xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision de6beb02a530a8da6e0525e99b9c1ab24252064e)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.CodeViewGHash) {
462     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
463   }
464   if (CodeGenOpts.ControlFlowGuard) {
465     // We want function ID tables for Control Flow Guard.
466     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
467   }
468   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
469     // We don't support LTO with 2 with different StrictVTablePointers
470     // FIXME: we could support it by stripping all the information introduced
471     // by StrictVTablePointers.
472 
473     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
474 
475     llvm::Metadata *Ops[2] = {
476               llvm::MDString::get(VMContext, "StrictVTablePointers"),
477               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
478                   llvm::Type::getInt32Ty(VMContext), 1))};
479 
480     getModule().addModuleFlag(llvm::Module::Require,
481                               "StrictVTablePointersRequirement",
482                               llvm::MDNode::get(VMContext, Ops));
483   }
484   if (DebugInfo)
485     // We support a single version in the linked module. The LLVM
486     // parser will drop debug info with a different version number
487     // (and warn about it, too).
488     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
489                               llvm::DEBUG_METADATA_VERSION);
490 
491   // We need to record the widths of enums and wchar_t, so that we can generate
492   // the correct build attributes in the ARM backend. wchar_size is also used by
493   // TargetLibraryInfo.
494   uint64_t WCharWidth =
495       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
496   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
497 
498   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
499   if (   Arch == llvm::Triple::arm
500       || Arch == llvm::Triple::armeb
501       || Arch == llvm::Triple::thumb
502       || Arch == llvm::Triple::thumbeb) {
503     // The minimum width of an enum in bytes
504     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
505     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
506   }
507 
508   if (CodeGenOpts.SanitizeCfiCrossDso) {
509     // Indicate that we want cross-DSO control flow integrity checks.
510     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
511   }
512 
513   if (CodeGenOpts.CFProtectionReturn &&
514       Target.checkCFProtectionReturnSupported(getDiags())) {
515     // Indicate that we want to instrument return control flow protection.
516     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
517                               1);
518   }
519 
520   if (CodeGenOpts.CFProtectionBranch &&
521       Target.checkCFProtectionBranchSupported(getDiags())) {
522     // Indicate that we want to instrument branch control flow protection.
523     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
524                               1);
525   }
526 
527   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
528     // Indicate whether __nvvm_reflect should be configured to flush denormal
529     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
530     // property.)
531     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
532                               CodeGenOpts.FlushDenorm ? 1 : 0);
533   }
534 
535   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
536   if (LangOpts.OpenCL) {
537     EmitOpenCLMetadata();
538     // Emit SPIR version.
539     if (getTriple().getArch() == llvm::Triple::spir ||
540         getTriple().getArch() == llvm::Triple::spir64) {
541       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
542       // opencl.spir.version named metadata.
543       llvm::Metadata *SPIRVerElts[] = {
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, LangOpts.OpenCLVersion / 100)),
546           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
547               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
548       llvm::NamedMDNode *SPIRVerMD =
549           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
550       llvm::LLVMContext &Ctx = TheModule.getContext();
551       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
552     }
553   }
554 
555   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
556     assert(PLevel < 3 && "Invalid PIC Level");
557     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
558     if (Context.getLangOpts().PIE)
559       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
560   }
561 
562   if (getCodeGenOpts().CodeModel.size() > 0) {
563     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
564                   .Case("tiny", llvm::CodeModel::Tiny)
565                   .Case("small", llvm::CodeModel::Small)
566                   .Case("kernel", llvm::CodeModel::Kernel)
567                   .Case("medium", llvm::CodeModel::Medium)
568                   .Case("large", llvm::CodeModel::Large)
569                   .Default(~0u);
570     if (CM != ~0u) {
571       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
572       getModule().setCodeModel(codeModel);
573     }
574   }
575 
576   if (CodeGenOpts.NoPLT)
577     getModule().setRtLibUseGOT();
578 
579   SimplifyPersonality();
580 
581   if (getCodeGenOpts().EmitDeclMetadata)
582     EmitDeclMetadata();
583 
584   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
585     EmitCoverageFile();
586 
587   if (DebugInfo)
588     DebugInfo->finalize();
589 
590   if (getCodeGenOpts().EmitVersionIdentMetadata)
591     EmitVersionIdentMetadata();
592 
593   if (!getCodeGenOpts().RecordCommandLine.empty())
594     EmitCommandLineMetadata();
595 
596   EmitTargetMetadata();
597 }
598 
599 void CodeGenModule::EmitOpenCLMetadata() {
600   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
601   // opencl.ocl.version named metadata node.
602   llvm::Metadata *OCLVerElts[] = {
603       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
604           Int32Ty, LangOpts.OpenCLVersion / 100)),
605       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
607   llvm::NamedMDNode *OCLVerMD =
608       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
609   llvm::LLVMContext &Ctx = TheModule.getContext();
610   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
611 }
612 
613 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
614   // Make sure that this type is translated.
615   Types.UpdateCompletedType(TD);
616 }
617 
618 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
619   // Make sure that this type is translated.
620   Types.RefreshTypeCacheForClass(RD);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTypeInfo(QTy);
627 }
628 
629 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
630   if (!TBAA)
631     return TBAAAccessInfo();
632   return TBAA->getAccessInfo(AccessType);
633 }
634 
635 TBAAAccessInfo
636 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
637   if (!TBAA)
638     return TBAAAccessInfo();
639   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getTBAAStructInfo(QTy);
646 }
647 
648 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
649   if (!TBAA)
650     return nullptr;
651   return TBAA->getBaseTypeInfo(QTy);
652 }
653 
654 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
655   if (!TBAA)
656     return nullptr;
657   return TBAA->getAccessTagInfo(Info);
658 }
659 
660 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
661                                                    TBAAAccessInfo TargetInfo) {
662   if (!TBAA)
663     return TBAAAccessInfo();
664   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
665 }
666 
667 TBAAAccessInfo
668 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
669                                                    TBAAAccessInfo InfoB) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
673 }
674 
675 TBAAAccessInfo
676 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
677                                               TBAAAccessInfo SrcInfo) {
678   if (!TBAA)
679     return TBAAAccessInfo();
680   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
681 }
682 
683 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
684                                                 TBAAAccessInfo TBAAInfo) {
685   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
686     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
687 }
688 
689 void CodeGenModule::DecorateInstructionWithInvariantGroup(
690     llvm::Instruction *I, const CXXRecordDecl *RD) {
691   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
692                  llvm::MDNode::get(getLLVMContext(), {}));
693 }
694 
695 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
696   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
697   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
698 }
699 
700 /// ErrorUnsupported - Print out an error that codegen doesn't support the
701 /// specified stmt yet.
702 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
703   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
704                                                "cannot compile this %0 yet");
705   std::string Msg = Type;
706   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
707       << Msg << S->getSourceRange();
708 }
709 
710 /// ErrorUnsupported - Print out an error that codegen doesn't support the
711 /// specified decl yet.
712 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
713   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
714                                                "cannot compile this %0 yet");
715   std::string Msg = Type;
716   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
717 }
718 
719 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
720   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
721 }
722 
723 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
724                                         const NamedDecl *D) const {
725   if (GV->hasDLLImportStorageClass())
726     return;
727   // Internal definitions always have default visibility.
728   if (GV->hasLocalLinkage()) {
729     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
730     return;
731   }
732   if (!D)
733     return;
734   // Set visibility for definitions.
735   LinkageInfo LV = D->getLinkageAndVisibility();
736   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
737     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
738 }
739 
740 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
741                                  llvm::GlobalValue *GV) {
742   if (GV->hasLocalLinkage())
743     return true;
744 
745   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
746     return true;
747 
748   // DLLImport explicitly marks the GV as external.
749   if (GV->hasDLLImportStorageClass())
750     return false;
751 
752   const llvm::Triple &TT = CGM.getTriple();
753   if (TT.isWindowsGNUEnvironment()) {
754     // In MinGW, variables without DLLImport can still be automatically
755     // imported from a DLL by the linker; don't mark variables that
756     // potentially could come from another DLL as DSO local.
757     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
758         !GV->isThreadLocal())
759       return false;
760   }
761   // Every other GV is local on COFF.
762   // Make an exception for windows OS in the triple: Some firmware builds use
763   // *-win32-macho triples. This (accidentally?) produced windows relocations
764   // without GOT tables in older clang versions; Keep this behaviour.
765   // FIXME: even thread local variables?
766   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
767     return true;
768 
769   // Only handle COFF and ELF for now.
770   if (!TT.isOSBinFormatELF())
771     return false;
772 
773   // If this is not an executable, don't assume anything is local.
774   const auto &CGOpts = CGM.getCodeGenOpts();
775   llvm::Reloc::Model RM = CGOpts.RelocationModel;
776   const auto &LOpts = CGM.getLangOpts();
777   if (RM != llvm::Reloc::Static && !LOpts.PIE)
778     return false;
779 
780   // A definition cannot be preempted from an executable.
781   if (!GV->isDeclarationForLinker())
782     return true;
783 
784   // Most PIC code sequences that assume that a symbol is local cannot produce a
785   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
786   // depended, it seems worth it to handle it here.
787   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
788     return false;
789 
790   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
791   llvm::Triple::ArchType Arch = TT.getArch();
792   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
793       Arch == llvm::Triple::ppc64le)
794     return false;
795 
796   // If we can use copy relocations we can assume it is local.
797   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
798     if (!Var->isThreadLocal() &&
799         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
800       return true;
801 
802   // If we can use a plt entry as the symbol address we can assume it
803   // is local.
804   // FIXME: This should work for PIE, but the gold linker doesn't support it.
805   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
806     return true;
807 
808   // Otherwise don't assue it is local.
809   return false;
810 }
811 
812 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
813   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
814 }
815 
816 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
817                                           GlobalDecl GD) const {
818   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
819   // C++ destructors have a few C++ ABI specific special cases.
820   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
821     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
822     return;
823   }
824   setDLLImportDLLExport(GV, D);
825 }
826 
827 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
828                                           const NamedDecl *D) const {
829   if (D && D->isExternallyVisible()) {
830     if (D->hasAttr<DLLImportAttr>())
831       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
832     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
833       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
834   }
835 }
836 
837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
838                                     GlobalDecl GD) const {
839   setDLLImportDLLExport(GV, GD);
840   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
841 }
842 
843 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
844                                     const NamedDecl *D) const {
845   setDLLImportDLLExport(GV, D);
846   setGlobalVisibilityAndLocal(GV, D);
847 }
848 
849 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
850                                                 const NamedDecl *D) const {
851   setGlobalVisibility(GV, D);
852   setDSOLocal(GV);
853 }
854 
855 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
856   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
857       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
858       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
859       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
860       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
861 }
862 
863 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
864     CodeGenOptions::TLSModel M) {
865   switch (M) {
866   case CodeGenOptions::GeneralDynamicTLSModel:
867     return llvm::GlobalVariable::GeneralDynamicTLSModel;
868   case CodeGenOptions::LocalDynamicTLSModel:
869     return llvm::GlobalVariable::LocalDynamicTLSModel;
870   case CodeGenOptions::InitialExecTLSModel:
871     return llvm::GlobalVariable::InitialExecTLSModel;
872   case CodeGenOptions::LocalExecTLSModel:
873     return llvm::GlobalVariable::LocalExecTLSModel;
874   }
875   llvm_unreachable("Invalid TLS model!");
876 }
877 
878 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
879   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
880 
881   llvm::GlobalValue::ThreadLocalMode TLM;
882   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
883 
884   // Override the TLS model if it is explicitly specified.
885   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
886     TLM = GetLLVMTLSModel(Attr->getModel());
887   }
888 
889   GV->setThreadLocalMode(TLM);
890 }
891 
892 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
893                                           StringRef Name) {
894   const TargetInfo &Target = CGM.getTarget();
895   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
896 }
897 
898 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
899                                                  const CPUSpecificAttr *Attr,
900                                                  unsigned CPUIndex,
901                                                  raw_ostream &Out) {
902   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
903   // supported.
904   if (Attr)
905     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
906   else if (CGM.getTarget().supportsIFunc())
907     Out << ".resolver";
908 }
909 
910 static void AppendTargetMangling(const CodeGenModule &CGM,
911                                  const TargetAttr *Attr, raw_ostream &Out) {
912   if (Attr->isDefaultVersion())
913     return;
914 
915   Out << '.';
916   const TargetInfo &Target = CGM.getTarget();
917   TargetAttr::ParsedTargetAttr Info =
918       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
919         // Multiversioning doesn't allow "no-${feature}", so we can
920         // only have "+" prefixes here.
921         assert(LHS.startswith("+") && RHS.startswith("+") &&
922                "Features should always have a prefix.");
923         return Target.multiVersionSortPriority(LHS.substr(1)) >
924                Target.multiVersionSortPriority(RHS.substr(1));
925       });
926 
927   bool IsFirst = true;
928 
929   if (!Info.Architecture.empty()) {
930     IsFirst = false;
931     Out << "arch_" << Info.Architecture;
932   }
933 
934   for (StringRef Feat : Info.Features) {
935     if (!IsFirst)
936       Out << '_';
937     IsFirst = false;
938     Out << Feat.substr(1);
939   }
940 }
941 
942 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
943                                       const NamedDecl *ND,
944                                       bool OmitMultiVersionMangling = false) {
945   SmallString<256> Buffer;
946   llvm::raw_svector_ostream Out(Buffer);
947   MangleContext &MC = CGM.getCXXABI().getMangleContext();
948   if (MC.shouldMangleDeclName(ND)) {
949     llvm::raw_svector_ostream Out(Buffer);
950     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
951       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
952     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
953       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
954     else
955       MC.mangleName(ND, Out);
956   } else {
957     IdentifierInfo *II = ND->getIdentifier();
958     assert(II && "Attempt to mangle unnamed decl.");
959     const auto *FD = dyn_cast<FunctionDecl>(ND);
960 
961     if (FD &&
962         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
963       llvm::raw_svector_ostream Out(Buffer);
964       Out << "__regcall3__" << II->getName();
965     } else {
966       Out << II->getName();
967     }
968   }
969 
970   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
971     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
972       switch (FD->getMultiVersionKind()) {
973       case MultiVersionKind::CPUDispatch:
974       case MultiVersionKind::CPUSpecific:
975         AppendCPUSpecificCPUDispatchMangling(CGM,
976                                              FD->getAttr<CPUSpecificAttr>(),
977                                              GD.getMultiVersionIndex(), Out);
978         break;
979       case MultiVersionKind::Target:
980         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
981         break;
982       case MultiVersionKind::None:
983         llvm_unreachable("None multiversion type isn't valid here");
984       }
985     }
986 
987   return Out.str();
988 }
989 
990 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
991                                             const FunctionDecl *FD) {
992   if (!FD->isMultiVersion())
993     return;
994 
995   // Get the name of what this would be without the 'target' attribute.  This
996   // allows us to lookup the version that was emitted when this wasn't a
997   // multiversion function.
998   std::string NonTargetName =
999       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1000   GlobalDecl OtherGD;
1001   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1002     assert(OtherGD.getCanonicalDecl()
1003                .getDecl()
1004                ->getAsFunction()
1005                ->isMultiVersion() &&
1006            "Other GD should now be a multiversioned function");
1007     // OtherFD is the version of this function that was mangled BEFORE
1008     // becoming a MultiVersion function.  It potentially needs to be updated.
1009     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1010                                       .getDecl()
1011                                       ->getAsFunction()
1012                                       ->getMostRecentDecl();
1013     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1014     // This is so that if the initial version was already the 'default'
1015     // version, we don't try to update it.
1016     if (OtherName != NonTargetName) {
1017       // Remove instead of erase, since others may have stored the StringRef
1018       // to this.
1019       const auto ExistingRecord = Manglings.find(NonTargetName);
1020       if (ExistingRecord != std::end(Manglings))
1021         Manglings.remove(&(*ExistingRecord));
1022       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1023       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1024       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1025         Entry->setName(OtherName);
1026     }
1027   }
1028 }
1029 
1030 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1031   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1032 
1033   // Some ABIs don't have constructor variants.  Make sure that base and
1034   // complete constructors get mangled the same.
1035   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1036     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1037       CXXCtorType OrigCtorType = GD.getCtorType();
1038       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1039       if (OrigCtorType == Ctor_Base)
1040         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1041     }
1042   }
1043 
1044   auto FoundName = MangledDeclNames.find(CanonicalGD);
1045   if (FoundName != MangledDeclNames.end())
1046     return FoundName->second;
1047 
1048   // Keep the first result in the case of a mangling collision.
1049   const auto *ND = cast<NamedDecl>(GD.getDecl());
1050   auto Result =
1051       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1052   return MangledDeclNames[CanonicalGD] = Result.first->first();
1053 }
1054 
1055 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1056                                              const BlockDecl *BD) {
1057   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1058   const Decl *D = GD.getDecl();
1059 
1060   SmallString<256> Buffer;
1061   llvm::raw_svector_ostream Out(Buffer);
1062   if (!D)
1063     MangleCtx.mangleGlobalBlock(BD,
1064       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1065   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1066     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1067   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1068     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1069   else
1070     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1071 
1072   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1073   return Result.first->first();
1074 }
1075 
1076 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1077   return getModule().getNamedValue(Name);
1078 }
1079 
1080 /// AddGlobalCtor - Add a function to the list that will be called before
1081 /// main() runs.
1082 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1083                                   llvm::Constant *AssociatedData) {
1084   // FIXME: Type coercion of void()* types.
1085   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1086 }
1087 
1088 /// AddGlobalDtor - Add a function to the list that will be called
1089 /// when the module is unloaded.
1090 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1091   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1092     DtorsUsingAtExit[Priority].push_back(Dtor);
1093     return;
1094   }
1095 
1096   // FIXME: Type coercion of void()* types.
1097   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1098 }
1099 
1100 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1101   if (Fns.empty()) return;
1102 
1103   // Ctor function type is void()*.
1104   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1105   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1106       TheModule.getDataLayout().getProgramAddressSpace());
1107 
1108   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1109   llvm::StructType *CtorStructTy = llvm::StructType::get(
1110       Int32Ty, CtorPFTy, VoidPtrTy);
1111 
1112   // Construct the constructor and destructor arrays.
1113   ConstantInitBuilder builder(*this);
1114   auto ctors = builder.beginArray(CtorStructTy);
1115   for (const auto &I : Fns) {
1116     auto ctor = ctors.beginStruct(CtorStructTy);
1117     ctor.addInt(Int32Ty, I.Priority);
1118     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1119     if (I.AssociatedData)
1120       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1121     else
1122       ctor.addNullPointer(VoidPtrTy);
1123     ctor.finishAndAddTo(ctors);
1124   }
1125 
1126   auto list =
1127     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1128                                 /*constant*/ false,
1129                                 llvm::GlobalValue::AppendingLinkage);
1130 
1131   // The LTO linker doesn't seem to like it when we set an alignment
1132   // on appending variables.  Take it off as a workaround.
1133   list->setAlignment(0);
1134 
1135   Fns.clear();
1136 }
1137 
1138 llvm::GlobalValue::LinkageTypes
1139 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1140   const auto *D = cast<FunctionDecl>(GD.getDecl());
1141 
1142   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1143 
1144   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1145     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1146 
1147   if (isa<CXXConstructorDecl>(D) &&
1148       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1149       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1150     // Our approach to inheriting constructors is fundamentally different from
1151     // that used by the MS ABI, so keep our inheriting constructor thunks
1152     // internal rather than trying to pick an unambiguous mangling for them.
1153     return llvm::GlobalValue::InternalLinkage;
1154   }
1155 
1156   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1157 }
1158 
1159 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1160   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1161   if (!MDS) return nullptr;
1162 
1163   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1164 }
1165 
1166 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1167                                               const CGFunctionInfo &Info,
1168                                               llvm::Function *F) {
1169   unsigned CallingConv;
1170   llvm::AttributeList PAL;
1171   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1172   F->setAttributes(PAL);
1173   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1174 }
1175 
1176 /// Determines whether the language options require us to model
1177 /// unwind exceptions.  We treat -fexceptions as mandating this
1178 /// except under the fragile ObjC ABI with only ObjC exceptions
1179 /// enabled.  This means, for example, that C with -fexceptions
1180 /// enables this.
1181 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1182   // If exceptions are completely disabled, obviously this is false.
1183   if (!LangOpts.Exceptions) return false;
1184 
1185   // If C++ exceptions are enabled, this is true.
1186   if (LangOpts.CXXExceptions) return true;
1187 
1188   // If ObjC exceptions are enabled, this depends on the ABI.
1189   if (LangOpts.ObjCExceptions) {
1190     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1191   }
1192 
1193   return true;
1194 }
1195 
1196 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1197                                                       const CXXMethodDecl *MD) {
1198   // Check that the type metadata can ever actually be used by a call.
1199   if (!CGM.getCodeGenOpts().LTOUnit ||
1200       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1201     return false;
1202 
1203   // Only functions whose address can be taken with a member function pointer
1204   // need this sort of type metadata.
1205   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1206          !isa<CXXDestructorDecl>(MD);
1207 }
1208 
1209 std::vector<const CXXRecordDecl *>
1210 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1211   llvm::SetVector<const CXXRecordDecl *> MostBases;
1212 
1213   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1214   CollectMostBases = [&](const CXXRecordDecl *RD) {
1215     if (RD->getNumBases() == 0)
1216       MostBases.insert(RD);
1217     for (const CXXBaseSpecifier &B : RD->bases())
1218       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1219   };
1220   CollectMostBases(RD);
1221   return MostBases.takeVector();
1222 }
1223 
1224 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1225                                                            llvm::Function *F) {
1226   llvm::AttrBuilder B;
1227 
1228   if (CodeGenOpts.UnwindTables)
1229     B.addAttribute(llvm::Attribute::UWTable);
1230 
1231   if (!hasUnwindExceptions(LangOpts))
1232     B.addAttribute(llvm::Attribute::NoUnwind);
1233 
1234   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1235     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1236       B.addAttribute(llvm::Attribute::StackProtect);
1237     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1238       B.addAttribute(llvm::Attribute::StackProtectStrong);
1239     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1240       B.addAttribute(llvm::Attribute::StackProtectReq);
1241   }
1242 
1243   if (!D) {
1244     // If we don't have a declaration to control inlining, the function isn't
1245     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1246     // disabled, mark the function as noinline.
1247     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1248         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1249       B.addAttribute(llvm::Attribute::NoInline);
1250 
1251     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1252     return;
1253   }
1254 
1255   // Track whether we need to add the optnone LLVM attribute,
1256   // starting with the default for this optimization level.
1257   bool ShouldAddOptNone =
1258       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1259   // We can't add optnone in the following cases, it won't pass the verifier.
1260   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1261   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1262   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1263 
1264   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1265     B.addAttribute(llvm::Attribute::OptimizeNone);
1266 
1267     // OptimizeNone implies noinline; we should not be inlining such functions.
1268     B.addAttribute(llvm::Attribute::NoInline);
1269     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1270            "OptimizeNone and AlwaysInline on same function!");
1271 
1272     // We still need to handle naked functions even though optnone subsumes
1273     // much of their semantics.
1274     if (D->hasAttr<NakedAttr>())
1275       B.addAttribute(llvm::Attribute::Naked);
1276 
1277     // OptimizeNone wins over OptimizeForSize and MinSize.
1278     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1279     F->removeFnAttr(llvm::Attribute::MinSize);
1280   } else if (D->hasAttr<NakedAttr>()) {
1281     // Naked implies noinline: we should not be inlining such functions.
1282     B.addAttribute(llvm::Attribute::Naked);
1283     B.addAttribute(llvm::Attribute::NoInline);
1284   } else if (D->hasAttr<NoDuplicateAttr>()) {
1285     B.addAttribute(llvm::Attribute::NoDuplicate);
1286   } else if (D->hasAttr<NoInlineAttr>()) {
1287     B.addAttribute(llvm::Attribute::NoInline);
1288   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1289              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1290     // (noinline wins over always_inline, and we can't specify both in IR)
1291     B.addAttribute(llvm::Attribute::AlwaysInline);
1292   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1293     // If we're not inlining, then force everything that isn't always_inline to
1294     // carry an explicit noinline attribute.
1295     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1296       B.addAttribute(llvm::Attribute::NoInline);
1297   } else {
1298     // Otherwise, propagate the inline hint attribute and potentially use its
1299     // absence to mark things as noinline.
1300     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1301       // Search function and template pattern redeclarations for inline.
1302       auto CheckForInline = [](const FunctionDecl *FD) {
1303         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1304           return Redecl->isInlineSpecified();
1305         };
1306         if (any_of(FD->redecls(), CheckRedeclForInline))
1307           return true;
1308         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1309         if (!Pattern)
1310           return false;
1311         return any_of(Pattern->redecls(), CheckRedeclForInline);
1312       };
1313       if (CheckForInline(FD)) {
1314         B.addAttribute(llvm::Attribute::InlineHint);
1315       } else if (CodeGenOpts.getInlining() ==
1316                      CodeGenOptions::OnlyHintInlining &&
1317                  !FD->isInlined() &&
1318                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1319         B.addAttribute(llvm::Attribute::NoInline);
1320       }
1321     }
1322   }
1323 
1324   // Add other optimization related attributes if we are optimizing this
1325   // function.
1326   if (!D->hasAttr<OptimizeNoneAttr>()) {
1327     if (D->hasAttr<ColdAttr>()) {
1328       if (!ShouldAddOptNone)
1329         B.addAttribute(llvm::Attribute::OptimizeForSize);
1330       B.addAttribute(llvm::Attribute::Cold);
1331     }
1332 
1333     if (D->hasAttr<MinSizeAttr>())
1334       B.addAttribute(llvm::Attribute::MinSize);
1335   }
1336 
1337   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1338 
1339   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1340   if (alignment)
1341     F->setAlignment(alignment);
1342 
1343   if (!D->hasAttr<AlignedAttr>())
1344     if (LangOpts.FunctionAlignment)
1345       F->setAlignment(1 << LangOpts.FunctionAlignment);
1346 
1347   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1348   // reserve a bit for differentiating between virtual and non-virtual member
1349   // functions. If the current target's C++ ABI requires this and this is a
1350   // member function, set its alignment accordingly.
1351   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1352     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1353       F->setAlignment(2);
1354   }
1355 
1356   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1357   if (CodeGenOpts.SanitizeCfiCrossDso)
1358     if (auto *FD = dyn_cast<FunctionDecl>(D))
1359       CreateFunctionTypeMetadataForIcall(FD, F);
1360 
1361   // Emit type metadata on member functions for member function pointer checks.
1362   // These are only ever necessary on definitions; we're guaranteed that the
1363   // definition will be present in the LTO unit as a result of LTO visibility.
1364   auto *MD = dyn_cast<CXXMethodDecl>(D);
1365   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1366     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1367       llvm::Metadata *Id =
1368           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1369               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1370       F->addTypeMetadata(0, Id);
1371     }
1372   }
1373 }
1374 
1375 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1376   const Decl *D = GD.getDecl();
1377   if (dyn_cast_or_null<NamedDecl>(D))
1378     setGVProperties(GV, GD);
1379   else
1380     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1381 
1382   if (D && D->hasAttr<UsedAttr>())
1383     addUsedGlobal(GV);
1384 
1385   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1386     const auto *VD = cast<VarDecl>(D);
1387     if (VD->getType().isConstQualified() &&
1388         VD->getStorageDuration() == SD_Static)
1389       addUsedGlobal(GV);
1390   }
1391 }
1392 
1393 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1394                                                 llvm::AttrBuilder &Attrs) {
1395   // Add target-cpu and target-features attributes to functions. If
1396   // we have a decl for the function and it has a target attribute then
1397   // parse that and add it to the feature set.
1398   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1399   std::vector<std::string> Features;
1400   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1401   FD = FD ? FD->getMostRecentDecl() : FD;
1402   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1403   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1404   bool AddedAttr = false;
1405   if (TD || SD) {
1406     llvm::StringMap<bool> FeatureMap;
1407     getFunctionFeatureMap(FeatureMap, GD);
1408 
1409     // Produce the canonical string for this set of features.
1410     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1411       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1412 
1413     // Now add the target-cpu and target-features to the function.
1414     // While we populated the feature map above, we still need to
1415     // get and parse the target attribute so we can get the cpu for
1416     // the function.
1417     if (TD) {
1418       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1419       if (ParsedAttr.Architecture != "" &&
1420           getTarget().isValidCPUName(ParsedAttr.Architecture))
1421         TargetCPU = ParsedAttr.Architecture;
1422     }
1423   } else {
1424     // Otherwise just add the existing target cpu and target features to the
1425     // function.
1426     Features = getTarget().getTargetOpts().Features;
1427   }
1428 
1429   if (TargetCPU != "") {
1430     Attrs.addAttribute("target-cpu", TargetCPU);
1431     AddedAttr = true;
1432   }
1433   if (!Features.empty()) {
1434     llvm::sort(Features);
1435     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1436     AddedAttr = true;
1437   }
1438 
1439   return AddedAttr;
1440 }
1441 
1442 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1443                                           llvm::GlobalObject *GO) {
1444   const Decl *D = GD.getDecl();
1445   SetCommonAttributes(GD, GO);
1446 
1447   if (D) {
1448     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1449       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1450         GV->addAttribute("bss-section", SA->getName());
1451       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1452         GV->addAttribute("data-section", SA->getName());
1453       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1454         GV->addAttribute("rodata-section", SA->getName());
1455     }
1456 
1457     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1458       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1459         if (!D->getAttr<SectionAttr>())
1460           F->addFnAttr("implicit-section-name", SA->getName());
1461 
1462       llvm::AttrBuilder Attrs;
1463       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1464         // We know that GetCPUAndFeaturesAttributes will always have the
1465         // newest set, since it has the newest possible FunctionDecl, so the
1466         // new ones should replace the old.
1467         F->removeFnAttr("target-cpu");
1468         F->removeFnAttr("target-features");
1469         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1470       }
1471     }
1472 
1473     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1474       GO->setSection(CSA->getName());
1475     else if (const auto *SA = D->getAttr<SectionAttr>())
1476       GO->setSection(SA->getName());
1477   }
1478 
1479   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1480 }
1481 
1482 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1483                                                   llvm::Function *F,
1484                                                   const CGFunctionInfo &FI) {
1485   const Decl *D = GD.getDecl();
1486   SetLLVMFunctionAttributes(GD, FI, F);
1487   SetLLVMFunctionAttributesForDefinition(D, F);
1488 
1489   F->setLinkage(llvm::Function::InternalLinkage);
1490 
1491   setNonAliasAttributes(GD, F);
1492 }
1493 
1494 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1495   // Set linkage and visibility in case we never see a definition.
1496   LinkageInfo LV = ND->getLinkageAndVisibility();
1497   // Don't set internal linkage on declarations.
1498   // "extern_weak" is overloaded in LLVM; we probably should have
1499   // separate linkage types for this.
1500   if (isExternallyVisible(LV.getLinkage()) &&
1501       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1502     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1503 }
1504 
1505 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1506                                                        llvm::Function *F) {
1507   // Only if we are checking indirect calls.
1508   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1509     return;
1510 
1511   // Non-static class methods are handled via vtable or member function pointer
1512   // checks elsewhere.
1513   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1514     return;
1515 
1516   // Additionally, if building with cross-DSO support...
1517   if (CodeGenOpts.SanitizeCfiCrossDso) {
1518     // Skip available_externally functions. They won't be codegen'ed in the
1519     // current module anyway.
1520     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1521       return;
1522   }
1523 
1524   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1525   F->addTypeMetadata(0, MD);
1526   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1527 
1528   // Emit a hash-based bit set entry for cross-DSO calls.
1529   if (CodeGenOpts.SanitizeCfiCrossDso)
1530     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1531       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1532 }
1533 
1534 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1535                                           bool IsIncompleteFunction,
1536                                           bool IsThunk) {
1537 
1538   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1539     // If this is an intrinsic function, set the function's attributes
1540     // to the intrinsic's attributes.
1541     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1542     return;
1543   }
1544 
1545   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1546 
1547   if (!IsIncompleteFunction) {
1548     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1549     // Setup target-specific attributes.
1550     if (F->isDeclaration())
1551       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1552   }
1553 
1554   // Add the Returned attribute for "this", except for iOS 5 and earlier
1555   // where substantial code, including the libstdc++ dylib, was compiled with
1556   // GCC and does not actually return "this".
1557   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1558       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1559     assert(!F->arg_empty() &&
1560            F->arg_begin()->getType()
1561              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1562            "unexpected this return");
1563     F->addAttribute(1, llvm::Attribute::Returned);
1564   }
1565 
1566   // Only a few attributes are set on declarations; these may later be
1567   // overridden by a definition.
1568 
1569   setLinkageForGV(F, FD);
1570   setGVProperties(F, FD);
1571 
1572   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1573     F->setSection(CSA->getName());
1574   else if (const auto *SA = FD->getAttr<SectionAttr>())
1575      F->setSection(SA->getName());
1576 
1577   if (FD->isReplaceableGlobalAllocationFunction()) {
1578     // A replaceable global allocation function does not act like a builtin by
1579     // default, only if it is invoked by a new-expression or delete-expression.
1580     F->addAttribute(llvm::AttributeList::FunctionIndex,
1581                     llvm::Attribute::NoBuiltin);
1582 
1583     // A sane operator new returns a non-aliasing pointer.
1584     // FIXME: Also add NonNull attribute to the return value
1585     // for the non-nothrow forms?
1586     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1587     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1588         (Kind == OO_New || Kind == OO_Array_New))
1589       F->addAttribute(llvm::AttributeList::ReturnIndex,
1590                       llvm::Attribute::NoAlias);
1591   }
1592 
1593   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1594     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1595   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1596     if (MD->isVirtual())
1597       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1598 
1599   // Don't emit entries for function declarations in the cross-DSO mode. This
1600   // is handled with better precision by the receiving DSO.
1601   if (!CodeGenOpts.SanitizeCfiCrossDso)
1602     CreateFunctionTypeMetadataForIcall(FD, F);
1603 
1604   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1605     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1606 }
1607 
1608 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1609   assert(!GV->isDeclaration() &&
1610          "Only globals with definition can force usage.");
1611   LLVMUsed.emplace_back(GV);
1612 }
1613 
1614 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1615   assert(!GV->isDeclaration() &&
1616          "Only globals with definition can force usage.");
1617   LLVMCompilerUsed.emplace_back(GV);
1618 }
1619 
1620 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1621                      std::vector<llvm::WeakTrackingVH> &List) {
1622   // Don't create llvm.used if there is no need.
1623   if (List.empty())
1624     return;
1625 
1626   // Convert List to what ConstantArray needs.
1627   SmallVector<llvm::Constant*, 8> UsedArray;
1628   UsedArray.resize(List.size());
1629   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1630     UsedArray[i] =
1631         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1632             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1633   }
1634 
1635   if (UsedArray.empty())
1636     return;
1637   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1638 
1639   auto *GV = new llvm::GlobalVariable(
1640       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1641       llvm::ConstantArray::get(ATy, UsedArray), Name);
1642 
1643   GV->setSection("llvm.metadata");
1644 }
1645 
1646 void CodeGenModule::emitLLVMUsed() {
1647   emitUsed(*this, "llvm.used", LLVMUsed);
1648   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1649 }
1650 
1651 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1652   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1653   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1654 }
1655 
1656 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1657   llvm::SmallString<32> Opt;
1658   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1659   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1660   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1661 }
1662 
1663 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1664   auto &C = getLLVMContext();
1665   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1666       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1667 }
1668 
1669 void CodeGenModule::AddDependentLib(StringRef Lib) {
1670   llvm::SmallString<24> Opt;
1671   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1672   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1673   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1674 }
1675 
1676 /// Add link options implied by the given module, including modules
1677 /// it depends on, using a postorder walk.
1678 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1679                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1680                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1681   // Import this module's parent.
1682   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1683     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1684   }
1685 
1686   // Import this module's dependencies.
1687   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1688     if (Visited.insert(Mod->Imports[I - 1]).second)
1689       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1690   }
1691 
1692   // Add linker options to link against the libraries/frameworks
1693   // described by this module.
1694   llvm::LLVMContext &Context = CGM.getLLVMContext();
1695 
1696   // For modules that use export_as for linking, use that module
1697   // name instead.
1698   if (Mod->UseExportAsModuleLinkName)
1699     return;
1700 
1701   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1702     // Link against a framework.  Frameworks are currently Darwin only, so we
1703     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1704     if (Mod->LinkLibraries[I-1].IsFramework) {
1705       llvm::Metadata *Args[2] = {
1706           llvm::MDString::get(Context, "-framework"),
1707           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1708 
1709       Metadata.push_back(llvm::MDNode::get(Context, Args));
1710       continue;
1711     }
1712 
1713     // Link against a library.
1714     llvm::SmallString<24> Opt;
1715     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1716       Mod->LinkLibraries[I-1].Library, Opt);
1717     auto *OptString = llvm::MDString::get(Context, Opt);
1718     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1719   }
1720 }
1721 
1722 void CodeGenModule::EmitModuleLinkOptions() {
1723   // Collect the set of all of the modules we want to visit to emit link
1724   // options, which is essentially the imported modules and all of their
1725   // non-explicit child modules.
1726   llvm::SetVector<clang::Module *> LinkModules;
1727   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1728   SmallVector<clang::Module *, 16> Stack;
1729 
1730   // Seed the stack with imported modules.
1731   for (Module *M : ImportedModules) {
1732     // Do not add any link flags when an implementation TU of a module imports
1733     // a header of that same module.
1734     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1735         !getLangOpts().isCompilingModule())
1736       continue;
1737     if (Visited.insert(M).second)
1738       Stack.push_back(M);
1739   }
1740 
1741   // Find all of the modules to import, making a little effort to prune
1742   // non-leaf modules.
1743   while (!Stack.empty()) {
1744     clang::Module *Mod = Stack.pop_back_val();
1745 
1746     bool AnyChildren = false;
1747 
1748     // Visit the submodules of this module.
1749     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1750                                         SubEnd = Mod->submodule_end();
1751          Sub != SubEnd; ++Sub) {
1752       // Skip explicit children; they need to be explicitly imported to be
1753       // linked against.
1754       if ((*Sub)->IsExplicit)
1755         continue;
1756 
1757       if (Visited.insert(*Sub).second) {
1758         Stack.push_back(*Sub);
1759         AnyChildren = true;
1760       }
1761     }
1762 
1763     // We didn't find any children, so add this module to the list of
1764     // modules to link against.
1765     if (!AnyChildren) {
1766       LinkModules.insert(Mod);
1767     }
1768   }
1769 
1770   // Add link options for all of the imported modules in reverse topological
1771   // order.  We don't do anything to try to order import link flags with respect
1772   // to linker options inserted by things like #pragma comment().
1773   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1774   Visited.clear();
1775   for (Module *M : LinkModules)
1776     if (Visited.insert(M).second)
1777       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1778   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1779   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1780 
1781   // Add the linker options metadata flag.
1782   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1783   for (auto *MD : LinkerOptionsMetadata)
1784     NMD->addOperand(MD);
1785 }
1786 
1787 void CodeGenModule::EmitDeferred() {
1788   // Emit deferred declare target declarations.
1789   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1790     getOpenMPRuntime().emitDeferredTargetDecls();
1791 
1792   // Emit code for any potentially referenced deferred decls.  Since a
1793   // previously unused static decl may become used during the generation of code
1794   // for a static function, iterate until no changes are made.
1795 
1796   if (!DeferredVTables.empty()) {
1797     EmitDeferredVTables();
1798 
1799     // Emitting a vtable doesn't directly cause more vtables to
1800     // become deferred, although it can cause functions to be
1801     // emitted that then need those vtables.
1802     assert(DeferredVTables.empty());
1803   }
1804 
1805   // Stop if we're out of both deferred vtables and deferred declarations.
1806   if (DeferredDeclsToEmit.empty())
1807     return;
1808 
1809   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1810   // work, it will not interfere with this.
1811   std::vector<GlobalDecl> CurDeclsToEmit;
1812   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1813 
1814   for (GlobalDecl &D : CurDeclsToEmit) {
1815     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1816     // to get GlobalValue with exactly the type we need, not something that
1817     // might had been created for another decl with the same mangled name but
1818     // different type.
1819     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1820         GetAddrOfGlobal(D, ForDefinition));
1821 
1822     // In case of different address spaces, we may still get a cast, even with
1823     // IsForDefinition equal to true. Query mangled names table to get
1824     // GlobalValue.
1825     if (!GV)
1826       GV = GetGlobalValue(getMangledName(D));
1827 
1828     // Make sure GetGlobalValue returned non-null.
1829     assert(GV);
1830 
1831     // Check to see if we've already emitted this.  This is necessary
1832     // for a couple of reasons: first, decls can end up in the
1833     // deferred-decls queue multiple times, and second, decls can end
1834     // up with definitions in unusual ways (e.g. by an extern inline
1835     // function acquiring a strong function redefinition).  Just
1836     // ignore these cases.
1837     if (!GV->isDeclaration())
1838       continue;
1839 
1840     // Otherwise, emit the definition and move on to the next one.
1841     EmitGlobalDefinition(D, GV);
1842 
1843     // If we found out that we need to emit more decls, do that recursively.
1844     // This has the advantage that the decls are emitted in a DFS and related
1845     // ones are close together, which is convenient for testing.
1846     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1847       EmitDeferred();
1848       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1849     }
1850   }
1851 }
1852 
1853 void CodeGenModule::EmitVTablesOpportunistically() {
1854   // Try to emit external vtables as available_externally if they have emitted
1855   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1856   // is not allowed to create new references to things that need to be emitted
1857   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1858 
1859   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1860          && "Only emit opportunistic vtables with optimizations");
1861 
1862   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1863     assert(getVTables().isVTableExternal(RD) &&
1864            "This queue should only contain external vtables");
1865     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1866       VTables.GenerateClassData(RD);
1867   }
1868   OpportunisticVTables.clear();
1869 }
1870 
1871 void CodeGenModule::EmitGlobalAnnotations() {
1872   if (Annotations.empty())
1873     return;
1874 
1875   // Create a new global variable for the ConstantStruct in the Module.
1876   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1877     Annotations[0]->getType(), Annotations.size()), Annotations);
1878   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1879                                       llvm::GlobalValue::AppendingLinkage,
1880                                       Array, "llvm.global.annotations");
1881   gv->setSection(AnnotationSection);
1882 }
1883 
1884 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1885   llvm::Constant *&AStr = AnnotationStrings[Str];
1886   if (AStr)
1887     return AStr;
1888 
1889   // Not found yet, create a new global.
1890   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1891   auto *gv =
1892       new llvm::GlobalVariable(getModule(), s->getType(), true,
1893                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1894   gv->setSection(AnnotationSection);
1895   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1896   AStr = gv;
1897   return gv;
1898 }
1899 
1900 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1901   SourceManager &SM = getContext().getSourceManager();
1902   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1903   if (PLoc.isValid())
1904     return EmitAnnotationString(PLoc.getFilename());
1905   return EmitAnnotationString(SM.getBufferName(Loc));
1906 }
1907 
1908 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1909   SourceManager &SM = getContext().getSourceManager();
1910   PresumedLoc PLoc = SM.getPresumedLoc(L);
1911   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1912     SM.getExpansionLineNumber(L);
1913   return llvm::ConstantInt::get(Int32Ty, LineNo);
1914 }
1915 
1916 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1917                                                 const AnnotateAttr *AA,
1918                                                 SourceLocation L) {
1919   // Get the globals for file name, annotation, and the line number.
1920   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1921                  *UnitGV = EmitAnnotationUnit(L),
1922                  *LineNoCst = EmitAnnotationLineNo(L);
1923 
1924   // Create the ConstantStruct for the global annotation.
1925   llvm::Constant *Fields[4] = {
1926     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1927     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1928     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1929     LineNoCst
1930   };
1931   return llvm::ConstantStruct::getAnon(Fields);
1932 }
1933 
1934 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1935                                          llvm::GlobalValue *GV) {
1936   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1937   // Get the struct elements for these annotations.
1938   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1939     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1940 }
1941 
1942 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1943                                            llvm::Function *Fn,
1944                                            SourceLocation Loc) const {
1945   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1946   // Blacklist by function name.
1947   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1948     return true;
1949   // Blacklist by location.
1950   if (Loc.isValid())
1951     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1952   // If location is unknown, this may be a compiler-generated function. Assume
1953   // it's located in the main file.
1954   auto &SM = Context.getSourceManager();
1955   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1956     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1957   }
1958   return false;
1959 }
1960 
1961 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1962                                            SourceLocation Loc, QualType Ty,
1963                                            StringRef Category) const {
1964   // For now globals can be blacklisted only in ASan and KASan.
1965   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1966       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1967        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1968   if (!EnabledAsanMask)
1969     return false;
1970   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1971   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1972     return true;
1973   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1974     return true;
1975   // Check global type.
1976   if (!Ty.isNull()) {
1977     // Drill down the array types: if global variable of a fixed type is
1978     // blacklisted, we also don't instrument arrays of them.
1979     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1980       Ty = AT->getElementType();
1981     Ty = Ty.getCanonicalType().getUnqualifiedType();
1982     // We allow to blacklist only record types (classes, structs etc.)
1983     if (Ty->isRecordType()) {
1984       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1985       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1986         return true;
1987     }
1988   }
1989   return false;
1990 }
1991 
1992 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1993                                    StringRef Category) const {
1994   const auto &XRayFilter = getContext().getXRayFilter();
1995   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1996   auto Attr = ImbueAttr::NONE;
1997   if (Loc.isValid())
1998     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1999   if (Attr == ImbueAttr::NONE)
2000     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2001   switch (Attr) {
2002   case ImbueAttr::NONE:
2003     return false;
2004   case ImbueAttr::ALWAYS:
2005     Fn->addFnAttr("function-instrument", "xray-always");
2006     break;
2007   case ImbueAttr::ALWAYS_ARG1:
2008     Fn->addFnAttr("function-instrument", "xray-always");
2009     Fn->addFnAttr("xray-log-args", "1");
2010     break;
2011   case ImbueAttr::NEVER:
2012     Fn->addFnAttr("function-instrument", "xray-never");
2013     break;
2014   }
2015   return true;
2016 }
2017 
2018 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2019   // Never defer when EmitAllDecls is specified.
2020   if (LangOpts.EmitAllDecls)
2021     return true;
2022 
2023   if (CodeGenOpts.KeepStaticConsts) {
2024     const auto *VD = dyn_cast<VarDecl>(Global);
2025     if (VD && VD->getType().isConstQualified() &&
2026         VD->getStorageDuration() == SD_Static)
2027       return true;
2028   }
2029 
2030   return getContext().DeclMustBeEmitted(Global);
2031 }
2032 
2033 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2034   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2035     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2036       // Implicit template instantiations may change linkage if they are later
2037       // explicitly instantiated, so they should not be emitted eagerly.
2038       return false;
2039   if (const auto *VD = dyn_cast<VarDecl>(Global))
2040     if (Context.getInlineVariableDefinitionKind(VD) ==
2041         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2042       // A definition of an inline constexpr static data member may change
2043       // linkage later if it's redeclared outside the class.
2044       return false;
2045   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2046   // codegen for global variables, because they may be marked as threadprivate.
2047   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2048       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2049       !isTypeConstant(Global->getType(), false) &&
2050       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2051     return false;
2052 
2053   return true;
2054 }
2055 
2056 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2057     const CXXUuidofExpr* E) {
2058   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2059   // well-formed.
2060   StringRef Uuid = E->getUuidStr();
2061   std::string Name = "_GUID_" + Uuid.lower();
2062   std::replace(Name.begin(), Name.end(), '-', '_');
2063 
2064   // The UUID descriptor should be pointer aligned.
2065   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2066 
2067   // Look for an existing global.
2068   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2069     return ConstantAddress(GV, Alignment);
2070 
2071   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2072   assert(Init && "failed to initialize as constant");
2073 
2074   auto *GV = new llvm::GlobalVariable(
2075       getModule(), Init->getType(),
2076       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2077   if (supportsCOMDAT())
2078     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2079   setDSOLocal(GV);
2080   return ConstantAddress(GV, Alignment);
2081 }
2082 
2083 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2084   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2085   assert(AA && "No alias?");
2086 
2087   CharUnits Alignment = getContext().getDeclAlign(VD);
2088   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2089 
2090   // See if there is already something with the target's name in the module.
2091   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2092   if (Entry) {
2093     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2094     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2095     return ConstantAddress(Ptr, Alignment);
2096   }
2097 
2098   llvm::Constant *Aliasee;
2099   if (isa<llvm::FunctionType>(DeclTy))
2100     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2101                                       GlobalDecl(cast<FunctionDecl>(VD)),
2102                                       /*ForVTable=*/false);
2103   else
2104     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2105                                     llvm::PointerType::getUnqual(DeclTy),
2106                                     nullptr);
2107 
2108   auto *F = cast<llvm::GlobalValue>(Aliasee);
2109   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2110   WeakRefReferences.insert(F);
2111 
2112   return ConstantAddress(Aliasee, Alignment);
2113 }
2114 
2115 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2116   const auto *Global = cast<ValueDecl>(GD.getDecl());
2117 
2118   // Weak references don't produce any output by themselves.
2119   if (Global->hasAttr<WeakRefAttr>())
2120     return;
2121 
2122   // If this is an alias definition (which otherwise looks like a declaration)
2123   // emit it now.
2124   if (Global->hasAttr<AliasAttr>())
2125     return EmitAliasDefinition(GD);
2126 
2127   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2128   if (Global->hasAttr<IFuncAttr>())
2129     return emitIFuncDefinition(GD);
2130 
2131   // If this is a cpu_dispatch multiversion function, emit the resolver.
2132   if (Global->hasAttr<CPUDispatchAttr>())
2133     return emitCPUDispatchDefinition(GD);
2134 
2135   // If this is CUDA, be selective about which declarations we emit.
2136   if (LangOpts.CUDA) {
2137     if (LangOpts.CUDAIsDevice) {
2138       if (!Global->hasAttr<CUDADeviceAttr>() &&
2139           !Global->hasAttr<CUDAGlobalAttr>() &&
2140           !Global->hasAttr<CUDAConstantAttr>() &&
2141           !Global->hasAttr<CUDASharedAttr>())
2142         return;
2143     } else {
2144       // We need to emit host-side 'shadows' for all global
2145       // device-side variables because the CUDA runtime needs their
2146       // size and host-side address in order to provide access to
2147       // their device-side incarnations.
2148 
2149       // So device-only functions are the only things we skip.
2150       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2151           Global->hasAttr<CUDADeviceAttr>())
2152         return;
2153 
2154       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2155              "Expected Variable or Function");
2156     }
2157   }
2158 
2159   if (LangOpts.OpenMP) {
2160     // If this is OpenMP device, check if it is legal to emit this global
2161     // normally.
2162     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2163       return;
2164     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2165       if (MustBeEmitted(Global))
2166         EmitOMPDeclareReduction(DRD);
2167       return;
2168     }
2169   }
2170 
2171   // Ignore declarations, they will be emitted on their first use.
2172   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2173     // Forward declarations are emitted lazily on first use.
2174     if (!FD->doesThisDeclarationHaveABody()) {
2175       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2176         return;
2177 
2178       StringRef MangledName = getMangledName(GD);
2179 
2180       // Compute the function info and LLVM type.
2181       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2182       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2183 
2184       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2185                               /*DontDefer=*/false);
2186       return;
2187     }
2188   } else {
2189     const auto *VD = cast<VarDecl>(Global);
2190     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2191     // We need to emit device-side global CUDA variables even if a
2192     // variable does not have a definition -- we still need to define
2193     // host-side shadow for it.
2194     bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
2195                            !VD->hasDefinition() &&
2196                            (VD->hasAttr<CUDAConstantAttr>() ||
2197                             VD->hasAttr<CUDADeviceAttr>());
2198     if (!MustEmitForCuda &&
2199         VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2200         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2201       if (LangOpts.OpenMP) {
2202         // Emit declaration of the must-be-emitted declare target variable.
2203         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2204                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2205           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2206             (void)GetAddrOfGlobalVar(VD);
2207           } else {
2208             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2209                    "link claue expected.");
2210             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2211           }
2212           return;
2213         }
2214       }
2215       // If this declaration may have caused an inline variable definition to
2216       // change linkage, make sure that it's emitted.
2217       if (Context.getInlineVariableDefinitionKind(VD) ==
2218           ASTContext::InlineVariableDefinitionKind::Strong)
2219         GetAddrOfGlobalVar(VD);
2220       return;
2221     }
2222   }
2223 
2224   // Defer code generation to first use when possible, e.g. if this is an inline
2225   // function. If the global must always be emitted, do it eagerly if possible
2226   // to benefit from cache locality.
2227   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2228     // Emit the definition if it can't be deferred.
2229     EmitGlobalDefinition(GD);
2230     return;
2231   }
2232 
2233   // If we're deferring emission of a C++ variable with an
2234   // initializer, remember the order in which it appeared in the file.
2235   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2236       cast<VarDecl>(Global)->hasInit()) {
2237     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2238     CXXGlobalInits.push_back(nullptr);
2239   }
2240 
2241   StringRef MangledName = getMangledName(GD);
2242   if (GetGlobalValue(MangledName) != nullptr) {
2243     // The value has already been used and should therefore be emitted.
2244     addDeferredDeclToEmit(GD);
2245   } else if (MustBeEmitted(Global)) {
2246     // The value must be emitted, but cannot be emitted eagerly.
2247     assert(!MayBeEmittedEagerly(Global));
2248     addDeferredDeclToEmit(GD);
2249   } else {
2250     // Otherwise, remember that we saw a deferred decl with this name.  The
2251     // first use of the mangled name will cause it to move into
2252     // DeferredDeclsToEmit.
2253     DeferredDecls[MangledName] = GD;
2254   }
2255 }
2256 
2257 // Check if T is a class type with a destructor that's not dllimport.
2258 static bool HasNonDllImportDtor(QualType T) {
2259   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2260     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2261       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2262         return true;
2263 
2264   return false;
2265 }
2266 
2267 namespace {
2268   struct FunctionIsDirectlyRecursive :
2269     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2270     const StringRef Name;
2271     const Builtin::Context &BI;
2272     bool Result;
2273     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2274       Name(N), BI(C), Result(false) {
2275     }
2276     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2277 
2278     bool TraverseCallExpr(CallExpr *E) {
2279       const FunctionDecl *FD = E->getDirectCallee();
2280       if (!FD)
2281         return true;
2282       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2283       if (Attr && Name == Attr->getLabel()) {
2284         Result = true;
2285         return false;
2286       }
2287       unsigned BuiltinID = FD->getBuiltinID();
2288       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2289         return true;
2290       StringRef BuiltinName = BI.getName(BuiltinID);
2291       if (BuiltinName.startswith("__builtin_") &&
2292           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2293         Result = true;
2294         return false;
2295       }
2296       return true;
2297     }
2298   };
2299 
2300   // Make sure we're not referencing non-imported vars or functions.
2301   struct DLLImportFunctionVisitor
2302       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2303     bool SafeToInline = true;
2304 
2305     bool shouldVisitImplicitCode() const { return true; }
2306 
2307     bool VisitVarDecl(VarDecl *VD) {
2308       if (VD->getTLSKind()) {
2309         // A thread-local variable cannot be imported.
2310         SafeToInline = false;
2311         return SafeToInline;
2312       }
2313 
2314       // A variable definition might imply a destructor call.
2315       if (VD->isThisDeclarationADefinition())
2316         SafeToInline = !HasNonDllImportDtor(VD->getType());
2317 
2318       return SafeToInline;
2319     }
2320 
2321     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2322       if (const auto *D = E->getTemporary()->getDestructor())
2323         SafeToInline = D->hasAttr<DLLImportAttr>();
2324       return SafeToInline;
2325     }
2326 
2327     bool VisitDeclRefExpr(DeclRefExpr *E) {
2328       ValueDecl *VD = E->getDecl();
2329       if (isa<FunctionDecl>(VD))
2330         SafeToInline = VD->hasAttr<DLLImportAttr>();
2331       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2332         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2333       return SafeToInline;
2334     }
2335 
2336     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2337       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2338       return SafeToInline;
2339     }
2340 
2341     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2342       CXXMethodDecl *M = E->getMethodDecl();
2343       if (!M) {
2344         // Call through a pointer to member function. This is safe to inline.
2345         SafeToInline = true;
2346       } else {
2347         SafeToInline = M->hasAttr<DLLImportAttr>();
2348       }
2349       return SafeToInline;
2350     }
2351 
2352     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2353       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2354       return SafeToInline;
2355     }
2356 
2357     bool VisitCXXNewExpr(CXXNewExpr *E) {
2358       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2359       return SafeToInline;
2360     }
2361   };
2362 }
2363 
2364 // isTriviallyRecursive - Check if this function calls another
2365 // decl that, because of the asm attribute or the other decl being a builtin,
2366 // ends up pointing to itself.
2367 bool
2368 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2369   StringRef Name;
2370   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2371     // asm labels are a special kind of mangling we have to support.
2372     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2373     if (!Attr)
2374       return false;
2375     Name = Attr->getLabel();
2376   } else {
2377     Name = FD->getName();
2378   }
2379 
2380   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2381   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2382   return Walker.Result;
2383 }
2384 
2385 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2386   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2387     return true;
2388   const auto *F = cast<FunctionDecl>(GD.getDecl());
2389   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2390     return false;
2391 
2392   if (F->hasAttr<DLLImportAttr>()) {
2393     // Check whether it would be safe to inline this dllimport function.
2394     DLLImportFunctionVisitor Visitor;
2395     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2396     if (!Visitor.SafeToInline)
2397       return false;
2398 
2399     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2400       // Implicit destructor invocations aren't captured in the AST, so the
2401       // check above can't see them. Check for them manually here.
2402       for (const Decl *Member : Dtor->getParent()->decls())
2403         if (isa<FieldDecl>(Member))
2404           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2405             return false;
2406       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2407         if (HasNonDllImportDtor(B.getType()))
2408           return false;
2409     }
2410   }
2411 
2412   // PR9614. Avoid cases where the source code is lying to us. An available
2413   // externally function should have an equivalent function somewhere else,
2414   // but a function that calls itself is clearly not equivalent to the real
2415   // implementation.
2416   // This happens in glibc's btowc and in some configure checks.
2417   return !isTriviallyRecursive(F);
2418 }
2419 
2420 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2421   return CodeGenOpts.OptimizationLevel > 0;
2422 }
2423 
2424 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2425                                                        llvm::GlobalValue *GV) {
2426   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2427 
2428   if (FD->isCPUSpecificMultiVersion()) {
2429     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2430     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2431       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2432     // Requires multiple emits.
2433   } else
2434     EmitGlobalFunctionDefinition(GD, GV);
2435 }
2436 
2437 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2438   const auto *D = cast<ValueDecl>(GD.getDecl());
2439 
2440   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2441                                  Context.getSourceManager(),
2442                                  "Generating code for declaration");
2443 
2444   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2445     // At -O0, don't generate IR for functions with available_externally
2446     // linkage.
2447     if (!shouldEmitFunction(GD))
2448       return;
2449 
2450     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2451       // Make sure to emit the definition(s) before we emit the thunks.
2452       // This is necessary for the generation of certain thunks.
2453       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2454         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2455       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2456         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2457       else if (FD->isMultiVersion())
2458         EmitMultiVersionFunctionDefinition(GD, GV);
2459       else
2460         EmitGlobalFunctionDefinition(GD, GV);
2461 
2462       if (Method->isVirtual())
2463         getVTables().EmitThunks(GD);
2464 
2465       return;
2466     }
2467 
2468     if (FD->isMultiVersion())
2469       return EmitMultiVersionFunctionDefinition(GD, GV);
2470     return EmitGlobalFunctionDefinition(GD, GV);
2471   }
2472 
2473   if (const auto *VD = dyn_cast<VarDecl>(D))
2474     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2475 
2476   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2477 }
2478 
2479 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2480                                                       llvm::Function *NewFn);
2481 
2482 static unsigned
2483 TargetMVPriority(const TargetInfo &TI,
2484                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2485   unsigned Priority = 0;
2486   for (StringRef Feat : RO.Conditions.Features)
2487     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2488 
2489   if (!RO.Conditions.Architecture.empty())
2490     Priority = std::max(
2491         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2492   return Priority;
2493 }
2494 
2495 void CodeGenModule::emitMultiVersionFunctions() {
2496   for (GlobalDecl GD : MultiVersionFuncs) {
2497     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2498     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2499     getContext().forEachMultiversionedFunctionVersion(
2500         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2501           GlobalDecl CurGD{
2502               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2503           StringRef MangledName = getMangledName(CurGD);
2504           llvm::Constant *Func = GetGlobalValue(MangledName);
2505           if (!Func) {
2506             if (CurFD->isDefined()) {
2507               EmitGlobalFunctionDefinition(CurGD, nullptr);
2508               Func = GetGlobalValue(MangledName);
2509             } else {
2510               const CGFunctionInfo &FI =
2511                   getTypes().arrangeGlobalDeclaration(GD);
2512               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2513               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2514                                        /*DontDefer=*/false, ForDefinition);
2515             }
2516             assert(Func && "This should have just been created");
2517           }
2518 
2519           const auto *TA = CurFD->getAttr<TargetAttr>();
2520           llvm::SmallVector<StringRef, 8> Feats;
2521           TA->getAddedFeatures(Feats);
2522 
2523           Options.emplace_back(cast<llvm::Function>(Func),
2524                                TA->getArchitecture(), Feats);
2525         });
2526 
2527     llvm::Function *ResolverFunc;
2528     const TargetInfo &TI = getTarget();
2529 
2530     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2531       ResolverFunc = cast<llvm::Function>(
2532           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2533     else
2534       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2535 
2536     if (supportsCOMDAT())
2537       ResolverFunc->setComdat(
2538           getModule().getOrInsertComdat(ResolverFunc->getName()));
2539 
2540     std::stable_sort(
2541         Options.begin(), Options.end(),
2542         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2543               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2544           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2545         });
2546     CodeGenFunction CGF(*this);
2547     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2548   }
2549 }
2550 
2551 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2552   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2553   assert(FD && "Not a FunctionDecl?");
2554   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2555   assert(DD && "Not a cpu_dispatch Function?");
2556   QualType CanonTy = Context.getCanonicalType(FD->getType());
2557   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2558 
2559   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2560     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2561     DeclTy = getTypes().GetFunctionType(FInfo);
2562   }
2563 
2564   StringRef ResolverName = getMangledName(GD);
2565 
2566   llvm::Type *ResolverType;
2567   GlobalDecl ResolverGD;
2568   if (getTarget().supportsIFunc())
2569     ResolverType = llvm::FunctionType::get(
2570         llvm::PointerType::get(DeclTy,
2571                                Context.getTargetAddressSpace(FD->getType())),
2572         false);
2573   else {
2574     ResolverType = DeclTy;
2575     ResolverGD = GD;
2576   }
2577 
2578   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2579       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2580 
2581   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2582   const TargetInfo &Target = getTarget();
2583   unsigned Index = 0;
2584   for (const IdentifierInfo *II : DD->cpus()) {
2585     // Get the name of the target function so we can look it up/create it.
2586     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2587                               getCPUSpecificMangling(*this, II->getName());
2588 
2589     llvm::Constant *Func = GetGlobalValue(MangledName);
2590 
2591     if (!Func) {
2592       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2593       if (ExistingDecl.getDecl() &&
2594           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2595         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2596         Func = GetGlobalValue(MangledName);
2597       } else {
2598         if (!ExistingDecl.getDecl())
2599           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2600 
2601       Func = GetOrCreateLLVMFunction(
2602           MangledName, DeclTy, ExistingDecl,
2603           /*ForVTable=*/false, /*DontDefer=*/true,
2604           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2605       }
2606     }
2607 
2608     llvm::SmallVector<StringRef, 32> Features;
2609     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2610     llvm::transform(Features, Features.begin(),
2611                     [](StringRef Str) { return Str.substr(1); });
2612     Features.erase(std::remove_if(
2613         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2614           return !Target.validateCpuSupports(Feat);
2615         }), Features.end());
2616     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2617     ++Index;
2618   }
2619 
2620   llvm::sort(
2621       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2622                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2623         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2624                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2625       });
2626 
2627   // If the list contains multiple 'default' versions, such as when it contains
2628   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2629   // always run on at least a 'pentium'). We do this by deleting the 'least
2630   // advanced' (read, lowest mangling letter).
2631   while (Options.size() > 1 &&
2632          CodeGenFunction::GetX86CpuSupportsMask(
2633              (Options.end() - 2)->Conditions.Features) == 0) {
2634     StringRef LHSName = (Options.end() - 2)->Function->getName();
2635     StringRef RHSName = (Options.end() - 1)->Function->getName();
2636     if (LHSName.compare(RHSName) < 0)
2637       Options.erase(Options.end() - 2);
2638     else
2639       Options.erase(Options.end() - 1);
2640   }
2641 
2642   CodeGenFunction CGF(*this);
2643   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2644 }
2645 
2646 /// If a dispatcher for the specified mangled name is not in the module, create
2647 /// and return an llvm Function with the specified type.
2648 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2649     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2650   std::string MangledName =
2651       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2652 
2653   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2654   // a separate resolver).
2655   std::string ResolverName = MangledName;
2656   if (getTarget().supportsIFunc())
2657     ResolverName += ".ifunc";
2658   else if (FD->isTargetMultiVersion())
2659     ResolverName += ".resolver";
2660 
2661   // If this already exists, just return that one.
2662   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2663     return ResolverGV;
2664 
2665   // Since this is the first time we've created this IFunc, make sure
2666   // that we put this multiversioned function into the list to be
2667   // replaced later if necessary (target multiversioning only).
2668   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2669     MultiVersionFuncs.push_back(GD);
2670 
2671   if (getTarget().supportsIFunc()) {
2672     llvm::Type *ResolverType = llvm::FunctionType::get(
2673         llvm::PointerType::get(
2674             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2675         false);
2676     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2677         MangledName + ".resolver", ResolverType, GlobalDecl{},
2678         /*ForVTable=*/false);
2679     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2680         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2681     GIF->setName(ResolverName);
2682     SetCommonAttributes(FD, GIF);
2683 
2684     return GIF;
2685   }
2686 
2687   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2688       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2689   assert(isa<llvm::GlobalValue>(Resolver) &&
2690          "Resolver should be created for the first time");
2691   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2692   return Resolver;
2693 }
2694 
2695 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2696 /// module, create and return an llvm Function with the specified type. If there
2697 /// is something in the module with the specified name, return it potentially
2698 /// bitcasted to the right type.
2699 ///
2700 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2701 /// to set the attributes on the function when it is first created.
2702 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2703     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2704     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2705     ForDefinition_t IsForDefinition) {
2706   const Decl *D = GD.getDecl();
2707 
2708   // Any attempts to use a MultiVersion function should result in retrieving
2709   // the iFunc instead. Name Mangling will handle the rest of the changes.
2710   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2711     // For the device mark the function as one that should be emitted.
2712     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2713         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2714         !DontDefer && !IsForDefinition) {
2715       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2716         GlobalDecl GDDef;
2717         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2718           GDDef = GlobalDecl(CD, GD.getCtorType());
2719         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2720           GDDef = GlobalDecl(DD, GD.getDtorType());
2721         else
2722           GDDef = GlobalDecl(FDDef);
2723         EmitGlobal(GDDef);
2724       }
2725     }
2726 
2727     if (FD->isMultiVersion()) {
2728       const auto *TA = FD->getAttr<TargetAttr>();
2729       if (TA && TA->isDefaultVersion())
2730         UpdateMultiVersionNames(GD, FD);
2731       if (!IsForDefinition)
2732         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2733     }
2734   }
2735 
2736   // Lookup the entry, lazily creating it if necessary.
2737   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2738   if (Entry) {
2739     if (WeakRefReferences.erase(Entry)) {
2740       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2741       if (FD && !FD->hasAttr<WeakAttr>())
2742         Entry->setLinkage(llvm::Function::ExternalLinkage);
2743     }
2744 
2745     // Handle dropped DLL attributes.
2746     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2747       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2748       setDSOLocal(Entry);
2749     }
2750 
2751     // If there are two attempts to define the same mangled name, issue an
2752     // error.
2753     if (IsForDefinition && !Entry->isDeclaration()) {
2754       GlobalDecl OtherGD;
2755       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2756       // to make sure that we issue an error only once.
2757       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2758           (GD.getCanonicalDecl().getDecl() !=
2759            OtherGD.getCanonicalDecl().getDecl()) &&
2760           DiagnosedConflictingDefinitions.insert(GD).second) {
2761         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2762             << MangledName;
2763         getDiags().Report(OtherGD.getDecl()->getLocation(),
2764                           diag::note_previous_definition);
2765       }
2766     }
2767 
2768     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2769         (Entry->getType()->getElementType() == Ty)) {
2770       return Entry;
2771     }
2772 
2773     // Make sure the result is of the correct type.
2774     // (If function is requested for a definition, we always need to create a new
2775     // function, not just return a bitcast.)
2776     if (!IsForDefinition)
2777       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2778   }
2779 
2780   // This function doesn't have a complete type (for example, the return
2781   // type is an incomplete struct). Use a fake type instead, and make
2782   // sure not to try to set attributes.
2783   bool IsIncompleteFunction = false;
2784 
2785   llvm::FunctionType *FTy;
2786   if (isa<llvm::FunctionType>(Ty)) {
2787     FTy = cast<llvm::FunctionType>(Ty);
2788   } else {
2789     FTy = llvm::FunctionType::get(VoidTy, false);
2790     IsIncompleteFunction = true;
2791   }
2792 
2793   llvm::Function *F =
2794       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2795                              Entry ? StringRef() : MangledName, &getModule());
2796 
2797   // If we already created a function with the same mangled name (but different
2798   // type) before, take its name and add it to the list of functions to be
2799   // replaced with F at the end of CodeGen.
2800   //
2801   // This happens if there is a prototype for a function (e.g. "int f()") and
2802   // then a definition of a different type (e.g. "int f(int x)").
2803   if (Entry) {
2804     F->takeName(Entry);
2805 
2806     // This might be an implementation of a function without a prototype, in
2807     // which case, try to do special replacement of calls which match the new
2808     // prototype.  The really key thing here is that we also potentially drop
2809     // arguments from the call site so as to make a direct call, which makes the
2810     // inliner happier and suppresses a number of optimizer warnings (!) about
2811     // dropping arguments.
2812     if (!Entry->use_empty()) {
2813       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2814       Entry->removeDeadConstantUsers();
2815     }
2816 
2817     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2818         F, Entry->getType()->getElementType()->getPointerTo());
2819     addGlobalValReplacement(Entry, BC);
2820   }
2821 
2822   assert(F->getName() == MangledName && "name was uniqued!");
2823   if (D)
2824     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2825   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2826     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2827     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2828   }
2829 
2830   if (!DontDefer) {
2831     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2832     // each other bottoming out with the base dtor.  Therefore we emit non-base
2833     // dtors on usage, even if there is no dtor definition in the TU.
2834     if (D && isa<CXXDestructorDecl>(D) &&
2835         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2836                                            GD.getDtorType()))
2837       addDeferredDeclToEmit(GD);
2838 
2839     // This is the first use or definition of a mangled name.  If there is a
2840     // deferred decl with this name, remember that we need to emit it at the end
2841     // of the file.
2842     auto DDI = DeferredDecls.find(MangledName);
2843     if (DDI != DeferredDecls.end()) {
2844       // Move the potentially referenced deferred decl to the
2845       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2846       // don't need it anymore).
2847       addDeferredDeclToEmit(DDI->second);
2848       DeferredDecls.erase(DDI);
2849 
2850       // Otherwise, there are cases we have to worry about where we're
2851       // using a declaration for which we must emit a definition but where
2852       // we might not find a top-level definition:
2853       //   - member functions defined inline in their classes
2854       //   - friend functions defined inline in some class
2855       //   - special member functions with implicit definitions
2856       // If we ever change our AST traversal to walk into class methods,
2857       // this will be unnecessary.
2858       //
2859       // We also don't emit a definition for a function if it's going to be an
2860       // entry in a vtable, unless it's already marked as used.
2861     } else if (getLangOpts().CPlusPlus && D) {
2862       // Look for a declaration that's lexically in a record.
2863       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2864            FD = FD->getPreviousDecl()) {
2865         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2866           if (FD->doesThisDeclarationHaveABody()) {
2867             addDeferredDeclToEmit(GD.getWithDecl(FD));
2868             break;
2869           }
2870         }
2871       }
2872     }
2873   }
2874 
2875   // Make sure the result is of the requested type.
2876   if (!IsIncompleteFunction) {
2877     assert(F->getType()->getElementType() == Ty);
2878     return F;
2879   }
2880 
2881   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2882   return llvm::ConstantExpr::getBitCast(F, PTy);
2883 }
2884 
2885 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2886 /// non-null, then this function will use the specified type if it has to
2887 /// create it (this occurs when we see a definition of the function).
2888 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2889                                                  llvm::Type *Ty,
2890                                                  bool ForVTable,
2891                                                  bool DontDefer,
2892                                               ForDefinition_t IsForDefinition) {
2893   // If there was no specific requested type, just convert it now.
2894   if (!Ty) {
2895     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2896     auto CanonTy = Context.getCanonicalType(FD->getType());
2897     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2898   }
2899 
2900   // Devirtualized destructor calls may come through here instead of via
2901   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2902   // of the complete destructor when necessary.
2903   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2904     if (getTarget().getCXXABI().isMicrosoft() &&
2905         GD.getDtorType() == Dtor_Complete &&
2906         DD->getParent()->getNumVBases() == 0)
2907       GD = GlobalDecl(DD, Dtor_Base);
2908   }
2909 
2910   StringRef MangledName = getMangledName(GD);
2911   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2912                                  /*IsThunk=*/false, llvm::AttributeList(),
2913                                  IsForDefinition);
2914 }
2915 
2916 static const FunctionDecl *
2917 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2918   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2919   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2920 
2921   IdentifierInfo &CII = C.Idents.get(Name);
2922   for (const auto &Result : DC->lookup(&CII))
2923     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2924       return FD;
2925 
2926   if (!C.getLangOpts().CPlusPlus)
2927     return nullptr;
2928 
2929   // Demangle the premangled name from getTerminateFn()
2930   IdentifierInfo &CXXII =
2931       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2932           ? C.Idents.get("terminate")
2933           : C.Idents.get(Name);
2934 
2935   for (const auto &N : {"__cxxabiv1", "std"}) {
2936     IdentifierInfo &NS = C.Idents.get(N);
2937     for (const auto &Result : DC->lookup(&NS)) {
2938       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2939       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2940         for (const auto &Result : LSD->lookup(&NS))
2941           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2942             break;
2943 
2944       if (ND)
2945         for (const auto &Result : ND->lookup(&CXXII))
2946           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2947             return FD;
2948     }
2949   }
2950 
2951   return nullptr;
2952 }
2953 
2954 /// CreateRuntimeFunction - Create a new runtime function with the specified
2955 /// type and name.
2956 llvm::Constant *
2957 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2958                                      llvm::AttributeList ExtraAttrs,
2959                                      bool Local) {
2960   llvm::Constant *C =
2961       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2962                               /*DontDefer=*/false, /*IsThunk=*/false,
2963                               ExtraAttrs);
2964 
2965   if (auto *F = dyn_cast<llvm::Function>(C)) {
2966     if (F->empty()) {
2967       F->setCallingConv(getRuntimeCC());
2968 
2969       if (!Local && getTriple().isOSBinFormatCOFF() &&
2970           !getCodeGenOpts().LTOVisibilityPublicStd &&
2971           !getTriple().isWindowsGNUEnvironment()) {
2972         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2973         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2974           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2975           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2976         }
2977       }
2978       setDSOLocal(F);
2979     }
2980   }
2981 
2982   return C;
2983 }
2984 
2985 /// CreateBuiltinFunction - Create a new builtin function with the specified
2986 /// type and name.
2987 llvm::Constant *
2988 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2989                                      llvm::AttributeList ExtraAttrs) {
2990   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2991 }
2992 
2993 /// isTypeConstant - Determine whether an object of this type can be emitted
2994 /// as a constant.
2995 ///
2996 /// If ExcludeCtor is true, the duration when the object's constructor runs
2997 /// will not be considered. The caller will need to verify that the object is
2998 /// not written to during its construction.
2999 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
3000   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
3001     return false;
3002 
3003   if (Context.getLangOpts().CPlusPlus) {
3004     if (const CXXRecordDecl *Record
3005           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
3006       return ExcludeCtor && !Record->hasMutableFields() &&
3007              Record->hasTrivialDestructor();
3008   }
3009 
3010   return true;
3011 }
3012 
3013 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3014 /// create and return an llvm GlobalVariable with the specified type.  If there
3015 /// is something in the module with the specified name, return it potentially
3016 /// bitcasted to the right type.
3017 ///
3018 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3019 /// to set the attributes on the global when it is first created.
3020 ///
3021 /// If IsForDefinition is true, it is guaranteed that an actual global with
3022 /// type Ty will be returned, not conversion of a variable with the same
3023 /// mangled name but some other type.
3024 llvm::Constant *
3025 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3026                                      llvm::PointerType *Ty,
3027                                      const VarDecl *D,
3028                                      ForDefinition_t IsForDefinition) {
3029   // Lookup the entry, lazily creating it if necessary.
3030   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3031   if (Entry) {
3032     if (WeakRefReferences.erase(Entry)) {
3033       if (D && !D->hasAttr<WeakAttr>())
3034         Entry->setLinkage(llvm::Function::ExternalLinkage);
3035     }
3036 
3037     // Handle dropped DLL attributes.
3038     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3039       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3040 
3041     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3042       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3043 
3044     if (Entry->getType() == Ty)
3045       return Entry;
3046 
3047     // If there are two attempts to define the same mangled name, issue an
3048     // error.
3049     if (IsForDefinition && !Entry->isDeclaration()) {
3050       GlobalDecl OtherGD;
3051       const VarDecl *OtherD;
3052 
3053       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3054       // to make sure that we issue an error only once.
3055       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3056           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3057           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3058           OtherD->hasInit() &&
3059           DiagnosedConflictingDefinitions.insert(D).second) {
3060         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3061             << MangledName;
3062         getDiags().Report(OtherGD.getDecl()->getLocation(),
3063                           diag::note_previous_definition);
3064       }
3065     }
3066 
3067     // Make sure the result is of the correct type.
3068     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3069       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3070 
3071     // (If global is requested for a definition, we always need to create a new
3072     // global, not just return a bitcast.)
3073     if (!IsForDefinition)
3074       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3075   }
3076 
3077   auto AddrSpace = GetGlobalVarAddressSpace(D);
3078   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3079 
3080   auto *GV = new llvm::GlobalVariable(
3081       getModule(), Ty->getElementType(), false,
3082       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3083       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3084 
3085   // If we already created a global with the same mangled name (but different
3086   // type) before, take its name and remove it from its parent.
3087   if (Entry) {
3088     GV->takeName(Entry);
3089 
3090     if (!Entry->use_empty()) {
3091       llvm::Constant *NewPtrForOldDecl =
3092           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3093       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3094     }
3095 
3096     Entry->eraseFromParent();
3097   }
3098 
3099   // This is the first use or definition of a mangled name.  If there is a
3100   // deferred decl with this name, remember that we need to emit it at the end
3101   // of the file.
3102   auto DDI = DeferredDecls.find(MangledName);
3103   if (DDI != DeferredDecls.end()) {
3104     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3105     // list, and remove it from DeferredDecls (since we don't need it anymore).
3106     addDeferredDeclToEmit(DDI->second);
3107     DeferredDecls.erase(DDI);
3108   }
3109 
3110   // Handle things which are present even on external declarations.
3111   if (D) {
3112     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3113       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3114 
3115     // FIXME: This code is overly simple and should be merged with other global
3116     // handling.
3117     GV->setConstant(isTypeConstant(D->getType(), false));
3118 
3119     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3120 
3121     setLinkageForGV(GV, D);
3122 
3123     if (D->getTLSKind()) {
3124       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3125         CXXThreadLocals.push_back(D);
3126       setTLSMode(GV, *D);
3127     }
3128 
3129     setGVProperties(GV, D);
3130 
3131     // If required by the ABI, treat declarations of static data members with
3132     // inline initializers as definitions.
3133     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3134       EmitGlobalVarDefinition(D);
3135     }
3136 
3137     // Emit section information for extern variables.
3138     if (D->hasExternalStorage()) {
3139       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3140         GV->setSection(SA->getName());
3141     }
3142 
3143     // Handle XCore specific ABI requirements.
3144     if (getTriple().getArch() == llvm::Triple::xcore &&
3145         D->getLanguageLinkage() == CLanguageLinkage &&
3146         D->getType().isConstant(Context) &&
3147         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3148       GV->setSection(".cp.rodata");
3149 
3150     // Check if we a have a const declaration with an initializer, we may be
3151     // able to emit it as available_externally to expose it's value to the
3152     // optimizer.
3153     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3154         D->getType().isConstQualified() && !GV->hasInitializer() &&
3155         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3156       const auto *Record =
3157           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3158       bool HasMutableFields = Record && Record->hasMutableFields();
3159       if (!HasMutableFields) {
3160         const VarDecl *InitDecl;
3161         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3162         if (InitExpr) {
3163           ConstantEmitter emitter(*this);
3164           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3165           if (Init) {
3166             auto *InitType = Init->getType();
3167             if (GV->getType()->getElementType() != InitType) {
3168               // The type of the initializer does not match the definition.
3169               // This happens when an initializer has a different type from
3170               // the type of the global (because of padding at the end of a
3171               // structure for instance).
3172               GV->setName(StringRef());
3173               // Make a new global with the correct type, this is now guaranteed
3174               // to work.
3175               auto *NewGV = cast<llvm::GlobalVariable>(
3176                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3177 
3178               // Erase the old global, since it is no longer used.
3179               GV->eraseFromParent();
3180               GV = NewGV;
3181             } else {
3182               GV->setInitializer(Init);
3183               GV->setConstant(true);
3184               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3185             }
3186             emitter.finalize(GV);
3187           }
3188         }
3189       }
3190     }
3191   }
3192 
3193   LangAS ExpectedAS =
3194       D ? D->getType().getAddressSpace()
3195         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3196   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3197          Ty->getPointerAddressSpace());
3198   if (AddrSpace != ExpectedAS)
3199     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3200                                                        ExpectedAS, Ty);
3201 
3202   return GV;
3203 }
3204 
3205 llvm::Constant *
3206 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3207                                ForDefinition_t IsForDefinition) {
3208   const Decl *D = GD.getDecl();
3209   if (isa<CXXConstructorDecl>(D))
3210     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3211                                 getFromCtorType(GD.getCtorType()),
3212                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3213                                 /*DontDefer=*/false, IsForDefinition);
3214   else if (isa<CXXDestructorDecl>(D))
3215     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3216                                 getFromDtorType(GD.getDtorType()),
3217                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3218                                 /*DontDefer=*/false, IsForDefinition);
3219   else if (isa<CXXMethodDecl>(D)) {
3220     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3221         cast<CXXMethodDecl>(D));
3222     auto Ty = getTypes().GetFunctionType(*FInfo);
3223     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3224                              IsForDefinition);
3225   } else if (isa<FunctionDecl>(D)) {
3226     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3227     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3228     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3229                              IsForDefinition);
3230   } else
3231     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3232                               IsForDefinition);
3233 }
3234 
3235 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3236     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3237     unsigned Alignment) {
3238   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3239   llvm::GlobalVariable *OldGV = nullptr;
3240 
3241   if (GV) {
3242     // Check if the variable has the right type.
3243     if (GV->getType()->getElementType() == Ty)
3244       return GV;
3245 
3246     // Because C++ name mangling, the only way we can end up with an already
3247     // existing global with the same name is if it has been declared extern "C".
3248     assert(GV->isDeclaration() && "Declaration has wrong type!");
3249     OldGV = GV;
3250   }
3251 
3252   // Create a new variable.
3253   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3254                                 Linkage, nullptr, Name);
3255 
3256   if (OldGV) {
3257     // Replace occurrences of the old variable if needed.
3258     GV->takeName(OldGV);
3259 
3260     if (!OldGV->use_empty()) {
3261       llvm::Constant *NewPtrForOldDecl =
3262       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3263       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3264     }
3265 
3266     OldGV->eraseFromParent();
3267   }
3268 
3269   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3270       !GV->hasAvailableExternallyLinkage())
3271     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3272 
3273   GV->setAlignment(Alignment);
3274 
3275   return GV;
3276 }
3277 
3278 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3279 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3280 /// then it will be created with the specified type instead of whatever the
3281 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3282 /// that an actual global with type Ty will be returned, not conversion of a
3283 /// variable with the same mangled name but some other type.
3284 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3285                                                   llvm::Type *Ty,
3286                                            ForDefinition_t IsForDefinition) {
3287   assert(D->hasGlobalStorage() && "Not a global variable");
3288   QualType ASTTy = D->getType();
3289   if (!Ty)
3290     Ty = getTypes().ConvertTypeForMem(ASTTy);
3291 
3292   llvm::PointerType *PTy =
3293     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3294 
3295   StringRef MangledName = getMangledName(D);
3296   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3297 }
3298 
3299 /// CreateRuntimeVariable - Create a new runtime global variable with the
3300 /// specified type and name.
3301 llvm::Constant *
3302 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3303                                      StringRef Name) {
3304   auto *Ret =
3305       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3306   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3307   return Ret;
3308 }
3309 
3310 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3311   assert(!D->getInit() && "Cannot emit definite definitions here!");
3312 
3313   StringRef MangledName = getMangledName(D);
3314   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3315 
3316   // We already have a definition, not declaration, with the same mangled name.
3317   // Emitting of declaration is not required (and actually overwrites emitted
3318   // definition).
3319   if (GV && !GV->isDeclaration())
3320     return;
3321 
3322   // If we have not seen a reference to this variable yet, place it into the
3323   // deferred declarations table to be emitted if needed later.
3324   if (!MustBeEmitted(D) && !GV) {
3325       DeferredDecls[MangledName] = D;
3326       return;
3327   }
3328 
3329   // The tentative definition is the only definition.
3330   EmitGlobalVarDefinition(D);
3331 }
3332 
3333 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3334   return Context.toCharUnitsFromBits(
3335       getDataLayout().getTypeStoreSizeInBits(Ty));
3336 }
3337 
3338 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3339   LangAS AddrSpace = LangAS::Default;
3340   if (LangOpts.OpenCL) {
3341     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3342     assert(AddrSpace == LangAS::opencl_global ||
3343            AddrSpace == LangAS::opencl_constant ||
3344            AddrSpace == LangAS::opencl_local ||
3345            AddrSpace >= LangAS::FirstTargetAddressSpace);
3346     return AddrSpace;
3347   }
3348 
3349   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3350     if (D && D->hasAttr<CUDAConstantAttr>())
3351       return LangAS::cuda_constant;
3352     else if (D && D->hasAttr<CUDASharedAttr>())
3353       return LangAS::cuda_shared;
3354     else if (D && D->hasAttr<CUDADeviceAttr>())
3355       return LangAS::cuda_device;
3356     else if (D && D->getType().isConstQualified())
3357       return LangAS::cuda_constant;
3358     else
3359       return LangAS::cuda_device;
3360   }
3361 
3362   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3363 }
3364 
3365 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3366   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3367   if (LangOpts.OpenCL)
3368     return LangAS::opencl_constant;
3369   if (auto AS = getTarget().getConstantAddressSpace())
3370     return AS.getValue();
3371   return LangAS::Default;
3372 }
3373 
3374 // In address space agnostic languages, string literals are in default address
3375 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3376 // emitted in constant address space in LLVM IR. To be consistent with other
3377 // parts of AST, string literal global variables in constant address space
3378 // need to be casted to default address space before being put into address
3379 // map and referenced by other part of CodeGen.
3380 // In OpenCL, string literals are in constant address space in AST, therefore
3381 // they should not be casted to default address space.
3382 static llvm::Constant *
3383 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3384                                        llvm::GlobalVariable *GV) {
3385   llvm::Constant *Cast = GV;
3386   if (!CGM.getLangOpts().OpenCL) {
3387     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3388       if (AS != LangAS::Default)
3389         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3390             CGM, GV, AS.getValue(), LangAS::Default,
3391             GV->getValueType()->getPointerTo(
3392                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3393     }
3394   }
3395   return Cast;
3396 }
3397 
3398 template<typename SomeDecl>
3399 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3400                                                llvm::GlobalValue *GV) {
3401   if (!getLangOpts().CPlusPlus)
3402     return;
3403 
3404   // Must have 'used' attribute, or else inline assembly can't rely on
3405   // the name existing.
3406   if (!D->template hasAttr<UsedAttr>())
3407     return;
3408 
3409   // Must have internal linkage and an ordinary name.
3410   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3411     return;
3412 
3413   // Must be in an extern "C" context. Entities declared directly within
3414   // a record are not extern "C" even if the record is in such a context.
3415   const SomeDecl *First = D->getFirstDecl();
3416   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3417     return;
3418 
3419   // OK, this is an internal linkage entity inside an extern "C" linkage
3420   // specification. Make a note of that so we can give it the "expected"
3421   // mangled name if nothing else is using that name.
3422   std::pair<StaticExternCMap::iterator, bool> R =
3423       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3424 
3425   // If we have multiple internal linkage entities with the same name
3426   // in extern "C" regions, none of them gets that name.
3427   if (!R.second)
3428     R.first->second = nullptr;
3429 }
3430 
3431 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3432   if (!CGM.supportsCOMDAT())
3433     return false;
3434 
3435   if (D.hasAttr<SelectAnyAttr>())
3436     return true;
3437 
3438   GVALinkage Linkage;
3439   if (auto *VD = dyn_cast<VarDecl>(&D))
3440     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3441   else
3442     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3443 
3444   switch (Linkage) {
3445   case GVA_Internal:
3446   case GVA_AvailableExternally:
3447   case GVA_StrongExternal:
3448     return false;
3449   case GVA_DiscardableODR:
3450   case GVA_StrongODR:
3451     return true;
3452   }
3453   llvm_unreachable("No such linkage");
3454 }
3455 
3456 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3457                                           llvm::GlobalObject &GO) {
3458   if (!shouldBeInCOMDAT(*this, D))
3459     return;
3460   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3461 }
3462 
3463 /// Pass IsTentative as true if you want to create a tentative definition.
3464 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3465                                             bool IsTentative) {
3466   // OpenCL global variables of sampler type are translated to function calls,
3467   // therefore no need to be translated.
3468   QualType ASTTy = D->getType();
3469   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3470     return;
3471 
3472   // If this is OpenMP device, check if it is legal to emit this global
3473   // normally.
3474   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3475       OpenMPRuntime->emitTargetGlobalVariable(D))
3476     return;
3477 
3478   llvm::Constant *Init = nullptr;
3479   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3480   bool NeedsGlobalCtor = false;
3481   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3482 
3483   const VarDecl *InitDecl;
3484   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3485 
3486   Optional<ConstantEmitter> emitter;
3487 
3488   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3489   // as part of their declaration."  Sema has already checked for
3490   // error cases, so we just need to set Init to UndefValue.
3491   bool IsCUDASharedVar =
3492       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3493   // Shadows of initialized device-side global variables are also left
3494   // undefined.
3495   bool IsCUDAShadowVar =
3496       !getLangOpts().CUDAIsDevice &&
3497       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3498        D->hasAttr<CUDASharedAttr>());
3499   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3500     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3501   else if (!InitExpr) {
3502     // This is a tentative definition; tentative definitions are
3503     // implicitly initialized with { 0 }.
3504     //
3505     // Note that tentative definitions are only emitted at the end of
3506     // a translation unit, so they should never have incomplete
3507     // type. In addition, EmitTentativeDefinition makes sure that we
3508     // never attempt to emit a tentative definition if a real one
3509     // exists. A use may still exists, however, so we still may need
3510     // to do a RAUW.
3511     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3512     Init = EmitNullConstant(D->getType());
3513   } else {
3514     initializedGlobalDecl = GlobalDecl(D);
3515     emitter.emplace(*this);
3516     Init = emitter->tryEmitForInitializer(*InitDecl);
3517 
3518     if (!Init) {
3519       QualType T = InitExpr->getType();
3520       if (D->getType()->isReferenceType())
3521         T = D->getType();
3522 
3523       if (getLangOpts().CPlusPlus) {
3524         Init = EmitNullConstant(T);
3525         NeedsGlobalCtor = true;
3526       } else {
3527         ErrorUnsupported(D, "static initializer");
3528         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3529       }
3530     } else {
3531       // We don't need an initializer, so remove the entry for the delayed
3532       // initializer position (just in case this entry was delayed) if we
3533       // also don't need to register a destructor.
3534       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3535         DelayedCXXInitPosition.erase(D);
3536     }
3537   }
3538 
3539   llvm::Type* InitType = Init->getType();
3540   llvm::Constant *Entry =
3541       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3542 
3543   // Strip off a bitcast if we got one back.
3544   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3545     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3546            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3547            // All zero index gep.
3548            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3549     Entry = CE->getOperand(0);
3550   }
3551 
3552   // Entry is now either a Function or GlobalVariable.
3553   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3554 
3555   // We have a definition after a declaration with the wrong type.
3556   // We must make a new GlobalVariable* and update everything that used OldGV
3557   // (a declaration or tentative definition) with the new GlobalVariable*
3558   // (which will be a definition).
3559   //
3560   // This happens if there is a prototype for a global (e.g.
3561   // "extern int x[];") and then a definition of a different type (e.g.
3562   // "int x[10];"). This also happens when an initializer has a different type
3563   // from the type of the global (this happens with unions).
3564   if (!GV || GV->getType()->getElementType() != InitType ||
3565       GV->getType()->getAddressSpace() !=
3566           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3567 
3568     // Move the old entry aside so that we'll create a new one.
3569     Entry->setName(StringRef());
3570 
3571     // Make a new global with the correct type, this is now guaranteed to work.
3572     GV = cast<llvm::GlobalVariable>(
3573         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3574 
3575     // Replace all uses of the old global with the new global
3576     llvm::Constant *NewPtrForOldDecl =
3577         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3578     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3579 
3580     // Erase the old global, since it is no longer used.
3581     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3582   }
3583 
3584   MaybeHandleStaticInExternC(D, GV);
3585 
3586   if (D->hasAttr<AnnotateAttr>())
3587     AddGlobalAnnotations(D, GV);
3588 
3589   // Set the llvm linkage type as appropriate.
3590   llvm::GlobalValue::LinkageTypes Linkage =
3591       getLLVMLinkageVarDefinition(D, GV->isConstant());
3592 
3593   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3594   // the device. [...]"
3595   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3596   // __device__, declares a variable that: [...]
3597   // Is accessible from all the threads within the grid and from the host
3598   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3599   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3600   if (GV && LangOpts.CUDA) {
3601     if (LangOpts.CUDAIsDevice) {
3602       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3603         GV->setExternallyInitialized(true);
3604     } else {
3605       // Host-side shadows of external declarations of device-side
3606       // global variables become internal definitions. These have to
3607       // be internal in order to prevent name conflicts with global
3608       // host variables with the same name in a different TUs.
3609       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3610         Linkage = llvm::GlobalValue::InternalLinkage;
3611 
3612         // Shadow variables and their properties must be registered
3613         // with CUDA runtime.
3614         unsigned Flags = 0;
3615         if (!D->hasDefinition())
3616           Flags |= CGCUDARuntime::ExternDeviceVar;
3617         if (D->hasAttr<CUDAConstantAttr>())
3618           Flags |= CGCUDARuntime::ConstantDeviceVar;
3619         getCUDARuntime().registerDeviceVar(*GV, Flags);
3620       } else if (D->hasAttr<CUDASharedAttr>())
3621         // __shared__ variables are odd. Shadows do get created, but
3622         // they are not registered with the CUDA runtime, so they
3623         // can't really be used to access their device-side
3624         // counterparts. It's not clear yet whether it's nvcc's bug or
3625         // a feature, but we've got to do the same for compatibility.
3626         Linkage = llvm::GlobalValue::InternalLinkage;
3627     }
3628   }
3629 
3630   GV->setInitializer(Init);
3631   if (emitter) emitter->finalize(GV);
3632 
3633   // If it is safe to mark the global 'constant', do so now.
3634   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3635                   isTypeConstant(D->getType(), true));
3636 
3637   // If it is in a read-only section, mark it 'constant'.
3638   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3639     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3640     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3641       GV->setConstant(true);
3642   }
3643 
3644   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3645 
3646 
3647   // On Darwin, if the normal linkage of a C++ thread_local variable is
3648   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3649   // copies within a linkage unit; otherwise, the backing variable has
3650   // internal linkage and all accesses should just be calls to the
3651   // Itanium-specified entry point, which has the normal linkage of the
3652   // variable. This is to preserve the ability to change the implementation
3653   // behind the scenes.
3654   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3655       Context.getTargetInfo().getTriple().isOSDarwin() &&
3656       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3657       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3658     Linkage = llvm::GlobalValue::InternalLinkage;
3659 
3660   GV->setLinkage(Linkage);
3661   if (D->hasAttr<DLLImportAttr>())
3662     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3663   else if (D->hasAttr<DLLExportAttr>())
3664     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3665   else
3666     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3667 
3668   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3669     // common vars aren't constant even if declared const.
3670     GV->setConstant(false);
3671     // Tentative definition of global variables may be initialized with
3672     // non-zero null pointers. In this case they should have weak linkage
3673     // since common linkage must have zero initializer and must not have
3674     // explicit section therefore cannot have non-zero initial value.
3675     if (!GV->getInitializer()->isNullValue())
3676       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3677   }
3678 
3679   setNonAliasAttributes(D, GV);
3680 
3681   if (D->getTLSKind() && !GV->isThreadLocal()) {
3682     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3683       CXXThreadLocals.push_back(D);
3684     setTLSMode(GV, *D);
3685   }
3686 
3687   maybeSetTrivialComdat(*D, *GV);
3688 
3689   // Emit the initializer function if necessary.
3690   if (NeedsGlobalCtor || NeedsGlobalDtor)
3691     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3692 
3693   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3694 
3695   // Emit global variable debug information.
3696   if (CGDebugInfo *DI = getModuleDebugInfo())
3697     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3698       DI->EmitGlobalVariable(GV, D);
3699 }
3700 
3701 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3702                                       CodeGenModule &CGM, const VarDecl *D,
3703                                       bool NoCommon) {
3704   // Don't give variables common linkage if -fno-common was specified unless it
3705   // was overridden by a NoCommon attribute.
3706   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3707     return true;
3708 
3709   // C11 6.9.2/2:
3710   //   A declaration of an identifier for an object that has file scope without
3711   //   an initializer, and without a storage-class specifier or with the
3712   //   storage-class specifier static, constitutes a tentative definition.
3713   if (D->getInit() || D->hasExternalStorage())
3714     return true;
3715 
3716   // A variable cannot be both common and exist in a section.
3717   if (D->hasAttr<SectionAttr>())
3718     return true;
3719 
3720   // A variable cannot be both common and exist in a section.
3721   // We don't try to determine which is the right section in the front-end.
3722   // If no specialized section name is applicable, it will resort to default.
3723   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3724       D->hasAttr<PragmaClangDataSectionAttr>() ||
3725       D->hasAttr<PragmaClangRodataSectionAttr>())
3726     return true;
3727 
3728   // Thread local vars aren't considered common linkage.
3729   if (D->getTLSKind())
3730     return true;
3731 
3732   // Tentative definitions marked with WeakImportAttr are true definitions.
3733   if (D->hasAttr<WeakImportAttr>())
3734     return true;
3735 
3736   // A variable cannot be both common and exist in a comdat.
3737   if (shouldBeInCOMDAT(CGM, *D))
3738     return true;
3739 
3740   // Declarations with a required alignment do not have common linkage in MSVC
3741   // mode.
3742   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3743     if (D->hasAttr<AlignedAttr>())
3744       return true;
3745     QualType VarType = D->getType();
3746     if (Context.isAlignmentRequired(VarType))
3747       return true;
3748 
3749     if (const auto *RT = VarType->getAs<RecordType>()) {
3750       const RecordDecl *RD = RT->getDecl();
3751       for (const FieldDecl *FD : RD->fields()) {
3752         if (FD->isBitField())
3753           continue;
3754         if (FD->hasAttr<AlignedAttr>())
3755           return true;
3756         if (Context.isAlignmentRequired(FD->getType()))
3757           return true;
3758       }
3759     }
3760   }
3761 
3762   return false;
3763 }
3764 
3765 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3766     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3767   if (Linkage == GVA_Internal)
3768     return llvm::Function::InternalLinkage;
3769 
3770   if (D->hasAttr<WeakAttr>()) {
3771     if (IsConstantVariable)
3772       return llvm::GlobalVariable::WeakODRLinkage;
3773     else
3774       return llvm::GlobalVariable::WeakAnyLinkage;
3775   }
3776 
3777   if (const auto *FD = D->getAsFunction())
3778     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3779       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3780 
3781   // We are guaranteed to have a strong definition somewhere else,
3782   // so we can use available_externally linkage.
3783   if (Linkage == GVA_AvailableExternally)
3784     return llvm::GlobalValue::AvailableExternallyLinkage;
3785 
3786   // Note that Apple's kernel linker doesn't support symbol
3787   // coalescing, so we need to avoid linkonce and weak linkages there.
3788   // Normally, this means we just map to internal, but for explicit
3789   // instantiations we'll map to external.
3790 
3791   // In C++, the compiler has to emit a definition in every translation unit
3792   // that references the function.  We should use linkonce_odr because
3793   // a) if all references in this translation unit are optimized away, we
3794   // don't need to codegen it.  b) if the function persists, it needs to be
3795   // merged with other definitions. c) C++ has the ODR, so we know the
3796   // definition is dependable.
3797   if (Linkage == GVA_DiscardableODR)
3798     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3799                                             : llvm::Function::InternalLinkage;
3800 
3801   // An explicit instantiation of a template has weak linkage, since
3802   // explicit instantiations can occur in multiple translation units
3803   // and must all be equivalent. However, we are not allowed to
3804   // throw away these explicit instantiations.
3805   //
3806   // We don't currently support CUDA device code spread out across multiple TUs,
3807   // so say that CUDA templates are either external (for kernels) or internal.
3808   // This lets llvm perform aggressive inter-procedural optimizations.
3809   if (Linkage == GVA_StrongODR) {
3810     if (Context.getLangOpts().AppleKext)
3811       return llvm::Function::ExternalLinkage;
3812     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3813       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3814                                           : llvm::Function::InternalLinkage;
3815     return llvm::Function::WeakODRLinkage;
3816   }
3817 
3818   // C++ doesn't have tentative definitions and thus cannot have common
3819   // linkage.
3820   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3821       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3822                                  CodeGenOpts.NoCommon))
3823     return llvm::GlobalVariable::CommonLinkage;
3824 
3825   // selectany symbols are externally visible, so use weak instead of
3826   // linkonce.  MSVC optimizes away references to const selectany globals, so
3827   // all definitions should be the same and ODR linkage should be used.
3828   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3829   if (D->hasAttr<SelectAnyAttr>())
3830     return llvm::GlobalVariable::WeakODRLinkage;
3831 
3832   // Otherwise, we have strong external linkage.
3833   assert(Linkage == GVA_StrongExternal);
3834   return llvm::GlobalVariable::ExternalLinkage;
3835 }
3836 
3837 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3838     const VarDecl *VD, bool IsConstant) {
3839   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3840   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3841 }
3842 
3843 /// Replace the uses of a function that was declared with a non-proto type.
3844 /// We want to silently drop extra arguments from call sites
3845 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3846                                           llvm::Function *newFn) {
3847   // Fast path.
3848   if (old->use_empty()) return;
3849 
3850   llvm::Type *newRetTy = newFn->getReturnType();
3851   SmallVector<llvm::Value*, 4> newArgs;
3852   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3853 
3854   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3855          ui != ue; ) {
3856     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3857     llvm::User *user = use->getUser();
3858 
3859     // Recognize and replace uses of bitcasts.  Most calls to
3860     // unprototyped functions will use bitcasts.
3861     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3862       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3863         replaceUsesOfNonProtoConstant(bitcast, newFn);
3864       continue;
3865     }
3866 
3867     // Recognize calls to the function.
3868     llvm::CallSite callSite(user);
3869     if (!callSite) continue;
3870     if (!callSite.isCallee(&*use)) continue;
3871 
3872     // If the return types don't match exactly, then we can't
3873     // transform this call unless it's dead.
3874     if (callSite->getType() != newRetTy && !callSite->use_empty())
3875       continue;
3876 
3877     // Get the call site's attribute list.
3878     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3879     llvm::AttributeList oldAttrs = callSite.getAttributes();
3880 
3881     // If the function was passed too few arguments, don't transform.
3882     unsigned newNumArgs = newFn->arg_size();
3883     if (callSite.arg_size() < newNumArgs) continue;
3884 
3885     // If extra arguments were passed, we silently drop them.
3886     // If any of the types mismatch, we don't transform.
3887     unsigned argNo = 0;
3888     bool dontTransform = false;
3889     for (llvm::Argument &A : newFn->args()) {
3890       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3891         dontTransform = true;
3892         break;
3893       }
3894 
3895       // Add any parameter attributes.
3896       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3897       argNo++;
3898     }
3899     if (dontTransform)
3900       continue;
3901 
3902     // Okay, we can transform this.  Create the new call instruction and copy
3903     // over the required information.
3904     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3905 
3906     // Copy over any operand bundles.
3907     callSite.getOperandBundlesAsDefs(newBundles);
3908 
3909     llvm::CallSite newCall;
3910     if (callSite.isCall()) {
3911       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3912                                        callSite.getInstruction());
3913     } else {
3914       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3915       newCall = llvm::InvokeInst::Create(newFn,
3916                                          oldInvoke->getNormalDest(),
3917                                          oldInvoke->getUnwindDest(),
3918                                          newArgs, newBundles, "",
3919                                          callSite.getInstruction());
3920     }
3921     newArgs.clear(); // for the next iteration
3922 
3923     if (!newCall->getType()->isVoidTy())
3924       newCall->takeName(callSite.getInstruction());
3925     newCall.setAttributes(llvm::AttributeList::get(
3926         newFn->getContext(), oldAttrs.getFnAttributes(),
3927         oldAttrs.getRetAttributes(), newArgAttrs));
3928     newCall.setCallingConv(callSite.getCallingConv());
3929 
3930     // Finally, remove the old call, replacing any uses with the new one.
3931     if (!callSite->use_empty())
3932       callSite->replaceAllUsesWith(newCall.getInstruction());
3933 
3934     // Copy debug location attached to CI.
3935     if (callSite->getDebugLoc())
3936       newCall->setDebugLoc(callSite->getDebugLoc());
3937 
3938     callSite->eraseFromParent();
3939   }
3940 }
3941 
3942 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3943 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3944 /// existing call uses of the old function in the module, this adjusts them to
3945 /// call the new function directly.
3946 ///
3947 /// This is not just a cleanup: the always_inline pass requires direct calls to
3948 /// functions to be able to inline them.  If there is a bitcast in the way, it
3949 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3950 /// run at -O0.
3951 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3952                                                       llvm::Function *NewFn) {
3953   // If we're redefining a global as a function, don't transform it.
3954   if (!isa<llvm::Function>(Old)) return;
3955 
3956   replaceUsesOfNonProtoConstant(Old, NewFn);
3957 }
3958 
3959 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3960   auto DK = VD->isThisDeclarationADefinition();
3961   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3962     return;
3963 
3964   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3965   // If we have a definition, this might be a deferred decl. If the
3966   // instantiation is explicit, make sure we emit it at the end.
3967   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3968     GetAddrOfGlobalVar(VD);
3969 
3970   EmitTopLevelDecl(VD);
3971 }
3972 
3973 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3974                                                  llvm::GlobalValue *GV) {
3975   const auto *D = cast<FunctionDecl>(GD.getDecl());
3976 
3977   // Compute the function info and LLVM type.
3978   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3979   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3980 
3981   // Get or create the prototype for the function.
3982   if (!GV || (GV->getType()->getElementType() != Ty))
3983     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3984                                                    /*DontDefer=*/true,
3985                                                    ForDefinition));
3986 
3987   // Already emitted.
3988   if (!GV->isDeclaration())
3989     return;
3990 
3991   // We need to set linkage and visibility on the function before
3992   // generating code for it because various parts of IR generation
3993   // want to propagate this information down (e.g. to local static
3994   // declarations).
3995   auto *Fn = cast<llvm::Function>(GV);
3996   setFunctionLinkage(GD, Fn);
3997 
3998   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3999   setGVProperties(Fn, GD);
4000 
4001   MaybeHandleStaticInExternC(D, Fn);
4002 
4003 
4004   maybeSetTrivialComdat(*D, *Fn);
4005 
4006   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4007 
4008   setNonAliasAttributes(GD, Fn);
4009   SetLLVMFunctionAttributesForDefinition(D, Fn);
4010 
4011   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4012     AddGlobalCtor(Fn, CA->getPriority());
4013   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4014     AddGlobalDtor(Fn, DA->getPriority());
4015   if (D->hasAttr<AnnotateAttr>())
4016     AddGlobalAnnotations(D, Fn);
4017 }
4018 
4019 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4020   const auto *D = cast<ValueDecl>(GD.getDecl());
4021   const AliasAttr *AA = D->getAttr<AliasAttr>();
4022   assert(AA && "Not an alias?");
4023 
4024   StringRef MangledName = getMangledName(GD);
4025 
4026   if (AA->getAliasee() == MangledName) {
4027     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4028     return;
4029   }
4030 
4031   // If there is a definition in the module, then it wins over the alias.
4032   // This is dubious, but allow it to be safe.  Just ignore the alias.
4033   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4034   if (Entry && !Entry->isDeclaration())
4035     return;
4036 
4037   Aliases.push_back(GD);
4038 
4039   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4040 
4041   // Create a reference to the named value.  This ensures that it is emitted
4042   // if a deferred decl.
4043   llvm::Constant *Aliasee;
4044   if (isa<llvm::FunctionType>(DeclTy))
4045     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4046                                       /*ForVTable=*/false);
4047   else
4048     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4049                                     llvm::PointerType::getUnqual(DeclTy),
4050                                     /*D=*/nullptr);
4051 
4052   // Create the new alias itself, but don't set a name yet.
4053   auto *GA = llvm::GlobalAlias::create(
4054       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4055 
4056   if (Entry) {
4057     if (GA->getAliasee() == Entry) {
4058       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4059       return;
4060     }
4061 
4062     assert(Entry->isDeclaration());
4063 
4064     // If there is a declaration in the module, then we had an extern followed
4065     // by the alias, as in:
4066     //   extern int test6();
4067     //   ...
4068     //   int test6() __attribute__((alias("test7")));
4069     //
4070     // Remove it and replace uses of it with the alias.
4071     GA->takeName(Entry);
4072 
4073     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4074                                                           Entry->getType()));
4075     Entry->eraseFromParent();
4076   } else {
4077     GA->setName(MangledName);
4078   }
4079 
4080   // Set attributes which are particular to an alias; this is a
4081   // specialization of the attributes which may be set on a global
4082   // variable/function.
4083   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4084       D->isWeakImported()) {
4085     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4086   }
4087 
4088   if (const auto *VD = dyn_cast<VarDecl>(D))
4089     if (VD->getTLSKind())
4090       setTLSMode(GA, *VD);
4091 
4092   SetCommonAttributes(GD, GA);
4093 }
4094 
4095 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4096   const auto *D = cast<ValueDecl>(GD.getDecl());
4097   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4098   assert(IFA && "Not an ifunc?");
4099 
4100   StringRef MangledName = getMangledName(GD);
4101 
4102   if (IFA->getResolver() == MangledName) {
4103     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4104     return;
4105   }
4106 
4107   // Report an error if some definition overrides ifunc.
4108   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4109   if (Entry && !Entry->isDeclaration()) {
4110     GlobalDecl OtherGD;
4111     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4112         DiagnosedConflictingDefinitions.insert(GD).second) {
4113       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4114           << MangledName;
4115       Diags.Report(OtherGD.getDecl()->getLocation(),
4116                    diag::note_previous_definition);
4117     }
4118     return;
4119   }
4120 
4121   Aliases.push_back(GD);
4122 
4123   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4124   llvm::Constant *Resolver =
4125       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4126                               /*ForVTable=*/false);
4127   llvm::GlobalIFunc *GIF =
4128       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4129                                 "", Resolver, &getModule());
4130   if (Entry) {
4131     if (GIF->getResolver() == Entry) {
4132       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4133       return;
4134     }
4135     assert(Entry->isDeclaration());
4136 
4137     // If there is a declaration in the module, then we had an extern followed
4138     // by the ifunc, as in:
4139     //   extern int test();
4140     //   ...
4141     //   int test() __attribute__((ifunc("resolver")));
4142     //
4143     // Remove it and replace uses of it with the ifunc.
4144     GIF->takeName(Entry);
4145 
4146     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4147                                                           Entry->getType()));
4148     Entry->eraseFromParent();
4149   } else
4150     GIF->setName(MangledName);
4151 
4152   SetCommonAttributes(GD, GIF);
4153 }
4154 
4155 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4156                                             ArrayRef<llvm::Type*> Tys) {
4157   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4158                                          Tys);
4159 }
4160 
4161 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4162 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4163                          const StringLiteral *Literal, bool TargetIsLSB,
4164                          bool &IsUTF16, unsigned &StringLength) {
4165   StringRef String = Literal->getString();
4166   unsigned NumBytes = String.size();
4167 
4168   // Check for simple case.
4169   if (!Literal->containsNonAsciiOrNull()) {
4170     StringLength = NumBytes;
4171     return *Map.insert(std::make_pair(String, nullptr)).first;
4172   }
4173 
4174   // Otherwise, convert the UTF8 literals into a string of shorts.
4175   IsUTF16 = true;
4176 
4177   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4178   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4179   llvm::UTF16 *ToPtr = &ToBuf[0];
4180 
4181   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4182                                  ToPtr + NumBytes, llvm::strictConversion);
4183 
4184   // ConvertUTF8toUTF16 returns the length in ToPtr.
4185   StringLength = ToPtr - &ToBuf[0];
4186 
4187   // Add an explicit null.
4188   *ToPtr = 0;
4189   return *Map.insert(std::make_pair(
4190                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4191                                    (StringLength + 1) * 2),
4192                          nullptr)).first;
4193 }
4194 
4195 ConstantAddress
4196 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4197   unsigned StringLength = 0;
4198   bool isUTF16 = false;
4199   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4200       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4201                                getDataLayout().isLittleEndian(), isUTF16,
4202                                StringLength);
4203 
4204   if (auto *C = Entry.second)
4205     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4206 
4207   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4208   llvm::Constant *Zeros[] = { Zero, Zero };
4209 
4210   const ASTContext &Context = getContext();
4211   const llvm::Triple &Triple = getTriple();
4212 
4213   const auto CFRuntime = getLangOpts().CFRuntime;
4214   const bool IsSwiftABI =
4215       static_cast<unsigned>(CFRuntime) >=
4216       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4217   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4218 
4219   // If we don't already have it, get __CFConstantStringClassReference.
4220   if (!CFConstantStringClassRef) {
4221     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4222     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4223     Ty = llvm::ArrayType::get(Ty, 0);
4224 
4225     switch (CFRuntime) {
4226     default: break;
4227     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4228     case LangOptions::CoreFoundationABI::Swift5_0:
4229       CFConstantStringClassName =
4230           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4231                               : "$s10Foundation19_NSCFConstantStringCN";
4232       Ty = IntPtrTy;
4233       break;
4234     case LangOptions::CoreFoundationABI::Swift4_2:
4235       CFConstantStringClassName =
4236           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4237                               : "$S10Foundation19_NSCFConstantStringCN";
4238       Ty = IntPtrTy;
4239       break;
4240     case LangOptions::CoreFoundationABI::Swift4_1:
4241       CFConstantStringClassName =
4242           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4243                               : "__T010Foundation19_NSCFConstantStringCN";
4244       Ty = IntPtrTy;
4245       break;
4246     }
4247 
4248     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4249 
4250     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4251       llvm::GlobalValue *GV = nullptr;
4252 
4253       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4254         IdentifierInfo &II = Context.Idents.get(GV->getName());
4255         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4256         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4257 
4258         const VarDecl *VD = nullptr;
4259         for (const auto &Result : DC->lookup(&II))
4260           if ((VD = dyn_cast<VarDecl>(Result)))
4261             break;
4262 
4263         if (Triple.isOSBinFormatELF()) {
4264           if (!VD)
4265             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4266         } else {
4267           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4268           if (!VD || !VD->hasAttr<DLLExportAttr>())
4269             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4270           else
4271             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4272         }
4273 
4274         setDSOLocal(GV);
4275       }
4276     }
4277 
4278     // Decay array -> ptr
4279     CFConstantStringClassRef =
4280         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4281                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4282   }
4283 
4284   QualType CFTy = Context.getCFConstantStringType();
4285 
4286   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4287 
4288   ConstantInitBuilder Builder(*this);
4289   auto Fields = Builder.beginStruct(STy);
4290 
4291   // Class pointer.
4292   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4293 
4294   // Flags.
4295   if (IsSwiftABI) {
4296     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4297     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4298   } else {
4299     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4300   }
4301 
4302   // String pointer.
4303   llvm::Constant *C = nullptr;
4304   if (isUTF16) {
4305     auto Arr = llvm::makeArrayRef(
4306         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4307         Entry.first().size() / 2);
4308     C = llvm::ConstantDataArray::get(VMContext, Arr);
4309   } else {
4310     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4311   }
4312 
4313   // Note: -fwritable-strings doesn't make the backing store strings of
4314   // CFStrings writable. (See <rdar://problem/10657500>)
4315   auto *GV =
4316       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4317                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4318   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4319   // Don't enforce the target's minimum global alignment, since the only use
4320   // of the string is via this class initializer.
4321   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4322                             : Context.getTypeAlignInChars(Context.CharTy);
4323   GV->setAlignment(Align.getQuantity());
4324 
4325   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4326   // Without it LLVM can merge the string with a non unnamed_addr one during
4327   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4328   if (Triple.isOSBinFormatMachO())
4329     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4330                            : "__TEXT,__cstring,cstring_literals");
4331   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4332   // the static linker to adjust permissions to read-only later on.
4333   else if (Triple.isOSBinFormatELF())
4334     GV->setSection(".rodata");
4335 
4336   // String.
4337   llvm::Constant *Str =
4338       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4339 
4340   if (isUTF16)
4341     // Cast the UTF16 string to the correct type.
4342     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4343   Fields.add(Str);
4344 
4345   // String length.
4346   llvm::IntegerType *LengthTy =
4347       llvm::IntegerType::get(getModule().getContext(),
4348                              Context.getTargetInfo().getLongWidth());
4349   if (IsSwiftABI) {
4350     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4351         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4352       LengthTy = Int32Ty;
4353     else
4354       LengthTy = IntPtrTy;
4355   }
4356   Fields.addInt(LengthTy, StringLength);
4357 
4358   CharUnits Alignment = getPointerAlign();
4359 
4360   // The struct.
4361   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4362                                     /*isConstant=*/false,
4363                                     llvm::GlobalVariable::PrivateLinkage);
4364   switch (Triple.getObjectFormat()) {
4365   case llvm::Triple::UnknownObjectFormat:
4366     llvm_unreachable("unknown file format");
4367   case llvm::Triple::COFF:
4368   case llvm::Triple::ELF:
4369   case llvm::Triple::Wasm:
4370     GV->setSection("cfstring");
4371     break;
4372   case llvm::Triple::MachO:
4373     GV->setSection("__DATA,__cfstring");
4374     break;
4375   }
4376   Entry.second = GV;
4377 
4378   return ConstantAddress(GV, Alignment);
4379 }
4380 
4381 bool CodeGenModule::getExpressionLocationsEnabled() const {
4382   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4383 }
4384 
4385 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4386   if (ObjCFastEnumerationStateType.isNull()) {
4387     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4388     D->startDefinition();
4389 
4390     QualType FieldTypes[] = {
4391       Context.UnsignedLongTy,
4392       Context.getPointerType(Context.getObjCIdType()),
4393       Context.getPointerType(Context.UnsignedLongTy),
4394       Context.getConstantArrayType(Context.UnsignedLongTy,
4395                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4396     };
4397 
4398     for (size_t i = 0; i < 4; ++i) {
4399       FieldDecl *Field = FieldDecl::Create(Context,
4400                                            D,
4401                                            SourceLocation(),
4402                                            SourceLocation(), nullptr,
4403                                            FieldTypes[i], /*TInfo=*/nullptr,
4404                                            /*BitWidth=*/nullptr,
4405                                            /*Mutable=*/false,
4406                                            ICIS_NoInit);
4407       Field->setAccess(AS_public);
4408       D->addDecl(Field);
4409     }
4410 
4411     D->completeDefinition();
4412     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4413   }
4414 
4415   return ObjCFastEnumerationStateType;
4416 }
4417 
4418 llvm::Constant *
4419 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4420   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4421 
4422   // Don't emit it as the address of the string, emit the string data itself
4423   // as an inline array.
4424   if (E->getCharByteWidth() == 1) {
4425     SmallString<64> Str(E->getString());
4426 
4427     // Resize the string to the right size, which is indicated by its type.
4428     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4429     Str.resize(CAT->getSize().getZExtValue());
4430     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4431   }
4432 
4433   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4434   llvm::Type *ElemTy = AType->getElementType();
4435   unsigned NumElements = AType->getNumElements();
4436 
4437   // Wide strings have either 2-byte or 4-byte elements.
4438   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4439     SmallVector<uint16_t, 32> Elements;
4440     Elements.reserve(NumElements);
4441 
4442     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4443       Elements.push_back(E->getCodeUnit(i));
4444     Elements.resize(NumElements);
4445     return llvm::ConstantDataArray::get(VMContext, Elements);
4446   }
4447 
4448   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4449   SmallVector<uint32_t, 32> Elements;
4450   Elements.reserve(NumElements);
4451 
4452   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4453     Elements.push_back(E->getCodeUnit(i));
4454   Elements.resize(NumElements);
4455   return llvm::ConstantDataArray::get(VMContext, Elements);
4456 }
4457 
4458 static llvm::GlobalVariable *
4459 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4460                       CodeGenModule &CGM, StringRef GlobalName,
4461                       CharUnits Alignment) {
4462   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4463       CGM.getStringLiteralAddressSpace());
4464 
4465   llvm::Module &M = CGM.getModule();
4466   // Create a global variable for this string
4467   auto *GV = new llvm::GlobalVariable(
4468       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4469       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4470   GV->setAlignment(Alignment.getQuantity());
4471   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4472   if (GV->isWeakForLinker()) {
4473     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4474     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4475   }
4476   CGM.setDSOLocal(GV);
4477 
4478   return GV;
4479 }
4480 
4481 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4482 /// constant array for the given string literal.
4483 ConstantAddress
4484 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4485                                                   StringRef Name) {
4486   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4487 
4488   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4489   llvm::GlobalVariable **Entry = nullptr;
4490   if (!LangOpts.WritableStrings) {
4491     Entry = &ConstantStringMap[C];
4492     if (auto GV = *Entry) {
4493       if (Alignment.getQuantity() > GV->getAlignment())
4494         GV->setAlignment(Alignment.getQuantity());
4495       return ConstantAddress(GV, Alignment);
4496     }
4497   }
4498 
4499   SmallString<256> MangledNameBuffer;
4500   StringRef GlobalVariableName;
4501   llvm::GlobalValue::LinkageTypes LT;
4502 
4503   // Mangle the string literal if that's how the ABI merges duplicate strings.
4504   // Don't do it if they are writable, since we don't want writes in one TU to
4505   // affect strings in another.
4506   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4507       !LangOpts.WritableStrings) {
4508     llvm::raw_svector_ostream Out(MangledNameBuffer);
4509     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4510     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4511     GlobalVariableName = MangledNameBuffer;
4512   } else {
4513     LT = llvm::GlobalValue::PrivateLinkage;
4514     GlobalVariableName = Name;
4515   }
4516 
4517   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4518   if (Entry)
4519     *Entry = GV;
4520 
4521   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4522                                   QualType());
4523 
4524   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4525                          Alignment);
4526 }
4527 
4528 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4529 /// array for the given ObjCEncodeExpr node.
4530 ConstantAddress
4531 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4532   std::string Str;
4533   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4534 
4535   return GetAddrOfConstantCString(Str);
4536 }
4537 
4538 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4539 /// the literal and a terminating '\0' character.
4540 /// The result has pointer to array type.
4541 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4542     const std::string &Str, const char *GlobalName) {
4543   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4544   CharUnits Alignment =
4545     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4546 
4547   llvm::Constant *C =
4548       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4549 
4550   // Don't share any string literals if strings aren't constant.
4551   llvm::GlobalVariable **Entry = nullptr;
4552   if (!LangOpts.WritableStrings) {
4553     Entry = &ConstantStringMap[C];
4554     if (auto GV = *Entry) {
4555       if (Alignment.getQuantity() > GV->getAlignment())
4556         GV->setAlignment(Alignment.getQuantity());
4557       return ConstantAddress(GV, Alignment);
4558     }
4559   }
4560 
4561   // Get the default prefix if a name wasn't specified.
4562   if (!GlobalName)
4563     GlobalName = ".str";
4564   // Create a global variable for this.
4565   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4566                                   GlobalName, Alignment);
4567   if (Entry)
4568     *Entry = GV;
4569 
4570   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4571                          Alignment);
4572 }
4573 
4574 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4575     const MaterializeTemporaryExpr *E, const Expr *Init) {
4576   assert((E->getStorageDuration() == SD_Static ||
4577           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4578   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4579 
4580   // If we're not materializing a subobject of the temporary, keep the
4581   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4582   QualType MaterializedType = Init->getType();
4583   if (Init == E->GetTemporaryExpr())
4584     MaterializedType = E->getType();
4585 
4586   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4587 
4588   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4589     return ConstantAddress(Slot, Align);
4590 
4591   // FIXME: If an externally-visible declaration extends multiple temporaries,
4592   // we need to give each temporary the same name in every translation unit (and
4593   // we also need to make the temporaries externally-visible).
4594   SmallString<256> Name;
4595   llvm::raw_svector_ostream Out(Name);
4596   getCXXABI().getMangleContext().mangleReferenceTemporary(
4597       VD, E->getManglingNumber(), Out);
4598 
4599   APValue *Value = nullptr;
4600   if (E->getStorageDuration() == SD_Static) {
4601     // We might have a cached constant initializer for this temporary. Note
4602     // that this might have a different value from the value computed by
4603     // evaluating the initializer if the surrounding constant expression
4604     // modifies the temporary.
4605     Value = getContext().getMaterializedTemporaryValue(E, false);
4606     if (Value && Value->isUninit())
4607       Value = nullptr;
4608   }
4609 
4610   // Try evaluating it now, it might have a constant initializer.
4611   Expr::EvalResult EvalResult;
4612   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4613       !EvalResult.hasSideEffects())
4614     Value = &EvalResult.Val;
4615 
4616   LangAS AddrSpace =
4617       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4618 
4619   Optional<ConstantEmitter> emitter;
4620   llvm::Constant *InitialValue = nullptr;
4621   bool Constant = false;
4622   llvm::Type *Type;
4623   if (Value) {
4624     // The temporary has a constant initializer, use it.
4625     emitter.emplace(*this);
4626     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4627                                                MaterializedType);
4628     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4629     Type = InitialValue->getType();
4630   } else {
4631     // No initializer, the initialization will be provided when we
4632     // initialize the declaration which performed lifetime extension.
4633     Type = getTypes().ConvertTypeForMem(MaterializedType);
4634   }
4635 
4636   // Create a global variable for this lifetime-extended temporary.
4637   llvm::GlobalValue::LinkageTypes Linkage =
4638       getLLVMLinkageVarDefinition(VD, Constant);
4639   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4640     const VarDecl *InitVD;
4641     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4642         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4643       // Temporaries defined inside a class get linkonce_odr linkage because the
4644       // class can be defined in multiple translation units.
4645       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4646     } else {
4647       // There is no need for this temporary to have external linkage if the
4648       // VarDecl has external linkage.
4649       Linkage = llvm::GlobalVariable::InternalLinkage;
4650     }
4651   }
4652   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4653   auto *GV = new llvm::GlobalVariable(
4654       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4655       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4656   if (emitter) emitter->finalize(GV);
4657   setGVProperties(GV, VD);
4658   GV->setAlignment(Align.getQuantity());
4659   if (supportsCOMDAT() && GV->isWeakForLinker())
4660     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4661   if (VD->getTLSKind())
4662     setTLSMode(GV, *VD);
4663   llvm::Constant *CV = GV;
4664   if (AddrSpace != LangAS::Default)
4665     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4666         *this, GV, AddrSpace, LangAS::Default,
4667         Type->getPointerTo(
4668             getContext().getTargetAddressSpace(LangAS::Default)));
4669   MaterializedGlobalTemporaryMap[E] = CV;
4670   return ConstantAddress(CV, Align);
4671 }
4672 
4673 /// EmitObjCPropertyImplementations - Emit information for synthesized
4674 /// properties for an implementation.
4675 void CodeGenModule::EmitObjCPropertyImplementations(const
4676                                                     ObjCImplementationDecl *D) {
4677   for (const auto *PID : D->property_impls()) {
4678     // Dynamic is just for type-checking.
4679     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4680       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4681 
4682       // Determine which methods need to be implemented, some may have
4683       // been overridden. Note that ::isPropertyAccessor is not the method
4684       // we want, that just indicates if the decl came from a
4685       // property. What we want to know is if the method is defined in
4686       // this implementation.
4687       if (!D->getInstanceMethod(PD->getGetterName()))
4688         CodeGenFunction(*this).GenerateObjCGetter(
4689                                  const_cast<ObjCImplementationDecl *>(D), PID);
4690       if (!PD->isReadOnly() &&
4691           !D->getInstanceMethod(PD->getSetterName()))
4692         CodeGenFunction(*this).GenerateObjCSetter(
4693                                  const_cast<ObjCImplementationDecl *>(D), PID);
4694     }
4695   }
4696 }
4697 
4698 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4699   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4700   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4701        ivar; ivar = ivar->getNextIvar())
4702     if (ivar->getType().isDestructedType())
4703       return true;
4704 
4705   return false;
4706 }
4707 
4708 static bool AllTrivialInitializers(CodeGenModule &CGM,
4709                                    ObjCImplementationDecl *D) {
4710   CodeGenFunction CGF(CGM);
4711   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4712        E = D->init_end(); B != E; ++B) {
4713     CXXCtorInitializer *CtorInitExp = *B;
4714     Expr *Init = CtorInitExp->getInit();
4715     if (!CGF.isTrivialInitializer(Init))
4716       return false;
4717   }
4718   return true;
4719 }
4720 
4721 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4722 /// for an implementation.
4723 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4724   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4725   if (needsDestructMethod(D)) {
4726     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4727     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4728     ObjCMethodDecl *DTORMethod =
4729       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4730                              cxxSelector, getContext().VoidTy, nullptr, D,
4731                              /*isInstance=*/true, /*isVariadic=*/false,
4732                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4733                              /*isDefined=*/false, ObjCMethodDecl::Required);
4734     D->addInstanceMethod(DTORMethod);
4735     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4736     D->setHasDestructors(true);
4737   }
4738 
4739   // If the implementation doesn't have any ivar initializers, we don't need
4740   // a .cxx_construct.
4741   if (D->getNumIvarInitializers() == 0 ||
4742       AllTrivialInitializers(*this, D))
4743     return;
4744 
4745   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4746   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4747   // The constructor returns 'self'.
4748   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4749                                                 D->getLocation(),
4750                                                 D->getLocation(),
4751                                                 cxxSelector,
4752                                                 getContext().getObjCIdType(),
4753                                                 nullptr, D, /*isInstance=*/true,
4754                                                 /*isVariadic=*/false,
4755                                                 /*isPropertyAccessor=*/true,
4756                                                 /*isImplicitlyDeclared=*/true,
4757                                                 /*isDefined=*/false,
4758                                                 ObjCMethodDecl::Required);
4759   D->addInstanceMethod(CTORMethod);
4760   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4761   D->setHasNonZeroConstructors(true);
4762 }
4763 
4764 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4765 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4766   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4767       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4768     ErrorUnsupported(LSD, "linkage spec");
4769     return;
4770   }
4771 
4772   EmitDeclContext(LSD);
4773 }
4774 
4775 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4776   for (auto *I : DC->decls()) {
4777     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4778     // are themselves considered "top-level", so EmitTopLevelDecl on an
4779     // ObjCImplDecl does not recursively visit them. We need to do that in
4780     // case they're nested inside another construct (LinkageSpecDecl /
4781     // ExportDecl) that does stop them from being considered "top-level".
4782     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4783       for (auto *M : OID->methods())
4784         EmitTopLevelDecl(M);
4785     }
4786 
4787     EmitTopLevelDecl(I);
4788   }
4789 }
4790 
4791 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4792 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4793   // Ignore dependent declarations.
4794   if (D->isTemplated())
4795     return;
4796 
4797   switch (D->getKind()) {
4798   case Decl::CXXConversion:
4799   case Decl::CXXMethod:
4800   case Decl::Function:
4801     EmitGlobal(cast<FunctionDecl>(D));
4802     // Always provide some coverage mapping
4803     // even for the functions that aren't emitted.
4804     AddDeferredUnusedCoverageMapping(D);
4805     break;
4806 
4807   case Decl::CXXDeductionGuide:
4808     // Function-like, but does not result in code emission.
4809     break;
4810 
4811   case Decl::Var:
4812   case Decl::Decomposition:
4813   case Decl::VarTemplateSpecialization:
4814     EmitGlobal(cast<VarDecl>(D));
4815     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4816       for (auto *B : DD->bindings())
4817         if (auto *HD = B->getHoldingVar())
4818           EmitGlobal(HD);
4819     break;
4820 
4821   // Indirect fields from global anonymous structs and unions can be
4822   // ignored; only the actual variable requires IR gen support.
4823   case Decl::IndirectField:
4824     break;
4825 
4826   // C++ Decls
4827   case Decl::Namespace:
4828     EmitDeclContext(cast<NamespaceDecl>(D));
4829     break;
4830   case Decl::ClassTemplateSpecialization: {
4831     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4832     if (DebugInfo &&
4833         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4834         Spec->hasDefinition())
4835       DebugInfo->completeTemplateDefinition(*Spec);
4836   } LLVM_FALLTHROUGH;
4837   case Decl::CXXRecord:
4838     if (DebugInfo) {
4839       if (auto *ES = D->getASTContext().getExternalSource())
4840         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4841           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4842     }
4843     // Emit any static data members, they may be definitions.
4844     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4845       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4846         EmitTopLevelDecl(I);
4847     break;
4848     // No code generation needed.
4849   case Decl::UsingShadow:
4850   case Decl::ClassTemplate:
4851   case Decl::VarTemplate:
4852   case Decl::VarTemplatePartialSpecialization:
4853   case Decl::FunctionTemplate:
4854   case Decl::TypeAliasTemplate:
4855   case Decl::Block:
4856   case Decl::Empty:
4857   case Decl::Binding:
4858     break;
4859   case Decl::Using:          // using X; [C++]
4860     if (CGDebugInfo *DI = getModuleDebugInfo())
4861         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4862     return;
4863   case Decl::NamespaceAlias:
4864     if (CGDebugInfo *DI = getModuleDebugInfo())
4865         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4866     return;
4867   case Decl::UsingDirective: // using namespace X; [C++]
4868     if (CGDebugInfo *DI = getModuleDebugInfo())
4869       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4870     return;
4871   case Decl::CXXConstructor:
4872     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4873     break;
4874   case Decl::CXXDestructor:
4875     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4876     break;
4877 
4878   case Decl::StaticAssert:
4879     // Nothing to do.
4880     break;
4881 
4882   // Objective-C Decls
4883 
4884   // Forward declarations, no (immediate) code generation.
4885   case Decl::ObjCInterface:
4886   case Decl::ObjCCategory:
4887     break;
4888 
4889   case Decl::ObjCProtocol: {
4890     auto *Proto = cast<ObjCProtocolDecl>(D);
4891     if (Proto->isThisDeclarationADefinition())
4892       ObjCRuntime->GenerateProtocol(Proto);
4893     break;
4894   }
4895 
4896   case Decl::ObjCCategoryImpl:
4897     // Categories have properties but don't support synthesize so we
4898     // can ignore them here.
4899     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4900     break;
4901 
4902   case Decl::ObjCImplementation: {
4903     auto *OMD = cast<ObjCImplementationDecl>(D);
4904     EmitObjCPropertyImplementations(OMD);
4905     EmitObjCIvarInitializations(OMD);
4906     ObjCRuntime->GenerateClass(OMD);
4907     // Emit global variable debug information.
4908     if (CGDebugInfo *DI = getModuleDebugInfo())
4909       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4910         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4911             OMD->getClassInterface()), OMD->getLocation());
4912     break;
4913   }
4914   case Decl::ObjCMethod: {
4915     auto *OMD = cast<ObjCMethodDecl>(D);
4916     // If this is not a prototype, emit the body.
4917     if (OMD->getBody())
4918       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4919     break;
4920   }
4921   case Decl::ObjCCompatibleAlias:
4922     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4923     break;
4924 
4925   case Decl::PragmaComment: {
4926     const auto *PCD = cast<PragmaCommentDecl>(D);
4927     switch (PCD->getCommentKind()) {
4928     case PCK_Unknown:
4929       llvm_unreachable("unexpected pragma comment kind");
4930     case PCK_Linker:
4931       AppendLinkerOptions(PCD->getArg());
4932       break;
4933     case PCK_Lib:
4934       if (getTarget().getTriple().isOSBinFormatELF() &&
4935           !getTarget().getTriple().isPS4())
4936         AddELFLibDirective(PCD->getArg());
4937       else
4938         AddDependentLib(PCD->getArg());
4939       break;
4940     case PCK_Compiler:
4941     case PCK_ExeStr:
4942     case PCK_User:
4943       break; // We ignore all of these.
4944     }
4945     break;
4946   }
4947 
4948   case Decl::PragmaDetectMismatch: {
4949     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4950     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4951     break;
4952   }
4953 
4954   case Decl::LinkageSpec:
4955     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4956     break;
4957 
4958   case Decl::FileScopeAsm: {
4959     // File-scope asm is ignored during device-side CUDA compilation.
4960     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4961       break;
4962     // File-scope asm is ignored during device-side OpenMP compilation.
4963     if (LangOpts.OpenMPIsDevice)
4964       break;
4965     auto *AD = cast<FileScopeAsmDecl>(D);
4966     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4967     break;
4968   }
4969 
4970   case Decl::Import: {
4971     auto *Import = cast<ImportDecl>(D);
4972 
4973     // If we've already imported this module, we're done.
4974     if (!ImportedModules.insert(Import->getImportedModule()))
4975       break;
4976 
4977     // Emit debug information for direct imports.
4978     if (!Import->getImportedOwningModule()) {
4979       if (CGDebugInfo *DI = getModuleDebugInfo())
4980         DI->EmitImportDecl(*Import);
4981     }
4982 
4983     // Find all of the submodules and emit the module initializers.
4984     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4985     SmallVector<clang::Module *, 16> Stack;
4986     Visited.insert(Import->getImportedModule());
4987     Stack.push_back(Import->getImportedModule());
4988 
4989     while (!Stack.empty()) {
4990       clang::Module *Mod = Stack.pop_back_val();
4991       if (!EmittedModuleInitializers.insert(Mod).second)
4992         continue;
4993 
4994       for (auto *D : Context.getModuleInitializers(Mod))
4995         EmitTopLevelDecl(D);
4996 
4997       // Visit the submodules of this module.
4998       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4999                                              SubEnd = Mod->submodule_end();
5000            Sub != SubEnd; ++Sub) {
5001         // Skip explicit children; they need to be explicitly imported to emit
5002         // the initializers.
5003         if ((*Sub)->IsExplicit)
5004           continue;
5005 
5006         if (Visited.insert(*Sub).second)
5007           Stack.push_back(*Sub);
5008       }
5009     }
5010     break;
5011   }
5012 
5013   case Decl::Export:
5014     EmitDeclContext(cast<ExportDecl>(D));
5015     break;
5016 
5017   case Decl::OMPThreadPrivate:
5018     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5019     break;
5020 
5021   case Decl::OMPDeclareReduction:
5022     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5023     break;
5024 
5025   case Decl::OMPRequires:
5026     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5027     break;
5028 
5029   default:
5030     // Make sure we handled everything we should, every other kind is a
5031     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5032     // function. Need to recode Decl::Kind to do that easily.
5033     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5034     break;
5035   }
5036 }
5037 
5038 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5039   // Do we need to generate coverage mapping?
5040   if (!CodeGenOpts.CoverageMapping)
5041     return;
5042   switch (D->getKind()) {
5043   case Decl::CXXConversion:
5044   case Decl::CXXMethod:
5045   case Decl::Function:
5046   case Decl::ObjCMethod:
5047   case Decl::CXXConstructor:
5048   case Decl::CXXDestructor: {
5049     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5050       return;
5051     SourceManager &SM = getContext().getSourceManager();
5052     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5053       return;
5054     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5055     if (I == DeferredEmptyCoverageMappingDecls.end())
5056       DeferredEmptyCoverageMappingDecls[D] = true;
5057     break;
5058   }
5059   default:
5060     break;
5061   };
5062 }
5063 
5064 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5065   // Do we need to generate coverage mapping?
5066   if (!CodeGenOpts.CoverageMapping)
5067     return;
5068   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5069     if (Fn->isTemplateInstantiation())
5070       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5071   }
5072   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5073   if (I == DeferredEmptyCoverageMappingDecls.end())
5074     DeferredEmptyCoverageMappingDecls[D] = false;
5075   else
5076     I->second = false;
5077 }
5078 
5079 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5080   // We call takeVector() here to avoid use-after-free.
5081   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5082   // we deserialize function bodies to emit coverage info for them, and that
5083   // deserializes more declarations. How should we handle that case?
5084   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5085     if (!Entry.second)
5086       continue;
5087     const Decl *D = Entry.first;
5088     switch (D->getKind()) {
5089     case Decl::CXXConversion:
5090     case Decl::CXXMethod:
5091     case Decl::Function:
5092     case Decl::ObjCMethod: {
5093       CodeGenPGO PGO(*this);
5094       GlobalDecl GD(cast<FunctionDecl>(D));
5095       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5096                                   getFunctionLinkage(GD));
5097       break;
5098     }
5099     case Decl::CXXConstructor: {
5100       CodeGenPGO PGO(*this);
5101       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5102       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5103                                   getFunctionLinkage(GD));
5104       break;
5105     }
5106     case Decl::CXXDestructor: {
5107       CodeGenPGO PGO(*this);
5108       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5109       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5110                                   getFunctionLinkage(GD));
5111       break;
5112     }
5113     default:
5114       break;
5115     };
5116   }
5117 }
5118 
5119 /// Turns the given pointer into a constant.
5120 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5121                                           const void *Ptr) {
5122   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5123   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5124   return llvm::ConstantInt::get(i64, PtrInt);
5125 }
5126 
5127 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5128                                    llvm::NamedMDNode *&GlobalMetadata,
5129                                    GlobalDecl D,
5130                                    llvm::GlobalValue *Addr) {
5131   if (!GlobalMetadata)
5132     GlobalMetadata =
5133       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5134 
5135   // TODO: should we report variant information for ctors/dtors?
5136   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5137                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5138                                CGM.getLLVMContext(), D.getDecl()))};
5139   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5140 }
5141 
5142 /// For each function which is declared within an extern "C" region and marked
5143 /// as 'used', but has internal linkage, create an alias from the unmangled
5144 /// name to the mangled name if possible. People expect to be able to refer
5145 /// to such functions with an unmangled name from inline assembly within the
5146 /// same translation unit.
5147 void CodeGenModule::EmitStaticExternCAliases() {
5148   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5149     return;
5150   for (auto &I : StaticExternCValues) {
5151     IdentifierInfo *Name = I.first;
5152     llvm::GlobalValue *Val = I.second;
5153     if (Val && !getModule().getNamedValue(Name->getName()))
5154       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5155   }
5156 }
5157 
5158 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5159                                              GlobalDecl &Result) const {
5160   auto Res = Manglings.find(MangledName);
5161   if (Res == Manglings.end())
5162     return false;
5163   Result = Res->getValue();
5164   return true;
5165 }
5166 
5167 /// Emits metadata nodes associating all the global values in the
5168 /// current module with the Decls they came from.  This is useful for
5169 /// projects using IR gen as a subroutine.
5170 ///
5171 /// Since there's currently no way to associate an MDNode directly
5172 /// with an llvm::GlobalValue, we create a global named metadata
5173 /// with the name 'clang.global.decl.ptrs'.
5174 void CodeGenModule::EmitDeclMetadata() {
5175   llvm::NamedMDNode *GlobalMetadata = nullptr;
5176 
5177   for (auto &I : MangledDeclNames) {
5178     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5179     // Some mangled names don't necessarily have an associated GlobalValue
5180     // in this module, e.g. if we mangled it for DebugInfo.
5181     if (Addr)
5182       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5183   }
5184 }
5185 
5186 /// Emits metadata nodes for all the local variables in the current
5187 /// function.
5188 void CodeGenFunction::EmitDeclMetadata() {
5189   if (LocalDeclMap.empty()) return;
5190 
5191   llvm::LLVMContext &Context = getLLVMContext();
5192 
5193   // Find the unique metadata ID for this name.
5194   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5195 
5196   llvm::NamedMDNode *GlobalMetadata = nullptr;
5197 
5198   for (auto &I : LocalDeclMap) {
5199     const Decl *D = I.first;
5200     llvm::Value *Addr = I.second.getPointer();
5201     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5202       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5203       Alloca->setMetadata(
5204           DeclPtrKind, llvm::MDNode::get(
5205                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5206     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5207       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5208       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5209     }
5210   }
5211 }
5212 
5213 void CodeGenModule::EmitVersionIdentMetadata() {
5214   llvm::NamedMDNode *IdentMetadata =
5215     TheModule.getOrInsertNamedMetadata("llvm.ident");
5216   std::string Version = getClangFullVersion();
5217   llvm::LLVMContext &Ctx = TheModule.getContext();
5218 
5219   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5220   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5221 }
5222 
5223 void CodeGenModule::EmitCommandLineMetadata() {
5224   llvm::NamedMDNode *CommandLineMetadata =
5225     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5226   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5227   llvm::LLVMContext &Ctx = TheModule.getContext();
5228 
5229   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5230   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5231 }
5232 
5233 void CodeGenModule::EmitTargetMetadata() {
5234   // Warning, new MangledDeclNames may be appended within this loop.
5235   // We rely on MapVector insertions adding new elements to the end
5236   // of the container.
5237   // FIXME: Move this loop into the one target that needs it, and only
5238   // loop over those declarations for which we couldn't emit the target
5239   // metadata when we emitted the declaration.
5240   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5241     auto Val = *(MangledDeclNames.begin() + I);
5242     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5243     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5244     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5245   }
5246 }
5247 
5248 void CodeGenModule::EmitCoverageFile() {
5249   if (getCodeGenOpts().CoverageDataFile.empty() &&
5250       getCodeGenOpts().CoverageNotesFile.empty())
5251     return;
5252 
5253   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5254   if (!CUNode)
5255     return;
5256 
5257   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5258   llvm::LLVMContext &Ctx = TheModule.getContext();
5259   auto *CoverageDataFile =
5260       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5261   auto *CoverageNotesFile =
5262       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5263   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5264     llvm::MDNode *CU = CUNode->getOperand(i);
5265     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5266     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5267   }
5268 }
5269 
5270 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5271   // Sema has checked that all uuid strings are of the form
5272   // "12345678-1234-1234-1234-1234567890ab".
5273   assert(Uuid.size() == 36);
5274   for (unsigned i = 0; i < 36; ++i) {
5275     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5276     else                                         assert(isHexDigit(Uuid[i]));
5277   }
5278 
5279   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5280   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5281 
5282   llvm::Constant *Field3[8];
5283   for (unsigned Idx = 0; Idx < 8; ++Idx)
5284     Field3[Idx] = llvm::ConstantInt::get(
5285         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5286 
5287   llvm::Constant *Fields[4] = {
5288     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5289     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5290     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5291     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5292   };
5293 
5294   return llvm::ConstantStruct::getAnon(Fields);
5295 }
5296 
5297 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5298                                                        bool ForEH) {
5299   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5300   // FIXME: should we even be calling this method if RTTI is disabled
5301   // and it's not for EH?
5302   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5303     return llvm::Constant::getNullValue(Int8PtrTy);
5304 
5305   if (ForEH && Ty->isObjCObjectPointerType() &&
5306       LangOpts.ObjCRuntime.isGNUFamily())
5307     return ObjCRuntime->GetEHType(Ty);
5308 
5309   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5310 }
5311 
5312 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5313   // Do not emit threadprivates in simd-only mode.
5314   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5315     return;
5316   for (auto RefExpr : D->varlists()) {
5317     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5318     bool PerformInit =
5319         VD->getAnyInitializer() &&
5320         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5321                                                         /*ForRef=*/false);
5322 
5323     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5324     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5325             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5326       CXXGlobalInits.push_back(InitFunction);
5327   }
5328 }
5329 
5330 llvm::Metadata *
5331 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5332                                             StringRef Suffix) {
5333   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5334   if (InternalId)
5335     return InternalId;
5336 
5337   if (isExternallyVisible(T->getLinkage())) {
5338     std::string OutName;
5339     llvm::raw_string_ostream Out(OutName);
5340     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5341     Out << Suffix;
5342 
5343     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5344   } else {
5345     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5346                                            llvm::ArrayRef<llvm::Metadata *>());
5347   }
5348 
5349   return InternalId;
5350 }
5351 
5352 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5353   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5354 }
5355 
5356 llvm::Metadata *
5357 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5358   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5359 }
5360 
5361 // Generalize pointer types to a void pointer with the qualifiers of the
5362 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5363 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5364 // 'void *'.
5365 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5366   if (!Ty->isPointerType())
5367     return Ty;
5368 
5369   return Ctx.getPointerType(
5370       QualType(Ctx.VoidTy).withCVRQualifiers(
5371           Ty->getPointeeType().getCVRQualifiers()));
5372 }
5373 
5374 // Apply type generalization to a FunctionType's return and argument types
5375 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5376   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5377     SmallVector<QualType, 8> GeneralizedParams;
5378     for (auto &Param : FnType->param_types())
5379       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5380 
5381     return Ctx.getFunctionType(
5382         GeneralizeType(Ctx, FnType->getReturnType()),
5383         GeneralizedParams, FnType->getExtProtoInfo());
5384   }
5385 
5386   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5387     return Ctx.getFunctionNoProtoType(
5388         GeneralizeType(Ctx, FnType->getReturnType()));
5389 
5390   llvm_unreachable("Encountered unknown FunctionType");
5391 }
5392 
5393 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5394   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5395                                       GeneralizedMetadataIdMap, ".generalized");
5396 }
5397 
5398 /// Returns whether this module needs the "all-vtables" type identifier.
5399 bool CodeGenModule::NeedAllVtablesTypeId() const {
5400   // Returns true if at least one of vtable-based CFI checkers is enabled and
5401   // is not in the trapping mode.
5402   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5403            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5404           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5405            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5406           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5407            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5408           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5409            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5410 }
5411 
5412 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5413                                           CharUnits Offset,
5414                                           const CXXRecordDecl *RD) {
5415   llvm::Metadata *MD =
5416       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5417   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5418 
5419   if (CodeGenOpts.SanitizeCfiCrossDso)
5420     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5421       VTable->addTypeMetadata(Offset.getQuantity(),
5422                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5423 
5424   if (NeedAllVtablesTypeId()) {
5425     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5426     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5427   }
5428 }
5429 
5430 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5431   assert(TD != nullptr);
5432   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5433 
5434   ParsedAttr.Features.erase(
5435       llvm::remove_if(ParsedAttr.Features,
5436                       [&](const std::string &Feat) {
5437                         return !Target.isValidFeatureName(
5438                             StringRef{Feat}.substr(1));
5439                       }),
5440       ParsedAttr.Features.end());
5441   return ParsedAttr;
5442 }
5443 
5444 
5445 // Fills in the supplied string map with the set of target features for the
5446 // passed in function.
5447 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5448                                           GlobalDecl GD) {
5449   StringRef TargetCPU = Target.getTargetOpts().CPU;
5450   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5451   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5452     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5453 
5454     // Make a copy of the features as passed on the command line into the
5455     // beginning of the additional features from the function to override.
5456     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5457                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5458                             Target.getTargetOpts().FeaturesAsWritten.end());
5459 
5460     if (ParsedAttr.Architecture != "" &&
5461         Target.isValidCPUName(ParsedAttr.Architecture))
5462       TargetCPU = ParsedAttr.Architecture;
5463 
5464     // Now populate the feature map, first with the TargetCPU which is either
5465     // the default or a new one from the target attribute string. Then we'll use
5466     // the passed in features (FeaturesAsWritten) along with the new ones from
5467     // the attribute.
5468     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5469                           ParsedAttr.Features);
5470   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5471     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5472     Target.getCPUSpecificCPUDispatchFeatures(
5473         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5474     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5475     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5476   } else {
5477     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5478                           Target.getTargetOpts().Features);
5479   }
5480 }
5481 
5482 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5483   if (!SanStats)
5484     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5485 
5486   return *SanStats;
5487 }
5488 llvm::Value *
5489 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5490                                                   CodeGenFunction &CGF) {
5491   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5492   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5493   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5494   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5495                                 "__translate_sampler_initializer"),
5496                                 {C});
5497 }
5498