1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/StringSwitch.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/CodeGen.h" 58 #include "llvm/Support/ConvertUTF.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MD5.h" 61 62 using namespace clang; 63 using namespace CodeGen; 64 65 static llvm::cl::opt<bool> LimitedCoverage( 66 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 67 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 68 llvm::cl::init(false)); 69 70 static const char AnnotationSection[] = "llvm.metadata"; 71 72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 73 switch (CGM.getTarget().getCXXABI().getKind()) { 74 case TargetCXXABI::GenericAArch64: 75 case TargetCXXABI::GenericARM: 76 case TargetCXXABI::iOS: 77 case TargetCXXABI::iOS64: 78 case TargetCXXABI::WatchOS: 79 case TargetCXXABI::GenericMIPS: 80 case TargetCXXABI::GenericItanium: 81 case TargetCXXABI::WebAssembly: 82 return CreateItaniumCXXABI(CGM); 83 case TargetCXXABI::Microsoft: 84 return CreateMicrosoftCXXABI(CGM); 85 } 86 87 llvm_unreachable("invalid C++ ABI kind"); 88 } 89 90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 91 const PreprocessorOptions &PPO, 92 const CodeGenOptions &CGO, llvm::Module &M, 93 DiagnosticsEngine &diags, 94 CoverageSourceInfo *CoverageInfo) 95 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 96 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 97 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 98 VMContext(M.getContext()), Types(*this), VTables(*this), 99 SanitizerMD(new SanitizerMetadata(*this)) { 100 101 // Initialize the type cache. 102 llvm::LLVMContext &LLVMContext = M.getContext(); 103 VoidTy = llvm::Type::getVoidTy(LLVMContext); 104 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 105 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 106 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 107 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 108 HalfTy = llvm::Type::getHalfTy(LLVMContext); 109 FloatTy = llvm::Type::getFloatTy(LLVMContext); 110 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 111 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 112 PointerAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 114 SizeSizeInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 116 IntAlignInBytes = 117 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 118 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 119 IntPtrTy = llvm::IntegerType::get(LLVMContext, 120 C.getTargetInfo().getMaxPointerWidth()); 121 Int8PtrTy = Int8Ty->getPointerTo(0); 122 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 123 AllocaInt8PtrTy = Int8Ty->getPointerTo( 124 M.getDataLayout().getAllocaAddrSpace()); 125 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 126 127 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 128 129 if (LangOpts.ObjC) 130 createObjCRuntime(); 131 if (LangOpts.OpenCL) 132 createOpenCLRuntime(); 133 if (LangOpts.OpenMP) 134 createOpenMPRuntime(); 135 if (LangOpts.CUDA) 136 createCUDARuntime(); 137 138 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 139 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 140 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 141 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 142 getCXXABI().getMangleContext())); 143 144 // If debug info or coverage generation is enabled, create the CGDebugInfo 145 // object. 146 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 147 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 148 DebugInfo.reset(new CGDebugInfo(*this)); 149 150 Block.GlobalUniqueCount = 0; 151 152 if (C.getLangOpts().ObjC) 153 ObjCData.reset(new ObjCEntrypoints()); 154 155 if (CodeGenOpts.hasProfileClangUse()) { 156 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 157 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 158 if (auto E = ReaderOrErr.takeError()) { 159 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 160 "Could not read profile %0: %1"); 161 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 162 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 163 << EI.message(); 164 }); 165 } else 166 PGOReader = std::move(ReaderOrErr.get()); 167 } 168 169 // If coverage mapping generation is enabled, create the 170 // CoverageMappingModuleGen object. 171 if (CodeGenOpts.CoverageMapping) 172 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 173 } 174 175 CodeGenModule::~CodeGenModule() {} 176 177 void CodeGenModule::createObjCRuntime() { 178 // This is just isGNUFamily(), but we want to force implementors of 179 // new ABIs to decide how best to do this. 180 switch (LangOpts.ObjCRuntime.getKind()) { 181 case ObjCRuntime::GNUstep: 182 case ObjCRuntime::GCC: 183 case ObjCRuntime::ObjFW: 184 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 185 return; 186 187 case ObjCRuntime::FragileMacOSX: 188 case ObjCRuntime::MacOSX: 189 case ObjCRuntime::iOS: 190 case ObjCRuntime::WatchOS: 191 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 192 return; 193 } 194 llvm_unreachable("bad runtime kind"); 195 } 196 197 void CodeGenModule::createOpenCLRuntime() { 198 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 199 } 200 201 void CodeGenModule::createOpenMPRuntime() { 202 // Select a specialized code generation class based on the target, if any. 203 // If it does not exist use the default implementation. 204 switch (getTriple().getArch()) { 205 case llvm::Triple::nvptx: 206 case llvm::Triple::nvptx64: 207 assert(getLangOpts().OpenMPIsDevice && 208 "OpenMP NVPTX is only prepared to deal with device code."); 209 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 210 break; 211 default: 212 if (LangOpts.OpenMPSimd) 213 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 214 else 215 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 216 break; 217 } 218 } 219 220 void CodeGenModule::createCUDARuntime() { 221 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 222 } 223 224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 225 Replacements[Name] = C; 226 } 227 228 void CodeGenModule::applyReplacements() { 229 for (auto &I : Replacements) { 230 StringRef MangledName = I.first(); 231 llvm::Constant *Replacement = I.second; 232 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 233 if (!Entry) 234 continue; 235 auto *OldF = cast<llvm::Function>(Entry); 236 auto *NewF = dyn_cast<llvm::Function>(Replacement); 237 if (!NewF) { 238 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 239 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 240 } else { 241 auto *CE = cast<llvm::ConstantExpr>(Replacement); 242 assert(CE->getOpcode() == llvm::Instruction::BitCast || 243 CE->getOpcode() == llvm::Instruction::GetElementPtr); 244 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 245 } 246 } 247 248 // Replace old with new, but keep the old order. 249 OldF->replaceAllUsesWith(Replacement); 250 if (NewF) { 251 NewF->removeFromParent(); 252 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 253 NewF); 254 } 255 OldF->eraseFromParent(); 256 } 257 } 258 259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 260 GlobalValReplacements.push_back(std::make_pair(GV, C)); 261 } 262 263 void CodeGenModule::applyGlobalValReplacements() { 264 for (auto &I : GlobalValReplacements) { 265 llvm::GlobalValue *GV = I.first; 266 llvm::Constant *C = I.second; 267 268 GV->replaceAllUsesWith(C); 269 GV->eraseFromParent(); 270 } 271 } 272 273 // This is only used in aliases that we created and we know they have a 274 // linear structure. 275 static const llvm::GlobalObject *getAliasedGlobal( 276 const llvm::GlobalIndirectSymbol &GIS) { 277 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 278 const llvm::Constant *C = &GIS; 279 for (;;) { 280 C = C->stripPointerCasts(); 281 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 282 return GO; 283 // stripPointerCasts will not walk over weak aliases. 284 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 285 if (!GIS2) 286 return nullptr; 287 if (!Visited.insert(GIS2).second) 288 return nullptr; 289 C = GIS2->getIndirectSymbol(); 290 } 291 } 292 293 void CodeGenModule::checkAliases() { 294 // Check if the constructed aliases are well formed. It is really unfortunate 295 // that we have to do this in CodeGen, but we only construct mangled names 296 // and aliases during codegen. 297 bool Error = false; 298 DiagnosticsEngine &Diags = getDiags(); 299 for (const GlobalDecl &GD : Aliases) { 300 const auto *D = cast<ValueDecl>(GD.getDecl()); 301 SourceLocation Location; 302 bool IsIFunc = D->hasAttr<IFuncAttr>(); 303 if (const Attr *A = D->getDefiningAttr()) 304 Location = A->getLocation(); 305 else 306 llvm_unreachable("Not an alias or ifunc?"); 307 StringRef MangledName = getMangledName(GD); 308 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 309 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 310 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 311 if (!GV) { 312 Error = true; 313 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 314 } else if (GV->isDeclaration()) { 315 Error = true; 316 Diags.Report(Location, diag::err_alias_to_undefined) 317 << IsIFunc << IsIFunc; 318 } else if (IsIFunc) { 319 // Check resolver function type. 320 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 321 GV->getType()->getPointerElementType()); 322 assert(FTy); 323 if (!FTy->getReturnType()->isPointerTy()) 324 Diags.Report(Location, diag::err_ifunc_resolver_return); 325 } 326 327 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 328 llvm::GlobalValue *AliaseeGV; 329 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 330 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 331 else 332 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 333 334 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 335 StringRef AliasSection = SA->getName(); 336 if (AliasSection != AliaseeGV->getSection()) 337 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 338 << AliasSection << IsIFunc << IsIFunc; 339 } 340 341 // We have to handle alias to weak aliases in here. LLVM itself disallows 342 // this since the object semantics would not match the IL one. For 343 // compatibility with gcc we implement it by just pointing the alias 344 // to its aliasee's aliasee. We also warn, since the user is probably 345 // expecting the link to be weak. 346 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 347 if (GA->isInterposable()) { 348 Diags.Report(Location, diag::warn_alias_to_weak_alias) 349 << GV->getName() << GA->getName() << IsIFunc; 350 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 351 GA->getIndirectSymbol(), Alias->getType()); 352 Alias->setIndirectSymbol(Aliasee); 353 } 354 } 355 } 356 if (!Error) 357 return; 358 359 for (const GlobalDecl &GD : Aliases) { 360 StringRef MangledName = getMangledName(GD); 361 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 362 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 363 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 364 Alias->eraseFromParent(); 365 } 366 } 367 368 void CodeGenModule::clear() { 369 DeferredDeclsToEmit.clear(); 370 if (OpenMPRuntime) 371 OpenMPRuntime->clear(); 372 } 373 374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 375 StringRef MainFile) { 376 if (!hasDiagnostics()) 377 return; 378 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 379 if (MainFile.empty()) 380 MainFile = "<stdin>"; 381 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 382 } else { 383 if (Mismatched > 0) 384 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 385 386 if (Missing > 0) 387 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 388 } 389 } 390 391 void CodeGenModule::Release() { 392 EmitDeferred(); 393 EmitVTablesOpportunistically(); 394 applyGlobalValReplacements(); 395 applyReplacements(); 396 checkAliases(); 397 emitMultiVersionFunctions(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 registerGlobalDtorsWithAtExit(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = 408 CUDARuntime->makeModuleCtorFunction()) 409 AddGlobalCtor(CudaCtorFunction); 410 } 411 if (OpenMPRuntime) { 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 OpenMPRuntime->clear(); 419 } 420 if (PGOReader) { 421 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 422 if (PGOStats.hasDiagnostics()) 423 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 424 } 425 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 426 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 427 EmitGlobalAnnotations(); 428 EmitStaticExternCAliases(); 429 EmitDeferredUnusedCoverageMappings(); 430 if (CoverageMapping) 431 CoverageMapping->emit(); 432 if (CodeGenOpts.SanitizeCfiCrossDso) { 433 CodeGenFunction(*this).EmitCfiCheckFail(); 434 CodeGenFunction(*this).EmitCfiCheckStub(); 435 } 436 emitAtAvailableLinkGuard(); 437 emitLLVMUsed(); 438 if (SanStats) 439 SanStats->finish(); 440 441 if (CodeGenOpts.Autolink && 442 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 443 EmitModuleLinkOptions(); 444 } 445 446 // Record mregparm value now so it is visible through rest of codegen. 447 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 448 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 449 CodeGenOpts.NumRegisterParameters); 450 451 if (CodeGenOpts.DwarfVersion) { 452 // We actually want the latest version when there are conflicts. 453 // We can change from Warning to Latest if such mode is supported. 454 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 455 CodeGenOpts.DwarfVersion); 456 } 457 if (CodeGenOpts.EmitCodeView) { 458 // Indicate that we want CodeView in the metadata. 459 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 460 } 461 if (CodeGenOpts.ControlFlowGuard) { 462 // We want function ID tables for Control Flow Guard. 463 getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1); 464 } 465 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 466 // We don't support LTO with 2 with different StrictVTablePointers 467 // FIXME: we could support it by stripping all the information introduced 468 // by StrictVTablePointers. 469 470 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 471 472 llvm::Metadata *Ops[2] = { 473 llvm::MDString::get(VMContext, "StrictVTablePointers"), 474 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 475 llvm::Type::getInt32Ty(VMContext), 1))}; 476 477 getModule().addModuleFlag(llvm::Module::Require, 478 "StrictVTablePointersRequirement", 479 llvm::MDNode::get(VMContext, Ops)); 480 } 481 if (DebugInfo) 482 // We support a single version in the linked module. The LLVM 483 // parser will drop debug info with a different version number 484 // (and warn about it, too). 485 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 486 llvm::DEBUG_METADATA_VERSION); 487 488 // We need to record the widths of enums and wchar_t, so that we can generate 489 // the correct build attributes in the ARM backend. wchar_size is also used by 490 // TargetLibraryInfo. 491 uint64_t WCharWidth = 492 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 493 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 494 495 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 496 if ( Arch == llvm::Triple::arm 497 || Arch == llvm::Triple::armeb 498 || Arch == llvm::Triple::thumb 499 || Arch == llvm::Triple::thumbeb) { 500 // The minimum width of an enum in bytes 501 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 502 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 503 } 504 505 if (CodeGenOpts.SanitizeCfiCrossDso) { 506 // Indicate that we want cross-DSO control flow integrity checks. 507 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 508 } 509 510 if (CodeGenOpts.CFProtectionReturn && 511 Target.checkCFProtectionReturnSupported(getDiags())) { 512 // Indicate that we want to instrument return control flow protection. 513 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 514 1); 515 } 516 517 if (CodeGenOpts.CFProtectionBranch && 518 Target.checkCFProtectionBranchSupported(getDiags())) { 519 // Indicate that we want to instrument branch control flow protection. 520 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 521 1); 522 } 523 524 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 525 // Indicate whether __nvvm_reflect should be configured to flush denormal 526 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 527 // property.) 528 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 529 CodeGenOpts.FlushDenorm ? 1 : 0); 530 } 531 532 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 533 if (LangOpts.OpenCL) { 534 EmitOpenCLMetadata(); 535 // Emit SPIR version. 536 if (getTriple().getArch() == llvm::Triple::spir || 537 getTriple().getArch() == llvm::Triple::spir64) { 538 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 539 // opencl.spir.version named metadata. 540 llvm::Metadata *SPIRVerElts[] = { 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, LangOpts.OpenCLVersion / 100)), 543 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 544 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 545 llvm::NamedMDNode *SPIRVerMD = 546 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 547 llvm::LLVMContext &Ctx = TheModule.getContext(); 548 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 549 } 550 } 551 552 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 553 assert(PLevel < 3 && "Invalid PIC Level"); 554 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 555 if (Context.getLangOpts().PIE) 556 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 557 } 558 559 if (getCodeGenOpts().CodeModel.size() > 0) { 560 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 561 .Case("tiny", llvm::CodeModel::Tiny) 562 .Case("small", llvm::CodeModel::Small) 563 .Case("kernel", llvm::CodeModel::Kernel) 564 .Case("medium", llvm::CodeModel::Medium) 565 .Case("large", llvm::CodeModel::Large) 566 .Default(~0u); 567 if (CM != ~0u) { 568 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 569 getModule().setCodeModel(codeModel); 570 } 571 } 572 573 if (CodeGenOpts.NoPLT) 574 getModule().setRtLibUseGOT(); 575 576 SimplifyPersonality(); 577 578 if (getCodeGenOpts().EmitDeclMetadata) 579 EmitDeclMetadata(); 580 581 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 582 EmitCoverageFile(); 583 584 if (DebugInfo) 585 DebugInfo->finalize(); 586 587 if (getCodeGenOpts().EmitVersionIdentMetadata) 588 EmitVersionIdentMetadata(); 589 590 EmitTargetMetadata(); 591 } 592 593 void CodeGenModule::EmitOpenCLMetadata() { 594 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 595 // opencl.ocl.version named metadata node. 596 llvm::Metadata *OCLVerElts[] = { 597 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 598 Int32Ty, LangOpts.OpenCLVersion / 100)), 599 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 600 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 601 llvm::NamedMDNode *OCLVerMD = 602 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 603 llvm::LLVMContext &Ctx = TheModule.getContext(); 604 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 605 } 606 607 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 608 // Make sure that this type is translated. 609 Types.UpdateCompletedType(TD); 610 } 611 612 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 613 // Make sure that this type is translated. 614 Types.RefreshTypeCacheForClass(RD); 615 } 616 617 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 618 if (!TBAA) 619 return nullptr; 620 return TBAA->getTypeInfo(QTy); 621 } 622 623 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 624 if (!TBAA) 625 return TBAAAccessInfo(); 626 return TBAA->getAccessInfo(AccessType); 627 } 628 629 TBAAAccessInfo 630 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 631 if (!TBAA) 632 return TBAAAccessInfo(); 633 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 634 } 635 636 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 637 if (!TBAA) 638 return nullptr; 639 return TBAA->getTBAAStructInfo(QTy); 640 } 641 642 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 643 if (!TBAA) 644 return nullptr; 645 return TBAA->getBaseTypeInfo(QTy); 646 } 647 648 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 649 if (!TBAA) 650 return nullptr; 651 return TBAA->getAccessTagInfo(Info); 652 } 653 654 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 655 TBAAAccessInfo TargetInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 659 } 660 661 TBAAAccessInfo 662 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 663 TBAAAccessInfo InfoB) { 664 if (!TBAA) 665 return TBAAAccessInfo(); 666 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 667 } 668 669 TBAAAccessInfo 670 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 671 TBAAAccessInfo SrcInfo) { 672 if (!TBAA) 673 return TBAAAccessInfo(); 674 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 675 } 676 677 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 678 TBAAAccessInfo TBAAInfo) { 679 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 680 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 681 } 682 683 void CodeGenModule::DecorateInstructionWithInvariantGroup( 684 llvm::Instruction *I, const CXXRecordDecl *RD) { 685 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 686 llvm::MDNode::get(getLLVMContext(), {})); 687 } 688 689 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 690 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 691 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 692 } 693 694 /// ErrorUnsupported - Print out an error that codegen doesn't support the 695 /// specified stmt yet. 696 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 697 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 698 "cannot compile this %0 yet"); 699 std::string Msg = Type; 700 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 701 << Msg << S->getSourceRange(); 702 } 703 704 /// ErrorUnsupported - Print out an error that codegen doesn't support the 705 /// specified decl yet. 706 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 707 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 708 "cannot compile this %0 yet"); 709 std::string Msg = Type; 710 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 711 } 712 713 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 714 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 715 } 716 717 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 718 const NamedDecl *D) const { 719 if (GV->hasDLLImportStorageClass()) 720 return; 721 // Internal definitions always have default visibility. 722 if (GV->hasLocalLinkage()) { 723 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 724 return; 725 } 726 if (!D) 727 return; 728 // Set visibility for definitions. 729 LinkageInfo LV = D->getLinkageAndVisibility(); 730 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 731 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 732 } 733 734 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 735 llvm::GlobalValue *GV) { 736 if (GV->hasLocalLinkage()) 737 return true; 738 739 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 740 return true; 741 742 // DLLImport explicitly marks the GV as external. 743 if (GV->hasDLLImportStorageClass()) 744 return false; 745 746 const llvm::Triple &TT = CGM.getTriple(); 747 if (TT.isWindowsGNUEnvironment()) { 748 // In MinGW, variables without DLLImport can still be automatically 749 // imported from a DLL by the linker; don't mark variables that 750 // potentially could come from another DLL as DSO local. 751 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 752 !GV->isThreadLocal()) 753 return false; 754 } 755 // Every other GV is local on COFF. 756 // Make an exception for windows OS in the triple: Some firmware builds use 757 // *-win32-macho triples. This (accidentally?) produced windows relocations 758 // without GOT tables in older clang versions; Keep this behaviour. 759 // FIXME: even thread local variables? 760 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 761 return true; 762 763 // Only handle COFF and ELF for now. 764 if (!TT.isOSBinFormatELF()) 765 return false; 766 767 // If this is not an executable, don't assume anything is local. 768 const auto &CGOpts = CGM.getCodeGenOpts(); 769 llvm::Reloc::Model RM = CGOpts.RelocationModel; 770 const auto &LOpts = CGM.getLangOpts(); 771 if (RM != llvm::Reloc::Static && !LOpts.PIE) 772 return false; 773 774 // A definition cannot be preempted from an executable. 775 if (!GV->isDeclarationForLinker()) 776 return true; 777 778 // Most PIC code sequences that assume that a symbol is local cannot produce a 779 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 780 // depended, it seems worth it to handle it here. 781 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 782 return false; 783 784 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 785 llvm::Triple::ArchType Arch = TT.getArch(); 786 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 787 Arch == llvm::Triple::ppc64le) 788 return false; 789 790 // If we can use copy relocations we can assume it is local. 791 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 792 if (!Var->isThreadLocal() && 793 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 794 return true; 795 796 // If we can use a plt entry as the symbol address we can assume it 797 // is local. 798 // FIXME: This should work for PIE, but the gold linker doesn't support it. 799 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 800 return true; 801 802 // Otherwise don't assue it is local. 803 return false; 804 } 805 806 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 807 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 808 } 809 810 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 811 GlobalDecl GD) const { 812 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 813 // C++ destructors have a few C++ ABI specific special cases. 814 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 815 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 816 return; 817 } 818 setDLLImportDLLExport(GV, D); 819 } 820 821 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 822 const NamedDecl *D) const { 823 if (D && D->isExternallyVisible()) { 824 if (D->hasAttr<DLLImportAttr>()) 825 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 826 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 827 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 828 } 829 } 830 831 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 832 GlobalDecl GD) const { 833 setDLLImportDLLExport(GV, GD); 834 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 835 } 836 837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 838 const NamedDecl *D) const { 839 setDLLImportDLLExport(GV, D); 840 setGlobalVisibilityAndLocal(GV, D); 841 } 842 843 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 844 const NamedDecl *D) const { 845 setGlobalVisibility(GV, D); 846 setDSOLocal(GV); 847 } 848 849 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 850 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 851 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 852 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 853 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 854 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 855 } 856 857 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 858 CodeGenOptions::TLSModel M) { 859 switch (M) { 860 case CodeGenOptions::GeneralDynamicTLSModel: 861 return llvm::GlobalVariable::GeneralDynamicTLSModel; 862 case CodeGenOptions::LocalDynamicTLSModel: 863 return llvm::GlobalVariable::LocalDynamicTLSModel; 864 case CodeGenOptions::InitialExecTLSModel: 865 return llvm::GlobalVariable::InitialExecTLSModel; 866 case CodeGenOptions::LocalExecTLSModel: 867 return llvm::GlobalVariable::LocalExecTLSModel; 868 } 869 llvm_unreachable("Invalid TLS model!"); 870 } 871 872 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 873 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 874 875 llvm::GlobalValue::ThreadLocalMode TLM; 876 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 877 878 // Override the TLS model if it is explicitly specified. 879 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 880 TLM = GetLLVMTLSModel(Attr->getModel()); 881 } 882 883 GV->setThreadLocalMode(TLM); 884 } 885 886 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 887 StringRef Name) { 888 const TargetInfo &Target = CGM.getTarget(); 889 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 890 } 891 892 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 893 const CPUSpecificAttr *Attr, 894 unsigned CPUIndex, 895 raw_ostream &Out) { 896 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 897 // supported. 898 if (Attr) 899 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 900 else if (CGM.getTarget().supportsIFunc()) 901 Out << ".resolver"; 902 } 903 904 static void AppendTargetMangling(const CodeGenModule &CGM, 905 const TargetAttr *Attr, raw_ostream &Out) { 906 if (Attr->isDefaultVersion()) 907 return; 908 909 Out << '.'; 910 const TargetInfo &Target = CGM.getTarget(); 911 TargetAttr::ParsedTargetAttr Info = 912 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 913 // Multiversioning doesn't allow "no-${feature}", so we can 914 // only have "+" prefixes here. 915 assert(LHS.startswith("+") && RHS.startswith("+") && 916 "Features should always have a prefix."); 917 return Target.multiVersionSortPriority(LHS.substr(1)) > 918 Target.multiVersionSortPriority(RHS.substr(1)); 919 }); 920 921 bool IsFirst = true; 922 923 if (!Info.Architecture.empty()) { 924 IsFirst = false; 925 Out << "arch_" << Info.Architecture; 926 } 927 928 for (StringRef Feat : Info.Features) { 929 if (!IsFirst) 930 Out << '_'; 931 IsFirst = false; 932 Out << Feat.substr(1); 933 } 934 } 935 936 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 937 const NamedDecl *ND, 938 bool OmitMultiVersionMangling = false) { 939 SmallString<256> Buffer; 940 llvm::raw_svector_ostream Out(Buffer); 941 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 942 if (MC.shouldMangleDeclName(ND)) { 943 llvm::raw_svector_ostream Out(Buffer); 944 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 945 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 946 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 947 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 948 else 949 MC.mangleName(ND, Out); 950 } else { 951 IdentifierInfo *II = ND->getIdentifier(); 952 assert(II && "Attempt to mangle unnamed decl."); 953 const auto *FD = dyn_cast<FunctionDecl>(ND); 954 955 if (FD && 956 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 957 llvm::raw_svector_ostream Out(Buffer); 958 Out << "__regcall3__" << II->getName(); 959 } else { 960 Out << II->getName(); 961 } 962 } 963 964 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 965 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 966 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 967 AppendCPUSpecificCPUDispatchMangling(CGM, 968 FD->getAttr<CPUSpecificAttr>(), 969 GD.getMultiVersionIndex(), Out); 970 else 971 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 972 } 973 974 return Out.str(); 975 } 976 977 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 978 const FunctionDecl *FD) { 979 if (!FD->isMultiVersion()) 980 return; 981 982 // Get the name of what this would be without the 'target' attribute. This 983 // allows us to lookup the version that was emitted when this wasn't a 984 // multiversion function. 985 std::string NonTargetName = 986 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 987 GlobalDecl OtherGD; 988 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 989 assert(OtherGD.getCanonicalDecl() 990 .getDecl() 991 ->getAsFunction() 992 ->isMultiVersion() && 993 "Other GD should now be a multiversioned function"); 994 // OtherFD is the version of this function that was mangled BEFORE 995 // becoming a MultiVersion function. It potentially needs to be updated. 996 const FunctionDecl *OtherFD = 997 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 998 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 999 // This is so that if the initial version was already the 'default' 1000 // version, we don't try to update it. 1001 if (OtherName != NonTargetName) { 1002 // Remove instead of erase, since others may have stored the StringRef 1003 // to this. 1004 const auto ExistingRecord = Manglings.find(NonTargetName); 1005 if (ExistingRecord != std::end(Manglings)) 1006 Manglings.remove(&(*ExistingRecord)); 1007 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1008 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1009 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1010 Entry->setName(OtherName); 1011 } 1012 } 1013 } 1014 1015 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1016 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1017 1018 // Some ABIs don't have constructor variants. Make sure that base and 1019 // complete constructors get mangled the same. 1020 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1021 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1022 CXXCtorType OrigCtorType = GD.getCtorType(); 1023 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1024 if (OrigCtorType == Ctor_Base) 1025 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1026 } 1027 } 1028 1029 auto FoundName = MangledDeclNames.find(CanonicalGD); 1030 if (FoundName != MangledDeclNames.end()) 1031 return FoundName->second; 1032 1033 // Keep the first result in the case of a mangling collision. 1034 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1035 auto Result = 1036 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1037 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1038 } 1039 1040 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1041 const BlockDecl *BD) { 1042 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1043 const Decl *D = GD.getDecl(); 1044 1045 SmallString<256> Buffer; 1046 llvm::raw_svector_ostream Out(Buffer); 1047 if (!D) 1048 MangleCtx.mangleGlobalBlock(BD, 1049 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1050 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1051 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1052 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1053 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1054 else 1055 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1056 1057 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1058 return Result.first->first(); 1059 } 1060 1061 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1062 return getModule().getNamedValue(Name); 1063 } 1064 1065 /// AddGlobalCtor - Add a function to the list that will be called before 1066 /// main() runs. 1067 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1068 llvm::Constant *AssociatedData) { 1069 // FIXME: Type coercion of void()* types. 1070 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1071 } 1072 1073 /// AddGlobalDtor - Add a function to the list that will be called 1074 /// when the module is unloaded. 1075 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1076 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1077 DtorsUsingAtExit[Priority].push_back(Dtor); 1078 return; 1079 } 1080 1081 // FIXME: Type coercion of void()* types. 1082 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1083 } 1084 1085 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1086 if (Fns.empty()) return; 1087 1088 // Ctor function type is void()*. 1089 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1090 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1091 TheModule.getDataLayout().getProgramAddressSpace()); 1092 1093 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1094 llvm::StructType *CtorStructTy = llvm::StructType::get( 1095 Int32Ty, CtorPFTy, VoidPtrTy); 1096 1097 // Construct the constructor and destructor arrays. 1098 ConstantInitBuilder builder(*this); 1099 auto ctors = builder.beginArray(CtorStructTy); 1100 for (const auto &I : Fns) { 1101 auto ctor = ctors.beginStruct(CtorStructTy); 1102 ctor.addInt(Int32Ty, I.Priority); 1103 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1104 if (I.AssociatedData) 1105 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1106 else 1107 ctor.addNullPointer(VoidPtrTy); 1108 ctor.finishAndAddTo(ctors); 1109 } 1110 1111 auto list = 1112 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1113 /*constant*/ false, 1114 llvm::GlobalValue::AppendingLinkage); 1115 1116 // The LTO linker doesn't seem to like it when we set an alignment 1117 // on appending variables. Take it off as a workaround. 1118 list->setAlignment(0); 1119 1120 Fns.clear(); 1121 } 1122 1123 llvm::GlobalValue::LinkageTypes 1124 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1125 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1126 1127 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1128 1129 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1130 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1131 1132 if (isa<CXXConstructorDecl>(D) && 1133 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1134 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1135 // Our approach to inheriting constructors is fundamentally different from 1136 // that used by the MS ABI, so keep our inheriting constructor thunks 1137 // internal rather than trying to pick an unambiguous mangling for them. 1138 return llvm::GlobalValue::InternalLinkage; 1139 } 1140 1141 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1142 } 1143 1144 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1145 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1146 if (!MDS) return nullptr; 1147 1148 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1149 } 1150 1151 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1152 const CGFunctionInfo &Info, 1153 llvm::Function *F) { 1154 unsigned CallingConv; 1155 llvm::AttributeList PAL; 1156 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1157 F->setAttributes(PAL); 1158 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1159 } 1160 1161 /// Determines whether the language options require us to model 1162 /// unwind exceptions. We treat -fexceptions as mandating this 1163 /// except under the fragile ObjC ABI with only ObjC exceptions 1164 /// enabled. This means, for example, that C with -fexceptions 1165 /// enables this. 1166 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1167 // If exceptions are completely disabled, obviously this is false. 1168 if (!LangOpts.Exceptions) return false; 1169 1170 // If C++ exceptions are enabled, this is true. 1171 if (LangOpts.CXXExceptions) return true; 1172 1173 // If ObjC exceptions are enabled, this depends on the ABI. 1174 if (LangOpts.ObjCExceptions) { 1175 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1176 } 1177 1178 return true; 1179 } 1180 1181 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1182 const CXXMethodDecl *MD) { 1183 // Check that the type metadata can ever actually be used by a call. 1184 if (!CGM.getCodeGenOpts().LTOUnit || 1185 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1186 return false; 1187 1188 // Only functions whose address can be taken with a member function pointer 1189 // need this sort of type metadata. 1190 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1191 !isa<CXXDestructorDecl>(MD); 1192 } 1193 1194 std::vector<const CXXRecordDecl *> 1195 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1196 llvm::SetVector<const CXXRecordDecl *> MostBases; 1197 1198 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1199 CollectMostBases = [&](const CXXRecordDecl *RD) { 1200 if (RD->getNumBases() == 0) 1201 MostBases.insert(RD); 1202 for (const CXXBaseSpecifier &B : RD->bases()) 1203 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1204 }; 1205 CollectMostBases(RD); 1206 return MostBases.takeVector(); 1207 } 1208 1209 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1210 llvm::Function *F) { 1211 llvm::AttrBuilder B; 1212 1213 if (CodeGenOpts.UnwindTables) 1214 B.addAttribute(llvm::Attribute::UWTable); 1215 1216 if (!hasUnwindExceptions(LangOpts)) 1217 B.addAttribute(llvm::Attribute::NoUnwind); 1218 1219 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1220 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1221 B.addAttribute(llvm::Attribute::StackProtect); 1222 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1223 B.addAttribute(llvm::Attribute::StackProtectStrong); 1224 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1225 B.addAttribute(llvm::Attribute::StackProtectReq); 1226 } 1227 1228 if (!D) { 1229 // If we don't have a declaration to control inlining, the function isn't 1230 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1231 // disabled, mark the function as noinline. 1232 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1233 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1234 B.addAttribute(llvm::Attribute::NoInline); 1235 1236 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1237 return; 1238 } 1239 1240 // Track whether we need to add the optnone LLVM attribute, 1241 // starting with the default for this optimization level. 1242 bool ShouldAddOptNone = 1243 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1244 // We can't add optnone in the following cases, it won't pass the verifier. 1245 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1246 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1247 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1248 1249 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1250 B.addAttribute(llvm::Attribute::OptimizeNone); 1251 1252 // OptimizeNone implies noinline; we should not be inlining such functions. 1253 B.addAttribute(llvm::Attribute::NoInline); 1254 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1255 "OptimizeNone and AlwaysInline on same function!"); 1256 1257 // We still need to handle naked functions even though optnone subsumes 1258 // much of their semantics. 1259 if (D->hasAttr<NakedAttr>()) 1260 B.addAttribute(llvm::Attribute::Naked); 1261 1262 // OptimizeNone wins over OptimizeForSize and MinSize. 1263 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1264 F->removeFnAttr(llvm::Attribute::MinSize); 1265 } else if (D->hasAttr<NakedAttr>()) { 1266 // Naked implies noinline: we should not be inlining such functions. 1267 B.addAttribute(llvm::Attribute::Naked); 1268 B.addAttribute(llvm::Attribute::NoInline); 1269 } else if (D->hasAttr<NoDuplicateAttr>()) { 1270 B.addAttribute(llvm::Attribute::NoDuplicate); 1271 } else if (D->hasAttr<NoInlineAttr>()) { 1272 B.addAttribute(llvm::Attribute::NoInline); 1273 } else if (D->hasAttr<AlwaysInlineAttr>() && 1274 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1275 // (noinline wins over always_inline, and we can't specify both in IR) 1276 B.addAttribute(llvm::Attribute::AlwaysInline); 1277 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1278 // If we're not inlining, then force everything that isn't always_inline to 1279 // carry an explicit noinline attribute. 1280 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1281 B.addAttribute(llvm::Attribute::NoInline); 1282 } else { 1283 // Otherwise, propagate the inline hint attribute and potentially use its 1284 // absence to mark things as noinline. 1285 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1286 // Search function and template pattern redeclarations for inline. 1287 auto CheckForInline = [](const FunctionDecl *FD) { 1288 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1289 return Redecl->isInlineSpecified(); 1290 }; 1291 if (any_of(FD->redecls(), CheckRedeclForInline)) 1292 return true; 1293 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1294 if (!Pattern) 1295 return false; 1296 return any_of(Pattern->redecls(), CheckRedeclForInline); 1297 }; 1298 if (CheckForInline(FD)) { 1299 B.addAttribute(llvm::Attribute::InlineHint); 1300 } else if (CodeGenOpts.getInlining() == 1301 CodeGenOptions::OnlyHintInlining && 1302 !FD->isInlined() && 1303 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1304 B.addAttribute(llvm::Attribute::NoInline); 1305 } 1306 } 1307 } 1308 1309 // Add other optimization related attributes if we are optimizing this 1310 // function. 1311 if (!D->hasAttr<OptimizeNoneAttr>()) { 1312 if (D->hasAttr<ColdAttr>()) { 1313 if (!ShouldAddOptNone) 1314 B.addAttribute(llvm::Attribute::OptimizeForSize); 1315 B.addAttribute(llvm::Attribute::Cold); 1316 } 1317 1318 if (D->hasAttr<MinSizeAttr>()) 1319 B.addAttribute(llvm::Attribute::MinSize); 1320 } 1321 1322 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1323 1324 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1325 if (alignment) 1326 F->setAlignment(alignment); 1327 1328 if (!D->hasAttr<AlignedAttr>()) 1329 if (LangOpts.FunctionAlignment) 1330 F->setAlignment(1 << LangOpts.FunctionAlignment); 1331 1332 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1333 // reserve a bit for differentiating between virtual and non-virtual member 1334 // functions. If the current target's C++ ABI requires this and this is a 1335 // member function, set its alignment accordingly. 1336 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1337 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1338 F->setAlignment(2); 1339 } 1340 1341 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1342 if (CodeGenOpts.SanitizeCfiCrossDso) 1343 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1344 CreateFunctionTypeMetadataForIcall(FD, F); 1345 1346 // Emit type metadata on member functions for member function pointer checks. 1347 // These are only ever necessary on definitions; we're guaranteed that the 1348 // definition will be present in the LTO unit as a result of LTO visibility. 1349 auto *MD = dyn_cast<CXXMethodDecl>(D); 1350 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1351 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1352 llvm::Metadata *Id = 1353 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1354 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1355 F->addTypeMetadata(0, Id); 1356 } 1357 } 1358 } 1359 1360 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1361 const Decl *D = GD.getDecl(); 1362 if (dyn_cast_or_null<NamedDecl>(D)) 1363 setGVProperties(GV, GD); 1364 else 1365 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1366 1367 if (D && D->hasAttr<UsedAttr>()) 1368 addUsedGlobal(GV); 1369 1370 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1371 const auto *VD = cast<VarDecl>(D); 1372 if (VD->getType().isConstQualified() && 1373 VD->getStorageDuration() == SD_Static) 1374 addUsedGlobal(GV); 1375 } 1376 } 1377 1378 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1379 llvm::AttrBuilder &Attrs) { 1380 // Add target-cpu and target-features attributes to functions. If 1381 // we have a decl for the function and it has a target attribute then 1382 // parse that and add it to the feature set. 1383 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1384 std::vector<std::string> Features; 1385 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1386 FD = FD ? FD->getMostRecentDecl() : FD; 1387 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1388 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1389 bool AddedAttr = false; 1390 if (TD || SD) { 1391 llvm::StringMap<bool> FeatureMap; 1392 getFunctionFeatureMap(FeatureMap, GD); 1393 1394 // Produce the canonical string for this set of features. 1395 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1396 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1397 1398 // Now add the target-cpu and target-features to the function. 1399 // While we populated the feature map above, we still need to 1400 // get and parse the target attribute so we can get the cpu for 1401 // the function. 1402 if (TD) { 1403 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1404 if (ParsedAttr.Architecture != "" && 1405 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1406 TargetCPU = ParsedAttr.Architecture; 1407 } 1408 } else { 1409 // Otherwise just add the existing target cpu and target features to the 1410 // function. 1411 Features = getTarget().getTargetOpts().Features; 1412 } 1413 1414 if (TargetCPU != "") { 1415 Attrs.addAttribute("target-cpu", TargetCPU); 1416 AddedAttr = true; 1417 } 1418 if (!Features.empty()) { 1419 llvm::sort(Features); 1420 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1421 AddedAttr = true; 1422 } 1423 1424 return AddedAttr; 1425 } 1426 1427 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1428 llvm::GlobalObject *GO) { 1429 const Decl *D = GD.getDecl(); 1430 SetCommonAttributes(GD, GO); 1431 1432 if (D) { 1433 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1434 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1435 GV->addAttribute("bss-section", SA->getName()); 1436 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1437 GV->addAttribute("data-section", SA->getName()); 1438 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1439 GV->addAttribute("rodata-section", SA->getName()); 1440 } 1441 1442 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1443 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1444 if (!D->getAttr<SectionAttr>()) 1445 F->addFnAttr("implicit-section-name", SA->getName()); 1446 1447 llvm::AttrBuilder Attrs; 1448 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1449 // We know that GetCPUAndFeaturesAttributes will always have the 1450 // newest set, since it has the newest possible FunctionDecl, so the 1451 // new ones should replace the old. 1452 F->removeFnAttr("target-cpu"); 1453 F->removeFnAttr("target-features"); 1454 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1455 } 1456 } 1457 1458 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1459 GO->setSection(CSA->getName()); 1460 else if (const auto *SA = D->getAttr<SectionAttr>()) 1461 GO->setSection(SA->getName()); 1462 } 1463 1464 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1465 } 1466 1467 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1468 llvm::Function *F, 1469 const CGFunctionInfo &FI) { 1470 const Decl *D = GD.getDecl(); 1471 SetLLVMFunctionAttributes(GD, FI, F); 1472 SetLLVMFunctionAttributesForDefinition(D, F); 1473 1474 F->setLinkage(llvm::Function::InternalLinkage); 1475 1476 setNonAliasAttributes(GD, F); 1477 } 1478 1479 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1480 // Set linkage and visibility in case we never see a definition. 1481 LinkageInfo LV = ND->getLinkageAndVisibility(); 1482 // Don't set internal linkage on declarations. 1483 // "extern_weak" is overloaded in LLVM; we probably should have 1484 // separate linkage types for this. 1485 if (isExternallyVisible(LV.getLinkage()) && 1486 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1487 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1488 } 1489 1490 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1491 llvm::Function *F) { 1492 // Only if we are checking indirect calls. 1493 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1494 return; 1495 1496 // Non-static class methods are handled via vtable or member function pointer 1497 // checks elsewhere. 1498 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1499 return; 1500 1501 // Additionally, if building with cross-DSO support... 1502 if (CodeGenOpts.SanitizeCfiCrossDso) { 1503 // Skip available_externally functions. They won't be codegen'ed in the 1504 // current module anyway. 1505 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1506 return; 1507 } 1508 1509 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1510 F->addTypeMetadata(0, MD); 1511 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1512 1513 // Emit a hash-based bit set entry for cross-DSO calls. 1514 if (CodeGenOpts.SanitizeCfiCrossDso) 1515 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1516 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1517 } 1518 1519 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1520 bool IsIncompleteFunction, 1521 bool IsThunk) { 1522 1523 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1524 // If this is an intrinsic function, set the function's attributes 1525 // to the intrinsic's attributes. 1526 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1527 return; 1528 } 1529 1530 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1531 1532 if (!IsIncompleteFunction) { 1533 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1534 // Setup target-specific attributes. 1535 if (F->isDeclaration()) 1536 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1537 } 1538 1539 // Add the Returned attribute for "this", except for iOS 5 and earlier 1540 // where substantial code, including the libstdc++ dylib, was compiled with 1541 // GCC and does not actually return "this". 1542 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1543 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1544 assert(!F->arg_empty() && 1545 F->arg_begin()->getType() 1546 ->canLosslesslyBitCastTo(F->getReturnType()) && 1547 "unexpected this return"); 1548 F->addAttribute(1, llvm::Attribute::Returned); 1549 } 1550 1551 // Only a few attributes are set on declarations; these may later be 1552 // overridden by a definition. 1553 1554 setLinkageForGV(F, FD); 1555 setGVProperties(F, FD); 1556 1557 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1558 F->setSection(CSA->getName()); 1559 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1560 F->setSection(SA->getName()); 1561 1562 if (FD->isReplaceableGlobalAllocationFunction()) { 1563 // A replaceable global allocation function does not act like a builtin by 1564 // default, only if it is invoked by a new-expression or delete-expression. 1565 F->addAttribute(llvm::AttributeList::FunctionIndex, 1566 llvm::Attribute::NoBuiltin); 1567 1568 // A sane operator new returns a non-aliasing pointer. 1569 // FIXME: Also add NonNull attribute to the return value 1570 // for the non-nothrow forms? 1571 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1572 if (getCodeGenOpts().AssumeSaneOperatorNew && 1573 (Kind == OO_New || Kind == OO_Array_New)) 1574 F->addAttribute(llvm::AttributeList::ReturnIndex, 1575 llvm::Attribute::NoAlias); 1576 } 1577 1578 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1579 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1580 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1581 if (MD->isVirtual()) 1582 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1583 1584 // Don't emit entries for function declarations in the cross-DSO mode. This 1585 // is handled with better precision by the receiving DSO. 1586 if (!CodeGenOpts.SanitizeCfiCrossDso) 1587 CreateFunctionTypeMetadataForIcall(FD, F); 1588 1589 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1590 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1591 } 1592 1593 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1594 assert(!GV->isDeclaration() && 1595 "Only globals with definition can force usage."); 1596 LLVMUsed.emplace_back(GV); 1597 } 1598 1599 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1600 assert(!GV->isDeclaration() && 1601 "Only globals with definition can force usage."); 1602 LLVMCompilerUsed.emplace_back(GV); 1603 } 1604 1605 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1606 std::vector<llvm::WeakTrackingVH> &List) { 1607 // Don't create llvm.used if there is no need. 1608 if (List.empty()) 1609 return; 1610 1611 // Convert List to what ConstantArray needs. 1612 SmallVector<llvm::Constant*, 8> UsedArray; 1613 UsedArray.resize(List.size()); 1614 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1615 UsedArray[i] = 1616 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1617 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1618 } 1619 1620 if (UsedArray.empty()) 1621 return; 1622 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1623 1624 auto *GV = new llvm::GlobalVariable( 1625 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1626 llvm::ConstantArray::get(ATy, UsedArray), Name); 1627 1628 GV->setSection("llvm.metadata"); 1629 } 1630 1631 void CodeGenModule::emitLLVMUsed() { 1632 emitUsed(*this, "llvm.used", LLVMUsed); 1633 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1634 } 1635 1636 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1637 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1638 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1639 } 1640 1641 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1642 llvm::SmallString<32> Opt; 1643 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1644 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1645 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1646 } 1647 1648 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1649 auto &C = getLLVMContext(); 1650 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1651 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1652 } 1653 1654 void CodeGenModule::AddDependentLib(StringRef Lib) { 1655 llvm::SmallString<24> Opt; 1656 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1657 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1658 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1659 } 1660 1661 /// Add link options implied by the given module, including modules 1662 /// it depends on, using a postorder walk. 1663 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1664 SmallVectorImpl<llvm::MDNode *> &Metadata, 1665 llvm::SmallPtrSet<Module *, 16> &Visited) { 1666 // Import this module's parent. 1667 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1668 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1669 } 1670 1671 // Import this module's dependencies. 1672 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1673 if (Visited.insert(Mod->Imports[I - 1]).second) 1674 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1675 } 1676 1677 // Add linker options to link against the libraries/frameworks 1678 // described by this module. 1679 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1680 1681 // For modules that use export_as for linking, use that module 1682 // name instead. 1683 if (Mod->UseExportAsModuleLinkName) 1684 return; 1685 1686 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1687 // Link against a framework. Frameworks are currently Darwin only, so we 1688 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1689 if (Mod->LinkLibraries[I-1].IsFramework) { 1690 llvm::Metadata *Args[2] = { 1691 llvm::MDString::get(Context, "-framework"), 1692 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1693 1694 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1695 continue; 1696 } 1697 1698 // Link against a library. 1699 llvm::SmallString<24> Opt; 1700 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1701 Mod->LinkLibraries[I-1].Library, Opt); 1702 auto *OptString = llvm::MDString::get(Context, Opt); 1703 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1704 } 1705 } 1706 1707 void CodeGenModule::EmitModuleLinkOptions() { 1708 // Collect the set of all of the modules we want to visit to emit link 1709 // options, which is essentially the imported modules and all of their 1710 // non-explicit child modules. 1711 llvm::SetVector<clang::Module *> LinkModules; 1712 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1713 SmallVector<clang::Module *, 16> Stack; 1714 1715 // Seed the stack with imported modules. 1716 for (Module *M : ImportedModules) { 1717 // Do not add any link flags when an implementation TU of a module imports 1718 // a header of that same module. 1719 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1720 !getLangOpts().isCompilingModule()) 1721 continue; 1722 if (Visited.insert(M).second) 1723 Stack.push_back(M); 1724 } 1725 1726 // Find all of the modules to import, making a little effort to prune 1727 // non-leaf modules. 1728 while (!Stack.empty()) { 1729 clang::Module *Mod = Stack.pop_back_val(); 1730 1731 bool AnyChildren = false; 1732 1733 // Visit the submodules of this module. 1734 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1735 SubEnd = Mod->submodule_end(); 1736 Sub != SubEnd; ++Sub) { 1737 // Skip explicit children; they need to be explicitly imported to be 1738 // linked against. 1739 if ((*Sub)->IsExplicit) 1740 continue; 1741 1742 if (Visited.insert(*Sub).second) { 1743 Stack.push_back(*Sub); 1744 AnyChildren = true; 1745 } 1746 } 1747 1748 // We didn't find any children, so add this module to the list of 1749 // modules to link against. 1750 if (!AnyChildren) { 1751 LinkModules.insert(Mod); 1752 } 1753 } 1754 1755 // Add link options for all of the imported modules in reverse topological 1756 // order. We don't do anything to try to order import link flags with respect 1757 // to linker options inserted by things like #pragma comment(). 1758 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1759 Visited.clear(); 1760 for (Module *M : LinkModules) 1761 if (Visited.insert(M).second) 1762 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1763 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1764 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1765 1766 // Add the linker options metadata flag. 1767 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1768 for (auto *MD : LinkerOptionsMetadata) 1769 NMD->addOperand(MD); 1770 } 1771 1772 void CodeGenModule::EmitDeferred() { 1773 // Emit deferred declare target declarations. 1774 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1775 getOpenMPRuntime().emitDeferredTargetDecls(); 1776 1777 // Emit code for any potentially referenced deferred decls. Since a 1778 // previously unused static decl may become used during the generation of code 1779 // for a static function, iterate until no changes are made. 1780 1781 if (!DeferredVTables.empty()) { 1782 EmitDeferredVTables(); 1783 1784 // Emitting a vtable doesn't directly cause more vtables to 1785 // become deferred, although it can cause functions to be 1786 // emitted that then need those vtables. 1787 assert(DeferredVTables.empty()); 1788 } 1789 1790 // Stop if we're out of both deferred vtables and deferred declarations. 1791 if (DeferredDeclsToEmit.empty()) 1792 return; 1793 1794 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1795 // work, it will not interfere with this. 1796 std::vector<GlobalDecl> CurDeclsToEmit; 1797 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1798 1799 for (GlobalDecl &D : CurDeclsToEmit) { 1800 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1801 // to get GlobalValue with exactly the type we need, not something that 1802 // might had been created for another decl with the same mangled name but 1803 // different type. 1804 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1805 GetAddrOfGlobal(D, ForDefinition)); 1806 1807 // In case of different address spaces, we may still get a cast, even with 1808 // IsForDefinition equal to true. Query mangled names table to get 1809 // GlobalValue. 1810 if (!GV) 1811 GV = GetGlobalValue(getMangledName(D)); 1812 1813 // Make sure GetGlobalValue returned non-null. 1814 assert(GV); 1815 1816 // Check to see if we've already emitted this. This is necessary 1817 // for a couple of reasons: first, decls can end up in the 1818 // deferred-decls queue multiple times, and second, decls can end 1819 // up with definitions in unusual ways (e.g. by an extern inline 1820 // function acquiring a strong function redefinition). Just 1821 // ignore these cases. 1822 if (!GV->isDeclaration()) 1823 continue; 1824 1825 // Otherwise, emit the definition and move on to the next one. 1826 EmitGlobalDefinition(D, GV); 1827 1828 // If we found out that we need to emit more decls, do that recursively. 1829 // This has the advantage that the decls are emitted in a DFS and related 1830 // ones are close together, which is convenient for testing. 1831 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1832 EmitDeferred(); 1833 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1834 } 1835 } 1836 } 1837 1838 void CodeGenModule::EmitVTablesOpportunistically() { 1839 // Try to emit external vtables as available_externally if they have emitted 1840 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1841 // is not allowed to create new references to things that need to be emitted 1842 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1843 1844 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1845 && "Only emit opportunistic vtables with optimizations"); 1846 1847 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1848 assert(getVTables().isVTableExternal(RD) && 1849 "This queue should only contain external vtables"); 1850 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1851 VTables.GenerateClassData(RD); 1852 } 1853 OpportunisticVTables.clear(); 1854 } 1855 1856 void CodeGenModule::EmitGlobalAnnotations() { 1857 if (Annotations.empty()) 1858 return; 1859 1860 // Create a new global variable for the ConstantStruct in the Module. 1861 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1862 Annotations[0]->getType(), Annotations.size()), Annotations); 1863 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1864 llvm::GlobalValue::AppendingLinkage, 1865 Array, "llvm.global.annotations"); 1866 gv->setSection(AnnotationSection); 1867 } 1868 1869 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1870 llvm::Constant *&AStr = AnnotationStrings[Str]; 1871 if (AStr) 1872 return AStr; 1873 1874 // Not found yet, create a new global. 1875 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1876 auto *gv = 1877 new llvm::GlobalVariable(getModule(), s->getType(), true, 1878 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1879 gv->setSection(AnnotationSection); 1880 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1881 AStr = gv; 1882 return gv; 1883 } 1884 1885 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1886 SourceManager &SM = getContext().getSourceManager(); 1887 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1888 if (PLoc.isValid()) 1889 return EmitAnnotationString(PLoc.getFilename()); 1890 return EmitAnnotationString(SM.getBufferName(Loc)); 1891 } 1892 1893 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1894 SourceManager &SM = getContext().getSourceManager(); 1895 PresumedLoc PLoc = SM.getPresumedLoc(L); 1896 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1897 SM.getExpansionLineNumber(L); 1898 return llvm::ConstantInt::get(Int32Ty, LineNo); 1899 } 1900 1901 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1902 const AnnotateAttr *AA, 1903 SourceLocation L) { 1904 // Get the globals for file name, annotation, and the line number. 1905 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1906 *UnitGV = EmitAnnotationUnit(L), 1907 *LineNoCst = EmitAnnotationLineNo(L); 1908 1909 // Create the ConstantStruct for the global annotation. 1910 llvm::Constant *Fields[4] = { 1911 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1912 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1913 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1914 LineNoCst 1915 }; 1916 return llvm::ConstantStruct::getAnon(Fields); 1917 } 1918 1919 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1920 llvm::GlobalValue *GV) { 1921 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1922 // Get the struct elements for these annotations. 1923 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1924 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1925 } 1926 1927 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1928 llvm::Function *Fn, 1929 SourceLocation Loc) const { 1930 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1931 // Blacklist by function name. 1932 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1933 return true; 1934 // Blacklist by location. 1935 if (Loc.isValid()) 1936 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1937 // If location is unknown, this may be a compiler-generated function. Assume 1938 // it's located in the main file. 1939 auto &SM = Context.getSourceManager(); 1940 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1941 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1942 } 1943 return false; 1944 } 1945 1946 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1947 SourceLocation Loc, QualType Ty, 1948 StringRef Category) const { 1949 // For now globals can be blacklisted only in ASan and KASan. 1950 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1951 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1952 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1953 if (!EnabledAsanMask) 1954 return false; 1955 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1956 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1957 return true; 1958 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1959 return true; 1960 // Check global type. 1961 if (!Ty.isNull()) { 1962 // Drill down the array types: if global variable of a fixed type is 1963 // blacklisted, we also don't instrument arrays of them. 1964 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1965 Ty = AT->getElementType(); 1966 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1967 // We allow to blacklist only record types (classes, structs etc.) 1968 if (Ty->isRecordType()) { 1969 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1970 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1971 return true; 1972 } 1973 } 1974 return false; 1975 } 1976 1977 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1978 StringRef Category) const { 1979 const auto &XRayFilter = getContext().getXRayFilter(); 1980 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1981 auto Attr = ImbueAttr::NONE; 1982 if (Loc.isValid()) 1983 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1984 if (Attr == ImbueAttr::NONE) 1985 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1986 switch (Attr) { 1987 case ImbueAttr::NONE: 1988 return false; 1989 case ImbueAttr::ALWAYS: 1990 Fn->addFnAttr("function-instrument", "xray-always"); 1991 break; 1992 case ImbueAttr::ALWAYS_ARG1: 1993 Fn->addFnAttr("function-instrument", "xray-always"); 1994 Fn->addFnAttr("xray-log-args", "1"); 1995 break; 1996 case ImbueAttr::NEVER: 1997 Fn->addFnAttr("function-instrument", "xray-never"); 1998 break; 1999 } 2000 return true; 2001 } 2002 2003 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2004 // Never defer when EmitAllDecls is specified. 2005 if (LangOpts.EmitAllDecls) 2006 return true; 2007 2008 if (CodeGenOpts.KeepStaticConsts) { 2009 const auto *VD = dyn_cast<VarDecl>(Global); 2010 if (VD && VD->getType().isConstQualified() && 2011 VD->getStorageDuration() == SD_Static) 2012 return true; 2013 } 2014 2015 return getContext().DeclMustBeEmitted(Global); 2016 } 2017 2018 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2019 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 2020 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2021 // Implicit template instantiations may change linkage if they are later 2022 // explicitly instantiated, so they should not be emitted eagerly. 2023 return false; 2024 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2025 if (Context.getInlineVariableDefinitionKind(VD) == 2026 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2027 // A definition of an inline constexpr static data member may change 2028 // linkage later if it's redeclared outside the class. 2029 return false; 2030 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2031 // codegen for global variables, because they may be marked as threadprivate. 2032 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2033 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2034 !isTypeConstant(Global->getType(), false) && 2035 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2036 return false; 2037 2038 return true; 2039 } 2040 2041 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2042 const CXXUuidofExpr* E) { 2043 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2044 // well-formed. 2045 StringRef Uuid = E->getUuidStr(); 2046 std::string Name = "_GUID_" + Uuid.lower(); 2047 std::replace(Name.begin(), Name.end(), '-', '_'); 2048 2049 // The UUID descriptor should be pointer aligned. 2050 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2051 2052 // Look for an existing global. 2053 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2054 return ConstantAddress(GV, Alignment); 2055 2056 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2057 assert(Init && "failed to initialize as constant"); 2058 2059 auto *GV = new llvm::GlobalVariable( 2060 getModule(), Init->getType(), 2061 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2062 if (supportsCOMDAT()) 2063 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2064 setDSOLocal(GV); 2065 return ConstantAddress(GV, Alignment); 2066 } 2067 2068 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2069 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2070 assert(AA && "No alias?"); 2071 2072 CharUnits Alignment = getContext().getDeclAlign(VD); 2073 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2074 2075 // See if there is already something with the target's name in the module. 2076 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2077 if (Entry) { 2078 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2079 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2080 return ConstantAddress(Ptr, Alignment); 2081 } 2082 2083 llvm::Constant *Aliasee; 2084 if (isa<llvm::FunctionType>(DeclTy)) 2085 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2086 GlobalDecl(cast<FunctionDecl>(VD)), 2087 /*ForVTable=*/false); 2088 else 2089 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2090 llvm::PointerType::getUnqual(DeclTy), 2091 nullptr); 2092 2093 auto *F = cast<llvm::GlobalValue>(Aliasee); 2094 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2095 WeakRefReferences.insert(F); 2096 2097 return ConstantAddress(Aliasee, Alignment); 2098 } 2099 2100 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2101 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2102 2103 // Weak references don't produce any output by themselves. 2104 if (Global->hasAttr<WeakRefAttr>()) 2105 return; 2106 2107 // If this is an alias definition (which otherwise looks like a declaration) 2108 // emit it now. 2109 if (Global->hasAttr<AliasAttr>()) 2110 return EmitAliasDefinition(GD); 2111 2112 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2113 if (Global->hasAttr<IFuncAttr>()) 2114 return emitIFuncDefinition(GD); 2115 2116 // If this is a cpu_dispatch multiversion function, emit the resolver. 2117 if (Global->hasAttr<CPUDispatchAttr>()) 2118 return emitCPUDispatchDefinition(GD); 2119 2120 // If this is CUDA, be selective about which declarations we emit. 2121 if (LangOpts.CUDA) { 2122 if (LangOpts.CUDAIsDevice) { 2123 if (!Global->hasAttr<CUDADeviceAttr>() && 2124 !Global->hasAttr<CUDAGlobalAttr>() && 2125 !Global->hasAttr<CUDAConstantAttr>() && 2126 !Global->hasAttr<CUDASharedAttr>()) 2127 return; 2128 } else { 2129 // We need to emit host-side 'shadows' for all global 2130 // device-side variables because the CUDA runtime needs their 2131 // size and host-side address in order to provide access to 2132 // their device-side incarnations. 2133 2134 // So device-only functions are the only things we skip. 2135 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2136 Global->hasAttr<CUDADeviceAttr>()) 2137 return; 2138 2139 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2140 "Expected Variable or Function"); 2141 } 2142 } 2143 2144 if (LangOpts.OpenMP) { 2145 // If this is OpenMP device, check if it is legal to emit this global 2146 // normally. 2147 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2148 return; 2149 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2150 if (MustBeEmitted(Global)) 2151 EmitOMPDeclareReduction(DRD); 2152 return; 2153 } 2154 } 2155 2156 // Ignore declarations, they will be emitted on their first use. 2157 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2158 // Forward declarations are emitted lazily on first use. 2159 if (!FD->doesThisDeclarationHaveABody()) { 2160 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2161 return; 2162 2163 StringRef MangledName = getMangledName(GD); 2164 2165 // Compute the function info and LLVM type. 2166 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2167 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2168 2169 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2170 /*DontDefer=*/false); 2171 return; 2172 } 2173 } else { 2174 const auto *VD = cast<VarDecl>(Global); 2175 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2176 // We need to emit device-side global CUDA variables even if a 2177 // variable does not have a definition -- we still need to define 2178 // host-side shadow for it. 2179 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2180 !VD->hasDefinition() && 2181 (VD->hasAttr<CUDAConstantAttr>() || 2182 VD->hasAttr<CUDADeviceAttr>()); 2183 if (!MustEmitForCuda && 2184 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2185 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2186 if (LangOpts.OpenMP) { 2187 // Emit declaration of the must-be-emitted declare target variable. 2188 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2189 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2190 if (*Res == OMPDeclareTargetDeclAttr::MT_To) { 2191 (void)GetAddrOfGlobalVar(VD); 2192 } else { 2193 assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && 2194 "link claue expected."); 2195 (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD); 2196 } 2197 return; 2198 } 2199 } 2200 // If this declaration may have caused an inline variable definition to 2201 // change linkage, make sure that it's emitted. 2202 if (Context.getInlineVariableDefinitionKind(VD) == 2203 ASTContext::InlineVariableDefinitionKind::Strong) 2204 GetAddrOfGlobalVar(VD); 2205 return; 2206 } 2207 } 2208 2209 // Defer code generation to first use when possible, e.g. if this is an inline 2210 // function. If the global must always be emitted, do it eagerly if possible 2211 // to benefit from cache locality. 2212 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2213 // Emit the definition if it can't be deferred. 2214 EmitGlobalDefinition(GD); 2215 return; 2216 } 2217 2218 // If we're deferring emission of a C++ variable with an 2219 // initializer, remember the order in which it appeared in the file. 2220 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2221 cast<VarDecl>(Global)->hasInit()) { 2222 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2223 CXXGlobalInits.push_back(nullptr); 2224 } 2225 2226 StringRef MangledName = getMangledName(GD); 2227 if (GetGlobalValue(MangledName) != nullptr) { 2228 // The value has already been used and should therefore be emitted. 2229 addDeferredDeclToEmit(GD); 2230 } else if (MustBeEmitted(Global)) { 2231 // The value must be emitted, but cannot be emitted eagerly. 2232 assert(!MayBeEmittedEagerly(Global)); 2233 addDeferredDeclToEmit(GD); 2234 } else { 2235 // Otherwise, remember that we saw a deferred decl with this name. The 2236 // first use of the mangled name will cause it to move into 2237 // DeferredDeclsToEmit. 2238 DeferredDecls[MangledName] = GD; 2239 } 2240 } 2241 2242 // Check if T is a class type with a destructor that's not dllimport. 2243 static bool HasNonDllImportDtor(QualType T) { 2244 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2245 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2246 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2247 return true; 2248 2249 return false; 2250 } 2251 2252 namespace { 2253 struct FunctionIsDirectlyRecursive : 2254 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2255 const StringRef Name; 2256 const Builtin::Context &BI; 2257 bool Result; 2258 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2259 Name(N), BI(C), Result(false) { 2260 } 2261 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2262 2263 bool TraverseCallExpr(CallExpr *E) { 2264 const FunctionDecl *FD = E->getDirectCallee(); 2265 if (!FD) 2266 return true; 2267 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2268 if (Attr && Name == Attr->getLabel()) { 2269 Result = true; 2270 return false; 2271 } 2272 unsigned BuiltinID = FD->getBuiltinID(); 2273 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2274 return true; 2275 StringRef BuiltinName = BI.getName(BuiltinID); 2276 if (BuiltinName.startswith("__builtin_") && 2277 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2278 Result = true; 2279 return false; 2280 } 2281 return true; 2282 } 2283 }; 2284 2285 // Make sure we're not referencing non-imported vars or functions. 2286 struct DLLImportFunctionVisitor 2287 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2288 bool SafeToInline = true; 2289 2290 bool shouldVisitImplicitCode() const { return true; } 2291 2292 bool VisitVarDecl(VarDecl *VD) { 2293 if (VD->getTLSKind()) { 2294 // A thread-local variable cannot be imported. 2295 SafeToInline = false; 2296 return SafeToInline; 2297 } 2298 2299 // A variable definition might imply a destructor call. 2300 if (VD->isThisDeclarationADefinition()) 2301 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2302 2303 return SafeToInline; 2304 } 2305 2306 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2307 if (const auto *D = E->getTemporary()->getDestructor()) 2308 SafeToInline = D->hasAttr<DLLImportAttr>(); 2309 return SafeToInline; 2310 } 2311 2312 bool VisitDeclRefExpr(DeclRefExpr *E) { 2313 ValueDecl *VD = E->getDecl(); 2314 if (isa<FunctionDecl>(VD)) 2315 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2316 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2317 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2318 return SafeToInline; 2319 } 2320 2321 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2322 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2323 return SafeToInline; 2324 } 2325 2326 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2327 CXXMethodDecl *M = E->getMethodDecl(); 2328 if (!M) { 2329 // Call through a pointer to member function. This is safe to inline. 2330 SafeToInline = true; 2331 } else { 2332 SafeToInline = M->hasAttr<DLLImportAttr>(); 2333 } 2334 return SafeToInline; 2335 } 2336 2337 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2338 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2339 return SafeToInline; 2340 } 2341 2342 bool VisitCXXNewExpr(CXXNewExpr *E) { 2343 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2344 return SafeToInline; 2345 } 2346 }; 2347 } 2348 2349 // isTriviallyRecursive - Check if this function calls another 2350 // decl that, because of the asm attribute or the other decl being a builtin, 2351 // ends up pointing to itself. 2352 bool 2353 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2354 StringRef Name; 2355 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2356 // asm labels are a special kind of mangling we have to support. 2357 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2358 if (!Attr) 2359 return false; 2360 Name = Attr->getLabel(); 2361 } else { 2362 Name = FD->getName(); 2363 } 2364 2365 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2366 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2367 return Walker.Result; 2368 } 2369 2370 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2371 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2372 return true; 2373 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2374 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2375 return false; 2376 2377 if (F->hasAttr<DLLImportAttr>()) { 2378 // Check whether it would be safe to inline this dllimport function. 2379 DLLImportFunctionVisitor Visitor; 2380 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2381 if (!Visitor.SafeToInline) 2382 return false; 2383 2384 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2385 // Implicit destructor invocations aren't captured in the AST, so the 2386 // check above can't see them. Check for them manually here. 2387 for (const Decl *Member : Dtor->getParent()->decls()) 2388 if (isa<FieldDecl>(Member)) 2389 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2390 return false; 2391 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2392 if (HasNonDllImportDtor(B.getType())) 2393 return false; 2394 } 2395 } 2396 2397 // PR9614. Avoid cases where the source code is lying to us. An available 2398 // externally function should have an equivalent function somewhere else, 2399 // but a function that calls itself is clearly not equivalent to the real 2400 // implementation. 2401 // This happens in glibc's btowc and in some configure checks. 2402 return !isTriviallyRecursive(F); 2403 } 2404 2405 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2406 return CodeGenOpts.OptimizationLevel > 0; 2407 } 2408 2409 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2410 llvm::GlobalValue *GV) { 2411 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2412 2413 if (FD->isCPUSpecificMultiVersion()) { 2414 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2415 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2416 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2417 // Requires multiple emits. 2418 } else 2419 EmitGlobalFunctionDefinition(GD, GV); 2420 } 2421 2422 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2423 const auto *D = cast<ValueDecl>(GD.getDecl()); 2424 2425 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2426 Context.getSourceManager(), 2427 "Generating code for declaration"); 2428 2429 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2430 // At -O0, don't generate IR for functions with available_externally 2431 // linkage. 2432 if (!shouldEmitFunction(GD)) 2433 return; 2434 2435 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2436 // Make sure to emit the definition(s) before we emit the thunks. 2437 // This is necessary for the generation of certain thunks. 2438 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2439 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2440 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2441 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2442 else if (FD->isMultiVersion()) 2443 EmitMultiVersionFunctionDefinition(GD, GV); 2444 else 2445 EmitGlobalFunctionDefinition(GD, GV); 2446 2447 if (Method->isVirtual()) 2448 getVTables().EmitThunks(GD); 2449 2450 return; 2451 } 2452 2453 if (FD->isMultiVersion()) 2454 return EmitMultiVersionFunctionDefinition(GD, GV); 2455 return EmitGlobalFunctionDefinition(GD, GV); 2456 } 2457 2458 if (const auto *VD = dyn_cast<VarDecl>(D)) 2459 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2460 2461 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2462 } 2463 2464 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2465 llvm::Function *NewFn); 2466 2467 static unsigned 2468 TargetMVPriority(const TargetInfo &TI, 2469 const CodeGenFunction::MultiVersionResolverOption &RO) { 2470 unsigned Priority = 0; 2471 for (StringRef Feat : RO.Conditions.Features) 2472 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2473 2474 if (!RO.Conditions.Architecture.empty()) 2475 Priority = std::max( 2476 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2477 return Priority; 2478 } 2479 2480 void CodeGenModule::emitMultiVersionFunctions() { 2481 for (GlobalDecl GD : MultiVersionFuncs) { 2482 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2483 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2484 getContext().forEachMultiversionedFunctionVersion( 2485 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2486 GlobalDecl CurGD{ 2487 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2488 StringRef MangledName = getMangledName(CurGD); 2489 llvm::Constant *Func = GetGlobalValue(MangledName); 2490 if (!Func) { 2491 if (CurFD->isDefined()) { 2492 EmitGlobalFunctionDefinition(CurGD, nullptr); 2493 Func = GetGlobalValue(MangledName); 2494 } else { 2495 const CGFunctionInfo &FI = 2496 getTypes().arrangeGlobalDeclaration(GD); 2497 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2498 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2499 /*DontDefer=*/false, ForDefinition); 2500 } 2501 assert(Func && "This should have just been created"); 2502 } 2503 2504 const auto *TA = CurFD->getAttr<TargetAttr>(); 2505 llvm::SmallVector<StringRef, 8> Feats; 2506 TA->getAddedFeatures(Feats); 2507 2508 Options.emplace_back(cast<llvm::Function>(Func), 2509 TA->getArchitecture(), Feats); 2510 }); 2511 2512 llvm::Function *ResolverFunc; 2513 const TargetInfo &TI = getTarget(); 2514 2515 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) 2516 ResolverFunc = cast<llvm::Function>( 2517 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2518 else 2519 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 2520 2521 if (supportsCOMDAT()) 2522 ResolverFunc->setComdat( 2523 getModule().getOrInsertComdat(ResolverFunc->getName())); 2524 2525 std::stable_sort( 2526 Options.begin(), Options.end(), 2527 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2528 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2529 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2530 }); 2531 CodeGenFunction CGF(*this); 2532 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2533 } 2534 } 2535 2536 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2537 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2538 assert(FD && "Not a FunctionDecl?"); 2539 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2540 assert(DD && "Not a cpu_dispatch Function?"); 2541 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2542 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2543 2544 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2545 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2546 DeclTy = getTypes().GetFunctionType(FInfo); 2547 } 2548 2549 StringRef ResolverName = getMangledName(GD); 2550 2551 llvm::Type *ResolverType; 2552 GlobalDecl ResolverGD; 2553 if (getTarget().supportsIFunc()) 2554 ResolverType = llvm::FunctionType::get( 2555 llvm::PointerType::get(DeclTy, 2556 Context.getTargetAddressSpace(FD->getType())), 2557 false); 2558 else { 2559 ResolverType = DeclTy; 2560 ResolverGD = GD; 2561 } 2562 2563 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 2564 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 2565 2566 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2567 const TargetInfo &Target = getTarget(); 2568 unsigned Index = 0; 2569 for (const IdentifierInfo *II : DD->cpus()) { 2570 // Get the name of the target function so we can look it up/create it. 2571 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2572 getCPUSpecificMangling(*this, II->getName()); 2573 2574 llvm::Constant *Func = GetGlobalValue(MangledName); 2575 2576 if (!Func) 2577 Func = GetOrCreateLLVMFunction( 2578 MangledName, DeclTy, GD.getWithMultiVersionIndex(Index), 2579 /*ForVTable=*/false, /*DontDefer=*/true, 2580 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2581 2582 llvm::SmallVector<StringRef, 32> Features; 2583 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2584 llvm::transform(Features, Features.begin(), 2585 [](StringRef Str) { return Str.substr(1); }); 2586 Features.erase(std::remove_if( 2587 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2588 return !Target.validateCpuSupports(Feat); 2589 }), Features.end()); 2590 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2591 ++Index; 2592 } 2593 2594 llvm::sort( 2595 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2596 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2597 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2598 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2599 }); 2600 2601 // If the list contains multiple 'default' versions, such as when it contains 2602 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2603 // always run on at least a 'pentium'). We do this by deleting the 'least 2604 // advanced' (read, lowest mangling letter). 2605 while (Options.size() > 1 && 2606 CodeGenFunction::GetX86CpuSupportsMask( 2607 (Options.end() - 2)->Conditions.Features) == 0) { 2608 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2609 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2610 if (LHSName.compare(RHSName) < 0) 2611 Options.erase(Options.end() - 2); 2612 else 2613 Options.erase(Options.end() - 1); 2614 } 2615 2616 CodeGenFunction CGF(*this); 2617 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2618 } 2619 2620 /// If a dispatcher for the specified mangled name is not in the module, create 2621 /// and return an llvm Function with the specified type. 2622 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 2623 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 2624 std::string MangledName = 2625 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2626 2627 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 2628 // a separate resolver). 2629 std::string ResolverName = MangledName; 2630 if (getTarget().supportsIFunc()) 2631 ResolverName += ".ifunc"; 2632 else if (FD->isTargetMultiVersion()) 2633 ResolverName += ".resolver"; 2634 2635 // If this already exists, just return that one. 2636 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 2637 return ResolverGV; 2638 2639 // Since this is the first time we've created this IFunc, make sure 2640 // that we put this multiversioned function into the list to be 2641 // replaced later if necessary (target multiversioning only). 2642 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2643 MultiVersionFuncs.push_back(GD); 2644 2645 if (getTarget().supportsIFunc()) { 2646 llvm::Type *ResolverType = llvm::FunctionType::get( 2647 llvm::PointerType::get( 2648 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 2649 false); 2650 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2651 MangledName + ".resolver", ResolverType, GlobalDecl{}, 2652 /*ForVTable=*/false); 2653 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2654 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2655 GIF->setName(ResolverName); 2656 SetCommonAttributes(FD, GIF); 2657 2658 return GIF; 2659 } 2660 2661 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 2662 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 2663 assert(isa<llvm::GlobalValue>(Resolver) && 2664 "Resolver should be created for the first time"); 2665 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 2666 return Resolver; 2667 } 2668 2669 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2670 /// module, create and return an llvm Function with the specified type. If there 2671 /// is something in the module with the specified name, return it potentially 2672 /// bitcasted to the right type. 2673 /// 2674 /// If D is non-null, it specifies a decl that correspond to this. This is used 2675 /// to set the attributes on the function when it is first created. 2676 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2677 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2678 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2679 ForDefinition_t IsForDefinition) { 2680 const Decl *D = GD.getDecl(); 2681 2682 // Any attempts to use a MultiVersion function should result in retrieving 2683 // the iFunc instead. Name Mangling will handle the rest of the changes. 2684 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2685 // For the device mark the function as one that should be emitted. 2686 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2687 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2688 !DontDefer && !IsForDefinition) { 2689 if (const FunctionDecl *FDDef = FD->getDefinition()) { 2690 GlobalDecl GDDef; 2691 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2692 GDDef = GlobalDecl(CD, GD.getCtorType()); 2693 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2694 GDDef = GlobalDecl(DD, GD.getDtorType()); 2695 else 2696 GDDef = GlobalDecl(FDDef); 2697 EmitGlobal(GDDef); 2698 } 2699 } 2700 2701 if (FD->isMultiVersion()) { 2702 const auto *TA = FD->getAttr<TargetAttr>(); 2703 if (TA && TA->isDefaultVersion()) 2704 UpdateMultiVersionNames(GD, FD); 2705 if (!IsForDefinition) 2706 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 2707 } 2708 } 2709 2710 // Lookup the entry, lazily creating it if necessary. 2711 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2712 if (Entry) { 2713 if (WeakRefReferences.erase(Entry)) { 2714 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2715 if (FD && !FD->hasAttr<WeakAttr>()) 2716 Entry->setLinkage(llvm::Function::ExternalLinkage); 2717 } 2718 2719 // Handle dropped DLL attributes. 2720 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2721 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2722 setDSOLocal(Entry); 2723 } 2724 2725 // If there are two attempts to define the same mangled name, issue an 2726 // error. 2727 if (IsForDefinition && !Entry->isDeclaration()) { 2728 GlobalDecl OtherGD; 2729 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2730 // to make sure that we issue an error only once. 2731 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2732 (GD.getCanonicalDecl().getDecl() != 2733 OtherGD.getCanonicalDecl().getDecl()) && 2734 DiagnosedConflictingDefinitions.insert(GD).second) { 2735 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2736 << MangledName; 2737 getDiags().Report(OtherGD.getDecl()->getLocation(), 2738 diag::note_previous_definition); 2739 } 2740 } 2741 2742 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2743 (Entry->getType()->getElementType() == Ty)) { 2744 return Entry; 2745 } 2746 2747 // Make sure the result is of the correct type. 2748 // (If function is requested for a definition, we always need to create a new 2749 // function, not just return a bitcast.) 2750 if (!IsForDefinition) 2751 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2752 } 2753 2754 // This function doesn't have a complete type (for example, the return 2755 // type is an incomplete struct). Use a fake type instead, and make 2756 // sure not to try to set attributes. 2757 bool IsIncompleteFunction = false; 2758 2759 llvm::FunctionType *FTy; 2760 if (isa<llvm::FunctionType>(Ty)) { 2761 FTy = cast<llvm::FunctionType>(Ty); 2762 } else { 2763 FTy = llvm::FunctionType::get(VoidTy, false); 2764 IsIncompleteFunction = true; 2765 } 2766 2767 llvm::Function *F = 2768 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2769 Entry ? StringRef() : MangledName, &getModule()); 2770 2771 // If we already created a function with the same mangled name (but different 2772 // type) before, take its name and add it to the list of functions to be 2773 // replaced with F at the end of CodeGen. 2774 // 2775 // This happens if there is a prototype for a function (e.g. "int f()") and 2776 // then a definition of a different type (e.g. "int f(int x)"). 2777 if (Entry) { 2778 F->takeName(Entry); 2779 2780 // This might be an implementation of a function without a prototype, in 2781 // which case, try to do special replacement of calls which match the new 2782 // prototype. The really key thing here is that we also potentially drop 2783 // arguments from the call site so as to make a direct call, which makes the 2784 // inliner happier and suppresses a number of optimizer warnings (!) about 2785 // dropping arguments. 2786 if (!Entry->use_empty()) { 2787 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2788 Entry->removeDeadConstantUsers(); 2789 } 2790 2791 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2792 F, Entry->getType()->getElementType()->getPointerTo()); 2793 addGlobalValReplacement(Entry, BC); 2794 } 2795 2796 assert(F->getName() == MangledName && "name was uniqued!"); 2797 if (D) 2798 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2799 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2800 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2801 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2802 } 2803 2804 if (!DontDefer) { 2805 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2806 // each other bottoming out with the base dtor. Therefore we emit non-base 2807 // dtors on usage, even if there is no dtor definition in the TU. 2808 if (D && isa<CXXDestructorDecl>(D) && 2809 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2810 GD.getDtorType())) 2811 addDeferredDeclToEmit(GD); 2812 2813 // This is the first use or definition of a mangled name. If there is a 2814 // deferred decl with this name, remember that we need to emit it at the end 2815 // of the file. 2816 auto DDI = DeferredDecls.find(MangledName); 2817 if (DDI != DeferredDecls.end()) { 2818 // Move the potentially referenced deferred decl to the 2819 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2820 // don't need it anymore). 2821 addDeferredDeclToEmit(DDI->second); 2822 DeferredDecls.erase(DDI); 2823 2824 // Otherwise, there are cases we have to worry about where we're 2825 // using a declaration for which we must emit a definition but where 2826 // we might not find a top-level definition: 2827 // - member functions defined inline in their classes 2828 // - friend functions defined inline in some class 2829 // - special member functions with implicit definitions 2830 // If we ever change our AST traversal to walk into class methods, 2831 // this will be unnecessary. 2832 // 2833 // We also don't emit a definition for a function if it's going to be an 2834 // entry in a vtable, unless it's already marked as used. 2835 } else if (getLangOpts().CPlusPlus && D) { 2836 // Look for a declaration that's lexically in a record. 2837 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2838 FD = FD->getPreviousDecl()) { 2839 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2840 if (FD->doesThisDeclarationHaveABody()) { 2841 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2842 break; 2843 } 2844 } 2845 } 2846 } 2847 } 2848 2849 // Make sure the result is of the requested type. 2850 if (!IsIncompleteFunction) { 2851 assert(F->getType()->getElementType() == Ty); 2852 return F; 2853 } 2854 2855 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2856 return llvm::ConstantExpr::getBitCast(F, PTy); 2857 } 2858 2859 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2860 /// non-null, then this function will use the specified type if it has to 2861 /// create it (this occurs when we see a definition of the function). 2862 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2863 llvm::Type *Ty, 2864 bool ForVTable, 2865 bool DontDefer, 2866 ForDefinition_t IsForDefinition) { 2867 // If there was no specific requested type, just convert it now. 2868 if (!Ty) { 2869 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2870 auto CanonTy = Context.getCanonicalType(FD->getType()); 2871 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2872 } 2873 2874 // Devirtualized destructor calls may come through here instead of via 2875 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2876 // of the complete destructor when necessary. 2877 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2878 if (getTarget().getCXXABI().isMicrosoft() && 2879 GD.getDtorType() == Dtor_Complete && 2880 DD->getParent()->getNumVBases() == 0) 2881 GD = GlobalDecl(DD, Dtor_Base); 2882 } 2883 2884 StringRef MangledName = getMangledName(GD); 2885 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2886 /*IsThunk=*/false, llvm::AttributeList(), 2887 IsForDefinition); 2888 } 2889 2890 static const FunctionDecl * 2891 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2892 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2893 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2894 2895 IdentifierInfo &CII = C.Idents.get(Name); 2896 for (const auto &Result : DC->lookup(&CII)) 2897 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2898 return FD; 2899 2900 if (!C.getLangOpts().CPlusPlus) 2901 return nullptr; 2902 2903 // Demangle the premangled name from getTerminateFn() 2904 IdentifierInfo &CXXII = 2905 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2906 ? C.Idents.get("terminate") 2907 : C.Idents.get(Name); 2908 2909 for (const auto &N : {"__cxxabiv1", "std"}) { 2910 IdentifierInfo &NS = C.Idents.get(N); 2911 for (const auto &Result : DC->lookup(&NS)) { 2912 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2913 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2914 for (const auto &Result : LSD->lookup(&NS)) 2915 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2916 break; 2917 2918 if (ND) 2919 for (const auto &Result : ND->lookup(&CXXII)) 2920 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2921 return FD; 2922 } 2923 } 2924 2925 return nullptr; 2926 } 2927 2928 /// CreateRuntimeFunction - Create a new runtime function with the specified 2929 /// type and name. 2930 llvm::Constant * 2931 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2932 llvm::AttributeList ExtraAttrs, 2933 bool Local) { 2934 llvm::Constant *C = 2935 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2936 /*DontDefer=*/false, /*IsThunk=*/false, 2937 ExtraAttrs); 2938 2939 if (auto *F = dyn_cast<llvm::Function>(C)) { 2940 if (F->empty()) { 2941 F->setCallingConv(getRuntimeCC()); 2942 2943 if (!Local && getTriple().isOSBinFormatCOFF() && 2944 !getCodeGenOpts().LTOVisibilityPublicStd && 2945 !getTriple().isWindowsGNUEnvironment()) { 2946 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2947 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2948 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2949 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2950 } 2951 } 2952 setDSOLocal(F); 2953 } 2954 } 2955 2956 return C; 2957 } 2958 2959 /// CreateBuiltinFunction - Create a new builtin function with the specified 2960 /// type and name. 2961 llvm::Constant * 2962 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2963 llvm::AttributeList ExtraAttrs) { 2964 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2965 } 2966 2967 /// isTypeConstant - Determine whether an object of this type can be emitted 2968 /// as a constant. 2969 /// 2970 /// If ExcludeCtor is true, the duration when the object's constructor runs 2971 /// will not be considered. The caller will need to verify that the object is 2972 /// not written to during its construction. 2973 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2974 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2975 return false; 2976 2977 if (Context.getLangOpts().CPlusPlus) { 2978 if (const CXXRecordDecl *Record 2979 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2980 return ExcludeCtor && !Record->hasMutableFields() && 2981 Record->hasTrivialDestructor(); 2982 } 2983 2984 return true; 2985 } 2986 2987 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2988 /// create and return an llvm GlobalVariable with the specified type. If there 2989 /// is something in the module with the specified name, return it potentially 2990 /// bitcasted to the right type. 2991 /// 2992 /// If D is non-null, it specifies a decl that correspond to this. This is used 2993 /// to set the attributes on the global when it is first created. 2994 /// 2995 /// If IsForDefinition is true, it is guaranteed that an actual global with 2996 /// type Ty will be returned, not conversion of a variable with the same 2997 /// mangled name but some other type. 2998 llvm::Constant * 2999 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3000 llvm::PointerType *Ty, 3001 const VarDecl *D, 3002 ForDefinition_t IsForDefinition) { 3003 // Lookup the entry, lazily creating it if necessary. 3004 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3005 if (Entry) { 3006 if (WeakRefReferences.erase(Entry)) { 3007 if (D && !D->hasAttr<WeakAttr>()) 3008 Entry->setLinkage(llvm::Function::ExternalLinkage); 3009 } 3010 3011 // Handle dropped DLL attributes. 3012 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3013 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3014 3015 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3016 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3017 3018 if (Entry->getType() == Ty) 3019 return Entry; 3020 3021 // If there are two attempts to define the same mangled name, issue an 3022 // error. 3023 if (IsForDefinition && !Entry->isDeclaration()) { 3024 GlobalDecl OtherGD; 3025 const VarDecl *OtherD; 3026 3027 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3028 // to make sure that we issue an error only once. 3029 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3030 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3031 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3032 OtherD->hasInit() && 3033 DiagnosedConflictingDefinitions.insert(D).second) { 3034 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3035 << MangledName; 3036 getDiags().Report(OtherGD.getDecl()->getLocation(), 3037 diag::note_previous_definition); 3038 } 3039 } 3040 3041 // Make sure the result is of the correct type. 3042 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3043 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3044 3045 // (If global is requested for a definition, we always need to create a new 3046 // global, not just return a bitcast.) 3047 if (!IsForDefinition) 3048 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3049 } 3050 3051 auto AddrSpace = GetGlobalVarAddressSpace(D); 3052 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3053 3054 auto *GV = new llvm::GlobalVariable( 3055 getModule(), Ty->getElementType(), false, 3056 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3057 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3058 3059 // If we already created a global with the same mangled name (but different 3060 // type) before, take its name and remove it from its parent. 3061 if (Entry) { 3062 GV->takeName(Entry); 3063 3064 if (!Entry->use_empty()) { 3065 llvm::Constant *NewPtrForOldDecl = 3066 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3067 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3068 } 3069 3070 Entry->eraseFromParent(); 3071 } 3072 3073 // This is the first use or definition of a mangled name. If there is a 3074 // deferred decl with this name, remember that we need to emit it at the end 3075 // of the file. 3076 auto DDI = DeferredDecls.find(MangledName); 3077 if (DDI != DeferredDecls.end()) { 3078 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3079 // list, and remove it from DeferredDecls (since we don't need it anymore). 3080 addDeferredDeclToEmit(DDI->second); 3081 DeferredDecls.erase(DDI); 3082 } 3083 3084 // Handle things which are present even on external declarations. 3085 if (D) { 3086 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3087 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3088 3089 // FIXME: This code is overly simple and should be merged with other global 3090 // handling. 3091 GV->setConstant(isTypeConstant(D->getType(), false)); 3092 3093 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3094 3095 setLinkageForGV(GV, D); 3096 3097 if (D->getTLSKind()) { 3098 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3099 CXXThreadLocals.push_back(D); 3100 setTLSMode(GV, *D); 3101 } 3102 3103 setGVProperties(GV, D); 3104 3105 // If required by the ABI, treat declarations of static data members with 3106 // inline initializers as definitions. 3107 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3108 EmitGlobalVarDefinition(D); 3109 } 3110 3111 // Emit section information for extern variables. 3112 if (D->hasExternalStorage()) { 3113 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3114 GV->setSection(SA->getName()); 3115 } 3116 3117 // Handle XCore specific ABI requirements. 3118 if (getTriple().getArch() == llvm::Triple::xcore && 3119 D->getLanguageLinkage() == CLanguageLinkage && 3120 D->getType().isConstant(Context) && 3121 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3122 GV->setSection(".cp.rodata"); 3123 3124 // Check if we a have a const declaration with an initializer, we may be 3125 // able to emit it as available_externally to expose it's value to the 3126 // optimizer. 3127 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3128 D->getType().isConstQualified() && !GV->hasInitializer() && 3129 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3130 const auto *Record = 3131 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3132 bool HasMutableFields = Record && Record->hasMutableFields(); 3133 if (!HasMutableFields) { 3134 const VarDecl *InitDecl; 3135 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3136 if (InitExpr) { 3137 ConstantEmitter emitter(*this); 3138 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3139 if (Init) { 3140 auto *InitType = Init->getType(); 3141 if (GV->getType()->getElementType() != InitType) { 3142 // The type of the initializer does not match the definition. 3143 // This happens when an initializer has a different type from 3144 // the type of the global (because of padding at the end of a 3145 // structure for instance). 3146 GV->setName(StringRef()); 3147 // Make a new global with the correct type, this is now guaranteed 3148 // to work. 3149 auto *NewGV = cast<llvm::GlobalVariable>( 3150 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3151 3152 // Erase the old global, since it is no longer used. 3153 GV->eraseFromParent(); 3154 GV = NewGV; 3155 } else { 3156 GV->setInitializer(Init); 3157 GV->setConstant(true); 3158 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3159 } 3160 emitter.finalize(GV); 3161 } 3162 } 3163 } 3164 } 3165 } 3166 3167 LangAS ExpectedAS = 3168 D ? D->getType().getAddressSpace() 3169 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3170 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3171 Ty->getPointerAddressSpace()); 3172 if (AddrSpace != ExpectedAS) 3173 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3174 ExpectedAS, Ty); 3175 3176 return GV; 3177 } 3178 3179 llvm::Constant * 3180 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3181 ForDefinition_t IsForDefinition) { 3182 const Decl *D = GD.getDecl(); 3183 if (isa<CXXConstructorDecl>(D)) 3184 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3185 getFromCtorType(GD.getCtorType()), 3186 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3187 /*DontDefer=*/false, IsForDefinition); 3188 else if (isa<CXXDestructorDecl>(D)) 3189 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3190 getFromDtorType(GD.getDtorType()), 3191 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3192 /*DontDefer=*/false, IsForDefinition); 3193 else if (isa<CXXMethodDecl>(D)) { 3194 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3195 cast<CXXMethodDecl>(D)); 3196 auto Ty = getTypes().GetFunctionType(*FInfo); 3197 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3198 IsForDefinition); 3199 } else if (isa<FunctionDecl>(D)) { 3200 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3201 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3202 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3203 IsForDefinition); 3204 } else 3205 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3206 IsForDefinition); 3207 } 3208 3209 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3210 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3211 unsigned Alignment) { 3212 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3213 llvm::GlobalVariable *OldGV = nullptr; 3214 3215 if (GV) { 3216 // Check if the variable has the right type. 3217 if (GV->getType()->getElementType() == Ty) 3218 return GV; 3219 3220 // Because C++ name mangling, the only way we can end up with an already 3221 // existing global with the same name is if it has been declared extern "C". 3222 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3223 OldGV = GV; 3224 } 3225 3226 // Create a new variable. 3227 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3228 Linkage, nullptr, Name); 3229 3230 if (OldGV) { 3231 // Replace occurrences of the old variable if needed. 3232 GV->takeName(OldGV); 3233 3234 if (!OldGV->use_empty()) { 3235 llvm::Constant *NewPtrForOldDecl = 3236 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3237 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3238 } 3239 3240 OldGV->eraseFromParent(); 3241 } 3242 3243 if (supportsCOMDAT() && GV->isWeakForLinker() && 3244 !GV->hasAvailableExternallyLinkage()) 3245 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3246 3247 GV->setAlignment(Alignment); 3248 3249 return GV; 3250 } 3251 3252 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3253 /// given global variable. If Ty is non-null and if the global doesn't exist, 3254 /// then it will be created with the specified type instead of whatever the 3255 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3256 /// that an actual global with type Ty will be returned, not conversion of a 3257 /// variable with the same mangled name but some other type. 3258 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3259 llvm::Type *Ty, 3260 ForDefinition_t IsForDefinition) { 3261 assert(D->hasGlobalStorage() && "Not a global variable"); 3262 QualType ASTTy = D->getType(); 3263 if (!Ty) 3264 Ty = getTypes().ConvertTypeForMem(ASTTy); 3265 3266 llvm::PointerType *PTy = 3267 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3268 3269 StringRef MangledName = getMangledName(D); 3270 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3271 } 3272 3273 /// CreateRuntimeVariable - Create a new runtime global variable with the 3274 /// specified type and name. 3275 llvm::Constant * 3276 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3277 StringRef Name) { 3278 auto *Ret = 3279 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3280 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3281 return Ret; 3282 } 3283 3284 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3285 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3286 3287 StringRef MangledName = getMangledName(D); 3288 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3289 3290 // We already have a definition, not declaration, with the same mangled name. 3291 // Emitting of declaration is not required (and actually overwrites emitted 3292 // definition). 3293 if (GV && !GV->isDeclaration()) 3294 return; 3295 3296 // If we have not seen a reference to this variable yet, place it into the 3297 // deferred declarations table to be emitted if needed later. 3298 if (!MustBeEmitted(D) && !GV) { 3299 DeferredDecls[MangledName] = D; 3300 return; 3301 } 3302 3303 // The tentative definition is the only definition. 3304 EmitGlobalVarDefinition(D); 3305 } 3306 3307 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3308 return Context.toCharUnitsFromBits( 3309 getDataLayout().getTypeStoreSizeInBits(Ty)); 3310 } 3311 3312 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3313 LangAS AddrSpace = LangAS::Default; 3314 if (LangOpts.OpenCL) { 3315 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3316 assert(AddrSpace == LangAS::opencl_global || 3317 AddrSpace == LangAS::opencl_constant || 3318 AddrSpace == LangAS::opencl_local || 3319 AddrSpace >= LangAS::FirstTargetAddressSpace); 3320 return AddrSpace; 3321 } 3322 3323 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3324 if (D && D->hasAttr<CUDAConstantAttr>()) 3325 return LangAS::cuda_constant; 3326 else if (D && D->hasAttr<CUDASharedAttr>()) 3327 return LangAS::cuda_shared; 3328 else if (D && D->hasAttr<CUDADeviceAttr>()) 3329 return LangAS::cuda_device; 3330 else if (D && D->getType().isConstQualified()) 3331 return LangAS::cuda_constant; 3332 else 3333 return LangAS::cuda_device; 3334 } 3335 3336 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3337 } 3338 3339 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3340 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3341 if (LangOpts.OpenCL) 3342 return LangAS::opencl_constant; 3343 if (auto AS = getTarget().getConstantAddressSpace()) 3344 return AS.getValue(); 3345 return LangAS::Default; 3346 } 3347 3348 // In address space agnostic languages, string literals are in default address 3349 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3350 // emitted in constant address space in LLVM IR. To be consistent with other 3351 // parts of AST, string literal global variables in constant address space 3352 // need to be casted to default address space before being put into address 3353 // map and referenced by other part of CodeGen. 3354 // In OpenCL, string literals are in constant address space in AST, therefore 3355 // they should not be casted to default address space. 3356 static llvm::Constant * 3357 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3358 llvm::GlobalVariable *GV) { 3359 llvm::Constant *Cast = GV; 3360 if (!CGM.getLangOpts().OpenCL) { 3361 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3362 if (AS != LangAS::Default) 3363 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3364 CGM, GV, AS.getValue(), LangAS::Default, 3365 GV->getValueType()->getPointerTo( 3366 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3367 } 3368 } 3369 return Cast; 3370 } 3371 3372 template<typename SomeDecl> 3373 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3374 llvm::GlobalValue *GV) { 3375 if (!getLangOpts().CPlusPlus) 3376 return; 3377 3378 // Must have 'used' attribute, or else inline assembly can't rely on 3379 // the name existing. 3380 if (!D->template hasAttr<UsedAttr>()) 3381 return; 3382 3383 // Must have internal linkage and an ordinary name. 3384 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3385 return; 3386 3387 // Must be in an extern "C" context. Entities declared directly within 3388 // a record are not extern "C" even if the record is in such a context. 3389 const SomeDecl *First = D->getFirstDecl(); 3390 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3391 return; 3392 3393 // OK, this is an internal linkage entity inside an extern "C" linkage 3394 // specification. Make a note of that so we can give it the "expected" 3395 // mangled name if nothing else is using that name. 3396 std::pair<StaticExternCMap::iterator, bool> R = 3397 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3398 3399 // If we have multiple internal linkage entities with the same name 3400 // in extern "C" regions, none of them gets that name. 3401 if (!R.second) 3402 R.first->second = nullptr; 3403 } 3404 3405 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3406 if (!CGM.supportsCOMDAT()) 3407 return false; 3408 3409 if (D.hasAttr<SelectAnyAttr>()) 3410 return true; 3411 3412 GVALinkage Linkage; 3413 if (auto *VD = dyn_cast<VarDecl>(&D)) 3414 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3415 else 3416 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3417 3418 switch (Linkage) { 3419 case GVA_Internal: 3420 case GVA_AvailableExternally: 3421 case GVA_StrongExternal: 3422 return false; 3423 case GVA_DiscardableODR: 3424 case GVA_StrongODR: 3425 return true; 3426 } 3427 llvm_unreachable("No such linkage"); 3428 } 3429 3430 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3431 llvm::GlobalObject &GO) { 3432 if (!shouldBeInCOMDAT(*this, D)) 3433 return; 3434 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3435 } 3436 3437 /// Pass IsTentative as true if you want to create a tentative definition. 3438 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3439 bool IsTentative) { 3440 // OpenCL global variables of sampler type are translated to function calls, 3441 // therefore no need to be translated. 3442 QualType ASTTy = D->getType(); 3443 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3444 return; 3445 3446 // If this is OpenMP device, check if it is legal to emit this global 3447 // normally. 3448 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3449 OpenMPRuntime->emitTargetGlobalVariable(D)) 3450 return; 3451 3452 llvm::Constant *Init = nullptr; 3453 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3454 bool NeedsGlobalCtor = false; 3455 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3456 3457 const VarDecl *InitDecl; 3458 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3459 3460 Optional<ConstantEmitter> emitter; 3461 3462 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3463 // as part of their declaration." Sema has already checked for 3464 // error cases, so we just need to set Init to UndefValue. 3465 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3466 D->hasAttr<CUDASharedAttr>()) 3467 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3468 else if (!InitExpr) { 3469 // This is a tentative definition; tentative definitions are 3470 // implicitly initialized with { 0 }. 3471 // 3472 // Note that tentative definitions are only emitted at the end of 3473 // a translation unit, so they should never have incomplete 3474 // type. In addition, EmitTentativeDefinition makes sure that we 3475 // never attempt to emit a tentative definition if a real one 3476 // exists. A use may still exists, however, so we still may need 3477 // to do a RAUW. 3478 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3479 Init = EmitNullConstant(D->getType()); 3480 } else { 3481 initializedGlobalDecl = GlobalDecl(D); 3482 emitter.emplace(*this); 3483 Init = emitter->tryEmitForInitializer(*InitDecl); 3484 3485 if (!Init) { 3486 QualType T = InitExpr->getType(); 3487 if (D->getType()->isReferenceType()) 3488 T = D->getType(); 3489 3490 if (getLangOpts().CPlusPlus) { 3491 Init = EmitNullConstant(T); 3492 NeedsGlobalCtor = true; 3493 } else { 3494 ErrorUnsupported(D, "static initializer"); 3495 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3496 } 3497 } else { 3498 // We don't need an initializer, so remove the entry for the delayed 3499 // initializer position (just in case this entry was delayed) if we 3500 // also don't need to register a destructor. 3501 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3502 DelayedCXXInitPosition.erase(D); 3503 } 3504 } 3505 3506 llvm::Type* InitType = Init->getType(); 3507 llvm::Constant *Entry = 3508 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3509 3510 // Strip off a bitcast if we got one back. 3511 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3512 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3513 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3514 // All zero index gep. 3515 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3516 Entry = CE->getOperand(0); 3517 } 3518 3519 // Entry is now either a Function or GlobalVariable. 3520 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3521 3522 // We have a definition after a declaration with the wrong type. 3523 // We must make a new GlobalVariable* and update everything that used OldGV 3524 // (a declaration or tentative definition) with the new GlobalVariable* 3525 // (which will be a definition). 3526 // 3527 // This happens if there is a prototype for a global (e.g. 3528 // "extern int x[];") and then a definition of a different type (e.g. 3529 // "int x[10];"). This also happens when an initializer has a different type 3530 // from the type of the global (this happens with unions). 3531 if (!GV || GV->getType()->getElementType() != InitType || 3532 GV->getType()->getAddressSpace() != 3533 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3534 3535 // Move the old entry aside so that we'll create a new one. 3536 Entry->setName(StringRef()); 3537 3538 // Make a new global with the correct type, this is now guaranteed to work. 3539 GV = cast<llvm::GlobalVariable>( 3540 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3541 3542 // Replace all uses of the old global with the new global 3543 llvm::Constant *NewPtrForOldDecl = 3544 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3545 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3546 3547 // Erase the old global, since it is no longer used. 3548 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3549 } 3550 3551 MaybeHandleStaticInExternC(D, GV); 3552 3553 if (D->hasAttr<AnnotateAttr>()) 3554 AddGlobalAnnotations(D, GV); 3555 3556 // Set the llvm linkage type as appropriate. 3557 llvm::GlobalValue::LinkageTypes Linkage = 3558 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3559 3560 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3561 // the device. [...]" 3562 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3563 // __device__, declares a variable that: [...] 3564 // Is accessible from all the threads within the grid and from the host 3565 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3566 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3567 if (GV && LangOpts.CUDA) { 3568 if (LangOpts.CUDAIsDevice) { 3569 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3570 GV->setExternallyInitialized(true); 3571 } else { 3572 // Host-side shadows of external declarations of device-side 3573 // global variables become internal definitions. These have to 3574 // be internal in order to prevent name conflicts with global 3575 // host variables with the same name in a different TUs. 3576 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3577 Linkage = llvm::GlobalValue::InternalLinkage; 3578 3579 // Shadow variables and their properties must be registered 3580 // with CUDA runtime. 3581 unsigned Flags = 0; 3582 if (!D->hasDefinition()) 3583 Flags |= CGCUDARuntime::ExternDeviceVar; 3584 if (D->hasAttr<CUDAConstantAttr>()) 3585 Flags |= CGCUDARuntime::ConstantDeviceVar; 3586 getCUDARuntime().registerDeviceVar(*GV, Flags); 3587 } else if (D->hasAttr<CUDASharedAttr>()) 3588 // __shared__ variables are odd. Shadows do get created, but 3589 // they are not registered with the CUDA runtime, so they 3590 // can't really be used to access their device-side 3591 // counterparts. It's not clear yet whether it's nvcc's bug or 3592 // a feature, but we've got to do the same for compatibility. 3593 Linkage = llvm::GlobalValue::InternalLinkage; 3594 } 3595 } 3596 3597 GV->setInitializer(Init); 3598 if (emitter) emitter->finalize(GV); 3599 3600 // If it is safe to mark the global 'constant', do so now. 3601 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3602 isTypeConstant(D->getType(), true)); 3603 3604 // If it is in a read-only section, mark it 'constant'. 3605 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3606 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3607 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3608 GV->setConstant(true); 3609 } 3610 3611 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3612 3613 3614 // On Darwin, if the normal linkage of a C++ thread_local variable is 3615 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3616 // copies within a linkage unit; otherwise, the backing variable has 3617 // internal linkage and all accesses should just be calls to the 3618 // Itanium-specified entry point, which has the normal linkage of the 3619 // variable. This is to preserve the ability to change the implementation 3620 // behind the scenes. 3621 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3622 Context.getTargetInfo().getTriple().isOSDarwin() && 3623 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3624 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3625 Linkage = llvm::GlobalValue::InternalLinkage; 3626 3627 GV->setLinkage(Linkage); 3628 if (D->hasAttr<DLLImportAttr>()) 3629 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3630 else if (D->hasAttr<DLLExportAttr>()) 3631 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3632 else 3633 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3634 3635 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3636 // common vars aren't constant even if declared const. 3637 GV->setConstant(false); 3638 // Tentative definition of global variables may be initialized with 3639 // non-zero null pointers. In this case they should have weak linkage 3640 // since common linkage must have zero initializer and must not have 3641 // explicit section therefore cannot have non-zero initial value. 3642 if (!GV->getInitializer()->isNullValue()) 3643 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3644 } 3645 3646 setNonAliasAttributes(D, GV); 3647 3648 if (D->getTLSKind() && !GV->isThreadLocal()) { 3649 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3650 CXXThreadLocals.push_back(D); 3651 setTLSMode(GV, *D); 3652 } 3653 3654 maybeSetTrivialComdat(*D, *GV); 3655 3656 // Emit the initializer function if necessary. 3657 if (NeedsGlobalCtor || NeedsGlobalDtor) 3658 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3659 3660 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3661 3662 // Emit global variable debug information. 3663 if (CGDebugInfo *DI = getModuleDebugInfo()) 3664 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3665 DI->EmitGlobalVariable(GV, D); 3666 } 3667 3668 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3669 CodeGenModule &CGM, const VarDecl *D, 3670 bool NoCommon) { 3671 // Don't give variables common linkage if -fno-common was specified unless it 3672 // was overridden by a NoCommon attribute. 3673 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3674 return true; 3675 3676 // C11 6.9.2/2: 3677 // A declaration of an identifier for an object that has file scope without 3678 // an initializer, and without a storage-class specifier or with the 3679 // storage-class specifier static, constitutes a tentative definition. 3680 if (D->getInit() || D->hasExternalStorage()) 3681 return true; 3682 3683 // A variable cannot be both common and exist in a section. 3684 if (D->hasAttr<SectionAttr>()) 3685 return true; 3686 3687 // A variable cannot be both common and exist in a section. 3688 // We don't try to determine which is the right section in the front-end. 3689 // If no specialized section name is applicable, it will resort to default. 3690 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3691 D->hasAttr<PragmaClangDataSectionAttr>() || 3692 D->hasAttr<PragmaClangRodataSectionAttr>()) 3693 return true; 3694 3695 // Thread local vars aren't considered common linkage. 3696 if (D->getTLSKind()) 3697 return true; 3698 3699 // Tentative definitions marked with WeakImportAttr are true definitions. 3700 if (D->hasAttr<WeakImportAttr>()) 3701 return true; 3702 3703 // A variable cannot be both common and exist in a comdat. 3704 if (shouldBeInCOMDAT(CGM, *D)) 3705 return true; 3706 3707 // Declarations with a required alignment do not have common linkage in MSVC 3708 // mode. 3709 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3710 if (D->hasAttr<AlignedAttr>()) 3711 return true; 3712 QualType VarType = D->getType(); 3713 if (Context.isAlignmentRequired(VarType)) 3714 return true; 3715 3716 if (const auto *RT = VarType->getAs<RecordType>()) { 3717 const RecordDecl *RD = RT->getDecl(); 3718 for (const FieldDecl *FD : RD->fields()) { 3719 if (FD->isBitField()) 3720 continue; 3721 if (FD->hasAttr<AlignedAttr>()) 3722 return true; 3723 if (Context.isAlignmentRequired(FD->getType())) 3724 return true; 3725 } 3726 } 3727 } 3728 3729 return false; 3730 } 3731 3732 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3733 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3734 if (Linkage == GVA_Internal) 3735 return llvm::Function::InternalLinkage; 3736 3737 if (D->hasAttr<WeakAttr>()) { 3738 if (IsConstantVariable) 3739 return llvm::GlobalVariable::WeakODRLinkage; 3740 else 3741 return llvm::GlobalVariable::WeakAnyLinkage; 3742 } 3743 3744 if (const auto *FD = D->getAsFunction()) 3745 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 3746 return llvm::GlobalVariable::LinkOnceAnyLinkage; 3747 3748 // We are guaranteed to have a strong definition somewhere else, 3749 // so we can use available_externally linkage. 3750 if (Linkage == GVA_AvailableExternally) 3751 return llvm::GlobalValue::AvailableExternallyLinkage; 3752 3753 // Note that Apple's kernel linker doesn't support symbol 3754 // coalescing, so we need to avoid linkonce and weak linkages there. 3755 // Normally, this means we just map to internal, but for explicit 3756 // instantiations we'll map to external. 3757 3758 // In C++, the compiler has to emit a definition in every translation unit 3759 // that references the function. We should use linkonce_odr because 3760 // a) if all references in this translation unit are optimized away, we 3761 // don't need to codegen it. b) if the function persists, it needs to be 3762 // merged with other definitions. c) C++ has the ODR, so we know the 3763 // definition is dependable. 3764 if (Linkage == GVA_DiscardableODR) 3765 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3766 : llvm::Function::InternalLinkage; 3767 3768 // An explicit instantiation of a template has weak linkage, since 3769 // explicit instantiations can occur in multiple translation units 3770 // and must all be equivalent. However, we are not allowed to 3771 // throw away these explicit instantiations. 3772 // 3773 // We don't currently support CUDA device code spread out across multiple TUs, 3774 // so say that CUDA templates are either external (for kernels) or internal. 3775 // This lets llvm perform aggressive inter-procedural optimizations. 3776 if (Linkage == GVA_StrongODR) { 3777 if (Context.getLangOpts().AppleKext) 3778 return llvm::Function::ExternalLinkage; 3779 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3780 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3781 : llvm::Function::InternalLinkage; 3782 return llvm::Function::WeakODRLinkage; 3783 } 3784 3785 // C++ doesn't have tentative definitions and thus cannot have common 3786 // linkage. 3787 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3788 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3789 CodeGenOpts.NoCommon)) 3790 return llvm::GlobalVariable::CommonLinkage; 3791 3792 // selectany symbols are externally visible, so use weak instead of 3793 // linkonce. MSVC optimizes away references to const selectany globals, so 3794 // all definitions should be the same and ODR linkage should be used. 3795 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3796 if (D->hasAttr<SelectAnyAttr>()) 3797 return llvm::GlobalVariable::WeakODRLinkage; 3798 3799 // Otherwise, we have strong external linkage. 3800 assert(Linkage == GVA_StrongExternal); 3801 return llvm::GlobalVariable::ExternalLinkage; 3802 } 3803 3804 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3805 const VarDecl *VD, bool IsConstant) { 3806 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3807 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3808 } 3809 3810 /// Replace the uses of a function that was declared with a non-proto type. 3811 /// We want to silently drop extra arguments from call sites 3812 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3813 llvm::Function *newFn) { 3814 // Fast path. 3815 if (old->use_empty()) return; 3816 3817 llvm::Type *newRetTy = newFn->getReturnType(); 3818 SmallVector<llvm::Value*, 4> newArgs; 3819 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3820 3821 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3822 ui != ue; ) { 3823 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3824 llvm::User *user = use->getUser(); 3825 3826 // Recognize and replace uses of bitcasts. Most calls to 3827 // unprototyped functions will use bitcasts. 3828 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3829 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3830 replaceUsesOfNonProtoConstant(bitcast, newFn); 3831 continue; 3832 } 3833 3834 // Recognize calls to the function. 3835 llvm::CallSite callSite(user); 3836 if (!callSite) continue; 3837 if (!callSite.isCallee(&*use)) continue; 3838 3839 // If the return types don't match exactly, then we can't 3840 // transform this call unless it's dead. 3841 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3842 continue; 3843 3844 // Get the call site's attribute list. 3845 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3846 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3847 3848 // If the function was passed too few arguments, don't transform. 3849 unsigned newNumArgs = newFn->arg_size(); 3850 if (callSite.arg_size() < newNumArgs) continue; 3851 3852 // If extra arguments were passed, we silently drop them. 3853 // If any of the types mismatch, we don't transform. 3854 unsigned argNo = 0; 3855 bool dontTransform = false; 3856 for (llvm::Argument &A : newFn->args()) { 3857 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3858 dontTransform = true; 3859 break; 3860 } 3861 3862 // Add any parameter attributes. 3863 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3864 argNo++; 3865 } 3866 if (dontTransform) 3867 continue; 3868 3869 // Okay, we can transform this. Create the new call instruction and copy 3870 // over the required information. 3871 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3872 3873 // Copy over any operand bundles. 3874 callSite.getOperandBundlesAsDefs(newBundles); 3875 3876 llvm::CallSite newCall; 3877 if (callSite.isCall()) { 3878 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3879 callSite.getInstruction()); 3880 } else { 3881 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3882 newCall = llvm::InvokeInst::Create(newFn, 3883 oldInvoke->getNormalDest(), 3884 oldInvoke->getUnwindDest(), 3885 newArgs, newBundles, "", 3886 callSite.getInstruction()); 3887 } 3888 newArgs.clear(); // for the next iteration 3889 3890 if (!newCall->getType()->isVoidTy()) 3891 newCall->takeName(callSite.getInstruction()); 3892 newCall.setAttributes(llvm::AttributeList::get( 3893 newFn->getContext(), oldAttrs.getFnAttributes(), 3894 oldAttrs.getRetAttributes(), newArgAttrs)); 3895 newCall.setCallingConv(callSite.getCallingConv()); 3896 3897 // Finally, remove the old call, replacing any uses with the new one. 3898 if (!callSite->use_empty()) 3899 callSite->replaceAllUsesWith(newCall.getInstruction()); 3900 3901 // Copy debug location attached to CI. 3902 if (callSite->getDebugLoc()) 3903 newCall->setDebugLoc(callSite->getDebugLoc()); 3904 3905 callSite->eraseFromParent(); 3906 } 3907 } 3908 3909 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3910 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3911 /// existing call uses of the old function in the module, this adjusts them to 3912 /// call the new function directly. 3913 /// 3914 /// This is not just a cleanup: the always_inline pass requires direct calls to 3915 /// functions to be able to inline them. If there is a bitcast in the way, it 3916 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3917 /// run at -O0. 3918 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3919 llvm::Function *NewFn) { 3920 // If we're redefining a global as a function, don't transform it. 3921 if (!isa<llvm::Function>(Old)) return; 3922 3923 replaceUsesOfNonProtoConstant(Old, NewFn); 3924 } 3925 3926 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3927 auto DK = VD->isThisDeclarationADefinition(); 3928 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3929 return; 3930 3931 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3932 // If we have a definition, this might be a deferred decl. If the 3933 // instantiation is explicit, make sure we emit it at the end. 3934 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3935 GetAddrOfGlobalVar(VD); 3936 3937 EmitTopLevelDecl(VD); 3938 } 3939 3940 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3941 llvm::GlobalValue *GV) { 3942 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3943 3944 // Compute the function info and LLVM type. 3945 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3946 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3947 3948 // Get or create the prototype for the function. 3949 if (!GV || (GV->getType()->getElementType() != Ty)) 3950 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3951 /*DontDefer=*/true, 3952 ForDefinition)); 3953 3954 // Already emitted. 3955 if (!GV->isDeclaration()) 3956 return; 3957 3958 // We need to set linkage and visibility on the function before 3959 // generating code for it because various parts of IR generation 3960 // want to propagate this information down (e.g. to local static 3961 // declarations). 3962 auto *Fn = cast<llvm::Function>(GV); 3963 setFunctionLinkage(GD, Fn); 3964 3965 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3966 setGVProperties(Fn, GD); 3967 3968 MaybeHandleStaticInExternC(D, Fn); 3969 3970 3971 maybeSetTrivialComdat(*D, *Fn); 3972 3973 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3974 3975 setNonAliasAttributes(GD, Fn); 3976 SetLLVMFunctionAttributesForDefinition(D, Fn); 3977 3978 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3979 AddGlobalCtor(Fn, CA->getPriority()); 3980 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3981 AddGlobalDtor(Fn, DA->getPriority()); 3982 if (D->hasAttr<AnnotateAttr>()) 3983 AddGlobalAnnotations(D, Fn); 3984 } 3985 3986 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3987 const auto *D = cast<ValueDecl>(GD.getDecl()); 3988 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3989 assert(AA && "Not an alias?"); 3990 3991 StringRef MangledName = getMangledName(GD); 3992 3993 if (AA->getAliasee() == MangledName) { 3994 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3995 return; 3996 } 3997 3998 // If there is a definition in the module, then it wins over the alias. 3999 // This is dubious, but allow it to be safe. Just ignore the alias. 4000 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4001 if (Entry && !Entry->isDeclaration()) 4002 return; 4003 4004 Aliases.push_back(GD); 4005 4006 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4007 4008 // Create a reference to the named value. This ensures that it is emitted 4009 // if a deferred decl. 4010 llvm::Constant *Aliasee; 4011 if (isa<llvm::FunctionType>(DeclTy)) 4012 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4013 /*ForVTable=*/false); 4014 else 4015 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4016 llvm::PointerType::getUnqual(DeclTy), 4017 /*D=*/nullptr); 4018 4019 // Create the new alias itself, but don't set a name yet. 4020 auto *GA = llvm::GlobalAlias::create( 4021 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 4022 4023 if (Entry) { 4024 if (GA->getAliasee() == Entry) { 4025 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4026 return; 4027 } 4028 4029 assert(Entry->isDeclaration()); 4030 4031 // If there is a declaration in the module, then we had an extern followed 4032 // by the alias, as in: 4033 // extern int test6(); 4034 // ... 4035 // int test6() __attribute__((alias("test7"))); 4036 // 4037 // Remove it and replace uses of it with the alias. 4038 GA->takeName(Entry); 4039 4040 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4041 Entry->getType())); 4042 Entry->eraseFromParent(); 4043 } else { 4044 GA->setName(MangledName); 4045 } 4046 4047 // Set attributes which are particular to an alias; this is a 4048 // specialization of the attributes which may be set on a global 4049 // variable/function. 4050 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4051 D->isWeakImported()) { 4052 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4053 } 4054 4055 if (const auto *VD = dyn_cast<VarDecl>(D)) 4056 if (VD->getTLSKind()) 4057 setTLSMode(GA, *VD); 4058 4059 SetCommonAttributes(GD, GA); 4060 } 4061 4062 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4063 const auto *D = cast<ValueDecl>(GD.getDecl()); 4064 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4065 assert(IFA && "Not an ifunc?"); 4066 4067 StringRef MangledName = getMangledName(GD); 4068 4069 if (IFA->getResolver() == MangledName) { 4070 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4071 return; 4072 } 4073 4074 // Report an error if some definition overrides ifunc. 4075 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4076 if (Entry && !Entry->isDeclaration()) { 4077 GlobalDecl OtherGD; 4078 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4079 DiagnosedConflictingDefinitions.insert(GD).second) { 4080 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4081 << MangledName; 4082 Diags.Report(OtherGD.getDecl()->getLocation(), 4083 diag::note_previous_definition); 4084 } 4085 return; 4086 } 4087 4088 Aliases.push_back(GD); 4089 4090 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4091 llvm::Constant *Resolver = 4092 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4093 /*ForVTable=*/false); 4094 llvm::GlobalIFunc *GIF = 4095 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4096 "", Resolver, &getModule()); 4097 if (Entry) { 4098 if (GIF->getResolver() == Entry) { 4099 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4100 return; 4101 } 4102 assert(Entry->isDeclaration()); 4103 4104 // If there is a declaration in the module, then we had an extern followed 4105 // by the ifunc, as in: 4106 // extern int test(); 4107 // ... 4108 // int test() __attribute__((ifunc("resolver"))); 4109 // 4110 // Remove it and replace uses of it with the ifunc. 4111 GIF->takeName(Entry); 4112 4113 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4114 Entry->getType())); 4115 Entry->eraseFromParent(); 4116 } else 4117 GIF->setName(MangledName); 4118 4119 SetCommonAttributes(GD, GIF); 4120 } 4121 4122 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4123 ArrayRef<llvm::Type*> Tys) { 4124 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4125 Tys); 4126 } 4127 4128 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4129 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4130 const StringLiteral *Literal, bool TargetIsLSB, 4131 bool &IsUTF16, unsigned &StringLength) { 4132 StringRef String = Literal->getString(); 4133 unsigned NumBytes = String.size(); 4134 4135 // Check for simple case. 4136 if (!Literal->containsNonAsciiOrNull()) { 4137 StringLength = NumBytes; 4138 return *Map.insert(std::make_pair(String, nullptr)).first; 4139 } 4140 4141 // Otherwise, convert the UTF8 literals into a string of shorts. 4142 IsUTF16 = true; 4143 4144 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4145 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4146 llvm::UTF16 *ToPtr = &ToBuf[0]; 4147 4148 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4149 ToPtr + NumBytes, llvm::strictConversion); 4150 4151 // ConvertUTF8toUTF16 returns the length in ToPtr. 4152 StringLength = ToPtr - &ToBuf[0]; 4153 4154 // Add an explicit null. 4155 *ToPtr = 0; 4156 return *Map.insert(std::make_pair( 4157 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4158 (StringLength + 1) * 2), 4159 nullptr)).first; 4160 } 4161 4162 ConstantAddress 4163 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4164 unsigned StringLength = 0; 4165 bool isUTF16 = false; 4166 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4167 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4168 getDataLayout().isLittleEndian(), isUTF16, 4169 StringLength); 4170 4171 if (auto *C = Entry.second) 4172 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4173 4174 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4175 llvm::Constant *Zeros[] = { Zero, Zero }; 4176 4177 const ASTContext &Context = getContext(); 4178 const llvm::Triple &Triple = getTriple(); 4179 4180 const auto CFRuntime = getLangOpts().CFRuntime; 4181 const bool IsSwiftABI = 4182 static_cast<unsigned>(CFRuntime) >= 4183 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4184 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4185 4186 // If we don't already have it, get __CFConstantStringClassReference. 4187 if (!CFConstantStringClassRef) { 4188 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4189 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4190 Ty = llvm::ArrayType::get(Ty, 0); 4191 4192 switch (CFRuntime) { 4193 default: break; 4194 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4195 case LangOptions::CoreFoundationABI::Swift5_0: 4196 CFConstantStringClassName = 4197 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4198 : "$s10Foundation19_NSCFConstantStringCN"; 4199 Ty = IntPtrTy; 4200 break; 4201 case LangOptions::CoreFoundationABI::Swift4_2: 4202 CFConstantStringClassName = 4203 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4204 : "$S10Foundation19_NSCFConstantStringCN"; 4205 Ty = IntPtrTy; 4206 break; 4207 case LangOptions::CoreFoundationABI::Swift4_1: 4208 CFConstantStringClassName = 4209 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4210 : "__T010Foundation19_NSCFConstantStringCN"; 4211 Ty = IntPtrTy; 4212 break; 4213 } 4214 4215 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4216 4217 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4218 llvm::GlobalValue *GV = nullptr; 4219 4220 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4221 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4222 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4223 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4224 4225 const VarDecl *VD = nullptr; 4226 for (const auto &Result : DC->lookup(&II)) 4227 if ((VD = dyn_cast<VarDecl>(Result))) 4228 break; 4229 4230 if (Triple.isOSBinFormatELF()) { 4231 if (!VD) 4232 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4233 } else { 4234 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4235 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4236 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4237 else 4238 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4239 } 4240 4241 setDSOLocal(GV); 4242 } 4243 } 4244 4245 // Decay array -> ptr 4246 CFConstantStringClassRef = 4247 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4248 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4249 } 4250 4251 QualType CFTy = Context.getCFConstantStringType(); 4252 4253 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4254 4255 ConstantInitBuilder Builder(*this); 4256 auto Fields = Builder.beginStruct(STy); 4257 4258 // Class pointer. 4259 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4260 4261 // Flags. 4262 if (IsSwiftABI) { 4263 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4264 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4265 } else { 4266 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4267 } 4268 4269 // String pointer. 4270 llvm::Constant *C = nullptr; 4271 if (isUTF16) { 4272 auto Arr = llvm::makeArrayRef( 4273 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4274 Entry.first().size() / 2); 4275 C = llvm::ConstantDataArray::get(VMContext, Arr); 4276 } else { 4277 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4278 } 4279 4280 // Note: -fwritable-strings doesn't make the backing store strings of 4281 // CFStrings writable. (See <rdar://problem/10657500>) 4282 auto *GV = 4283 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4284 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4285 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4286 // Don't enforce the target's minimum global alignment, since the only use 4287 // of the string is via this class initializer. 4288 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4289 : Context.getTypeAlignInChars(Context.CharTy); 4290 GV->setAlignment(Align.getQuantity()); 4291 4292 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4293 // Without it LLVM can merge the string with a non unnamed_addr one during 4294 // LTO. Doing that changes the section it ends in, which surprises ld64. 4295 if (Triple.isOSBinFormatMachO()) 4296 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4297 : "__TEXT,__cstring,cstring_literals"); 4298 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4299 // the static linker to adjust permissions to read-only later on. 4300 else if (Triple.isOSBinFormatELF()) 4301 GV->setSection(".rodata"); 4302 4303 // String. 4304 llvm::Constant *Str = 4305 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4306 4307 if (isUTF16) 4308 // Cast the UTF16 string to the correct type. 4309 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4310 Fields.add(Str); 4311 4312 // String length. 4313 llvm::IntegerType *LengthTy = 4314 llvm::IntegerType::get(getModule().getContext(), 4315 Context.getTargetInfo().getLongWidth()); 4316 if (IsSwiftABI) { 4317 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4318 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4319 LengthTy = Int32Ty; 4320 else 4321 LengthTy = IntPtrTy; 4322 } 4323 Fields.addInt(LengthTy, StringLength); 4324 4325 CharUnits Alignment = getPointerAlign(); 4326 4327 // The struct. 4328 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4329 /*isConstant=*/false, 4330 llvm::GlobalVariable::PrivateLinkage); 4331 switch (Triple.getObjectFormat()) { 4332 case llvm::Triple::UnknownObjectFormat: 4333 llvm_unreachable("unknown file format"); 4334 case llvm::Triple::COFF: 4335 case llvm::Triple::ELF: 4336 case llvm::Triple::Wasm: 4337 GV->setSection("cfstring"); 4338 break; 4339 case llvm::Triple::MachO: 4340 GV->setSection("__DATA,__cfstring"); 4341 break; 4342 } 4343 Entry.second = GV; 4344 4345 return ConstantAddress(GV, Alignment); 4346 } 4347 4348 bool CodeGenModule::getExpressionLocationsEnabled() const { 4349 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4350 } 4351 4352 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4353 if (ObjCFastEnumerationStateType.isNull()) { 4354 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4355 D->startDefinition(); 4356 4357 QualType FieldTypes[] = { 4358 Context.UnsignedLongTy, 4359 Context.getPointerType(Context.getObjCIdType()), 4360 Context.getPointerType(Context.UnsignedLongTy), 4361 Context.getConstantArrayType(Context.UnsignedLongTy, 4362 llvm::APInt(32, 5), ArrayType::Normal, 0) 4363 }; 4364 4365 for (size_t i = 0; i < 4; ++i) { 4366 FieldDecl *Field = FieldDecl::Create(Context, 4367 D, 4368 SourceLocation(), 4369 SourceLocation(), nullptr, 4370 FieldTypes[i], /*TInfo=*/nullptr, 4371 /*BitWidth=*/nullptr, 4372 /*Mutable=*/false, 4373 ICIS_NoInit); 4374 Field->setAccess(AS_public); 4375 D->addDecl(Field); 4376 } 4377 4378 D->completeDefinition(); 4379 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4380 } 4381 4382 return ObjCFastEnumerationStateType; 4383 } 4384 4385 llvm::Constant * 4386 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4387 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4388 4389 // Don't emit it as the address of the string, emit the string data itself 4390 // as an inline array. 4391 if (E->getCharByteWidth() == 1) { 4392 SmallString<64> Str(E->getString()); 4393 4394 // Resize the string to the right size, which is indicated by its type. 4395 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4396 Str.resize(CAT->getSize().getZExtValue()); 4397 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4398 } 4399 4400 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4401 llvm::Type *ElemTy = AType->getElementType(); 4402 unsigned NumElements = AType->getNumElements(); 4403 4404 // Wide strings have either 2-byte or 4-byte elements. 4405 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4406 SmallVector<uint16_t, 32> Elements; 4407 Elements.reserve(NumElements); 4408 4409 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4410 Elements.push_back(E->getCodeUnit(i)); 4411 Elements.resize(NumElements); 4412 return llvm::ConstantDataArray::get(VMContext, Elements); 4413 } 4414 4415 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4416 SmallVector<uint32_t, 32> Elements; 4417 Elements.reserve(NumElements); 4418 4419 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4420 Elements.push_back(E->getCodeUnit(i)); 4421 Elements.resize(NumElements); 4422 return llvm::ConstantDataArray::get(VMContext, Elements); 4423 } 4424 4425 static llvm::GlobalVariable * 4426 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4427 CodeGenModule &CGM, StringRef GlobalName, 4428 CharUnits Alignment) { 4429 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4430 CGM.getStringLiteralAddressSpace()); 4431 4432 llvm::Module &M = CGM.getModule(); 4433 // Create a global variable for this string 4434 auto *GV = new llvm::GlobalVariable( 4435 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4436 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4437 GV->setAlignment(Alignment.getQuantity()); 4438 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4439 if (GV->isWeakForLinker()) { 4440 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4441 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4442 } 4443 CGM.setDSOLocal(GV); 4444 4445 return GV; 4446 } 4447 4448 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4449 /// constant array for the given string literal. 4450 ConstantAddress 4451 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4452 StringRef Name) { 4453 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4454 4455 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4456 llvm::GlobalVariable **Entry = nullptr; 4457 if (!LangOpts.WritableStrings) { 4458 Entry = &ConstantStringMap[C]; 4459 if (auto GV = *Entry) { 4460 if (Alignment.getQuantity() > GV->getAlignment()) 4461 GV->setAlignment(Alignment.getQuantity()); 4462 return ConstantAddress(GV, Alignment); 4463 } 4464 } 4465 4466 SmallString<256> MangledNameBuffer; 4467 StringRef GlobalVariableName; 4468 llvm::GlobalValue::LinkageTypes LT; 4469 4470 // Mangle the string literal if that's how the ABI merges duplicate strings. 4471 // Don't do it if they are writable, since we don't want writes in one TU to 4472 // affect strings in another. 4473 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 4474 !LangOpts.WritableStrings) { 4475 llvm::raw_svector_ostream Out(MangledNameBuffer); 4476 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4477 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4478 GlobalVariableName = MangledNameBuffer; 4479 } else { 4480 LT = llvm::GlobalValue::PrivateLinkage; 4481 GlobalVariableName = Name; 4482 } 4483 4484 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4485 if (Entry) 4486 *Entry = GV; 4487 4488 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4489 QualType()); 4490 4491 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4492 Alignment); 4493 } 4494 4495 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4496 /// array for the given ObjCEncodeExpr node. 4497 ConstantAddress 4498 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4499 std::string Str; 4500 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4501 4502 return GetAddrOfConstantCString(Str); 4503 } 4504 4505 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4506 /// the literal and a terminating '\0' character. 4507 /// The result has pointer to array type. 4508 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4509 const std::string &Str, const char *GlobalName) { 4510 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4511 CharUnits Alignment = 4512 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4513 4514 llvm::Constant *C = 4515 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4516 4517 // Don't share any string literals if strings aren't constant. 4518 llvm::GlobalVariable **Entry = nullptr; 4519 if (!LangOpts.WritableStrings) { 4520 Entry = &ConstantStringMap[C]; 4521 if (auto GV = *Entry) { 4522 if (Alignment.getQuantity() > GV->getAlignment()) 4523 GV->setAlignment(Alignment.getQuantity()); 4524 return ConstantAddress(GV, Alignment); 4525 } 4526 } 4527 4528 // Get the default prefix if a name wasn't specified. 4529 if (!GlobalName) 4530 GlobalName = ".str"; 4531 // Create a global variable for this. 4532 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4533 GlobalName, Alignment); 4534 if (Entry) 4535 *Entry = GV; 4536 4537 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4538 Alignment); 4539 } 4540 4541 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4542 const MaterializeTemporaryExpr *E, const Expr *Init) { 4543 assert((E->getStorageDuration() == SD_Static || 4544 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4545 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4546 4547 // If we're not materializing a subobject of the temporary, keep the 4548 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4549 QualType MaterializedType = Init->getType(); 4550 if (Init == E->GetTemporaryExpr()) 4551 MaterializedType = E->getType(); 4552 4553 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4554 4555 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4556 return ConstantAddress(Slot, Align); 4557 4558 // FIXME: If an externally-visible declaration extends multiple temporaries, 4559 // we need to give each temporary the same name in every translation unit (and 4560 // we also need to make the temporaries externally-visible). 4561 SmallString<256> Name; 4562 llvm::raw_svector_ostream Out(Name); 4563 getCXXABI().getMangleContext().mangleReferenceTemporary( 4564 VD, E->getManglingNumber(), Out); 4565 4566 APValue *Value = nullptr; 4567 if (E->getStorageDuration() == SD_Static) { 4568 // We might have a cached constant initializer for this temporary. Note 4569 // that this might have a different value from the value computed by 4570 // evaluating the initializer if the surrounding constant expression 4571 // modifies the temporary. 4572 Value = getContext().getMaterializedTemporaryValue(E, false); 4573 if (Value && Value->isUninit()) 4574 Value = nullptr; 4575 } 4576 4577 // Try evaluating it now, it might have a constant initializer. 4578 Expr::EvalResult EvalResult; 4579 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4580 !EvalResult.hasSideEffects()) 4581 Value = &EvalResult.Val; 4582 4583 LangAS AddrSpace = 4584 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4585 4586 Optional<ConstantEmitter> emitter; 4587 llvm::Constant *InitialValue = nullptr; 4588 bool Constant = false; 4589 llvm::Type *Type; 4590 if (Value) { 4591 // The temporary has a constant initializer, use it. 4592 emitter.emplace(*this); 4593 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4594 MaterializedType); 4595 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4596 Type = InitialValue->getType(); 4597 } else { 4598 // No initializer, the initialization will be provided when we 4599 // initialize the declaration which performed lifetime extension. 4600 Type = getTypes().ConvertTypeForMem(MaterializedType); 4601 } 4602 4603 // Create a global variable for this lifetime-extended temporary. 4604 llvm::GlobalValue::LinkageTypes Linkage = 4605 getLLVMLinkageVarDefinition(VD, Constant); 4606 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4607 const VarDecl *InitVD; 4608 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4609 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4610 // Temporaries defined inside a class get linkonce_odr linkage because the 4611 // class can be defined in multiple translation units. 4612 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4613 } else { 4614 // There is no need for this temporary to have external linkage if the 4615 // VarDecl has external linkage. 4616 Linkage = llvm::GlobalVariable::InternalLinkage; 4617 } 4618 } 4619 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4620 auto *GV = new llvm::GlobalVariable( 4621 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4622 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4623 if (emitter) emitter->finalize(GV); 4624 setGVProperties(GV, VD); 4625 GV->setAlignment(Align.getQuantity()); 4626 if (supportsCOMDAT() && GV->isWeakForLinker()) 4627 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4628 if (VD->getTLSKind()) 4629 setTLSMode(GV, *VD); 4630 llvm::Constant *CV = GV; 4631 if (AddrSpace != LangAS::Default) 4632 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4633 *this, GV, AddrSpace, LangAS::Default, 4634 Type->getPointerTo( 4635 getContext().getTargetAddressSpace(LangAS::Default))); 4636 MaterializedGlobalTemporaryMap[E] = CV; 4637 return ConstantAddress(CV, Align); 4638 } 4639 4640 /// EmitObjCPropertyImplementations - Emit information for synthesized 4641 /// properties for an implementation. 4642 void CodeGenModule::EmitObjCPropertyImplementations(const 4643 ObjCImplementationDecl *D) { 4644 for (const auto *PID : D->property_impls()) { 4645 // Dynamic is just for type-checking. 4646 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4647 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4648 4649 // Determine which methods need to be implemented, some may have 4650 // been overridden. Note that ::isPropertyAccessor is not the method 4651 // we want, that just indicates if the decl came from a 4652 // property. What we want to know is if the method is defined in 4653 // this implementation. 4654 if (!D->getInstanceMethod(PD->getGetterName())) 4655 CodeGenFunction(*this).GenerateObjCGetter( 4656 const_cast<ObjCImplementationDecl *>(D), PID); 4657 if (!PD->isReadOnly() && 4658 !D->getInstanceMethod(PD->getSetterName())) 4659 CodeGenFunction(*this).GenerateObjCSetter( 4660 const_cast<ObjCImplementationDecl *>(D), PID); 4661 } 4662 } 4663 } 4664 4665 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4666 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4667 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4668 ivar; ivar = ivar->getNextIvar()) 4669 if (ivar->getType().isDestructedType()) 4670 return true; 4671 4672 return false; 4673 } 4674 4675 static bool AllTrivialInitializers(CodeGenModule &CGM, 4676 ObjCImplementationDecl *D) { 4677 CodeGenFunction CGF(CGM); 4678 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4679 E = D->init_end(); B != E; ++B) { 4680 CXXCtorInitializer *CtorInitExp = *B; 4681 Expr *Init = CtorInitExp->getInit(); 4682 if (!CGF.isTrivialInitializer(Init)) 4683 return false; 4684 } 4685 return true; 4686 } 4687 4688 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4689 /// for an implementation. 4690 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4691 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4692 if (needsDestructMethod(D)) { 4693 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4694 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4695 ObjCMethodDecl *DTORMethod = 4696 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4697 cxxSelector, getContext().VoidTy, nullptr, D, 4698 /*isInstance=*/true, /*isVariadic=*/false, 4699 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4700 /*isDefined=*/false, ObjCMethodDecl::Required); 4701 D->addInstanceMethod(DTORMethod); 4702 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4703 D->setHasDestructors(true); 4704 } 4705 4706 // If the implementation doesn't have any ivar initializers, we don't need 4707 // a .cxx_construct. 4708 if (D->getNumIvarInitializers() == 0 || 4709 AllTrivialInitializers(*this, D)) 4710 return; 4711 4712 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4713 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4714 // The constructor returns 'self'. 4715 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4716 D->getLocation(), 4717 D->getLocation(), 4718 cxxSelector, 4719 getContext().getObjCIdType(), 4720 nullptr, D, /*isInstance=*/true, 4721 /*isVariadic=*/false, 4722 /*isPropertyAccessor=*/true, 4723 /*isImplicitlyDeclared=*/true, 4724 /*isDefined=*/false, 4725 ObjCMethodDecl::Required); 4726 D->addInstanceMethod(CTORMethod); 4727 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4728 D->setHasNonZeroConstructors(true); 4729 } 4730 4731 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4732 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4733 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4734 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4735 ErrorUnsupported(LSD, "linkage spec"); 4736 return; 4737 } 4738 4739 EmitDeclContext(LSD); 4740 } 4741 4742 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4743 for (auto *I : DC->decls()) { 4744 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4745 // are themselves considered "top-level", so EmitTopLevelDecl on an 4746 // ObjCImplDecl does not recursively visit them. We need to do that in 4747 // case they're nested inside another construct (LinkageSpecDecl / 4748 // ExportDecl) that does stop them from being considered "top-level". 4749 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4750 for (auto *M : OID->methods()) 4751 EmitTopLevelDecl(M); 4752 } 4753 4754 EmitTopLevelDecl(I); 4755 } 4756 } 4757 4758 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4759 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4760 // Ignore dependent declarations. 4761 if (D->isTemplated()) 4762 return; 4763 4764 switch (D->getKind()) { 4765 case Decl::CXXConversion: 4766 case Decl::CXXMethod: 4767 case Decl::Function: 4768 EmitGlobal(cast<FunctionDecl>(D)); 4769 // Always provide some coverage mapping 4770 // even for the functions that aren't emitted. 4771 AddDeferredUnusedCoverageMapping(D); 4772 break; 4773 4774 case Decl::CXXDeductionGuide: 4775 // Function-like, but does not result in code emission. 4776 break; 4777 4778 case Decl::Var: 4779 case Decl::Decomposition: 4780 case Decl::VarTemplateSpecialization: 4781 EmitGlobal(cast<VarDecl>(D)); 4782 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4783 for (auto *B : DD->bindings()) 4784 if (auto *HD = B->getHoldingVar()) 4785 EmitGlobal(HD); 4786 break; 4787 4788 // Indirect fields from global anonymous structs and unions can be 4789 // ignored; only the actual variable requires IR gen support. 4790 case Decl::IndirectField: 4791 break; 4792 4793 // C++ Decls 4794 case Decl::Namespace: 4795 EmitDeclContext(cast<NamespaceDecl>(D)); 4796 break; 4797 case Decl::ClassTemplateSpecialization: { 4798 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4799 if (DebugInfo && 4800 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4801 Spec->hasDefinition()) 4802 DebugInfo->completeTemplateDefinition(*Spec); 4803 } LLVM_FALLTHROUGH; 4804 case Decl::CXXRecord: 4805 if (DebugInfo) { 4806 if (auto *ES = D->getASTContext().getExternalSource()) 4807 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4808 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4809 } 4810 // Emit any static data members, they may be definitions. 4811 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4812 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4813 EmitTopLevelDecl(I); 4814 break; 4815 // No code generation needed. 4816 case Decl::UsingShadow: 4817 case Decl::ClassTemplate: 4818 case Decl::VarTemplate: 4819 case Decl::VarTemplatePartialSpecialization: 4820 case Decl::FunctionTemplate: 4821 case Decl::TypeAliasTemplate: 4822 case Decl::Block: 4823 case Decl::Empty: 4824 case Decl::Binding: 4825 break; 4826 case Decl::Using: // using X; [C++] 4827 if (CGDebugInfo *DI = getModuleDebugInfo()) 4828 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4829 return; 4830 case Decl::NamespaceAlias: 4831 if (CGDebugInfo *DI = getModuleDebugInfo()) 4832 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4833 return; 4834 case Decl::UsingDirective: // using namespace X; [C++] 4835 if (CGDebugInfo *DI = getModuleDebugInfo()) 4836 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4837 return; 4838 case Decl::CXXConstructor: 4839 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4840 break; 4841 case Decl::CXXDestructor: 4842 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4843 break; 4844 4845 case Decl::StaticAssert: 4846 // Nothing to do. 4847 break; 4848 4849 // Objective-C Decls 4850 4851 // Forward declarations, no (immediate) code generation. 4852 case Decl::ObjCInterface: 4853 case Decl::ObjCCategory: 4854 break; 4855 4856 case Decl::ObjCProtocol: { 4857 auto *Proto = cast<ObjCProtocolDecl>(D); 4858 if (Proto->isThisDeclarationADefinition()) 4859 ObjCRuntime->GenerateProtocol(Proto); 4860 break; 4861 } 4862 4863 case Decl::ObjCCategoryImpl: 4864 // Categories have properties but don't support synthesize so we 4865 // can ignore them here. 4866 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4867 break; 4868 4869 case Decl::ObjCImplementation: { 4870 auto *OMD = cast<ObjCImplementationDecl>(D); 4871 EmitObjCPropertyImplementations(OMD); 4872 EmitObjCIvarInitializations(OMD); 4873 ObjCRuntime->GenerateClass(OMD); 4874 // Emit global variable debug information. 4875 if (CGDebugInfo *DI = getModuleDebugInfo()) 4876 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4877 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4878 OMD->getClassInterface()), OMD->getLocation()); 4879 break; 4880 } 4881 case Decl::ObjCMethod: { 4882 auto *OMD = cast<ObjCMethodDecl>(D); 4883 // If this is not a prototype, emit the body. 4884 if (OMD->getBody()) 4885 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4886 break; 4887 } 4888 case Decl::ObjCCompatibleAlias: 4889 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4890 break; 4891 4892 case Decl::PragmaComment: { 4893 const auto *PCD = cast<PragmaCommentDecl>(D); 4894 switch (PCD->getCommentKind()) { 4895 case PCK_Unknown: 4896 llvm_unreachable("unexpected pragma comment kind"); 4897 case PCK_Linker: 4898 AppendLinkerOptions(PCD->getArg()); 4899 break; 4900 case PCK_Lib: 4901 if (getTarget().getTriple().isOSBinFormatELF() && 4902 !getTarget().getTriple().isPS4()) 4903 AddELFLibDirective(PCD->getArg()); 4904 else 4905 AddDependentLib(PCD->getArg()); 4906 break; 4907 case PCK_Compiler: 4908 case PCK_ExeStr: 4909 case PCK_User: 4910 break; // We ignore all of these. 4911 } 4912 break; 4913 } 4914 4915 case Decl::PragmaDetectMismatch: { 4916 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4917 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4918 break; 4919 } 4920 4921 case Decl::LinkageSpec: 4922 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4923 break; 4924 4925 case Decl::FileScopeAsm: { 4926 // File-scope asm is ignored during device-side CUDA compilation. 4927 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4928 break; 4929 // File-scope asm is ignored during device-side OpenMP compilation. 4930 if (LangOpts.OpenMPIsDevice) 4931 break; 4932 auto *AD = cast<FileScopeAsmDecl>(D); 4933 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4934 break; 4935 } 4936 4937 case Decl::Import: { 4938 auto *Import = cast<ImportDecl>(D); 4939 4940 // If we've already imported this module, we're done. 4941 if (!ImportedModules.insert(Import->getImportedModule())) 4942 break; 4943 4944 // Emit debug information for direct imports. 4945 if (!Import->getImportedOwningModule()) { 4946 if (CGDebugInfo *DI = getModuleDebugInfo()) 4947 DI->EmitImportDecl(*Import); 4948 } 4949 4950 // Find all of the submodules and emit the module initializers. 4951 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4952 SmallVector<clang::Module *, 16> Stack; 4953 Visited.insert(Import->getImportedModule()); 4954 Stack.push_back(Import->getImportedModule()); 4955 4956 while (!Stack.empty()) { 4957 clang::Module *Mod = Stack.pop_back_val(); 4958 if (!EmittedModuleInitializers.insert(Mod).second) 4959 continue; 4960 4961 for (auto *D : Context.getModuleInitializers(Mod)) 4962 EmitTopLevelDecl(D); 4963 4964 // Visit the submodules of this module. 4965 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4966 SubEnd = Mod->submodule_end(); 4967 Sub != SubEnd; ++Sub) { 4968 // Skip explicit children; they need to be explicitly imported to emit 4969 // the initializers. 4970 if ((*Sub)->IsExplicit) 4971 continue; 4972 4973 if (Visited.insert(*Sub).second) 4974 Stack.push_back(*Sub); 4975 } 4976 } 4977 break; 4978 } 4979 4980 case Decl::Export: 4981 EmitDeclContext(cast<ExportDecl>(D)); 4982 break; 4983 4984 case Decl::OMPThreadPrivate: 4985 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4986 break; 4987 4988 case Decl::OMPDeclareReduction: 4989 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4990 break; 4991 4992 case Decl::OMPRequires: 4993 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 4994 break; 4995 4996 default: 4997 // Make sure we handled everything we should, every other kind is a 4998 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4999 // function. Need to recode Decl::Kind to do that easily. 5000 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5001 break; 5002 } 5003 } 5004 5005 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5006 // Do we need to generate coverage mapping? 5007 if (!CodeGenOpts.CoverageMapping) 5008 return; 5009 switch (D->getKind()) { 5010 case Decl::CXXConversion: 5011 case Decl::CXXMethod: 5012 case Decl::Function: 5013 case Decl::ObjCMethod: 5014 case Decl::CXXConstructor: 5015 case Decl::CXXDestructor: { 5016 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5017 return; 5018 SourceManager &SM = getContext().getSourceManager(); 5019 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5020 return; 5021 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5022 if (I == DeferredEmptyCoverageMappingDecls.end()) 5023 DeferredEmptyCoverageMappingDecls[D] = true; 5024 break; 5025 } 5026 default: 5027 break; 5028 }; 5029 } 5030 5031 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5032 // Do we need to generate coverage mapping? 5033 if (!CodeGenOpts.CoverageMapping) 5034 return; 5035 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5036 if (Fn->isTemplateInstantiation()) 5037 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5038 } 5039 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5040 if (I == DeferredEmptyCoverageMappingDecls.end()) 5041 DeferredEmptyCoverageMappingDecls[D] = false; 5042 else 5043 I->second = false; 5044 } 5045 5046 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5047 // We call takeVector() here to avoid use-after-free. 5048 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5049 // we deserialize function bodies to emit coverage info for them, and that 5050 // deserializes more declarations. How should we handle that case? 5051 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5052 if (!Entry.second) 5053 continue; 5054 const Decl *D = Entry.first; 5055 switch (D->getKind()) { 5056 case Decl::CXXConversion: 5057 case Decl::CXXMethod: 5058 case Decl::Function: 5059 case Decl::ObjCMethod: { 5060 CodeGenPGO PGO(*this); 5061 GlobalDecl GD(cast<FunctionDecl>(D)); 5062 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5063 getFunctionLinkage(GD)); 5064 break; 5065 } 5066 case Decl::CXXConstructor: { 5067 CodeGenPGO PGO(*this); 5068 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5069 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5070 getFunctionLinkage(GD)); 5071 break; 5072 } 5073 case Decl::CXXDestructor: { 5074 CodeGenPGO PGO(*this); 5075 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5076 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5077 getFunctionLinkage(GD)); 5078 break; 5079 } 5080 default: 5081 break; 5082 }; 5083 } 5084 } 5085 5086 /// Turns the given pointer into a constant. 5087 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5088 const void *Ptr) { 5089 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5090 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5091 return llvm::ConstantInt::get(i64, PtrInt); 5092 } 5093 5094 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5095 llvm::NamedMDNode *&GlobalMetadata, 5096 GlobalDecl D, 5097 llvm::GlobalValue *Addr) { 5098 if (!GlobalMetadata) 5099 GlobalMetadata = 5100 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5101 5102 // TODO: should we report variant information for ctors/dtors? 5103 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5104 llvm::ConstantAsMetadata::get(GetPointerConstant( 5105 CGM.getLLVMContext(), D.getDecl()))}; 5106 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5107 } 5108 5109 /// For each function which is declared within an extern "C" region and marked 5110 /// as 'used', but has internal linkage, create an alias from the unmangled 5111 /// name to the mangled name if possible. People expect to be able to refer 5112 /// to such functions with an unmangled name from inline assembly within the 5113 /// same translation unit. 5114 void CodeGenModule::EmitStaticExternCAliases() { 5115 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5116 return; 5117 for (auto &I : StaticExternCValues) { 5118 IdentifierInfo *Name = I.first; 5119 llvm::GlobalValue *Val = I.second; 5120 if (Val && !getModule().getNamedValue(Name->getName())) 5121 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5122 } 5123 } 5124 5125 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5126 GlobalDecl &Result) const { 5127 auto Res = Manglings.find(MangledName); 5128 if (Res == Manglings.end()) 5129 return false; 5130 Result = Res->getValue(); 5131 return true; 5132 } 5133 5134 /// Emits metadata nodes associating all the global values in the 5135 /// current module with the Decls they came from. This is useful for 5136 /// projects using IR gen as a subroutine. 5137 /// 5138 /// Since there's currently no way to associate an MDNode directly 5139 /// with an llvm::GlobalValue, we create a global named metadata 5140 /// with the name 'clang.global.decl.ptrs'. 5141 void CodeGenModule::EmitDeclMetadata() { 5142 llvm::NamedMDNode *GlobalMetadata = nullptr; 5143 5144 for (auto &I : MangledDeclNames) { 5145 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5146 // Some mangled names don't necessarily have an associated GlobalValue 5147 // in this module, e.g. if we mangled it for DebugInfo. 5148 if (Addr) 5149 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5150 } 5151 } 5152 5153 /// Emits metadata nodes for all the local variables in the current 5154 /// function. 5155 void CodeGenFunction::EmitDeclMetadata() { 5156 if (LocalDeclMap.empty()) return; 5157 5158 llvm::LLVMContext &Context = getLLVMContext(); 5159 5160 // Find the unique metadata ID for this name. 5161 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5162 5163 llvm::NamedMDNode *GlobalMetadata = nullptr; 5164 5165 for (auto &I : LocalDeclMap) { 5166 const Decl *D = I.first; 5167 llvm::Value *Addr = I.second.getPointer(); 5168 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5169 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5170 Alloca->setMetadata( 5171 DeclPtrKind, llvm::MDNode::get( 5172 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5173 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5174 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5175 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5176 } 5177 } 5178 } 5179 5180 void CodeGenModule::EmitVersionIdentMetadata() { 5181 llvm::NamedMDNode *IdentMetadata = 5182 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5183 std::string Version = getClangFullVersion(); 5184 llvm::LLVMContext &Ctx = TheModule.getContext(); 5185 5186 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5187 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5188 } 5189 5190 void CodeGenModule::EmitTargetMetadata() { 5191 // Warning, new MangledDeclNames may be appended within this loop. 5192 // We rely on MapVector insertions adding new elements to the end 5193 // of the container. 5194 // FIXME: Move this loop into the one target that needs it, and only 5195 // loop over those declarations for which we couldn't emit the target 5196 // metadata when we emitted the declaration. 5197 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5198 auto Val = *(MangledDeclNames.begin() + I); 5199 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5200 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5201 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5202 } 5203 } 5204 5205 void CodeGenModule::EmitCoverageFile() { 5206 if (getCodeGenOpts().CoverageDataFile.empty() && 5207 getCodeGenOpts().CoverageNotesFile.empty()) 5208 return; 5209 5210 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5211 if (!CUNode) 5212 return; 5213 5214 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5215 llvm::LLVMContext &Ctx = TheModule.getContext(); 5216 auto *CoverageDataFile = 5217 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5218 auto *CoverageNotesFile = 5219 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5220 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5221 llvm::MDNode *CU = CUNode->getOperand(i); 5222 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5223 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5224 } 5225 } 5226 5227 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5228 // Sema has checked that all uuid strings are of the form 5229 // "12345678-1234-1234-1234-1234567890ab". 5230 assert(Uuid.size() == 36); 5231 for (unsigned i = 0; i < 36; ++i) { 5232 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5233 else assert(isHexDigit(Uuid[i])); 5234 } 5235 5236 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5237 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5238 5239 llvm::Constant *Field3[8]; 5240 for (unsigned Idx = 0; Idx < 8; ++Idx) 5241 Field3[Idx] = llvm::ConstantInt::get( 5242 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5243 5244 llvm::Constant *Fields[4] = { 5245 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5246 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5247 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5248 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5249 }; 5250 5251 return llvm::ConstantStruct::getAnon(Fields); 5252 } 5253 5254 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5255 bool ForEH) { 5256 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5257 // FIXME: should we even be calling this method if RTTI is disabled 5258 // and it's not for EH? 5259 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5260 return llvm::Constant::getNullValue(Int8PtrTy); 5261 5262 if (ForEH && Ty->isObjCObjectPointerType() && 5263 LangOpts.ObjCRuntime.isGNUFamily()) 5264 return ObjCRuntime->GetEHType(Ty); 5265 5266 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5267 } 5268 5269 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5270 // Do not emit threadprivates in simd-only mode. 5271 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5272 return; 5273 for (auto RefExpr : D->varlists()) { 5274 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5275 bool PerformInit = 5276 VD->getAnyInitializer() && 5277 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5278 /*ForRef=*/false); 5279 5280 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5281 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5282 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5283 CXXGlobalInits.push_back(InitFunction); 5284 } 5285 } 5286 5287 llvm::Metadata * 5288 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5289 StringRef Suffix) { 5290 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5291 if (InternalId) 5292 return InternalId; 5293 5294 if (isExternallyVisible(T->getLinkage())) { 5295 std::string OutName; 5296 llvm::raw_string_ostream Out(OutName); 5297 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5298 Out << Suffix; 5299 5300 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5301 } else { 5302 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5303 llvm::ArrayRef<llvm::Metadata *>()); 5304 } 5305 5306 return InternalId; 5307 } 5308 5309 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5310 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5311 } 5312 5313 llvm::Metadata * 5314 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5315 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5316 } 5317 5318 // Generalize pointer types to a void pointer with the qualifiers of the 5319 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5320 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5321 // 'void *'. 5322 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5323 if (!Ty->isPointerType()) 5324 return Ty; 5325 5326 return Ctx.getPointerType( 5327 QualType(Ctx.VoidTy).withCVRQualifiers( 5328 Ty->getPointeeType().getCVRQualifiers())); 5329 } 5330 5331 // Apply type generalization to a FunctionType's return and argument types 5332 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5333 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5334 SmallVector<QualType, 8> GeneralizedParams; 5335 for (auto &Param : FnType->param_types()) 5336 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5337 5338 return Ctx.getFunctionType( 5339 GeneralizeType(Ctx, FnType->getReturnType()), 5340 GeneralizedParams, FnType->getExtProtoInfo()); 5341 } 5342 5343 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5344 return Ctx.getFunctionNoProtoType( 5345 GeneralizeType(Ctx, FnType->getReturnType())); 5346 5347 llvm_unreachable("Encountered unknown FunctionType"); 5348 } 5349 5350 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5351 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5352 GeneralizedMetadataIdMap, ".generalized"); 5353 } 5354 5355 /// Returns whether this module needs the "all-vtables" type identifier. 5356 bool CodeGenModule::NeedAllVtablesTypeId() const { 5357 // Returns true if at least one of vtable-based CFI checkers is enabled and 5358 // is not in the trapping mode. 5359 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5360 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5361 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5362 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5363 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5364 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5365 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5366 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5367 } 5368 5369 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5370 CharUnits Offset, 5371 const CXXRecordDecl *RD) { 5372 llvm::Metadata *MD = 5373 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5374 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5375 5376 if (CodeGenOpts.SanitizeCfiCrossDso) 5377 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5378 VTable->addTypeMetadata(Offset.getQuantity(), 5379 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5380 5381 if (NeedAllVtablesTypeId()) { 5382 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5383 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5384 } 5385 } 5386 5387 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5388 assert(TD != nullptr); 5389 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5390 5391 ParsedAttr.Features.erase( 5392 llvm::remove_if(ParsedAttr.Features, 5393 [&](const std::string &Feat) { 5394 return !Target.isValidFeatureName( 5395 StringRef{Feat}.substr(1)); 5396 }), 5397 ParsedAttr.Features.end()); 5398 return ParsedAttr; 5399 } 5400 5401 5402 // Fills in the supplied string map with the set of target features for the 5403 // passed in function. 5404 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5405 GlobalDecl GD) { 5406 StringRef TargetCPU = Target.getTargetOpts().CPU; 5407 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 5408 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5409 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5410 5411 // Make a copy of the features as passed on the command line into the 5412 // beginning of the additional features from the function to override. 5413 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5414 Target.getTargetOpts().FeaturesAsWritten.begin(), 5415 Target.getTargetOpts().FeaturesAsWritten.end()); 5416 5417 if (ParsedAttr.Architecture != "" && 5418 Target.isValidCPUName(ParsedAttr.Architecture)) 5419 TargetCPU = ParsedAttr.Architecture; 5420 5421 // Now populate the feature map, first with the TargetCPU which is either 5422 // the default or a new one from the target attribute string. Then we'll use 5423 // the passed in features (FeaturesAsWritten) along with the new ones from 5424 // the attribute. 5425 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5426 ParsedAttr.Features); 5427 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5428 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5429 Target.getCPUSpecificCPUDispatchFeatures( 5430 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); 5431 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5432 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5433 } else { 5434 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5435 Target.getTargetOpts().Features); 5436 } 5437 } 5438 5439 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5440 if (!SanStats) 5441 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5442 5443 return *SanStats; 5444 } 5445 llvm::Value * 5446 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5447 CodeGenFunction &CGF) { 5448 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5449 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5450 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5451 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5452 "__translate_sampler_initializer"), 5453 {C}); 5454 } 5455