xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision df931ce82ce9e002ec4d71f74a4bab3bf316b977)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TargetOptions.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/Triple.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Target/Mangler.h"
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 static const char AnnotationSection[] = "llvm.metadata";
56 
57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58   switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
59   case TargetCXXABI::GenericAArch64:
60   case TargetCXXABI::GenericARM:
61   case TargetCXXABI::iOS:
62   case TargetCXXABI::GenericItanium:
63     return *CreateItaniumCXXABI(CGM);
64   case TargetCXXABI::Microsoft:
65     return *CreateMicrosoftCXXABI(CGM);
66   }
67 
68   llvm_unreachable("invalid C++ ABI kind");
69 }
70 
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              const TargetOptions &TO, llvm::Module &M,
74                              const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO),
77     TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
78     ABI(createCXXABI(*this)),
79     Types(*this),
80     TBAA(0),
81     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
82     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
83     RRData(0), CFConstantStringClassRef(0),
84     ConstantStringClassRef(0), NSConstantStringType(0),
85     VMContext(M.getContext()),
86     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
87     BlockObjectAssign(0), BlockObjectDispose(0),
88     BlockDescriptorType(0), GenericBlockLiteralType(0),
89     LifetimeStartFn(0), LifetimeEndFn(0),
90     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
91     SanOpts(SanitizerBlacklist.isIn(M) ?
92             SanitizerOptions::Disabled : LangOpts.Sanitize) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.CUDA)
118     createCUDARuntime();
119 
120   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
121   if (SanOpts.Thread ||
122       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
123     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
124                            ABI.getMangleContext());
125 
126   // If debug info or coverage generation is enabled, create the CGDebugInfo
127   // object.
128   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
129       CodeGenOpts.EmitGcovArcs ||
130       CodeGenOpts.EmitGcovNotes)
131     DebugInfo = new CGDebugInfo(*this);
132 
133   Block.GlobalUniqueCount = 0;
134 
135   if (C.getLangOpts().ObjCAutoRefCount)
136     ARCData = new ARCEntrypoints();
137   RRData = new RREntrypoints();
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete &ABI;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::Release() {
180   EmitDeferred();
181   EmitCXXGlobalInitFunc();
182   EmitCXXGlobalDtorFunc();
183   if (ObjCRuntime)
184     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
185       AddGlobalCtor(ObjCInitFunction);
186   EmitCtorList(GlobalCtors, "llvm.global_ctors");
187   EmitCtorList(GlobalDtors, "llvm.global_dtors");
188   EmitGlobalAnnotations();
189   EmitStaticExternCAliases();
190   EmitLLVMUsed();
191 
192   if (CodeGenOpts.ModulesAutolink) {
193     EmitModuleLinkOptions();
194   }
195 
196   SimplifyPersonality();
197 
198   if (getCodeGenOpts().EmitDeclMetadata)
199     EmitDeclMetadata();
200 
201   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
202     EmitCoverageFile();
203 
204   if (DebugInfo)
205     DebugInfo->finalize();
206 }
207 
208 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
209   // Make sure that this type is translated.
210   Types.UpdateCompletedType(TD);
211 }
212 
213 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
214   if (!TBAA)
215     return 0;
216   return TBAA->getTBAAInfo(QTy);
217 }
218 
219 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
220   if (!TBAA)
221     return 0;
222   return TBAA->getTBAAInfoForVTablePtr();
223 }
224 
225 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
226   if (!TBAA)
227     return 0;
228   return TBAA->getTBAAStructInfo(QTy);
229 }
230 
231 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
232   if (!TBAA)
233     return 0;
234   return TBAA->getTBAAStructTypeInfo(QTy);
235 }
236 
237 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
238                                                   llvm::MDNode *AccessN,
239                                                   uint64_t O) {
240   if (!TBAA)
241     return 0;
242   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
243 }
244 
245 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
246                                         llvm::MDNode *TBAAInfo) {
247   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
248 }
249 
250 bool CodeGenModule::isTargetDarwin() const {
251   return getContext().getTargetInfo().getTriple().isOSDarwin();
252 }
253 
254 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
255   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
256   getDiags().Report(Context.getFullLoc(loc), diagID);
257 }
258 
259 /// ErrorUnsupported - Print out an error that codegen doesn't support the
260 /// specified stmt yet.
261 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
262                                      bool OmitOnError) {
263   if (OmitOnError && getDiags().hasErrorOccurred())
264     return;
265   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
266                                                "cannot compile this %0 yet");
267   std::string Msg = Type;
268   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
269     << Msg << S->getSourceRange();
270 }
271 
272 /// ErrorUnsupported - Print out an error that codegen doesn't support the
273 /// specified decl yet.
274 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
275                                      bool OmitOnError) {
276   if (OmitOnError && getDiags().hasErrorOccurred())
277     return;
278   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
279                                                "cannot compile this %0 yet");
280   std::string Msg = Type;
281   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
282 }
283 
284 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
285   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
286 }
287 
288 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
289                                         const NamedDecl *D) const {
290   // Internal definitions always have default visibility.
291   if (GV->hasLocalLinkage()) {
292     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
293     return;
294   }
295 
296   // Set visibility for definitions.
297   LinkageInfo LV = D->getLinkageAndVisibility();
298   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
299     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
300 }
301 
302 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
303   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
304       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
305       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
306       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
307       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
308 }
309 
310 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
311     CodeGenOptions::TLSModel M) {
312   switch (M) {
313   case CodeGenOptions::GeneralDynamicTLSModel:
314     return llvm::GlobalVariable::GeneralDynamicTLSModel;
315   case CodeGenOptions::LocalDynamicTLSModel:
316     return llvm::GlobalVariable::LocalDynamicTLSModel;
317   case CodeGenOptions::InitialExecTLSModel:
318     return llvm::GlobalVariable::InitialExecTLSModel;
319   case CodeGenOptions::LocalExecTLSModel:
320     return llvm::GlobalVariable::LocalExecTLSModel;
321   }
322   llvm_unreachable("Invalid TLS model!");
323 }
324 
325 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
326                                const VarDecl &D) const {
327   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
328 
329   llvm::GlobalVariable::ThreadLocalMode TLM;
330   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
331 
332   // Override the TLS model if it is explicitly specified.
333   if (D.hasAttr<TLSModelAttr>()) {
334     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
335     TLM = GetLLVMTLSModel(Attr->getModel());
336   }
337 
338   GV->setThreadLocalMode(TLM);
339 }
340 
341 /// Set the symbol visibility of type information (vtable and RTTI)
342 /// associated with the given type.
343 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
344                                       const CXXRecordDecl *RD,
345                                       TypeVisibilityKind TVK) const {
346   setGlobalVisibility(GV, RD);
347 
348   if (!CodeGenOpts.HiddenWeakVTables)
349     return;
350 
351   // We never want to drop the visibility for RTTI names.
352   if (TVK == TVK_ForRTTIName)
353     return;
354 
355   // We want to drop the visibility to hidden for weak type symbols.
356   // This isn't possible if there might be unresolved references
357   // elsewhere that rely on this symbol being visible.
358 
359   // This should be kept roughly in sync with setThunkVisibility
360   // in CGVTables.cpp.
361 
362   // Preconditions.
363   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
364       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
365     return;
366 
367   // Don't override an explicit visibility attribute.
368   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
369     return;
370 
371   switch (RD->getTemplateSpecializationKind()) {
372   // We have to disable the optimization if this is an EI definition
373   // because there might be EI declarations in other shared objects.
374   case TSK_ExplicitInstantiationDefinition:
375   case TSK_ExplicitInstantiationDeclaration:
376     return;
377 
378   // Every use of a non-template class's type information has to emit it.
379   case TSK_Undeclared:
380     break;
381 
382   // In theory, implicit instantiations can ignore the possibility of
383   // an explicit instantiation declaration because there necessarily
384   // must be an EI definition somewhere with default visibility.  In
385   // practice, it's possible to have an explicit instantiation for
386   // an arbitrary template class, and linkers aren't necessarily able
387   // to deal with mixed-visibility symbols.
388   case TSK_ExplicitSpecialization:
389   case TSK_ImplicitInstantiation:
390     return;
391   }
392 
393   // If there's a key function, there may be translation units
394   // that don't have the key function's definition.  But ignore
395   // this if we're emitting RTTI under -fno-rtti.
396   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
397     // FIXME: what should we do if we "lose" the key function during
398     // the emission of the file?
399     if (Context.getCurrentKeyFunction(RD))
400       return;
401   }
402 
403   // Otherwise, drop the visibility to hidden.
404   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
405   GV->setUnnamedAddr(true);
406 }
407 
408 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
409   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
410 
411   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
412   if (!Str.empty())
413     return Str;
414 
415   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
416     IdentifierInfo *II = ND->getIdentifier();
417     assert(II && "Attempt to mangle unnamed decl.");
418 
419     Str = II->getName();
420     return Str;
421   }
422 
423   SmallString<256> Buffer;
424   llvm::raw_svector_ostream Out(Buffer);
425   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
426     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
427   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
428     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
429   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
430     getCXXABI().getMangleContext().mangleBlock(BD, Out,
431       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
432   else
433     getCXXABI().getMangleContext().mangleName(ND, Out);
434 
435   // Allocate space for the mangled name.
436   Out.flush();
437   size_t Length = Buffer.size();
438   char *Name = MangledNamesAllocator.Allocate<char>(Length);
439   std::copy(Buffer.begin(), Buffer.end(), Name);
440 
441   Str = StringRef(Name, Length);
442 
443   return Str;
444 }
445 
446 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
447                                         const BlockDecl *BD) {
448   MangleContext &MangleCtx = getCXXABI().getMangleContext();
449   const Decl *D = GD.getDecl();
450   llvm::raw_svector_ostream Out(Buffer.getBuffer());
451   if (D == 0)
452     MangleCtx.mangleGlobalBlock(BD,
453       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
454   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
455     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
456   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
457     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
458   else
459     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
460 }
461 
462 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
463   return getModule().getNamedValue(Name);
464 }
465 
466 /// AddGlobalCtor - Add a function to the list that will be called before
467 /// main() runs.
468 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
469   // FIXME: Type coercion of void()* types.
470   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
471 }
472 
473 /// AddGlobalDtor - Add a function to the list that will be called
474 /// when the module is unloaded.
475 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
476   // FIXME: Type coercion of void()* types.
477   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
478 }
479 
480 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
481   // Ctor function type is void()*.
482   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
483   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
484 
485   // Get the type of a ctor entry, { i32, void ()* }.
486   llvm::StructType *CtorStructTy =
487     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
488 
489   // Construct the constructor and destructor arrays.
490   SmallVector<llvm::Constant*, 8> Ctors;
491   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
492     llvm::Constant *S[] = {
493       llvm::ConstantInt::get(Int32Ty, I->second, false),
494       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
495     };
496     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
497   }
498 
499   if (!Ctors.empty()) {
500     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
501     new llvm::GlobalVariable(TheModule, AT, false,
502                              llvm::GlobalValue::AppendingLinkage,
503                              llvm::ConstantArray::get(AT, Ctors),
504                              GlobalName);
505   }
506 }
507 
508 llvm::GlobalValue::LinkageTypes
509 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
510   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
511 
512   if (Linkage == GVA_Internal)
513     return llvm::Function::InternalLinkage;
514 
515   if (D->hasAttr<DLLExportAttr>())
516     return llvm::Function::DLLExportLinkage;
517 
518   if (D->hasAttr<WeakAttr>())
519     return llvm::Function::WeakAnyLinkage;
520 
521   // In C99 mode, 'inline' functions are guaranteed to have a strong
522   // definition somewhere else, so we can use available_externally linkage.
523   if (Linkage == GVA_C99Inline)
524     return llvm::Function::AvailableExternallyLinkage;
525 
526   // Note that Apple's kernel linker doesn't support symbol
527   // coalescing, so we need to avoid linkonce and weak linkages there.
528   // Normally, this means we just map to internal, but for explicit
529   // instantiations we'll map to external.
530 
531   // In C++, the compiler has to emit a definition in every translation unit
532   // that references the function.  We should use linkonce_odr because
533   // a) if all references in this translation unit are optimized away, we
534   // don't need to codegen it.  b) if the function persists, it needs to be
535   // merged with other definitions. c) C++ has the ODR, so we know the
536   // definition is dependable.
537   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
538     return !Context.getLangOpts().AppleKext
539              ? llvm::Function::LinkOnceODRLinkage
540              : llvm::Function::InternalLinkage;
541 
542   // An explicit instantiation of a template has weak linkage, since
543   // explicit instantiations can occur in multiple translation units
544   // and must all be equivalent. However, we are not allowed to
545   // throw away these explicit instantiations.
546   if (Linkage == GVA_ExplicitTemplateInstantiation)
547     return !Context.getLangOpts().AppleKext
548              ? llvm::Function::WeakODRLinkage
549              : llvm::Function::ExternalLinkage;
550 
551   // Otherwise, we have strong external linkage.
552   assert(Linkage == GVA_StrongExternal);
553   return llvm::Function::ExternalLinkage;
554 }
555 
556 
557 /// SetFunctionDefinitionAttributes - Set attributes for a global.
558 ///
559 /// FIXME: This is currently only done for aliases and functions, but not for
560 /// variables (these details are set in EmitGlobalVarDefinition for variables).
561 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
562                                                     llvm::GlobalValue *GV) {
563   SetCommonAttributes(D, GV);
564 }
565 
566 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
567                                               const CGFunctionInfo &Info,
568                                               llvm::Function *F) {
569   unsigned CallingConv;
570   AttributeListType AttributeList;
571   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
572   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
573   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
574 }
575 
576 /// Determines whether the language options require us to model
577 /// unwind exceptions.  We treat -fexceptions as mandating this
578 /// except under the fragile ObjC ABI with only ObjC exceptions
579 /// enabled.  This means, for example, that C with -fexceptions
580 /// enables this.
581 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
582   // If exceptions are completely disabled, obviously this is false.
583   if (!LangOpts.Exceptions) return false;
584 
585   // If C++ exceptions are enabled, this is true.
586   if (LangOpts.CXXExceptions) return true;
587 
588   // If ObjC exceptions are enabled, this depends on the ABI.
589   if (LangOpts.ObjCExceptions) {
590     return LangOpts.ObjCRuntime.hasUnwindExceptions();
591   }
592 
593   return true;
594 }
595 
596 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
597                                                            llvm::Function *F) {
598   if (CodeGenOpts.UnwindTables)
599     F->setHasUWTable();
600 
601   if (!hasUnwindExceptions(LangOpts))
602     F->addFnAttr(llvm::Attribute::NoUnwind);
603 
604   if (D->hasAttr<NakedAttr>()) {
605     // Naked implies noinline: we should not be inlining such functions.
606     F->addFnAttr(llvm::Attribute::Naked);
607     F->addFnAttr(llvm::Attribute::NoInline);
608   }
609 
610   if (D->hasAttr<NoInlineAttr>())
611     F->addFnAttr(llvm::Attribute::NoInline);
612 
613   // (noinline wins over always_inline, and we can't specify both in IR)
614   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
615       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
616                                        llvm::Attribute::NoInline))
617     F->addFnAttr(llvm::Attribute::AlwaysInline);
618 
619   // FIXME: Communicate hot and cold attributes to LLVM more directly.
620   if (D->hasAttr<ColdAttr>())
621     F->addFnAttr(llvm::Attribute::OptimizeForSize);
622 
623   if (D->hasAttr<MinSizeAttr>())
624     F->addFnAttr(llvm::Attribute::MinSize);
625 
626   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
627     F->setUnnamedAddr(true);
628 
629   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
630     if (MD->isVirtual())
631       F->setUnnamedAddr(true);
632 
633   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
634     F->addFnAttr(llvm::Attribute::StackProtect);
635   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
636     F->addFnAttr(llvm::Attribute::StackProtectReq);
637 
638   // Add sanitizer attributes if function is not blacklisted.
639   if (!SanitizerBlacklist.isIn(*F)) {
640     // When AddressSanitizer is enabled, set SanitizeAddress attribute
641     // unless __attribute__((no_sanitize_address)) is used.
642     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
643       F->addFnAttr(llvm::Attribute::SanitizeAddress);
644     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
645     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
646       F->addFnAttr(llvm::Attribute::SanitizeThread);
647     }
648     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
649     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
650       F->addFnAttr(llvm::Attribute::SanitizeMemory);
651   }
652 
653   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
654   if (alignment)
655     F->setAlignment(alignment);
656 
657   // C++ ABI requires 2-byte alignment for member functions.
658   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
659     F->setAlignment(2);
660 }
661 
662 void CodeGenModule::SetCommonAttributes(const Decl *D,
663                                         llvm::GlobalValue *GV) {
664   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
665     setGlobalVisibility(GV, ND);
666   else
667     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
668 
669   if (D->hasAttr<UsedAttr>())
670     AddUsedGlobal(GV);
671 
672   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
673     GV->setSection(SA->getName());
674 
675   // Alias cannot have attributes. Filter them here.
676   if (!isa<llvm::GlobalAlias>(GV))
677     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
678 }
679 
680 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
681                                                   llvm::Function *F,
682                                                   const CGFunctionInfo &FI) {
683   SetLLVMFunctionAttributes(D, FI, F);
684   SetLLVMFunctionAttributesForDefinition(D, F);
685 
686   F->setLinkage(llvm::Function::InternalLinkage);
687 
688   SetCommonAttributes(D, F);
689 }
690 
691 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
692                                           llvm::Function *F,
693                                           bool IsIncompleteFunction) {
694   if (unsigned IID = F->getIntrinsicID()) {
695     // If this is an intrinsic function, set the function's attributes
696     // to the intrinsic's attributes.
697     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
698                                                     (llvm::Intrinsic::ID)IID));
699     return;
700   }
701 
702   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
703 
704   if (!IsIncompleteFunction)
705     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
706 
707   // Only a few attributes are set on declarations; these may later be
708   // overridden by a definition.
709 
710   if (FD->hasAttr<DLLImportAttr>()) {
711     F->setLinkage(llvm::Function::DLLImportLinkage);
712   } else if (FD->hasAttr<WeakAttr>() ||
713              FD->isWeakImported()) {
714     // "extern_weak" is overloaded in LLVM; we probably should have
715     // separate linkage types for this.
716     F->setLinkage(llvm::Function::ExternalWeakLinkage);
717   } else {
718     F->setLinkage(llvm::Function::ExternalLinkage);
719 
720     LinkageInfo LV = FD->getLinkageAndVisibility();
721     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
722       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
723     }
724   }
725 
726   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
727     F->setSection(SA->getName());
728 }
729 
730 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
731   assert(!GV->isDeclaration() &&
732          "Only globals with definition can force usage.");
733   LLVMUsed.push_back(GV);
734 }
735 
736 void CodeGenModule::EmitLLVMUsed() {
737   // Don't create llvm.used if there is no need.
738   if (LLVMUsed.empty())
739     return;
740 
741   // Convert LLVMUsed to what ConstantArray needs.
742   SmallVector<llvm::Constant*, 8> UsedArray;
743   UsedArray.resize(LLVMUsed.size());
744   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
745     UsedArray[i] =
746      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
747                                     Int8PtrTy);
748   }
749 
750   if (UsedArray.empty())
751     return;
752   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
753 
754   llvm::GlobalVariable *GV =
755     new llvm::GlobalVariable(getModule(), ATy, false,
756                              llvm::GlobalValue::AppendingLinkage,
757                              llvm::ConstantArray::get(ATy, UsedArray),
758                              "llvm.used");
759 
760   GV->setSection("llvm.metadata");
761 }
762 
763 /// \brief Add link options implied by the given module, including modules
764 /// it depends on, using a postorder walk.
765 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
766                                     Module *Mod,
767                                     SmallVectorImpl<llvm::Value *> &Metadata,
768                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
769   // Import this module's parent.
770   if (Mod->Parent && Visited.insert(Mod->Parent)) {
771     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
772   }
773 
774   // Import this module's dependencies.
775   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
776     if (Visited.insert(Mod->Imports[I-1]))
777       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
778   }
779 
780   // Add linker options to link against the libraries/frameworks
781   // described by this module.
782   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
783     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
784     // We need to know more about the linker to know how to encode these
785     // options propertly.
786 
787     // Link against a framework.
788     if (Mod->LinkLibraries[I-1].IsFramework) {
789       llvm::Value *Args[2] = {
790         llvm::MDString::get(Context, "-framework"),
791         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
792       };
793 
794       Metadata.push_back(llvm::MDNode::get(Context, Args));
795       continue;
796     }
797 
798     // Link against a library.
799     llvm::Value *OptString
800     = llvm::MDString::get(Context,
801                           "-l" + Mod->LinkLibraries[I-1].Library);
802     Metadata.push_back(llvm::MDNode::get(Context, OptString));
803   }
804 }
805 
806 void CodeGenModule::EmitModuleLinkOptions() {
807   // Collect the set of all of the modules we want to visit to emit link
808   // options, which is essentially the imported modules and all of their
809   // non-explicit child modules.
810   llvm::SetVector<clang::Module *> LinkModules;
811   llvm::SmallPtrSet<clang::Module *, 16> Visited;
812   SmallVector<clang::Module *, 16> Stack;
813 
814   // Seed the stack with imported modules.
815   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
816                                                MEnd = ImportedModules.end();
817        M != MEnd; ++M) {
818     if (Visited.insert(*M))
819       Stack.push_back(*M);
820   }
821 
822   // Find all of the modules to import, making a little effort to prune
823   // non-leaf modules.
824   while (!Stack.empty()) {
825     clang::Module *Mod = Stack.back();
826     Stack.pop_back();
827 
828     bool AnyChildren = false;
829 
830     // Visit the submodules of this module.
831     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
832                                         SubEnd = Mod->submodule_end();
833          Sub != SubEnd; ++Sub) {
834       // Skip explicit children; they need to be explicitly imported to be
835       // linked against.
836       if ((*Sub)->IsExplicit)
837         continue;
838 
839       if (Visited.insert(*Sub)) {
840         Stack.push_back(*Sub);
841         AnyChildren = true;
842       }
843     }
844 
845     // We didn't find any children, so add this module to the list of
846     // modules to link against.
847     if (!AnyChildren) {
848       LinkModules.insert(Mod);
849     }
850   }
851 
852   // Add link options for all of the imported modules in reverse topological
853   // order.
854   SmallVector<llvm::Value *, 16> MetadataArgs;
855   Visited.clear();
856   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
857                                                MEnd = LinkModules.end();
858        M != MEnd; ++M) {
859     if (Visited.insert(*M))
860       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
861   }
862   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
863 
864   // Add the linker options metadata flag.
865   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
866                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
867 }
868 
869 void CodeGenModule::EmitDeferred() {
870   // Emit code for any potentially referenced deferred decls.  Since a
871   // previously unused static decl may become used during the generation of code
872   // for a static function, iterate until no changes are made.
873 
874   while (true) {
875     if (!DeferredVTables.empty()) {
876       EmitDeferredVTables();
877 
878       // Emitting a v-table doesn't directly cause more v-tables to
879       // become deferred, although it can cause functions to be
880       // emitted that then need those v-tables.
881       assert(DeferredVTables.empty());
882     }
883 
884     // Stop if we're out of both deferred v-tables and deferred declarations.
885     if (DeferredDeclsToEmit.empty()) break;
886 
887     GlobalDecl D = DeferredDeclsToEmit.back();
888     DeferredDeclsToEmit.pop_back();
889 
890     // Check to see if we've already emitted this.  This is necessary
891     // for a couple of reasons: first, decls can end up in the
892     // deferred-decls queue multiple times, and second, decls can end
893     // up with definitions in unusual ways (e.g. by an extern inline
894     // function acquiring a strong function redefinition).  Just
895     // ignore these cases.
896     //
897     // TODO: That said, looking this up multiple times is very wasteful.
898     StringRef Name = getMangledName(D);
899     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
900     assert(CGRef && "Deferred decl wasn't referenced?");
901 
902     if (!CGRef->isDeclaration())
903       continue;
904 
905     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
906     // purposes an alias counts as a definition.
907     if (isa<llvm::GlobalAlias>(CGRef))
908       continue;
909 
910     // Otherwise, emit the definition and move on to the next one.
911     EmitGlobalDefinition(D);
912   }
913 }
914 
915 void CodeGenModule::EmitGlobalAnnotations() {
916   if (Annotations.empty())
917     return;
918 
919   // Create a new global variable for the ConstantStruct in the Module.
920   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
921     Annotations[0]->getType(), Annotations.size()), Annotations);
922   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
923     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
924     "llvm.global.annotations");
925   gv->setSection(AnnotationSection);
926 }
927 
928 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
929   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
930   if (i != AnnotationStrings.end())
931     return i->second;
932 
933   // Not found yet, create a new global.
934   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
935   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
936     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
937   gv->setSection(AnnotationSection);
938   gv->setUnnamedAddr(true);
939   AnnotationStrings[Str] = gv;
940   return gv;
941 }
942 
943 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
944   SourceManager &SM = getContext().getSourceManager();
945   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
946   if (PLoc.isValid())
947     return EmitAnnotationString(PLoc.getFilename());
948   return EmitAnnotationString(SM.getBufferName(Loc));
949 }
950 
951 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
952   SourceManager &SM = getContext().getSourceManager();
953   PresumedLoc PLoc = SM.getPresumedLoc(L);
954   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
955     SM.getExpansionLineNumber(L);
956   return llvm::ConstantInt::get(Int32Ty, LineNo);
957 }
958 
959 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
960                                                 const AnnotateAttr *AA,
961                                                 SourceLocation L) {
962   // Get the globals for file name, annotation, and the line number.
963   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
964                  *UnitGV = EmitAnnotationUnit(L),
965                  *LineNoCst = EmitAnnotationLineNo(L);
966 
967   // Create the ConstantStruct for the global annotation.
968   llvm::Constant *Fields[4] = {
969     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
970     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
971     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
972     LineNoCst
973   };
974   return llvm::ConstantStruct::getAnon(Fields);
975 }
976 
977 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
978                                          llvm::GlobalValue *GV) {
979   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
980   // Get the struct elements for these annotations.
981   for (specific_attr_iterator<AnnotateAttr>
982        ai = D->specific_attr_begin<AnnotateAttr>(),
983        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
984     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
985 }
986 
987 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
988   // Never defer when EmitAllDecls is specified.
989   if (LangOpts.EmitAllDecls)
990     return false;
991 
992   return !getContext().DeclMustBeEmitted(Global);
993 }
994 
995 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
996     const CXXUuidofExpr* E) {
997   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
998   // well-formed.
999   StringRef Uuid;
1000   if (E->isTypeOperand())
1001     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1002   else {
1003     // Special case: __uuidof(0) means an all-zero GUID.
1004     Expr *Op = E->getExprOperand();
1005     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1006       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1007     else
1008       Uuid = "00000000-0000-0000-0000-000000000000";
1009   }
1010   std::string Name = "__uuid_" + Uuid.str();
1011 
1012   // Look for an existing global.
1013   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1014     return GV;
1015 
1016   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1017   assert(Init && "failed to initialize as constant");
1018 
1019   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1020   // first field is declared as "long", which for many targets is 8 bytes.
1021   // Those architectures are not supported. (With the MS abi, long is always 4
1022   // bytes.)
1023   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1024   if (Init->getType() != GuidType) {
1025     DiagnosticsEngine &Diags = getDiags();
1026     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1027         "__uuidof codegen is not supported on this architecture");
1028     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1029     Init = llvm::UndefValue::get(GuidType);
1030   }
1031 
1032   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1033       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1034   GV->setUnnamedAddr(true);
1035   return GV;
1036 }
1037 
1038 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1039   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1040   assert(AA && "No alias?");
1041 
1042   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1043 
1044   // See if there is already something with the target's name in the module.
1045   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1046   if (Entry) {
1047     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1048     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1049   }
1050 
1051   llvm::Constant *Aliasee;
1052   if (isa<llvm::FunctionType>(DeclTy))
1053     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1054                                       GlobalDecl(cast<FunctionDecl>(VD)),
1055                                       /*ForVTable=*/false);
1056   else
1057     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1058                                     llvm::PointerType::getUnqual(DeclTy), 0);
1059 
1060   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1061   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1062   WeakRefReferences.insert(F);
1063 
1064   return Aliasee;
1065 }
1066 
1067 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1068   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1069 
1070   // Weak references don't produce any output by themselves.
1071   if (Global->hasAttr<WeakRefAttr>())
1072     return;
1073 
1074   // If this is an alias definition (which otherwise looks like a declaration)
1075   // emit it now.
1076   if (Global->hasAttr<AliasAttr>())
1077     return EmitAliasDefinition(GD);
1078 
1079   // If this is CUDA, be selective about which declarations we emit.
1080   if (LangOpts.CUDA) {
1081     if (CodeGenOpts.CUDAIsDevice) {
1082       if (!Global->hasAttr<CUDADeviceAttr>() &&
1083           !Global->hasAttr<CUDAGlobalAttr>() &&
1084           !Global->hasAttr<CUDAConstantAttr>() &&
1085           !Global->hasAttr<CUDASharedAttr>())
1086         return;
1087     } else {
1088       if (!Global->hasAttr<CUDAHostAttr>() && (
1089             Global->hasAttr<CUDADeviceAttr>() ||
1090             Global->hasAttr<CUDAConstantAttr>() ||
1091             Global->hasAttr<CUDASharedAttr>()))
1092         return;
1093     }
1094   }
1095 
1096   // Ignore declarations, they will be emitted on their first use.
1097   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1098     // Forward declarations are emitted lazily on first use.
1099     if (!FD->doesThisDeclarationHaveABody()) {
1100       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1101         return;
1102 
1103       const FunctionDecl *InlineDefinition = 0;
1104       FD->getBody(InlineDefinition);
1105 
1106       StringRef MangledName = getMangledName(GD);
1107       DeferredDecls.erase(MangledName);
1108       EmitGlobalDefinition(InlineDefinition);
1109       return;
1110     }
1111   } else {
1112     const VarDecl *VD = cast<VarDecl>(Global);
1113     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1114 
1115     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1116       return;
1117   }
1118 
1119   // Defer code generation when possible if this is a static definition, inline
1120   // function etc.  These we only want to emit if they are used.
1121   if (!MayDeferGeneration(Global)) {
1122     // Emit the definition if it can't be deferred.
1123     EmitGlobalDefinition(GD);
1124     return;
1125   }
1126 
1127   // If we're deferring emission of a C++ variable with an
1128   // initializer, remember the order in which it appeared in the file.
1129   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1130       cast<VarDecl>(Global)->hasInit()) {
1131     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1132     CXXGlobalInits.push_back(0);
1133   }
1134 
1135   // If the value has already been used, add it directly to the
1136   // DeferredDeclsToEmit list.
1137   StringRef MangledName = getMangledName(GD);
1138   if (GetGlobalValue(MangledName))
1139     DeferredDeclsToEmit.push_back(GD);
1140   else {
1141     // Otherwise, remember that we saw a deferred decl with this name.  The
1142     // first use of the mangled name will cause it to move into
1143     // DeferredDeclsToEmit.
1144     DeferredDecls[MangledName] = GD;
1145   }
1146 }
1147 
1148 namespace {
1149   struct FunctionIsDirectlyRecursive :
1150     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1151     const StringRef Name;
1152     const Builtin::Context &BI;
1153     bool Result;
1154     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1155       Name(N), BI(C), Result(false) {
1156     }
1157     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1158 
1159     bool TraverseCallExpr(CallExpr *E) {
1160       const FunctionDecl *FD = E->getDirectCallee();
1161       if (!FD)
1162         return true;
1163       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1164       if (Attr && Name == Attr->getLabel()) {
1165         Result = true;
1166         return false;
1167       }
1168       unsigned BuiltinID = FD->getBuiltinID();
1169       if (!BuiltinID)
1170         return true;
1171       StringRef BuiltinName = BI.GetName(BuiltinID);
1172       if (BuiltinName.startswith("__builtin_") &&
1173           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1174         Result = true;
1175         return false;
1176       }
1177       return true;
1178     }
1179   };
1180 }
1181 
1182 // isTriviallyRecursive - Check if this function calls another
1183 // decl that, because of the asm attribute or the other decl being a builtin,
1184 // ends up pointing to itself.
1185 bool
1186 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1187   StringRef Name;
1188   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1189     // asm labels are a special kind of mangling we have to support.
1190     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1191     if (!Attr)
1192       return false;
1193     Name = Attr->getLabel();
1194   } else {
1195     Name = FD->getName();
1196   }
1197 
1198   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1199   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1200   return Walker.Result;
1201 }
1202 
1203 bool
1204 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1205   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1206     return true;
1207   if (CodeGenOpts.OptimizationLevel == 0 &&
1208       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1209     return false;
1210   // PR9614. Avoid cases where the source code is lying to us. An available
1211   // externally function should have an equivalent function somewhere else,
1212   // but a function that calls itself is clearly not equivalent to the real
1213   // implementation.
1214   // This happens in glibc's btowc and in some configure checks.
1215   return !isTriviallyRecursive(F);
1216 }
1217 
1218 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1219   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1220 
1221   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1222                                  Context.getSourceManager(),
1223                                  "Generating code for declaration");
1224 
1225   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1226     // At -O0, don't generate IR for functions with available_externally
1227     // linkage.
1228     if (!shouldEmitFunction(Function))
1229       return;
1230 
1231     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1232       // Make sure to emit the definition(s) before we emit the thunks.
1233       // This is necessary for the generation of certain thunks.
1234       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1235         EmitCXXConstructor(CD, GD.getCtorType());
1236       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1237         EmitCXXDestructor(DD, GD.getDtorType());
1238       else
1239         EmitGlobalFunctionDefinition(GD);
1240 
1241       if (Method->isVirtual())
1242         getVTables().EmitThunks(GD);
1243 
1244       return;
1245     }
1246 
1247     return EmitGlobalFunctionDefinition(GD);
1248   }
1249 
1250   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1251     return EmitGlobalVarDefinition(VD);
1252 
1253   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1254 }
1255 
1256 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1257 /// module, create and return an llvm Function with the specified type. If there
1258 /// is something in the module with the specified name, return it potentially
1259 /// bitcasted to the right type.
1260 ///
1261 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1262 /// to set the attributes on the function when it is first created.
1263 llvm::Constant *
1264 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1265                                        llvm::Type *Ty,
1266                                        GlobalDecl D, bool ForVTable,
1267                                        llvm::AttributeSet ExtraAttrs) {
1268   // Lookup the entry, lazily creating it if necessary.
1269   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1270   if (Entry) {
1271     if (WeakRefReferences.erase(Entry)) {
1272       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1273       if (FD && !FD->hasAttr<WeakAttr>())
1274         Entry->setLinkage(llvm::Function::ExternalLinkage);
1275     }
1276 
1277     if (Entry->getType()->getElementType() == Ty)
1278       return Entry;
1279 
1280     // Make sure the result is of the correct type.
1281     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1282   }
1283 
1284   // This function doesn't have a complete type (for example, the return
1285   // type is an incomplete struct). Use a fake type instead, and make
1286   // sure not to try to set attributes.
1287   bool IsIncompleteFunction = false;
1288 
1289   llvm::FunctionType *FTy;
1290   if (isa<llvm::FunctionType>(Ty)) {
1291     FTy = cast<llvm::FunctionType>(Ty);
1292   } else {
1293     FTy = llvm::FunctionType::get(VoidTy, false);
1294     IsIncompleteFunction = true;
1295   }
1296 
1297   llvm::Function *F = llvm::Function::Create(FTy,
1298                                              llvm::Function::ExternalLinkage,
1299                                              MangledName, &getModule());
1300   assert(F->getName() == MangledName && "name was uniqued!");
1301   if (D.getDecl())
1302     SetFunctionAttributes(D, F, IsIncompleteFunction);
1303   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1304     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1305     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1306                      llvm::AttributeSet::get(VMContext,
1307                                              llvm::AttributeSet::FunctionIndex,
1308                                              B));
1309   }
1310 
1311   // This is the first use or definition of a mangled name.  If there is a
1312   // deferred decl with this name, remember that we need to emit it at the end
1313   // of the file.
1314   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1315   if (DDI != DeferredDecls.end()) {
1316     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1317     // list, and remove it from DeferredDecls (since we don't need it anymore).
1318     DeferredDeclsToEmit.push_back(DDI->second);
1319     DeferredDecls.erase(DDI);
1320 
1321   // Otherwise, there are cases we have to worry about where we're
1322   // using a declaration for which we must emit a definition but where
1323   // we might not find a top-level definition:
1324   //   - member functions defined inline in their classes
1325   //   - friend functions defined inline in some class
1326   //   - special member functions with implicit definitions
1327   // If we ever change our AST traversal to walk into class methods,
1328   // this will be unnecessary.
1329   //
1330   // We also don't emit a definition for a function if it's going to be an entry
1331   // in a vtable, unless it's already marked as used.
1332   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1333     // Look for a declaration that's lexically in a record.
1334     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1335     FD = FD->getMostRecentDecl();
1336     do {
1337       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1338         if (FD->isImplicit() && !ForVTable) {
1339           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1340           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1341           break;
1342         } else if (FD->doesThisDeclarationHaveABody()) {
1343           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1344           break;
1345         }
1346       }
1347       FD = FD->getPreviousDecl();
1348     } while (FD);
1349   }
1350 
1351   // Make sure the result is of the requested type.
1352   if (!IsIncompleteFunction) {
1353     assert(F->getType()->getElementType() == Ty);
1354     return F;
1355   }
1356 
1357   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1358   return llvm::ConstantExpr::getBitCast(F, PTy);
1359 }
1360 
1361 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1362 /// non-null, then this function will use the specified type if it has to
1363 /// create it (this occurs when we see a definition of the function).
1364 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1365                                                  llvm::Type *Ty,
1366                                                  bool ForVTable) {
1367   // If there was no specific requested type, just convert it now.
1368   if (!Ty)
1369     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1370 
1371   StringRef MangledName = getMangledName(GD);
1372   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1373 }
1374 
1375 /// CreateRuntimeFunction - Create a new runtime function with the specified
1376 /// type and name.
1377 llvm::Constant *
1378 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1379                                      StringRef Name,
1380                                      llvm::AttributeSet ExtraAttrs) {
1381   llvm::Constant *C
1382     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1383                               ExtraAttrs);
1384   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1385     if (F->empty())
1386       F->setCallingConv(getRuntimeCC());
1387   return C;
1388 }
1389 
1390 /// isTypeConstant - Determine whether an object of this type can be emitted
1391 /// as a constant.
1392 ///
1393 /// If ExcludeCtor is true, the duration when the object's constructor runs
1394 /// will not be considered. The caller will need to verify that the object is
1395 /// not written to during its construction.
1396 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1397   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1398     return false;
1399 
1400   if (Context.getLangOpts().CPlusPlus) {
1401     if (const CXXRecordDecl *Record
1402           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1403       return ExcludeCtor && !Record->hasMutableFields() &&
1404              Record->hasTrivialDestructor();
1405   }
1406 
1407   return true;
1408 }
1409 
1410 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1411 /// create and return an llvm GlobalVariable with the specified type.  If there
1412 /// is something in the module with the specified name, return it potentially
1413 /// bitcasted to the right type.
1414 ///
1415 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1416 /// to set the attributes on the global when it is first created.
1417 llvm::Constant *
1418 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1419                                      llvm::PointerType *Ty,
1420                                      const VarDecl *D,
1421                                      bool UnnamedAddr) {
1422   // Lookup the entry, lazily creating it if necessary.
1423   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1424   if (Entry) {
1425     if (WeakRefReferences.erase(Entry)) {
1426       if (D && !D->hasAttr<WeakAttr>())
1427         Entry->setLinkage(llvm::Function::ExternalLinkage);
1428     }
1429 
1430     if (UnnamedAddr)
1431       Entry->setUnnamedAddr(true);
1432 
1433     if (Entry->getType() == Ty)
1434       return Entry;
1435 
1436     // Make sure the result is of the correct type.
1437     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1438   }
1439 
1440   // This is the first use or definition of a mangled name.  If there is a
1441   // deferred decl with this name, remember that we need to emit it at the end
1442   // of the file.
1443   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1444   if (DDI != DeferredDecls.end()) {
1445     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1446     // list, and remove it from DeferredDecls (since we don't need it anymore).
1447     DeferredDeclsToEmit.push_back(DDI->second);
1448     DeferredDecls.erase(DDI);
1449   }
1450 
1451   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1452   llvm::GlobalVariable *GV =
1453     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1454                              llvm::GlobalValue::ExternalLinkage,
1455                              0, MangledName, 0,
1456                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1457 
1458   // Handle things which are present even on external declarations.
1459   if (D) {
1460     // FIXME: This code is overly simple and should be merged with other global
1461     // handling.
1462     GV->setConstant(isTypeConstant(D->getType(), false));
1463 
1464     // Set linkage and visibility in case we never see a definition.
1465     LinkageInfo LV = D->getLinkageAndVisibility();
1466     if (LV.getLinkage() != ExternalLinkage) {
1467       // Don't set internal linkage on declarations.
1468     } else {
1469       if (D->hasAttr<DLLImportAttr>())
1470         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1471       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1472         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1473 
1474       // Set visibility on a declaration only if it's explicit.
1475       if (LV.isVisibilityExplicit())
1476         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1477     }
1478 
1479     if (D->isThreadSpecified())
1480       setTLSMode(GV, *D);
1481   }
1482 
1483   if (AddrSpace != Ty->getAddressSpace())
1484     return llvm::ConstantExpr::getBitCast(GV, Ty);
1485   else
1486     return GV;
1487 }
1488 
1489 
1490 llvm::GlobalVariable *
1491 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1492                                       llvm::Type *Ty,
1493                                       llvm::GlobalValue::LinkageTypes Linkage) {
1494   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1495   llvm::GlobalVariable *OldGV = 0;
1496 
1497 
1498   if (GV) {
1499     // Check if the variable has the right type.
1500     if (GV->getType()->getElementType() == Ty)
1501       return GV;
1502 
1503     // Because C++ name mangling, the only way we can end up with an already
1504     // existing global with the same name is if it has been declared extern "C".
1505     assert(GV->isDeclaration() && "Declaration has wrong type!");
1506     OldGV = GV;
1507   }
1508 
1509   // Create a new variable.
1510   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1511                                 Linkage, 0, Name);
1512 
1513   if (OldGV) {
1514     // Replace occurrences of the old variable if needed.
1515     GV->takeName(OldGV);
1516 
1517     if (!OldGV->use_empty()) {
1518       llvm::Constant *NewPtrForOldDecl =
1519       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1520       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1521     }
1522 
1523     OldGV->eraseFromParent();
1524   }
1525 
1526   return GV;
1527 }
1528 
1529 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1530 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1531 /// then it will be created with the specified type instead of whatever the
1532 /// normal requested type would be.
1533 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1534                                                   llvm::Type *Ty) {
1535   assert(D->hasGlobalStorage() && "Not a global variable");
1536   QualType ASTTy = D->getType();
1537   if (Ty == 0)
1538     Ty = getTypes().ConvertTypeForMem(ASTTy);
1539 
1540   llvm::PointerType *PTy =
1541     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1542 
1543   StringRef MangledName = getMangledName(D);
1544   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1545 }
1546 
1547 /// CreateRuntimeVariable - Create a new runtime global variable with the
1548 /// specified type and name.
1549 llvm::Constant *
1550 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1551                                      StringRef Name) {
1552   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1553                                true);
1554 }
1555 
1556 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1557   assert(!D->getInit() && "Cannot emit definite definitions here!");
1558 
1559   if (MayDeferGeneration(D)) {
1560     // If we have not seen a reference to this variable yet, place it
1561     // into the deferred declarations table to be emitted if needed
1562     // later.
1563     StringRef MangledName = getMangledName(D);
1564     if (!GetGlobalValue(MangledName)) {
1565       DeferredDecls[MangledName] = D;
1566       return;
1567     }
1568   }
1569 
1570   // The tentative definition is the only definition.
1571   EmitGlobalVarDefinition(D);
1572 }
1573 
1574 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1575     return Context.toCharUnitsFromBits(
1576       TheDataLayout.getTypeStoreSizeInBits(Ty));
1577 }
1578 
1579 llvm::Constant *
1580 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1581                                                        const Expr *rawInit) {
1582   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1583   if (const ExprWithCleanups *withCleanups =
1584           dyn_cast<ExprWithCleanups>(rawInit)) {
1585     cleanups = withCleanups->getObjects();
1586     rawInit = withCleanups->getSubExpr();
1587   }
1588 
1589   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1590   if (!init || !init->initializesStdInitializerList() ||
1591       init->getNumInits() == 0)
1592     return 0;
1593 
1594   ASTContext &ctx = getContext();
1595   unsigned numInits = init->getNumInits();
1596   // FIXME: This check is here because we would otherwise silently miscompile
1597   // nested global std::initializer_lists. Better would be to have a real
1598   // implementation.
1599   for (unsigned i = 0; i < numInits; ++i) {
1600     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1601     if (inner && inner->initializesStdInitializerList()) {
1602       ErrorUnsupported(inner, "nested global std::initializer_list");
1603       return 0;
1604     }
1605   }
1606 
1607   // Synthesize a fake VarDecl for the array and initialize that.
1608   QualType elementType = init->getInit(0)->getType();
1609   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1610   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1611                                                 ArrayType::Normal, 0);
1612 
1613   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1614   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1615                                               arrayType, D->getLocation());
1616   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1617                                                           D->getDeclContext()),
1618                                           D->getLocStart(), D->getLocation(),
1619                                           name, arrayType, sourceInfo,
1620                                           SC_Static);
1621 
1622   // Now clone the InitListExpr to initialize the array instead.
1623   // Incredible hack: we want to use the existing InitListExpr here, so we need
1624   // to tell it that it no longer initializes a std::initializer_list.
1625   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1626                         init->getNumInits());
1627   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1628                                            init->getRBraceLoc());
1629   arrayInit->setType(arrayType);
1630 
1631   if (!cleanups.empty())
1632     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1633 
1634   backingArray->setInit(arrayInit);
1635 
1636   // Emit the definition of the array.
1637   EmitGlobalVarDefinition(backingArray);
1638 
1639   // Inspect the initializer list to validate it and determine its type.
1640   // FIXME: doing this every time is probably inefficient; caching would be nice
1641   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1642   RecordDecl::field_iterator field = record->field_begin();
1643   if (field == record->field_end()) {
1644     ErrorUnsupported(D, "weird std::initializer_list");
1645     return 0;
1646   }
1647   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1648   // Start pointer.
1649   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1650     ErrorUnsupported(D, "weird std::initializer_list");
1651     return 0;
1652   }
1653   ++field;
1654   if (field == record->field_end()) {
1655     ErrorUnsupported(D, "weird std::initializer_list");
1656     return 0;
1657   }
1658   bool isStartEnd = false;
1659   if (ctx.hasSameType(field->getType(), elementPtr)) {
1660     // End pointer.
1661     isStartEnd = true;
1662   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1663     ErrorUnsupported(D, "weird std::initializer_list");
1664     return 0;
1665   }
1666 
1667   // Now build an APValue representing the std::initializer_list.
1668   APValue initListValue(APValue::UninitStruct(), 0, 2);
1669   APValue &startField = initListValue.getStructField(0);
1670   APValue::LValuePathEntry startOffsetPathEntry;
1671   startOffsetPathEntry.ArrayIndex = 0;
1672   startField = APValue(APValue::LValueBase(backingArray),
1673                        CharUnits::fromQuantity(0),
1674                        llvm::makeArrayRef(startOffsetPathEntry),
1675                        /*IsOnePastTheEnd=*/false, 0);
1676 
1677   if (isStartEnd) {
1678     APValue &endField = initListValue.getStructField(1);
1679     APValue::LValuePathEntry endOffsetPathEntry;
1680     endOffsetPathEntry.ArrayIndex = numInits;
1681     endField = APValue(APValue::LValueBase(backingArray),
1682                        ctx.getTypeSizeInChars(elementType) * numInits,
1683                        llvm::makeArrayRef(endOffsetPathEntry),
1684                        /*IsOnePastTheEnd=*/true, 0);
1685   } else {
1686     APValue &sizeField = initListValue.getStructField(1);
1687     sizeField = APValue(llvm::APSInt(numElements));
1688   }
1689 
1690   // Emit the constant for the initializer_list.
1691   llvm::Constant *llvmInit =
1692       EmitConstantValueForMemory(initListValue, D->getType());
1693   assert(llvmInit && "failed to initialize as constant");
1694   return llvmInit;
1695 }
1696 
1697 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1698                                                  unsigned AddrSpace) {
1699   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1700     if (D->hasAttr<CUDAConstantAttr>())
1701       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1702     else if (D->hasAttr<CUDASharedAttr>())
1703       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1704     else
1705       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1706   }
1707 
1708   return AddrSpace;
1709 }
1710 
1711 template<typename SomeDecl>
1712 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1713                                                llvm::GlobalValue *GV) {
1714   if (!getLangOpts().CPlusPlus)
1715     return;
1716 
1717   // Must have 'used' attribute, or else inline assembly can't rely on
1718   // the name existing.
1719   if (!D->template hasAttr<UsedAttr>())
1720     return;
1721 
1722   // Must have internal linkage and an ordinary name.
1723   if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1724     return;
1725 
1726   // Must be in an extern "C" context. Entities declared directly within
1727   // a record are not extern "C" even if the record is in such a context.
1728   const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1729   if (DC->isRecord() || !DC->isExternCContext())
1730     return;
1731 
1732   // OK, this is an internal linkage entity inside an extern "C" linkage
1733   // specification. Make a note of that so we can give it the "expected"
1734   // mangled name if nothing else is using that name.
1735   StaticExternCMap::iterator I =
1736       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)).first;
1737 
1738   // If we have multiple internal linkage entities with the same name
1739   // in extern "C" regions, none of them gets that name.
1740   if (I->second != GV)
1741     I->second = 0;
1742 }
1743 
1744 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1745   llvm::Constant *Init = 0;
1746   QualType ASTTy = D->getType();
1747   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1748   bool NeedsGlobalCtor = false;
1749   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1750 
1751   const VarDecl *InitDecl;
1752   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1753 
1754   if (!InitExpr) {
1755     // This is a tentative definition; tentative definitions are
1756     // implicitly initialized with { 0 }.
1757     //
1758     // Note that tentative definitions are only emitted at the end of
1759     // a translation unit, so they should never have incomplete
1760     // type. In addition, EmitTentativeDefinition makes sure that we
1761     // never attempt to emit a tentative definition if a real one
1762     // exists. A use may still exists, however, so we still may need
1763     // to do a RAUW.
1764     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1765     Init = EmitNullConstant(D->getType());
1766   } else {
1767     // If this is a std::initializer_list, emit the special initializer.
1768     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1769     // An empty init list will perform zero-initialization, which happens
1770     // to be exactly what we want.
1771     // FIXME: It does so in a global constructor, which is *not* what we
1772     // want.
1773 
1774     if (!Init) {
1775       initializedGlobalDecl = GlobalDecl(D);
1776       Init = EmitConstantInit(*InitDecl);
1777     }
1778     if (!Init) {
1779       QualType T = InitExpr->getType();
1780       if (D->getType()->isReferenceType())
1781         T = D->getType();
1782 
1783       if (getLangOpts().CPlusPlus) {
1784         Init = EmitNullConstant(T);
1785         NeedsGlobalCtor = true;
1786       } else {
1787         ErrorUnsupported(D, "static initializer");
1788         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1789       }
1790     } else {
1791       // We don't need an initializer, so remove the entry for the delayed
1792       // initializer position (just in case this entry was delayed) if we
1793       // also don't need to register a destructor.
1794       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1795         DelayedCXXInitPosition.erase(D);
1796     }
1797   }
1798 
1799   llvm::Type* InitType = Init->getType();
1800   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1801 
1802   // Strip off a bitcast if we got one back.
1803   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1804     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1805            // all zero index gep.
1806            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1807     Entry = CE->getOperand(0);
1808   }
1809 
1810   // Entry is now either a Function or GlobalVariable.
1811   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1812 
1813   // We have a definition after a declaration with the wrong type.
1814   // We must make a new GlobalVariable* and update everything that used OldGV
1815   // (a declaration or tentative definition) with the new GlobalVariable*
1816   // (which will be a definition).
1817   //
1818   // This happens if there is a prototype for a global (e.g.
1819   // "extern int x[];") and then a definition of a different type (e.g.
1820   // "int x[10];"). This also happens when an initializer has a different type
1821   // from the type of the global (this happens with unions).
1822   if (GV == 0 ||
1823       GV->getType()->getElementType() != InitType ||
1824       GV->getType()->getAddressSpace() !=
1825        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1826 
1827     // Move the old entry aside so that we'll create a new one.
1828     Entry->setName(StringRef());
1829 
1830     // Make a new global with the correct type, this is now guaranteed to work.
1831     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1832 
1833     // Replace all uses of the old global with the new global
1834     llvm::Constant *NewPtrForOldDecl =
1835         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1836     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1837 
1838     // Erase the old global, since it is no longer used.
1839     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1840   }
1841 
1842   MaybeHandleStaticInExternC(D, GV);
1843 
1844   if (D->hasAttr<AnnotateAttr>())
1845     AddGlobalAnnotations(D, GV);
1846 
1847   GV->setInitializer(Init);
1848 
1849   // If it is safe to mark the global 'constant', do so now.
1850   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1851                   isTypeConstant(D->getType(), true));
1852 
1853   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1854 
1855   // Set the llvm linkage type as appropriate.
1856   llvm::GlobalValue::LinkageTypes Linkage =
1857     GetLLVMLinkageVarDefinition(D, GV);
1858   GV->setLinkage(Linkage);
1859   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1860     // common vars aren't constant even if declared const.
1861     GV->setConstant(false);
1862 
1863   SetCommonAttributes(D, GV);
1864 
1865   // Emit the initializer function if necessary.
1866   if (NeedsGlobalCtor || NeedsGlobalDtor)
1867     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1868 
1869   // If we are compiling with ASan, add metadata indicating dynamically
1870   // initialized globals.
1871   if (SanOpts.Address && NeedsGlobalCtor) {
1872     llvm::Module &M = getModule();
1873 
1874     llvm::NamedMDNode *DynamicInitializers =
1875         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1876     llvm::Value *GlobalToAdd[] = { GV };
1877     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1878     DynamicInitializers->addOperand(ThisGlobal);
1879   }
1880 
1881   // Emit global variable debug information.
1882   if (CGDebugInfo *DI = getModuleDebugInfo())
1883     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1884       DI->EmitGlobalVariable(GV, D);
1885 }
1886 
1887 llvm::GlobalValue::LinkageTypes
1888 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1889                                            llvm::GlobalVariable *GV) {
1890   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1891   if (Linkage == GVA_Internal)
1892     return llvm::Function::InternalLinkage;
1893   else if (D->hasAttr<DLLImportAttr>())
1894     return llvm::Function::DLLImportLinkage;
1895   else if (D->hasAttr<DLLExportAttr>())
1896     return llvm::Function::DLLExportLinkage;
1897   else if (D->hasAttr<WeakAttr>()) {
1898     if (GV->isConstant())
1899       return llvm::GlobalVariable::WeakODRLinkage;
1900     else
1901       return llvm::GlobalVariable::WeakAnyLinkage;
1902   } else if (Linkage == GVA_TemplateInstantiation ||
1903              Linkage == GVA_ExplicitTemplateInstantiation)
1904     return llvm::GlobalVariable::WeakODRLinkage;
1905   else if (!getLangOpts().CPlusPlus &&
1906            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1907              D->getAttr<CommonAttr>()) &&
1908            !D->hasExternalStorage() && !D->getInit() &&
1909            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1910            !D->getAttr<WeakImportAttr>()) {
1911     // Thread local vars aren't considered common linkage.
1912     return llvm::GlobalVariable::CommonLinkage;
1913   }
1914   return llvm::GlobalVariable::ExternalLinkage;
1915 }
1916 
1917 /// Replace the uses of a function that was declared with a non-proto type.
1918 /// We want to silently drop extra arguments from call sites
1919 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1920                                           llvm::Function *newFn) {
1921   // Fast path.
1922   if (old->use_empty()) return;
1923 
1924   llvm::Type *newRetTy = newFn->getReturnType();
1925   SmallVector<llvm::Value*, 4> newArgs;
1926 
1927   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1928          ui != ue; ) {
1929     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1930     llvm::User *user = *use;
1931 
1932     // Recognize and replace uses of bitcasts.  Most calls to
1933     // unprototyped functions will use bitcasts.
1934     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1935       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1936         replaceUsesOfNonProtoConstant(bitcast, newFn);
1937       continue;
1938     }
1939 
1940     // Recognize calls to the function.
1941     llvm::CallSite callSite(user);
1942     if (!callSite) continue;
1943     if (!callSite.isCallee(use)) continue;
1944 
1945     // If the return types don't match exactly, then we can't
1946     // transform this call unless it's dead.
1947     if (callSite->getType() != newRetTy && !callSite->use_empty())
1948       continue;
1949 
1950     // Get the call site's attribute list.
1951     SmallVector<llvm::AttributeSet, 8> newAttrs;
1952     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1953 
1954     // Collect any return attributes from the call.
1955     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1956       newAttrs.push_back(
1957         llvm::AttributeSet::get(newFn->getContext(),
1958                                 oldAttrs.getRetAttributes()));
1959 
1960     // If the function was passed too few arguments, don't transform.
1961     unsigned newNumArgs = newFn->arg_size();
1962     if (callSite.arg_size() < newNumArgs) continue;
1963 
1964     // If extra arguments were passed, we silently drop them.
1965     // If any of the types mismatch, we don't transform.
1966     unsigned argNo = 0;
1967     bool dontTransform = false;
1968     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1969            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1970       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1971         dontTransform = true;
1972         break;
1973       }
1974 
1975       // Add any parameter attributes.
1976       if (oldAttrs.hasAttributes(argNo + 1))
1977         newAttrs.
1978           push_back(llvm::
1979                     AttributeSet::get(newFn->getContext(),
1980                                       oldAttrs.getParamAttributes(argNo + 1)));
1981     }
1982     if (dontTransform)
1983       continue;
1984 
1985     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1986       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1987                                                  oldAttrs.getFnAttributes()));
1988 
1989     // Okay, we can transform this.  Create the new call instruction and copy
1990     // over the required information.
1991     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1992 
1993     llvm::CallSite newCall;
1994     if (callSite.isCall()) {
1995       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1996                                        callSite.getInstruction());
1997     } else {
1998       llvm::InvokeInst *oldInvoke =
1999         cast<llvm::InvokeInst>(callSite.getInstruction());
2000       newCall = llvm::InvokeInst::Create(newFn,
2001                                          oldInvoke->getNormalDest(),
2002                                          oldInvoke->getUnwindDest(),
2003                                          newArgs, "",
2004                                          callSite.getInstruction());
2005     }
2006     newArgs.clear(); // for the next iteration
2007 
2008     if (!newCall->getType()->isVoidTy())
2009       newCall->takeName(callSite.getInstruction());
2010     newCall.setAttributes(
2011                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2012     newCall.setCallingConv(callSite.getCallingConv());
2013 
2014     // Finally, remove the old call, replacing any uses with the new one.
2015     if (!callSite->use_empty())
2016       callSite->replaceAllUsesWith(newCall.getInstruction());
2017 
2018     // Copy debug location attached to CI.
2019     if (!callSite->getDebugLoc().isUnknown())
2020       newCall->setDebugLoc(callSite->getDebugLoc());
2021     callSite->eraseFromParent();
2022   }
2023 }
2024 
2025 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2026 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2027 /// existing call uses of the old function in the module, this adjusts them to
2028 /// call the new function directly.
2029 ///
2030 /// This is not just a cleanup: the always_inline pass requires direct calls to
2031 /// functions to be able to inline them.  If there is a bitcast in the way, it
2032 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2033 /// run at -O0.
2034 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2035                                                       llvm::Function *NewFn) {
2036   // If we're redefining a global as a function, don't transform it.
2037   if (!isa<llvm::Function>(Old)) return;
2038 
2039   replaceUsesOfNonProtoConstant(Old, NewFn);
2040 }
2041 
2042 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2043   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2044   // If we have a definition, this might be a deferred decl. If the
2045   // instantiation is explicit, make sure we emit it at the end.
2046   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2047     GetAddrOfGlobalVar(VD);
2048 
2049   EmitTopLevelDecl(VD);
2050 }
2051 
2052 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2053   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2054 
2055   // Compute the function info and LLVM type.
2056   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2057   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2058 
2059   // Get or create the prototype for the function.
2060   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2061 
2062   // Strip off a bitcast if we got one back.
2063   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2064     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2065     Entry = CE->getOperand(0);
2066   }
2067 
2068 
2069   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2070     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2071 
2072     // If the types mismatch then we have to rewrite the definition.
2073     assert(OldFn->isDeclaration() &&
2074            "Shouldn't replace non-declaration");
2075 
2076     // F is the Function* for the one with the wrong type, we must make a new
2077     // Function* and update everything that used F (a declaration) with the new
2078     // Function* (which will be a definition).
2079     //
2080     // This happens if there is a prototype for a function
2081     // (e.g. "int f()") and then a definition of a different type
2082     // (e.g. "int f(int x)").  Move the old function aside so that it
2083     // doesn't interfere with GetAddrOfFunction.
2084     OldFn->setName(StringRef());
2085     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2086 
2087     // This might be an implementation of a function without a
2088     // prototype, in which case, try to do special replacement of
2089     // calls which match the new prototype.  The really key thing here
2090     // is that we also potentially drop arguments from the call site
2091     // so as to make a direct call, which makes the inliner happier
2092     // and suppresses a number of optimizer warnings (!) about
2093     // dropping arguments.
2094     if (!OldFn->use_empty()) {
2095       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2096       OldFn->removeDeadConstantUsers();
2097     }
2098 
2099     // Replace uses of F with the Function we will endow with a body.
2100     if (!Entry->use_empty()) {
2101       llvm::Constant *NewPtrForOldDecl =
2102         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2103       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2104     }
2105 
2106     // Ok, delete the old function now, which is dead.
2107     OldFn->eraseFromParent();
2108 
2109     Entry = NewFn;
2110   }
2111 
2112   // We need to set linkage and visibility on the function before
2113   // generating code for it because various parts of IR generation
2114   // want to propagate this information down (e.g. to local static
2115   // declarations).
2116   llvm::Function *Fn = cast<llvm::Function>(Entry);
2117   setFunctionLinkage(D, Fn);
2118 
2119   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2120   setGlobalVisibility(Fn, D);
2121 
2122   MaybeHandleStaticInExternC(D, Fn);
2123 
2124   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2125 
2126   SetFunctionDefinitionAttributes(D, Fn);
2127   SetLLVMFunctionAttributesForDefinition(D, Fn);
2128 
2129   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2130     AddGlobalCtor(Fn, CA->getPriority());
2131   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2132     AddGlobalDtor(Fn, DA->getPriority());
2133   if (D->hasAttr<AnnotateAttr>())
2134     AddGlobalAnnotations(D, Fn);
2135 }
2136 
2137 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2138   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2139   const AliasAttr *AA = D->getAttr<AliasAttr>();
2140   assert(AA && "Not an alias?");
2141 
2142   StringRef MangledName = getMangledName(GD);
2143 
2144   // If there is a definition in the module, then it wins over the alias.
2145   // This is dubious, but allow it to be safe.  Just ignore the alias.
2146   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2147   if (Entry && !Entry->isDeclaration())
2148     return;
2149 
2150   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2151 
2152   // Create a reference to the named value.  This ensures that it is emitted
2153   // if a deferred decl.
2154   llvm::Constant *Aliasee;
2155   if (isa<llvm::FunctionType>(DeclTy))
2156     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2157                                       /*ForVTable=*/false);
2158   else
2159     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2160                                     llvm::PointerType::getUnqual(DeclTy), 0);
2161 
2162   // Create the new alias itself, but don't set a name yet.
2163   llvm::GlobalValue *GA =
2164     new llvm::GlobalAlias(Aliasee->getType(),
2165                           llvm::Function::ExternalLinkage,
2166                           "", Aliasee, &getModule());
2167 
2168   if (Entry) {
2169     assert(Entry->isDeclaration());
2170 
2171     // If there is a declaration in the module, then we had an extern followed
2172     // by the alias, as in:
2173     //   extern int test6();
2174     //   ...
2175     //   int test6() __attribute__((alias("test7")));
2176     //
2177     // Remove it and replace uses of it with the alias.
2178     GA->takeName(Entry);
2179 
2180     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2181                                                           Entry->getType()));
2182     Entry->eraseFromParent();
2183   } else {
2184     GA->setName(MangledName);
2185   }
2186 
2187   // Set attributes which are particular to an alias; this is a
2188   // specialization of the attributes which may be set on a global
2189   // variable/function.
2190   if (D->hasAttr<DLLExportAttr>()) {
2191     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2192       // The dllexport attribute is ignored for undefined symbols.
2193       if (FD->hasBody())
2194         GA->setLinkage(llvm::Function::DLLExportLinkage);
2195     } else {
2196       GA->setLinkage(llvm::Function::DLLExportLinkage);
2197     }
2198   } else if (D->hasAttr<WeakAttr>() ||
2199              D->hasAttr<WeakRefAttr>() ||
2200              D->isWeakImported()) {
2201     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2202   }
2203 
2204   SetCommonAttributes(D, GA);
2205 }
2206 
2207 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2208                                             ArrayRef<llvm::Type*> Tys) {
2209   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2210                                          Tys);
2211 }
2212 
2213 static llvm::StringMapEntry<llvm::Constant*> &
2214 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2215                          const StringLiteral *Literal,
2216                          bool TargetIsLSB,
2217                          bool &IsUTF16,
2218                          unsigned &StringLength) {
2219   StringRef String = Literal->getString();
2220   unsigned NumBytes = String.size();
2221 
2222   // Check for simple case.
2223   if (!Literal->containsNonAsciiOrNull()) {
2224     StringLength = NumBytes;
2225     return Map.GetOrCreateValue(String);
2226   }
2227 
2228   // Otherwise, convert the UTF8 literals into a string of shorts.
2229   IsUTF16 = true;
2230 
2231   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2232   const UTF8 *FromPtr = (const UTF8 *)String.data();
2233   UTF16 *ToPtr = &ToBuf[0];
2234 
2235   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2236                            &ToPtr, ToPtr + NumBytes,
2237                            strictConversion);
2238 
2239   // ConvertUTF8toUTF16 returns the length in ToPtr.
2240   StringLength = ToPtr - &ToBuf[0];
2241 
2242   // Add an explicit null.
2243   *ToPtr = 0;
2244   return Map.
2245     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2246                                (StringLength + 1) * 2));
2247 }
2248 
2249 static llvm::StringMapEntry<llvm::Constant*> &
2250 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2251                        const StringLiteral *Literal,
2252                        unsigned &StringLength) {
2253   StringRef String = Literal->getString();
2254   StringLength = String.size();
2255   return Map.GetOrCreateValue(String);
2256 }
2257 
2258 llvm::Constant *
2259 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2260   unsigned StringLength = 0;
2261   bool isUTF16 = false;
2262   llvm::StringMapEntry<llvm::Constant*> &Entry =
2263     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2264                              getDataLayout().isLittleEndian(),
2265                              isUTF16, StringLength);
2266 
2267   if (llvm::Constant *C = Entry.getValue())
2268     return C;
2269 
2270   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2271   llvm::Constant *Zeros[] = { Zero, Zero };
2272 
2273   // If we don't already have it, get __CFConstantStringClassReference.
2274   if (!CFConstantStringClassRef) {
2275     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2276     Ty = llvm::ArrayType::get(Ty, 0);
2277     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2278                                            "__CFConstantStringClassReference");
2279     // Decay array -> ptr
2280     CFConstantStringClassRef =
2281       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2282   }
2283 
2284   QualType CFTy = getContext().getCFConstantStringType();
2285 
2286   llvm::StructType *STy =
2287     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2288 
2289   llvm::Constant *Fields[4];
2290 
2291   // Class pointer.
2292   Fields[0] = CFConstantStringClassRef;
2293 
2294   // Flags.
2295   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2296   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2297     llvm::ConstantInt::get(Ty, 0x07C8);
2298 
2299   // String pointer.
2300   llvm::Constant *C = 0;
2301   if (isUTF16) {
2302     ArrayRef<uint16_t> Arr =
2303       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2304                                      const_cast<char *>(Entry.getKey().data())),
2305                                    Entry.getKey().size() / 2);
2306     C = llvm::ConstantDataArray::get(VMContext, Arr);
2307   } else {
2308     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2309   }
2310 
2311   llvm::GlobalValue::LinkageTypes Linkage;
2312   if (isUTF16)
2313     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2314     Linkage = llvm::GlobalValue::InternalLinkage;
2315   else
2316     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2317     // when using private linkage. It is not clear if this is a bug in ld
2318     // or a reasonable new restriction.
2319     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2320 
2321   // Note: -fwritable-strings doesn't make the backing store strings of
2322   // CFStrings writable. (See <rdar://problem/10657500>)
2323   llvm::GlobalVariable *GV =
2324     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2325                              Linkage, C, ".str");
2326   GV->setUnnamedAddr(true);
2327   if (isUTF16) {
2328     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2329     GV->setAlignment(Align.getQuantity());
2330   } else {
2331     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2332     GV->setAlignment(Align.getQuantity());
2333   }
2334 
2335   // String.
2336   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2337 
2338   if (isUTF16)
2339     // Cast the UTF16 string to the correct type.
2340     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2341 
2342   // String length.
2343   Ty = getTypes().ConvertType(getContext().LongTy);
2344   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2345 
2346   // The struct.
2347   C = llvm::ConstantStruct::get(STy, Fields);
2348   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2349                                 llvm::GlobalVariable::PrivateLinkage, C,
2350                                 "_unnamed_cfstring_");
2351   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2352     GV->setSection(Sect);
2353   Entry.setValue(GV);
2354 
2355   return GV;
2356 }
2357 
2358 static RecordDecl *
2359 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2360                  DeclContext *DC, IdentifierInfo *Id) {
2361   SourceLocation Loc;
2362   if (Ctx.getLangOpts().CPlusPlus)
2363     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2364   else
2365     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2366 }
2367 
2368 llvm::Constant *
2369 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2370   unsigned StringLength = 0;
2371   llvm::StringMapEntry<llvm::Constant*> &Entry =
2372     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2373 
2374   if (llvm::Constant *C = Entry.getValue())
2375     return C;
2376 
2377   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2378   llvm::Constant *Zeros[] = { Zero, Zero };
2379 
2380   // If we don't already have it, get _NSConstantStringClassReference.
2381   if (!ConstantStringClassRef) {
2382     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2383     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2384     llvm::Constant *GV;
2385     if (LangOpts.ObjCRuntime.isNonFragile()) {
2386       std::string str =
2387         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2388                             : "OBJC_CLASS_$_" + StringClass;
2389       GV = getObjCRuntime().GetClassGlobal(str);
2390       // Make sure the result is of the correct type.
2391       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2392       ConstantStringClassRef =
2393         llvm::ConstantExpr::getBitCast(GV, PTy);
2394     } else {
2395       std::string str =
2396         StringClass.empty() ? "_NSConstantStringClassReference"
2397                             : "_" + StringClass + "ClassReference";
2398       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2399       GV = CreateRuntimeVariable(PTy, str);
2400       // Decay array -> ptr
2401       ConstantStringClassRef =
2402         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2403     }
2404   }
2405 
2406   if (!NSConstantStringType) {
2407     // Construct the type for a constant NSString.
2408     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2409                                      Context.getTranslationUnitDecl(),
2410                                    &Context.Idents.get("__builtin_NSString"));
2411     D->startDefinition();
2412 
2413     QualType FieldTypes[3];
2414 
2415     // const int *isa;
2416     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2417     // const char *str;
2418     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2419     // unsigned int length;
2420     FieldTypes[2] = Context.UnsignedIntTy;
2421 
2422     // Create fields
2423     for (unsigned i = 0; i < 3; ++i) {
2424       FieldDecl *Field = FieldDecl::Create(Context, D,
2425                                            SourceLocation(),
2426                                            SourceLocation(), 0,
2427                                            FieldTypes[i], /*TInfo=*/0,
2428                                            /*BitWidth=*/0,
2429                                            /*Mutable=*/false,
2430                                            ICIS_NoInit);
2431       Field->setAccess(AS_public);
2432       D->addDecl(Field);
2433     }
2434 
2435     D->completeDefinition();
2436     QualType NSTy = Context.getTagDeclType(D);
2437     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2438   }
2439 
2440   llvm::Constant *Fields[3];
2441 
2442   // Class pointer.
2443   Fields[0] = ConstantStringClassRef;
2444 
2445   // String pointer.
2446   llvm::Constant *C =
2447     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2448 
2449   llvm::GlobalValue::LinkageTypes Linkage;
2450   bool isConstant;
2451   Linkage = llvm::GlobalValue::PrivateLinkage;
2452   isConstant = !LangOpts.WritableStrings;
2453 
2454   llvm::GlobalVariable *GV =
2455   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2456                            ".str");
2457   GV->setUnnamedAddr(true);
2458   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2459   GV->setAlignment(Align.getQuantity());
2460   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2461 
2462   // String length.
2463   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2464   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2465 
2466   // The struct.
2467   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2468   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2469                                 llvm::GlobalVariable::PrivateLinkage, C,
2470                                 "_unnamed_nsstring_");
2471   // FIXME. Fix section.
2472   if (const char *Sect =
2473         LangOpts.ObjCRuntime.isNonFragile()
2474           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2475           : getContext().getTargetInfo().getNSStringSection())
2476     GV->setSection(Sect);
2477   Entry.setValue(GV);
2478 
2479   return GV;
2480 }
2481 
2482 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2483   if (ObjCFastEnumerationStateType.isNull()) {
2484     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2485                                      Context.getTranslationUnitDecl(),
2486                       &Context.Idents.get("__objcFastEnumerationState"));
2487     D->startDefinition();
2488 
2489     QualType FieldTypes[] = {
2490       Context.UnsignedLongTy,
2491       Context.getPointerType(Context.getObjCIdType()),
2492       Context.getPointerType(Context.UnsignedLongTy),
2493       Context.getConstantArrayType(Context.UnsignedLongTy,
2494                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2495     };
2496 
2497     for (size_t i = 0; i < 4; ++i) {
2498       FieldDecl *Field = FieldDecl::Create(Context,
2499                                            D,
2500                                            SourceLocation(),
2501                                            SourceLocation(), 0,
2502                                            FieldTypes[i], /*TInfo=*/0,
2503                                            /*BitWidth=*/0,
2504                                            /*Mutable=*/false,
2505                                            ICIS_NoInit);
2506       Field->setAccess(AS_public);
2507       D->addDecl(Field);
2508     }
2509 
2510     D->completeDefinition();
2511     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2512   }
2513 
2514   return ObjCFastEnumerationStateType;
2515 }
2516 
2517 llvm::Constant *
2518 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2519   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2520 
2521   // Don't emit it as the address of the string, emit the string data itself
2522   // as an inline array.
2523   if (E->getCharByteWidth() == 1) {
2524     SmallString<64> Str(E->getString());
2525 
2526     // Resize the string to the right size, which is indicated by its type.
2527     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2528     Str.resize(CAT->getSize().getZExtValue());
2529     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2530   }
2531 
2532   llvm::ArrayType *AType =
2533     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2534   llvm::Type *ElemTy = AType->getElementType();
2535   unsigned NumElements = AType->getNumElements();
2536 
2537   // Wide strings have either 2-byte or 4-byte elements.
2538   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2539     SmallVector<uint16_t, 32> Elements;
2540     Elements.reserve(NumElements);
2541 
2542     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2543       Elements.push_back(E->getCodeUnit(i));
2544     Elements.resize(NumElements);
2545     return llvm::ConstantDataArray::get(VMContext, Elements);
2546   }
2547 
2548   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2549   SmallVector<uint32_t, 32> Elements;
2550   Elements.reserve(NumElements);
2551 
2552   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2553     Elements.push_back(E->getCodeUnit(i));
2554   Elements.resize(NumElements);
2555   return llvm::ConstantDataArray::get(VMContext, Elements);
2556 }
2557 
2558 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2559 /// constant array for the given string literal.
2560 llvm::Constant *
2561 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2562   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2563   if (S->isAscii() || S->isUTF8()) {
2564     SmallString<64> Str(S->getString());
2565 
2566     // Resize the string to the right size, which is indicated by its type.
2567     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2568     Str.resize(CAT->getSize().getZExtValue());
2569     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2570   }
2571 
2572   // FIXME: the following does not memoize wide strings.
2573   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2574   llvm::GlobalVariable *GV =
2575     new llvm::GlobalVariable(getModule(),C->getType(),
2576                              !LangOpts.WritableStrings,
2577                              llvm::GlobalValue::PrivateLinkage,
2578                              C,".str");
2579 
2580   GV->setAlignment(Align.getQuantity());
2581   GV->setUnnamedAddr(true);
2582   return GV;
2583 }
2584 
2585 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2586 /// array for the given ObjCEncodeExpr node.
2587 llvm::Constant *
2588 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2589   std::string Str;
2590   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2591 
2592   return GetAddrOfConstantCString(Str);
2593 }
2594 
2595 
2596 /// GenerateWritableString -- Creates storage for a string literal.
2597 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2598                                              bool constant,
2599                                              CodeGenModule &CGM,
2600                                              const char *GlobalName,
2601                                              unsigned Alignment) {
2602   // Create Constant for this string literal. Don't add a '\0'.
2603   llvm::Constant *C =
2604       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2605 
2606   // Create a global variable for this string
2607   llvm::GlobalVariable *GV =
2608     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2609                              llvm::GlobalValue::PrivateLinkage,
2610                              C, GlobalName);
2611   GV->setAlignment(Alignment);
2612   GV->setUnnamedAddr(true);
2613   return GV;
2614 }
2615 
2616 /// GetAddrOfConstantString - Returns a pointer to a character array
2617 /// containing the literal. This contents are exactly that of the
2618 /// given string, i.e. it will not be null terminated automatically;
2619 /// see GetAddrOfConstantCString. Note that whether the result is
2620 /// actually a pointer to an LLVM constant depends on
2621 /// Feature.WriteableStrings.
2622 ///
2623 /// The result has pointer to array type.
2624 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2625                                                        const char *GlobalName,
2626                                                        unsigned Alignment) {
2627   // Get the default prefix if a name wasn't specified.
2628   if (!GlobalName)
2629     GlobalName = ".str";
2630 
2631   // Don't share any string literals if strings aren't constant.
2632   if (LangOpts.WritableStrings)
2633     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2634 
2635   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2636     ConstantStringMap.GetOrCreateValue(Str);
2637 
2638   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2639     if (Alignment > GV->getAlignment()) {
2640       GV->setAlignment(Alignment);
2641     }
2642     return GV;
2643   }
2644 
2645   // Create a global variable for this.
2646   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2647                                                    Alignment);
2648   Entry.setValue(GV);
2649   return GV;
2650 }
2651 
2652 /// GetAddrOfConstantCString - Returns a pointer to a character
2653 /// array containing the literal and a terminating '\0'
2654 /// character. The result has pointer to array type.
2655 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2656                                                         const char *GlobalName,
2657                                                         unsigned Alignment) {
2658   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2659   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2660 }
2661 
2662 /// EmitObjCPropertyImplementations - Emit information for synthesized
2663 /// properties for an implementation.
2664 void CodeGenModule::EmitObjCPropertyImplementations(const
2665                                                     ObjCImplementationDecl *D) {
2666   for (ObjCImplementationDecl::propimpl_iterator
2667          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2668     ObjCPropertyImplDecl *PID = *i;
2669 
2670     // Dynamic is just for type-checking.
2671     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2672       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2673 
2674       // Determine which methods need to be implemented, some may have
2675       // been overridden. Note that ::isPropertyAccessor is not the method
2676       // we want, that just indicates if the decl came from a
2677       // property. What we want to know is if the method is defined in
2678       // this implementation.
2679       if (!D->getInstanceMethod(PD->getGetterName()))
2680         CodeGenFunction(*this).GenerateObjCGetter(
2681                                  const_cast<ObjCImplementationDecl *>(D), PID);
2682       if (!PD->isReadOnly() &&
2683           !D->getInstanceMethod(PD->getSetterName()))
2684         CodeGenFunction(*this).GenerateObjCSetter(
2685                                  const_cast<ObjCImplementationDecl *>(D), PID);
2686     }
2687   }
2688 }
2689 
2690 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2691   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2692   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2693        ivar; ivar = ivar->getNextIvar())
2694     if (ivar->getType().isDestructedType())
2695       return true;
2696 
2697   return false;
2698 }
2699 
2700 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2701 /// for an implementation.
2702 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2703   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2704   if (needsDestructMethod(D)) {
2705     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2706     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2707     ObjCMethodDecl *DTORMethod =
2708       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2709                              cxxSelector, getContext().VoidTy, 0, D,
2710                              /*isInstance=*/true, /*isVariadic=*/false,
2711                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2712                              /*isDefined=*/false, ObjCMethodDecl::Required);
2713     D->addInstanceMethod(DTORMethod);
2714     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2715     D->setHasDestructors(true);
2716   }
2717 
2718   // If the implementation doesn't have any ivar initializers, we don't need
2719   // a .cxx_construct.
2720   if (D->getNumIvarInitializers() == 0)
2721     return;
2722 
2723   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2724   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2725   // The constructor returns 'self'.
2726   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2727                                                 D->getLocation(),
2728                                                 D->getLocation(),
2729                                                 cxxSelector,
2730                                                 getContext().getObjCIdType(), 0,
2731                                                 D, /*isInstance=*/true,
2732                                                 /*isVariadic=*/false,
2733                                                 /*isPropertyAccessor=*/true,
2734                                                 /*isImplicitlyDeclared=*/true,
2735                                                 /*isDefined=*/false,
2736                                                 ObjCMethodDecl::Required);
2737   D->addInstanceMethod(CTORMethod);
2738   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2739   D->setHasNonZeroConstructors(true);
2740 }
2741 
2742 /// EmitNamespace - Emit all declarations in a namespace.
2743 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2744   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2745        I != E; ++I)
2746     EmitTopLevelDecl(*I);
2747 }
2748 
2749 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2750 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2751   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2752       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2753     ErrorUnsupported(LSD, "linkage spec");
2754     return;
2755   }
2756 
2757   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2758        I != E; ++I) {
2759     // Meta-data for ObjC class includes references to implemented methods.
2760     // Generate class's method definitions first.
2761     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2762       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2763            MEnd = OID->meth_end();
2764            M != MEnd; ++M)
2765         EmitTopLevelDecl(*M);
2766     }
2767     EmitTopLevelDecl(*I);
2768   }
2769 }
2770 
2771 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2772 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2773   // If an error has occurred, stop code generation, but continue
2774   // parsing and semantic analysis (to ensure all warnings and errors
2775   // are emitted).
2776   if (Diags.hasErrorOccurred())
2777     return;
2778 
2779   // Ignore dependent declarations.
2780   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2781     return;
2782 
2783   switch (D->getKind()) {
2784   case Decl::CXXConversion:
2785   case Decl::CXXMethod:
2786   case Decl::Function:
2787     // Skip function templates
2788     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2789         cast<FunctionDecl>(D)->isLateTemplateParsed())
2790       return;
2791 
2792     EmitGlobal(cast<FunctionDecl>(D));
2793     break;
2794 
2795   case Decl::Var:
2796     EmitGlobal(cast<VarDecl>(D));
2797     break;
2798 
2799   // Indirect fields from global anonymous structs and unions can be
2800   // ignored; only the actual variable requires IR gen support.
2801   case Decl::IndirectField:
2802     break;
2803 
2804   // C++ Decls
2805   case Decl::Namespace:
2806     EmitNamespace(cast<NamespaceDecl>(D));
2807     break;
2808     // No code generation needed.
2809   case Decl::UsingShadow:
2810   case Decl::Using:
2811   case Decl::UsingDirective:
2812   case Decl::ClassTemplate:
2813   case Decl::FunctionTemplate:
2814   case Decl::TypeAliasTemplate:
2815   case Decl::NamespaceAlias:
2816   case Decl::Block:
2817   case Decl::Empty:
2818     break;
2819   case Decl::CXXConstructor:
2820     // Skip function templates
2821     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2822         cast<FunctionDecl>(D)->isLateTemplateParsed())
2823       return;
2824 
2825     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2826     break;
2827   case Decl::CXXDestructor:
2828     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2829       return;
2830     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2831     break;
2832 
2833   case Decl::StaticAssert:
2834     // Nothing to do.
2835     break;
2836 
2837   // Objective-C Decls
2838 
2839   // Forward declarations, no (immediate) code generation.
2840   case Decl::ObjCInterface:
2841   case Decl::ObjCCategory:
2842     break;
2843 
2844   case Decl::ObjCProtocol: {
2845     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2846     if (Proto->isThisDeclarationADefinition())
2847       ObjCRuntime->GenerateProtocol(Proto);
2848     break;
2849   }
2850 
2851   case Decl::ObjCCategoryImpl:
2852     // Categories have properties but don't support synthesize so we
2853     // can ignore them here.
2854     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2855     break;
2856 
2857   case Decl::ObjCImplementation: {
2858     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2859     EmitObjCPropertyImplementations(OMD);
2860     EmitObjCIvarInitializations(OMD);
2861     ObjCRuntime->GenerateClass(OMD);
2862     // Emit global variable debug information.
2863     if (CGDebugInfo *DI = getModuleDebugInfo())
2864       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2865         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2866             OMD->getClassInterface()), OMD->getLocation());
2867     break;
2868   }
2869   case Decl::ObjCMethod: {
2870     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2871     // If this is not a prototype, emit the body.
2872     if (OMD->getBody())
2873       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2874     break;
2875   }
2876   case Decl::ObjCCompatibleAlias:
2877     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2878     break;
2879 
2880   case Decl::LinkageSpec:
2881     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2882     break;
2883 
2884   case Decl::FileScopeAsm: {
2885     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2886     StringRef AsmString = AD->getAsmString()->getString();
2887 
2888     const std::string &S = getModule().getModuleInlineAsm();
2889     if (S.empty())
2890       getModule().setModuleInlineAsm(AsmString);
2891     else if (S.end()[-1] == '\n')
2892       getModule().setModuleInlineAsm(S + AsmString.str());
2893     else
2894       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2895     break;
2896   }
2897 
2898   case Decl::Import: {
2899     ImportDecl *Import = cast<ImportDecl>(D);
2900 
2901     // Ignore import declarations that come from imported modules.
2902     if (clang::Module *Owner = Import->getOwningModule()) {
2903       if (getLangOpts().CurrentModule.empty() ||
2904           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2905         break;
2906     }
2907 
2908     ImportedModules.insert(Import->getImportedModule());
2909     break;
2910  }
2911 
2912   default:
2913     // Make sure we handled everything we should, every other kind is a
2914     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2915     // function. Need to recode Decl::Kind to do that easily.
2916     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2917   }
2918 }
2919 
2920 /// Turns the given pointer into a constant.
2921 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2922                                           const void *Ptr) {
2923   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2924   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2925   return llvm::ConstantInt::get(i64, PtrInt);
2926 }
2927 
2928 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2929                                    llvm::NamedMDNode *&GlobalMetadata,
2930                                    GlobalDecl D,
2931                                    llvm::GlobalValue *Addr) {
2932   if (!GlobalMetadata)
2933     GlobalMetadata =
2934       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2935 
2936   // TODO: should we report variant information for ctors/dtors?
2937   llvm::Value *Ops[] = {
2938     Addr,
2939     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2940   };
2941   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2942 }
2943 
2944 /// For each function which is declared within an extern "C" region and marked
2945 /// as 'used', but has internal linkage, create an alias from the unmangled
2946 /// name to the mangled name if possible. People expect to be able to refer
2947 /// to such functions with an unmangled name from inline assembly within the
2948 /// same translation unit.
2949 void CodeGenModule::EmitStaticExternCAliases() {
2950   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2951                                   E = StaticExternCValues.end();
2952        I != E; ++I)
2953     if (I->second && !getModule().getNamedValue(I->first->getName()))
2954       AddUsedGlobal(
2955         new llvm::GlobalAlias(I->second->getType(), I->second->getLinkage(),
2956                               I->first->getName(), I->second, &getModule()));
2957 }
2958 
2959 /// Emits metadata nodes associating all the global values in the
2960 /// current module with the Decls they came from.  This is useful for
2961 /// projects using IR gen as a subroutine.
2962 ///
2963 /// Since there's currently no way to associate an MDNode directly
2964 /// with an llvm::GlobalValue, we create a global named metadata
2965 /// with the name 'clang.global.decl.ptrs'.
2966 void CodeGenModule::EmitDeclMetadata() {
2967   llvm::NamedMDNode *GlobalMetadata = 0;
2968 
2969   // StaticLocalDeclMap
2970   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2971          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2972        I != E; ++I) {
2973     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2974     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2975   }
2976 }
2977 
2978 /// Emits metadata nodes for all the local variables in the current
2979 /// function.
2980 void CodeGenFunction::EmitDeclMetadata() {
2981   if (LocalDeclMap.empty()) return;
2982 
2983   llvm::LLVMContext &Context = getLLVMContext();
2984 
2985   // Find the unique metadata ID for this name.
2986   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2987 
2988   llvm::NamedMDNode *GlobalMetadata = 0;
2989 
2990   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2991          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2992     const Decl *D = I->first;
2993     llvm::Value *Addr = I->second;
2994 
2995     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2996       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2997       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2998     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2999       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3000       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3001     }
3002   }
3003 }
3004 
3005 void CodeGenModule::EmitCoverageFile() {
3006   if (!getCodeGenOpts().CoverageFile.empty()) {
3007     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3008       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3009       llvm::LLVMContext &Ctx = TheModule.getContext();
3010       llvm::MDString *CoverageFile =
3011           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3012       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3013         llvm::MDNode *CU = CUNode->getOperand(i);
3014         llvm::Value *node[] = { CoverageFile, CU };
3015         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3016         GCov->addOperand(N);
3017       }
3018     }
3019   }
3020 }
3021 
3022 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3023                                                      QualType GuidType) {
3024   // Sema has checked that all uuid strings are of the form
3025   // "12345678-1234-1234-1234-1234567890ab".
3026   assert(Uuid.size() == 36);
3027   const char *Uuidstr = Uuid.data();
3028   for (int i = 0; i < 36; ++i) {
3029     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3030     else                                         assert(isHexDigit(Uuidstr[i]));
3031   }
3032 
3033   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3034   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3035   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3036   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3037 
3038   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3039   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3040   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3041   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3042   APValue& Arr = InitStruct.getStructField(3);
3043   Arr = APValue(APValue::UninitArray(), 8, 8);
3044   for (int t = 0; t < 8; ++t)
3045     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3046           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3047 
3048   return EmitConstantValue(InitStruct, GuidType);
3049 }
3050