NSTy = Context.getTagDeclType(D); 2554 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2555 } 2556 2557 llvm::Constant *Fields[3]; 2558 2559 // Class pointer. 2560 Fields[0] = cast<llvm::ConstantExpr>(V); 2561 2562 // String pointer. 2563 llvm::Constant *C = 2564 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2565 2566 llvm::GlobalValue::LinkageTypes Linkage; 2567 bool isConstant; 2568 Linkage = llvm::GlobalValue::PrivateLinkage; 2569 isConstant = !LangOpts.WritableStrings; 2570 2571 llvm::GlobalVariable *GV = 2572 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2573 ".str"); 2574 GV->setUnnamedAddr(true); 2575 // Don't enforce the target's minimum global alignment, since the only use 2576 // of the string is via this class initializer. 2577 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2578 GV->setAlignment(Align.getQuantity()); 2579 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2580 2581 // String length. 2582 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2583 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2584 2585 // The struct. 2586 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2587 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2588 llvm::GlobalVariable::PrivateLinkage, C, 2589 "_unnamed_nsstring_"); 2590 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2591 const char *NSStringNonFragileABISection = 2592 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2593 // FIXME. Fix section. 2594 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2595 ? NSStringNonFragileABISection 2596 : NSStringSection); 2597 Entry.setValue(GV); 2598 2599 return GV; 2600 } 2601 2602 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2603 if (ObjCFastEnumerationStateType.isNull()) { 2604 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2605 D->startDefinition(); 2606 2607 QualType FieldTypes[] = { 2608 Context.UnsignedLongTy, 2609 Context.getPointerType(Context.getObjCIdType()), 2610 Context.getPointerType(Context.UnsignedLongTy), 2611 Context.getConstantArrayType(Context.UnsignedLongTy, 2612 llvm::APInt(32, 5), ArrayType::Normal, 0) 2613 }; 2614 2615 for (size_t i = 0; i < 4; ++i) { 2616 FieldDecl *Field = FieldDecl::Create(Context, 2617 D, 2618 SourceLocation(), 2619 SourceLocation(), 0, 2620 FieldTypes[i], /*TInfo=*/0, 2621 /*BitWidth=*/0, 2622 /*Mutable=*/false, 2623 ICIS_NoInit); 2624 Field->setAccess(AS_public); 2625 D->addDecl(Field); 2626 } 2627 2628 D->completeDefinition(); 2629 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2630 } 2631 2632 return ObjCFastEnumerationStateType; 2633 } 2634 2635 llvm::Constant * 2636 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2637 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2638 2639 // Don't emit it as the address of the string, emit the string data itself 2640 // as an inline array. 2641 if (E->getCharByteWidth() == 1) { 2642 SmallString<64> Str(E->getString()); 2643 2644 // Resize the string to the right size, which is indicated by its type. 2645 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2646 Str.resize(CAT->getSize().getZExtValue()); 2647 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2648 } 2649 2650 llvm::ArrayType *AType = 2651 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2652 llvm::Type *ElemTy = AType->getElementType(); 2653 unsigned NumElements = AType->getNumElements(); 2654 2655 // Wide strings have either 2-byte or 4-byte elements. 2656 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2657 SmallVector<uint16_t, 32> Elements; 2658 Elements.reserve(NumElements); 2659 2660 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2661 Elements.push_back(E->getCodeUnit(i)); 2662 Elements.resize(NumElements); 2663 return llvm::ConstantDataArray::get(VMContext, Elements); 2664 } 2665 2666 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2667 SmallVector<uint32_t, 32> Elements; 2668 Elements.reserve(NumElements); 2669 2670 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2671 Elements.push_back(E->getCodeUnit(i)); 2672 Elements.resize(NumElements); 2673 return llvm::ConstantDataArray::get(VMContext, Elements); 2674 } 2675 2676 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2677 /// constant array for the given string literal. 2678 llvm::Constant * 2679 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2680 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2681 2682 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2683 llvm::GlobalVariable *GV = nullptr; 2684 if (!LangOpts.WritableStrings) { 2685 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2686 switch (S->getCharByteWidth()) { 2687 case 1: 2688 ConstantStringMap = &Constant1ByteStringMap; 2689 break; 2690 case 2: 2691 ConstantStringMap = &Constant2ByteStringMap; 2692 break; 2693 case 4: 2694 ConstantStringMap = &Constant4ByteStringMap; 2695 break; 2696 default: 2697 llvm_unreachable("unhandled byte width!"); 2698 } 2699 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2700 GV = Entry->getValue(); 2701 } 2702 2703 if (!GV) { 2704 SmallString<256> MangledNameBuffer; 2705 StringRef GlobalVariableName; 2706 llvm::GlobalValue::LinkageTypes LT; 2707 2708 // Mangle the string literal if the ABI allows for it. However, we cannot 2709 // do this if we are compiling with ASan or -fwritable-strings because they 2710 // rely on strings having normal linkage. 2711 if (!LangOpts.WritableStrings && !SanOpts.Address && 2712 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2713 llvm::raw_svector_ostream Out(MangledNameBuffer); 2714 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2715 Out.flush(); 2716 2717 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2718 GlobalVariableName = MangledNameBuffer; 2719 } else { 2720 LT = llvm::GlobalValue::PrivateLinkage; 2721 GlobalVariableName = ".str"; 2722 } 2723 2724 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2725 unsigned AddrSpace = 0; 2726 if (getLangOpts().OpenCL) 2727 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2728 2729 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2730 GV = new llvm::GlobalVariable( 2731 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2732 GlobalVariableName, /*InsertBefore=*/nullptr, 2733 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2734 GV->setUnnamedAddr(true); 2735 if (Entry) 2736 Entry->setValue(GV); 2737 } 2738 2739 if (Align.getQuantity() > GV->getAlignment()) 2740 GV->setAlignment(Align.getQuantity()); 2741 2742 return GV; 2743 } 2744 2745 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2746 /// array for the given ObjCEncodeExpr node. 2747 llvm::Constant * 2748 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2749 std::string Str; 2750 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2751 2752 return GetAddrOfConstantCString(Str); 2753 } 2754 2755 2756 /// GenerateWritableString -- Creates storage for a string literal. 2757 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2758 bool constant, 2759 CodeGenModule &CGM, 2760 const char *GlobalName, 2761 unsigned Alignment) { 2762 // Create Constant for this string literal. Don't add a '\0'. 2763 llvm::Constant *C = 2764 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2765 2766 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2767 unsigned AddrSpace = 0; 2768 if (CGM.getLangOpts().OpenCL) 2769 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2770 2771 // Create a global variable for this string 2772 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2773 CGM.getModule(), C->getType(), constant, 2774 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2775 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2776 GV->setAlignment(Alignment); 2777 GV->setUnnamedAddr(true); 2778 return GV; 2779 } 2780 2781 /// GetAddrOfConstantString - Returns a pointer to a character array 2782 /// containing the literal. This contents are exactly that of the 2783 /// given string, i.e. it will not be null terminated automatically; 2784 /// see GetAddrOfConstantCString. Note that whether the result is 2785 /// actually a pointer to an LLVM constant depends on 2786 /// Feature.WriteableStrings. 2787 /// 2788 /// The result has pointer to array type. 2789 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2790 const char *GlobalName, 2791 unsigned Alignment) { 2792 // Get the default prefix if a name wasn't specified. 2793 if (!GlobalName) 2794 GlobalName = ".str"; 2795 2796 if (Alignment == 0) 2797 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2798 .getQuantity(); 2799 2800 // Don't share any string literals if strings aren't constant. 2801 if (LangOpts.WritableStrings) 2802 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2803 2804 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2805 Constant1ByteStringMap.GetOrCreateValue(Str); 2806 2807 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2808 if (Alignment > GV->getAlignment()) { 2809 GV->setAlignment(Alignment); 2810 } 2811 return GV; 2812 } 2813 2814 // Create a global variable for this. 2815 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2816 Alignment); 2817 Entry.setValue(GV); 2818 return GV; 2819 } 2820 2821 /// GetAddrOfConstantCString - Returns a pointer to a character 2822 /// array containing the literal and a terminating '\0' 2823 /// character. The result has pointer to array type. 2824 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2825 const char *GlobalName, 2826 unsigned Alignment) { 2827 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2828 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2829 } 2830 2831 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2832 const MaterializeTemporaryExpr *E, const Expr *Init) { 2833 assert((E->getStorageDuration() == SD_Static || 2834 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2835 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2836 2837 // If we're not materializing a subobject of the temporary, keep the 2838 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2839 QualType MaterializedType = Init->getType(); 2840 if (Init == E->GetTemporaryExpr()) 2841 MaterializedType = E->getType(); 2842 2843 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2844 if (Slot) 2845 return Slot; 2846 2847 // FIXME: If an externally-visible declaration extends multiple temporaries, 2848 // we need to give each temporary the same name in every translation unit (and 2849 // we also need to make the temporaries externally-visible). 2850 SmallString<256> Name; 2851 llvm::raw_svector_ostream Out(Name); 2852 getCXXABI().getMangleContext().mangleReferenceTemporary( 2853 VD, E->getManglingNumber(), Out); 2854 Out.flush(); 2855 2856 APValue *Value = 0; 2857 if (E->getStorageDuration() == SD_Static) { 2858 // We might have a cached constant initializer for this temporary. Note 2859 // that this might have a different value from the value computed by 2860 // evaluating the initializer if the surrounding constant expression 2861 // modifies the temporary. 2862 Value = getContext().getMaterializedTemporaryValue(E, false); 2863 if (Value && Value->isUninit()) 2864 Value = 0; 2865 } 2866 2867 // Try evaluating it now, it might have a constant initializer. 2868 Expr::EvalResult EvalResult; 2869 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2870 !EvalResult.hasSideEffects()) 2871 Value = &EvalResult.Val; 2872 2873 llvm::Constant *InitialValue = 0; 2874 bool Constant = false; 2875 llvm::Type *Type; 2876 if (Value) { 2877 // The temporary has a constant initializer, use it. 2878 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2879 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2880 Type = InitialValue->getType(); 2881 } else { 2882 // No initializer, the initialization will be provided when we 2883 // initialize the declaration which performed lifetime extension. 2884 Type = getTypes().ConvertTypeForMem(MaterializedType); 2885 } 2886 2887 // Create a global variable for this lifetime-extended temporary. 2888 llvm::GlobalValue::LinkageTypes Linkage = 2889 getLLVMLinkageVarDefinition(VD, Constant); 2890 // There is no need for this temporary to have global linkage if the global 2891 // variable has external linkage. 2892 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2893 Linkage = llvm::GlobalVariable::PrivateLinkage; 2894 unsigned AddrSpace = GetGlobalVarAddressSpace( 2895 VD, getContext().getTargetAddressSpace(MaterializedType)); 2896 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2897 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2898 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2899 AddrSpace); 2900 setGlobalVisibility(GV, VD); 2901 GV->setAlignment( 2902 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2903 if (VD->getTLSKind()) 2904 setTLSMode(GV, *VD); 2905 Slot = GV; 2906 return GV; 2907 } 2908 2909 /// EmitObjCPropertyImplementations - Emit information for synthesized 2910 /// properties for an implementation. 2911 void CodeGenModule::EmitObjCPropertyImplementations(const 2912 ObjCImplementationDecl *D) { 2913 for (const auto *PID : D->property_impls()) { 2914 // Dynamic is just for type-checking. 2915 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2916 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2917 2918 // Determine which methods need to be implemented, some may have 2919 // been overridden. Note that ::isPropertyAccessor is not the method 2920 // we want, that just indicates if the decl came from a 2921 // property. What we want to know is if the method is defined in 2922 // this implementation. 2923 if (!D->getInstanceMethod(PD->getGetterName())) 2924 CodeGenFunction(*this).GenerateObjCGetter( 2925 const_cast<ObjCImplementationDecl *>(D), PID); 2926 if (!PD->isReadOnly() && 2927 !D->getInstanceMethod(PD->getSetterName())) 2928 CodeGenFunction(*this).GenerateObjCSetter( 2929 const_cast<ObjCImplementationDecl *>(D), PID); 2930 } 2931 } 2932 } 2933 2934 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2935 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2936 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2937 ivar; ivar = ivar->getNextIvar()) 2938 if (ivar->getType().isDestructedType()) 2939 return true; 2940 2941 return false; 2942 } 2943 2944 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2945 /// for an implementation. 2946 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2947 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2948 if (needsDestructMethod(D)) { 2949 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2950 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2951 ObjCMethodDecl *DTORMethod = 2952 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2953 cxxSelector, getContext().VoidTy, 0, D, 2954 /*isInstance=*/true, /*isVariadic=*/false, 2955 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2956 /*isDefined=*/false, ObjCMethodDecl::Required); 2957 D->addInstanceMethod(DTORMethod); 2958 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2959 D->setHasDestructors(true); 2960 } 2961 2962 // If the implementation doesn't have any ivar initializers, we don't need 2963 // a .cxx_construct. 2964 if (D->getNumIvarInitializers() == 0) 2965 return; 2966 2967 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2968 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2969 // The constructor returns 'self'. 2970 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2971 D->getLocation(), 2972 D->getLocation(), 2973 cxxSelector, 2974 getContext().getObjCIdType(), 0, 2975 D, /*isInstance=*/true, 2976 /*isVariadic=*/false, 2977 /*isPropertyAccessor=*/true, 2978 /*isImplicitlyDeclared=*/true, 2979 /*isDefined=*/false, 2980 ObjCMethodDecl::Required); 2981 D->addInstanceMethod(CTORMethod); 2982 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2983 D->setHasNonZeroConstructors(true); 2984 } 2985 2986 /// EmitNamespace - Emit all declarations in a namespace. 2987 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2988 for (auto *I : ND->decls()) { 2989 if (const auto *VD = dyn_cast<VarDecl>(I)) 2990 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2991 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2992 continue; 2993 EmitTopLevelDecl(I); 2994 } 2995 } 2996 2997 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2998 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2999 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3000 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3001 ErrorUnsupported(LSD, "linkage spec"); 3002 return; 3003 } 3004 3005 for (auto *I : LSD->decls()) { 3006 // Meta-data for ObjC class includes references to implemented methods. 3007 // Generate class's method definitions first. 3008 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3009 for (auto *M : OID->methods()) 3010 EmitTopLevelDecl(M); 3011 } 3012 EmitTopLevelDecl(I); 3013 } 3014 } 3015 3016 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3017 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3018 // Ignore dependent declarations. 3019 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3020 return; 3021 3022 switch (D->getKind()) { 3023 case Decl::CXXConversion: 3024 case Decl::CXXMethod: 3025 case Decl::Function: 3026 // Skip function templates 3027 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3028 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3029 return; 3030 3031 EmitGlobal(cast<FunctionDecl>(D)); 3032 break; 3033 3034 case Decl::Var: 3035 // Skip variable templates 3036 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3037 return; 3038 case Decl::VarTemplateSpecialization: 3039 EmitGlobal(cast<VarDecl>(D)); 3040 break; 3041 3042 // Indirect fields from global anonymous structs and unions can be 3043 // ignored; only the actual variable requires IR gen support. 3044 case Decl::IndirectField: 3045 break; 3046 3047 // C++ Decls 3048 case Decl::Namespace: 3049 EmitNamespace(cast<NamespaceDecl>(D)); 3050 break; 3051 // No code generation needed. 3052 case Decl::UsingShadow: 3053 case Decl::ClassTemplate: 3054 case Decl::VarTemplate: 3055 case Decl::VarTemplatePartialSpecialization: 3056 case Decl::FunctionTemplate: 3057 case Decl::TypeAliasTemplate: 3058 case Decl::Block: 3059 case Decl::Empty: 3060 break; 3061 case Decl::Using: // using X; [C++] 3062 if (CGDebugInfo *DI = getModuleDebugInfo()) 3063 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3064 return; 3065 case Decl::NamespaceAlias: 3066 if (CGDebugInfo *DI = getModuleDebugInfo()) 3067 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3068 return; 3069 case Decl::UsingDirective: // using namespace X; [C++] 3070 if (CGDebugInfo *DI = getModuleDebugInfo()) 3071 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3072 return; 3073 case Decl::CXXConstructor: 3074 // Skip function templates 3075 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3076 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3077 return; 3078 3079 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3080 break; 3081 case Decl::CXXDestructor: 3082 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3083 return; 3084 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3085 break; 3086 3087 case Decl::StaticAssert: 3088 // Nothing to do. 3089 break; 3090 3091 // Objective-C Decls 3092 3093 // Forward declarations, no (immediate) code generation. 3094 case Decl::ObjCInterface: 3095 case Decl::ObjCCategory: 3096 break; 3097 3098 case Decl::ObjCProtocol: { 3099 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3100 if (Proto->isThisDeclarationADefinition()) 3101 ObjCRuntime->GenerateProtocol(Proto); 3102 break; 3103 } 3104 3105 case Decl::ObjCCategoryImpl: 3106 // Categories have properties but don't support synthesize so we 3107 // can ignore them here. 3108 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3109 break; 3110 3111 case Decl::ObjCImplementation: { 3112 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3113 EmitObjCPropertyImplementations(OMD); 3114 EmitObjCIvarInitializations(OMD); 3115 ObjCRuntime->GenerateClass(OMD); 3116 // Emit global variable debug information. 3117 if (CGDebugInfo *DI = getModuleDebugInfo()) 3118 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3119 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3120 OMD->getClassInterface()), OMD->getLocation()); 3121 break; 3122 } 3123 case Decl::ObjCMethod: { 3124 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3125 // If this is not a prototype, emit the body. 3126 if (OMD->getBody()) 3127 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3128 break; 3129 } 3130 case Decl::ObjCCompatibleAlias: 3131 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3132 break; 3133 3134 case Decl::LinkageSpec: 3135 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3136 break; 3137 3138 case Decl::FileScopeAsm: { 3139 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3140 StringRef AsmString = AD->getAsmString()->getString(); 3141 3142 const std::string &S = getModule().getModuleInlineAsm(); 3143 if (S.empty()) 3144 getModule().setModuleInlineAsm(AsmString); 3145 else if (S.end()[-1] == '\n') 3146 getModule().setModuleInlineAsm(S + AsmString.str()); 3147 else 3148 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3149 break; 3150 } 3151 3152 case Decl::Import: { 3153 ImportDecl *Import = cast<ImportDecl>(D); 3154 3155 // Ignore import declarations that come from imported modules. 3156 if (clang::Module *Owner = Import->getOwningModule()) { 3157 if (getLangOpts().CurrentModule.empty() || 3158 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3159 break; 3160 } 3161 3162 ImportedModules.insert(Import->getImportedModule()); 3163 break; 3164 } 3165 3166 case Decl::ClassTemplateSpecialization: { 3167 const ClassTemplateSpecializationDecl *Spec = 3168 cast<ClassTemplateSpecializationDecl>(D); 3169 if (DebugInfo && 3170 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3171 DebugInfo->completeTemplateDefinition(*Spec); 3172 } 3173 3174 default: 3175 // Make sure we handled everything we should, every other kind is a 3176 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3177 // function. Need to recode Decl::Kind to do that easily. 3178 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3179 } 3180 } 3181 3182 /// Turns the given pointer into a constant. 3183 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3184 const void *Ptr) { 3185 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3186 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3187 return llvm::ConstantInt::get(i64, PtrInt); 3188 } 3189 3190 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3191 llvm::NamedMDNode *&GlobalMetadata, 3192 GlobalDecl D, 3193 llvm::GlobalValue *Addr) { 3194 if (!GlobalMetadata) 3195 GlobalMetadata = 3196 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3197 3198 // TODO: should we report variant information for ctors/dtors? 3199 llvm::Value *Ops[] = { 3200 Addr, 3201 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3202 }; 3203 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3204 } 3205 3206 /// For each function which is declared within an extern "C" region and marked 3207 /// as 'used', but has internal linkage, create an alias from the unmangled 3208 /// name to the mangled name if possible. People expect to be able to refer 3209 /// to such functions with an unmangled name from inline assembly within the 3210 /// same translation unit. 3211 void CodeGenModule::EmitStaticExternCAliases() { 3212 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3213 E = StaticExternCValues.end(); 3214 I != E; ++I) { 3215 IdentifierInfo *Name = I->first; 3216 llvm::GlobalValue *Val = I->second; 3217 if (Val && !getModule().getNamedValue(Name->getName())) 3218 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3219 Name->getName(), Val, &getModule())); 3220 } 3221 } 3222 3223 /// Emits metadata nodes associating all the global values in the 3224 /// current module with the Decls they came from. This is useful for 3225 /// projects using IR gen as a subroutine. 3226 /// 3227 /// Since there's currently no way to associate an MDNode directly 3228 /// with an llvm::GlobalValue, we create a global named metadata 3229 /// with the name 'clang.global.decl.ptrs'. 3230 void CodeGenModule::EmitDeclMetadata() { 3231 llvm::NamedMDNode *GlobalMetadata = 0; 3232 3233 // StaticLocalDeclMap 3234 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3235 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3236 I != E; ++I) { 3237 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3238 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3239 } 3240 } 3241 3242 /// Emits metadata nodes for all the local variables in the current 3243 /// function. 3244 void CodeGenFunction::EmitDeclMetadata() { 3245 if (LocalDeclMap.empty()) return; 3246 3247 llvm::LLVMContext &Context = getLLVMContext(); 3248 3249 // Find the unique metadata ID for this name. 3250 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3251 3252 llvm::NamedMDNode *GlobalMetadata = 0; 3253 3254 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3255 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3256 const Decl *D = I->first; 3257 llvm::Value *Addr = I->second; 3258 3259 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3260 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3261 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3262 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3263 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3264 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3265 } 3266 } 3267 } 3268 3269 void CodeGenModule::EmitVersionIdentMetadata() { 3270 llvm::NamedMDNode *IdentMetadata = 3271 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3272 std::string Version = getClangFullVersion(); 3273 llvm::LLVMContext &Ctx = TheModule.getContext(); 3274 3275 llvm::Value *IdentNode[] = { 3276 llvm::MDString::get(Ctx, Version) 3277 }; 3278 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3279 } 3280 3281 void CodeGenModule::EmitCoverageFile() { 3282 if (!getCodeGenOpts().CoverageFile.empty()) { 3283 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3284 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3285 llvm::LLVMContext &Ctx = TheModule.getContext(); 3286 llvm::MDString *CoverageFile = 3287 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3288 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3289 llvm::MDNode *CU = CUNode->getOperand(i); 3290 llvm::Value *node[] = { CoverageFile, CU }; 3291 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3292 GCov->addOperand(N); 3293 } 3294 } 3295 } 3296 } 3297 3298 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3299 QualType GuidType) { 3300 // Sema has checked that all uuid strings are of the form 3301 // "12345678-1234-1234-1234-1234567890ab". 3302 assert(Uuid.size() == 36); 3303 for (unsigned i = 0; i < 36; ++i) { 3304 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3305 else assert(isHexDigit(Uuid[i])); 3306 } 3307 3308 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3309 3310 llvm::Constant *Field3[8]; 3311 for (unsigned Idx = 0; Idx < 8; ++Idx) 3312 Field3[Idx] = llvm::ConstantInt::get( 3313 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3314 3315 llvm::Constant *Fields[4] = { 3316 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3317 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3318 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3319 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3320 }; 3321 3322 return llvm::ConstantStruct::getAnon(Fields); 3323 } 3324