1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 SimplifyPersonality(); 559 560 if (getCodeGenOpts().EmitDeclMetadata) 561 EmitDeclMetadata(); 562 563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 564 EmitCoverageFile(); 565 566 if (DebugInfo) 567 DebugInfo->finalize(); 568 569 EmitVersionIdentMetadata(); 570 571 EmitTargetMetadata(); 572 } 573 574 void CodeGenModule::EmitOpenCLMetadata() { 575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 576 // opencl.ocl.version named metadata node. 577 llvm::Metadata *OCLVerElts[] = { 578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 579 Int32Ty, LangOpts.OpenCLVersion / 100)), 580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 582 llvm::NamedMDNode *OCLVerMD = 583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 584 llvm::LLVMContext &Ctx = TheModule.getContext(); 585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 586 } 587 588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 589 // Make sure that this type is translated. 590 Types.UpdateCompletedType(TD); 591 } 592 593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 594 // Make sure that this type is translated. 595 Types.RefreshTypeCacheForClass(RD); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTypeInfo(QTy); 602 } 603 604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 605 // Pointee values may have incomplete types, but they shall never be 606 // dereferenced. 607 if (AccessType->isIncompleteType()) 608 return TBAAAccessInfo::getIncompleteInfo(); 609 610 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 611 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 612 } 613 614 TBAAAccessInfo 615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 616 if (!TBAA) 617 return TBAAAccessInfo(); 618 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 619 } 620 621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 622 if (!TBAA) 623 return nullptr; 624 return TBAA->getTBAAStructInfo(QTy); 625 } 626 627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 628 if (!TBAA) 629 return nullptr; 630 return TBAA->getBaseTypeInfo(QTy); 631 } 632 633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 634 if (!TBAA) 635 return nullptr; 636 return TBAA->getAccessTagInfo(Info); 637 } 638 639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 640 TBAAAccessInfo TargetInfo) { 641 if (!TBAA) 642 return TBAAAccessInfo(); 643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 644 } 645 646 TBAAAccessInfo 647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 648 TBAAAccessInfo InfoB) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 652 } 653 654 TBAAAccessInfo 655 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 656 TBAAAccessInfo SrcInfo) { 657 if (!TBAA) 658 return TBAAAccessInfo(); 659 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 660 } 661 662 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 663 TBAAAccessInfo TBAAInfo) { 664 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 665 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 666 } 667 668 void CodeGenModule::DecorateInstructionWithInvariantGroup( 669 llvm::Instruction *I, const CXXRecordDecl *RD) { 670 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 671 llvm::MDNode::get(getLLVMContext(), {})); 672 } 673 674 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 675 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 676 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 677 } 678 679 /// ErrorUnsupported - Print out an error that codegen doesn't support the 680 /// specified stmt yet. 681 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 682 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 683 "cannot compile this %0 yet"); 684 std::string Msg = Type; 685 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 686 << Msg << S->getSourceRange(); 687 } 688 689 /// ErrorUnsupported - Print out an error that codegen doesn't support the 690 /// specified decl yet. 691 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 692 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 693 "cannot compile this %0 yet"); 694 std::string Msg = Type; 695 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 696 } 697 698 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 699 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 700 } 701 702 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 703 const NamedDecl *D) const { 704 if (GV->hasDLLImportStorageClass()) 705 return; 706 // Internal definitions always have default visibility. 707 if (GV->hasLocalLinkage()) { 708 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 709 return; 710 } 711 712 // Set visibility for definitions. 713 LinkageInfo LV = D->getLinkageAndVisibility(); 714 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 715 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 716 } 717 718 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 719 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 720 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 721 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 722 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 723 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 724 } 725 726 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 727 CodeGenOptions::TLSModel M) { 728 switch (M) { 729 case CodeGenOptions::GeneralDynamicTLSModel: 730 return llvm::GlobalVariable::GeneralDynamicTLSModel; 731 case CodeGenOptions::LocalDynamicTLSModel: 732 return llvm::GlobalVariable::LocalDynamicTLSModel; 733 case CodeGenOptions::InitialExecTLSModel: 734 return llvm::GlobalVariable::InitialExecTLSModel; 735 case CodeGenOptions::LocalExecTLSModel: 736 return llvm::GlobalVariable::LocalExecTLSModel; 737 } 738 llvm_unreachable("Invalid TLS model!"); 739 } 740 741 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 742 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 743 744 llvm::GlobalValue::ThreadLocalMode TLM; 745 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 746 747 // Override the TLS model if it is explicitly specified. 748 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 749 TLM = GetLLVMTLSModel(Attr->getModel()); 750 } 751 752 GV->setThreadLocalMode(TLM); 753 } 754 755 static void AppendTargetMangling(const CodeGenModule &CGM, 756 const TargetAttr *Attr, raw_ostream &Out) { 757 if (Attr->isDefaultVersion()) 758 return; 759 760 Out << '.'; 761 const auto &Target = CGM.getTarget(); 762 TargetAttr::ParsedTargetAttr Info = 763 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 764 // Multiversioning doesn't allow "no-${feature}", so we can 765 // only have "+" prefixes here. 766 assert(LHS.startswith("+") && RHS.startswith("+") && 767 "Features should always have a prefix."); 768 return Target.multiVersionSortPriority(LHS.substr(1)) > 769 Target.multiVersionSortPriority(RHS.substr(1)); 770 }); 771 772 bool IsFirst = true; 773 774 if (!Info.Architecture.empty()) { 775 IsFirst = false; 776 Out << "arch_" << Info.Architecture; 777 } 778 779 for (StringRef Feat : Info.Features) { 780 if (!IsFirst) 781 Out << '_'; 782 IsFirst = false; 783 Out << Feat.substr(1); 784 } 785 } 786 787 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 788 const NamedDecl *ND, 789 bool OmitTargetMangling = false) { 790 SmallString<256> Buffer; 791 llvm::raw_svector_ostream Out(Buffer); 792 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 793 if (MC.shouldMangleDeclName(ND)) { 794 llvm::raw_svector_ostream Out(Buffer); 795 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 796 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 797 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 798 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 799 else 800 MC.mangleName(ND, Out); 801 } else { 802 IdentifierInfo *II = ND->getIdentifier(); 803 assert(II && "Attempt to mangle unnamed decl."); 804 const auto *FD = dyn_cast<FunctionDecl>(ND); 805 806 if (FD && 807 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 808 llvm::raw_svector_ostream Out(Buffer); 809 Out << "__regcall3__" << II->getName(); 810 } else { 811 Out << II->getName(); 812 } 813 } 814 815 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 816 if (FD->isMultiVersion() && !OmitTargetMangling) 817 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 818 return Out.str(); 819 } 820 821 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 822 const FunctionDecl *FD) { 823 if (!FD->isMultiVersion()) 824 return; 825 826 // Get the name of what this would be without the 'target' attribute. This 827 // allows us to lookup the version that was emitted when this wasn't a 828 // multiversion function. 829 std::string NonTargetName = 830 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 831 GlobalDecl OtherGD; 832 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 833 assert(OtherGD.getCanonicalDecl() 834 .getDecl() 835 ->getAsFunction() 836 ->isMultiVersion() && 837 "Other GD should now be a multiversioned function"); 838 // OtherFD is the version of this function that was mangled BEFORE 839 // becoming a MultiVersion function. It potentially needs to be updated. 840 const FunctionDecl *OtherFD = 841 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 842 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 843 // This is so that if the initial version was already the 'default' 844 // version, we don't try to update it. 845 if (OtherName != NonTargetName) { 846 // Remove instead of erase, since others may have stored the StringRef 847 // to this. 848 const auto ExistingRecord = Manglings.find(NonTargetName); 849 if (ExistingRecord != std::end(Manglings)) 850 Manglings.remove(&(*ExistingRecord)); 851 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 852 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 853 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 854 Entry->setName(OtherName); 855 } 856 } 857 } 858 859 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 860 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 861 862 // Some ABIs don't have constructor variants. Make sure that base and 863 // complete constructors get mangled the same. 864 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 865 if (!getTarget().getCXXABI().hasConstructorVariants()) { 866 CXXCtorType OrigCtorType = GD.getCtorType(); 867 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 868 if (OrigCtorType == Ctor_Base) 869 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 870 } 871 } 872 873 auto FoundName = MangledDeclNames.find(CanonicalGD); 874 if (FoundName != MangledDeclNames.end()) 875 return FoundName->second; 876 877 878 // Keep the first result in the case of a mangling collision. 879 const auto *ND = cast<NamedDecl>(GD.getDecl()); 880 auto Result = 881 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 882 return MangledDeclNames[CanonicalGD] = Result.first->first(); 883 } 884 885 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 886 const BlockDecl *BD) { 887 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 888 const Decl *D = GD.getDecl(); 889 890 SmallString<256> Buffer; 891 llvm::raw_svector_ostream Out(Buffer); 892 if (!D) 893 MangleCtx.mangleGlobalBlock(BD, 894 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 895 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 896 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 897 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 898 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 899 else 900 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 901 902 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 903 return Result.first->first(); 904 } 905 906 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 907 return getModule().getNamedValue(Name); 908 } 909 910 /// AddGlobalCtor - Add a function to the list that will be called before 911 /// main() runs. 912 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 913 llvm::Constant *AssociatedData) { 914 // FIXME: Type coercion of void()* types. 915 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 916 } 917 918 /// AddGlobalDtor - Add a function to the list that will be called 919 /// when the module is unloaded. 920 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 921 // FIXME: Type coercion of void()* types. 922 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 923 } 924 925 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 926 if (Fns.empty()) return; 927 928 // Ctor function type is void()*. 929 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 930 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 931 932 // Get the type of a ctor entry, { i32, void ()*, i8* }. 933 llvm::StructType *CtorStructTy = llvm::StructType::get( 934 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 935 936 // Construct the constructor and destructor arrays. 937 ConstantInitBuilder builder(*this); 938 auto ctors = builder.beginArray(CtorStructTy); 939 for (const auto &I : Fns) { 940 auto ctor = ctors.beginStruct(CtorStructTy); 941 ctor.addInt(Int32Ty, I.Priority); 942 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 943 if (I.AssociatedData) 944 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 945 else 946 ctor.addNullPointer(VoidPtrTy); 947 ctor.finishAndAddTo(ctors); 948 } 949 950 auto list = 951 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 952 /*constant*/ false, 953 llvm::GlobalValue::AppendingLinkage); 954 955 // The LTO linker doesn't seem to like it when we set an alignment 956 // on appending variables. Take it off as a workaround. 957 list->setAlignment(0); 958 959 Fns.clear(); 960 } 961 962 llvm::GlobalValue::LinkageTypes 963 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 964 const auto *D = cast<FunctionDecl>(GD.getDecl()); 965 966 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 967 968 if (isa<CXXDestructorDecl>(D) && 969 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 970 GD.getDtorType())) { 971 // Destructor variants in the Microsoft C++ ABI are always internal or 972 // linkonce_odr thunks emitted on an as-needed basis. 973 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 974 : llvm::GlobalValue::LinkOnceODRLinkage; 975 } 976 977 if (isa<CXXConstructorDecl>(D) && 978 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 979 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 980 // Our approach to inheriting constructors is fundamentally different from 981 // that used by the MS ABI, so keep our inheriting constructor thunks 982 // internal rather than trying to pick an unambiguous mangling for them. 983 return llvm::GlobalValue::InternalLinkage; 984 } 985 986 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 987 } 988 989 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 990 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 991 992 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 993 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 994 // Don't dllexport/import destructor thunks. 995 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 996 return; 997 } 998 } 999 1000 if (FD->hasAttr<DLLImportAttr>()) 1001 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1002 else if (FD->hasAttr<DLLExportAttr>()) 1003 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1004 else 1005 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 1006 } 1007 1008 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1009 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1010 if (!MDS) return nullptr; 1011 1012 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1013 } 1014 1015 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1016 llvm::Function *F) { 1017 setNonAliasAttributes(D, F); 1018 } 1019 1020 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1021 const CGFunctionInfo &Info, 1022 llvm::Function *F) { 1023 unsigned CallingConv; 1024 llvm::AttributeList PAL; 1025 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1026 F->setAttributes(PAL); 1027 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1028 } 1029 1030 /// Determines whether the language options require us to model 1031 /// unwind exceptions. We treat -fexceptions as mandating this 1032 /// except under the fragile ObjC ABI with only ObjC exceptions 1033 /// enabled. This means, for example, that C with -fexceptions 1034 /// enables this. 1035 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1036 // If exceptions are completely disabled, obviously this is false. 1037 if (!LangOpts.Exceptions) return false; 1038 1039 // If C++ exceptions are enabled, this is true. 1040 if (LangOpts.CXXExceptions) return true; 1041 1042 // If ObjC exceptions are enabled, this depends on the ABI. 1043 if (LangOpts.ObjCExceptions) { 1044 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1045 } 1046 1047 return true; 1048 } 1049 1050 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1051 llvm::Function *F) { 1052 llvm::AttrBuilder B; 1053 1054 if (CodeGenOpts.UnwindTables) 1055 B.addAttribute(llvm::Attribute::UWTable); 1056 1057 if (!hasUnwindExceptions(LangOpts)) 1058 B.addAttribute(llvm::Attribute::NoUnwind); 1059 1060 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1061 B.addAttribute(llvm::Attribute::StackProtect); 1062 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1063 B.addAttribute(llvm::Attribute::StackProtectStrong); 1064 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1065 B.addAttribute(llvm::Attribute::StackProtectReq); 1066 1067 if (!D) { 1068 // If we don't have a declaration to control inlining, the function isn't 1069 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1070 // disabled, mark the function as noinline. 1071 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1072 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1073 B.addAttribute(llvm::Attribute::NoInline); 1074 1075 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1076 return; 1077 } 1078 1079 // Track whether we need to add the optnone LLVM attribute, 1080 // starting with the default for this optimization level. 1081 bool ShouldAddOptNone = 1082 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1083 // We can't add optnone in the following cases, it won't pass the verifier. 1084 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1085 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1086 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1087 1088 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1089 B.addAttribute(llvm::Attribute::OptimizeNone); 1090 1091 // OptimizeNone implies noinline; we should not be inlining such functions. 1092 B.addAttribute(llvm::Attribute::NoInline); 1093 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1094 "OptimizeNone and AlwaysInline on same function!"); 1095 1096 // We still need to handle naked functions even though optnone subsumes 1097 // much of their semantics. 1098 if (D->hasAttr<NakedAttr>()) 1099 B.addAttribute(llvm::Attribute::Naked); 1100 1101 // OptimizeNone wins over OptimizeForSize and MinSize. 1102 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1103 F->removeFnAttr(llvm::Attribute::MinSize); 1104 } else if (D->hasAttr<NakedAttr>()) { 1105 // Naked implies noinline: we should not be inlining such functions. 1106 B.addAttribute(llvm::Attribute::Naked); 1107 B.addAttribute(llvm::Attribute::NoInline); 1108 } else if (D->hasAttr<NoDuplicateAttr>()) { 1109 B.addAttribute(llvm::Attribute::NoDuplicate); 1110 } else if (D->hasAttr<NoInlineAttr>()) { 1111 B.addAttribute(llvm::Attribute::NoInline); 1112 } else if (D->hasAttr<AlwaysInlineAttr>() && 1113 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1114 // (noinline wins over always_inline, and we can't specify both in IR) 1115 B.addAttribute(llvm::Attribute::AlwaysInline); 1116 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1117 // If we're not inlining, then force everything that isn't always_inline to 1118 // carry an explicit noinline attribute. 1119 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1120 B.addAttribute(llvm::Attribute::NoInline); 1121 } else { 1122 // Otherwise, propagate the inline hint attribute and potentially use its 1123 // absence to mark things as noinline. 1124 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1125 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1126 return Redecl->isInlineSpecified(); 1127 })) { 1128 B.addAttribute(llvm::Attribute::InlineHint); 1129 } else if (CodeGenOpts.getInlining() == 1130 CodeGenOptions::OnlyHintInlining && 1131 !FD->isInlined() && 1132 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1133 B.addAttribute(llvm::Attribute::NoInline); 1134 } 1135 } 1136 } 1137 1138 // Add other optimization related attributes if we are optimizing this 1139 // function. 1140 if (!D->hasAttr<OptimizeNoneAttr>()) { 1141 if (D->hasAttr<ColdAttr>()) { 1142 if (!ShouldAddOptNone) 1143 B.addAttribute(llvm::Attribute::OptimizeForSize); 1144 B.addAttribute(llvm::Attribute::Cold); 1145 } 1146 1147 if (D->hasAttr<MinSizeAttr>()) 1148 B.addAttribute(llvm::Attribute::MinSize); 1149 } 1150 1151 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1152 1153 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1154 if (alignment) 1155 F->setAlignment(alignment); 1156 1157 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1158 // reserve a bit for differentiating between virtual and non-virtual member 1159 // functions. If the current target's C++ ABI requires this and this is a 1160 // member function, set its alignment accordingly. 1161 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1162 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1163 F->setAlignment(2); 1164 } 1165 1166 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1167 if (CodeGenOpts.SanitizeCfiCrossDso) 1168 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1169 CreateFunctionTypeMetadata(FD, F); 1170 } 1171 1172 void CodeGenModule::SetCommonAttributes(const Decl *D, 1173 llvm::GlobalValue *GV) { 1174 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1175 setGlobalVisibility(GV, ND); 1176 else 1177 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1178 1179 if (D && D->hasAttr<UsedAttr>()) 1180 addUsedGlobal(GV); 1181 } 1182 1183 void CodeGenModule::setAliasAttributes(const Decl *D, 1184 llvm::GlobalValue *GV) { 1185 SetCommonAttributes(D, GV); 1186 1187 // Process the dllexport attribute based on whether the original definition 1188 // (not necessarily the aliasee) was exported. 1189 if (D->hasAttr<DLLExportAttr>()) 1190 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1191 } 1192 1193 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1194 llvm::GlobalObject *GO) { 1195 SetCommonAttributes(D, GO); 1196 1197 if (D) { 1198 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1199 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1200 GV->addAttribute("bss-section", SA->getName()); 1201 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1202 GV->addAttribute("data-section", SA->getName()); 1203 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1204 GV->addAttribute("rodata-section", SA->getName()); 1205 } 1206 1207 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1208 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1209 if (!D->getAttr<SectionAttr>()) 1210 F->addFnAttr("implicit-section-name", SA->getName()); 1211 } 1212 1213 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1214 GO->setSection(SA->getName()); 1215 } 1216 1217 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1218 } 1219 1220 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1221 llvm::Function *F, 1222 const CGFunctionInfo &FI) { 1223 SetLLVMFunctionAttributes(D, FI, F); 1224 SetLLVMFunctionAttributesForDefinition(D, F); 1225 1226 F->setLinkage(llvm::Function::InternalLinkage); 1227 1228 setNonAliasAttributes(D, F); 1229 } 1230 1231 static void setLinkageForGV(llvm::GlobalValue *GV, 1232 const NamedDecl *ND) { 1233 // Set linkage and visibility in case we never see a definition. 1234 LinkageInfo LV = ND->getLinkageAndVisibility(); 1235 if (!isExternallyVisible(LV.getLinkage())) { 1236 // Don't set internal linkage on declarations. 1237 } else { 1238 if (ND->hasAttr<DLLImportAttr>()) { 1239 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1240 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1241 } else if (ND->hasAttr<DLLExportAttr>()) { 1242 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1243 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1244 // "extern_weak" is overloaded in LLVM; we probably should have 1245 // separate linkage types for this. 1246 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1247 } 1248 } 1249 } 1250 1251 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1252 llvm::Function *F) { 1253 // Only if we are checking indirect calls. 1254 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1255 return; 1256 1257 // Non-static class methods are handled via vtable pointer checks elsewhere. 1258 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1259 return; 1260 1261 // Additionally, if building with cross-DSO support... 1262 if (CodeGenOpts.SanitizeCfiCrossDso) { 1263 // Skip available_externally functions. They won't be codegen'ed in the 1264 // current module anyway. 1265 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1266 return; 1267 } 1268 1269 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1270 F->addTypeMetadata(0, MD); 1271 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1272 1273 // Emit a hash-based bit set entry for cross-DSO calls. 1274 if (CodeGenOpts.SanitizeCfiCrossDso) 1275 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1276 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1277 } 1278 1279 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1280 bool IsIncompleteFunction, 1281 bool IsThunk) { 1282 1283 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1284 // If this is an intrinsic function, set the function's attributes 1285 // to the intrinsic's attributes. 1286 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1287 return; 1288 } 1289 1290 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1291 1292 if (!IsIncompleteFunction) { 1293 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1294 // Setup target-specific attributes. 1295 if (F->isDeclaration()) 1296 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1297 } 1298 1299 // Add the Returned attribute for "this", except for iOS 5 and earlier 1300 // where substantial code, including the libstdc++ dylib, was compiled with 1301 // GCC and does not actually return "this". 1302 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1303 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1304 assert(!F->arg_empty() && 1305 F->arg_begin()->getType() 1306 ->canLosslesslyBitCastTo(F->getReturnType()) && 1307 "unexpected this return"); 1308 F->addAttribute(1, llvm::Attribute::Returned); 1309 } 1310 1311 // Only a few attributes are set on declarations; these may later be 1312 // overridden by a definition. 1313 1314 setLinkageForGV(F, FD); 1315 setGlobalVisibility(F, FD); 1316 1317 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1318 F->addFnAttr("implicit-section-name"); 1319 } 1320 1321 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1322 F->setSection(SA->getName()); 1323 1324 if (FD->isReplaceableGlobalAllocationFunction()) { 1325 // A replaceable global allocation function does not act like a builtin by 1326 // default, only if it is invoked by a new-expression or delete-expression. 1327 F->addAttribute(llvm::AttributeList::FunctionIndex, 1328 llvm::Attribute::NoBuiltin); 1329 1330 // A sane operator new returns a non-aliasing pointer. 1331 // FIXME: Also add NonNull attribute to the return value 1332 // for the non-nothrow forms? 1333 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1334 if (getCodeGenOpts().AssumeSaneOperatorNew && 1335 (Kind == OO_New || Kind == OO_Array_New)) 1336 F->addAttribute(llvm::AttributeList::ReturnIndex, 1337 llvm::Attribute::NoAlias); 1338 } 1339 1340 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1341 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1342 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1343 if (MD->isVirtual()) 1344 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1345 1346 // Don't emit entries for function declarations in the cross-DSO mode. This 1347 // is handled with better precision by the receiving DSO. 1348 if (!CodeGenOpts.SanitizeCfiCrossDso) 1349 CreateFunctionTypeMetadata(FD, F); 1350 1351 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1352 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1353 } 1354 1355 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1356 assert(!GV->isDeclaration() && 1357 "Only globals with definition can force usage."); 1358 LLVMUsed.emplace_back(GV); 1359 } 1360 1361 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1362 assert(!GV->isDeclaration() && 1363 "Only globals with definition can force usage."); 1364 LLVMCompilerUsed.emplace_back(GV); 1365 } 1366 1367 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1368 std::vector<llvm::WeakTrackingVH> &List) { 1369 // Don't create llvm.used if there is no need. 1370 if (List.empty()) 1371 return; 1372 1373 // Convert List to what ConstantArray needs. 1374 SmallVector<llvm::Constant*, 8> UsedArray; 1375 UsedArray.resize(List.size()); 1376 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1377 UsedArray[i] = 1378 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1379 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1380 } 1381 1382 if (UsedArray.empty()) 1383 return; 1384 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1385 1386 auto *GV = new llvm::GlobalVariable( 1387 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1388 llvm::ConstantArray::get(ATy, UsedArray), Name); 1389 1390 GV->setSection("llvm.metadata"); 1391 } 1392 1393 void CodeGenModule::emitLLVMUsed() { 1394 emitUsed(*this, "llvm.used", LLVMUsed); 1395 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1396 } 1397 1398 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1399 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1400 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1401 } 1402 1403 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1404 llvm::SmallString<32> Opt; 1405 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1406 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1407 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1408 } 1409 1410 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1411 auto &C = getLLVMContext(); 1412 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1413 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1414 } 1415 1416 void CodeGenModule::AddDependentLib(StringRef Lib) { 1417 llvm::SmallString<24> Opt; 1418 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1419 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1420 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1421 } 1422 1423 /// \brief Add link options implied by the given module, including modules 1424 /// it depends on, using a postorder walk. 1425 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1426 SmallVectorImpl<llvm::MDNode *> &Metadata, 1427 llvm::SmallPtrSet<Module *, 16> &Visited) { 1428 // Import this module's parent. 1429 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1430 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1431 } 1432 1433 // Import this module's dependencies. 1434 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1435 if (Visited.insert(Mod->Imports[I - 1]).second) 1436 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1437 } 1438 1439 // Add linker options to link against the libraries/frameworks 1440 // described by this module. 1441 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1442 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1443 // Link against a framework. Frameworks are currently Darwin only, so we 1444 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1445 if (Mod->LinkLibraries[I-1].IsFramework) { 1446 llvm::Metadata *Args[2] = { 1447 llvm::MDString::get(Context, "-framework"), 1448 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1449 1450 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1451 continue; 1452 } 1453 1454 // Link against a library. 1455 llvm::SmallString<24> Opt; 1456 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1457 Mod->LinkLibraries[I-1].Library, Opt); 1458 auto *OptString = llvm::MDString::get(Context, Opt); 1459 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1460 } 1461 } 1462 1463 void CodeGenModule::EmitModuleLinkOptions() { 1464 // Collect the set of all of the modules we want to visit to emit link 1465 // options, which is essentially the imported modules and all of their 1466 // non-explicit child modules. 1467 llvm::SetVector<clang::Module *> LinkModules; 1468 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1469 SmallVector<clang::Module *, 16> Stack; 1470 1471 // Seed the stack with imported modules. 1472 for (Module *M : ImportedModules) { 1473 // Do not add any link flags when an implementation TU of a module imports 1474 // a header of that same module. 1475 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1476 !getLangOpts().isCompilingModule()) 1477 continue; 1478 if (Visited.insert(M).second) 1479 Stack.push_back(M); 1480 } 1481 1482 // Find all of the modules to import, making a little effort to prune 1483 // non-leaf modules. 1484 while (!Stack.empty()) { 1485 clang::Module *Mod = Stack.pop_back_val(); 1486 1487 bool AnyChildren = false; 1488 1489 // Visit the submodules of this module. 1490 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1491 SubEnd = Mod->submodule_end(); 1492 Sub != SubEnd; ++Sub) { 1493 // Skip explicit children; they need to be explicitly imported to be 1494 // linked against. 1495 if ((*Sub)->IsExplicit) 1496 continue; 1497 1498 if (Visited.insert(*Sub).second) { 1499 Stack.push_back(*Sub); 1500 AnyChildren = true; 1501 } 1502 } 1503 1504 // We didn't find any children, so add this module to the list of 1505 // modules to link against. 1506 if (!AnyChildren) { 1507 LinkModules.insert(Mod); 1508 } 1509 } 1510 1511 // Add link options for all of the imported modules in reverse topological 1512 // order. We don't do anything to try to order import link flags with respect 1513 // to linker options inserted by things like #pragma comment(). 1514 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1515 Visited.clear(); 1516 for (Module *M : LinkModules) 1517 if (Visited.insert(M).second) 1518 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1519 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1520 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1521 1522 // Add the linker options metadata flag. 1523 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1524 for (auto *MD : LinkerOptionsMetadata) 1525 NMD->addOperand(MD); 1526 } 1527 1528 void CodeGenModule::EmitDeferred() { 1529 // Emit code for any potentially referenced deferred decls. Since a 1530 // previously unused static decl may become used during the generation of code 1531 // for a static function, iterate until no changes are made. 1532 1533 if (!DeferredVTables.empty()) { 1534 EmitDeferredVTables(); 1535 1536 // Emitting a vtable doesn't directly cause more vtables to 1537 // become deferred, although it can cause functions to be 1538 // emitted that then need those vtables. 1539 assert(DeferredVTables.empty()); 1540 } 1541 1542 // Stop if we're out of both deferred vtables and deferred declarations. 1543 if (DeferredDeclsToEmit.empty()) 1544 return; 1545 1546 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1547 // work, it will not interfere with this. 1548 std::vector<GlobalDecl> CurDeclsToEmit; 1549 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1550 1551 for (GlobalDecl &D : CurDeclsToEmit) { 1552 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1553 // to get GlobalValue with exactly the type we need, not something that 1554 // might had been created for another decl with the same mangled name but 1555 // different type. 1556 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1557 GetAddrOfGlobal(D, ForDefinition)); 1558 1559 // In case of different address spaces, we may still get a cast, even with 1560 // IsForDefinition equal to true. Query mangled names table to get 1561 // GlobalValue. 1562 if (!GV) 1563 GV = GetGlobalValue(getMangledName(D)); 1564 1565 // Make sure GetGlobalValue returned non-null. 1566 assert(GV); 1567 1568 // Check to see if we've already emitted this. This is necessary 1569 // for a couple of reasons: first, decls can end up in the 1570 // deferred-decls queue multiple times, and second, decls can end 1571 // up with definitions in unusual ways (e.g. by an extern inline 1572 // function acquiring a strong function redefinition). Just 1573 // ignore these cases. 1574 if (!GV->isDeclaration()) 1575 continue; 1576 1577 // Otherwise, emit the definition and move on to the next one. 1578 EmitGlobalDefinition(D, GV); 1579 1580 // If we found out that we need to emit more decls, do that recursively. 1581 // This has the advantage that the decls are emitted in a DFS and related 1582 // ones are close together, which is convenient for testing. 1583 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1584 EmitDeferred(); 1585 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1586 } 1587 } 1588 } 1589 1590 void CodeGenModule::EmitVTablesOpportunistically() { 1591 // Try to emit external vtables as available_externally if they have emitted 1592 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1593 // is not allowed to create new references to things that need to be emitted 1594 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1595 1596 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1597 && "Only emit opportunistic vtables with optimizations"); 1598 1599 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1600 assert(getVTables().isVTableExternal(RD) && 1601 "This queue should only contain external vtables"); 1602 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1603 VTables.GenerateClassData(RD); 1604 } 1605 OpportunisticVTables.clear(); 1606 } 1607 1608 void CodeGenModule::EmitGlobalAnnotations() { 1609 if (Annotations.empty()) 1610 return; 1611 1612 // Create a new global variable for the ConstantStruct in the Module. 1613 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1614 Annotations[0]->getType(), Annotations.size()), Annotations); 1615 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1616 llvm::GlobalValue::AppendingLinkage, 1617 Array, "llvm.global.annotations"); 1618 gv->setSection(AnnotationSection); 1619 } 1620 1621 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1622 llvm::Constant *&AStr = AnnotationStrings[Str]; 1623 if (AStr) 1624 return AStr; 1625 1626 // Not found yet, create a new global. 1627 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1628 auto *gv = 1629 new llvm::GlobalVariable(getModule(), s->getType(), true, 1630 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1631 gv->setSection(AnnotationSection); 1632 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1633 AStr = gv; 1634 return gv; 1635 } 1636 1637 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1638 SourceManager &SM = getContext().getSourceManager(); 1639 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1640 if (PLoc.isValid()) 1641 return EmitAnnotationString(PLoc.getFilename()); 1642 return EmitAnnotationString(SM.getBufferName(Loc)); 1643 } 1644 1645 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1646 SourceManager &SM = getContext().getSourceManager(); 1647 PresumedLoc PLoc = SM.getPresumedLoc(L); 1648 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1649 SM.getExpansionLineNumber(L); 1650 return llvm::ConstantInt::get(Int32Ty, LineNo); 1651 } 1652 1653 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1654 const AnnotateAttr *AA, 1655 SourceLocation L) { 1656 // Get the globals for file name, annotation, and the line number. 1657 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1658 *UnitGV = EmitAnnotationUnit(L), 1659 *LineNoCst = EmitAnnotationLineNo(L); 1660 1661 // Create the ConstantStruct for the global annotation. 1662 llvm::Constant *Fields[4] = { 1663 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1664 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1665 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1666 LineNoCst 1667 }; 1668 return llvm::ConstantStruct::getAnon(Fields); 1669 } 1670 1671 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1672 llvm::GlobalValue *GV) { 1673 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1674 // Get the struct elements for these annotations. 1675 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1676 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1677 } 1678 1679 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1680 llvm::Function *Fn, 1681 SourceLocation Loc) const { 1682 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1683 // Blacklist by function name. 1684 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1685 return true; 1686 // Blacklist by location. 1687 if (Loc.isValid()) 1688 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1689 // If location is unknown, this may be a compiler-generated function. Assume 1690 // it's located in the main file. 1691 auto &SM = Context.getSourceManager(); 1692 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1693 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1694 } 1695 return false; 1696 } 1697 1698 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1699 SourceLocation Loc, QualType Ty, 1700 StringRef Category) const { 1701 // For now globals can be blacklisted only in ASan and KASan. 1702 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1703 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1704 if (!EnabledAsanMask) 1705 return false; 1706 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1707 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1708 return true; 1709 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1710 return true; 1711 // Check global type. 1712 if (!Ty.isNull()) { 1713 // Drill down the array types: if global variable of a fixed type is 1714 // blacklisted, we also don't instrument arrays of them. 1715 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1716 Ty = AT->getElementType(); 1717 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1718 // We allow to blacklist only record types (classes, structs etc.) 1719 if (Ty->isRecordType()) { 1720 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1721 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1722 return true; 1723 } 1724 } 1725 return false; 1726 } 1727 1728 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1729 StringRef Category) const { 1730 if (!LangOpts.XRayInstrument) 1731 return false; 1732 const auto &XRayFilter = getContext().getXRayFilter(); 1733 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1734 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1735 if (Loc.isValid()) 1736 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1737 if (Attr == ImbueAttr::NONE) 1738 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1739 switch (Attr) { 1740 case ImbueAttr::NONE: 1741 return false; 1742 case ImbueAttr::ALWAYS: 1743 Fn->addFnAttr("function-instrument", "xray-always"); 1744 break; 1745 case ImbueAttr::ALWAYS_ARG1: 1746 Fn->addFnAttr("function-instrument", "xray-always"); 1747 Fn->addFnAttr("xray-log-args", "1"); 1748 break; 1749 case ImbueAttr::NEVER: 1750 Fn->addFnAttr("function-instrument", "xray-never"); 1751 break; 1752 } 1753 return true; 1754 } 1755 1756 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1757 // Never defer when EmitAllDecls is specified. 1758 if (LangOpts.EmitAllDecls) 1759 return true; 1760 1761 return getContext().DeclMustBeEmitted(Global); 1762 } 1763 1764 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1765 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1766 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1767 // Implicit template instantiations may change linkage if they are later 1768 // explicitly instantiated, so they should not be emitted eagerly. 1769 return false; 1770 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1771 if (Context.getInlineVariableDefinitionKind(VD) == 1772 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1773 // A definition of an inline constexpr static data member may change 1774 // linkage later if it's redeclared outside the class. 1775 return false; 1776 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1777 // codegen for global variables, because they may be marked as threadprivate. 1778 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1779 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1780 return false; 1781 1782 return true; 1783 } 1784 1785 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1786 const CXXUuidofExpr* E) { 1787 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1788 // well-formed. 1789 StringRef Uuid = E->getUuidStr(); 1790 std::string Name = "_GUID_" + Uuid.lower(); 1791 std::replace(Name.begin(), Name.end(), '-', '_'); 1792 1793 // The UUID descriptor should be pointer aligned. 1794 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1795 1796 // Look for an existing global. 1797 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1798 return ConstantAddress(GV, Alignment); 1799 1800 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1801 assert(Init && "failed to initialize as constant"); 1802 1803 auto *GV = new llvm::GlobalVariable( 1804 getModule(), Init->getType(), 1805 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1806 if (supportsCOMDAT()) 1807 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1808 return ConstantAddress(GV, Alignment); 1809 } 1810 1811 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1812 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1813 assert(AA && "No alias?"); 1814 1815 CharUnits Alignment = getContext().getDeclAlign(VD); 1816 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1817 1818 // See if there is already something with the target's name in the module. 1819 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1820 if (Entry) { 1821 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1822 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1823 return ConstantAddress(Ptr, Alignment); 1824 } 1825 1826 llvm::Constant *Aliasee; 1827 if (isa<llvm::FunctionType>(DeclTy)) 1828 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1829 GlobalDecl(cast<FunctionDecl>(VD)), 1830 /*ForVTable=*/false); 1831 else 1832 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1833 llvm::PointerType::getUnqual(DeclTy), 1834 nullptr); 1835 1836 auto *F = cast<llvm::GlobalValue>(Aliasee); 1837 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1838 WeakRefReferences.insert(F); 1839 1840 return ConstantAddress(Aliasee, Alignment); 1841 } 1842 1843 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1844 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1845 1846 // Weak references don't produce any output by themselves. 1847 if (Global->hasAttr<WeakRefAttr>()) 1848 return; 1849 1850 // If this is an alias definition (which otherwise looks like a declaration) 1851 // emit it now. 1852 if (Global->hasAttr<AliasAttr>()) 1853 return EmitAliasDefinition(GD); 1854 1855 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1856 if (Global->hasAttr<IFuncAttr>()) 1857 return emitIFuncDefinition(GD); 1858 1859 // If this is CUDA, be selective about which declarations we emit. 1860 if (LangOpts.CUDA) { 1861 if (LangOpts.CUDAIsDevice) { 1862 if (!Global->hasAttr<CUDADeviceAttr>() && 1863 !Global->hasAttr<CUDAGlobalAttr>() && 1864 !Global->hasAttr<CUDAConstantAttr>() && 1865 !Global->hasAttr<CUDASharedAttr>()) 1866 return; 1867 } else { 1868 // We need to emit host-side 'shadows' for all global 1869 // device-side variables because the CUDA runtime needs their 1870 // size and host-side address in order to provide access to 1871 // their device-side incarnations. 1872 1873 // So device-only functions are the only things we skip. 1874 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1875 Global->hasAttr<CUDADeviceAttr>()) 1876 return; 1877 1878 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1879 "Expected Variable or Function"); 1880 } 1881 } 1882 1883 if (LangOpts.OpenMP) { 1884 // If this is OpenMP device, check if it is legal to emit this global 1885 // normally. 1886 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1887 return; 1888 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1889 if (MustBeEmitted(Global)) 1890 EmitOMPDeclareReduction(DRD); 1891 return; 1892 } 1893 } 1894 1895 // Ignore declarations, they will be emitted on their first use. 1896 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1897 // Forward declarations are emitted lazily on first use. 1898 if (!FD->doesThisDeclarationHaveABody()) { 1899 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1900 return; 1901 1902 StringRef MangledName = getMangledName(GD); 1903 1904 // Compute the function info and LLVM type. 1905 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1906 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1907 1908 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1909 /*DontDefer=*/false); 1910 return; 1911 } 1912 } else { 1913 const auto *VD = cast<VarDecl>(Global); 1914 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1915 // We need to emit device-side global CUDA variables even if a 1916 // variable does not have a definition -- we still need to define 1917 // host-side shadow for it. 1918 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1919 !VD->hasDefinition() && 1920 (VD->hasAttr<CUDAConstantAttr>() || 1921 VD->hasAttr<CUDADeviceAttr>()); 1922 if (!MustEmitForCuda && 1923 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1924 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1925 // If this declaration may have caused an inline variable definition to 1926 // change linkage, make sure that it's emitted. 1927 if (Context.getInlineVariableDefinitionKind(VD) == 1928 ASTContext::InlineVariableDefinitionKind::Strong) 1929 GetAddrOfGlobalVar(VD); 1930 return; 1931 } 1932 } 1933 1934 // Defer code generation to first use when possible, e.g. if this is an inline 1935 // function. If the global must always be emitted, do it eagerly if possible 1936 // to benefit from cache locality. 1937 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1938 // Emit the definition if it can't be deferred. 1939 EmitGlobalDefinition(GD); 1940 return; 1941 } 1942 1943 // If we're deferring emission of a C++ variable with an 1944 // initializer, remember the order in which it appeared in the file. 1945 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1946 cast<VarDecl>(Global)->hasInit()) { 1947 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1948 CXXGlobalInits.push_back(nullptr); 1949 } 1950 1951 StringRef MangledName = getMangledName(GD); 1952 if (GetGlobalValue(MangledName) != nullptr) { 1953 // The value has already been used and should therefore be emitted. 1954 addDeferredDeclToEmit(GD); 1955 } else if (MustBeEmitted(Global)) { 1956 // The value must be emitted, but cannot be emitted eagerly. 1957 assert(!MayBeEmittedEagerly(Global)); 1958 addDeferredDeclToEmit(GD); 1959 } else { 1960 // Otherwise, remember that we saw a deferred decl with this name. The 1961 // first use of the mangled name will cause it to move into 1962 // DeferredDeclsToEmit. 1963 DeferredDecls[MangledName] = GD; 1964 } 1965 } 1966 1967 // Check if T is a class type with a destructor that's not dllimport. 1968 static bool HasNonDllImportDtor(QualType T) { 1969 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1970 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1971 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1972 return true; 1973 1974 return false; 1975 } 1976 1977 namespace { 1978 struct FunctionIsDirectlyRecursive : 1979 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1980 const StringRef Name; 1981 const Builtin::Context &BI; 1982 bool Result; 1983 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1984 Name(N), BI(C), Result(false) { 1985 } 1986 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1987 1988 bool TraverseCallExpr(CallExpr *E) { 1989 const FunctionDecl *FD = E->getDirectCallee(); 1990 if (!FD) 1991 return true; 1992 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1993 if (Attr && Name == Attr->getLabel()) { 1994 Result = true; 1995 return false; 1996 } 1997 unsigned BuiltinID = FD->getBuiltinID(); 1998 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1999 return true; 2000 StringRef BuiltinName = BI.getName(BuiltinID); 2001 if (BuiltinName.startswith("__builtin_") && 2002 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2003 Result = true; 2004 return false; 2005 } 2006 return true; 2007 } 2008 }; 2009 2010 // Make sure we're not referencing non-imported vars or functions. 2011 struct DLLImportFunctionVisitor 2012 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2013 bool SafeToInline = true; 2014 2015 bool shouldVisitImplicitCode() const { return true; } 2016 2017 bool VisitVarDecl(VarDecl *VD) { 2018 if (VD->getTLSKind()) { 2019 // A thread-local variable cannot be imported. 2020 SafeToInline = false; 2021 return SafeToInline; 2022 } 2023 2024 // A variable definition might imply a destructor call. 2025 if (VD->isThisDeclarationADefinition()) 2026 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2027 2028 return SafeToInline; 2029 } 2030 2031 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2032 if (const auto *D = E->getTemporary()->getDestructor()) 2033 SafeToInline = D->hasAttr<DLLImportAttr>(); 2034 return SafeToInline; 2035 } 2036 2037 bool VisitDeclRefExpr(DeclRefExpr *E) { 2038 ValueDecl *VD = E->getDecl(); 2039 if (isa<FunctionDecl>(VD)) 2040 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2041 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2042 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2043 return SafeToInline; 2044 } 2045 2046 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2047 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2048 return SafeToInline; 2049 } 2050 2051 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2052 CXXMethodDecl *M = E->getMethodDecl(); 2053 if (!M) { 2054 // Call through a pointer to member function. This is safe to inline. 2055 SafeToInline = true; 2056 } else { 2057 SafeToInline = M->hasAttr<DLLImportAttr>(); 2058 } 2059 return SafeToInline; 2060 } 2061 2062 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2063 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2064 return SafeToInline; 2065 } 2066 2067 bool VisitCXXNewExpr(CXXNewExpr *E) { 2068 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2069 return SafeToInline; 2070 } 2071 }; 2072 } 2073 2074 // isTriviallyRecursive - Check if this function calls another 2075 // decl that, because of the asm attribute or the other decl being a builtin, 2076 // ends up pointing to itself. 2077 bool 2078 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2079 StringRef Name; 2080 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2081 // asm labels are a special kind of mangling we have to support. 2082 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2083 if (!Attr) 2084 return false; 2085 Name = Attr->getLabel(); 2086 } else { 2087 Name = FD->getName(); 2088 } 2089 2090 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2091 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2092 return Walker.Result; 2093 } 2094 2095 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2096 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2097 return true; 2098 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2099 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2100 return false; 2101 2102 if (F->hasAttr<DLLImportAttr>()) { 2103 // Check whether it would be safe to inline this dllimport function. 2104 DLLImportFunctionVisitor Visitor; 2105 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2106 if (!Visitor.SafeToInline) 2107 return false; 2108 2109 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2110 // Implicit destructor invocations aren't captured in the AST, so the 2111 // check above can't see them. Check for them manually here. 2112 for (const Decl *Member : Dtor->getParent()->decls()) 2113 if (isa<FieldDecl>(Member)) 2114 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2115 return false; 2116 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2117 if (HasNonDllImportDtor(B.getType())) 2118 return false; 2119 } 2120 } 2121 2122 // PR9614. Avoid cases where the source code is lying to us. An available 2123 // externally function should have an equivalent function somewhere else, 2124 // but a function that calls itself is clearly not equivalent to the real 2125 // implementation. 2126 // This happens in glibc's btowc and in some configure checks. 2127 return !isTriviallyRecursive(F); 2128 } 2129 2130 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2131 return CodeGenOpts.OptimizationLevel > 0; 2132 } 2133 2134 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2135 const auto *D = cast<ValueDecl>(GD.getDecl()); 2136 2137 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2138 Context.getSourceManager(), 2139 "Generating code for declaration"); 2140 2141 if (isa<FunctionDecl>(D)) { 2142 // At -O0, don't generate IR for functions with available_externally 2143 // linkage. 2144 if (!shouldEmitFunction(GD)) 2145 return; 2146 2147 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2148 // Make sure to emit the definition(s) before we emit the thunks. 2149 // This is necessary for the generation of certain thunks. 2150 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2151 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2152 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2153 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2154 else 2155 EmitGlobalFunctionDefinition(GD, GV); 2156 2157 if (Method->isVirtual()) 2158 getVTables().EmitThunks(GD); 2159 2160 return; 2161 } 2162 2163 return EmitGlobalFunctionDefinition(GD, GV); 2164 } 2165 2166 if (const auto *VD = dyn_cast<VarDecl>(D)) 2167 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2168 2169 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2170 } 2171 2172 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2173 llvm::Function *NewFn); 2174 2175 void CodeGenModule::emitMultiVersionFunctions() { 2176 for (GlobalDecl GD : MultiVersionFuncs) { 2177 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2178 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2179 getContext().forEachMultiversionedFunctionVersion( 2180 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2181 GlobalDecl CurGD{ 2182 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2183 StringRef MangledName = getMangledName(CurGD); 2184 llvm::Constant *Func = GetGlobalValue(MangledName); 2185 if (!Func) { 2186 if (CurFD->isDefined()) { 2187 EmitGlobalFunctionDefinition(CurGD, nullptr); 2188 Func = GetGlobalValue(MangledName); 2189 } else { 2190 const CGFunctionInfo &FI = 2191 getTypes().arrangeGlobalDeclaration(GD); 2192 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2193 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2194 /*DontDefer=*/false, ForDefinition); 2195 } 2196 assert(Func && "This should have just been created"); 2197 } 2198 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2199 CurFD->getAttr<TargetAttr>()->parse()); 2200 }); 2201 2202 llvm::Function *ResolverFunc = cast<llvm::Function>( 2203 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2204 if (supportsCOMDAT()) 2205 ResolverFunc->setComdat( 2206 getModule().getOrInsertComdat(ResolverFunc->getName())); 2207 std::stable_sort( 2208 Options.begin(), Options.end(), 2209 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2210 CodeGenFunction CGF(*this); 2211 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2212 } 2213 } 2214 2215 /// If an ifunc for the specified mangled name is not in the module, create and 2216 /// return an llvm IFunc Function with the specified type. 2217 llvm::Constant * 2218 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2219 StringRef MangledName, 2220 const FunctionDecl *FD) { 2221 std::string IFuncName = (MangledName + ".ifunc").str(); 2222 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2223 return IFuncGV; 2224 2225 // Since this is the first time we've created this IFunc, make sure 2226 // that we put this multiversioned function into the list to be 2227 // replaced later. 2228 MultiVersionFuncs.push_back(GD); 2229 2230 std::string ResolverName = (MangledName + ".resolver").str(); 2231 llvm::Type *ResolverType = llvm::FunctionType::get( 2232 llvm::PointerType::get(DeclTy, 2233 Context.getTargetAddressSpace(FD->getType())), 2234 false); 2235 llvm::Constant *Resolver = 2236 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2237 /*ForVTable=*/false); 2238 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2239 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2240 GIF->setName(IFuncName); 2241 SetCommonAttributes(FD, GIF); 2242 2243 return GIF; 2244 } 2245 2246 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2247 /// module, create and return an llvm Function with the specified type. If there 2248 /// is something in the module with the specified name, return it potentially 2249 /// bitcasted to the right type. 2250 /// 2251 /// If D is non-null, it specifies a decl that correspond to this. This is used 2252 /// to set the attributes on the function when it is first created. 2253 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2254 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2255 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2256 ForDefinition_t IsForDefinition) { 2257 const Decl *D = GD.getDecl(); 2258 2259 // Any attempts to use a MultiVersion function should result in retrieving 2260 // the iFunc instead. Name Mangling will handle the rest of the changes. 2261 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2262 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2263 UpdateMultiVersionNames(GD, FD); 2264 if (!IsForDefinition) 2265 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2266 } 2267 } 2268 2269 // Lookup the entry, lazily creating it if necessary. 2270 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2271 if (Entry) { 2272 if (WeakRefReferences.erase(Entry)) { 2273 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2274 if (FD && !FD->hasAttr<WeakAttr>()) 2275 Entry->setLinkage(llvm::Function::ExternalLinkage); 2276 } 2277 2278 // Handle dropped DLL attributes. 2279 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2280 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2281 2282 // If there are two attempts to define the same mangled name, issue an 2283 // error. 2284 if (IsForDefinition && !Entry->isDeclaration()) { 2285 GlobalDecl OtherGD; 2286 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2287 // to make sure that we issue an error only once. 2288 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2289 (GD.getCanonicalDecl().getDecl() != 2290 OtherGD.getCanonicalDecl().getDecl()) && 2291 DiagnosedConflictingDefinitions.insert(GD).second) { 2292 getDiags().Report(D->getLocation(), 2293 diag::err_duplicate_mangled_name); 2294 getDiags().Report(OtherGD.getDecl()->getLocation(), 2295 diag::note_previous_definition); 2296 } 2297 } 2298 2299 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2300 (Entry->getType()->getElementType() == Ty)) { 2301 return Entry; 2302 } 2303 2304 // Make sure the result is of the correct type. 2305 // (If function is requested for a definition, we always need to create a new 2306 // function, not just return a bitcast.) 2307 if (!IsForDefinition) 2308 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2309 } 2310 2311 // This function doesn't have a complete type (for example, the return 2312 // type is an incomplete struct). Use a fake type instead, and make 2313 // sure not to try to set attributes. 2314 bool IsIncompleteFunction = false; 2315 2316 llvm::FunctionType *FTy; 2317 if (isa<llvm::FunctionType>(Ty)) { 2318 FTy = cast<llvm::FunctionType>(Ty); 2319 } else { 2320 FTy = llvm::FunctionType::get(VoidTy, false); 2321 IsIncompleteFunction = true; 2322 } 2323 2324 llvm::Function *F = 2325 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2326 Entry ? StringRef() : MangledName, &getModule()); 2327 2328 // If we already created a function with the same mangled name (but different 2329 // type) before, take its name and add it to the list of functions to be 2330 // replaced with F at the end of CodeGen. 2331 // 2332 // This happens if there is a prototype for a function (e.g. "int f()") and 2333 // then a definition of a different type (e.g. "int f(int x)"). 2334 if (Entry) { 2335 F->takeName(Entry); 2336 2337 // This might be an implementation of a function without a prototype, in 2338 // which case, try to do special replacement of calls which match the new 2339 // prototype. The really key thing here is that we also potentially drop 2340 // arguments from the call site so as to make a direct call, which makes the 2341 // inliner happier and suppresses a number of optimizer warnings (!) about 2342 // dropping arguments. 2343 if (!Entry->use_empty()) { 2344 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2345 Entry->removeDeadConstantUsers(); 2346 } 2347 2348 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2349 F, Entry->getType()->getElementType()->getPointerTo()); 2350 addGlobalValReplacement(Entry, BC); 2351 } 2352 2353 assert(F->getName() == MangledName && "name was uniqued!"); 2354 if (D) 2355 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2356 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2357 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2358 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2359 } 2360 2361 if (!DontDefer) { 2362 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2363 // each other bottoming out with the base dtor. Therefore we emit non-base 2364 // dtors on usage, even if there is no dtor definition in the TU. 2365 if (D && isa<CXXDestructorDecl>(D) && 2366 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2367 GD.getDtorType())) 2368 addDeferredDeclToEmit(GD); 2369 2370 // This is the first use or definition of a mangled name. If there is a 2371 // deferred decl with this name, remember that we need to emit it at the end 2372 // of the file. 2373 auto DDI = DeferredDecls.find(MangledName); 2374 if (DDI != DeferredDecls.end()) { 2375 // Move the potentially referenced deferred decl to the 2376 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2377 // don't need it anymore). 2378 addDeferredDeclToEmit(DDI->second); 2379 DeferredDecls.erase(DDI); 2380 2381 // Otherwise, there are cases we have to worry about where we're 2382 // using a declaration for which we must emit a definition but where 2383 // we might not find a top-level definition: 2384 // - member functions defined inline in their classes 2385 // - friend functions defined inline in some class 2386 // - special member functions with implicit definitions 2387 // If we ever change our AST traversal to walk into class methods, 2388 // this will be unnecessary. 2389 // 2390 // We also don't emit a definition for a function if it's going to be an 2391 // entry in a vtable, unless it's already marked as used. 2392 } else if (getLangOpts().CPlusPlus && D) { 2393 // Look for a declaration that's lexically in a record. 2394 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2395 FD = FD->getPreviousDecl()) { 2396 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2397 if (FD->doesThisDeclarationHaveABody()) { 2398 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2399 break; 2400 } 2401 } 2402 } 2403 } 2404 } 2405 2406 // Make sure the result is of the requested type. 2407 if (!IsIncompleteFunction) { 2408 assert(F->getType()->getElementType() == Ty); 2409 return F; 2410 } 2411 2412 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2413 return llvm::ConstantExpr::getBitCast(F, PTy); 2414 } 2415 2416 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2417 /// non-null, then this function will use the specified type if it has to 2418 /// create it (this occurs when we see a definition of the function). 2419 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2420 llvm::Type *Ty, 2421 bool ForVTable, 2422 bool DontDefer, 2423 ForDefinition_t IsForDefinition) { 2424 // If there was no specific requested type, just convert it now. 2425 if (!Ty) { 2426 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2427 auto CanonTy = Context.getCanonicalType(FD->getType()); 2428 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2429 } 2430 2431 StringRef MangledName = getMangledName(GD); 2432 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2433 /*IsThunk=*/false, llvm::AttributeList(), 2434 IsForDefinition); 2435 } 2436 2437 static const FunctionDecl * 2438 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2439 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2440 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2441 2442 IdentifierInfo &CII = C.Idents.get(Name); 2443 for (const auto &Result : DC->lookup(&CII)) 2444 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2445 return FD; 2446 2447 if (!C.getLangOpts().CPlusPlus) 2448 return nullptr; 2449 2450 // Demangle the premangled name from getTerminateFn() 2451 IdentifierInfo &CXXII = 2452 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2453 ? C.Idents.get("terminate") 2454 : C.Idents.get(Name); 2455 2456 for (const auto &N : {"__cxxabiv1", "std"}) { 2457 IdentifierInfo &NS = C.Idents.get(N); 2458 for (const auto &Result : DC->lookup(&NS)) { 2459 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2460 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2461 for (const auto &Result : LSD->lookup(&NS)) 2462 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2463 break; 2464 2465 if (ND) 2466 for (const auto &Result : ND->lookup(&CXXII)) 2467 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2468 return FD; 2469 } 2470 } 2471 2472 return nullptr; 2473 } 2474 2475 /// CreateRuntimeFunction - Create a new runtime function with the specified 2476 /// type and name. 2477 llvm::Constant * 2478 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2479 llvm::AttributeList ExtraAttrs, 2480 bool Local) { 2481 llvm::Constant *C = 2482 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2483 /*DontDefer=*/false, /*IsThunk=*/false, 2484 ExtraAttrs); 2485 2486 if (auto *F = dyn_cast<llvm::Function>(C)) { 2487 if (F->empty()) { 2488 F->setCallingConv(getRuntimeCC()); 2489 2490 if (!Local && getTriple().isOSBinFormatCOFF() && 2491 !getCodeGenOpts().LTOVisibilityPublicStd && 2492 !getTriple().isWindowsGNUEnvironment()) { 2493 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2494 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2495 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2496 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2497 } 2498 } 2499 } 2500 } 2501 2502 return C; 2503 } 2504 2505 /// CreateBuiltinFunction - Create a new builtin function with the specified 2506 /// type and name. 2507 llvm::Constant * 2508 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2509 llvm::AttributeList ExtraAttrs) { 2510 llvm::Constant *C = 2511 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2512 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2513 if (auto *F = dyn_cast<llvm::Function>(C)) 2514 if (F->empty()) 2515 F->setCallingConv(getBuiltinCC()); 2516 return C; 2517 } 2518 2519 /// isTypeConstant - Determine whether an object of this type can be emitted 2520 /// as a constant. 2521 /// 2522 /// If ExcludeCtor is true, the duration when the object's constructor runs 2523 /// will not be considered. The caller will need to verify that the object is 2524 /// not written to during its construction. 2525 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2526 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2527 return false; 2528 2529 if (Context.getLangOpts().CPlusPlus) { 2530 if (const CXXRecordDecl *Record 2531 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2532 return ExcludeCtor && !Record->hasMutableFields() && 2533 Record->hasTrivialDestructor(); 2534 } 2535 2536 return true; 2537 } 2538 2539 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2540 /// create and return an llvm GlobalVariable with the specified type. If there 2541 /// is something in the module with the specified name, return it potentially 2542 /// bitcasted to the right type. 2543 /// 2544 /// If D is non-null, it specifies a decl that correspond to this. This is used 2545 /// to set the attributes on the global when it is first created. 2546 /// 2547 /// If IsForDefinition is true, it is guranteed that an actual global with 2548 /// type Ty will be returned, not conversion of a variable with the same 2549 /// mangled name but some other type. 2550 llvm::Constant * 2551 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2552 llvm::PointerType *Ty, 2553 const VarDecl *D, 2554 ForDefinition_t IsForDefinition) { 2555 // Lookup the entry, lazily creating it if necessary. 2556 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2557 if (Entry) { 2558 if (WeakRefReferences.erase(Entry)) { 2559 if (D && !D->hasAttr<WeakAttr>()) 2560 Entry->setLinkage(llvm::Function::ExternalLinkage); 2561 } 2562 2563 // Handle dropped DLL attributes. 2564 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2565 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2566 2567 if (Entry->getType() == Ty) 2568 return Entry; 2569 2570 // If there are two attempts to define the same mangled name, issue an 2571 // error. 2572 if (IsForDefinition && !Entry->isDeclaration()) { 2573 GlobalDecl OtherGD; 2574 const VarDecl *OtherD; 2575 2576 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2577 // to make sure that we issue an error only once. 2578 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2579 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2580 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2581 OtherD->hasInit() && 2582 DiagnosedConflictingDefinitions.insert(D).second) { 2583 getDiags().Report(D->getLocation(), 2584 diag::err_duplicate_mangled_name); 2585 getDiags().Report(OtherGD.getDecl()->getLocation(), 2586 diag::note_previous_definition); 2587 } 2588 } 2589 2590 // Make sure the result is of the correct type. 2591 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2592 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2593 2594 // (If global is requested for a definition, we always need to create a new 2595 // global, not just return a bitcast.) 2596 if (!IsForDefinition) 2597 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2598 } 2599 2600 auto AddrSpace = GetGlobalVarAddressSpace(D); 2601 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2602 2603 auto *GV = new llvm::GlobalVariable( 2604 getModule(), Ty->getElementType(), false, 2605 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2606 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2607 2608 // If we already created a global with the same mangled name (but different 2609 // type) before, take its name and remove it from its parent. 2610 if (Entry) { 2611 GV->takeName(Entry); 2612 2613 if (!Entry->use_empty()) { 2614 llvm::Constant *NewPtrForOldDecl = 2615 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2616 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2617 } 2618 2619 Entry->eraseFromParent(); 2620 } 2621 2622 // This is the first use or definition of a mangled name. If there is a 2623 // deferred decl with this name, remember that we need to emit it at the end 2624 // of the file. 2625 auto DDI = DeferredDecls.find(MangledName); 2626 if (DDI != DeferredDecls.end()) { 2627 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2628 // list, and remove it from DeferredDecls (since we don't need it anymore). 2629 addDeferredDeclToEmit(DDI->second); 2630 DeferredDecls.erase(DDI); 2631 } 2632 2633 // Handle things which are present even on external declarations. 2634 if (D) { 2635 // FIXME: This code is overly simple and should be merged with other global 2636 // handling. 2637 GV->setConstant(isTypeConstant(D->getType(), false)); 2638 2639 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2640 2641 setLinkageForGV(GV, D); 2642 setGlobalVisibility(GV, D); 2643 2644 if (D->getTLSKind()) { 2645 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2646 CXXThreadLocals.push_back(D); 2647 setTLSMode(GV, *D); 2648 } 2649 2650 // If required by the ABI, treat declarations of static data members with 2651 // inline initializers as definitions. 2652 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2653 EmitGlobalVarDefinition(D); 2654 } 2655 2656 // Emit section information for extern variables. 2657 if (D->hasExternalStorage()) { 2658 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2659 GV->setSection(SA->getName()); 2660 } 2661 2662 // Handle XCore specific ABI requirements. 2663 if (getTriple().getArch() == llvm::Triple::xcore && 2664 D->getLanguageLinkage() == CLanguageLinkage && 2665 D->getType().isConstant(Context) && 2666 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2667 GV->setSection(".cp.rodata"); 2668 2669 // Check if we a have a const declaration with an initializer, we may be 2670 // able to emit it as available_externally to expose it's value to the 2671 // optimizer. 2672 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2673 D->getType().isConstQualified() && !GV->hasInitializer() && 2674 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2675 const auto *Record = 2676 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2677 bool HasMutableFields = Record && Record->hasMutableFields(); 2678 if (!HasMutableFields) { 2679 const VarDecl *InitDecl; 2680 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2681 if (InitExpr) { 2682 ConstantEmitter emitter(*this); 2683 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2684 if (Init) { 2685 auto *InitType = Init->getType(); 2686 if (GV->getType()->getElementType() != InitType) { 2687 // The type of the initializer does not match the definition. 2688 // This happens when an initializer has a different type from 2689 // the type of the global (because of padding at the end of a 2690 // structure for instance). 2691 GV->setName(StringRef()); 2692 // Make a new global with the correct type, this is now guaranteed 2693 // to work. 2694 auto *NewGV = cast<llvm::GlobalVariable>( 2695 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2696 2697 // Erase the old global, since it is no longer used. 2698 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2699 GV = NewGV; 2700 } else { 2701 GV->setInitializer(Init); 2702 GV->setConstant(true); 2703 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2704 } 2705 emitter.finalize(GV); 2706 } 2707 } 2708 } 2709 } 2710 } 2711 2712 LangAS ExpectedAS = 2713 D ? D->getType().getAddressSpace() 2714 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2715 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2716 Ty->getPointerAddressSpace()); 2717 if (AddrSpace != ExpectedAS) 2718 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2719 ExpectedAS, Ty); 2720 2721 return GV; 2722 } 2723 2724 llvm::Constant * 2725 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2726 ForDefinition_t IsForDefinition) { 2727 const Decl *D = GD.getDecl(); 2728 if (isa<CXXConstructorDecl>(D)) 2729 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2730 getFromCtorType(GD.getCtorType()), 2731 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2732 /*DontDefer=*/false, IsForDefinition); 2733 else if (isa<CXXDestructorDecl>(D)) 2734 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2735 getFromDtorType(GD.getDtorType()), 2736 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2737 /*DontDefer=*/false, IsForDefinition); 2738 else if (isa<CXXMethodDecl>(D)) { 2739 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2740 cast<CXXMethodDecl>(D)); 2741 auto Ty = getTypes().GetFunctionType(*FInfo); 2742 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2743 IsForDefinition); 2744 } else if (isa<FunctionDecl>(D)) { 2745 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2746 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2747 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2748 IsForDefinition); 2749 } else 2750 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2751 IsForDefinition); 2752 } 2753 2754 llvm::GlobalVariable * 2755 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2756 llvm::Type *Ty, 2757 llvm::GlobalValue::LinkageTypes Linkage) { 2758 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2759 llvm::GlobalVariable *OldGV = nullptr; 2760 2761 if (GV) { 2762 // Check if the variable has the right type. 2763 if (GV->getType()->getElementType() == Ty) 2764 return GV; 2765 2766 // Because C++ name mangling, the only way we can end up with an already 2767 // existing global with the same name is if it has been declared extern "C". 2768 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2769 OldGV = GV; 2770 } 2771 2772 // Create a new variable. 2773 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2774 Linkage, nullptr, Name); 2775 2776 if (OldGV) { 2777 // Replace occurrences of the old variable if needed. 2778 GV->takeName(OldGV); 2779 2780 if (!OldGV->use_empty()) { 2781 llvm::Constant *NewPtrForOldDecl = 2782 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2783 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2784 } 2785 2786 OldGV->eraseFromParent(); 2787 } 2788 2789 if (supportsCOMDAT() && GV->isWeakForLinker() && 2790 !GV->hasAvailableExternallyLinkage()) 2791 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2792 2793 return GV; 2794 } 2795 2796 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2797 /// given global variable. If Ty is non-null and if the global doesn't exist, 2798 /// then it will be created with the specified type instead of whatever the 2799 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2800 /// that an actual global with type Ty will be returned, not conversion of a 2801 /// variable with the same mangled name but some other type. 2802 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2803 llvm::Type *Ty, 2804 ForDefinition_t IsForDefinition) { 2805 assert(D->hasGlobalStorage() && "Not a global variable"); 2806 QualType ASTTy = D->getType(); 2807 if (!Ty) 2808 Ty = getTypes().ConvertTypeForMem(ASTTy); 2809 2810 llvm::PointerType *PTy = 2811 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2812 2813 StringRef MangledName = getMangledName(D); 2814 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2815 } 2816 2817 /// CreateRuntimeVariable - Create a new runtime global variable with the 2818 /// specified type and name. 2819 llvm::Constant * 2820 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2821 StringRef Name) { 2822 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2823 } 2824 2825 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2826 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2827 2828 StringRef MangledName = getMangledName(D); 2829 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2830 2831 // We already have a definition, not declaration, with the same mangled name. 2832 // Emitting of declaration is not required (and actually overwrites emitted 2833 // definition). 2834 if (GV && !GV->isDeclaration()) 2835 return; 2836 2837 // If we have not seen a reference to this variable yet, place it into the 2838 // deferred declarations table to be emitted if needed later. 2839 if (!MustBeEmitted(D) && !GV) { 2840 DeferredDecls[MangledName] = D; 2841 return; 2842 } 2843 2844 // The tentative definition is the only definition. 2845 EmitGlobalVarDefinition(D); 2846 } 2847 2848 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2849 return Context.toCharUnitsFromBits( 2850 getDataLayout().getTypeStoreSizeInBits(Ty)); 2851 } 2852 2853 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2854 LangAS AddrSpace = LangAS::Default; 2855 if (LangOpts.OpenCL) { 2856 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2857 assert(AddrSpace == LangAS::opencl_global || 2858 AddrSpace == LangAS::opencl_constant || 2859 AddrSpace == LangAS::opencl_local || 2860 AddrSpace >= LangAS::FirstTargetAddressSpace); 2861 return AddrSpace; 2862 } 2863 2864 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2865 if (D && D->hasAttr<CUDAConstantAttr>()) 2866 return LangAS::cuda_constant; 2867 else if (D && D->hasAttr<CUDASharedAttr>()) 2868 return LangAS::cuda_shared; 2869 else 2870 return LangAS::cuda_device; 2871 } 2872 2873 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2874 } 2875 2876 template<typename SomeDecl> 2877 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2878 llvm::GlobalValue *GV) { 2879 if (!getLangOpts().CPlusPlus) 2880 return; 2881 2882 // Must have 'used' attribute, or else inline assembly can't rely on 2883 // the name existing. 2884 if (!D->template hasAttr<UsedAttr>()) 2885 return; 2886 2887 // Must have internal linkage and an ordinary name. 2888 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2889 return; 2890 2891 // Must be in an extern "C" context. Entities declared directly within 2892 // a record are not extern "C" even if the record is in such a context. 2893 const SomeDecl *First = D->getFirstDecl(); 2894 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2895 return; 2896 2897 // OK, this is an internal linkage entity inside an extern "C" linkage 2898 // specification. Make a note of that so we can give it the "expected" 2899 // mangled name if nothing else is using that name. 2900 std::pair<StaticExternCMap::iterator, bool> R = 2901 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2902 2903 // If we have multiple internal linkage entities with the same name 2904 // in extern "C" regions, none of them gets that name. 2905 if (!R.second) 2906 R.first->second = nullptr; 2907 } 2908 2909 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2910 if (!CGM.supportsCOMDAT()) 2911 return false; 2912 2913 if (D.hasAttr<SelectAnyAttr>()) 2914 return true; 2915 2916 GVALinkage Linkage; 2917 if (auto *VD = dyn_cast<VarDecl>(&D)) 2918 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2919 else 2920 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2921 2922 switch (Linkage) { 2923 case GVA_Internal: 2924 case GVA_AvailableExternally: 2925 case GVA_StrongExternal: 2926 return false; 2927 case GVA_DiscardableODR: 2928 case GVA_StrongODR: 2929 return true; 2930 } 2931 llvm_unreachable("No such linkage"); 2932 } 2933 2934 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2935 llvm::GlobalObject &GO) { 2936 if (!shouldBeInCOMDAT(*this, D)) 2937 return; 2938 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2939 } 2940 2941 /// Pass IsTentative as true if you want to create a tentative definition. 2942 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2943 bool IsTentative) { 2944 // OpenCL global variables of sampler type are translated to function calls, 2945 // therefore no need to be translated. 2946 QualType ASTTy = D->getType(); 2947 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2948 return; 2949 2950 llvm::Constant *Init = nullptr; 2951 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2952 bool NeedsGlobalCtor = false; 2953 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2954 2955 const VarDecl *InitDecl; 2956 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2957 2958 Optional<ConstantEmitter> emitter; 2959 2960 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2961 // as part of their declaration." Sema has already checked for 2962 // error cases, so we just need to set Init to UndefValue. 2963 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2964 D->hasAttr<CUDASharedAttr>()) 2965 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2966 else if (!InitExpr) { 2967 // This is a tentative definition; tentative definitions are 2968 // implicitly initialized with { 0 }. 2969 // 2970 // Note that tentative definitions are only emitted at the end of 2971 // a translation unit, so they should never have incomplete 2972 // type. In addition, EmitTentativeDefinition makes sure that we 2973 // never attempt to emit a tentative definition if a real one 2974 // exists. A use may still exists, however, so we still may need 2975 // to do a RAUW. 2976 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2977 Init = EmitNullConstant(D->getType()); 2978 } else { 2979 initializedGlobalDecl = GlobalDecl(D); 2980 emitter.emplace(*this); 2981 Init = emitter->tryEmitForInitializer(*InitDecl); 2982 2983 if (!Init) { 2984 QualType T = InitExpr->getType(); 2985 if (D->getType()->isReferenceType()) 2986 T = D->getType(); 2987 2988 if (getLangOpts().CPlusPlus) { 2989 Init = EmitNullConstant(T); 2990 NeedsGlobalCtor = true; 2991 } else { 2992 ErrorUnsupported(D, "static initializer"); 2993 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2994 } 2995 } else { 2996 // We don't need an initializer, so remove the entry for the delayed 2997 // initializer position (just in case this entry was delayed) if we 2998 // also don't need to register a destructor. 2999 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3000 DelayedCXXInitPosition.erase(D); 3001 } 3002 } 3003 3004 llvm::Type* InitType = Init->getType(); 3005 llvm::Constant *Entry = 3006 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3007 3008 // Strip off a bitcast if we got one back. 3009 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3010 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3011 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3012 // All zero index gep. 3013 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3014 Entry = CE->getOperand(0); 3015 } 3016 3017 // Entry is now either a Function or GlobalVariable. 3018 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3019 3020 // We have a definition after a declaration with the wrong type. 3021 // We must make a new GlobalVariable* and update everything that used OldGV 3022 // (a declaration or tentative definition) with the new GlobalVariable* 3023 // (which will be a definition). 3024 // 3025 // This happens if there is a prototype for a global (e.g. 3026 // "extern int x[];") and then a definition of a different type (e.g. 3027 // "int x[10];"). This also happens when an initializer has a different type 3028 // from the type of the global (this happens with unions). 3029 if (!GV || GV->getType()->getElementType() != InitType || 3030 GV->getType()->getAddressSpace() != 3031 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3032 3033 // Move the old entry aside so that we'll create a new one. 3034 Entry->setName(StringRef()); 3035 3036 // Make a new global with the correct type, this is now guaranteed to work. 3037 GV = cast<llvm::GlobalVariable>( 3038 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3039 3040 // Replace all uses of the old global with the new global 3041 llvm::Constant *NewPtrForOldDecl = 3042 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3043 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3044 3045 // Erase the old global, since it is no longer used. 3046 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3047 } 3048 3049 MaybeHandleStaticInExternC(D, GV); 3050 3051 if (D->hasAttr<AnnotateAttr>()) 3052 AddGlobalAnnotations(D, GV); 3053 3054 // Set the llvm linkage type as appropriate. 3055 llvm::GlobalValue::LinkageTypes Linkage = 3056 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3057 3058 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3059 // the device. [...]" 3060 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3061 // __device__, declares a variable that: [...] 3062 // Is accessible from all the threads within the grid and from the host 3063 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3064 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3065 if (GV && LangOpts.CUDA) { 3066 if (LangOpts.CUDAIsDevice) { 3067 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3068 GV->setExternallyInitialized(true); 3069 } else { 3070 // Host-side shadows of external declarations of device-side 3071 // global variables become internal definitions. These have to 3072 // be internal in order to prevent name conflicts with global 3073 // host variables with the same name in a different TUs. 3074 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3075 Linkage = llvm::GlobalValue::InternalLinkage; 3076 3077 // Shadow variables and their properties must be registered 3078 // with CUDA runtime. 3079 unsigned Flags = 0; 3080 if (!D->hasDefinition()) 3081 Flags |= CGCUDARuntime::ExternDeviceVar; 3082 if (D->hasAttr<CUDAConstantAttr>()) 3083 Flags |= CGCUDARuntime::ConstantDeviceVar; 3084 getCUDARuntime().registerDeviceVar(*GV, Flags); 3085 } else if (D->hasAttr<CUDASharedAttr>()) 3086 // __shared__ variables are odd. Shadows do get created, but 3087 // they are not registered with the CUDA runtime, so they 3088 // can't really be used to access their device-side 3089 // counterparts. It's not clear yet whether it's nvcc's bug or 3090 // a feature, but we've got to do the same for compatibility. 3091 Linkage = llvm::GlobalValue::InternalLinkage; 3092 } 3093 } 3094 3095 GV->setInitializer(Init); 3096 if (emitter) emitter->finalize(GV); 3097 3098 // If it is safe to mark the global 'constant', do so now. 3099 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3100 isTypeConstant(D->getType(), true)); 3101 3102 // If it is in a read-only section, mark it 'constant'. 3103 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3104 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3105 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3106 GV->setConstant(true); 3107 } 3108 3109 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3110 3111 3112 // On Darwin, if the normal linkage of a C++ thread_local variable is 3113 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3114 // copies within a linkage unit; otherwise, the backing variable has 3115 // internal linkage and all accesses should just be calls to the 3116 // Itanium-specified entry point, which has the normal linkage of the 3117 // variable. This is to preserve the ability to change the implementation 3118 // behind the scenes. 3119 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3120 Context.getTargetInfo().getTriple().isOSDarwin() && 3121 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3122 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3123 Linkage = llvm::GlobalValue::InternalLinkage; 3124 3125 GV->setLinkage(Linkage); 3126 if (D->hasAttr<DLLImportAttr>()) 3127 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3128 else if (D->hasAttr<DLLExportAttr>()) 3129 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3130 else 3131 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3132 3133 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3134 // common vars aren't constant even if declared const. 3135 GV->setConstant(false); 3136 // Tentative definition of global variables may be initialized with 3137 // non-zero null pointers. In this case they should have weak linkage 3138 // since common linkage must have zero initializer and must not have 3139 // explicit section therefore cannot have non-zero initial value. 3140 if (!GV->getInitializer()->isNullValue()) 3141 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3142 } 3143 3144 setNonAliasAttributes(D, GV); 3145 3146 if (D->getTLSKind() && !GV->isThreadLocal()) { 3147 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3148 CXXThreadLocals.push_back(D); 3149 setTLSMode(GV, *D); 3150 } 3151 3152 maybeSetTrivialComdat(*D, *GV); 3153 3154 // Emit the initializer function if necessary. 3155 if (NeedsGlobalCtor || NeedsGlobalDtor) 3156 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3157 3158 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3159 3160 // Emit global variable debug information. 3161 if (CGDebugInfo *DI = getModuleDebugInfo()) 3162 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3163 DI->EmitGlobalVariable(GV, D); 3164 } 3165 3166 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3167 CodeGenModule &CGM, const VarDecl *D, 3168 bool NoCommon) { 3169 // Don't give variables common linkage if -fno-common was specified unless it 3170 // was overridden by a NoCommon attribute. 3171 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3172 return true; 3173 3174 // C11 6.9.2/2: 3175 // A declaration of an identifier for an object that has file scope without 3176 // an initializer, and without a storage-class specifier or with the 3177 // storage-class specifier static, constitutes a tentative definition. 3178 if (D->getInit() || D->hasExternalStorage()) 3179 return true; 3180 3181 // A variable cannot be both common and exist in a section. 3182 if (D->hasAttr<SectionAttr>()) 3183 return true; 3184 3185 // A variable cannot be both common and exist in a section. 3186 // We dont try to determine which is the right section in the front-end. 3187 // If no specialized section name is applicable, it will resort to default. 3188 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3189 D->hasAttr<PragmaClangDataSectionAttr>() || 3190 D->hasAttr<PragmaClangRodataSectionAttr>()) 3191 return true; 3192 3193 // Thread local vars aren't considered common linkage. 3194 if (D->getTLSKind()) 3195 return true; 3196 3197 // Tentative definitions marked with WeakImportAttr are true definitions. 3198 if (D->hasAttr<WeakImportAttr>()) 3199 return true; 3200 3201 // A variable cannot be both common and exist in a comdat. 3202 if (shouldBeInCOMDAT(CGM, *D)) 3203 return true; 3204 3205 // Declarations with a required alignment do not have common linkage in MSVC 3206 // mode. 3207 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3208 if (D->hasAttr<AlignedAttr>()) 3209 return true; 3210 QualType VarType = D->getType(); 3211 if (Context.isAlignmentRequired(VarType)) 3212 return true; 3213 3214 if (const auto *RT = VarType->getAs<RecordType>()) { 3215 const RecordDecl *RD = RT->getDecl(); 3216 for (const FieldDecl *FD : RD->fields()) { 3217 if (FD->isBitField()) 3218 continue; 3219 if (FD->hasAttr<AlignedAttr>()) 3220 return true; 3221 if (Context.isAlignmentRequired(FD->getType())) 3222 return true; 3223 } 3224 } 3225 } 3226 3227 return false; 3228 } 3229 3230 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3231 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3232 if (Linkage == GVA_Internal) 3233 return llvm::Function::InternalLinkage; 3234 3235 if (D->hasAttr<WeakAttr>()) { 3236 if (IsConstantVariable) 3237 return llvm::GlobalVariable::WeakODRLinkage; 3238 else 3239 return llvm::GlobalVariable::WeakAnyLinkage; 3240 } 3241 3242 // We are guaranteed to have a strong definition somewhere else, 3243 // so we can use available_externally linkage. 3244 if (Linkage == GVA_AvailableExternally) 3245 return llvm::GlobalValue::AvailableExternallyLinkage; 3246 3247 // Note that Apple's kernel linker doesn't support symbol 3248 // coalescing, so we need to avoid linkonce and weak linkages there. 3249 // Normally, this means we just map to internal, but for explicit 3250 // instantiations we'll map to external. 3251 3252 // In C++, the compiler has to emit a definition in every translation unit 3253 // that references the function. We should use linkonce_odr because 3254 // a) if all references in this translation unit are optimized away, we 3255 // don't need to codegen it. b) if the function persists, it needs to be 3256 // merged with other definitions. c) C++ has the ODR, so we know the 3257 // definition is dependable. 3258 if (Linkage == GVA_DiscardableODR) 3259 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3260 : llvm::Function::InternalLinkage; 3261 3262 // An explicit instantiation of a template has weak linkage, since 3263 // explicit instantiations can occur in multiple translation units 3264 // and must all be equivalent. However, we are not allowed to 3265 // throw away these explicit instantiations. 3266 // 3267 // We don't currently support CUDA device code spread out across multiple TUs, 3268 // so say that CUDA templates are either external (for kernels) or internal. 3269 // This lets llvm perform aggressive inter-procedural optimizations. 3270 if (Linkage == GVA_StrongODR) { 3271 if (Context.getLangOpts().AppleKext) 3272 return llvm::Function::ExternalLinkage; 3273 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3274 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3275 : llvm::Function::InternalLinkage; 3276 return llvm::Function::WeakODRLinkage; 3277 } 3278 3279 // C++ doesn't have tentative definitions and thus cannot have common 3280 // linkage. 3281 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3282 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3283 CodeGenOpts.NoCommon)) 3284 return llvm::GlobalVariable::CommonLinkage; 3285 3286 // selectany symbols are externally visible, so use weak instead of 3287 // linkonce. MSVC optimizes away references to const selectany globals, so 3288 // all definitions should be the same and ODR linkage should be used. 3289 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3290 if (D->hasAttr<SelectAnyAttr>()) 3291 return llvm::GlobalVariable::WeakODRLinkage; 3292 3293 // Otherwise, we have strong external linkage. 3294 assert(Linkage == GVA_StrongExternal); 3295 return llvm::GlobalVariable::ExternalLinkage; 3296 } 3297 3298 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3299 const VarDecl *VD, bool IsConstant) { 3300 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3301 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3302 } 3303 3304 /// Replace the uses of a function that was declared with a non-proto type. 3305 /// We want to silently drop extra arguments from call sites 3306 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3307 llvm::Function *newFn) { 3308 // Fast path. 3309 if (old->use_empty()) return; 3310 3311 llvm::Type *newRetTy = newFn->getReturnType(); 3312 SmallVector<llvm::Value*, 4> newArgs; 3313 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3314 3315 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3316 ui != ue; ) { 3317 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3318 llvm::User *user = use->getUser(); 3319 3320 // Recognize and replace uses of bitcasts. Most calls to 3321 // unprototyped functions will use bitcasts. 3322 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3323 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3324 replaceUsesOfNonProtoConstant(bitcast, newFn); 3325 continue; 3326 } 3327 3328 // Recognize calls to the function. 3329 llvm::CallSite callSite(user); 3330 if (!callSite) continue; 3331 if (!callSite.isCallee(&*use)) continue; 3332 3333 // If the return types don't match exactly, then we can't 3334 // transform this call unless it's dead. 3335 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3336 continue; 3337 3338 // Get the call site's attribute list. 3339 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3340 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3341 3342 // If the function was passed too few arguments, don't transform. 3343 unsigned newNumArgs = newFn->arg_size(); 3344 if (callSite.arg_size() < newNumArgs) continue; 3345 3346 // If extra arguments were passed, we silently drop them. 3347 // If any of the types mismatch, we don't transform. 3348 unsigned argNo = 0; 3349 bool dontTransform = false; 3350 for (llvm::Argument &A : newFn->args()) { 3351 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3352 dontTransform = true; 3353 break; 3354 } 3355 3356 // Add any parameter attributes. 3357 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3358 argNo++; 3359 } 3360 if (dontTransform) 3361 continue; 3362 3363 // Okay, we can transform this. Create the new call instruction and copy 3364 // over the required information. 3365 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3366 3367 // Copy over any operand bundles. 3368 callSite.getOperandBundlesAsDefs(newBundles); 3369 3370 llvm::CallSite newCall; 3371 if (callSite.isCall()) { 3372 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3373 callSite.getInstruction()); 3374 } else { 3375 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3376 newCall = llvm::InvokeInst::Create(newFn, 3377 oldInvoke->getNormalDest(), 3378 oldInvoke->getUnwindDest(), 3379 newArgs, newBundles, "", 3380 callSite.getInstruction()); 3381 } 3382 newArgs.clear(); // for the next iteration 3383 3384 if (!newCall->getType()->isVoidTy()) 3385 newCall->takeName(callSite.getInstruction()); 3386 newCall.setAttributes(llvm::AttributeList::get( 3387 newFn->getContext(), oldAttrs.getFnAttributes(), 3388 oldAttrs.getRetAttributes(), newArgAttrs)); 3389 newCall.setCallingConv(callSite.getCallingConv()); 3390 3391 // Finally, remove the old call, replacing any uses with the new one. 3392 if (!callSite->use_empty()) 3393 callSite->replaceAllUsesWith(newCall.getInstruction()); 3394 3395 // Copy debug location attached to CI. 3396 if (callSite->getDebugLoc()) 3397 newCall->setDebugLoc(callSite->getDebugLoc()); 3398 3399 callSite->eraseFromParent(); 3400 } 3401 } 3402 3403 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3404 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3405 /// existing call uses of the old function in the module, this adjusts them to 3406 /// call the new function directly. 3407 /// 3408 /// This is not just a cleanup: the always_inline pass requires direct calls to 3409 /// functions to be able to inline them. If there is a bitcast in the way, it 3410 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3411 /// run at -O0. 3412 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3413 llvm::Function *NewFn) { 3414 // If we're redefining a global as a function, don't transform it. 3415 if (!isa<llvm::Function>(Old)) return; 3416 3417 replaceUsesOfNonProtoConstant(Old, NewFn); 3418 } 3419 3420 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3421 auto DK = VD->isThisDeclarationADefinition(); 3422 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3423 return; 3424 3425 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3426 // If we have a definition, this might be a deferred decl. If the 3427 // instantiation is explicit, make sure we emit it at the end. 3428 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3429 GetAddrOfGlobalVar(VD); 3430 3431 EmitTopLevelDecl(VD); 3432 } 3433 3434 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3435 llvm::GlobalValue *GV) { 3436 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3437 3438 // Compute the function info and LLVM type. 3439 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3440 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3441 3442 // Get or create the prototype for the function. 3443 if (!GV || (GV->getType()->getElementType() != Ty)) 3444 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3445 /*DontDefer=*/true, 3446 ForDefinition)); 3447 3448 // Already emitted. 3449 if (!GV->isDeclaration()) 3450 return; 3451 3452 // We need to set linkage and visibility on the function before 3453 // generating code for it because various parts of IR generation 3454 // want to propagate this information down (e.g. to local static 3455 // declarations). 3456 auto *Fn = cast<llvm::Function>(GV); 3457 setFunctionLinkage(GD, Fn); 3458 setFunctionDLLStorageClass(GD, Fn); 3459 3460 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3461 setGlobalVisibility(Fn, D); 3462 3463 MaybeHandleStaticInExternC(D, Fn); 3464 3465 maybeSetTrivialComdat(*D, *Fn); 3466 3467 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3468 3469 setFunctionDefinitionAttributes(D, Fn); 3470 SetLLVMFunctionAttributesForDefinition(D, Fn); 3471 3472 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3473 AddGlobalCtor(Fn, CA->getPriority()); 3474 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3475 AddGlobalDtor(Fn, DA->getPriority()); 3476 if (D->hasAttr<AnnotateAttr>()) 3477 AddGlobalAnnotations(D, Fn); 3478 } 3479 3480 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3481 const auto *D = cast<ValueDecl>(GD.getDecl()); 3482 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3483 assert(AA && "Not an alias?"); 3484 3485 StringRef MangledName = getMangledName(GD); 3486 3487 if (AA->getAliasee() == MangledName) { 3488 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3489 return; 3490 } 3491 3492 // If there is a definition in the module, then it wins over the alias. 3493 // This is dubious, but allow it to be safe. Just ignore the alias. 3494 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3495 if (Entry && !Entry->isDeclaration()) 3496 return; 3497 3498 Aliases.push_back(GD); 3499 3500 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3501 3502 // Create a reference to the named value. This ensures that it is emitted 3503 // if a deferred decl. 3504 llvm::Constant *Aliasee; 3505 if (isa<llvm::FunctionType>(DeclTy)) 3506 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3507 /*ForVTable=*/false); 3508 else 3509 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3510 llvm::PointerType::getUnqual(DeclTy), 3511 /*D=*/nullptr); 3512 3513 // Create the new alias itself, but don't set a name yet. 3514 auto *GA = llvm::GlobalAlias::create( 3515 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3516 3517 if (Entry) { 3518 if (GA->getAliasee() == Entry) { 3519 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3520 return; 3521 } 3522 3523 assert(Entry->isDeclaration()); 3524 3525 // If there is a declaration in the module, then we had an extern followed 3526 // by the alias, as in: 3527 // extern int test6(); 3528 // ... 3529 // int test6() __attribute__((alias("test7"))); 3530 // 3531 // Remove it and replace uses of it with the alias. 3532 GA->takeName(Entry); 3533 3534 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3535 Entry->getType())); 3536 Entry->eraseFromParent(); 3537 } else { 3538 GA->setName(MangledName); 3539 } 3540 3541 // Set attributes which are particular to an alias; this is a 3542 // specialization of the attributes which may be set on a global 3543 // variable/function. 3544 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3545 D->isWeakImported()) { 3546 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3547 } 3548 3549 if (const auto *VD = dyn_cast<VarDecl>(D)) 3550 if (VD->getTLSKind()) 3551 setTLSMode(GA, *VD); 3552 3553 setAliasAttributes(D, GA); 3554 } 3555 3556 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3557 const auto *D = cast<ValueDecl>(GD.getDecl()); 3558 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3559 assert(IFA && "Not an ifunc?"); 3560 3561 StringRef MangledName = getMangledName(GD); 3562 3563 if (IFA->getResolver() == MangledName) { 3564 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3565 return; 3566 } 3567 3568 // Report an error if some definition overrides ifunc. 3569 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3570 if (Entry && !Entry->isDeclaration()) { 3571 GlobalDecl OtherGD; 3572 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3573 DiagnosedConflictingDefinitions.insert(GD).second) { 3574 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3575 Diags.Report(OtherGD.getDecl()->getLocation(), 3576 diag::note_previous_definition); 3577 } 3578 return; 3579 } 3580 3581 Aliases.push_back(GD); 3582 3583 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3584 llvm::Constant *Resolver = 3585 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3586 /*ForVTable=*/false); 3587 llvm::GlobalIFunc *GIF = 3588 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3589 "", Resolver, &getModule()); 3590 if (Entry) { 3591 if (GIF->getResolver() == Entry) { 3592 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3593 return; 3594 } 3595 assert(Entry->isDeclaration()); 3596 3597 // If there is a declaration in the module, then we had an extern followed 3598 // by the ifunc, as in: 3599 // extern int test(); 3600 // ... 3601 // int test() __attribute__((ifunc("resolver"))); 3602 // 3603 // Remove it and replace uses of it with the ifunc. 3604 GIF->takeName(Entry); 3605 3606 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3607 Entry->getType())); 3608 Entry->eraseFromParent(); 3609 } else 3610 GIF->setName(MangledName); 3611 3612 SetCommonAttributes(D, GIF); 3613 } 3614 3615 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3616 ArrayRef<llvm::Type*> Tys) { 3617 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3618 Tys); 3619 } 3620 3621 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3622 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3623 const StringLiteral *Literal, bool TargetIsLSB, 3624 bool &IsUTF16, unsigned &StringLength) { 3625 StringRef String = Literal->getString(); 3626 unsigned NumBytes = String.size(); 3627 3628 // Check for simple case. 3629 if (!Literal->containsNonAsciiOrNull()) { 3630 StringLength = NumBytes; 3631 return *Map.insert(std::make_pair(String, nullptr)).first; 3632 } 3633 3634 // Otherwise, convert the UTF8 literals into a string of shorts. 3635 IsUTF16 = true; 3636 3637 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3638 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3639 llvm::UTF16 *ToPtr = &ToBuf[0]; 3640 3641 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3642 ToPtr + NumBytes, llvm::strictConversion); 3643 3644 // ConvertUTF8toUTF16 returns the length in ToPtr. 3645 StringLength = ToPtr - &ToBuf[0]; 3646 3647 // Add an explicit null. 3648 *ToPtr = 0; 3649 return *Map.insert(std::make_pair( 3650 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3651 (StringLength + 1) * 2), 3652 nullptr)).first; 3653 } 3654 3655 ConstantAddress 3656 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3657 unsigned StringLength = 0; 3658 bool isUTF16 = false; 3659 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3660 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3661 getDataLayout().isLittleEndian(), isUTF16, 3662 StringLength); 3663 3664 if (auto *C = Entry.second) 3665 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3666 3667 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3668 llvm::Constant *Zeros[] = { Zero, Zero }; 3669 3670 // If we don't already have it, get __CFConstantStringClassReference. 3671 if (!CFConstantStringClassRef) { 3672 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3673 Ty = llvm::ArrayType::get(Ty, 0); 3674 llvm::Constant *GV = 3675 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3676 3677 if (getTriple().isOSBinFormatCOFF()) { 3678 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3679 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3680 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3681 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3682 3683 const VarDecl *VD = nullptr; 3684 for (const auto &Result : DC->lookup(&II)) 3685 if ((VD = dyn_cast<VarDecl>(Result))) 3686 break; 3687 3688 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3689 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3690 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3691 } else { 3692 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3693 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3694 } 3695 } 3696 3697 // Decay array -> ptr 3698 CFConstantStringClassRef = 3699 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3700 } 3701 3702 QualType CFTy = getContext().getCFConstantStringType(); 3703 3704 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3705 3706 ConstantInitBuilder Builder(*this); 3707 auto Fields = Builder.beginStruct(STy); 3708 3709 // Class pointer. 3710 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3711 3712 // Flags. 3713 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3714 3715 // String pointer. 3716 llvm::Constant *C = nullptr; 3717 if (isUTF16) { 3718 auto Arr = llvm::makeArrayRef( 3719 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3720 Entry.first().size() / 2); 3721 C = llvm::ConstantDataArray::get(VMContext, Arr); 3722 } else { 3723 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3724 } 3725 3726 // Note: -fwritable-strings doesn't make the backing store strings of 3727 // CFStrings writable. (See <rdar://problem/10657500>) 3728 auto *GV = 3729 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3730 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3731 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3732 // Don't enforce the target's minimum global alignment, since the only use 3733 // of the string is via this class initializer. 3734 CharUnits Align = isUTF16 3735 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3736 : getContext().getTypeAlignInChars(getContext().CharTy); 3737 GV->setAlignment(Align.getQuantity()); 3738 3739 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3740 // Without it LLVM can merge the string with a non unnamed_addr one during 3741 // LTO. Doing that changes the section it ends in, which surprises ld64. 3742 if (getTriple().isOSBinFormatMachO()) 3743 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3744 : "__TEXT,__cstring,cstring_literals"); 3745 3746 // String. 3747 llvm::Constant *Str = 3748 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3749 3750 if (isUTF16) 3751 // Cast the UTF16 string to the correct type. 3752 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3753 Fields.add(Str); 3754 3755 // String length. 3756 auto Ty = getTypes().ConvertType(getContext().LongTy); 3757 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3758 3759 CharUnits Alignment = getPointerAlign(); 3760 3761 // The struct. 3762 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3763 /*isConstant=*/false, 3764 llvm::GlobalVariable::PrivateLinkage); 3765 switch (getTriple().getObjectFormat()) { 3766 case llvm::Triple::UnknownObjectFormat: 3767 llvm_unreachable("unknown file format"); 3768 case llvm::Triple::COFF: 3769 case llvm::Triple::ELF: 3770 case llvm::Triple::Wasm: 3771 GV->setSection("cfstring"); 3772 break; 3773 case llvm::Triple::MachO: 3774 GV->setSection("__DATA,__cfstring"); 3775 break; 3776 } 3777 Entry.second = GV; 3778 3779 return ConstantAddress(GV, Alignment); 3780 } 3781 3782 bool CodeGenModule::getExpressionLocationsEnabled() const { 3783 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3784 } 3785 3786 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3787 if (ObjCFastEnumerationStateType.isNull()) { 3788 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3789 D->startDefinition(); 3790 3791 QualType FieldTypes[] = { 3792 Context.UnsignedLongTy, 3793 Context.getPointerType(Context.getObjCIdType()), 3794 Context.getPointerType(Context.UnsignedLongTy), 3795 Context.getConstantArrayType(Context.UnsignedLongTy, 3796 llvm::APInt(32, 5), ArrayType::Normal, 0) 3797 }; 3798 3799 for (size_t i = 0; i < 4; ++i) { 3800 FieldDecl *Field = FieldDecl::Create(Context, 3801 D, 3802 SourceLocation(), 3803 SourceLocation(), nullptr, 3804 FieldTypes[i], /*TInfo=*/nullptr, 3805 /*BitWidth=*/nullptr, 3806 /*Mutable=*/false, 3807 ICIS_NoInit); 3808 Field->setAccess(AS_public); 3809 D->addDecl(Field); 3810 } 3811 3812 D->completeDefinition(); 3813 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3814 } 3815 3816 return ObjCFastEnumerationStateType; 3817 } 3818 3819 llvm::Constant * 3820 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3821 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3822 3823 // Don't emit it as the address of the string, emit the string data itself 3824 // as an inline array. 3825 if (E->getCharByteWidth() == 1) { 3826 SmallString<64> Str(E->getString()); 3827 3828 // Resize the string to the right size, which is indicated by its type. 3829 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3830 Str.resize(CAT->getSize().getZExtValue()); 3831 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3832 } 3833 3834 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3835 llvm::Type *ElemTy = AType->getElementType(); 3836 unsigned NumElements = AType->getNumElements(); 3837 3838 // Wide strings have either 2-byte or 4-byte elements. 3839 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3840 SmallVector<uint16_t, 32> Elements; 3841 Elements.reserve(NumElements); 3842 3843 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3844 Elements.push_back(E->getCodeUnit(i)); 3845 Elements.resize(NumElements); 3846 return llvm::ConstantDataArray::get(VMContext, Elements); 3847 } 3848 3849 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3850 SmallVector<uint32_t, 32> Elements; 3851 Elements.reserve(NumElements); 3852 3853 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3854 Elements.push_back(E->getCodeUnit(i)); 3855 Elements.resize(NumElements); 3856 return llvm::ConstantDataArray::get(VMContext, Elements); 3857 } 3858 3859 static llvm::GlobalVariable * 3860 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3861 CodeGenModule &CGM, StringRef GlobalName, 3862 CharUnits Alignment) { 3863 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3864 unsigned AddrSpace = 0; 3865 if (CGM.getLangOpts().OpenCL) 3866 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3867 3868 llvm::Module &M = CGM.getModule(); 3869 // Create a global variable for this string 3870 auto *GV = new llvm::GlobalVariable( 3871 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3872 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3873 GV->setAlignment(Alignment.getQuantity()); 3874 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3875 if (GV->isWeakForLinker()) { 3876 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3877 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3878 } 3879 3880 return GV; 3881 } 3882 3883 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3884 /// constant array for the given string literal. 3885 ConstantAddress 3886 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3887 StringRef Name) { 3888 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3889 3890 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3891 llvm::GlobalVariable **Entry = nullptr; 3892 if (!LangOpts.WritableStrings) { 3893 Entry = &ConstantStringMap[C]; 3894 if (auto GV = *Entry) { 3895 if (Alignment.getQuantity() > GV->getAlignment()) 3896 GV->setAlignment(Alignment.getQuantity()); 3897 return ConstantAddress(GV, Alignment); 3898 } 3899 } 3900 3901 SmallString<256> MangledNameBuffer; 3902 StringRef GlobalVariableName; 3903 llvm::GlobalValue::LinkageTypes LT; 3904 3905 // Mangle the string literal if the ABI allows for it. However, we cannot 3906 // do this if we are compiling with ASan or -fwritable-strings because they 3907 // rely on strings having normal linkage. 3908 if (!LangOpts.WritableStrings && 3909 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3910 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3911 llvm::raw_svector_ostream Out(MangledNameBuffer); 3912 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3913 3914 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3915 GlobalVariableName = MangledNameBuffer; 3916 } else { 3917 LT = llvm::GlobalValue::PrivateLinkage; 3918 GlobalVariableName = Name; 3919 } 3920 3921 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3922 if (Entry) 3923 *Entry = GV; 3924 3925 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3926 QualType()); 3927 return ConstantAddress(GV, Alignment); 3928 } 3929 3930 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3931 /// array for the given ObjCEncodeExpr node. 3932 ConstantAddress 3933 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3934 std::string Str; 3935 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3936 3937 return GetAddrOfConstantCString(Str); 3938 } 3939 3940 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3941 /// the literal and a terminating '\0' character. 3942 /// The result has pointer to array type. 3943 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3944 const std::string &Str, const char *GlobalName) { 3945 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3946 CharUnits Alignment = 3947 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3948 3949 llvm::Constant *C = 3950 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3951 3952 // Don't share any string literals if strings aren't constant. 3953 llvm::GlobalVariable **Entry = nullptr; 3954 if (!LangOpts.WritableStrings) { 3955 Entry = &ConstantStringMap[C]; 3956 if (auto GV = *Entry) { 3957 if (Alignment.getQuantity() > GV->getAlignment()) 3958 GV->setAlignment(Alignment.getQuantity()); 3959 return ConstantAddress(GV, Alignment); 3960 } 3961 } 3962 3963 // Get the default prefix if a name wasn't specified. 3964 if (!GlobalName) 3965 GlobalName = ".str"; 3966 // Create a global variable for this. 3967 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3968 GlobalName, Alignment); 3969 if (Entry) 3970 *Entry = GV; 3971 return ConstantAddress(GV, Alignment); 3972 } 3973 3974 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3975 const MaterializeTemporaryExpr *E, const Expr *Init) { 3976 assert((E->getStorageDuration() == SD_Static || 3977 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3978 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3979 3980 // If we're not materializing a subobject of the temporary, keep the 3981 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3982 QualType MaterializedType = Init->getType(); 3983 if (Init == E->GetTemporaryExpr()) 3984 MaterializedType = E->getType(); 3985 3986 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3987 3988 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3989 return ConstantAddress(Slot, Align); 3990 3991 // FIXME: If an externally-visible declaration extends multiple temporaries, 3992 // we need to give each temporary the same name in every translation unit (and 3993 // we also need to make the temporaries externally-visible). 3994 SmallString<256> Name; 3995 llvm::raw_svector_ostream Out(Name); 3996 getCXXABI().getMangleContext().mangleReferenceTemporary( 3997 VD, E->getManglingNumber(), Out); 3998 3999 APValue *Value = nullptr; 4000 if (E->getStorageDuration() == SD_Static) { 4001 // We might have a cached constant initializer for this temporary. Note 4002 // that this might have a different value from the value computed by 4003 // evaluating the initializer if the surrounding constant expression 4004 // modifies the temporary. 4005 Value = getContext().getMaterializedTemporaryValue(E, false); 4006 if (Value && Value->isUninit()) 4007 Value = nullptr; 4008 } 4009 4010 // Try evaluating it now, it might have a constant initializer. 4011 Expr::EvalResult EvalResult; 4012 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4013 !EvalResult.hasSideEffects()) 4014 Value = &EvalResult.Val; 4015 4016 LangAS AddrSpace = 4017 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4018 4019 Optional<ConstantEmitter> emitter; 4020 llvm::Constant *InitialValue = nullptr; 4021 bool Constant = false; 4022 llvm::Type *Type; 4023 if (Value) { 4024 // The temporary has a constant initializer, use it. 4025 emitter.emplace(*this); 4026 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4027 MaterializedType); 4028 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4029 Type = InitialValue->getType(); 4030 } else { 4031 // No initializer, the initialization will be provided when we 4032 // initialize the declaration which performed lifetime extension. 4033 Type = getTypes().ConvertTypeForMem(MaterializedType); 4034 } 4035 4036 // Create a global variable for this lifetime-extended temporary. 4037 llvm::GlobalValue::LinkageTypes Linkage = 4038 getLLVMLinkageVarDefinition(VD, Constant); 4039 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4040 const VarDecl *InitVD; 4041 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4042 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4043 // Temporaries defined inside a class get linkonce_odr linkage because the 4044 // class can be defined in multipe translation units. 4045 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4046 } else { 4047 // There is no need for this temporary to have external linkage if the 4048 // VarDecl has external linkage. 4049 Linkage = llvm::GlobalVariable::InternalLinkage; 4050 } 4051 } 4052 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4053 auto *GV = new llvm::GlobalVariable( 4054 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4055 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4056 if (emitter) emitter->finalize(GV); 4057 setGlobalVisibility(GV, VD); 4058 GV->setAlignment(Align.getQuantity()); 4059 if (supportsCOMDAT() && GV->isWeakForLinker()) 4060 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4061 if (VD->getTLSKind()) 4062 setTLSMode(GV, *VD); 4063 llvm::Constant *CV = GV; 4064 if (AddrSpace != LangAS::Default) 4065 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4066 *this, GV, AddrSpace, LangAS::Default, 4067 Type->getPointerTo( 4068 getContext().getTargetAddressSpace(LangAS::Default))); 4069 MaterializedGlobalTemporaryMap[E] = CV; 4070 return ConstantAddress(CV, Align); 4071 } 4072 4073 /// EmitObjCPropertyImplementations - Emit information for synthesized 4074 /// properties for an implementation. 4075 void CodeGenModule::EmitObjCPropertyImplementations(const 4076 ObjCImplementationDecl *D) { 4077 for (const auto *PID : D->property_impls()) { 4078 // Dynamic is just for type-checking. 4079 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4080 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4081 4082 // Determine which methods need to be implemented, some may have 4083 // been overridden. Note that ::isPropertyAccessor is not the method 4084 // we want, that just indicates if the decl came from a 4085 // property. What we want to know is if the method is defined in 4086 // this implementation. 4087 if (!D->getInstanceMethod(PD->getGetterName())) 4088 CodeGenFunction(*this).GenerateObjCGetter( 4089 const_cast<ObjCImplementationDecl *>(D), PID); 4090 if (!PD->isReadOnly() && 4091 !D->getInstanceMethod(PD->getSetterName())) 4092 CodeGenFunction(*this).GenerateObjCSetter( 4093 const_cast<ObjCImplementationDecl *>(D), PID); 4094 } 4095 } 4096 } 4097 4098 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4099 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4100 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4101 ivar; ivar = ivar->getNextIvar()) 4102 if (ivar->getType().isDestructedType()) 4103 return true; 4104 4105 return false; 4106 } 4107 4108 static bool AllTrivialInitializers(CodeGenModule &CGM, 4109 ObjCImplementationDecl *D) { 4110 CodeGenFunction CGF(CGM); 4111 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4112 E = D->init_end(); B != E; ++B) { 4113 CXXCtorInitializer *CtorInitExp = *B; 4114 Expr *Init = CtorInitExp->getInit(); 4115 if (!CGF.isTrivialInitializer(Init)) 4116 return false; 4117 } 4118 return true; 4119 } 4120 4121 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4122 /// for an implementation. 4123 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4124 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4125 if (needsDestructMethod(D)) { 4126 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4127 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4128 ObjCMethodDecl *DTORMethod = 4129 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4130 cxxSelector, getContext().VoidTy, nullptr, D, 4131 /*isInstance=*/true, /*isVariadic=*/false, 4132 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4133 /*isDefined=*/false, ObjCMethodDecl::Required); 4134 D->addInstanceMethod(DTORMethod); 4135 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4136 D->setHasDestructors(true); 4137 } 4138 4139 // If the implementation doesn't have any ivar initializers, we don't need 4140 // a .cxx_construct. 4141 if (D->getNumIvarInitializers() == 0 || 4142 AllTrivialInitializers(*this, D)) 4143 return; 4144 4145 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4146 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4147 // The constructor returns 'self'. 4148 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4149 D->getLocation(), 4150 D->getLocation(), 4151 cxxSelector, 4152 getContext().getObjCIdType(), 4153 nullptr, D, /*isInstance=*/true, 4154 /*isVariadic=*/false, 4155 /*isPropertyAccessor=*/true, 4156 /*isImplicitlyDeclared=*/true, 4157 /*isDefined=*/false, 4158 ObjCMethodDecl::Required); 4159 D->addInstanceMethod(CTORMethod); 4160 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4161 D->setHasNonZeroConstructors(true); 4162 } 4163 4164 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4165 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4166 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4167 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4168 ErrorUnsupported(LSD, "linkage spec"); 4169 return; 4170 } 4171 4172 EmitDeclContext(LSD); 4173 } 4174 4175 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4176 for (auto *I : DC->decls()) { 4177 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4178 // are themselves considered "top-level", so EmitTopLevelDecl on an 4179 // ObjCImplDecl does not recursively visit them. We need to do that in 4180 // case they're nested inside another construct (LinkageSpecDecl / 4181 // ExportDecl) that does stop them from being considered "top-level". 4182 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4183 for (auto *M : OID->methods()) 4184 EmitTopLevelDecl(M); 4185 } 4186 4187 EmitTopLevelDecl(I); 4188 } 4189 } 4190 4191 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4192 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4193 // Ignore dependent declarations. 4194 if (D->isTemplated()) 4195 return; 4196 4197 switch (D->getKind()) { 4198 case Decl::CXXConversion: 4199 case Decl::CXXMethod: 4200 case Decl::Function: 4201 EmitGlobal(cast<FunctionDecl>(D)); 4202 // Always provide some coverage mapping 4203 // even for the functions that aren't emitted. 4204 AddDeferredUnusedCoverageMapping(D); 4205 break; 4206 4207 case Decl::CXXDeductionGuide: 4208 // Function-like, but does not result in code emission. 4209 break; 4210 4211 case Decl::Var: 4212 case Decl::Decomposition: 4213 case Decl::VarTemplateSpecialization: 4214 EmitGlobal(cast<VarDecl>(D)); 4215 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4216 for (auto *B : DD->bindings()) 4217 if (auto *HD = B->getHoldingVar()) 4218 EmitGlobal(HD); 4219 break; 4220 4221 // Indirect fields from global anonymous structs and unions can be 4222 // ignored; only the actual variable requires IR gen support. 4223 case Decl::IndirectField: 4224 break; 4225 4226 // C++ Decls 4227 case Decl::Namespace: 4228 EmitDeclContext(cast<NamespaceDecl>(D)); 4229 break; 4230 case Decl::ClassTemplateSpecialization: { 4231 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4232 if (DebugInfo && 4233 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4234 Spec->hasDefinition()) 4235 DebugInfo->completeTemplateDefinition(*Spec); 4236 } LLVM_FALLTHROUGH; 4237 case Decl::CXXRecord: 4238 if (DebugInfo) { 4239 if (auto *ES = D->getASTContext().getExternalSource()) 4240 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4241 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4242 } 4243 // Emit any static data members, they may be definitions. 4244 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4245 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4246 EmitTopLevelDecl(I); 4247 break; 4248 // No code generation needed. 4249 case Decl::UsingShadow: 4250 case Decl::ClassTemplate: 4251 case Decl::VarTemplate: 4252 case Decl::VarTemplatePartialSpecialization: 4253 case Decl::FunctionTemplate: 4254 case Decl::TypeAliasTemplate: 4255 case Decl::Block: 4256 case Decl::Empty: 4257 break; 4258 case Decl::Using: // using X; [C++] 4259 if (CGDebugInfo *DI = getModuleDebugInfo()) 4260 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4261 return; 4262 case Decl::NamespaceAlias: 4263 if (CGDebugInfo *DI = getModuleDebugInfo()) 4264 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4265 return; 4266 case Decl::UsingDirective: // using namespace X; [C++] 4267 if (CGDebugInfo *DI = getModuleDebugInfo()) 4268 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4269 return; 4270 case Decl::CXXConstructor: 4271 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4272 break; 4273 case Decl::CXXDestructor: 4274 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4275 break; 4276 4277 case Decl::StaticAssert: 4278 // Nothing to do. 4279 break; 4280 4281 // Objective-C Decls 4282 4283 // Forward declarations, no (immediate) code generation. 4284 case Decl::ObjCInterface: 4285 case Decl::ObjCCategory: 4286 break; 4287 4288 case Decl::ObjCProtocol: { 4289 auto *Proto = cast<ObjCProtocolDecl>(D); 4290 if (Proto->isThisDeclarationADefinition()) 4291 ObjCRuntime->GenerateProtocol(Proto); 4292 break; 4293 } 4294 4295 case Decl::ObjCCategoryImpl: 4296 // Categories have properties but don't support synthesize so we 4297 // can ignore them here. 4298 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4299 break; 4300 4301 case Decl::ObjCImplementation: { 4302 auto *OMD = cast<ObjCImplementationDecl>(D); 4303 EmitObjCPropertyImplementations(OMD); 4304 EmitObjCIvarInitializations(OMD); 4305 ObjCRuntime->GenerateClass(OMD); 4306 // Emit global variable debug information. 4307 if (CGDebugInfo *DI = getModuleDebugInfo()) 4308 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4309 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4310 OMD->getClassInterface()), OMD->getLocation()); 4311 break; 4312 } 4313 case Decl::ObjCMethod: { 4314 auto *OMD = cast<ObjCMethodDecl>(D); 4315 // If this is not a prototype, emit the body. 4316 if (OMD->getBody()) 4317 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4318 break; 4319 } 4320 case Decl::ObjCCompatibleAlias: 4321 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4322 break; 4323 4324 case Decl::PragmaComment: { 4325 const auto *PCD = cast<PragmaCommentDecl>(D); 4326 switch (PCD->getCommentKind()) { 4327 case PCK_Unknown: 4328 llvm_unreachable("unexpected pragma comment kind"); 4329 case PCK_Linker: 4330 AppendLinkerOptions(PCD->getArg()); 4331 break; 4332 case PCK_Lib: 4333 if (getTarget().getTriple().isOSBinFormatELF() && 4334 !getTarget().getTriple().isPS4()) 4335 AddELFLibDirective(PCD->getArg()); 4336 else 4337 AddDependentLib(PCD->getArg()); 4338 break; 4339 case PCK_Compiler: 4340 case PCK_ExeStr: 4341 case PCK_User: 4342 break; // We ignore all of these. 4343 } 4344 break; 4345 } 4346 4347 case Decl::PragmaDetectMismatch: { 4348 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4349 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4350 break; 4351 } 4352 4353 case Decl::LinkageSpec: 4354 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4355 break; 4356 4357 case Decl::FileScopeAsm: { 4358 // File-scope asm is ignored during device-side CUDA compilation. 4359 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4360 break; 4361 // File-scope asm is ignored during device-side OpenMP compilation. 4362 if (LangOpts.OpenMPIsDevice) 4363 break; 4364 auto *AD = cast<FileScopeAsmDecl>(D); 4365 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4366 break; 4367 } 4368 4369 case Decl::Import: { 4370 auto *Import = cast<ImportDecl>(D); 4371 4372 // If we've already imported this module, we're done. 4373 if (!ImportedModules.insert(Import->getImportedModule())) 4374 break; 4375 4376 // Emit debug information for direct imports. 4377 if (!Import->getImportedOwningModule()) { 4378 if (CGDebugInfo *DI = getModuleDebugInfo()) 4379 DI->EmitImportDecl(*Import); 4380 } 4381 4382 // Find all of the submodules and emit the module initializers. 4383 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4384 SmallVector<clang::Module *, 16> Stack; 4385 Visited.insert(Import->getImportedModule()); 4386 Stack.push_back(Import->getImportedModule()); 4387 4388 while (!Stack.empty()) { 4389 clang::Module *Mod = Stack.pop_back_val(); 4390 if (!EmittedModuleInitializers.insert(Mod).second) 4391 continue; 4392 4393 for (auto *D : Context.getModuleInitializers(Mod)) 4394 EmitTopLevelDecl(D); 4395 4396 // Visit the submodules of this module. 4397 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4398 SubEnd = Mod->submodule_end(); 4399 Sub != SubEnd; ++Sub) { 4400 // Skip explicit children; they need to be explicitly imported to emit 4401 // the initializers. 4402 if ((*Sub)->IsExplicit) 4403 continue; 4404 4405 if (Visited.insert(*Sub).second) 4406 Stack.push_back(*Sub); 4407 } 4408 } 4409 break; 4410 } 4411 4412 case Decl::Export: 4413 EmitDeclContext(cast<ExportDecl>(D)); 4414 break; 4415 4416 case Decl::OMPThreadPrivate: 4417 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4418 break; 4419 4420 case Decl::OMPDeclareReduction: 4421 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4422 break; 4423 4424 default: 4425 // Make sure we handled everything we should, every other kind is a 4426 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4427 // function. Need to recode Decl::Kind to do that easily. 4428 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4429 break; 4430 } 4431 } 4432 4433 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4434 // Do we need to generate coverage mapping? 4435 if (!CodeGenOpts.CoverageMapping) 4436 return; 4437 switch (D->getKind()) { 4438 case Decl::CXXConversion: 4439 case Decl::CXXMethod: 4440 case Decl::Function: 4441 case Decl::ObjCMethod: 4442 case Decl::CXXConstructor: 4443 case Decl::CXXDestructor: { 4444 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4445 return; 4446 SourceManager &SM = getContext().getSourceManager(); 4447 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4448 return; 4449 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4450 if (I == DeferredEmptyCoverageMappingDecls.end()) 4451 DeferredEmptyCoverageMappingDecls[D] = true; 4452 break; 4453 } 4454 default: 4455 break; 4456 }; 4457 } 4458 4459 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4460 // Do we need to generate coverage mapping? 4461 if (!CodeGenOpts.CoverageMapping) 4462 return; 4463 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4464 if (Fn->isTemplateInstantiation()) 4465 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4466 } 4467 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4468 if (I == DeferredEmptyCoverageMappingDecls.end()) 4469 DeferredEmptyCoverageMappingDecls[D] = false; 4470 else 4471 I->second = false; 4472 } 4473 4474 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4475 // We call takeVector() here to avoid use-after-free. 4476 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4477 // we deserialize function bodies to emit coverage info for them, and that 4478 // deserializes more declarations. How should we handle that case? 4479 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4480 if (!Entry.second) 4481 continue; 4482 const Decl *D = Entry.first; 4483 switch (D->getKind()) { 4484 case Decl::CXXConversion: 4485 case Decl::CXXMethod: 4486 case Decl::Function: 4487 case Decl::ObjCMethod: { 4488 CodeGenPGO PGO(*this); 4489 GlobalDecl GD(cast<FunctionDecl>(D)); 4490 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4491 getFunctionLinkage(GD)); 4492 break; 4493 } 4494 case Decl::CXXConstructor: { 4495 CodeGenPGO PGO(*this); 4496 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4497 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4498 getFunctionLinkage(GD)); 4499 break; 4500 } 4501 case Decl::CXXDestructor: { 4502 CodeGenPGO PGO(*this); 4503 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4504 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4505 getFunctionLinkage(GD)); 4506 break; 4507 } 4508 default: 4509 break; 4510 }; 4511 } 4512 } 4513 4514 /// Turns the given pointer into a constant. 4515 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4516 const void *Ptr) { 4517 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4518 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4519 return llvm::ConstantInt::get(i64, PtrInt); 4520 } 4521 4522 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4523 llvm::NamedMDNode *&GlobalMetadata, 4524 GlobalDecl D, 4525 llvm::GlobalValue *Addr) { 4526 if (!GlobalMetadata) 4527 GlobalMetadata = 4528 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4529 4530 // TODO: should we report variant information for ctors/dtors? 4531 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4532 llvm::ConstantAsMetadata::get(GetPointerConstant( 4533 CGM.getLLVMContext(), D.getDecl()))}; 4534 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4535 } 4536 4537 /// For each function which is declared within an extern "C" region and marked 4538 /// as 'used', but has internal linkage, create an alias from the unmangled 4539 /// name to the mangled name if possible. People expect to be able to refer 4540 /// to such functions with an unmangled name from inline assembly within the 4541 /// same translation unit. 4542 void CodeGenModule::EmitStaticExternCAliases() { 4543 // Don't do anything if we're generating CUDA device code -- the NVPTX 4544 // assembly target doesn't support aliases. 4545 if (Context.getTargetInfo().getTriple().isNVPTX()) 4546 return; 4547 for (auto &I : StaticExternCValues) { 4548 IdentifierInfo *Name = I.first; 4549 llvm::GlobalValue *Val = I.second; 4550 if (Val && !getModule().getNamedValue(Name->getName())) 4551 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4552 } 4553 } 4554 4555 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4556 GlobalDecl &Result) const { 4557 auto Res = Manglings.find(MangledName); 4558 if (Res == Manglings.end()) 4559 return false; 4560 Result = Res->getValue(); 4561 return true; 4562 } 4563 4564 /// Emits metadata nodes associating all the global values in the 4565 /// current module with the Decls they came from. This is useful for 4566 /// projects using IR gen as a subroutine. 4567 /// 4568 /// Since there's currently no way to associate an MDNode directly 4569 /// with an llvm::GlobalValue, we create a global named metadata 4570 /// with the name 'clang.global.decl.ptrs'. 4571 void CodeGenModule::EmitDeclMetadata() { 4572 llvm::NamedMDNode *GlobalMetadata = nullptr; 4573 4574 for (auto &I : MangledDeclNames) { 4575 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4576 // Some mangled names don't necessarily have an associated GlobalValue 4577 // in this module, e.g. if we mangled it for DebugInfo. 4578 if (Addr) 4579 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4580 } 4581 } 4582 4583 /// Emits metadata nodes for all the local variables in the current 4584 /// function. 4585 void CodeGenFunction::EmitDeclMetadata() { 4586 if (LocalDeclMap.empty()) return; 4587 4588 llvm::LLVMContext &Context = getLLVMContext(); 4589 4590 // Find the unique metadata ID for this name. 4591 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4592 4593 llvm::NamedMDNode *GlobalMetadata = nullptr; 4594 4595 for (auto &I : LocalDeclMap) { 4596 const Decl *D = I.first; 4597 llvm::Value *Addr = I.second.getPointer(); 4598 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4599 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4600 Alloca->setMetadata( 4601 DeclPtrKind, llvm::MDNode::get( 4602 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4603 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4604 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4605 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4606 } 4607 } 4608 } 4609 4610 void CodeGenModule::EmitVersionIdentMetadata() { 4611 llvm::NamedMDNode *IdentMetadata = 4612 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4613 std::string Version = getClangFullVersion(); 4614 llvm::LLVMContext &Ctx = TheModule.getContext(); 4615 4616 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4617 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4618 } 4619 4620 void CodeGenModule::EmitTargetMetadata() { 4621 // Warning, new MangledDeclNames may be appended within this loop. 4622 // We rely on MapVector insertions adding new elements to the end 4623 // of the container. 4624 // FIXME: Move this loop into the one target that needs it, and only 4625 // loop over those declarations for which we couldn't emit the target 4626 // metadata when we emitted the declaration. 4627 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4628 auto Val = *(MangledDeclNames.begin() + I); 4629 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4630 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4631 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4632 } 4633 } 4634 4635 void CodeGenModule::EmitCoverageFile() { 4636 if (getCodeGenOpts().CoverageDataFile.empty() && 4637 getCodeGenOpts().CoverageNotesFile.empty()) 4638 return; 4639 4640 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4641 if (!CUNode) 4642 return; 4643 4644 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4645 llvm::LLVMContext &Ctx = TheModule.getContext(); 4646 auto *CoverageDataFile = 4647 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4648 auto *CoverageNotesFile = 4649 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4650 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4651 llvm::MDNode *CU = CUNode->getOperand(i); 4652 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4653 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4654 } 4655 } 4656 4657 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4658 // Sema has checked that all uuid strings are of the form 4659 // "12345678-1234-1234-1234-1234567890ab". 4660 assert(Uuid.size() == 36); 4661 for (unsigned i = 0; i < 36; ++i) { 4662 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4663 else assert(isHexDigit(Uuid[i])); 4664 } 4665 4666 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4667 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4668 4669 llvm::Constant *Field3[8]; 4670 for (unsigned Idx = 0; Idx < 8; ++Idx) 4671 Field3[Idx] = llvm::ConstantInt::get( 4672 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4673 4674 llvm::Constant *Fields[4] = { 4675 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4676 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4677 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4678 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4679 }; 4680 4681 return llvm::ConstantStruct::getAnon(Fields); 4682 } 4683 4684 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4685 bool ForEH) { 4686 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4687 // FIXME: should we even be calling this method if RTTI is disabled 4688 // and it's not for EH? 4689 if (!ForEH && !getLangOpts().RTTI) 4690 return llvm::Constant::getNullValue(Int8PtrTy); 4691 4692 if (ForEH && Ty->isObjCObjectPointerType() && 4693 LangOpts.ObjCRuntime.isGNUFamily()) 4694 return ObjCRuntime->GetEHType(Ty); 4695 4696 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4697 } 4698 4699 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4700 // Do not emit threadprivates in simd-only mode. 4701 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4702 return; 4703 for (auto RefExpr : D->varlists()) { 4704 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4705 bool PerformInit = 4706 VD->getAnyInitializer() && 4707 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4708 /*ForRef=*/false); 4709 4710 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4711 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4712 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4713 CXXGlobalInits.push_back(InitFunction); 4714 } 4715 } 4716 4717 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4718 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4719 if (InternalId) 4720 return InternalId; 4721 4722 if (isExternallyVisible(T->getLinkage())) { 4723 std::string OutName; 4724 llvm::raw_string_ostream Out(OutName); 4725 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4726 4727 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4728 } else { 4729 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4730 llvm::ArrayRef<llvm::Metadata *>()); 4731 } 4732 4733 return InternalId; 4734 } 4735 4736 // Generalize pointer types to a void pointer with the qualifiers of the 4737 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4738 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4739 // 'void *'. 4740 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4741 if (!Ty->isPointerType()) 4742 return Ty; 4743 4744 return Ctx.getPointerType( 4745 QualType(Ctx.VoidTy).withCVRQualifiers( 4746 Ty->getPointeeType().getCVRQualifiers())); 4747 } 4748 4749 // Apply type generalization to a FunctionType's return and argument types 4750 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4751 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4752 SmallVector<QualType, 8> GeneralizedParams; 4753 for (auto &Param : FnType->param_types()) 4754 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4755 4756 return Ctx.getFunctionType( 4757 GeneralizeType(Ctx, FnType->getReturnType()), 4758 GeneralizedParams, FnType->getExtProtoInfo()); 4759 } 4760 4761 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4762 return Ctx.getFunctionNoProtoType( 4763 GeneralizeType(Ctx, FnType->getReturnType())); 4764 4765 llvm_unreachable("Encountered unknown FunctionType"); 4766 } 4767 4768 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4769 T = GeneralizeFunctionType(getContext(), T); 4770 4771 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4772 if (InternalId) 4773 return InternalId; 4774 4775 if (isExternallyVisible(T->getLinkage())) { 4776 std::string OutName; 4777 llvm::raw_string_ostream Out(OutName); 4778 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4779 Out << ".generalized"; 4780 4781 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4782 } else { 4783 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4784 llvm::ArrayRef<llvm::Metadata *>()); 4785 } 4786 4787 return InternalId; 4788 } 4789 4790 /// Returns whether this module needs the "all-vtables" type identifier. 4791 bool CodeGenModule::NeedAllVtablesTypeId() const { 4792 // Returns true if at least one of vtable-based CFI checkers is enabled and 4793 // is not in the trapping mode. 4794 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4795 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4796 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4797 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4798 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4799 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4800 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4801 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4802 } 4803 4804 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4805 CharUnits Offset, 4806 const CXXRecordDecl *RD) { 4807 llvm::Metadata *MD = 4808 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4809 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4810 4811 if (CodeGenOpts.SanitizeCfiCrossDso) 4812 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4813 VTable->addTypeMetadata(Offset.getQuantity(), 4814 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4815 4816 if (NeedAllVtablesTypeId()) { 4817 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4818 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4819 } 4820 } 4821 4822 // Fills in the supplied string map with the set of target features for the 4823 // passed in function. 4824 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4825 const FunctionDecl *FD) { 4826 StringRef TargetCPU = Target.getTargetOpts().CPU; 4827 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4828 // If we have a TargetAttr build up the feature map based on that. 4829 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4830 4831 ParsedAttr.Features.erase( 4832 llvm::remove_if(ParsedAttr.Features, 4833 [&](const std::string &Feat) { 4834 return !Target.isValidFeatureName( 4835 StringRef{Feat}.substr(1)); 4836 }), 4837 ParsedAttr.Features.end()); 4838 4839 // Make a copy of the features as passed on the command line into the 4840 // beginning of the additional features from the function to override. 4841 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4842 Target.getTargetOpts().FeaturesAsWritten.begin(), 4843 Target.getTargetOpts().FeaturesAsWritten.end()); 4844 4845 if (ParsedAttr.Architecture != "" && 4846 Target.isValidCPUName(ParsedAttr.Architecture)) 4847 TargetCPU = ParsedAttr.Architecture; 4848 4849 // Now populate the feature map, first with the TargetCPU which is either 4850 // the default or a new one from the target attribute string. Then we'll use 4851 // the passed in features (FeaturesAsWritten) along with the new ones from 4852 // the attribute. 4853 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4854 ParsedAttr.Features); 4855 } else { 4856 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4857 Target.getTargetOpts().Features); 4858 } 4859 } 4860 4861 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4862 if (!SanStats) 4863 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4864 4865 return *SanStats; 4866 } 4867 llvm::Value * 4868 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4869 CodeGenFunction &CGF) { 4870 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4871 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4872 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4873 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4874 "__translate_sampler_initializer"), 4875 {C}); 4876 } 4877