xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision de86482ce078e1f5d035f227cba09eb32bb3218f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "CodeGenTBAA.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/Diagnostic.h"
40 #include "clang/Basic/Module.h"
41 #include "clang/Basic/SourceManager.h"
42 #include "clang/Basic/TargetInfo.h"
43 #include "clang/Basic/Version.h"
44 #include "clang/CodeGen/ConstantInitBuilder.h"
45 #include "clang/Frontend/CodeGenOptions.h"
46 #include "clang/Sema/SemaDiagnostic.h"
47 #include "llvm/ADT/Triple.h"
48 #include "llvm/IR/CallSite.h"
49 #include "llvm/IR/CallingConv.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/ProfileData/InstrProfReader.h"
55 #include "llvm/Support/ConvertUTF.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MD5.h"
58 
59 using namespace clang;
60 using namespace CodeGen;
61 
62 static const char AnnotationSection[] = "llvm.metadata";
63 
64 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
65   switch (CGM.getTarget().getCXXABI().getKind()) {
66   case TargetCXXABI::GenericAArch64:
67   case TargetCXXABI::GenericARM:
68   case TargetCXXABI::iOS:
69   case TargetCXXABI::iOS64:
70   case TargetCXXABI::WatchOS:
71   case TargetCXXABI::GenericMIPS:
72   case TargetCXXABI::GenericItanium:
73   case TargetCXXABI::WebAssembly:
74     return CreateItaniumCXXABI(CGM);
75   case TargetCXXABI::Microsoft:
76     return CreateMicrosoftCXXABI(CGM);
77   }
78 
79   llvm_unreachable("invalid C++ ABI kind");
80 }
81 
82 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
83                              const PreprocessorOptions &PPO,
84                              const CodeGenOptions &CGO, llvm::Module &M,
85                              DiagnosticsEngine &diags,
86                              CoverageSourceInfo *CoverageInfo)
87     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
88       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
89       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
90       VMContext(M.getContext()), Types(*this), VTables(*this),
91       SanitizerMD(new SanitizerMetadata(*this)) {
92 
93   // Initialize the type cache.
94   llvm::LLVMContext &LLVMContext = M.getContext();
95   VoidTy = llvm::Type::getVoidTy(LLVMContext);
96   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
97   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
98   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
99   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
100   FloatTy = llvm::Type::getFloatTy(LLVMContext);
101   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
102   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
103   PointerAlignInBytes =
104     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
105   SizeSizeInBytes =
106     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
107   IntAlignInBytes =
108     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
109   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
110   IntPtrTy = llvm::IntegerType::get(LLVMContext,
111     C.getTargetInfo().getMaxPointerWidth());
112   Int8PtrTy = Int8Ty->getPointerTo(0);
113   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
114 
115   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
116   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
117 
118   if (LangOpts.ObjC1)
119     createObjCRuntime();
120   if (LangOpts.OpenCL)
121     createOpenCLRuntime();
122   if (LangOpts.OpenMP)
123     createOpenMPRuntime();
124   if (LangOpts.CUDA)
125     createCUDARuntime();
126 
127   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
128   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
129       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
130     TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
131                                getCXXABI().getMangleContext()));
132 
133   // If debug info or coverage generation is enabled, create the CGDebugInfo
134   // object.
135   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
136       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
137     DebugInfo.reset(new CGDebugInfo(*this));
138 
139   Block.GlobalUniqueCount = 0;
140 
141   if (C.getLangOpts().ObjC1)
142     ObjCData.reset(new ObjCEntrypoints());
143 
144   if (CodeGenOpts.hasProfileClangUse()) {
145     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
146         CodeGenOpts.ProfileInstrumentUsePath);
147     if (auto E = ReaderOrErr.takeError()) {
148       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
149                                               "Could not read profile %0: %1");
150       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
151         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
152                                   << EI.message();
153       });
154     } else
155       PGOReader = std::move(ReaderOrErr.get());
156   }
157 
158   // If coverage mapping generation is enabled, create the
159   // CoverageMappingModuleGen object.
160   if (CodeGenOpts.CoverageMapping)
161     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
162 
163   // Record mregparm value now so it is visible through rest of codegen.
164   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
165     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
166                               CodeGenOpts.NumRegisterParameters);
167 
168 }
169 
170 CodeGenModule::~CodeGenModule() {}
171 
172 void CodeGenModule::createObjCRuntime() {
173   // This is just isGNUFamily(), but we want to force implementors of
174   // new ABIs to decide how best to do this.
175   switch (LangOpts.ObjCRuntime.getKind()) {
176   case ObjCRuntime::GNUstep:
177   case ObjCRuntime::GCC:
178   case ObjCRuntime::ObjFW:
179     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
180     return;
181 
182   case ObjCRuntime::FragileMacOSX:
183   case ObjCRuntime::MacOSX:
184   case ObjCRuntime::iOS:
185   case ObjCRuntime::WatchOS:
186     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
187     return;
188   }
189   llvm_unreachable("bad runtime kind");
190 }
191 
192 void CodeGenModule::createOpenCLRuntime() {
193   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
194 }
195 
196 void CodeGenModule::createOpenMPRuntime() {
197   // Select a specialized code generation class based on the target, if any.
198   // If it does not exist use the default implementation.
199   switch (getTriple().getArch()) {
200   case llvm::Triple::nvptx:
201   case llvm::Triple::nvptx64:
202     assert(getLangOpts().OpenMPIsDevice &&
203            "OpenMP NVPTX is only prepared to deal with device code.");
204     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
205     break;
206   default:
207     OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
208     break;
209   }
210 }
211 
212 void CodeGenModule::createCUDARuntime() {
213   CUDARuntime.reset(CreateNVCUDARuntime(*this));
214 }
215 
216 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
217   Replacements[Name] = C;
218 }
219 
220 void CodeGenModule::applyReplacements() {
221   for (auto &I : Replacements) {
222     StringRef MangledName = I.first();
223     llvm::Constant *Replacement = I.second;
224     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
225     if (!Entry)
226       continue;
227     auto *OldF = cast<llvm::Function>(Entry);
228     auto *NewF = dyn_cast<llvm::Function>(Replacement);
229     if (!NewF) {
230       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
231         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
232       } else {
233         auto *CE = cast<llvm::ConstantExpr>(Replacement);
234         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
235                CE->getOpcode() == llvm::Instruction::GetElementPtr);
236         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
237       }
238     }
239 
240     // Replace old with new, but keep the old order.
241     OldF->replaceAllUsesWith(Replacement);
242     if (NewF) {
243       NewF->removeFromParent();
244       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
245                                                        NewF);
246     }
247     OldF->eraseFromParent();
248   }
249 }
250 
251 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
252   GlobalValReplacements.push_back(std::make_pair(GV, C));
253 }
254 
255 void CodeGenModule::applyGlobalValReplacements() {
256   for (auto &I : GlobalValReplacements) {
257     llvm::GlobalValue *GV = I.first;
258     llvm::Constant *C = I.second;
259 
260     GV->replaceAllUsesWith(C);
261     GV->eraseFromParent();
262   }
263 }
264 
265 // This is only used in aliases that we created and we know they have a
266 // linear structure.
267 static const llvm::GlobalObject *getAliasedGlobal(
268     const llvm::GlobalIndirectSymbol &GIS) {
269   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
270   const llvm::Constant *C = &GIS;
271   for (;;) {
272     C = C->stripPointerCasts();
273     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
274       return GO;
275     // stripPointerCasts will not walk over weak aliases.
276     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
277     if (!GIS2)
278       return nullptr;
279     if (!Visited.insert(GIS2).second)
280       return nullptr;
281     C = GIS2->getIndirectSymbol();
282   }
283 }
284 
285 void CodeGenModule::checkAliases() {
286   // Check if the constructed aliases are well formed. It is really unfortunate
287   // that we have to do this in CodeGen, but we only construct mangled names
288   // and aliases during codegen.
289   bool Error = false;
290   DiagnosticsEngine &Diags = getDiags();
291   for (const GlobalDecl &GD : Aliases) {
292     const auto *D = cast<ValueDecl>(GD.getDecl());
293     SourceLocation Location;
294     bool IsIFunc = D->hasAttr<IFuncAttr>();
295     if (const Attr *A = D->getDefiningAttr())
296       Location = A->getLocation();
297     else
298       llvm_unreachable("Not an alias or ifunc?");
299     StringRef MangledName = getMangledName(GD);
300     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
301     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
302     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
303     if (!GV) {
304       Error = true;
305       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
306     } else if (GV->isDeclaration()) {
307       Error = true;
308       Diags.Report(Location, diag::err_alias_to_undefined)
309           << IsIFunc << IsIFunc;
310     } else if (IsIFunc) {
311       // Check resolver function type.
312       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
313           GV->getType()->getPointerElementType());
314       assert(FTy);
315       if (!FTy->getReturnType()->isPointerTy())
316         Diags.Report(Location, diag::err_ifunc_resolver_return);
317       if (FTy->getNumParams())
318         Diags.Report(Location, diag::err_ifunc_resolver_params);
319     }
320 
321     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
322     llvm::GlobalValue *AliaseeGV;
323     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
324       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
325     else
326       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
327 
328     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
329       StringRef AliasSection = SA->getName();
330       if (AliasSection != AliaseeGV->getSection())
331         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
332             << AliasSection << IsIFunc << IsIFunc;
333     }
334 
335     // We have to handle alias to weak aliases in here. LLVM itself disallows
336     // this since the object semantics would not match the IL one. For
337     // compatibility with gcc we implement it by just pointing the alias
338     // to its aliasee's aliasee. We also warn, since the user is probably
339     // expecting the link to be weak.
340     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
341       if (GA->isInterposable()) {
342         Diags.Report(Location, diag::warn_alias_to_weak_alias)
343             << GV->getName() << GA->getName() << IsIFunc;
344         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
345             GA->getIndirectSymbol(), Alias->getType());
346         Alias->setIndirectSymbol(Aliasee);
347       }
348     }
349   }
350   if (!Error)
351     return;
352 
353   for (const GlobalDecl &GD : Aliases) {
354     StringRef MangledName = getMangledName(GD);
355     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
356     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
357     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
358     Alias->eraseFromParent();
359   }
360 }
361 
362 void CodeGenModule::clear() {
363   DeferredDeclsToEmit.clear();
364   if (OpenMPRuntime)
365     OpenMPRuntime->clear();
366 }
367 
368 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
369                                        StringRef MainFile) {
370   if (!hasDiagnostics())
371     return;
372   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
373     if (MainFile.empty())
374       MainFile = "<stdin>";
375     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
376   } else
377     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
378                                                       << Mismatched;
379 }
380 
381 void CodeGenModule::Release() {
382   EmitDeferred();
383   applyGlobalValReplacements();
384   applyReplacements();
385   checkAliases();
386   EmitCXXGlobalInitFunc();
387   EmitCXXGlobalDtorFunc();
388   EmitCXXThreadLocalInitFunc();
389   if (ObjCRuntime)
390     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
391       AddGlobalCtor(ObjCInitFunction);
392   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
393       CUDARuntime) {
394     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
395       AddGlobalCtor(CudaCtorFunction);
396     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
397       AddGlobalDtor(CudaDtorFunction);
398   }
399   if (OpenMPRuntime)
400     if (llvm::Function *OpenMPRegistrationFunction =
401             OpenMPRuntime->emitRegistrationFunction())
402       AddGlobalCtor(OpenMPRegistrationFunction, 0);
403   if (PGOReader) {
404     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
405     if (PGOStats.hasDiagnostics())
406       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
407   }
408   EmitCtorList(GlobalCtors, "llvm.global_ctors");
409   EmitCtorList(GlobalDtors, "llvm.global_dtors");
410   EmitGlobalAnnotations();
411   EmitStaticExternCAliases();
412   EmitDeferredUnusedCoverageMappings();
413   if (CoverageMapping)
414     CoverageMapping->emit();
415   if (CodeGenOpts.SanitizeCfiCrossDso)
416     CodeGenFunction(*this).EmitCfiCheckFail();
417   emitLLVMUsed();
418   if (SanStats)
419     SanStats->finish();
420 
421   if (CodeGenOpts.Autolink &&
422       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
423     EmitModuleLinkOptions();
424   }
425 
426   if (CodeGenOpts.DwarfVersion) {
427     // We actually want the latest version when there are conflicts.
428     // We can change from Warning to Latest if such mode is supported.
429     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
430                               CodeGenOpts.DwarfVersion);
431   }
432   if (CodeGenOpts.EmitCodeView) {
433     // Indicate that we want CodeView in the metadata.
434     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
435   }
436   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
437     // We don't support LTO with 2 with different StrictVTablePointers
438     // FIXME: we could support it by stripping all the information introduced
439     // by StrictVTablePointers.
440 
441     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
442 
443     llvm::Metadata *Ops[2] = {
444               llvm::MDString::get(VMContext, "StrictVTablePointers"),
445               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
446                   llvm::Type::getInt32Ty(VMContext), 1))};
447 
448     getModule().addModuleFlag(llvm::Module::Require,
449                               "StrictVTablePointersRequirement",
450                               llvm::MDNode::get(VMContext, Ops));
451   }
452   if (DebugInfo)
453     // We support a single version in the linked module. The LLVM
454     // parser will drop debug info with a different version number
455     // (and warn about it, too).
456     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
457                               llvm::DEBUG_METADATA_VERSION);
458 
459   // We need to record the widths of enums and wchar_t, so that we can generate
460   // the correct build attributes in the ARM backend.
461   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
462   if (   Arch == llvm::Triple::arm
463       || Arch == llvm::Triple::armeb
464       || Arch == llvm::Triple::thumb
465       || Arch == llvm::Triple::thumbeb) {
466     // Width of wchar_t in bytes
467     uint64_t WCharWidth =
468         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
469     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
470 
471     // The minimum width of an enum in bytes
472     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
473     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
474   }
475 
476   if (CodeGenOpts.SanitizeCfiCrossDso) {
477     // Indicate that we want cross-DSO control flow integrity checks.
478     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
479   }
480 
481   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
482     // Indicate whether __nvvm_reflect should be configured to flush denormal
483     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
484     // property.)
485     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
486                               LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0);
487   }
488 
489   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
490     assert(PLevel < 3 && "Invalid PIC Level");
491     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
492     if (Context.getLangOpts().PIE)
493       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
494   }
495 
496   SimplifyPersonality();
497 
498   if (getCodeGenOpts().EmitDeclMetadata)
499     EmitDeclMetadata();
500 
501   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
502     EmitCoverageFile();
503 
504   if (DebugInfo)
505     DebugInfo->finalize();
506 
507   EmitVersionIdentMetadata();
508 
509   EmitTargetMetadata();
510 }
511 
512 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
513   // Make sure that this type is translated.
514   Types.UpdateCompletedType(TD);
515 }
516 
517 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
518   // Make sure that this type is translated.
519   Types.RefreshTypeCacheForClass(RD);
520 }
521 
522 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
523   if (!TBAA)
524     return nullptr;
525   return TBAA->getTBAAInfo(QTy);
526 }
527 
528 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
529   if (!TBAA)
530     return nullptr;
531   return TBAA->getTBAAInfoForVTablePtr();
532 }
533 
534 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
535   if (!TBAA)
536     return nullptr;
537   return TBAA->getTBAAStructInfo(QTy);
538 }
539 
540 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
541                                                   llvm::MDNode *AccessN,
542                                                   uint64_t O) {
543   if (!TBAA)
544     return nullptr;
545   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
546 }
547 
548 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
549 /// and struct-path aware TBAA, the tag has the same format:
550 /// base type, access type and offset.
551 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
552 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
553                                                 llvm::MDNode *TBAAInfo,
554                                                 bool ConvertTypeToTag) {
555   if (ConvertTypeToTag && TBAA)
556     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
557                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
558   else
559     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
560 }
561 
562 void CodeGenModule::DecorateInstructionWithInvariantGroup(
563     llvm::Instruction *I, const CXXRecordDecl *RD) {
564   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
565   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
566   // Check if we have to wrap MDString in MDNode.
567   if (!MetaDataNode)
568     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
569   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
570 }
571 
572 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
573   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
574   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
575 }
576 
577 /// ErrorUnsupported - Print out an error that codegen doesn't support the
578 /// specified stmt yet.
579 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
580   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
581                                                "cannot compile this %0 yet");
582   std::string Msg = Type;
583   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
584     << Msg << S->getSourceRange();
585 }
586 
587 /// ErrorUnsupported - Print out an error that codegen doesn't support the
588 /// specified decl yet.
589 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
590   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
591                                                "cannot compile this %0 yet");
592   std::string Msg = Type;
593   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
594 }
595 
596 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
597   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
598 }
599 
600 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
601                                         const NamedDecl *D) const {
602   // Internal definitions always have default visibility.
603   if (GV->hasLocalLinkage()) {
604     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
605     return;
606   }
607 
608   // Set visibility for definitions.
609   LinkageInfo LV = D->getLinkageAndVisibility();
610   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
611     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
612 }
613 
614 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
615   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
616       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
617       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
618       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
619       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
620 }
621 
622 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
623     CodeGenOptions::TLSModel M) {
624   switch (M) {
625   case CodeGenOptions::GeneralDynamicTLSModel:
626     return llvm::GlobalVariable::GeneralDynamicTLSModel;
627   case CodeGenOptions::LocalDynamicTLSModel:
628     return llvm::GlobalVariable::LocalDynamicTLSModel;
629   case CodeGenOptions::InitialExecTLSModel:
630     return llvm::GlobalVariable::InitialExecTLSModel;
631   case CodeGenOptions::LocalExecTLSModel:
632     return llvm::GlobalVariable::LocalExecTLSModel;
633   }
634   llvm_unreachable("Invalid TLS model!");
635 }
636 
637 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
638   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
639 
640   llvm::GlobalValue::ThreadLocalMode TLM;
641   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
642 
643   // Override the TLS model if it is explicitly specified.
644   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
645     TLM = GetLLVMTLSModel(Attr->getModel());
646   }
647 
648   GV->setThreadLocalMode(TLM);
649 }
650 
651 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
652   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
653 
654   // Some ABIs don't have constructor variants.  Make sure that base and
655   // complete constructors get mangled the same.
656   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
657     if (!getTarget().getCXXABI().hasConstructorVariants()) {
658       CXXCtorType OrigCtorType = GD.getCtorType();
659       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
660       if (OrigCtorType == Ctor_Base)
661         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
662     }
663   }
664 
665   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
666   if (!FoundStr.empty())
667     return FoundStr;
668 
669   const auto *ND = cast<NamedDecl>(GD.getDecl());
670   SmallString<256> Buffer;
671   StringRef Str;
672   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
673     llvm::raw_svector_ostream Out(Buffer);
674     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
675       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
676     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
677       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
678     else
679       getCXXABI().getMangleContext().mangleName(ND, Out);
680     Str = Out.str();
681   } else {
682     IdentifierInfo *II = ND->getIdentifier();
683     assert(II && "Attempt to mangle unnamed decl.");
684     const auto *FD = dyn_cast<FunctionDecl>(ND);
685 
686     if (FD &&
687         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
688       llvm::raw_svector_ostream Out(Buffer);
689       Out << "__regcall3__" << II->getName();
690       Str = Out.str();
691     } else {
692       Str = II->getName();
693     }
694   }
695 
696   // Keep the first result in the case of a mangling collision.
697   auto Result = Manglings.insert(std::make_pair(Str, GD));
698   return FoundStr = Result.first->first();
699 }
700 
701 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
702                                              const BlockDecl *BD) {
703   MangleContext &MangleCtx = getCXXABI().getMangleContext();
704   const Decl *D = GD.getDecl();
705 
706   SmallString<256> Buffer;
707   llvm::raw_svector_ostream Out(Buffer);
708   if (!D)
709     MangleCtx.mangleGlobalBlock(BD,
710       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
711   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
712     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
713   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
714     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
715   else
716     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
717 
718   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
719   return Result.first->first();
720 }
721 
722 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
723   return getModule().getNamedValue(Name);
724 }
725 
726 /// AddGlobalCtor - Add a function to the list that will be called before
727 /// main() runs.
728 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
729                                   llvm::Constant *AssociatedData) {
730   // FIXME: Type coercion of void()* types.
731   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
732 }
733 
734 /// AddGlobalDtor - Add a function to the list that will be called
735 /// when the module is unloaded.
736 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
737   // FIXME: Type coercion of void()* types.
738   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
739 }
740 
741 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
742   if (Fns.empty()) return;
743 
744   // Ctor function type is void()*.
745   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
746   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
747 
748   // Get the type of a ctor entry, { i32, void ()*, i8* }.
749   llvm::StructType *CtorStructTy = llvm::StructType::get(
750       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
751 
752   // Construct the constructor and destructor arrays.
753   ConstantInitBuilder builder(*this);
754   auto ctors = builder.beginArray(CtorStructTy);
755   for (const auto &I : Fns) {
756     auto ctor = ctors.beginStruct(CtorStructTy);
757     ctor.addInt(Int32Ty, I.Priority);
758     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
759     if (I.AssociatedData)
760       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
761     else
762       ctor.addNullPointer(VoidPtrTy);
763     ctor.finishAndAddTo(ctors);
764   }
765 
766   auto list =
767     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
768                                 /*constant*/ false,
769                                 llvm::GlobalValue::AppendingLinkage);
770 
771   // The LTO linker doesn't seem to like it when we set an alignment
772   // on appending variables.  Take it off as a workaround.
773   list->setAlignment(0);
774 
775   Fns.clear();
776 }
777 
778 llvm::GlobalValue::LinkageTypes
779 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
780   const auto *D = cast<FunctionDecl>(GD.getDecl());
781 
782   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
783 
784   if (isa<CXXDestructorDecl>(D) &&
785       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
786                                          GD.getDtorType())) {
787     // Destructor variants in the Microsoft C++ ABI are always internal or
788     // linkonce_odr thunks emitted on an as-needed basis.
789     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
790                                    : llvm::GlobalValue::LinkOnceODRLinkage;
791   }
792 
793   if (isa<CXXConstructorDecl>(D) &&
794       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
795       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
796     // Our approach to inheriting constructors is fundamentally different from
797     // that used by the MS ABI, so keep our inheriting constructor thunks
798     // internal rather than trying to pick an unambiguous mangling for them.
799     return llvm::GlobalValue::InternalLinkage;
800   }
801 
802   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
803 }
804 
805 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
806   const auto *FD = cast<FunctionDecl>(GD.getDecl());
807 
808   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
809     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
810       // Don't dllexport/import destructor thunks.
811       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
812       return;
813     }
814   }
815 
816   if (FD->hasAttr<DLLImportAttr>())
817     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
818   else if (FD->hasAttr<DLLExportAttr>())
819     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
820   else
821     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
822 }
823 
824 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
825   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
826   if (!MDS) return nullptr;
827 
828   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
829 }
830 
831 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
832                                                     llvm::Function *F) {
833   setNonAliasAttributes(D, F);
834 }
835 
836 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
837                                               const CGFunctionInfo &Info,
838                                               llvm::Function *F) {
839   unsigned CallingConv;
840   AttributeListType AttributeList;
841   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
842                          false);
843   F->setAttributes(llvm::AttributeList::get(getLLVMContext(), AttributeList));
844   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
845 }
846 
847 /// Determines whether the language options require us to model
848 /// unwind exceptions.  We treat -fexceptions as mandating this
849 /// except under the fragile ObjC ABI with only ObjC exceptions
850 /// enabled.  This means, for example, that C with -fexceptions
851 /// enables this.
852 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
853   // If exceptions are completely disabled, obviously this is false.
854   if (!LangOpts.Exceptions) return false;
855 
856   // If C++ exceptions are enabled, this is true.
857   if (LangOpts.CXXExceptions) return true;
858 
859   // If ObjC exceptions are enabled, this depends on the ABI.
860   if (LangOpts.ObjCExceptions) {
861     return LangOpts.ObjCRuntime.hasUnwindExceptions();
862   }
863 
864   return true;
865 }
866 
867 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
868                                                            llvm::Function *F) {
869   llvm::AttrBuilder B;
870 
871   if (CodeGenOpts.UnwindTables)
872     B.addAttribute(llvm::Attribute::UWTable);
873 
874   if (!hasUnwindExceptions(LangOpts))
875     B.addAttribute(llvm::Attribute::NoUnwind);
876 
877   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
878     B.addAttribute(llvm::Attribute::StackProtect);
879   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
880     B.addAttribute(llvm::Attribute::StackProtectStrong);
881   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
882     B.addAttribute(llvm::Attribute::StackProtectReq);
883 
884   if (!D) {
885     // If we don't have a declaration to control inlining, the function isn't
886     // explicitly marked as alwaysinline for semantic reasons, and inlining is
887     // disabled, mark the function as noinline.
888     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
889         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
890       B.addAttribute(llvm::Attribute::NoInline);
891 
892     F->addAttributes(
893         llvm::AttributeList::FunctionIndex,
894         llvm::AttributeList::get(F->getContext(),
895                                  llvm::AttributeList::FunctionIndex, B));
896     return;
897   }
898 
899   if (D->hasAttr<OptimizeNoneAttr>()) {
900     B.addAttribute(llvm::Attribute::OptimizeNone);
901 
902     // OptimizeNone implies noinline; we should not be inlining such functions.
903     B.addAttribute(llvm::Attribute::NoInline);
904     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
905            "OptimizeNone and AlwaysInline on same function!");
906 
907     // We still need to handle naked functions even though optnone subsumes
908     // much of their semantics.
909     if (D->hasAttr<NakedAttr>())
910       B.addAttribute(llvm::Attribute::Naked);
911 
912     // OptimizeNone wins over OptimizeForSize and MinSize.
913     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
914     F->removeFnAttr(llvm::Attribute::MinSize);
915   } else if (D->hasAttr<NakedAttr>()) {
916     // Naked implies noinline: we should not be inlining such functions.
917     B.addAttribute(llvm::Attribute::Naked);
918     B.addAttribute(llvm::Attribute::NoInline);
919   } else if (D->hasAttr<NoDuplicateAttr>()) {
920     B.addAttribute(llvm::Attribute::NoDuplicate);
921   } else if (D->hasAttr<NoInlineAttr>()) {
922     B.addAttribute(llvm::Attribute::NoInline);
923   } else if (D->hasAttr<AlwaysInlineAttr>() &&
924              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
925     // (noinline wins over always_inline, and we can't specify both in IR)
926     B.addAttribute(llvm::Attribute::AlwaysInline);
927   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
928     // If we're not inlining, then force everything that isn't always_inline to
929     // carry an explicit noinline attribute.
930     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
931       B.addAttribute(llvm::Attribute::NoInline);
932   } else {
933     // Otherwise, propagate the inline hint attribute and potentially use its
934     // absence to mark things as noinline.
935     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
936       if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) {
937             return Redecl->isInlineSpecified();
938           })) {
939         B.addAttribute(llvm::Attribute::InlineHint);
940       } else if (CodeGenOpts.getInlining() ==
941                      CodeGenOptions::OnlyHintInlining &&
942                  !FD->isInlined() &&
943                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
944         B.addAttribute(llvm::Attribute::NoInline);
945       }
946     }
947   }
948 
949   // Add other optimization related attributes if we are optimizing this
950   // function.
951   if (!D->hasAttr<OptimizeNoneAttr>()) {
952     if (D->hasAttr<ColdAttr>()) {
953       B.addAttribute(llvm::Attribute::OptimizeForSize);
954       B.addAttribute(llvm::Attribute::Cold);
955     }
956 
957     if (D->hasAttr<MinSizeAttr>())
958       B.addAttribute(llvm::Attribute::MinSize);
959   }
960 
961   F->addAttributes(llvm::AttributeList::FunctionIndex,
962                    llvm::AttributeList::get(
963                        F->getContext(), llvm::AttributeList::FunctionIndex, B));
964 
965   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
966   if (alignment)
967     F->setAlignment(alignment);
968 
969   // Some C++ ABIs require 2-byte alignment for member functions, in order to
970   // reserve a bit for differentiating between virtual and non-virtual member
971   // functions. If the current target's C++ ABI requires this and this is a
972   // member function, set its alignment accordingly.
973   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
974     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
975       F->setAlignment(2);
976   }
977 
978   // In the cross-dso CFI mode, we want !type attributes on definitions only.
979   if (CodeGenOpts.SanitizeCfiCrossDso)
980     if (auto *FD = dyn_cast<FunctionDecl>(D))
981       CreateFunctionTypeMetadata(FD, F);
982 }
983 
984 void CodeGenModule::SetCommonAttributes(const Decl *D,
985                                         llvm::GlobalValue *GV) {
986   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
987     setGlobalVisibility(GV, ND);
988   else
989     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
990 
991   if (D && D->hasAttr<UsedAttr>())
992     addUsedGlobal(GV);
993 }
994 
995 void CodeGenModule::setAliasAttributes(const Decl *D,
996                                        llvm::GlobalValue *GV) {
997   SetCommonAttributes(D, GV);
998 
999   // Process the dllexport attribute based on whether the original definition
1000   // (not necessarily the aliasee) was exported.
1001   if (D->hasAttr<DLLExportAttr>())
1002     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1003 }
1004 
1005 void CodeGenModule::setNonAliasAttributes(const Decl *D,
1006                                           llvm::GlobalObject *GO) {
1007   SetCommonAttributes(D, GO);
1008 
1009   if (D)
1010     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
1011       GO->setSection(SA->getName());
1012 
1013   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1014 }
1015 
1016 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
1017                                                   llvm::Function *F,
1018                                                   const CGFunctionInfo &FI) {
1019   SetLLVMFunctionAttributes(D, FI, F);
1020   SetLLVMFunctionAttributesForDefinition(D, F);
1021 
1022   F->setLinkage(llvm::Function::InternalLinkage);
1023 
1024   setNonAliasAttributes(D, F);
1025 }
1026 
1027 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
1028                                          const NamedDecl *ND) {
1029   // Set linkage and visibility in case we never see a definition.
1030   LinkageInfo LV = ND->getLinkageAndVisibility();
1031   if (LV.getLinkage() != ExternalLinkage) {
1032     // Don't set internal linkage on declarations.
1033   } else {
1034     if (ND->hasAttr<DLLImportAttr>()) {
1035       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1036       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1037     } else if (ND->hasAttr<DLLExportAttr>()) {
1038       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
1039     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
1040       // "extern_weak" is overloaded in LLVM; we probably should have
1041       // separate linkage types for this.
1042       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1043     }
1044 
1045     // Set visibility on a declaration only if it's explicit.
1046     if (LV.isVisibilityExplicit())
1047       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
1048   }
1049 }
1050 
1051 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD,
1052                                                llvm::Function *F) {
1053   // Only if we are checking indirect calls.
1054   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1055     return;
1056 
1057   // Non-static class methods are handled via vtable pointer checks elsewhere.
1058   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1059     return;
1060 
1061   // Additionally, if building with cross-DSO support...
1062   if (CodeGenOpts.SanitizeCfiCrossDso) {
1063     // Skip available_externally functions. They won't be codegen'ed in the
1064     // current module anyway.
1065     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1066       return;
1067   }
1068 
1069   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1070   F->addTypeMetadata(0, MD);
1071 
1072   // Emit a hash-based bit set entry for cross-DSO calls.
1073   if (CodeGenOpts.SanitizeCfiCrossDso)
1074     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1075       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1076 }
1077 
1078 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1079                                           bool IsIncompleteFunction,
1080                                           bool IsThunk) {
1081   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1082     // If this is an intrinsic function, set the function's attributes
1083     // to the intrinsic's attributes.
1084     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1085     return;
1086   }
1087 
1088   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1089 
1090   if (!IsIncompleteFunction)
1091     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1092 
1093   // Add the Returned attribute for "this", except for iOS 5 and earlier
1094   // where substantial code, including the libstdc++ dylib, was compiled with
1095   // GCC and does not actually return "this".
1096   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1097       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1098     assert(!F->arg_empty() &&
1099            F->arg_begin()->getType()
1100              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1101            "unexpected this return");
1102     F->addAttribute(1, llvm::Attribute::Returned);
1103   }
1104 
1105   // Only a few attributes are set on declarations; these may later be
1106   // overridden by a definition.
1107 
1108   setLinkageAndVisibilityForGV(F, FD);
1109 
1110   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1111     F->setSection(SA->getName());
1112 
1113   if (FD->isReplaceableGlobalAllocationFunction()) {
1114     // A replaceable global allocation function does not act like a builtin by
1115     // default, only if it is invoked by a new-expression or delete-expression.
1116     F->addAttribute(llvm::AttributeList::FunctionIndex,
1117                     llvm::Attribute::NoBuiltin);
1118 
1119     // A sane operator new returns a non-aliasing pointer.
1120     // FIXME: Also add NonNull attribute to the return value
1121     // for the non-nothrow forms?
1122     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1123     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1124         (Kind == OO_New || Kind == OO_Array_New))
1125       F->addAttribute(llvm::AttributeList::ReturnIndex,
1126                       llvm::Attribute::NoAlias);
1127   }
1128 
1129   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1130     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1131   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1132     if (MD->isVirtual())
1133       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1134 
1135   // Don't emit entries for function declarations in the cross-DSO mode. This
1136   // is handled with better precision by the receiving DSO.
1137   if (!CodeGenOpts.SanitizeCfiCrossDso)
1138     CreateFunctionTypeMetadata(FD, F);
1139 }
1140 
1141 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1142   assert(!GV->isDeclaration() &&
1143          "Only globals with definition can force usage.");
1144   LLVMUsed.emplace_back(GV);
1145 }
1146 
1147 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1148   assert(!GV->isDeclaration() &&
1149          "Only globals with definition can force usage.");
1150   LLVMCompilerUsed.emplace_back(GV);
1151 }
1152 
1153 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1154                      std::vector<llvm::WeakVH> &List) {
1155   // Don't create llvm.used if there is no need.
1156   if (List.empty())
1157     return;
1158 
1159   // Convert List to what ConstantArray needs.
1160   SmallVector<llvm::Constant*, 8> UsedArray;
1161   UsedArray.resize(List.size());
1162   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1163     UsedArray[i] =
1164         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1165             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1166   }
1167 
1168   if (UsedArray.empty())
1169     return;
1170   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1171 
1172   auto *GV = new llvm::GlobalVariable(
1173       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1174       llvm::ConstantArray::get(ATy, UsedArray), Name);
1175 
1176   GV->setSection("llvm.metadata");
1177 }
1178 
1179 void CodeGenModule::emitLLVMUsed() {
1180   emitUsed(*this, "llvm.used", LLVMUsed);
1181   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1182 }
1183 
1184 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1185   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1186   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1187 }
1188 
1189 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1190   llvm::SmallString<32> Opt;
1191   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1192   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1193   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1194 }
1195 
1196 void CodeGenModule::AddDependentLib(StringRef Lib) {
1197   llvm::SmallString<24> Opt;
1198   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1199   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1200   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1201 }
1202 
1203 /// \brief Add link options implied by the given module, including modules
1204 /// it depends on, using a postorder walk.
1205 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1206                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1207                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1208   // Import this module's parent.
1209   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1210     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1211   }
1212 
1213   // Import this module's dependencies.
1214   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1215     if (Visited.insert(Mod->Imports[I - 1]).second)
1216       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1217   }
1218 
1219   // Add linker options to link against the libraries/frameworks
1220   // described by this module.
1221   llvm::LLVMContext &Context = CGM.getLLVMContext();
1222   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1223     // Link against a framework.  Frameworks are currently Darwin only, so we
1224     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1225     if (Mod->LinkLibraries[I-1].IsFramework) {
1226       llvm::Metadata *Args[2] = {
1227           llvm::MDString::get(Context, "-framework"),
1228           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1229 
1230       Metadata.push_back(llvm::MDNode::get(Context, Args));
1231       continue;
1232     }
1233 
1234     // Link against a library.
1235     llvm::SmallString<24> Opt;
1236     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1237       Mod->LinkLibraries[I-1].Library, Opt);
1238     auto *OptString = llvm::MDString::get(Context, Opt);
1239     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1240   }
1241 }
1242 
1243 void CodeGenModule::EmitModuleLinkOptions() {
1244   // Collect the set of all of the modules we want to visit to emit link
1245   // options, which is essentially the imported modules and all of their
1246   // non-explicit child modules.
1247   llvm::SetVector<clang::Module *> LinkModules;
1248   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1249   SmallVector<clang::Module *, 16> Stack;
1250 
1251   // Seed the stack with imported modules.
1252   for (Module *M : ImportedModules) {
1253     // Do not add any link flags when an implementation TU of a module imports
1254     // a header of that same module.
1255     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1256         !getLangOpts().isCompilingModule())
1257       continue;
1258     if (Visited.insert(M).second)
1259       Stack.push_back(M);
1260   }
1261 
1262   // Find all of the modules to import, making a little effort to prune
1263   // non-leaf modules.
1264   while (!Stack.empty()) {
1265     clang::Module *Mod = Stack.pop_back_val();
1266 
1267     bool AnyChildren = false;
1268 
1269     // Visit the submodules of this module.
1270     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1271                                         SubEnd = Mod->submodule_end();
1272          Sub != SubEnd; ++Sub) {
1273       // Skip explicit children; they need to be explicitly imported to be
1274       // linked against.
1275       if ((*Sub)->IsExplicit)
1276         continue;
1277 
1278       if (Visited.insert(*Sub).second) {
1279         Stack.push_back(*Sub);
1280         AnyChildren = true;
1281       }
1282     }
1283 
1284     // We didn't find any children, so add this module to the list of
1285     // modules to link against.
1286     if (!AnyChildren) {
1287       LinkModules.insert(Mod);
1288     }
1289   }
1290 
1291   // Add link options for all of the imported modules in reverse topological
1292   // order.  We don't do anything to try to order import link flags with respect
1293   // to linker options inserted by things like #pragma comment().
1294   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1295   Visited.clear();
1296   for (Module *M : LinkModules)
1297     if (Visited.insert(M).second)
1298       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1299   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1300   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1301 
1302   // Add the linker options metadata flag.
1303   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1304                             llvm::MDNode::get(getLLVMContext(),
1305                                               LinkerOptionsMetadata));
1306 }
1307 
1308 void CodeGenModule::EmitDeferred() {
1309   // Emit code for any potentially referenced deferred decls.  Since a
1310   // previously unused static decl may become used during the generation of code
1311   // for a static function, iterate until no changes are made.
1312 
1313   if (!DeferredVTables.empty()) {
1314     EmitDeferredVTables();
1315 
1316     // Emitting a vtable doesn't directly cause more vtables to
1317     // become deferred, although it can cause functions to be
1318     // emitted that then need those vtables.
1319     assert(DeferredVTables.empty());
1320   }
1321 
1322   // Stop if we're out of both deferred vtables and deferred declarations.
1323   if (DeferredDeclsToEmit.empty())
1324     return;
1325 
1326   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1327   // work, it will not interfere with this.
1328   std::vector<DeferredGlobal> CurDeclsToEmit;
1329   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1330 
1331   for (DeferredGlobal &G : CurDeclsToEmit) {
1332     GlobalDecl D = G.GD;
1333     G.GV = nullptr;
1334 
1335     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1336     // to get GlobalValue with exactly the type we need, not something that
1337     // might had been created for another decl with the same mangled name but
1338     // different type.
1339     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1340         GetAddrOfGlobal(D, ForDefinition));
1341 
1342     // In case of different address spaces, we may still get a cast, even with
1343     // IsForDefinition equal to true. Query mangled names table to get
1344     // GlobalValue.
1345     if (!GV)
1346       GV = GetGlobalValue(getMangledName(D));
1347 
1348     // Make sure GetGlobalValue returned non-null.
1349     assert(GV);
1350 
1351     // Check to see if we've already emitted this.  This is necessary
1352     // for a couple of reasons: first, decls can end up in the
1353     // deferred-decls queue multiple times, and second, decls can end
1354     // up with definitions in unusual ways (e.g. by an extern inline
1355     // function acquiring a strong function redefinition).  Just
1356     // ignore these cases.
1357     if (!GV->isDeclaration())
1358       continue;
1359 
1360     // Otherwise, emit the definition and move on to the next one.
1361     EmitGlobalDefinition(D, GV);
1362 
1363     // If we found out that we need to emit more decls, do that recursively.
1364     // This has the advantage that the decls are emitted in a DFS and related
1365     // ones are close together, which is convenient for testing.
1366     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1367       EmitDeferred();
1368       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1369     }
1370   }
1371 }
1372 
1373 void CodeGenModule::EmitGlobalAnnotations() {
1374   if (Annotations.empty())
1375     return;
1376 
1377   // Create a new global variable for the ConstantStruct in the Module.
1378   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1379     Annotations[0]->getType(), Annotations.size()), Annotations);
1380   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1381                                       llvm::GlobalValue::AppendingLinkage,
1382                                       Array, "llvm.global.annotations");
1383   gv->setSection(AnnotationSection);
1384 }
1385 
1386 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1387   llvm::Constant *&AStr = AnnotationStrings[Str];
1388   if (AStr)
1389     return AStr;
1390 
1391   // Not found yet, create a new global.
1392   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1393   auto *gv =
1394       new llvm::GlobalVariable(getModule(), s->getType(), true,
1395                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1396   gv->setSection(AnnotationSection);
1397   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1398   AStr = gv;
1399   return gv;
1400 }
1401 
1402 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1403   SourceManager &SM = getContext().getSourceManager();
1404   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1405   if (PLoc.isValid())
1406     return EmitAnnotationString(PLoc.getFilename());
1407   return EmitAnnotationString(SM.getBufferName(Loc));
1408 }
1409 
1410 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1411   SourceManager &SM = getContext().getSourceManager();
1412   PresumedLoc PLoc = SM.getPresumedLoc(L);
1413   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1414     SM.getExpansionLineNumber(L);
1415   return llvm::ConstantInt::get(Int32Ty, LineNo);
1416 }
1417 
1418 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1419                                                 const AnnotateAttr *AA,
1420                                                 SourceLocation L) {
1421   // Get the globals for file name, annotation, and the line number.
1422   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1423                  *UnitGV = EmitAnnotationUnit(L),
1424                  *LineNoCst = EmitAnnotationLineNo(L);
1425 
1426   // Create the ConstantStruct for the global annotation.
1427   llvm::Constant *Fields[4] = {
1428     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1429     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1430     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1431     LineNoCst
1432   };
1433   return llvm::ConstantStruct::getAnon(Fields);
1434 }
1435 
1436 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1437                                          llvm::GlobalValue *GV) {
1438   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1439   // Get the struct elements for these annotations.
1440   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1441     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1442 }
1443 
1444 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1445                                            SourceLocation Loc) const {
1446   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1447   // Blacklist by function name.
1448   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1449     return true;
1450   // Blacklist by location.
1451   if (Loc.isValid())
1452     return SanitizerBL.isBlacklistedLocation(Loc);
1453   // If location is unknown, this may be a compiler-generated function. Assume
1454   // it's located in the main file.
1455   auto &SM = Context.getSourceManager();
1456   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1457     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1458   }
1459   return false;
1460 }
1461 
1462 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1463                                            SourceLocation Loc, QualType Ty,
1464                                            StringRef Category) const {
1465   // For now globals can be blacklisted only in ASan and KASan.
1466   if (!LangOpts.Sanitize.hasOneOf(
1467           SanitizerKind::Address | SanitizerKind::KernelAddress))
1468     return false;
1469   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1470   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1471     return true;
1472   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1473     return true;
1474   // Check global type.
1475   if (!Ty.isNull()) {
1476     // Drill down the array types: if global variable of a fixed type is
1477     // blacklisted, we also don't instrument arrays of them.
1478     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1479       Ty = AT->getElementType();
1480     Ty = Ty.getCanonicalType().getUnqualifiedType();
1481     // We allow to blacklist only record types (classes, structs etc.)
1482     if (Ty->isRecordType()) {
1483       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1484       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1485         return true;
1486     }
1487   }
1488   return false;
1489 }
1490 
1491 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1492   // Never defer when EmitAllDecls is specified.
1493   if (LangOpts.EmitAllDecls)
1494     return true;
1495 
1496   return getContext().DeclMustBeEmitted(Global);
1497 }
1498 
1499 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1500   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1501     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1502       // Implicit template instantiations may change linkage if they are later
1503       // explicitly instantiated, so they should not be emitted eagerly.
1504       return false;
1505   if (const auto *VD = dyn_cast<VarDecl>(Global))
1506     if (Context.getInlineVariableDefinitionKind(VD) ==
1507         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
1508       // A definition of an inline constexpr static data member may change
1509       // linkage later if it's redeclared outside the class.
1510       return false;
1511   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1512   // codegen for global variables, because they may be marked as threadprivate.
1513   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1514       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1515     return false;
1516 
1517   return true;
1518 }
1519 
1520 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1521     const CXXUuidofExpr* E) {
1522   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1523   // well-formed.
1524   StringRef Uuid = E->getUuidStr();
1525   std::string Name = "_GUID_" + Uuid.lower();
1526   std::replace(Name.begin(), Name.end(), '-', '_');
1527 
1528   // The UUID descriptor should be pointer aligned.
1529   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
1530 
1531   // Look for an existing global.
1532   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1533     return ConstantAddress(GV, Alignment);
1534 
1535   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1536   assert(Init && "failed to initialize as constant");
1537 
1538   auto *GV = new llvm::GlobalVariable(
1539       getModule(), Init->getType(),
1540       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1541   if (supportsCOMDAT())
1542     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1543   return ConstantAddress(GV, Alignment);
1544 }
1545 
1546 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1547   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1548   assert(AA && "No alias?");
1549 
1550   CharUnits Alignment = getContext().getDeclAlign(VD);
1551   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1552 
1553   // See if there is already something with the target's name in the module.
1554   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1555   if (Entry) {
1556     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1557     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1558     return ConstantAddress(Ptr, Alignment);
1559   }
1560 
1561   llvm::Constant *Aliasee;
1562   if (isa<llvm::FunctionType>(DeclTy))
1563     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1564                                       GlobalDecl(cast<FunctionDecl>(VD)),
1565                                       /*ForVTable=*/false);
1566   else
1567     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1568                                     llvm::PointerType::getUnqual(DeclTy),
1569                                     nullptr);
1570 
1571   auto *F = cast<llvm::GlobalValue>(Aliasee);
1572   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1573   WeakRefReferences.insert(F);
1574 
1575   return ConstantAddress(Aliasee, Alignment);
1576 }
1577 
1578 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1579   const auto *Global = cast<ValueDecl>(GD.getDecl());
1580 
1581   // Weak references don't produce any output by themselves.
1582   if (Global->hasAttr<WeakRefAttr>())
1583     return;
1584 
1585   // If this is an alias definition (which otherwise looks like a declaration)
1586   // emit it now.
1587   if (Global->hasAttr<AliasAttr>())
1588     return EmitAliasDefinition(GD);
1589 
1590   // IFunc like an alias whose value is resolved at runtime by calling resolver.
1591   if (Global->hasAttr<IFuncAttr>())
1592     return emitIFuncDefinition(GD);
1593 
1594   // If this is CUDA, be selective about which declarations we emit.
1595   if (LangOpts.CUDA) {
1596     if (LangOpts.CUDAIsDevice) {
1597       if (!Global->hasAttr<CUDADeviceAttr>() &&
1598           !Global->hasAttr<CUDAGlobalAttr>() &&
1599           !Global->hasAttr<CUDAConstantAttr>() &&
1600           !Global->hasAttr<CUDASharedAttr>())
1601         return;
1602     } else {
1603       // We need to emit host-side 'shadows' for all global
1604       // device-side variables because the CUDA runtime needs their
1605       // size and host-side address in order to provide access to
1606       // their device-side incarnations.
1607 
1608       // So device-only functions are the only things we skip.
1609       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
1610           Global->hasAttr<CUDADeviceAttr>())
1611         return;
1612 
1613       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
1614              "Expected Variable or Function");
1615     }
1616   }
1617 
1618   if (LangOpts.OpenMP) {
1619     // If this is OpenMP device, check if it is legal to emit this global
1620     // normally.
1621     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1622       return;
1623     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
1624       if (MustBeEmitted(Global))
1625         EmitOMPDeclareReduction(DRD);
1626       return;
1627     }
1628   }
1629 
1630   // Ignore declarations, they will be emitted on their first use.
1631   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1632     // Forward declarations are emitted lazily on first use.
1633     if (!FD->doesThisDeclarationHaveABody()) {
1634       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1635         return;
1636 
1637       StringRef MangledName = getMangledName(GD);
1638 
1639       // Compute the function info and LLVM type.
1640       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1641       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1642 
1643       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1644                               /*DontDefer=*/false);
1645       return;
1646     }
1647   } else {
1648     const auto *VD = cast<VarDecl>(Global);
1649     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1650     // We need to emit device-side global CUDA variables even if a
1651     // variable does not have a definition -- we still need to define
1652     // host-side shadow for it.
1653     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
1654                            !VD->hasDefinition() &&
1655                            (VD->hasAttr<CUDAConstantAttr>() ||
1656                             VD->hasAttr<CUDADeviceAttr>());
1657     if (!MustEmitForCuda &&
1658         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1659         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
1660       // If this declaration may have caused an inline variable definition to
1661       // change linkage, make sure that it's emitted.
1662       if (Context.getInlineVariableDefinitionKind(VD) ==
1663           ASTContext::InlineVariableDefinitionKind::Strong)
1664         GetAddrOfGlobalVar(VD);
1665       return;
1666     }
1667   }
1668 
1669   // Defer code generation to first use when possible, e.g. if this is an inline
1670   // function. If the global must always be emitted, do it eagerly if possible
1671   // to benefit from cache locality.
1672   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1673     // Emit the definition if it can't be deferred.
1674     EmitGlobalDefinition(GD);
1675     return;
1676   }
1677 
1678   // If we're deferring emission of a C++ variable with an
1679   // initializer, remember the order in which it appeared in the file.
1680   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1681       cast<VarDecl>(Global)->hasInit()) {
1682     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1683     CXXGlobalInits.push_back(nullptr);
1684   }
1685 
1686   StringRef MangledName = getMangledName(GD);
1687   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1688     // The value has already been used and should therefore be emitted.
1689     addDeferredDeclToEmit(GV, GD);
1690   } else if (MustBeEmitted(Global)) {
1691     // The value must be emitted, but cannot be emitted eagerly.
1692     assert(!MayBeEmittedEagerly(Global));
1693     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1694   } else {
1695     // Otherwise, remember that we saw a deferred decl with this name.  The
1696     // first use of the mangled name will cause it to move into
1697     // DeferredDeclsToEmit.
1698     DeferredDecls[MangledName] = GD;
1699   }
1700 }
1701 
1702 // Check if T is a class type with a destructor that's not dllimport.
1703 static bool HasNonDllImportDtor(QualType T) {
1704   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
1705     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1706       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
1707         return true;
1708 
1709   return false;
1710 }
1711 
1712 namespace {
1713   struct FunctionIsDirectlyRecursive :
1714     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1715     const StringRef Name;
1716     const Builtin::Context &BI;
1717     bool Result;
1718     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1719       Name(N), BI(C), Result(false) {
1720     }
1721     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1722 
1723     bool TraverseCallExpr(CallExpr *E) {
1724       const FunctionDecl *FD = E->getDirectCallee();
1725       if (!FD)
1726         return true;
1727       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1728       if (Attr && Name == Attr->getLabel()) {
1729         Result = true;
1730         return false;
1731       }
1732       unsigned BuiltinID = FD->getBuiltinID();
1733       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1734         return true;
1735       StringRef BuiltinName = BI.getName(BuiltinID);
1736       if (BuiltinName.startswith("__builtin_") &&
1737           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1738         Result = true;
1739         return false;
1740       }
1741       return true;
1742     }
1743   };
1744 
1745   // Make sure we're not referencing non-imported vars or functions.
1746   struct DLLImportFunctionVisitor
1747       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1748     bool SafeToInline = true;
1749 
1750     bool shouldVisitImplicitCode() const { return true; }
1751 
1752     bool VisitVarDecl(VarDecl *VD) {
1753       if (VD->getTLSKind()) {
1754         // A thread-local variable cannot be imported.
1755         SafeToInline = false;
1756         return SafeToInline;
1757       }
1758 
1759       // A variable definition might imply a destructor call.
1760       if (VD->isThisDeclarationADefinition())
1761         SafeToInline = !HasNonDllImportDtor(VD->getType());
1762 
1763       return SafeToInline;
1764     }
1765 
1766     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1767       if (const auto *D = E->getTemporary()->getDestructor())
1768         SafeToInline = D->hasAttr<DLLImportAttr>();
1769       return SafeToInline;
1770     }
1771 
1772     bool VisitDeclRefExpr(DeclRefExpr *E) {
1773       ValueDecl *VD = E->getDecl();
1774       if (isa<FunctionDecl>(VD))
1775         SafeToInline = VD->hasAttr<DLLImportAttr>();
1776       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1777         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1778       return SafeToInline;
1779     }
1780 
1781     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
1782       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
1783       return SafeToInline;
1784     }
1785 
1786     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1787       CXXMethodDecl *M = E->getMethodDecl();
1788       if (!M) {
1789         // Call through a pointer to member function. This is safe to inline.
1790         SafeToInline = true;
1791       } else {
1792         SafeToInline = M->hasAttr<DLLImportAttr>();
1793       }
1794       return SafeToInline;
1795     }
1796 
1797     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1798       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1799       return SafeToInline;
1800     }
1801 
1802     bool VisitCXXNewExpr(CXXNewExpr *E) {
1803       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1804       return SafeToInline;
1805     }
1806   };
1807 }
1808 
1809 // isTriviallyRecursive - Check if this function calls another
1810 // decl that, because of the asm attribute or the other decl being a builtin,
1811 // ends up pointing to itself.
1812 bool
1813 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1814   StringRef Name;
1815   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1816     // asm labels are a special kind of mangling we have to support.
1817     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1818     if (!Attr)
1819       return false;
1820     Name = Attr->getLabel();
1821   } else {
1822     Name = FD->getName();
1823   }
1824 
1825   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1826   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1827   return Walker.Result;
1828 }
1829 
1830 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1831   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1832     return true;
1833   const auto *F = cast<FunctionDecl>(GD.getDecl());
1834   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1835     return false;
1836 
1837   if (F->hasAttr<DLLImportAttr>()) {
1838     // Check whether it would be safe to inline this dllimport function.
1839     DLLImportFunctionVisitor Visitor;
1840     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1841     if (!Visitor.SafeToInline)
1842       return false;
1843 
1844     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
1845       // Implicit destructor invocations aren't captured in the AST, so the
1846       // check above can't see them. Check for them manually here.
1847       for (const Decl *Member : Dtor->getParent()->decls())
1848         if (isa<FieldDecl>(Member))
1849           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
1850             return false;
1851       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
1852         if (HasNonDllImportDtor(B.getType()))
1853           return false;
1854     }
1855   }
1856 
1857   // PR9614. Avoid cases where the source code is lying to us. An available
1858   // externally function should have an equivalent function somewhere else,
1859   // but a function that calls itself is clearly not equivalent to the real
1860   // implementation.
1861   // This happens in glibc's btowc and in some configure checks.
1862   return !isTriviallyRecursive(F);
1863 }
1864 
1865 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1866   const auto *D = cast<ValueDecl>(GD.getDecl());
1867 
1868   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1869                                  Context.getSourceManager(),
1870                                  "Generating code for declaration");
1871 
1872   if (isa<FunctionDecl>(D)) {
1873     // At -O0, don't generate IR for functions with available_externally
1874     // linkage.
1875     if (!shouldEmitFunction(GD))
1876       return;
1877 
1878     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1879       // Make sure to emit the definition(s) before we emit the thunks.
1880       // This is necessary for the generation of certain thunks.
1881       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1882         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1883       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1884         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1885       else
1886         EmitGlobalFunctionDefinition(GD, GV);
1887 
1888       if (Method->isVirtual())
1889         getVTables().EmitThunks(GD);
1890 
1891       return;
1892     }
1893 
1894     return EmitGlobalFunctionDefinition(GD, GV);
1895   }
1896 
1897   if (const auto *VD = dyn_cast<VarDecl>(D))
1898     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1899 
1900   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1901 }
1902 
1903 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1904                                                       llvm::Function *NewFn);
1905 
1906 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1907 /// module, create and return an llvm Function with the specified type. If there
1908 /// is something in the module with the specified name, return it potentially
1909 /// bitcasted to the right type.
1910 ///
1911 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1912 /// to set the attributes on the function when it is first created.
1913 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
1914     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
1915     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
1916     ForDefinition_t IsForDefinition) {
1917   const Decl *D = GD.getDecl();
1918 
1919   // Lookup the entry, lazily creating it if necessary.
1920   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1921   if (Entry) {
1922     if (WeakRefReferences.erase(Entry)) {
1923       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1924       if (FD && !FD->hasAttr<WeakAttr>())
1925         Entry->setLinkage(llvm::Function::ExternalLinkage);
1926     }
1927 
1928     // Handle dropped DLL attributes.
1929     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1930       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1931 
1932     // If there are two attempts to define the same mangled name, issue an
1933     // error.
1934     if (IsForDefinition && !Entry->isDeclaration()) {
1935       GlobalDecl OtherGD;
1936       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1937       // to make sure that we issue an error only once.
1938       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1939           (GD.getCanonicalDecl().getDecl() !=
1940            OtherGD.getCanonicalDecl().getDecl()) &&
1941           DiagnosedConflictingDefinitions.insert(GD).second) {
1942         getDiags().Report(D->getLocation(),
1943                           diag::err_duplicate_mangled_name);
1944         getDiags().Report(OtherGD.getDecl()->getLocation(),
1945                           diag::note_previous_definition);
1946       }
1947     }
1948 
1949     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1950         (Entry->getType()->getElementType() == Ty)) {
1951       return Entry;
1952     }
1953 
1954     // Make sure the result is of the correct type.
1955     // (If function is requested for a definition, we always need to create a new
1956     // function, not just return a bitcast.)
1957     if (!IsForDefinition)
1958       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1959   }
1960 
1961   // This function doesn't have a complete type (for example, the return
1962   // type is an incomplete struct). Use a fake type instead, and make
1963   // sure not to try to set attributes.
1964   bool IsIncompleteFunction = false;
1965 
1966   llvm::FunctionType *FTy;
1967   if (isa<llvm::FunctionType>(Ty)) {
1968     FTy = cast<llvm::FunctionType>(Ty);
1969   } else {
1970     FTy = llvm::FunctionType::get(VoidTy, false);
1971     IsIncompleteFunction = true;
1972   }
1973 
1974   llvm::Function *F =
1975       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1976                              Entry ? StringRef() : MangledName, &getModule());
1977 
1978   // If we already created a function with the same mangled name (but different
1979   // type) before, take its name and add it to the list of functions to be
1980   // replaced with F at the end of CodeGen.
1981   //
1982   // This happens if there is a prototype for a function (e.g. "int f()") and
1983   // then a definition of a different type (e.g. "int f(int x)").
1984   if (Entry) {
1985     F->takeName(Entry);
1986 
1987     // This might be an implementation of a function without a prototype, in
1988     // which case, try to do special replacement of calls which match the new
1989     // prototype.  The really key thing here is that we also potentially drop
1990     // arguments from the call site so as to make a direct call, which makes the
1991     // inliner happier and suppresses a number of optimizer warnings (!) about
1992     // dropping arguments.
1993     if (!Entry->use_empty()) {
1994       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1995       Entry->removeDeadConstantUsers();
1996     }
1997 
1998     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1999         F, Entry->getType()->getElementType()->getPointerTo());
2000     addGlobalValReplacement(Entry, BC);
2001   }
2002 
2003   assert(F->getName() == MangledName && "name was uniqued!");
2004   if (D)
2005     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2006   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2007     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2008     F->addAttributes(llvm::AttributeList::FunctionIndex,
2009                      llvm::AttributeList::get(
2010                          VMContext, llvm::AttributeList::FunctionIndex, B));
2011   }
2012 
2013   if (!DontDefer) {
2014     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2015     // each other bottoming out with the base dtor.  Therefore we emit non-base
2016     // dtors on usage, even if there is no dtor definition in the TU.
2017     if (D && isa<CXXDestructorDecl>(D) &&
2018         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2019                                            GD.getDtorType()))
2020       addDeferredDeclToEmit(F, GD);
2021 
2022     // This is the first use or definition of a mangled name.  If there is a
2023     // deferred decl with this name, remember that we need to emit it at the end
2024     // of the file.
2025     auto DDI = DeferredDecls.find(MangledName);
2026     if (DDI != DeferredDecls.end()) {
2027       // Move the potentially referenced deferred decl to the
2028       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2029       // don't need it anymore).
2030       addDeferredDeclToEmit(F, DDI->second);
2031       DeferredDecls.erase(DDI);
2032 
2033       // Otherwise, there are cases we have to worry about where we're
2034       // using a declaration for which we must emit a definition but where
2035       // we might not find a top-level definition:
2036       //   - member functions defined inline in their classes
2037       //   - friend functions defined inline in some class
2038       //   - special member functions with implicit definitions
2039       // If we ever change our AST traversal to walk into class methods,
2040       // this will be unnecessary.
2041       //
2042       // We also don't emit a definition for a function if it's going to be an
2043       // entry in a vtable, unless it's already marked as used.
2044     } else if (getLangOpts().CPlusPlus && D) {
2045       // Look for a declaration that's lexically in a record.
2046       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2047            FD = FD->getPreviousDecl()) {
2048         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2049           if (FD->doesThisDeclarationHaveABody()) {
2050             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
2051             break;
2052           }
2053         }
2054       }
2055     }
2056   }
2057 
2058   // Make sure the result is of the requested type.
2059   if (!IsIncompleteFunction) {
2060     assert(F->getType()->getElementType() == Ty);
2061     return F;
2062   }
2063 
2064   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2065   return llvm::ConstantExpr::getBitCast(F, PTy);
2066 }
2067 
2068 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2069 /// non-null, then this function will use the specified type if it has to
2070 /// create it (this occurs when we see a definition of the function).
2071 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2072                                                  llvm::Type *Ty,
2073                                                  bool ForVTable,
2074                                                  bool DontDefer,
2075                                               ForDefinition_t IsForDefinition) {
2076   // If there was no specific requested type, just convert it now.
2077   if (!Ty) {
2078     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2079     auto CanonTy = Context.getCanonicalType(FD->getType());
2080     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2081   }
2082 
2083   StringRef MangledName = getMangledName(GD);
2084   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2085                                  /*IsThunk=*/false, llvm::AttributeList(),
2086                                  IsForDefinition);
2087 }
2088 
2089 static const FunctionDecl *
2090 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2091   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2092   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2093 
2094   IdentifierInfo &CII = C.Idents.get(Name);
2095   for (const auto &Result : DC->lookup(&CII))
2096     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2097       return FD;
2098 
2099   if (!C.getLangOpts().CPlusPlus)
2100     return nullptr;
2101 
2102   // Demangle the premangled name from getTerminateFn()
2103   IdentifierInfo &CXXII =
2104       (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")
2105           ? C.Idents.get("terminate")
2106           : C.Idents.get(Name);
2107 
2108   for (const auto &N : {"__cxxabiv1", "std"}) {
2109     IdentifierInfo &NS = C.Idents.get(N);
2110     for (const auto &Result : DC->lookup(&NS)) {
2111       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2112       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2113         for (const auto &Result : LSD->lookup(&NS))
2114           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2115             break;
2116 
2117       if (ND)
2118         for (const auto &Result : ND->lookup(&CXXII))
2119           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2120             return FD;
2121     }
2122   }
2123 
2124   return nullptr;
2125 }
2126 
2127 /// CreateRuntimeFunction - Create a new runtime function with the specified
2128 /// type and name.
2129 llvm::Constant *
2130 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2131                                      llvm::AttributeList ExtraAttrs,
2132                                      bool Local) {
2133   llvm::Constant *C =
2134       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2135                               /*DontDefer=*/false, /*IsThunk=*/false,
2136                               ExtraAttrs);
2137 
2138   if (auto *F = dyn_cast<llvm::Function>(C)) {
2139     if (F->empty()) {
2140       F->setCallingConv(getRuntimeCC());
2141 
2142       if (!Local && getTriple().isOSBinFormatCOFF() &&
2143           !getCodeGenOpts().LTOVisibilityPublicStd) {
2144         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2145         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2146           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2147           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2148         }
2149       }
2150     }
2151   }
2152 
2153   return C;
2154 }
2155 
2156 /// CreateBuiltinFunction - Create a new builtin function with the specified
2157 /// type and name.
2158 llvm::Constant *
2159 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2160                                      llvm::AttributeList ExtraAttrs) {
2161   llvm::Constant *C =
2162       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2163                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
2164   if (auto *F = dyn_cast<llvm::Function>(C))
2165     if (F->empty())
2166       F->setCallingConv(getBuiltinCC());
2167   return C;
2168 }
2169 
2170 /// isTypeConstant - Determine whether an object of this type can be emitted
2171 /// as a constant.
2172 ///
2173 /// If ExcludeCtor is true, the duration when the object's constructor runs
2174 /// will not be considered. The caller will need to verify that the object is
2175 /// not written to during its construction.
2176 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2177   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2178     return false;
2179 
2180   if (Context.getLangOpts().CPlusPlus) {
2181     if (const CXXRecordDecl *Record
2182           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2183       return ExcludeCtor && !Record->hasMutableFields() &&
2184              Record->hasTrivialDestructor();
2185   }
2186 
2187   return true;
2188 }
2189 
2190 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
2191 /// create and return an llvm GlobalVariable with the specified type.  If there
2192 /// is something in the module with the specified name, return it potentially
2193 /// bitcasted to the right type.
2194 ///
2195 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2196 /// to set the attributes on the global when it is first created.
2197 ///
2198 /// If IsForDefinition is true, it is guranteed that an actual global with
2199 /// type Ty will be returned, not conversion of a variable with the same
2200 /// mangled name but some other type.
2201 llvm::Constant *
2202 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
2203                                      llvm::PointerType *Ty,
2204                                      const VarDecl *D,
2205                                      ForDefinition_t IsForDefinition) {
2206   // Lookup the entry, lazily creating it if necessary.
2207   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2208   if (Entry) {
2209     if (WeakRefReferences.erase(Entry)) {
2210       if (D && !D->hasAttr<WeakAttr>())
2211         Entry->setLinkage(llvm::Function::ExternalLinkage);
2212     }
2213 
2214     // Handle dropped DLL attributes.
2215     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2216       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2217 
2218     if (Entry->getType() == Ty)
2219       return Entry;
2220 
2221     // If there are two attempts to define the same mangled name, issue an
2222     // error.
2223     if (IsForDefinition && !Entry->isDeclaration()) {
2224       GlobalDecl OtherGD;
2225       const VarDecl *OtherD;
2226 
2227       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2228       // to make sure that we issue an error only once.
2229       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
2230           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2231           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2232           OtherD->hasInit() &&
2233           DiagnosedConflictingDefinitions.insert(D).second) {
2234         getDiags().Report(D->getLocation(),
2235                           diag::err_duplicate_mangled_name);
2236         getDiags().Report(OtherGD.getDecl()->getLocation(),
2237                           diag::note_previous_definition);
2238       }
2239     }
2240 
2241     // Make sure the result is of the correct type.
2242     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2243       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2244 
2245     // (If global is requested for a definition, we always need to create a new
2246     // global, not just return a bitcast.)
2247     if (!IsForDefinition)
2248       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2249   }
2250 
2251   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2252   auto *GV = new llvm::GlobalVariable(
2253       getModule(), Ty->getElementType(), false,
2254       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2255       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2256 
2257   // If we already created a global with the same mangled name (but different
2258   // type) before, take its name and remove it from its parent.
2259   if (Entry) {
2260     GV->takeName(Entry);
2261 
2262     if (!Entry->use_empty()) {
2263       llvm::Constant *NewPtrForOldDecl =
2264           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2265       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2266     }
2267 
2268     Entry->eraseFromParent();
2269   }
2270 
2271   // This is the first use or definition of a mangled name.  If there is a
2272   // deferred decl with this name, remember that we need to emit it at the end
2273   // of the file.
2274   auto DDI = DeferredDecls.find(MangledName);
2275   if (DDI != DeferredDecls.end()) {
2276     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2277     // list, and remove it from DeferredDecls (since we don't need it anymore).
2278     addDeferredDeclToEmit(GV, DDI->second);
2279     DeferredDecls.erase(DDI);
2280   }
2281 
2282   // Handle things which are present even on external declarations.
2283   if (D) {
2284     // FIXME: This code is overly simple and should be merged with other global
2285     // handling.
2286     GV->setConstant(isTypeConstant(D->getType(), false));
2287 
2288     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2289 
2290     setLinkageAndVisibilityForGV(GV, D);
2291 
2292     if (D->getTLSKind()) {
2293       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2294         CXXThreadLocals.push_back(D);
2295       setTLSMode(GV, *D);
2296     }
2297 
2298     // If required by the ABI, treat declarations of static data members with
2299     // inline initializers as definitions.
2300     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2301       EmitGlobalVarDefinition(D);
2302     }
2303 
2304     // Handle XCore specific ABI requirements.
2305     if (getTriple().getArch() == llvm::Triple::xcore &&
2306         D->getLanguageLinkage() == CLanguageLinkage &&
2307         D->getType().isConstant(Context) &&
2308         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2309       GV->setSection(".cp.rodata");
2310   }
2311 
2312   if (AddrSpace != Ty->getAddressSpace())
2313     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2314 
2315   return GV;
2316 }
2317 
2318 llvm::Constant *
2319 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2320                                ForDefinition_t IsForDefinition) {
2321   const Decl *D = GD.getDecl();
2322   if (isa<CXXConstructorDecl>(D))
2323     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
2324                                 getFromCtorType(GD.getCtorType()),
2325                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2326                                 /*DontDefer=*/false, IsForDefinition);
2327   else if (isa<CXXDestructorDecl>(D))
2328     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
2329                                 getFromDtorType(GD.getDtorType()),
2330                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2331                                 /*DontDefer=*/false, IsForDefinition);
2332   else if (isa<CXXMethodDecl>(D)) {
2333     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2334         cast<CXXMethodDecl>(D));
2335     auto Ty = getTypes().GetFunctionType(*FInfo);
2336     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2337                              IsForDefinition);
2338   } else if (isa<FunctionDecl>(D)) {
2339     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2340     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2341     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2342                              IsForDefinition);
2343   } else
2344     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
2345                               IsForDefinition);
2346 }
2347 
2348 llvm::GlobalVariable *
2349 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2350                                       llvm::Type *Ty,
2351                                       llvm::GlobalValue::LinkageTypes Linkage) {
2352   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2353   llvm::GlobalVariable *OldGV = nullptr;
2354 
2355   if (GV) {
2356     // Check if the variable has the right type.
2357     if (GV->getType()->getElementType() == Ty)
2358       return GV;
2359 
2360     // Because C++ name mangling, the only way we can end up with an already
2361     // existing global with the same name is if it has been declared extern "C".
2362     assert(GV->isDeclaration() && "Declaration has wrong type!");
2363     OldGV = GV;
2364   }
2365 
2366   // Create a new variable.
2367   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2368                                 Linkage, nullptr, Name);
2369 
2370   if (OldGV) {
2371     // Replace occurrences of the old variable if needed.
2372     GV->takeName(OldGV);
2373 
2374     if (!OldGV->use_empty()) {
2375       llvm::Constant *NewPtrForOldDecl =
2376       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2377       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2378     }
2379 
2380     OldGV->eraseFromParent();
2381   }
2382 
2383   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2384       !GV->hasAvailableExternallyLinkage())
2385     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2386 
2387   return GV;
2388 }
2389 
2390 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2391 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2392 /// then it will be created with the specified type instead of whatever the
2393 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2394 /// that an actual global with type Ty will be returned, not conversion of a
2395 /// variable with the same mangled name but some other type.
2396 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2397                                                   llvm::Type *Ty,
2398                                            ForDefinition_t IsForDefinition) {
2399   assert(D->hasGlobalStorage() && "Not a global variable");
2400   QualType ASTTy = D->getType();
2401   if (!Ty)
2402     Ty = getTypes().ConvertTypeForMem(ASTTy);
2403 
2404   llvm::PointerType *PTy =
2405     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2406 
2407   StringRef MangledName = getMangledName(D);
2408   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2409 }
2410 
2411 /// CreateRuntimeVariable - Create a new runtime global variable with the
2412 /// specified type and name.
2413 llvm::Constant *
2414 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2415                                      StringRef Name) {
2416   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2417 }
2418 
2419 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2420   assert(!D->getInit() && "Cannot emit definite definitions here!");
2421 
2422   StringRef MangledName = getMangledName(D);
2423   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2424 
2425   // We already have a definition, not declaration, with the same mangled name.
2426   // Emitting of declaration is not required (and actually overwrites emitted
2427   // definition).
2428   if (GV && !GV->isDeclaration())
2429     return;
2430 
2431   // If we have not seen a reference to this variable yet, place it into the
2432   // deferred declarations table to be emitted if needed later.
2433   if (!MustBeEmitted(D) && !GV) {
2434       DeferredDecls[MangledName] = D;
2435       return;
2436   }
2437 
2438   // The tentative definition is the only definition.
2439   EmitGlobalVarDefinition(D);
2440 }
2441 
2442 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2443   return Context.toCharUnitsFromBits(
2444       getDataLayout().getTypeStoreSizeInBits(Ty));
2445 }
2446 
2447 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2448                                                  unsigned AddrSpace) {
2449   if (D && LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2450     if (D->hasAttr<CUDAConstantAttr>())
2451       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2452     else if (D->hasAttr<CUDASharedAttr>())
2453       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2454     else
2455       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2456   }
2457 
2458   return AddrSpace;
2459 }
2460 
2461 template<typename SomeDecl>
2462 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2463                                                llvm::GlobalValue *GV) {
2464   if (!getLangOpts().CPlusPlus)
2465     return;
2466 
2467   // Must have 'used' attribute, or else inline assembly can't rely on
2468   // the name existing.
2469   if (!D->template hasAttr<UsedAttr>())
2470     return;
2471 
2472   // Must have internal linkage and an ordinary name.
2473   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2474     return;
2475 
2476   // Must be in an extern "C" context. Entities declared directly within
2477   // a record are not extern "C" even if the record is in such a context.
2478   const SomeDecl *First = D->getFirstDecl();
2479   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2480     return;
2481 
2482   // OK, this is an internal linkage entity inside an extern "C" linkage
2483   // specification. Make a note of that so we can give it the "expected"
2484   // mangled name if nothing else is using that name.
2485   std::pair<StaticExternCMap::iterator, bool> R =
2486       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2487 
2488   // If we have multiple internal linkage entities with the same name
2489   // in extern "C" regions, none of them gets that name.
2490   if (!R.second)
2491     R.first->second = nullptr;
2492 }
2493 
2494 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2495   if (!CGM.supportsCOMDAT())
2496     return false;
2497 
2498   if (D.hasAttr<SelectAnyAttr>())
2499     return true;
2500 
2501   GVALinkage Linkage;
2502   if (auto *VD = dyn_cast<VarDecl>(&D))
2503     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2504   else
2505     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2506 
2507   switch (Linkage) {
2508   case GVA_Internal:
2509   case GVA_AvailableExternally:
2510   case GVA_StrongExternal:
2511     return false;
2512   case GVA_DiscardableODR:
2513   case GVA_StrongODR:
2514     return true;
2515   }
2516   llvm_unreachable("No such linkage");
2517 }
2518 
2519 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2520                                           llvm::GlobalObject &GO) {
2521   if (!shouldBeInCOMDAT(*this, D))
2522     return;
2523   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2524 }
2525 
2526 /// Pass IsTentative as true if you want to create a tentative definition.
2527 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2528                                             bool IsTentative) {
2529   // OpenCL global variables of sampler type are translated to function calls,
2530   // therefore no need to be translated.
2531   QualType ASTTy = D->getType();
2532   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
2533     return;
2534 
2535   llvm::Constant *Init = nullptr;
2536   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2537   bool NeedsGlobalCtor = false;
2538   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2539 
2540   const VarDecl *InitDecl;
2541   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2542 
2543   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
2544   // as part of their declaration."  Sema has already checked for
2545   // error cases, so we just need to set Init to UndefValue.
2546   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
2547       D->hasAttr<CUDASharedAttr>())
2548     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2549   else if (!InitExpr) {
2550     // This is a tentative definition; tentative definitions are
2551     // implicitly initialized with { 0 }.
2552     //
2553     // Note that tentative definitions are only emitted at the end of
2554     // a translation unit, so they should never have incomplete
2555     // type. In addition, EmitTentativeDefinition makes sure that we
2556     // never attempt to emit a tentative definition if a real one
2557     // exists. A use may still exists, however, so we still may need
2558     // to do a RAUW.
2559     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2560     Init = EmitNullConstant(D->getType());
2561   } else {
2562     initializedGlobalDecl = GlobalDecl(D);
2563     Init = EmitConstantInit(*InitDecl);
2564 
2565     if (!Init) {
2566       QualType T = InitExpr->getType();
2567       if (D->getType()->isReferenceType())
2568         T = D->getType();
2569 
2570       if (getLangOpts().CPlusPlus) {
2571         Init = EmitNullConstant(T);
2572         NeedsGlobalCtor = true;
2573       } else {
2574         ErrorUnsupported(D, "static initializer");
2575         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2576       }
2577     } else {
2578       // We don't need an initializer, so remove the entry for the delayed
2579       // initializer position (just in case this entry was delayed) if we
2580       // also don't need to register a destructor.
2581       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2582         DelayedCXXInitPosition.erase(D);
2583     }
2584   }
2585 
2586   llvm::Type* InitType = Init->getType();
2587   llvm::Constant *Entry =
2588       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
2589 
2590   // Strip off a bitcast if we got one back.
2591   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2592     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2593            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2594            // All zero index gep.
2595            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2596     Entry = CE->getOperand(0);
2597   }
2598 
2599   // Entry is now either a Function or GlobalVariable.
2600   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2601 
2602   // We have a definition after a declaration with the wrong type.
2603   // We must make a new GlobalVariable* and update everything that used OldGV
2604   // (a declaration or tentative definition) with the new GlobalVariable*
2605   // (which will be a definition).
2606   //
2607   // This happens if there is a prototype for a global (e.g.
2608   // "extern int x[];") and then a definition of a different type (e.g.
2609   // "int x[10];"). This also happens when an initializer has a different type
2610   // from the type of the global (this happens with unions).
2611   if (!GV ||
2612       GV->getType()->getElementType() != InitType ||
2613       GV->getType()->getAddressSpace() !=
2614        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2615 
2616     // Move the old entry aside so that we'll create a new one.
2617     Entry->setName(StringRef());
2618 
2619     // Make a new global with the correct type, this is now guaranteed to work.
2620     GV = cast<llvm::GlobalVariable>(
2621         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
2622 
2623     // Replace all uses of the old global with the new global
2624     llvm::Constant *NewPtrForOldDecl =
2625         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2626     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2627 
2628     // Erase the old global, since it is no longer used.
2629     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2630   }
2631 
2632   MaybeHandleStaticInExternC(D, GV);
2633 
2634   if (D->hasAttr<AnnotateAttr>())
2635     AddGlobalAnnotations(D, GV);
2636 
2637   // Set the llvm linkage type as appropriate.
2638   llvm::GlobalValue::LinkageTypes Linkage =
2639       getLLVMLinkageVarDefinition(D, GV->isConstant());
2640 
2641   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2642   // the device. [...]"
2643   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2644   // __device__, declares a variable that: [...]
2645   // Is accessible from all the threads within the grid and from the host
2646   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2647   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2648   if (GV && LangOpts.CUDA) {
2649     if (LangOpts.CUDAIsDevice) {
2650       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
2651         GV->setExternallyInitialized(true);
2652     } else {
2653       // Host-side shadows of external declarations of device-side
2654       // global variables become internal definitions. These have to
2655       // be internal in order to prevent name conflicts with global
2656       // host variables with the same name in a different TUs.
2657       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
2658         Linkage = llvm::GlobalValue::InternalLinkage;
2659 
2660         // Shadow variables and their properties must be registered
2661         // with CUDA runtime.
2662         unsigned Flags = 0;
2663         if (!D->hasDefinition())
2664           Flags |= CGCUDARuntime::ExternDeviceVar;
2665         if (D->hasAttr<CUDAConstantAttr>())
2666           Flags |= CGCUDARuntime::ConstantDeviceVar;
2667         getCUDARuntime().registerDeviceVar(*GV, Flags);
2668       } else if (D->hasAttr<CUDASharedAttr>())
2669         // __shared__ variables are odd. Shadows do get created, but
2670         // they are not registered with the CUDA runtime, so they
2671         // can't really be used to access their device-side
2672         // counterparts. It's not clear yet whether it's nvcc's bug or
2673         // a feature, but we've got to do the same for compatibility.
2674         Linkage = llvm::GlobalValue::InternalLinkage;
2675     }
2676   }
2677   GV->setInitializer(Init);
2678 
2679   // If it is safe to mark the global 'constant', do so now.
2680   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2681                   isTypeConstant(D->getType(), true));
2682 
2683   // If it is in a read-only section, mark it 'constant'.
2684   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2685     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2686     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2687       GV->setConstant(true);
2688   }
2689 
2690   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2691 
2692 
2693   // On Darwin, if the normal linkage of a C++ thread_local variable is
2694   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2695   // copies within a linkage unit; otherwise, the backing variable has
2696   // internal linkage and all accesses should just be calls to the
2697   // Itanium-specified entry point, which has the normal linkage of the
2698   // variable. This is to preserve the ability to change the implementation
2699   // behind the scenes.
2700   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2701       Context.getTargetInfo().getTriple().isOSDarwin() &&
2702       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2703       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2704     Linkage = llvm::GlobalValue::InternalLinkage;
2705 
2706   GV->setLinkage(Linkage);
2707   if (D->hasAttr<DLLImportAttr>())
2708     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2709   else if (D->hasAttr<DLLExportAttr>())
2710     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2711   else
2712     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2713 
2714   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
2715     // common vars aren't constant even if declared const.
2716     GV->setConstant(false);
2717     // Tentative definition of global variables may be initialized with
2718     // non-zero null pointers. In this case they should have weak linkage
2719     // since common linkage must have zero initializer and must not have
2720     // explicit section therefore cannot have non-zero initial value.
2721     if (!GV->getInitializer()->isNullValue())
2722       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
2723   }
2724 
2725   setNonAliasAttributes(D, GV);
2726 
2727   if (D->getTLSKind() && !GV->isThreadLocal()) {
2728     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2729       CXXThreadLocals.push_back(D);
2730     setTLSMode(GV, *D);
2731   }
2732 
2733   maybeSetTrivialComdat(*D, *GV);
2734 
2735   // Emit the initializer function if necessary.
2736   if (NeedsGlobalCtor || NeedsGlobalDtor)
2737     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2738 
2739   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2740 
2741   // Emit global variable debug information.
2742   if (CGDebugInfo *DI = getModuleDebugInfo())
2743     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
2744       DI->EmitGlobalVariable(GV, D);
2745 }
2746 
2747 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2748                                       CodeGenModule &CGM, const VarDecl *D,
2749                                       bool NoCommon) {
2750   // Don't give variables common linkage if -fno-common was specified unless it
2751   // was overridden by a NoCommon attribute.
2752   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2753     return true;
2754 
2755   // C11 6.9.2/2:
2756   //   A declaration of an identifier for an object that has file scope without
2757   //   an initializer, and without a storage-class specifier or with the
2758   //   storage-class specifier static, constitutes a tentative definition.
2759   if (D->getInit() || D->hasExternalStorage())
2760     return true;
2761 
2762   // A variable cannot be both common and exist in a section.
2763   if (D->hasAttr<SectionAttr>())
2764     return true;
2765 
2766   // Thread local vars aren't considered common linkage.
2767   if (D->getTLSKind())
2768     return true;
2769 
2770   // Tentative definitions marked with WeakImportAttr are true definitions.
2771   if (D->hasAttr<WeakImportAttr>())
2772     return true;
2773 
2774   // A variable cannot be both common and exist in a comdat.
2775   if (shouldBeInCOMDAT(CGM, *D))
2776     return true;
2777 
2778   // Declarations with a required alignment do not have common linkage in MSVC
2779   // mode.
2780   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2781     if (D->hasAttr<AlignedAttr>())
2782       return true;
2783     QualType VarType = D->getType();
2784     if (Context.isAlignmentRequired(VarType))
2785       return true;
2786 
2787     if (const auto *RT = VarType->getAs<RecordType>()) {
2788       const RecordDecl *RD = RT->getDecl();
2789       for (const FieldDecl *FD : RD->fields()) {
2790         if (FD->isBitField())
2791           continue;
2792         if (FD->hasAttr<AlignedAttr>())
2793           return true;
2794         if (Context.isAlignmentRequired(FD->getType()))
2795           return true;
2796       }
2797     }
2798   }
2799 
2800   return false;
2801 }
2802 
2803 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2804     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2805   if (Linkage == GVA_Internal)
2806     return llvm::Function::InternalLinkage;
2807 
2808   if (D->hasAttr<WeakAttr>()) {
2809     if (IsConstantVariable)
2810       return llvm::GlobalVariable::WeakODRLinkage;
2811     else
2812       return llvm::GlobalVariable::WeakAnyLinkage;
2813   }
2814 
2815   // We are guaranteed to have a strong definition somewhere else,
2816   // so we can use available_externally linkage.
2817   if (Linkage == GVA_AvailableExternally)
2818     return llvm::GlobalValue::AvailableExternallyLinkage;
2819 
2820   // Note that Apple's kernel linker doesn't support symbol
2821   // coalescing, so we need to avoid linkonce and weak linkages there.
2822   // Normally, this means we just map to internal, but for explicit
2823   // instantiations we'll map to external.
2824 
2825   // In C++, the compiler has to emit a definition in every translation unit
2826   // that references the function.  We should use linkonce_odr because
2827   // a) if all references in this translation unit are optimized away, we
2828   // don't need to codegen it.  b) if the function persists, it needs to be
2829   // merged with other definitions. c) C++ has the ODR, so we know the
2830   // definition is dependable.
2831   if (Linkage == GVA_DiscardableODR)
2832     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2833                                             : llvm::Function::InternalLinkage;
2834 
2835   // An explicit instantiation of a template has weak linkage, since
2836   // explicit instantiations can occur in multiple translation units
2837   // and must all be equivalent. However, we are not allowed to
2838   // throw away these explicit instantiations.
2839   //
2840   // We don't currently support CUDA device code spread out across multiple TUs,
2841   // so say that CUDA templates are either external (for kernels) or internal.
2842   // This lets llvm perform aggressive inter-procedural optimizations.
2843   if (Linkage == GVA_StrongODR) {
2844     if (Context.getLangOpts().AppleKext)
2845       return llvm::Function::ExternalLinkage;
2846     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
2847       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
2848                                           : llvm::Function::InternalLinkage;
2849     return llvm::Function::WeakODRLinkage;
2850   }
2851 
2852   // C++ doesn't have tentative definitions and thus cannot have common
2853   // linkage.
2854   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2855       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2856                                  CodeGenOpts.NoCommon))
2857     return llvm::GlobalVariable::CommonLinkage;
2858 
2859   // selectany symbols are externally visible, so use weak instead of
2860   // linkonce.  MSVC optimizes away references to const selectany globals, so
2861   // all definitions should be the same and ODR linkage should be used.
2862   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2863   if (D->hasAttr<SelectAnyAttr>())
2864     return llvm::GlobalVariable::WeakODRLinkage;
2865 
2866   // Otherwise, we have strong external linkage.
2867   assert(Linkage == GVA_StrongExternal);
2868   return llvm::GlobalVariable::ExternalLinkage;
2869 }
2870 
2871 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2872     const VarDecl *VD, bool IsConstant) {
2873   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2874   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2875 }
2876 
2877 /// Replace the uses of a function that was declared with a non-proto type.
2878 /// We want to silently drop extra arguments from call sites
2879 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2880                                           llvm::Function *newFn) {
2881   // Fast path.
2882   if (old->use_empty()) return;
2883 
2884   llvm::Type *newRetTy = newFn->getReturnType();
2885   SmallVector<llvm::Value*, 4> newArgs;
2886   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2887 
2888   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2889          ui != ue; ) {
2890     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2891     llvm::User *user = use->getUser();
2892 
2893     // Recognize and replace uses of bitcasts.  Most calls to
2894     // unprototyped functions will use bitcasts.
2895     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2896       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2897         replaceUsesOfNonProtoConstant(bitcast, newFn);
2898       continue;
2899     }
2900 
2901     // Recognize calls to the function.
2902     llvm::CallSite callSite(user);
2903     if (!callSite) continue;
2904     if (!callSite.isCallee(&*use)) continue;
2905 
2906     // If the return types don't match exactly, then we can't
2907     // transform this call unless it's dead.
2908     if (callSite->getType() != newRetTy && !callSite->use_empty())
2909       continue;
2910 
2911     // Get the call site's attribute list.
2912     SmallVector<llvm::AttributeList, 8> newAttrs;
2913     llvm::AttributeList oldAttrs = callSite.getAttributes();
2914 
2915     // Collect any return attributes from the call.
2916     if (oldAttrs.hasAttributes(llvm::AttributeList::ReturnIndex))
2917       newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
2918                                                   oldAttrs.getRetAttributes()));
2919 
2920     // If the function was passed too few arguments, don't transform.
2921     unsigned newNumArgs = newFn->arg_size();
2922     if (callSite.arg_size() < newNumArgs) continue;
2923 
2924     // If extra arguments were passed, we silently drop them.
2925     // If any of the types mismatch, we don't transform.
2926     unsigned argNo = 0;
2927     bool dontTransform = false;
2928     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2929            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2930       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2931         dontTransform = true;
2932         break;
2933       }
2934 
2935       // Add any parameter attributes.
2936       if (oldAttrs.hasAttributes(argNo + 1))
2937         newAttrs.push_back(llvm::AttributeList::get(
2938             newFn->getContext(), oldAttrs.getParamAttributes(argNo + 1)));
2939     }
2940     if (dontTransform)
2941       continue;
2942 
2943     if (oldAttrs.hasAttributes(llvm::AttributeList::FunctionIndex))
2944       newAttrs.push_back(llvm::AttributeList::get(newFn->getContext(),
2945                                                   oldAttrs.getFnAttributes()));
2946 
2947     // Okay, we can transform this.  Create the new call instruction and copy
2948     // over the required information.
2949     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2950 
2951     // Copy over any operand bundles.
2952     callSite.getOperandBundlesAsDefs(newBundles);
2953 
2954     llvm::CallSite newCall;
2955     if (callSite.isCall()) {
2956       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2957                                        callSite.getInstruction());
2958     } else {
2959       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2960       newCall = llvm::InvokeInst::Create(newFn,
2961                                          oldInvoke->getNormalDest(),
2962                                          oldInvoke->getUnwindDest(),
2963                                          newArgs, newBundles, "",
2964                                          callSite.getInstruction());
2965     }
2966     newArgs.clear(); // for the next iteration
2967 
2968     if (!newCall->getType()->isVoidTy())
2969       newCall->takeName(callSite.getInstruction());
2970     newCall.setAttributes(
2971         llvm::AttributeList::get(newFn->getContext(), newAttrs));
2972     newCall.setCallingConv(callSite.getCallingConv());
2973 
2974     // Finally, remove the old call, replacing any uses with the new one.
2975     if (!callSite->use_empty())
2976       callSite->replaceAllUsesWith(newCall.getInstruction());
2977 
2978     // Copy debug location attached to CI.
2979     if (callSite->getDebugLoc())
2980       newCall->setDebugLoc(callSite->getDebugLoc());
2981 
2982     callSite->eraseFromParent();
2983   }
2984 }
2985 
2986 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2987 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2988 /// existing call uses of the old function in the module, this adjusts them to
2989 /// call the new function directly.
2990 ///
2991 /// This is not just a cleanup: the always_inline pass requires direct calls to
2992 /// functions to be able to inline them.  If there is a bitcast in the way, it
2993 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2994 /// run at -O0.
2995 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2996                                                       llvm::Function *NewFn) {
2997   // If we're redefining a global as a function, don't transform it.
2998   if (!isa<llvm::Function>(Old)) return;
2999 
3000   replaceUsesOfNonProtoConstant(Old, NewFn);
3001 }
3002 
3003 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3004   auto DK = VD->isThisDeclarationADefinition();
3005   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3006     return;
3007 
3008   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3009   // If we have a definition, this might be a deferred decl. If the
3010   // instantiation is explicit, make sure we emit it at the end.
3011   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3012     GetAddrOfGlobalVar(VD);
3013 
3014   EmitTopLevelDecl(VD);
3015 }
3016 
3017 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3018                                                  llvm::GlobalValue *GV) {
3019   const auto *D = cast<FunctionDecl>(GD.getDecl());
3020 
3021   // Compute the function info and LLVM type.
3022   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3023   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3024 
3025   // Get or create the prototype for the function.
3026   if (!GV || (GV->getType()->getElementType() != Ty))
3027     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3028                                                    /*DontDefer=*/true,
3029                                                    ForDefinition));
3030 
3031   // Already emitted.
3032   if (!GV->isDeclaration())
3033     return;
3034 
3035   // We need to set linkage and visibility on the function before
3036   // generating code for it because various parts of IR generation
3037   // want to propagate this information down (e.g. to local static
3038   // declarations).
3039   auto *Fn = cast<llvm::Function>(GV);
3040   setFunctionLinkage(GD, Fn);
3041   setFunctionDLLStorageClass(GD, Fn);
3042 
3043   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3044   setGlobalVisibility(Fn, D);
3045 
3046   MaybeHandleStaticInExternC(D, Fn);
3047 
3048   maybeSetTrivialComdat(*D, *Fn);
3049 
3050   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
3051 
3052   setFunctionDefinitionAttributes(D, Fn);
3053   SetLLVMFunctionAttributesForDefinition(D, Fn);
3054 
3055   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
3056     AddGlobalCtor(Fn, CA->getPriority());
3057   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
3058     AddGlobalDtor(Fn, DA->getPriority());
3059   if (D->hasAttr<AnnotateAttr>())
3060     AddGlobalAnnotations(D, Fn);
3061 }
3062 
3063 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
3064   const auto *D = cast<ValueDecl>(GD.getDecl());
3065   const AliasAttr *AA = D->getAttr<AliasAttr>();
3066   assert(AA && "Not an alias?");
3067 
3068   StringRef MangledName = getMangledName(GD);
3069 
3070   if (AA->getAliasee() == MangledName) {
3071     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3072     return;
3073   }
3074 
3075   // If there is a definition in the module, then it wins over the alias.
3076   // This is dubious, but allow it to be safe.  Just ignore the alias.
3077   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3078   if (Entry && !Entry->isDeclaration())
3079     return;
3080 
3081   Aliases.push_back(GD);
3082 
3083   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3084 
3085   // Create a reference to the named value.  This ensures that it is emitted
3086   // if a deferred decl.
3087   llvm::Constant *Aliasee;
3088   if (isa<llvm::FunctionType>(DeclTy))
3089     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
3090                                       /*ForVTable=*/false);
3091   else
3092     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
3093                                     llvm::PointerType::getUnqual(DeclTy),
3094                                     /*D=*/nullptr);
3095 
3096   // Create the new alias itself, but don't set a name yet.
3097   auto *GA = llvm::GlobalAlias::create(
3098       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
3099 
3100   if (Entry) {
3101     if (GA->getAliasee() == Entry) {
3102       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
3103       return;
3104     }
3105 
3106     assert(Entry->isDeclaration());
3107 
3108     // If there is a declaration in the module, then we had an extern followed
3109     // by the alias, as in:
3110     //   extern int test6();
3111     //   ...
3112     //   int test6() __attribute__((alias("test7")));
3113     //
3114     // Remove it and replace uses of it with the alias.
3115     GA->takeName(Entry);
3116 
3117     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
3118                                                           Entry->getType()));
3119     Entry->eraseFromParent();
3120   } else {
3121     GA->setName(MangledName);
3122   }
3123 
3124   // Set attributes which are particular to an alias; this is a
3125   // specialization of the attributes which may be set on a global
3126   // variable/function.
3127   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
3128       D->isWeakImported()) {
3129     GA->setLinkage(llvm::Function::WeakAnyLinkage);
3130   }
3131 
3132   if (const auto *VD = dyn_cast<VarDecl>(D))
3133     if (VD->getTLSKind())
3134       setTLSMode(GA, *VD);
3135 
3136   setAliasAttributes(D, GA);
3137 }
3138 
3139 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
3140   const auto *D = cast<ValueDecl>(GD.getDecl());
3141   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
3142   assert(IFA && "Not an ifunc?");
3143 
3144   StringRef MangledName = getMangledName(GD);
3145 
3146   if (IFA->getResolver() == MangledName) {
3147     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3148     return;
3149   }
3150 
3151   // Report an error if some definition overrides ifunc.
3152   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3153   if (Entry && !Entry->isDeclaration()) {
3154     GlobalDecl OtherGD;
3155     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3156         DiagnosedConflictingDefinitions.insert(GD).second) {
3157       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name);
3158       Diags.Report(OtherGD.getDecl()->getLocation(),
3159                    diag::note_previous_definition);
3160     }
3161     return;
3162   }
3163 
3164   Aliases.push_back(GD);
3165 
3166   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
3167   llvm::Constant *Resolver =
3168       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
3169                               /*ForVTable=*/false);
3170   llvm::GlobalIFunc *GIF =
3171       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
3172                                 "", Resolver, &getModule());
3173   if (Entry) {
3174     if (GIF->getResolver() == Entry) {
3175       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
3176       return;
3177     }
3178     assert(Entry->isDeclaration());
3179 
3180     // If there is a declaration in the module, then we had an extern followed
3181     // by the ifunc, as in:
3182     //   extern int test();
3183     //   ...
3184     //   int test() __attribute__((ifunc("resolver")));
3185     //
3186     // Remove it and replace uses of it with the ifunc.
3187     GIF->takeName(Entry);
3188 
3189     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
3190                                                           Entry->getType()));
3191     Entry->eraseFromParent();
3192   } else
3193     GIF->setName(MangledName);
3194 
3195   SetCommonAttributes(D, GIF);
3196 }
3197 
3198 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
3199                                             ArrayRef<llvm::Type*> Tys) {
3200   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
3201                                          Tys);
3202 }
3203 
3204 static llvm::StringMapEntry<llvm::GlobalVariable *> &
3205 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
3206                          const StringLiteral *Literal, bool TargetIsLSB,
3207                          bool &IsUTF16, unsigned &StringLength) {
3208   StringRef String = Literal->getString();
3209   unsigned NumBytes = String.size();
3210 
3211   // Check for simple case.
3212   if (!Literal->containsNonAsciiOrNull()) {
3213     StringLength = NumBytes;
3214     return *Map.insert(std::make_pair(String, nullptr)).first;
3215   }
3216 
3217   // Otherwise, convert the UTF8 literals into a string of shorts.
3218   IsUTF16 = true;
3219 
3220   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
3221   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
3222   llvm::UTF16 *ToPtr = &ToBuf[0];
3223 
3224   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
3225                                  ToPtr + NumBytes, llvm::strictConversion);
3226 
3227   // ConvertUTF8toUTF16 returns the length in ToPtr.
3228   StringLength = ToPtr - &ToBuf[0];
3229 
3230   // Add an explicit null.
3231   *ToPtr = 0;
3232   return *Map.insert(std::make_pair(
3233                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
3234                                    (StringLength + 1) * 2),
3235                          nullptr)).first;
3236 }
3237 
3238 ConstantAddress
3239 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
3240   unsigned StringLength = 0;
3241   bool isUTF16 = false;
3242   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3243       GetConstantCFStringEntry(CFConstantStringMap, Literal,
3244                                getDataLayout().isLittleEndian(), isUTF16,
3245                                StringLength);
3246 
3247   if (auto *C = Entry.second)
3248     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3249 
3250   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3251   llvm::Constant *Zeros[] = { Zero, Zero };
3252 
3253   // If we don't already have it, get __CFConstantStringClassReference.
3254   if (!CFConstantStringClassRef) {
3255     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3256     Ty = llvm::ArrayType::get(Ty, 0);
3257     llvm::Constant *GV =
3258         CreateRuntimeVariable(Ty, "__CFConstantStringClassReference");
3259 
3260     if (getTriple().isOSBinFormatCOFF()) {
3261       IdentifierInfo &II = getContext().Idents.get(GV->getName());
3262       TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl();
3263       DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3264       llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV);
3265 
3266       const VarDecl *VD = nullptr;
3267       for (const auto &Result : DC->lookup(&II))
3268         if ((VD = dyn_cast<VarDecl>(Result)))
3269           break;
3270 
3271       if (!VD || !VD->hasAttr<DLLExportAttr>()) {
3272         CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
3273         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3274       } else {
3275         CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
3276         CGV->setLinkage(llvm::GlobalValue::ExternalLinkage);
3277       }
3278     }
3279 
3280     // Decay array -> ptr
3281     CFConstantStringClassRef =
3282         llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
3283   }
3284 
3285   QualType CFTy = getContext().getCFConstantStringType();
3286 
3287   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
3288 
3289   ConstantInitBuilder Builder(*this);
3290   auto Fields = Builder.beginStruct(STy);
3291 
3292   // Class pointer.
3293   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
3294 
3295   // Flags.
3296   Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
3297 
3298   // String pointer.
3299   llvm::Constant *C = nullptr;
3300   if (isUTF16) {
3301     auto Arr = llvm::makeArrayRef(
3302         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
3303         Entry.first().size() / 2);
3304     C = llvm::ConstantDataArray::get(VMContext, Arr);
3305   } else {
3306     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
3307   }
3308 
3309   // Note: -fwritable-strings doesn't make the backing store strings of
3310   // CFStrings writable. (See <rdar://problem/10657500>)
3311   auto *GV =
3312       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
3313                                llvm::GlobalValue::PrivateLinkage, C, ".str");
3314   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3315   // Don't enforce the target's minimum global alignment, since the only use
3316   // of the string is via this class initializer.
3317   CharUnits Align = isUTF16
3318                         ? getContext().getTypeAlignInChars(getContext().ShortTy)
3319                         : getContext().getTypeAlignInChars(getContext().CharTy);
3320   GV->setAlignment(Align.getQuantity());
3321 
3322   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
3323   // Without it LLVM can merge the string with a non unnamed_addr one during
3324   // LTO.  Doing that changes the section it ends in, which surprises ld64.
3325   if (getTriple().isOSBinFormatMachO())
3326     GV->setSection(isUTF16 ? "__TEXT,__ustring"
3327                            : "__TEXT,__cstring,cstring_literals");
3328 
3329   // String.
3330   llvm::Constant *Str =
3331       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3332 
3333   if (isUTF16)
3334     // Cast the UTF16 string to the correct type.
3335     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
3336   Fields.add(Str);
3337 
3338   // String length.
3339   auto Ty = getTypes().ConvertType(getContext().LongTy);
3340   Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength);
3341 
3342   CharUnits Alignment = getPointerAlign();
3343 
3344   // The struct.
3345   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
3346                                     /*isConstant=*/false,
3347                                     llvm::GlobalVariable::PrivateLinkage);
3348   switch (getTriple().getObjectFormat()) {
3349   case llvm::Triple::UnknownObjectFormat:
3350     llvm_unreachable("unknown file format");
3351   case llvm::Triple::COFF:
3352   case llvm::Triple::ELF:
3353   case llvm::Triple::Wasm:
3354     GV->setSection("cfstring");
3355     break;
3356   case llvm::Triple::MachO:
3357     GV->setSection("__DATA,__cfstring");
3358     break;
3359   }
3360   Entry.second = GV;
3361 
3362   return ConstantAddress(GV, Alignment);
3363 }
3364 
3365 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3366   if (ObjCFastEnumerationStateType.isNull()) {
3367     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3368     D->startDefinition();
3369 
3370     QualType FieldTypes[] = {
3371       Context.UnsignedLongTy,
3372       Context.getPointerType(Context.getObjCIdType()),
3373       Context.getPointerType(Context.UnsignedLongTy),
3374       Context.getConstantArrayType(Context.UnsignedLongTy,
3375                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3376     };
3377 
3378     for (size_t i = 0; i < 4; ++i) {
3379       FieldDecl *Field = FieldDecl::Create(Context,
3380                                            D,
3381                                            SourceLocation(),
3382                                            SourceLocation(), nullptr,
3383                                            FieldTypes[i], /*TInfo=*/nullptr,
3384                                            /*BitWidth=*/nullptr,
3385                                            /*Mutable=*/false,
3386                                            ICIS_NoInit);
3387       Field->setAccess(AS_public);
3388       D->addDecl(Field);
3389     }
3390 
3391     D->completeDefinition();
3392     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3393   }
3394 
3395   return ObjCFastEnumerationStateType;
3396 }
3397 
3398 llvm::Constant *
3399 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3400   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3401 
3402   // Don't emit it as the address of the string, emit the string data itself
3403   // as an inline array.
3404   if (E->getCharByteWidth() == 1) {
3405     SmallString<64> Str(E->getString());
3406 
3407     // Resize the string to the right size, which is indicated by its type.
3408     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3409     Str.resize(CAT->getSize().getZExtValue());
3410     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3411   }
3412 
3413   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3414   llvm::Type *ElemTy = AType->getElementType();
3415   unsigned NumElements = AType->getNumElements();
3416 
3417   // Wide strings have either 2-byte or 4-byte elements.
3418   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3419     SmallVector<uint16_t, 32> Elements;
3420     Elements.reserve(NumElements);
3421 
3422     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3423       Elements.push_back(E->getCodeUnit(i));
3424     Elements.resize(NumElements);
3425     return llvm::ConstantDataArray::get(VMContext, Elements);
3426   }
3427 
3428   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3429   SmallVector<uint32_t, 32> Elements;
3430   Elements.reserve(NumElements);
3431 
3432   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3433     Elements.push_back(E->getCodeUnit(i));
3434   Elements.resize(NumElements);
3435   return llvm::ConstantDataArray::get(VMContext, Elements);
3436 }
3437 
3438 static llvm::GlobalVariable *
3439 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3440                       CodeGenModule &CGM, StringRef GlobalName,
3441                       CharUnits Alignment) {
3442   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3443   unsigned AddrSpace = 0;
3444   if (CGM.getLangOpts().OpenCL)
3445     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3446 
3447   llvm::Module &M = CGM.getModule();
3448   // Create a global variable for this string
3449   auto *GV = new llvm::GlobalVariable(
3450       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3451       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3452   GV->setAlignment(Alignment.getQuantity());
3453   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3454   if (GV->isWeakForLinker()) {
3455     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3456     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3457   }
3458 
3459   return GV;
3460 }
3461 
3462 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3463 /// constant array for the given string literal.
3464 ConstantAddress
3465 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3466                                                   StringRef Name) {
3467   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3468 
3469   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3470   llvm::GlobalVariable **Entry = nullptr;
3471   if (!LangOpts.WritableStrings) {
3472     Entry = &ConstantStringMap[C];
3473     if (auto GV = *Entry) {
3474       if (Alignment.getQuantity() > GV->getAlignment())
3475         GV->setAlignment(Alignment.getQuantity());
3476       return ConstantAddress(GV, Alignment);
3477     }
3478   }
3479 
3480   SmallString<256> MangledNameBuffer;
3481   StringRef GlobalVariableName;
3482   llvm::GlobalValue::LinkageTypes LT;
3483 
3484   // Mangle the string literal if the ABI allows for it.  However, we cannot
3485   // do this if  we are compiling with ASan or -fwritable-strings because they
3486   // rely on strings having normal linkage.
3487   if (!LangOpts.WritableStrings &&
3488       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3489       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3490     llvm::raw_svector_ostream Out(MangledNameBuffer);
3491     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3492 
3493     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3494     GlobalVariableName = MangledNameBuffer;
3495   } else {
3496     LT = llvm::GlobalValue::PrivateLinkage;
3497     GlobalVariableName = Name;
3498   }
3499 
3500   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3501   if (Entry)
3502     *Entry = GV;
3503 
3504   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3505                                   QualType());
3506   return ConstantAddress(GV, Alignment);
3507 }
3508 
3509 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3510 /// array for the given ObjCEncodeExpr node.
3511 ConstantAddress
3512 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3513   std::string Str;
3514   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3515 
3516   return GetAddrOfConstantCString(Str);
3517 }
3518 
3519 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3520 /// the literal and a terminating '\0' character.
3521 /// The result has pointer to array type.
3522 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3523     const std::string &Str, const char *GlobalName) {
3524   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3525   CharUnits Alignment =
3526     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3527 
3528   llvm::Constant *C =
3529       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3530 
3531   // Don't share any string literals if strings aren't constant.
3532   llvm::GlobalVariable **Entry = nullptr;
3533   if (!LangOpts.WritableStrings) {
3534     Entry = &ConstantStringMap[C];
3535     if (auto GV = *Entry) {
3536       if (Alignment.getQuantity() > GV->getAlignment())
3537         GV->setAlignment(Alignment.getQuantity());
3538       return ConstantAddress(GV, Alignment);
3539     }
3540   }
3541 
3542   // Get the default prefix if a name wasn't specified.
3543   if (!GlobalName)
3544     GlobalName = ".str";
3545   // Create a global variable for this.
3546   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3547                                   GlobalName, Alignment);
3548   if (Entry)
3549     *Entry = GV;
3550   return ConstantAddress(GV, Alignment);
3551 }
3552 
3553 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3554     const MaterializeTemporaryExpr *E, const Expr *Init) {
3555   assert((E->getStorageDuration() == SD_Static ||
3556           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3557   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3558 
3559   // If we're not materializing a subobject of the temporary, keep the
3560   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3561   QualType MaterializedType = Init->getType();
3562   if (Init == E->GetTemporaryExpr())
3563     MaterializedType = E->getType();
3564 
3565   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3566 
3567   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3568     return ConstantAddress(Slot, Align);
3569 
3570   // FIXME: If an externally-visible declaration extends multiple temporaries,
3571   // we need to give each temporary the same name in every translation unit (and
3572   // we also need to make the temporaries externally-visible).
3573   SmallString<256> Name;
3574   llvm::raw_svector_ostream Out(Name);
3575   getCXXABI().getMangleContext().mangleReferenceTemporary(
3576       VD, E->getManglingNumber(), Out);
3577 
3578   APValue *Value = nullptr;
3579   if (E->getStorageDuration() == SD_Static) {
3580     // We might have a cached constant initializer for this temporary. Note
3581     // that this might have a different value from the value computed by
3582     // evaluating the initializer if the surrounding constant expression
3583     // modifies the temporary.
3584     Value = getContext().getMaterializedTemporaryValue(E, false);
3585     if (Value && Value->isUninit())
3586       Value = nullptr;
3587   }
3588 
3589   // Try evaluating it now, it might have a constant initializer.
3590   Expr::EvalResult EvalResult;
3591   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3592       !EvalResult.hasSideEffects())
3593     Value = &EvalResult.Val;
3594 
3595   llvm::Constant *InitialValue = nullptr;
3596   bool Constant = false;
3597   llvm::Type *Type;
3598   if (Value) {
3599     // The temporary has a constant initializer, use it.
3600     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3601     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3602     Type = InitialValue->getType();
3603   } else {
3604     // No initializer, the initialization will be provided when we
3605     // initialize the declaration which performed lifetime extension.
3606     Type = getTypes().ConvertTypeForMem(MaterializedType);
3607   }
3608 
3609   // Create a global variable for this lifetime-extended temporary.
3610   llvm::GlobalValue::LinkageTypes Linkage =
3611       getLLVMLinkageVarDefinition(VD, Constant);
3612   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3613     const VarDecl *InitVD;
3614     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3615         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3616       // Temporaries defined inside a class get linkonce_odr linkage because the
3617       // class can be defined in multipe translation units.
3618       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3619     } else {
3620       // There is no need for this temporary to have external linkage if the
3621       // VarDecl has external linkage.
3622       Linkage = llvm::GlobalVariable::InternalLinkage;
3623     }
3624   }
3625   unsigned AddrSpace = GetGlobalVarAddressSpace(
3626       VD, getContext().getTargetAddressSpace(MaterializedType));
3627   auto *GV = new llvm::GlobalVariable(
3628       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3629       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3630       AddrSpace);
3631   setGlobalVisibility(GV, VD);
3632   GV->setAlignment(Align.getQuantity());
3633   if (supportsCOMDAT() && GV->isWeakForLinker())
3634     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3635   if (VD->getTLSKind())
3636     setTLSMode(GV, *VD);
3637   MaterializedGlobalTemporaryMap[E] = GV;
3638   return ConstantAddress(GV, Align);
3639 }
3640 
3641 /// EmitObjCPropertyImplementations - Emit information for synthesized
3642 /// properties for an implementation.
3643 void CodeGenModule::EmitObjCPropertyImplementations(const
3644                                                     ObjCImplementationDecl *D) {
3645   for (const auto *PID : D->property_impls()) {
3646     // Dynamic is just for type-checking.
3647     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3648       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3649 
3650       // Determine which methods need to be implemented, some may have
3651       // been overridden. Note that ::isPropertyAccessor is not the method
3652       // we want, that just indicates if the decl came from a
3653       // property. What we want to know is if the method is defined in
3654       // this implementation.
3655       if (!D->getInstanceMethod(PD->getGetterName()))
3656         CodeGenFunction(*this).GenerateObjCGetter(
3657                                  const_cast<ObjCImplementationDecl *>(D), PID);
3658       if (!PD->isReadOnly() &&
3659           !D->getInstanceMethod(PD->getSetterName()))
3660         CodeGenFunction(*this).GenerateObjCSetter(
3661                                  const_cast<ObjCImplementationDecl *>(D), PID);
3662     }
3663   }
3664 }
3665 
3666 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3667   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3668   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3669        ivar; ivar = ivar->getNextIvar())
3670     if (ivar->getType().isDestructedType())
3671       return true;
3672 
3673   return false;
3674 }
3675 
3676 static bool AllTrivialInitializers(CodeGenModule &CGM,
3677                                    ObjCImplementationDecl *D) {
3678   CodeGenFunction CGF(CGM);
3679   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3680        E = D->init_end(); B != E; ++B) {
3681     CXXCtorInitializer *CtorInitExp = *B;
3682     Expr *Init = CtorInitExp->getInit();
3683     if (!CGF.isTrivialInitializer(Init))
3684       return false;
3685   }
3686   return true;
3687 }
3688 
3689 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3690 /// for an implementation.
3691 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3692   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3693   if (needsDestructMethod(D)) {
3694     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3695     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3696     ObjCMethodDecl *DTORMethod =
3697       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3698                              cxxSelector, getContext().VoidTy, nullptr, D,
3699                              /*isInstance=*/true, /*isVariadic=*/false,
3700                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3701                              /*isDefined=*/false, ObjCMethodDecl::Required);
3702     D->addInstanceMethod(DTORMethod);
3703     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3704     D->setHasDestructors(true);
3705   }
3706 
3707   // If the implementation doesn't have any ivar initializers, we don't need
3708   // a .cxx_construct.
3709   if (D->getNumIvarInitializers() == 0 ||
3710       AllTrivialInitializers(*this, D))
3711     return;
3712 
3713   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3714   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3715   // The constructor returns 'self'.
3716   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3717                                                 D->getLocation(),
3718                                                 D->getLocation(),
3719                                                 cxxSelector,
3720                                                 getContext().getObjCIdType(),
3721                                                 nullptr, D, /*isInstance=*/true,
3722                                                 /*isVariadic=*/false,
3723                                                 /*isPropertyAccessor=*/true,
3724                                                 /*isImplicitlyDeclared=*/true,
3725                                                 /*isDefined=*/false,
3726                                                 ObjCMethodDecl::Required);
3727   D->addInstanceMethod(CTORMethod);
3728   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3729   D->setHasNonZeroConstructors(true);
3730 }
3731 
3732 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3733 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3734   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3735       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3736     ErrorUnsupported(LSD, "linkage spec");
3737     return;
3738   }
3739 
3740   EmitDeclContext(LSD);
3741 }
3742 
3743 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
3744   for (auto *I : DC->decls()) {
3745     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
3746     // are themselves considered "top-level", so EmitTopLevelDecl on an
3747     // ObjCImplDecl does not recursively visit them. We need to do that in
3748     // case they're nested inside another construct (LinkageSpecDecl /
3749     // ExportDecl) that does stop them from being considered "top-level".
3750     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3751       for (auto *M : OID->methods())
3752         EmitTopLevelDecl(M);
3753     }
3754 
3755     EmitTopLevelDecl(I);
3756   }
3757 }
3758 
3759 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3760 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3761   // Ignore dependent declarations.
3762   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3763     return;
3764 
3765   switch (D->getKind()) {
3766   case Decl::CXXConversion:
3767   case Decl::CXXMethod:
3768   case Decl::Function:
3769     // Skip function templates
3770     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3771         cast<FunctionDecl>(D)->isLateTemplateParsed())
3772       return;
3773 
3774     EmitGlobal(cast<FunctionDecl>(D));
3775     // Always provide some coverage mapping
3776     // even for the functions that aren't emitted.
3777     AddDeferredUnusedCoverageMapping(D);
3778     break;
3779 
3780   case Decl::Var:
3781   case Decl::Decomposition:
3782     // Skip variable templates
3783     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3784       return;
3785   case Decl::VarTemplateSpecialization:
3786     EmitGlobal(cast<VarDecl>(D));
3787     if (auto *DD = dyn_cast<DecompositionDecl>(D))
3788       for (auto *B : DD->bindings())
3789         if (auto *HD = B->getHoldingVar())
3790           EmitGlobal(HD);
3791     break;
3792 
3793   // Indirect fields from global anonymous structs and unions can be
3794   // ignored; only the actual variable requires IR gen support.
3795   case Decl::IndirectField:
3796     break;
3797 
3798   // C++ Decls
3799   case Decl::Namespace:
3800     EmitDeclContext(cast<NamespaceDecl>(D));
3801     break;
3802   case Decl::CXXRecord:
3803     // Emit any static data members, they may be definitions.
3804     for (auto *I : cast<CXXRecordDecl>(D)->decls())
3805       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
3806         EmitTopLevelDecl(I);
3807     break;
3808     // No code generation needed.
3809   case Decl::UsingShadow:
3810   case Decl::ClassTemplate:
3811   case Decl::VarTemplate:
3812   case Decl::VarTemplatePartialSpecialization:
3813   case Decl::FunctionTemplate:
3814   case Decl::TypeAliasTemplate:
3815   case Decl::Block:
3816   case Decl::Empty:
3817     break;
3818   case Decl::Using:          // using X; [C++]
3819     if (CGDebugInfo *DI = getModuleDebugInfo())
3820         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3821     return;
3822   case Decl::NamespaceAlias:
3823     if (CGDebugInfo *DI = getModuleDebugInfo())
3824         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3825     return;
3826   case Decl::UsingDirective: // using namespace X; [C++]
3827     if (CGDebugInfo *DI = getModuleDebugInfo())
3828       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3829     return;
3830   case Decl::CXXConstructor:
3831     // Skip function templates
3832     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3833         cast<FunctionDecl>(D)->isLateTemplateParsed())
3834       return;
3835 
3836     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3837     break;
3838   case Decl::CXXDestructor:
3839     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3840       return;
3841     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3842     break;
3843 
3844   case Decl::StaticAssert:
3845     // Nothing to do.
3846     break;
3847 
3848   // Objective-C Decls
3849 
3850   // Forward declarations, no (immediate) code generation.
3851   case Decl::ObjCInterface:
3852   case Decl::ObjCCategory:
3853     break;
3854 
3855   case Decl::ObjCProtocol: {
3856     auto *Proto = cast<ObjCProtocolDecl>(D);
3857     if (Proto->isThisDeclarationADefinition())
3858       ObjCRuntime->GenerateProtocol(Proto);
3859     break;
3860   }
3861 
3862   case Decl::ObjCCategoryImpl:
3863     // Categories have properties but don't support synthesize so we
3864     // can ignore them here.
3865     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3866     break;
3867 
3868   case Decl::ObjCImplementation: {
3869     auto *OMD = cast<ObjCImplementationDecl>(D);
3870     EmitObjCPropertyImplementations(OMD);
3871     EmitObjCIvarInitializations(OMD);
3872     ObjCRuntime->GenerateClass(OMD);
3873     // Emit global variable debug information.
3874     if (CGDebugInfo *DI = getModuleDebugInfo())
3875       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3876         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3877             OMD->getClassInterface()), OMD->getLocation());
3878     break;
3879   }
3880   case Decl::ObjCMethod: {
3881     auto *OMD = cast<ObjCMethodDecl>(D);
3882     // If this is not a prototype, emit the body.
3883     if (OMD->getBody())
3884       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3885     break;
3886   }
3887   case Decl::ObjCCompatibleAlias:
3888     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3889     break;
3890 
3891   case Decl::PragmaComment: {
3892     const auto *PCD = cast<PragmaCommentDecl>(D);
3893     switch (PCD->getCommentKind()) {
3894     case PCK_Unknown:
3895       llvm_unreachable("unexpected pragma comment kind");
3896     case PCK_Linker:
3897       AppendLinkerOptions(PCD->getArg());
3898       break;
3899     case PCK_Lib:
3900       AddDependentLib(PCD->getArg());
3901       break;
3902     case PCK_Compiler:
3903     case PCK_ExeStr:
3904     case PCK_User:
3905       break; // We ignore all of these.
3906     }
3907     break;
3908   }
3909 
3910   case Decl::PragmaDetectMismatch: {
3911     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
3912     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
3913     break;
3914   }
3915 
3916   case Decl::LinkageSpec:
3917     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3918     break;
3919 
3920   case Decl::FileScopeAsm: {
3921     // File-scope asm is ignored during device-side CUDA compilation.
3922     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3923       break;
3924     // File-scope asm is ignored during device-side OpenMP compilation.
3925     if (LangOpts.OpenMPIsDevice)
3926       break;
3927     auto *AD = cast<FileScopeAsmDecl>(D);
3928     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3929     break;
3930   }
3931 
3932   case Decl::Import: {
3933     auto *Import = cast<ImportDecl>(D);
3934 
3935     // If we've already imported this module, we're done.
3936     if (!ImportedModules.insert(Import->getImportedModule()))
3937       break;
3938 
3939     // Emit debug information for direct imports.
3940     if (!Import->getImportedOwningModule()) {
3941       if (CGDebugInfo *DI = getModuleDebugInfo())
3942         DI->EmitImportDecl(*Import);
3943     }
3944 
3945     // Find all of the submodules and emit the module initializers.
3946     llvm::SmallPtrSet<clang::Module *, 16> Visited;
3947     SmallVector<clang::Module *, 16> Stack;
3948     Visited.insert(Import->getImportedModule());
3949     Stack.push_back(Import->getImportedModule());
3950 
3951     while (!Stack.empty()) {
3952       clang::Module *Mod = Stack.pop_back_val();
3953       if (!EmittedModuleInitializers.insert(Mod).second)
3954         continue;
3955 
3956       for (auto *D : Context.getModuleInitializers(Mod))
3957         EmitTopLevelDecl(D);
3958 
3959       // Visit the submodules of this module.
3960       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
3961                                              SubEnd = Mod->submodule_end();
3962            Sub != SubEnd; ++Sub) {
3963         // Skip explicit children; they need to be explicitly imported to emit
3964         // the initializers.
3965         if ((*Sub)->IsExplicit)
3966           continue;
3967 
3968         if (Visited.insert(*Sub).second)
3969           Stack.push_back(*Sub);
3970       }
3971     }
3972     break;
3973   }
3974 
3975   case Decl::Export:
3976     EmitDeclContext(cast<ExportDecl>(D));
3977     break;
3978 
3979   case Decl::OMPThreadPrivate:
3980     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3981     break;
3982 
3983   case Decl::ClassTemplateSpecialization: {
3984     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3985     if (DebugInfo &&
3986         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3987         Spec->hasDefinition())
3988       DebugInfo->completeTemplateDefinition(*Spec);
3989     break;
3990   }
3991 
3992   case Decl::OMPDeclareReduction:
3993     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
3994     break;
3995 
3996   default:
3997     // Make sure we handled everything we should, every other kind is a
3998     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3999     // function. Need to recode Decl::Kind to do that easily.
4000     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
4001     break;
4002   }
4003 }
4004 
4005 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
4006   // Do we need to generate coverage mapping?
4007   if (!CodeGenOpts.CoverageMapping)
4008     return;
4009   switch (D->getKind()) {
4010   case Decl::CXXConversion:
4011   case Decl::CXXMethod:
4012   case Decl::Function:
4013   case Decl::ObjCMethod:
4014   case Decl::CXXConstructor:
4015   case Decl::CXXDestructor: {
4016     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
4017       return;
4018     auto I = DeferredEmptyCoverageMappingDecls.find(D);
4019     if (I == DeferredEmptyCoverageMappingDecls.end())
4020       DeferredEmptyCoverageMappingDecls[D] = true;
4021     break;
4022   }
4023   default:
4024     break;
4025   };
4026 }
4027 
4028 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
4029   // Do we need to generate coverage mapping?
4030   if (!CodeGenOpts.CoverageMapping)
4031     return;
4032   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
4033     if (Fn->isTemplateInstantiation())
4034       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
4035   }
4036   auto I = DeferredEmptyCoverageMappingDecls.find(D);
4037   if (I == DeferredEmptyCoverageMappingDecls.end())
4038     DeferredEmptyCoverageMappingDecls[D] = false;
4039   else
4040     I->second = false;
4041 }
4042 
4043 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
4044   std::vector<const Decl *> DeferredDecls;
4045   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
4046     if (!I.second)
4047       continue;
4048     DeferredDecls.push_back(I.first);
4049   }
4050   // Sort the declarations by their location to make sure that the tests get a
4051   // predictable order for the coverage mapping for the unused declarations.
4052   if (CodeGenOpts.DumpCoverageMapping)
4053     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
4054               [] (const Decl *LHS, const Decl *RHS) {
4055       return LHS->getLocStart() < RHS->getLocStart();
4056     });
4057   for (const auto *D : DeferredDecls) {
4058     switch (D->getKind()) {
4059     case Decl::CXXConversion:
4060     case Decl::CXXMethod:
4061     case Decl::Function:
4062     case Decl::ObjCMethod: {
4063       CodeGenPGO PGO(*this);
4064       GlobalDecl GD(cast<FunctionDecl>(D));
4065       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4066                                   getFunctionLinkage(GD));
4067       break;
4068     }
4069     case Decl::CXXConstructor: {
4070       CodeGenPGO PGO(*this);
4071       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
4072       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4073                                   getFunctionLinkage(GD));
4074       break;
4075     }
4076     case Decl::CXXDestructor: {
4077       CodeGenPGO PGO(*this);
4078       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
4079       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
4080                                   getFunctionLinkage(GD));
4081       break;
4082     }
4083     default:
4084       break;
4085     };
4086   }
4087 }
4088 
4089 /// Turns the given pointer into a constant.
4090 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
4091                                           const void *Ptr) {
4092   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
4093   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
4094   return llvm::ConstantInt::get(i64, PtrInt);
4095 }
4096 
4097 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
4098                                    llvm::NamedMDNode *&GlobalMetadata,
4099                                    GlobalDecl D,
4100                                    llvm::GlobalValue *Addr) {
4101   if (!GlobalMetadata)
4102     GlobalMetadata =
4103       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
4104 
4105   // TODO: should we report variant information for ctors/dtors?
4106   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
4107                            llvm::ConstantAsMetadata::get(GetPointerConstant(
4108                                CGM.getLLVMContext(), D.getDecl()))};
4109   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
4110 }
4111 
4112 /// For each function which is declared within an extern "C" region and marked
4113 /// as 'used', but has internal linkage, create an alias from the unmangled
4114 /// name to the mangled name if possible. People expect to be able to refer
4115 /// to such functions with an unmangled name from inline assembly within the
4116 /// same translation unit.
4117 void CodeGenModule::EmitStaticExternCAliases() {
4118   // Don't do anything if we're generating CUDA device code -- the NVPTX
4119   // assembly target doesn't support aliases.
4120   if (Context.getTargetInfo().getTriple().isNVPTX())
4121     return;
4122   for (auto &I : StaticExternCValues) {
4123     IdentifierInfo *Name = I.first;
4124     llvm::GlobalValue *Val = I.second;
4125     if (Val && !getModule().getNamedValue(Name->getName()))
4126       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
4127   }
4128 }
4129 
4130 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
4131                                              GlobalDecl &Result) const {
4132   auto Res = Manglings.find(MangledName);
4133   if (Res == Manglings.end())
4134     return false;
4135   Result = Res->getValue();
4136   return true;
4137 }
4138 
4139 /// Emits metadata nodes associating all the global values in the
4140 /// current module with the Decls they came from.  This is useful for
4141 /// projects using IR gen as a subroutine.
4142 ///
4143 /// Since there's currently no way to associate an MDNode directly
4144 /// with an llvm::GlobalValue, we create a global named metadata
4145 /// with the name 'clang.global.decl.ptrs'.
4146 void CodeGenModule::EmitDeclMetadata() {
4147   llvm::NamedMDNode *GlobalMetadata = nullptr;
4148 
4149   for (auto &I : MangledDeclNames) {
4150     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
4151     // Some mangled names don't necessarily have an associated GlobalValue
4152     // in this module, e.g. if we mangled it for DebugInfo.
4153     if (Addr)
4154       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
4155   }
4156 }
4157 
4158 /// Emits metadata nodes for all the local variables in the current
4159 /// function.
4160 void CodeGenFunction::EmitDeclMetadata() {
4161   if (LocalDeclMap.empty()) return;
4162 
4163   llvm::LLVMContext &Context = getLLVMContext();
4164 
4165   // Find the unique metadata ID for this name.
4166   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
4167 
4168   llvm::NamedMDNode *GlobalMetadata = nullptr;
4169 
4170   for (auto &I : LocalDeclMap) {
4171     const Decl *D = I.first;
4172     llvm::Value *Addr = I.second.getPointer();
4173     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
4174       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
4175       Alloca->setMetadata(
4176           DeclPtrKind, llvm::MDNode::get(
4177                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
4178     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
4179       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
4180       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
4181     }
4182   }
4183 }
4184 
4185 void CodeGenModule::EmitVersionIdentMetadata() {
4186   llvm::NamedMDNode *IdentMetadata =
4187     TheModule.getOrInsertNamedMetadata("llvm.ident");
4188   std::string Version = getClangFullVersion();
4189   llvm::LLVMContext &Ctx = TheModule.getContext();
4190 
4191   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
4192   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
4193 }
4194 
4195 void CodeGenModule::EmitTargetMetadata() {
4196   // Warning, new MangledDeclNames may be appended within this loop.
4197   // We rely on MapVector insertions adding new elements to the end
4198   // of the container.
4199   // FIXME: Move this loop into the one target that needs it, and only
4200   // loop over those declarations for which we couldn't emit the target
4201   // metadata when we emitted the declaration.
4202   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
4203     auto Val = *(MangledDeclNames.begin() + I);
4204     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
4205     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
4206     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
4207   }
4208 }
4209 
4210 void CodeGenModule::EmitCoverageFile() {
4211   if (getCodeGenOpts().CoverageDataFile.empty() &&
4212       getCodeGenOpts().CoverageNotesFile.empty())
4213     return;
4214 
4215   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
4216   if (!CUNode)
4217     return;
4218 
4219   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
4220   llvm::LLVMContext &Ctx = TheModule.getContext();
4221   auto *CoverageDataFile =
4222       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
4223   auto *CoverageNotesFile =
4224       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
4225   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
4226     llvm::MDNode *CU = CUNode->getOperand(i);
4227     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
4228     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
4229   }
4230 }
4231 
4232 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
4233   // Sema has checked that all uuid strings are of the form
4234   // "12345678-1234-1234-1234-1234567890ab".
4235   assert(Uuid.size() == 36);
4236   for (unsigned i = 0; i < 36; ++i) {
4237     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
4238     else                                         assert(isHexDigit(Uuid[i]));
4239   }
4240 
4241   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
4242   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
4243 
4244   llvm::Constant *Field3[8];
4245   for (unsigned Idx = 0; Idx < 8; ++Idx)
4246     Field3[Idx] = llvm::ConstantInt::get(
4247         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
4248 
4249   llvm::Constant *Fields[4] = {
4250     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
4251     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
4252     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
4253     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
4254   };
4255 
4256   return llvm::ConstantStruct::getAnon(Fields);
4257 }
4258 
4259 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
4260                                                        bool ForEH) {
4261   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
4262   // FIXME: should we even be calling this method if RTTI is disabled
4263   // and it's not for EH?
4264   if (!ForEH && !getLangOpts().RTTI)
4265     return llvm::Constant::getNullValue(Int8PtrTy);
4266 
4267   if (ForEH && Ty->isObjCObjectPointerType() &&
4268       LangOpts.ObjCRuntime.isGNUFamily())
4269     return ObjCRuntime->GetEHType(Ty);
4270 
4271   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
4272 }
4273 
4274 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
4275   for (auto RefExpr : D->varlists()) {
4276     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
4277     bool PerformInit =
4278         VD->getAnyInitializer() &&
4279         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
4280                                                         /*ForRef=*/false);
4281 
4282     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
4283     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
4284             VD, Addr, RefExpr->getLocStart(), PerformInit))
4285       CXXGlobalInits.push_back(InitFunction);
4286   }
4287 }
4288 
4289 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4290   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4291   if (InternalId)
4292     return InternalId;
4293 
4294   if (isExternallyVisible(T->getLinkage())) {
4295     std::string OutName;
4296     llvm::raw_string_ostream Out(OutName);
4297     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4298 
4299     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4300   } else {
4301     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4302                                            llvm::ArrayRef<llvm::Metadata *>());
4303   }
4304 
4305   return InternalId;
4306 }
4307 
4308 /// Returns whether this module needs the "all-vtables" type identifier.
4309 bool CodeGenModule::NeedAllVtablesTypeId() const {
4310   // Returns true if at least one of vtable-based CFI checkers is enabled and
4311   // is not in the trapping mode.
4312   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
4313            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
4314           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
4315            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
4316           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
4317            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
4318           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
4319            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
4320 }
4321 
4322 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
4323                                           CharUnits Offset,
4324                                           const CXXRecordDecl *RD) {
4325   llvm::Metadata *MD =
4326       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4327   VTable->addTypeMetadata(Offset.getQuantity(), MD);
4328 
4329   if (CodeGenOpts.SanitizeCfiCrossDso)
4330     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
4331       VTable->addTypeMetadata(Offset.getQuantity(),
4332                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
4333 
4334   if (NeedAllVtablesTypeId()) {
4335     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
4336     VTable->addTypeMetadata(Offset.getQuantity(), MD);
4337   }
4338 }
4339 
4340 // Fills in the supplied string map with the set of target features for the
4341 // passed in function.
4342 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4343                                           const FunctionDecl *FD) {
4344   StringRef TargetCPU = Target.getTargetOpts().CPU;
4345   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4346     // If we have a TargetAttr build up the feature map based on that.
4347     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4348 
4349     // Make a copy of the features as passed on the command line into the
4350     // beginning of the additional features from the function to override.
4351     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4352                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4353                             Target.getTargetOpts().FeaturesAsWritten.end());
4354 
4355     if (ParsedAttr.second != "")
4356       TargetCPU = ParsedAttr.second;
4357 
4358     // Now populate the feature map, first with the TargetCPU which is either
4359     // the default or a new one from the target attribute string. Then we'll use
4360     // the passed in features (FeaturesAsWritten) along with the new ones from
4361     // the attribute.
4362     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4363   } else {
4364     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4365                           Target.getTargetOpts().Features);
4366   }
4367 }
4368 
4369 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4370   if (!SanStats)
4371     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4372 
4373   return *SanStats;
4374 }
4375 llvm::Value *
4376 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
4377                                                   CodeGenFunction &CGF) {
4378   llvm::Constant *C = EmitConstantExpr(E, E->getType(), &CGF);
4379   auto SamplerT = getOpenCLRuntime().getSamplerType();
4380   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
4381   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
4382                                 "__translate_sampler_initializer"),
4383                                 {C});
4384 }
4385