1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/BinaryFormat/ELF.h" 57 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 58 #include "llvm/IR/AttributeMask.h" 59 #include "llvm/IR/CallingConv.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/IR/ProfileSummary.h" 65 #include "llvm/ProfileData/InstrProfReader.h" 66 #include "llvm/ProfileData/SampleProf.h" 67 #include "llvm/Support/CRC.h" 68 #include "llvm/Support/CodeGen.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ConvertUTF.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/RISCVISAInfo.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include "llvm/TargetParser/X86TargetParser.h" 77 #include "llvm/Transforms/Utils/BuildLibCalls.h" 78 #include <optional> 79 80 using namespace clang; 81 using namespace CodeGen; 82 83 static llvm::cl::opt<bool> LimitedCoverage( 84 "limited-coverage-experimental", llvm::cl::Hidden, 85 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 86 87 static const char AnnotationSection[] = "llvm.metadata"; 88 89 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 90 switch (CGM.getContext().getCXXABIKind()) { 91 case TargetCXXABI::AppleARM64: 92 case TargetCXXABI::Fuchsia: 93 case TargetCXXABI::GenericAArch64: 94 case TargetCXXABI::GenericARM: 95 case TargetCXXABI::iOS: 96 case TargetCXXABI::WatchOS: 97 case TargetCXXABI::GenericMIPS: 98 case TargetCXXABI::GenericItanium: 99 case TargetCXXABI::WebAssembly: 100 case TargetCXXABI::XL: 101 return CreateItaniumCXXABI(CGM); 102 case TargetCXXABI::Microsoft: 103 return CreateMicrosoftCXXABI(CGM); 104 } 105 106 llvm_unreachable("invalid C++ ABI kind"); 107 } 108 109 static std::unique_ptr<TargetCodeGenInfo> 110 createTargetCodeGenInfo(CodeGenModule &CGM) { 111 const TargetInfo &Target = CGM.getTarget(); 112 const llvm::Triple &Triple = Target.getTriple(); 113 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 114 115 switch (Triple.getArch()) { 116 default: 117 return createDefaultTargetCodeGenInfo(CGM); 118 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 else if (Target.getABI() == "aapcs-soft") 149 Kind = AArch64ABIKind::AAPCSSoft; 150 else if (Target.getABI() == "pauthtest") 151 Kind = AArch64ABIKind::PAuthTest; 152 153 return createAArch64TargetCodeGenInfo(CGM, Kind); 154 } 155 156 case llvm::Triple::wasm32: 157 case llvm::Triple::wasm64: { 158 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 159 if (Target.getABI() == "experimental-mv") 160 Kind = WebAssemblyABIKind::ExperimentalMV; 161 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 162 } 163 164 case llvm::Triple::arm: 165 case llvm::Triple::armeb: 166 case llvm::Triple::thumb: 167 case llvm::Triple::thumbeb: { 168 if (Triple.getOS() == llvm::Triple::Win32) 169 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 170 171 ARMABIKind Kind = ARMABIKind::AAPCS; 172 StringRef ABIStr = Target.getABI(); 173 if (ABIStr == "apcs-gnu") 174 Kind = ARMABIKind::APCS; 175 else if (ABIStr == "aapcs16") 176 Kind = ARMABIKind::AAPCS16_VFP; 177 else if (CodeGenOpts.FloatABI == "hard" || 178 (CodeGenOpts.FloatABI != "soft" && 179 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 180 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 181 Triple.getEnvironment() == llvm::Triple::EABIHF))) 182 Kind = ARMABIKind::AAPCS_VFP; 183 184 return createARMTargetCodeGenInfo(CGM, Kind); 185 } 186 187 case llvm::Triple::ppc: { 188 if (Triple.isOSAIX()) 189 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 190 191 bool IsSoftFloat = 192 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppcle: { 196 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 197 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 198 } 199 case llvm::Triple::ppc64: 200 if (Triple.isOSAIX()) 201 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 202 203 if (Triple.isOSBinFormatELF()) { 204 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 205 if (Target.getABI() == "elfv2") 206 Kind = PPC64_SVR4_ABIKind::ELFv2; 207 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 208 209 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 210 } 211 return createPPC64TargetCodeGenInfo(CGM); 212 case llvm::Triple::ppc64le: { 213 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 214 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 215 if (Target.getABI() == "elfv1") 216 Kind = PPC64_SVR4_ABIKind::ELFv1; 217 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 218 219 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 220 } 221 222 case llvm::Triple::nvptx: 223 case llvm::Triple::nvptx64: 224 return createNVPTXTargetCodeGenInfo(CGM); 225 226 case llvm::Triple::msp430: 227 return createMSP430TargetCodeGenInfo(CGM); 228 229 case llvm::Triple::riscv32: 230 case llvm::Triple::riscv64: { 231 StringRef ABIStr = Target.getABI(); 232 unsigned XLen = Target.getPointerWidth(LangAS::Default); 233 unsigned ABIFLen = 0; 234 if (ABIStr.ends_with("f")) 235 ABIFLen = 32; 236 else if (ABIStr.ends_with("d")) 237 ABIFLen = 64; 238 bool EABI = ABIStr.ends_with("e"); 239 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 240 } 241 242 case llvm::Triple::systemz: { 243 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 244 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 245 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 246 } 247 248 case llvm::Triple::tce: 249 case llvm::Triple::tcele: 250 return createTCETargetCodeGenInfo(CGM); 251 252 case llvm::Triple::x86: { 253 bool IsDarwinVectorABI = Triple.isOSDarwin(); 254 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 255 256 if (Triple.getOS() == llvm::Triple::Win32) { 257 return createWinX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters); 260 } 261 return createX86_32TargetCodeGenInfo( 262 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 263 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 264 } 265 266 case llvm::Triple::x86_64: { 267 StringRef ABI = Target.getABI(); 268 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 269 : ABI == "avx" ? X86AVXABILevel::AVX 270 : X86AVXABILevel::None); 271 272 switch (Triple.getOS()) { 273 case llvm::Triple::Win32: 274 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 275 default: 276 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 277 } 278 } 279 case llvm::Triple::hexagon: 280 return createHexagonTargetCodeGenInfo(CGM); 281 case llvm::Triple::lanai: 282 return createLanaiTargetCodeGenInfo(CGM); 283 case llvm::Triple::r600: 284 return createAMDGPUTargetCodeGenInfo(CGM); 285 case llvm::Triple::amdgcn: 286 return createAMDGPUTargetCodeGenInfo(CGM); 287 case llvm::Triple::sparc: 288 return createSparcV8TargetCodeGenInfo(CGM); 289 case llvm::Triple::sparcv9: 290 return createSparcV9TargetCodeGenInfo(CGM); 291 case llvm::Triple::xcore: 292 return createXCoreTargetCodeGenInfo(CGM); 293 case llvm::Triple::arc: 294 return createARCTargetCodeGenInfo(CGM); 295 case llvm::Triple::spir: 296 case llvm::Triple::spir64: 297 return createCommonSPIRTargetCodeGenInfo(CGM); 298 case llvm::Triple::spirv32: 299 case llvm::Triple::spirv64: 300 return createSPIRVTargetCodeGenInfo(CGM); 301 case llvm::Triple::ve: 302 return createVETargetCodeGenInfo(CGM); 303 case llvm::Triple::csky: { 304 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 305 bool hasFP64 = 306 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 307 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 308 : hasFP64 ? 64 309 : 32); 310 } 311 case llvm::Triple::bpfeb: 312 case llvm::Triple::bpfel: 313 return createBPFTargetCodeGenInfo(CGM); 314 case llvm::Triple::loongarch32: 315 case llvm::Triple::loongarch64: { 316 StringRef ABIStr = Target.getABI(); 317 unsigned ABIFRLen = 0; 318 if (ABIStr.ends_with("f")) 319 ABIFRLen = 32; 320 else if (ABIStr.ends_with("d")) 321 ABIFRLen = 64; 322 return createLoongArchTargetCodeGenInfo( 323 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 324 } 325 } 326 } 327 328 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 329 if (!TheTargetCodeGenInfo) 330 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 331 return *TheTargetCodeGenInfo; 332 } 333 334 CodeGenModule::CodeGenModule(ASTContext &C, 335 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 336 const HeaderSearchOptions &HSO, 337 const PreprocessorOptions &PPO, 338 const CodeGenOptions &CGO, llvm::Module &M, 339 DiagnosticsEngine &diags, 340 CoverageSourceInfo *CoverageInfo) 341 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 342 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 343 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 344 VMContext(M.getContext()), Types(*this), VTables(*this), 345 SanitizerMD(new SanitizerMetadata(*this)) { 346 347 // Initialize the type cache. 348 llvm::LLVMContext &LLVMContext = M.getContext(); 349 VoidTy = llvm::Type::getVoidTy(LLVMContext); 350 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 351 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 352 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 353 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 354 HalfTy = llvm::Type::getHalfTy(LLVMContext); 355 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 356 FloatTy = llvm::Type::getFloatTy(LLVMContext); 357 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 358 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 359 PointerAlignInBytes = 360 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 361 .getQuantity(); 362 SizeSizeInBytes = 363 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 364 IntAlignInBytes = 365 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 366 CharTy = 367 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 368 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 369 IntPtrTy = llvm::IntegerType::get(LLVMContext, 370 C.getTargetInfo().getMaxPointerWidth()); 371 Int8PtrTy = llvm::PointerType::get(LLVMContext, 372 C.getTargetAddressSpace(LangAS::Default)); 373 const llvm::DataLayout &DL = M.getDataLayout(); 374 AllocaInt8PtrTy = 375 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 376 GlobalsInt8PtrTy = 377 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 378 ConstGlobalsPtrTy = llvm::PointerType::get( 379 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 380 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 381 382 // Build C++20 Module initializers. 383 // TODO: Add Microsoft here once we know the mangling required for the 384 // initializers. 385 CXX20ModuleInits = 386 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 387 ItaniumMangleContext::MK_Itanium; 388 389 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 390 391 if (LangOpts.ObjC) 392 createObjCRuntime(); 393 if (LangOpts.OpenCL) 394 createOpenCLRuntime(); 395 if (LangOpts.OpenMP) 396 createOpenMPRuntime(); 397 if (LangOpts.CUDA) 398 createCUDARuntime(); 399 if (LangOpts.HLSL) 400 createHLSLRuntime(); 401 402 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 403 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 404 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 405 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 406 getLangOpts(), getCXXABI().getMangleContext())); 407 408 // If debug info or coverage generation is enabled, create the CGDebugInfo 409 // object. 410 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 411 CodeGenOpts.CoverageNotesFile.size() || 412 CodeGenOpts.CoverageDataFile.size()) 413 DebugInfo.reset(new CGDebugInfo(*this)); 414 415 Block.GlobalUniqueCount = 0; 416 417 if (C.getLangOpts().ObjC) 418 ObjCData.reset(new ObjCEntrypoints()); 419 420 if (CodeGenOpts.hasProfileClangUse()) { 421 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 422 CodeGenOpts.ProfileInstrumentUsePath, *FS, 423 CodeGenOpts.ProfileRemappingFile); 424 // We're checking for profile read errors in CompilerInvocation, so if 425 // there was an error it should've already been caught. If it hasn't been 426 // somehow, trip an assertion. 427 assert(ReaderOrErr); 428 PGOReader = std::move(ReaderOrErr.get()); 429 } 430 431 // If coverage mapping generation is enabled, create the 432 // CoverageMappingModuleGen object. 433 if (CodeGenOpts.CoverageMapping) 434 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 435 436 // Generate the module name hash here if needed. 437 if (CodeGenOpts.UniqueInternalLinkageNames && 438 !getModule().getSourceFileName().empty()) { 439 std::string Path = getModule().getSourceFileName(); 440 // Check if a path substitution is needed from the MacroPrefixMap. 441 for (const auto &Entry : LangOpts.MacroPrefixMap) 442 if (Path.rfind(Entry.first, 0) != std::string::npos) { 443 Path = Entry.second + Path.substr(Entry.first.size()); 444 break; 445 } 446 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 447 } 448 449 // Record mregparm value now so it is visible through all of codegen. 450 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 451 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 452 CodeGenOpts.NumRegisterParameters); 453 } 454 455 CodeGenModule::~CodeGenModule() {} 456 457 void CodeGenModule::createObjCRuntime() { 458 // This is just isGNUFamily(), but we want to force implementors of 459 // new ABIs to decide how best to do this. 460 switch (LangOpts.ObjCRuntime.getKind()) { 461 case ObjCRuntime::GNUstep: 462 case ObjCRuntime::GCC: 463 case ObjCRuntime::ObjFW: 464 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 465 return; 466 467 case ObjCRuntime::FragileMacOSX: 468 case ObjCRuntime::MacOSX: 469 case ObjCRuntime::iOS: 470 case ObjCRuntime::WatchOS: 471 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 472 return; 473 } 474 llvm_unreachable("bad runtime kind"); 475 } 476 477 void CodeGenModule::createOpenCLRuntime() { 478 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 479 } 480 481 void CodeGenModule::createOpenMPRuntime() { 482 // Select a specialized code generation class based on the target, if any. 483 // If it does not exist use the default implementation. 484 switch (getTriple().getArch()) { 485 case llvm::Triple::nvptx: 486 case llvm::Triple::nvptx64: 487 case llvm::Triple::amdgcn: 488 assert(getLangOpts().OpenMPIsTargetDevice && 489 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 490 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 491 break; 492 default: 493 if (LangOpts.OpenMPSimd) 494 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 495 else 496 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 497 break; 498 } 499 } 500 501 void CodeGenModule::createCUDARuntime() { 502 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 503 } 504 505 void CodeGenModule::createHLSLRuntime() { 506 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 507 } 508 509 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 510 Replacements[Name] = C; 511 } 512 513 void CodeGenModule::applyReplacements() { 514 for (auto &I : Replacements) { 515 StringRef MangledName = I.first; 516 llvm::Constant *Replacement = I.second; 517 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 518 if (!Entry) 519 continue; 520 auto *OldF = cast<llvm::Function>(Entry); 521 auto *NewF = dyn_cast<llvm::Function>(Replacement); 522 if (!NewF) { 523 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 524 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 525 } else { 526 auto *CE = cast<llvm::ConstantExpr>(Replacement); 527 assert(CE->getOpcode() == llvm::Instruction::BitCast || 528 CE->getOpcode() == llvm::Instruction::GetElementPtr); 529 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 530 } 531 } 532 533 // Replace old with new, but keep the old order. 534 OldF->replaceAllUsesWith(Replacement); 535 if (NewF) { 536 NewF->removeFromParent(); 537 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 538 NewF); 539 } 540 OldF->eraseFromParent(); 541 } 542 } 543 544 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 545 GlobalValReplacements.push_back(std::make_pair(GV, C)); 546 } 547 548 void CodeGenModule::applyGlobalValReplacements() { 549 for (auto &I : GlobalValReplacements) { 550 llvm::GlobalValue *GV = I.first; 551 llvm::Constant *C = I.second; 552 553 GV->replaceAllUsesWith(C); 554 GV->eraseFromParent(); 555 } 556 } 557 558 // This is only used in aliases that we created and we know they have a 559 // linear structure. 560 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 561 const llvm::Constant *C; 562 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 563 C = GA->getAliasee(); 564 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 565 C = GI->getResolver(); 566 else 567 return GV; 568 569 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 570 if (!AliaseeGV) 571 return nullptr; 572 573 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 574 if (FinalGV == GV) 575 return nullptr; 576 577 return FinalGV; 578 } 579 580 static bool checkAliasedGlobal( 581 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 582 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 583 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 584 SourceRange AliasRange) { 585 GV = getAliasedGlobal(Alias); 586 if (!GV) { 587 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 588 return false; 589 } 590 591 if (GV->hasCommonLinkage()) { 592 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 593 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 594 Diags.Report(Location, diag::err_alias_to_common); 595 return false; 596 } 597 } 598 599 if (GV->isDeclaration()) { 600 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 601 Diags.Report(Location, diag::note_alias_requires_mangled_name) 602 << IsIFunc << IsIFunc; 603 // Provide a note if the given function is not found and exists as a 604 // mangled name. 605 for (const auto &[Decl, Name] : MangledDeclNames) { 606 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 607 if (ND->getName() == GV->getName()) { 608 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 609 << Name 610 << FixItHint::CreateReplacement( 611 AliasRange, 612 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 613 .str()); 614 } 615 } 616 } 617 return false; 618 } 619 620 if (IsIFunc) { 621 // Check resolver function type. 622 const auto *F = dyn_cast<llvm::Function>(GV); 623 if (!F) { 624 Diags.Report(Location, diag::err_alias_to_undefined) 625 << IsIFunc << IsIFunc; 626 return false; 627 } 628 629 llvm::FunctionType *FTy = F->getFunctionType(); 630 if (!FTy->getReturnType()->isPointerTy()) { 631 Diags.Report(Location, diag::err_ifunc_resolver_return); 632 return false; 633 } 634 } 635 636 return true; 637 } 638 639 // Emit a warning if toc-data attribute is requested for global variables that 640 // have aliases and remove the toc-data attribute. 641 static void checkAliasForTocData(llvm::GlobalVariable *GVar, 642 const CodeGenOptions &CodeGenOpts, 643 DiagnosticsEngine &Diags, 644 SourceLocation Location) { 645 if (GVar->hasAttribute("toc-data")) { 646 auto GVId = GVar->getName(); 647 // Is this a global variable specified by the user as local? 648 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) { 649 Diags.Report(Location, diag::warn_toc_unsupported_type) 650 << GVId << "the variable has an alias"; 651 } 652 llvm::AttributeSet CurrAttributes = GVar->getAttributes(); 653 llvm::AttributeSet NewAttributes = 654 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data"); 655 GVar->setAttributes(NewAttributes); 656 } 657 } 658 659 void CodeGenModule::checkAliases() { 660 // Check if the constructed aliases are well formed. It is really unfortunate 661 // that we have to do this in CodeGen, but we only construct mangled names 662 // and aliases during codegen. 663 bool Error = false; 664 DiagnosticsEngine &Diags = getDiags(); 665 for (const GlobalDecl &GD : Aliases) { 666 const auto *D = cast<ValueDecl>(GD.getDecl()); 667 SourceLocation Location; 668 SourceRange Range; 669 bool IsIFunc = D->hasAttr<IFuncAttr>(); 670 if (const Attr *A = D->getDefiningAttr()) { 671 Location = A->getLocation(); 672 Range = A->getRange(); 673 } else 674 llvm_unreachable("Not an alias or ifunc?"); 675 676 StringRef MangledName = getMangledName(GD); 677 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 678 const llvm::GlobalValue *GV = nullptr; 679 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 680 MangledDeclNames, Range)) { 681 Error = true; 682 continue; 683 } 684 685 if (getContext().getTargetInfo().getTriple().isOSAIX()) 686 if (const llvm::GlobalVariable *GVar = 687 dyn_cast<const llvm::GlobalVariable>(GV)) 688 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar), 689 getCodeGenOpts(), Diags, Location); 690 691 llvm::Constant *Aliasee = 692 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 693 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 694 695 llvm::GlobalValue *AliaseeGV; 696 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 697 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 698 else 699 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 700 701 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 702 StringRef AliasSection = SA->getName(); 703 if (AliasSection != AliaseeGV->getSection()) 704 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 705 << AliasSection << IsIFunc << IsIFunc; 706 } 707 708 // We have to handle alias to weak aliases in here. LLVM itself disallows 709 // this since the object semantics would not match the IL one. For 710 // compatibility with gcc we implement it by just pointing the alias 711 // to its aliasee's aliasee. We also warn, since the user is probably 712 // expecting the link to be weak. 713 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 714 if (GA->isInterposable()) { 715 Diags.Report(Location, diag::warn_alias_to_weak_alias) 716 << GV->getName() << GA->getName() << IsIFunc; 717 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 718 GA->getAliasee(), Alias->getType()); 719 720 if (IsIFunc) 721 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 722 else 723 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 724 } 725 } 726 // ifunc resolvers are usually implemented to run before sanitizer 727 // initialization. Disable instrumentation to prevent the ordering issue. 728 if (IsIFunc) 729 cast<llvm::Function>(Aliasee)->addFnAttr( 730 llvm::Attribute::DisableSanitizerInstrumentation); 731 } 732 if (!Error) 733 return; 734 735 for (const GlobalDecl &GD : Aliases) { 736 StringRef MangledName = getMangledName(GD); 737 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 738 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 739 Alias->eraseFromParent(); 740 } 741 } 742 743 void CodeGenModule::clear() { 744 DeferredDeclsToEmit.clear(); 745 EmittedDeferredDecls.clear(); 746 DeferredAnnotations.clear(); 747 if (OpenMPRuntime) 748 OpenMPRuntime->clear(); 749 } 750 751 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 752 StringRef MainFile) { 753 if (!hasDiagnostics()) 754 return; 755 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 756 if (MainFile.empty()) 757 MainFile = "<stdin>"; 758 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 759 } else { 760 if (Mismatched > 0) 761 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 762 763 if (Missing > 0) 764 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 765 } 766 } 767 768 static std::optional<llvm::GlobalValue::VisibilityTypes> 769 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 770 // Map to LLVM visibility. 771 switch (K) { 772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 773 return std::nullopt; 774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 775 return llvm::GlobalValue::DefaultVisibility; 776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 777 return llvm::GlobalValue::HiddenVisibility; 778 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 779 return llvm::GlobalValue::ProtectedVisibility; 780 } 781 llvm_unreachable("unknown option value!"); 782 } 783 784 void setLLVMVisibility(llvm::GlobalValue &GV, 785 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 786 if (!V) 787 return; 788 789 // Reset DSO locality before setting the visibility. This removes 790 // any effects that visibility options and annotations may have 791 // had on the DSO locality. Setting the visibility will implicitly set 792 // appropriate globals to DSO Local; however, this will be pessimistic 793 // w.r.t. to the normal compiler IRGen. 794 GV.setDSOLocal(false); 795 GV.setVisibility(*V); 796 } 797 798 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 799 llvm::Module &M) { 800 if (!LO.VisibilityFromDLLStorageClass) 801 return; 802 803 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 804 getLLVMVisibility(LO.getDLLExportVisibility()); 805 806 std::optional<llvm::GlobalValue::VisibilityTypes> 807 NoDLLStorageClassVisibility = 808 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 809 810 std::optional<llvm::GlobalValue::VisibilityTypes> 811 ExternDeclDLLImportVisibility = 812 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 813 814 std::optional<llvm::GlobalValue::VisibilityTypes> 815 ExternDeclNoDLLStorageClassVisibility = 816 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 817 818 for (llvm::GlobalValue &GV : M.global_values()) { 819 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 820 continue; 821 822 if (GV.isDeclarationForLinker()) 823 setLLVMVisibility(GV, GV.getDLLStorageClass() == 824 llvm::GlobalValue::DLLImportStorageClass 825 ? ExternDeclDLLImportVisibility 826 : ExternDeclNoDLLStorageClassVisibility); 827 else 828 setLLVMVisibility(GV, GV.getDLLStorageClass() == 829 llvm::GlobalValue::DLLExportStorageClass 830 ? DLLExportVisibility 831 : NoDLLStorageClassVisibility); 832 833 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 834 } 835 } 836 837 static bool isStackProtectorOn(const LangOptions &LangOpts, 838 const llvm::Triple &Triple, 839 clang::LangOptions::StackProtectorMode Mode) { 840 if (Triple.isAMDGPU() || Triple.isNVPTX()) 841 return false; 842 return LangOpts.getStackProtector() == Mode; 843 } 844 845 void CodeGenModule::Release() { 846 Module *Primary = getContext().getCurrentNamedModule(); 847 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 848 EmitModuleInitializers(Primary); 849 EmitDeferred(); 850 DeferredDecls.insert(EmittedDeferredDecls.begin(), 851 EmittedDeferredDecls.end()); 852 EmittedDeferredDecls.clear(); 853 EmitVTablesOpportunistically(); 854 applyGlobalValReplacements(); 855 applyReplacements(); 856 emitMultiVersionFunctions(); 857 858 if (Context.getLangOpts().IncrementalExtensions && 859 GlobalTopLevelStmtBlockInFlight.first) { 860 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 861 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 862 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 863 } 864 865 // Module implementations are initialized the same way as a regular TU that 866 // imports one or more modules. 867 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 868 EmitCXXModuleInitFunc(Primary); 869 else 870 EmitCXXGlobalInitFunc(); 871 EmitCXXGlobalCleanUpFunc(); 872 registerGlobalDtorsWithAtExit(); 873 EmitCXXThreadLocalInitFunc(); 874 if (ObjCRuntime) 875 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 876 AddGlobalCtor(ObjCInitFunction); 877 if (Context.getLangOpts().CUDA && CUDARuntime) { 878 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 879 AddGlobalCtor(CudaCtorFunction); 880 } 881 if (OpenMPRuntime) { 882 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 883 OpenMPRuntime->clear(); 884 } 885 if (PGOReader) { 886 getModule().setProfileSummary( 887 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 888 llvm::ProfileSummary::PSK_Instr); 889 if (PGOStats.hasDiagnostics()) 890 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 891 } 892 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 893 return L.LexOrder < R.LexOrder; 894 }); 895 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 896 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 897 EmitGlobalAnnotations(); 898 EmitStaticExternCAliases(); 899 checkAliases(); 900 EmitDeferredUnusedCoverageMappings(); 901 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 902 CodeGenPGO(*this).setProfileVersion(getModule()); 903 if (CoverageMapping) 904 CoverageMapping->emit(); 905 if (CodeGenOpts.SanitizeCfiCrossDso) { 906 CodeGenFunction(*this).EmitCfiCheckFail(); 907 CodeGenFunction(*this).EmitCfiCheckStub(); 908 } 909 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 910 finalizeKCFITypes(); 911 emitAtAvailableLinkGuard(); 912 if (Context.getTargetInfo().getTriple().isWasm()) 913 EmitMainVoidAlias(); 914 915 if (getTriple().isAMDGPU() || 916 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) { 917 // Emit amdhsa_code_object_version module flag, which is code object version 918 // times 100. 919 if (getTarget().getTargetOpts().CodeObjectVersion != 920 llvm::CodeObjectVersionKind::COV_None) { 921 getModule().addModuleFlag(llvm::Module::Error, 922 "amdhsa_code_object_version", 923 getTarget().getTargetOpts().CodeObjectVersion); 924 } 925 926 // Currently, "-mprintf-kind" option is only supported for HIP 927 if (LangOpts.HIP) { 928 auto *MDStr = llvm::MDString::get( 929 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 930 TargetOptions::AMDGPUPrintfKind::Hostcall) 931 ? "hostcall" 932 : "buffered"); 933 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 934 MDStr); 935 } 936 } 937 938 // Emit a global array containing all external kernels or device variables 939 // used by host functions and mark it as used for CUDA/HIP. This is necessary 940 // to get kernels or device variables in archives linked in even if these 941 // kernels or device variables are only used in host functions. 942 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 943 SmallVector<llvm::Constant *, 8> UsedArray; 944 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 945 GlobalDecl GD; 946 if (auto *FD = dyn_cast<FunctionDecl>(D)) 947 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 948 else 949 GD = GlobalDecl(D); 950 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 951 GetAddrOfGlobal(GD), Int8PtrTy)); 952 } 953 954 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 955 956 auto *GV = new llvm::GlobalVariable( 957 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 958 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 959 addCompilerUsedGlobal(GV); 960 } 961 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) { 962 // Emit a unique ID so that host and device binaries from the same 963 // compilation unit can be associated. 964 auto *GV = new llvm::GlobalVariable( 965 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 966 llvm::Constant::getNullValue(Int8Ty), 967 "__hip_cuid_" + getContext().getCUIDHash()); 968 addCompilerUsedGlobal(GV); 969 } 970 emitLLVMUsed(); 971 if (SanStats) 972 SanStats->finish(); 973 974 if (CodeGenOpts.Autolink && 975 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 976 EmitModuleLinkOptions(); 977 } 978 979 // On ELF we pass the dependent library specifiers directly to the linker 980 // without manipulating them. This is in contrast to other platforms where 981 // they are mapped to a specific linker option by the compiler. This 982 // difference is a result of the greater variety of ELF linkers and the fact 983 // that ELF linkers tend to handle libraries in a more complicated fashion 984 // than on other platforms. This forces us to defer handling the dependent 985 // libs to the linker. 986 // 987 // CUDA/HIP device and host libraries are different. Currently there is no 988 // way to differentiate dependent libraries for host or device. Existing 989 // usage of #pragma comment(lib, *) is intended for host libraries on 990 // Windows. Therefore emit llvm.dependent-libraries only for host. 991 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 992 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 993 for (auto *MD : ELFDependentLibraries) 994 NMD->addOperand(MD); 995 } 996 997 if (CodeGenOpts.DwarfVersion) { 998 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 999 CodeGenOpts.DwarfVersion); 1000 } 1001 1002 if (CodeGenOpts.Dwarf64) 1003 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 1004 1005 if (Context.getLangOpts().SemanticInterposition) 1006 // Require various optimization to respect semantic interposition. 1007 getModule().setSemanticInterposition(true); 1008 1009 if (CodeGenOpts.EmitCodeView) { 1010 // Indicate that we want CodeView in the metadata. 1011 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 1012 } 1013 if (CodeGenOpts.CodeViewGHash) { 1014 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 1015 } 1016 if (CodeGenOpts.ControlFlowGuard) { 1017 // Function ID tables and checks for Control Flow Guard (cfguard=2). 1018 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 1019 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 1020 // Function ID tables for Control Flow Guard (cfguard=1). 1021 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 1022 } 1023 if (CodeGenOpts.EHContGuard) { 1024 // Function ID tables for EH Continuation Guard. 1025 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 1026 } 1027 if (Context.getLangOpts().Kernel) { 1028 // Note if we are compiling with /kernel. 1029 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 1030 } 1031 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 1032 // We don't support LTO with 2 with different StrictVTablePointers 1033 // FIXME: we could support it by stripping all the information introduced 1034 // by StrictVTablePointers. 1035 1036 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1037 1038 llvm::Metadata *Ops[2] = { 1039 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1040 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1041 llvm::Type::getInt32Ty(VMContext), 1))}; 1042 1043 getModule().addModuleFlag(llvm::Module::Require, 1044 "StrictVTablePointersRequirement", 1045 llvm::MDNode::get(VMContext, Ops)); 1046 } 1047 if (getModuleDebugInfo()) 1048 // We support a single version in the linked module. The LLVM 1049 // parser will drop debug info with a different version number 1050 // (and warn about it, too). 1051 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1052 llvm::DEBUG_METADATA_VERSION); 1053 1054 // We need to record the widths of enums and wchar_t, so that we can generate 1055 // the correct build attributes in the ARM backend. wchar_size is also used by 1056 // TargetLibraryInfo. 1057 uint64_t WCharWidth = 1058 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1059 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1060 1061 if (getTriple().isOSzOS()) { 1062 getModule().addModuleFlag(llvm::Module::Warning, 1063 "zos_product_major_version", 1064 uint32_t(CLANG_VERSION_MAJOR)); 1065 getModule().addModuleFlag(llvm::Module::Warning, 1066 "zos_product_minor_version", 1067 uint32_t(CLANG_VERSION_MINOR)); 1068 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1069 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1070 std::string ProductId = getClangVendor() + "clang"; 1071 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1072 llvm::MDString::get(VMContext, ProductId)); 1073 1074 // Record the language because we need it for the PPA2. 1075 StringRef lang_str = languageToString( 1076 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1077 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1078 llvm::MDString::get(VMContext, lang_str)); 1079 1080 time_t TT = PreprocessorOpts.SourceDateEpoch 1081 ? *PreprocessorOpts.SourceDateEpoch 1082 : std::time(nullptr); 1083 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1084 static_cast<uint64_t>(TT)); 1085 1086 // Multiple modes will be supported here. 1087 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1088 llvm::MDString::get(VMContext, "ascii")); 1089 } 1090 1091 llvm::Triple T = Context.getTargetInfo().getTriple(); 1092 if (T.isARM() || T.isThumb()) { 1093 // The minimum width of an enum in bytes 1094 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1095 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1096 } 1097 1098 if (T.isRISCV()) { 1099 StringRef ABIStr = Target.getABI(); 1100 llvm::LLVMContext &Ctx = TheModule.getContext(); 1101 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1102 llvm::MDString::get(Ctx, ABIStr)); 1103 1104 // Add the canonical ISA string as metadata so the backend can set the ELF 1105 // attributes correctly. We use AppendUnique so LTO will keep all of the 1106 // unique ISA strings that were linked together. 1107 const std::vector<std::string> &Features = 1108 getTarget().getTargetOpts().Features; 1109 auto ParseResult = 1110 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1111 if (!errorToBool(ParseResult.takeError())) 1112 getModule().addModuleFlag( 1113 llvm::Module::AppendUnique, "riscv-isa", 1114 llvm::MDNode::get( 1115 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1116 } 1117 1118 if (CodeGenOpts.SanitizeCfiCrossDso) { 1119 // Indicate that we want cross-DSO control flow integrity checks. 1120 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1121 } 1122 1123 if (CodeGenOpts.WholeProgramVTables) { 1124 // Indicate whether VFE was enabled for this module, so that the 1125 // vcall_visibility metadata added under whole program vtables is handled 1126 // appropriately in the optimizer. 1127 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1128 CodeGenOpts.VirtualFunctionElimination); 1129 } 1130 1131 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1132 getModule().addModuleFlag(llvm::Module::Override, 1133 "CFI Canonical Jump Tables", 1134 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1135 } 1136 1137 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1138 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1139 // KCFI assumes patchable-function-prefix is the same for all indirectly 1140 // called functions. Store the expected offset for code generation. 1141 if (CodeGenOpts.PatchableFunctionEntryOffset) 1142 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1143 CodeGenOpts.PatchableFunctionEntryOffset); 1144 } 1145 1146 if (CodeGenOpts.CFProtectionReturn && 1147 Target.checkCFProtectionReturnSupported(getDiags())) { 1148 // Indicate that we want to instrument return control flow protection. 1149 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1150 1); 1151 } 1152 1153 if (CodeGenOpts.CFProtectionBranch && 1154 Target.checkCFProtectionBranchSupported(getDiags())) { 1155 // Indicate that we want to instrument branch control flow protection. 1156 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1157 1); 1158 } 1159 1160 if (CodeGenOpts.FunctionReturnThunks) 1161 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1162 1163 if (CodeGenOpts.IndirectBranchCSPrefix) 1164 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1165 1166 // Add module metadata for return address signing (ignoring 1167 // non-leaf/all) and stack tagging. These are actually turned on by function 1168 // attributes, but we use module metadata to emit build attributes. This is 1169 // needed for LTO, where the function attributes are inside bitcode 1170 // serialised into a global variable by the time build attributes are 1171 // emitted, so we can't access them. LTO objects could be compiled with 1172 // different flags therefore module flags are set to "Min" behavior to achieve 1173 // the same end result of the normal build where e.g BTI is off if any object 1174 // doesn't support it. 1175 if (Context.getTargetInfo().hasFeature("ptrauth") && 1176 LangOpts.getSignReturnAddressScope() != 1177 LangOptions::SignReturnAddressScopeKind::None) 1178 getModule().addModuleFlag(llvm::Module::Override, 1179 "sign-return-address-buildattr", 1); 1180 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1181 getModule().addModuleFlag(llvm::Module::Override, 1182 "tag-stack-memory-buildattr", 1); 1183 1184 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1185 if (LangOpts.BranchTargetEnforcement) 1186 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1187 1); 1188 if (LangOpts.BranchProtectionPAuthLR) 1189 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1190 1); 1191 if (LangOpts.GuardedControlStack) 1192 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1193 if (LangOpts.hasSignReturnAddress()) 1194 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1195 if (LangOpts.isSignReturnAddressScopeAll()) 1196 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1197 1); 1198 if (!LangOpts.isSignReturnAddressWithAKey()) 1199 getModule().addModuleFlag(llvm::Module::Min, 1200 "sign-return-address-with-bkey", 1); 1201 1202 if (getTriple().isOSLinux()) { 1203 assert(getTriple().isOSBinFormatELF()); 1204 using namespace llvm::ELF; 1205 uint64_t PAuthABIVersion = 1206 (LangOpts.PointerAuthIntrinsics 1207 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) | 1208 (LangOpts.PointerAuthCalls 1209 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) | 1210 (LangOpts.PointerAuthReturns 1211 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) | 1212 (LangOpts.PointerAuthAuthTraps 1213 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) | 1214 (LangOpts.PointerAuthVTPtrAddressDiscrimination 1215 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) | 1216 (LangOpts.PointerAuthVTPtrTypeDiscrimination 1217 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) | 1218 (LangOpts.PointerAuthInitFini 1219 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) | 1220 (LangOpts.PointerAuthInitFiniAddressDiscrimination 1221 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) | 1222 (LangOpts.PointerAuthELFGOT 1223 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) | 1224 (LangOpts.PointerAuthIndirectGotos 1225 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) | 1226 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination 1227 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) | 1228 (LangOpts.PointerAuthFunctionTypeDiscrimination 1229 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR); 1230 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR == 1231 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 1232 "Update when new enum items are defined"); 1233 if (PAuthABIVersion != 0) { 1234 getModule().addModuleFlag(llvm::Module::Error, 1235 "aarch64-elf-pauthabi-platform", 1236 AARCH64_PAUTH_PLATFORM_LLVM_LINUX); 1237 getModule().addModuleFlag(llvm::Module::Error, 1238 "aarch64-elf-pauthabi-version", 1239 PAuthABIVersion); 1240 } 1241 } 1242 } 1243 1244 if (CodeGenOpts.StackClashProtector) 1245 getModule().addModuleFlag( 1246 llvm::Module::Override, "probe-stack", 1247 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1248 1249 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1250 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1251 CodeGenOpts.StackProbeSize); 1252 1253 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1254 llvm::LLVMContext &Ctx = TheModule.getContext(); 1255 getModule().addModuleFlag( 1256 llvm::Module::Error, "MemProfProfileFilename", 1257 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1258 } 1259 1260 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1261 // Indicate whether __nvvm_reflect should be configured to flush denormal 1262 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1263 // property.) 1264 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1265 CodeGenOpts.FP32DenormalMode.Output != 1266 llvm::DenormalMode::IEEE); 1267 } 1268 1269 if (LangOpts.EHAsynch) 1270 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1271 1272 // Indicate whether this Module was compiled with -fopenmp 1273 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1274 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1275 if (getLangOpts().OpenMPIsTargetDevice) 1276 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1277 LangOpts.OpenMP); 1278 1279 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1280 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1281 EmitOpenCLMetadata(); 1282 // Emit SPIR version. 1283 if (getTriple().isSPIR()) { 1284 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1285 // opencl.spir.version named metadata. 1286 // C++ for OpenCL has a distinct mapping for version compatibility with 1287 // OpenCL. 1288 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1289 llvm::Metadata *SPIRVerElts[] = { 1290 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1291 Int32Ty, Version / 100)), 1292 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1293 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1294 llvm::NamedMDNode *SPIRVerMD = 1295 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1296 llvm::LLVMContext &Ctx = TheModule.getContext(); 1297 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1298 } 1299 } 1300 1301 // HLSL related end of code gen work items. 1302 if (LangOpts.HLSL) 1303 getHLSLRuntime().finishCodeGen(); 1304 1305 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1306 assert(PLevel < 3 && "Invalid PIC Level"); 1307 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1308 if (Context.getLangOpts().PIE) 1309 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1310 } 1311 1312 if (getCodeGenOpts().CodeModel.size() > 0) { 1313 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1314 .Case("tiny", llvm::CodeModel::Tiny) 1315 .Case("small", llvm::CodeModel::Small) 1316 .Case("kernel", llvm::CodeModel::Kernel) 1317 .Case("medium", llvm::CodeModel::Medium) 1318 .Case("large", llvm::CodeModel::Large) 1319 .Default(~0u); 1320 if (CM != ~0u) { 1321 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1322 getModule().setCodeModel(codeModel); 1323 1324 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1325 Context.getTargetInfo().getTriple().getArch() == 1326 llvm::Triple::x86_64) { 1327 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1328 } 1329 } 1330 } 1331 1332 if (CodeGenOpts.NoPLT) 1333 getModule().setRtLibUseGOT(); 1334 if (getTriple().isOSBinFormatELF() && 1335 CodeGenOpts.DirectAccessExternalData != 1336 getModule().getDirectAccessExternalData()) { 1337 getModule().setDirectAccessExternalData( 1338 CodeGenOpts.DirectAccessExternalData); 1339 } 1340 if (CodeGenOpts.UnwindTables) 1341 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1342 1343 switch (CodeGenOpts.getFramePointer()) { 1344 case CodeGenOptions::FramePointerKind::None: 1345 // 0 ("none") is the default. 1346 break; 1347 case CodeGenOptions::FramePointerKind::Reserved: 1348 getModule().setFramePointer(llvm::FramePointerKind::Reserved); 1349 break; 1350 case CodeGenOptions::FramePointerKind::NonLeaf: 1351 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1352 break; 1353 case CodeGenOptions::FramePointerKind::All: 1354 getModule().setFramePointer(llvm::FramePointerKind::All); 1355 break; 1356 } 1357 1358 SimplifyPersonality(); 1359 1360 if (getCodeGenOpts().EmitDeclMetadata) 1361 EmitDeclMetadata(); 1362 1363 if (getCodeGenOpts().CoverageNotesFile.size() || 1364 getCodeGenOpts().CoverageDataFile.size()) 1365 EmitCoverageFile(); 1366 1367 if (CGDebugInfo *DI = getModuleDebugInfo()) 1368 DI->finalize(); 1369 1370 if (getCodeGenOpts().EmitVersionIdentMetadata) 1371 EmitVersionIdentMetadata(); 1372 1373 if (!getCodeGenOpts().RecordCommandLine.empty()) 1374 EmitCommandLineMetadata(); 1375 1376 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1377 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1378 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1379 getModule().setStackProtectorGuardReg( 1380 getCodeGenOpts().StackProtectorGuardReg); 1381 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1382 getModule().setStackProtectorGuardSymbol( 1383 getCodeGenOpts().StackProtectorGuardSymbol); 1384 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1385 getModule().setStackProtectorGuardOffset( 1386 getCodeGenOpts().StackProtectorGuardOffset); 1387 if (getCodeGenOpts().StackAlignment) 1388 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1389 if (getCodeGenOpts().SkipRaxSetup) 1390 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1391 if (getLangOpts().RegCall4) 1392 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1393 1394 if (getContext().getTargetInfo().getMaxTLSAlign()) 1395 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1396 getContext().getTargetInfo().getMaxTLSAlign()); 1397 1398 getTargetCodeGenInfo().emitTargetGlobals(*this); 1399 1400 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1401 1402 EmitBackendOptionsMetadata(getCodeGenOpts()); 1403 1404 // If there is device offloading code embed it in the host now. 1405 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1406 1407 // Set visibility from DLL storage class 1408 // We do this at the end of LLVM IR generation; after any operation 1409 // that might affect the DLL storage class or the visibility, and 1410 // before anything that might act on these. 1411 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1412 1413 // Check the tail call symbols are truly undefined. 1414 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) { 1415 for (auto &I : MustTailCallUndefinedGlobals) { 1416 if (!I.first->isDefined()) 1417 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1418 else { 1419 StringRef MangledName = getMangledName(GlobalDecl(I.first)); 1420 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1421 if (!Entry || Entry->isWeakForLinker() || 1422 Entry->isDeclarationForLinker()) 1423 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2; 1424 } 1425 } 1426 } 1427 } 1428 1429 void CodeGenModule::EmitOpenCLMetadata() { 1430 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1431 // opencl.ocl.version named metadata node. 1432 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL. 1433 auto CLVersion = LangOpts.getOpenCLCompatibleVersion(); 1434 1435 auto EmitVersion = [this](StringRef MDName, int Version) { 1436 llvm::Metadata *OCLVerElts[] = { 1437 llvm::ConstantAsMetadata::get( 1438 llvm::ConstantInt::get(Int32Ty, Version / 100)), 1439 llvm::ConstantAsMetadata::get( 1440 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))}; 1441 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName); 1442 llvm::LLVMContext &Ctx = TheModule.getContext(); 1443 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1444 }; 1445 1446 EmitVersion("opencl.ocl.version", CLVersion); 1447 if (LangOpts.OpenCLCPlusPlus) { 1448 // In addition to the OpenCL compatible version, emit the C++ version. 1449 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion); 1450 } 1451 } 1452 1453 void CodeGenModule::EmitBackendOptionsMetadata( 1454 const CodeGenOptions &CodeGenOpts) { 1455 if (getTriple().isRISCV()) { 1456 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1457 CodeGenOpts.SmallDataLimit); 1458 } 1459 } 1460 1461 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1462 // Make sure that this type is translated. 1463 Types.UpdateCompletedType(TD); 1464 } 1465 1466 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1467 // Make sure that this type is translated. 1468 Types.RefreshTypeCacheForClass(RD); 1469 } 1470 1471 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1472 if (!TBAA) 1473 return nullptr; 1474 return TBAA->getTypeInfo(QTy); 1475 } 1476 1477 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1478 if (!TBAA) 1479 return TBAAAccessInfo(); 1480 if (getLangOpts().CUDAIsDevice) { 1481 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1482 // access info. 1483 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1484 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1485 nullptr) 1486 return TBAAAccessInfo(); 1487 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1488 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1489 nullptr) 1490 return TBAAAccessInfo(); 1491 } 1492 } 1493 return TBAA->getAccessInfo(AccessType); 1494 } 1495 1496 TBAAAccessInfo 1497 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1498 if (!TBAA) 1499 return TBAAAccessInfo(); 1500 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1501 } 1502 1503 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1504 if (!TBAA) 1505 return nullptr; 1506 return TBAA->getTBAAStructInfo(QTy); 1507 } 1508 1509 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1510 if (!TBAA) 1511 return nullptr; 1512 return TBAA->getBaseTypeInfo(QTy); 1513 } 1514 1515 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1516 if (!TBAA) 1517 return nullptr; 1518 return TBAA->getAccessTagInfo(Info); 1519 } 1520 1521 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1522 TBAAAccessInfo TargetInfo) { 1523 if (!TBAA) 1524 return TBAAAccessInfo(); 1525 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1526 } 1527 1528 TBAAAccessInfo 1529 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1530 TBAAAccessInfo InfoB) { 1531 if (!TBAA) 1532 return TBAAAccessInfo(); 1533 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1534 } 1535 1536 TBAAAccessInfo 1537 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1538 TBAAAccessInfo SrcInfo) { 1539 if (!TBAA) 1540 return TBAAAccessInfo(); 1541 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1542 } 1543 1544 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1545 TBAAAccessInfo TBAAInfo) { 1546 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1547 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1548 } 1549 1550 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1551 llvm::Instruction *I, const CXXRecordDecl *RD) { 1552 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1553 llvm::MDNode::get(getLLVMContext(), {})); 1554 } 1555 1556 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1557 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1558 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1559 } 1560 1561 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1562 /// specified stmt yet. 1563 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1564 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1565 "cannot compile this %0 yet"); 1566 std::string Msg = Type; 1567 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1568 << Msg << S->getSourceRange(); 1569 } 1570 1571 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1572 /// specified decl yet. 1573 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1574 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1575 "cannot compile this %0 yet"); 1576 std::string Msg = Type; 1577 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1578 } 1579 1580 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1581 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1582 } 1583 1584 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1585 const NamedDecl *D) const { 1586 // Internal definitions always have default visibility. 1587 if (GV->hasLocalLinkage()) { 1588 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1589 return; 1590 } 1591 if (!D) 1592 return; 1593 1594 // Set visibility for definitions, and for declarations if requested globally 1595 // or set explicitly. 1596 LinkageInfo LV = D->getLinkageAndVisibility(); 1597 1598 // OpenMP declare target variables must be visible to the host so they can 1599 // be registered. We require protected visibility unless the variable has 1600 // the DT_nohost modifier and does not need to be registered. 1601 if (Context.getLangOpts().OpenMP && 1602 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1603 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1604 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1605 OMPDeclareTargetDeclAttr::DT_NoHost && 1606 LV.getVisibility() == HiddenVisibility) { 1607 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1608 return; 1609 } 1610 1611 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1612 // Reject incompatible dlllstorage and visibility annotations. 1613 if (!LV.isVisibilityExplicit()) 1614 return; 1615 if (GV->hasDLLExportStorageClass()) { 1616 if (LV.getVisibility() == HiddenVisibility) 1617 getDiags().Report(D->getLocation(), 1618 diag::err_hidden_visibility_dllexport); 1619 } else if (LV.getVisibility() != DefaultVisibility) { 1620 getDiags().Report(D->getLocation(), 1621 diag::err_non_default_visibility_dllimport); 1622 } 1623 return; 1624 } 1625 1626 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1627 !GV->isDeclarationForLinker()) 1628 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1629 } 1630 1631 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1632 llvm::GlobalValue *GV) { 1633 if (GV->hasLocalLinkage()) 1634 return true; 1635 1636 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1637 return true; 1638 1639 // DLLImport explicitly marks the GV as external. 1640 if (GV->hasDLLImportStorageClass()) 1641 return false; 1642 1643 const llvm::Triple &TT = CGM.getTriple(); 1644 const auto &CGOpts = CGM.getCodeGenOpts(); 1645 if (TT.isWindowsGNUEnvironment()) { 1646 // In MinGW, variables without DLLImport can still be automatically 1647 // imported from a DLL by the linker; don't mark variables that 1648 // potentially could come from another DLL as DSO local. 1649 1650 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1651 // (and this actually happens in the public interface of libstdc++), so 1652 // such variables can't be marked as DSO local. (Native TLS variables 1653 // can't be dllimported at all, though.) 1654 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1655 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1656 CGOpts.AutoImport) 1657 return false; 1658 } 1659 1660 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1661 // remain unresolved in the link, they can be resolved to zero, which is 1662 // outside the current DSO. 1663 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1664 return false; 1665 1666 // Every other GV is local on COFF. 1667 // Make an exception for windows OS in the triple: Some firmware builds use 1668 // *-win32-macho triples. This (accidentally?) produced windows relocations 1669 // without GOT tables in older clang versions; Keep this behaviour. 1670 // FIXME: even thread local variables? 1671 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1672 return true; 1673 1674 // Only handle COFF and ELF for now. 1675 if (!TT.isOSBinFormatELF()) 1676 return false; 1677 1678 // If this is not an executable, don't assume anything is local. 1679 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1680 const auto &LOpts = CGM.getLangOpts(); 1681 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1682 // On ELF, if -fno-semantic-interposition is specified and the target 1683 // supports local aliases, there will be neither CC1 1684 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1685 // dso_local on the function if using a local alias is preferable (can avoid 1686 // PLT indirection). 1687 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1688 return false; 1689 return !(CGM.getLangOpts().SemanticInterposition || 1690 CGM.getLangOpts().HalfNoSemanticInterposition); 1691 } 1692 1693 // A definition cannot be preempted from an executable. 1694 if (!GV->isDeclarationForLinker()) 1695 return true; 1696 1697 // Most PIC code sequences that assume that a symbol is local cannot produce a 1698 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1699 // depended, it seems worth it to handle it here. 1700 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1701 return false; 1702 1703 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1704 if (TT.isPPC64()) 1705 return false; 1706 1707 if (CGOpts.DirectAccessExternalData) { 1708 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1709 // for non-thread-local variables. If the symbol is not defined in the 1710 // executable, a copy relocation will be needed at link time. dso_local is 1711 // excluded for thread-local variables because they generally don't support 1712 // copy relocations. 1713 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1714 if (!Var->isThreadLocal()) 1715 return true; 1716 1717 // -fno-pic sets dso_local on a function declaration to allow direct 1718 // accesses when taking its address (similar to a data symbol). If the 1719 // function is not defined in the executable, a canonical PLT entry will be 1720 // needed at link time. -fno-direct-access-external-data can avoid the 1721 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1722 // it could just cause trouble without providing perceptible benefits. 1723 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1724 return true; 1725 } 1726 1727 // If we can use copy relocations we can assume it is local. 1728 1729 // Otherwise don't assume it is local. 1730 return false; 1731 } 1732 1733 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1734 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1735 } 1736 1737 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1738 GlobalDecl GD) const { 1739 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1740 // C++ destructors have a few C++ ABI specific special cases. 1741 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1742 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1743 return; 1744 } 1745 setDLLImportDLLExport(GV, D); 1746 } 1747 1748 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1749 const NamedDecl *D) const { 1750 if (D && D->isExternallyVisible()) { 1751 if (D->hasAttr<DLLImportAttr>()) 1752 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1753 else if ((D->hasAttr<DLLExportAttr>() || 1754 shouldMapVisibilityToDLLExport(D)) && 1755 !GV->isDeclarationForLinker()) 1756 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1757 } 1758 } 1759 1760 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1761 GlobalDecl GD) const { 1762 setDLLImportDLLExport(GV, GD); 1763 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1764 } 1765 1766 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1767 const NamedDecl *D) const { 1768 setDLLImportDLLExport(GV, D); 1769 setGVPropertiesAux(GV, D); 1770 } 1771 1772 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1773 const NamedDecl *D) const { 1774 setGlobalVisibility(GV, D); 1775 setDSOLocal(GV); 1776 GV->setPartition(CodeGenOpts.SymbolPartition); 1777 } 1778 1779 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1780 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1781 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1782 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1783 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1784 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1785 } 1786 1787 llvm::GlobalVariable::ThreadLocalMode 1788 CodeGenModule::GetDefaultLLVMTLSModel() const { 1789 switch (CodeGenOpts.getDefaultTLSModel()) { 1790 case CodeGenOptions::GeneralDynamicTLSModel: 1791 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1792 case CodeGenOptions::LocalDynamicTLSModel: 1793 return llvm::GlobalVariable::LocalDynamicTLSModel; 1794 case CodeGenOptions::InitialExecTLSModel: 1795 return llvm::GlobalVariable::InitialExecTLSModel; 1796 case CodeGenOptions::LocalExecTLSModel: 1797 return llvm::GlobalVariable::LocalExecTLSModel; 1798 } 1799 llvm_unreachable("Invalid TLS model!"); 1800 } 1801 1802 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1803 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1804 1805 llvm::GlobalValue::ThreadLocalMode TLM; 1806 TLM = GetDefaultLLVMTLSModel(); 1807 1808 // Override the TLS model if it is explicitly specified. 1809 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1810 TLM = GetLLVMTLSModel(Attr->getModel()); 1811 } 1812 1813 GV->setThreadLocalMode(TLM); 1814 } 1815 1816 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1817 StringRef Name) { 1818 const TargetInfo &Target = CGM.getTarget(); 1819 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1820 } 1821 1822 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1823 const CPUSpecificAttr *Attr, 1824 unsigned CPUIndex, 1825 raw_ostream &Out) { 1826 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1827 // supported. 1828 if (Attr) 1829 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1830 else if (CGM.getTarget().supportsIFunc()) 1831 Out << ".resolver"; 1832 } 1833 1834 // Returns true if GD is a function decl with internal linkage and 1835 // needs a unique suffix after the mangled name. 1836 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1837 CodeGenModule &CGM) { 1838 const Decl *D = GD.getDecl(); 1839 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1840 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1841 } 1842 1843 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1844 const NamedDecl *ND, 1845 bool OmitMultiVersionMangling = false) { 1846 SmallString<256> Buffer; 1847 llvm::raw_svector_ostream Out(Buffer); 1848 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1849 if (!CGM.getModuleNameHash().empty()) 1850 MC.needsUniqueInternalLinkageNames(); 1851 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1852 if (ShouldMangle) 1853 MC.mangleName(GD.getWithDecl(ND), Out); 1854 else { 1855 IdentifierInfo *II = ND->getIdentifier(); 1856 assert(II && "Attempt to mangle unnamed decl."); 1857 const auto *FD = dyn_cast<FunctionDecl>(ND); 1858 1859 if (FD && 1860 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1861 if (CGM.getLangOpts().RegCall4) 1862 Out << "__regcall4__" << II->getName(); 1863 else 1864 Out << "__regcall3__" << II->getName(); 1865 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1866 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1867 Out << "__device_stub__" << II->getName(); 1868 } else { 1869 Out << II->getName(); 1870 } 1871 } 1872 1873 // Check if the module name hash should be appended for internal linkage 1874 // symbols. This should come before multi-version target suffixes are 1875 // appended. This is to keep the name and module hash suffix of the 1876 // internal linkage function together. The unique suffix should only be 1877 // added when name mangling is done to make sure that the final name can 1878 // be properly demangled. For example, for C functions without prototypes, 1879 // name mangling is not done and the unique suffix should not be appeneded 1880 // then. 1881 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1882 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1883 "Hash computed when not explicitly requested"); 1884 Out << CGM.getModuleNameHash(); 1885 } 1886 1887 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1888 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1889 switch (FD->getMultiVersionKind()) { 1890 case MultiVersionKind::CPUDispatch: 1891 case MultiVersionKind::CPUSpecific: 1892 AppendCPUSpecificCPUDispatchMangling(CGM, 1893 FD->getAttr<CPUSpecificAttr>(), 1894 GD.getMultiVersionIndex(), Out); 1895 break; 1896 case MultiVersionKind::Target: { 1897 auto *Attr = FD->getAttr<TargetAttr>(); 1898 assert(Attr && "Expected TargetAttr to be present " 1899 "for attribute mangling"); 1900 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1901 Info.appendAttributeMangling(Attr, Out); 1902 break; 1903 } 1904 case MultiVersionKind::TargetVersion: { 1905 auto *Attr = FD->getAttr<TargetVersionAttr>(); 1906 assert(Attr && "Expected TargetVersionAttr to be present " 1907 "for attribute mangling"); 1908 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1909 Info.appendAttributeMangling(Attr, Out); 1910 break; 1911 } 1912 case MultiVersionKind::TargetClones: { 1913 auto *Attr = FD->getAttr<TargetClonesAttr>(); 1914 assert(Attr && "Expected TargetClonesAttr to be present " 1915 "for attribute mangling"); 1916 unsigned Index = GD.getMultiVersionIndex(); 1917 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo(); 1918 Info.appendAttributeMangling(Attr, Index, Out); 1919 break; 1920 } 1921 case MultiVersionKind::None: 1922 llvm_unreachable("None multiversion type isn't valid here"); 1923 } 1924 } 1925 1926 // Make unique name for device side static file-scope variable for HIP. 1927 if (CGM.getContext().shouldExternalize(ND) && 1928 CGM.getLangOpts().GPURelocatableDeviceCode && 1929 CGM.getLangOpts().CUDAIsDevice) 1930 CGM.printPostfixForExternalizedDecl(Out, ND); 1931 1932 return std::string(Out.str()); 1933 } 1934 1935 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1936 const FunctionDecl *FD, 1937 StringRef &CurName) { 1938 if (!FD->isMultiVersion()) 1939 return; 1940 1941 // Get the name of what this would be without the 'target' attribute. This 1942 // allows us to lookup the version that was emitted when this wasn't a 1943 // multiversion function. 1944 std::string NonTargetName = 1945 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1946 GlobalDecl OtherGD; 1947 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1948 assert(OtherGD.getCanonicalDecl() 1949 .getDecl() 1950 ->getAsFunction() 1951 ->isMultiVersion() && 1952 "Other GD should now be a multiversioned function"); 1953 // OtherFD is the version of this function that was mangled BEFORE 1954 // becoming a MultiVersion function. It potentially needs to be updated. 1955 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1956 .getDecl() 1957 ->getAsFunction() 1958 ->getMostRecentDecl(); 1959 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1960 // This is so that if the initial version was already the 'default' 1961 // version, we don't try to update it. 1962 if (OtherName != NonTargetName) { 1963 // Remove instead of erase, since others may have stored the StringRef 1964 // to this. 1965 const auto ExistingRecord = Manglings.find(NonTargetName); 1966 if (ExistingRecord != std::end(Manglings)) 1967 Manglings.remove(&(*ExistingRecord)); 1968 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1969 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1970 Result.first->first(); 1971 // If this is the current decl is being created, make sure we update the name. 1972 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1973 CurName = OtherNameRef; 1974 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1975 Entry->setName(OtherName); 1976 } 1977 } 1978 } 1979 1980 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1981 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1982 1983 // Some ABIs don't have constructor variants. Make sure that base and 1984 // complete constructors get mangled the same. 1985 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1986 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1987 CXXCtorType OrigCtorType = GD.getCtorType(); 1988 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1989 if (OrigCtorType == Ctor_Base) 1990 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1991 } 1992 } 1993 1994 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1995 // static device variable depends on whether the variable is referenced by 1996 // a host or device host function. Therefore the mangled name cannot be 1997 // cached. 1998 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1999 auto FoundName = MangledDeclNames.find(CanonicalGD); 2000 if (FoundName != MangledDeclNames.end()) 2001 return FoundName->second; 2002 } 2003 2004 // Keep the first result in the case of a mangling collision. 2005 const auto *ND = cast<NamedDecl>(GD.getDecl()); 2006 std::string MangledName = getMangledNameImpl(*this, GD, ND); 2007 2008 // Ensure either we have different ABIs between host and device compilations, 2009 // says host compilation following MSVC ABI but device compilation follows 2010 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 2011 // mangling should be the same after name stubbing. The later checking is 2012 // very important as the device kernel name being mangled in host-compilation 2013 // is used to resolve the device binaries to be executed. Inconsistent naming 2014 // result in undefined behavior. Even though we cannot check that naming 2015 // directly between host- and device-compilations, the host- and 2016 // device-mangling in host compilation could help catching certain ones. 2017 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 2018 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 2019 (getContext().getAuxTargetInfo() && 2020 (getContext().getAuxTargetInfo()->getCXXABI() != 2021 getContext().getTargetInfo().getCXXABI())) || 2022 getCUDARuntime().getDeviceSideName(ND) == 2023 getMangledNameImpl( 2024 *this, 2025 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 2026 ND)); 2027 2028 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 2029 return MangledDeclNames[CanonicalGD] = Result.first->first(); 2030 } 2031 2032 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2033 const BlockDecl *BD) { 2034 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2035 const Decl *D = GD.getDecl(); 2036 2037 SmallString<256> Buffer; 2038 llvm::raw_svector_ostream Out(Buffer); 2039 if (!D) 2040 MangleCtx.mangleGlobalBlock(BD, 2041 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2042 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2043 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2044 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2045 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2046 else 2047 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2048 2049 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2050 return Result.first->first(); 2051 } 2052 2053 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2054 auto it = MangledDeclNames.begin(); 2055 while (it != MangledDeclNames.end()) { 2056 if (it->second == Name) 2057 return it->first; 2058 it++; 2059 } 2060 return GlobalDecl(); 2061 } 2062 2063 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2064 return getModule().getNamedValue(Name); 2065 } 2066 2067 /// AddGlobalCtor - Add a function to the list that will be called before 2068 /// main() runs. 2069 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2070 unsigned LexOrder, 2071 llvm::Constant *AssociatedData) { 2072 // FIXME: Type coercion of void()* types. 2073 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2074 } 2075 2076 /// AddGlobalDtor - Add a function to the list that will be called 2077 /// when the module is unloaded. 2078 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2079 bool IsDtorAttrFunc) { 2080 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2081 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2082 DtorsUsingAtExit[Priority].push_back(Dtor); 2083 return; 2084 } 2085 2086 // FIXME: Type coercion of void()* types. 2087 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2088 } 2089 2090 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2091 if (Fns.empty()) return; 2092 2093 const PointerAuthSchema &InitFiniAuthSchema = 2094 getCodeGenOpts().PointerAuth.InitFiniPointers; 2095 2096 // Ctor function type is ptr. 2097 llvm::PointerType *PtrTy = llvm::PointerType::get( 2098 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace()); 2099 2100 // Get the type of a ctor entry, { i32, ptr, ptr }. 2101 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy); 2102 2103 // Construct the constructor and destructor arrays. 2104 ConstantInitBuilder Builder(*this); 2105 auto Ctors = Builder.beginArray(CtorStructTy); 2106 for (const auto &I : Fns) { 2107 auto Ctor = Ctors.beginStruct(CtorStructTy); 2108 Ctor.addInt(Int32Ty, I.Priority); 2109 if (InitFiniAuthSchema) { 2110 llvm::Constant *StorageAddress = 2111 (InitFiniAuthSchema.isAddressDiscriminated() 2112 ? llvm::ConstantExpr::getIntToPtr( 2113 llvm::ConstantInt::get( 2114 IntPtrTy, 2115 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors), 2116 PtrTy) 2117 : nullptr); 2118 llvm::Constant *SignedCtorPtr = getConstantSignedPointer( 2119 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress, 2120 llvm::ConstantInt::get( 2121 SizeTy, InitFiniAuthSchema.getConstantDiscrimination())); 2122 Ctor.add(SignedCtorPtr); 2123 } else { 2124 Ctor.add(I.Initializer); 2125 } 2126 if (I.AssociatedData) 2127 Ctor.add(I.AssociatedData); 2128 else 2129 Ctor.addNullPointer(PtrTy); 2130 Ctor.finishAndAddTo(Ctors); 2131 } 2132 2133 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2134 /*constant*/ false, 2135 llvm::GlobalValue::AppendingLinkage); 2136 2137 // The LTO linker doesn't seem to like it when we set an alignment 2138 // on appending variables. Take it off as a workaround. 2139 List->setAlignment(std::nullopt); 2140 2141 Fns.clear(); 2142 } 2143 2144 llvm::GlobalValue::LinkageTypes 2145 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2146 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2147 2148 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2149 2150 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2151 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2152 2153 return getLLVMLinkageForDeclarator(D, Linkage); 2154 } 2155 2156 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2157 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2158 if (!MDS) return nullptr; 2159 2160 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2161 } 2162 2163 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2164 if (auto *FnType = T->getAs<FunctionProtoType>()) 2165 T = getContext().getFunctionType( 2166 FnType->getReturnType(), FnType->getParamTypes(), 2167 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2168 2169 std::string OutName; 2170 llvm::raw_string_ostream Out(OutName); 2171 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2172 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2173 2174 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2175 Out << ".normalized"; 2176 2177 return llvm::ConstantInt::get(Int32Ty, 2178 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2179 } 2180 2181 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2182 const CGFunctionInfo &Info, 2183 llvm::Function *F, bool IsThunk) { 2184 unsigned CallingConv; 2185 llvm::AttributeList PAL; 2186 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2187 /*AttrOnCallSite=*/false, IsThunk); 2188 if (CallingConv == llvm::CallingConv::X86_VectorCall && 2189 getTarget().getTriple().isWindowsArm64EC()) { 2190 SourceLocation Loc; 2191 if (const Decl *D = GD.getDecl()) 2192 Loc = D->getLocation(); 2193 2194 Error(Loc, "__vectorcall calling convention is not currently supported"); 2195 } 2196 F->setAttributes(PAL); 2197 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2198 } 2199 2200 static void removeImageAccessQualifier(std::string& TyName) { 2201 std::string ReadOnlyQual("__read_only"); 2202 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2203 if (ReadOnlyPos != std::string::npos) 2204 // "+ 1" for the space after access qualifier. 2205 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2206 else { 2207 std::string WriteOnlyQual("__write_only"); 2208 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2209 if (WriteOnlyPos != std::string::npos) 2210 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2211 else { 2212 std::string ReadWriteQual("__read_write"); 2213 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2214 if (ReadWritePos != std::string::npos) 2215 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2216 } 2217 } 2218 } 2219 2220 // Returns the address space id that should be produced to the 2221 // kernel_arg_addr_space metadata. This is always fixed to the ids 2222 // as specified in the SPIR 2.0 specification in order to differentiate 2223 // for example in clGetKernelArgInfo() implementation between the address 2224 // spaces with targets without unique mapping to the OpenCL address spaces 2225 // (basically all single AS CPUs). 2226 static unsigned ArgInfoAddressSpace(LangAS AS) { 2227 switch (AS) { 2228 case LangAS::opencl_global: 2229 return 1; 2230 case LangAS::opencl_constant: 2231 return 2; 2232 case LangAS::opencl_local: 2233 return 3; 2234 case LangAS::opencl_generic: 2235 return 4; // Not in SPIR 2.0 specs. 2236 case LangAS::opencl_global_device: 2237 return 5; 2238 case LangAS::opencl_global_host: 2239 return 6; 2240 default: 2241 return 0; // Assume private. 2242 } 2243 } 2244 2245 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2246 const FunctionDecl *FD, 2247 CodeGenFunction *CGF) { 2248 assert(((FD && CGF) || (!FD && !CGF)) && 2249 "Incorrect use - FD and CGF should either be both null or not!"); 2250 // Create MDNodes that represent the kernel arg metadata. 2251 // Each MDNode is a list in the form of "key", N number of values which is 2252 // the same number of values as their are kernel arguments. 2253 2254 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2255 2256 // MDNode for the kernel argument address space qualifiers. 2257 SmallVector<llvm::Metadata *, 8> addressQuals; 2258 2259 // MDNode for the kernel argument access qualifiers (images only). 2260 SmallVector<llvm::Metadata *, 8> accessQuals; 2261 2262 // MDNode for the kernel argument type names. 2263 SmallVector<llvm::Metadata *, 8> argTypeNames; 2264 2265 // MDNode for the kernel argument base type names. 2266 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2267 2268 // MDNode for the kernel argument type qualifiers. 2269 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2270 2271 // MDNode for the kernel argument names. 2272 SmallVector<llvm::Metadata *, 8> argNames; 2273 2274 if (FD && CGF) 2275 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2276 const ParmVarDecl *parm = FD->getParamDecl(i); 2277 // Get argument name. 2278 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2279 2280 if (!getLangOpts().OpenCL) 2281 continue; 2282 QualType ty = parm->getType(); 2283 std::string typeQuals; 2284 2285 // Get image and pipe access qualifier: 2286 if (ty->isImageType() || ty->isPipeType()) { 2287 const Decl *PDecl = parm; 2288 if (const auto *TD = ty->getAs<TypedefType>()) 2289 PDecl = TD->getDecl(); 2290 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2291 if (A && A->isWriteOnly()) 2292 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2293 else if (A && A->isReadWrite()) 2294 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2295 else 2296 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2297 } else 2298 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2299 2300 auto getTypeSpelling = [&](QualType Ty) { 2301 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2302 2303 if (Ty.isCanonical()) { 2304 StringRef typeNameRef = typeName; 2305 // Turn "unsigned type" to "utype" 2306 if (typeNameRef.consume_front("unsigned ")) 2307 return std::string("u") + typeNameRef.str(); 2308 if (typeNameRef.consume_front("signed ")) 2309 return typeNameRef.str(); 2310 } 2311 2312 return typeName; 2313 }; 2314 2315 if (ty->isPointerType()) { 2316 QualType pointeeTy = ty->getPointeeType(); 2317 2318 // Get address qualifier. 2319 addressQuals.push_back( 2320 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2321 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2322 2323 // Get argument type name. 2324 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2325 std::string baseTypeName = 2326 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2327 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2328 argBaseTypeNames.push_back( 2329 llvm::MDString::get(VMContext, baseTypeName)); 2330 2331 // Get argument type qualifiers: 2332 if (ty.isRestrictQualified()) 2333 typeQuals = "restrict"; 2334 if (pointeeTy.isConstQualified() || 2335 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2336 typeQuals += typeQuals.empty() ? "const" : " const"; 2337 if (pointeeTy.isVolatileQualified()) 2338 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2339 } else { 2340 uint32_t AddrSpc = 0; 2341 bool isPipe = ty->isPipeType(); 2342 if (ty->isImageType() || isPipe) 2343 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2344 2345 addressQuals.push_back( 2346 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2347 2348 // Get argument type name. 2349 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2350 std::string typeName = getTypeSpelling(ty); 2351 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2352 2353 // Remove access qualifiers on images 2354 // (as they are inseparable from type in clang implementation, 2355 // but OpenCL spec provides a special query to get access qualifier 2356 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2357 if (ty->isImageType()) { 2358 removeImageAccessQualifier(typeName); 2359 removeImageAccessQualifier(baseTypeName); 2360 } 2361 2362 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2363 argBaseTypeNames.push_back( 2364 llvm::MDString::get(VMContext, baseTypeName)); 2365 2366 if (isPipe) 2367 typeQuals = "pipe"; 2368 } 2369 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2370 } 2371 2372 if (getLangOpts().OpenCL) { 2373 Fn->setMetadata("kernel_arg_addr_space", 2374 llvm::MDNode::get(VMContext, addressQuals)); 2375 Fn->setMetadata("kernel_arg_access_qual", 2376 llvm::MDNode::get(VMContext, accessQuals)); 2377 Fn->setMetadata("kernel_arg_type", 2378 llvm::MDNode::get(VMContext, argTypeNames)); 2379 Fn->setMetadata("kernel_arg_base_type", 2380 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2381 Fn->setMetadata("kernel_arg_type_qual", 2382 llvm::MDNode::get(VMContext, argTypeQuals)); 2383 } 2384 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2385 getCodeGenOpts().HIPSaveKernelArgName) 2386 Fn->setMetadata("kernel_arg_name", 2387 llvm::MDNode::get(VMContext, argNames)); 2388 } 2389 2390 /// Determines whether the language options require us to model 2391 /// unwind exceptions. We treat -fexceptions as mandating this 2392 /// except under the fragile ObjC ABI with only ObjC exceptions 2393 /// enabled. This means, for example, that C with -fexceptions 2394 /// enables this. 2395 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2396 // If exceptions are completely disabled, obviously this is false. 2397 if (!LangOpts.Exceptions) return false; 2398 2399 // If C++ exceptions are enabled, this is true. 2400 if (LangOpts.CXXExceptions) return true; 2401 2402 // If ObjC exceptions are enabled, this depends on the ABI. 2403 if (LangOpts.ObjCExceptions) { 2404 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2405 } 2406 2407 return true; 2408 } 2409 2410 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2411 const CXXMethodDecl *MD) { 2412 // Check that the type metadata can ever actually be used by a call. 2413 if (!CGM.getCodeGenOpts().LTOUnit || 2414 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2415 return false; 2416 2417 // Only functions whose address can be taken with a member function pointer 2418 // need this sort of type metadata. 2419 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2420 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2421 } 2422 2423 SmallVector<const CXXRecordDecl *, 0> 2424 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2425 llvm::SetVector<const CXXRecordDecl *> MostBases; 2426 2427 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2428 CollectMostBases = [&](const CXXRecordDecl *RD) { 2429 if (RD->getNumBases() == 0) 2430 MostBases.insert(RD); 2431 for (const CXXBaseSpecifier &B : RD->bases()) 2432 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2433 }; 2434 CollectMostBases(RD); 2435 return MostBases.takeVector(); 2436 } 2437 2438 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2439 llvm::Function *F) { 2440 llvm::AttrBuilder B(F->getContext()); 2441 2442 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2443 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2444 2445 if (CodeGenOpts.StackClashProtector) 2446 B.addAttribute("probe-stack", "inline-asm"); 2447 2448 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2449 B.addAttribute("stack-probe-size", 2450 std::to_string(CodeGenOpts.StackProbeSize)); 2451 2452 if (!hasUnwindExceptions(LangOpts)) 2453 B.addAttribute(llvm::Attribute::NoUnwind); 2454 2455 if (D && D->hasAttr<NoStackProtectorAttr>()) 2456 ; // Do nothing. 2457 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2458 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2459 B.addAttribute(llvm::Attribute::StackProtectStrong); 2460 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2461 B.addAttribute(llvm::Attribute::StackProtect); 2462 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2463 B.addAttribute(llvm::Attribute::StackProtectStrong); 2464 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2465 B.addAttribute(llvm::Attribute::StackProtectReq); 2466 2467 if (!D) { 2468 // If we don't have a declaration to control inlining, the function isn't 2469 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2470 // disabled, mark the function as noinline. 2471 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2472 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2473 B.addAttribute(llvm::Attribute::NoInline); 2474 2475 F->addFnAttrs(B); 2476 return; 2477 } 2478 2479 // Handle SME attributes that apply to function definitions, 2480 // rather than to function prototypes. 2481 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2482 B.addAttribute("aarch64_pstate_sm_body"); 2483 2484 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2485 if (Attr->isNewZA()) 2486 B.addAttribute("aarch64_new_za"); 2487 if (Attr->isNewZT0()) 2488 B.addAttribute("aarch64_new_zt0"); 2489 } 2490 2491 // Track whether we need to add the optnone LLVM attribute, 2492 // starting with the default for this optimization level. 2493 bool ShouldAddOptNone = 2494 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2495 // We can't add optnone in the following cases, it won't pass the verifier. 2496 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2497 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2498 2499 // Add optnone, but do so only if the function isn't always_inline. 2500 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2501 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2502 B.addAttribute(llvm::Attribute::OptimizeNone); 2503 2504 // OptimizeNone implies noinline; we should not be inlining such functions. 2505 B.addAttribute(llvm::Attribute::NoInline); 2506 2507 // We still need to handle naked functions even though optnone subsumes 2508 // much of their semantics. 2509 if (D->hasAttr<NakedAttr>()) 2510 B.addAttribute(llvm::Attribute::Naked); 2511 2512 // OptimizeNone wins over OptimizeForSize and MinSize. 2513 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2514 F->removeFnAttr(llvm::Attribute::MinSize); 2515 } else if (D->hasAttr<NakedAttr>()) { 2516 // Naked implies noinline: we should not be inlining such functions. 2517 B.addAttribute(llvm::Attribute::Naked); 2518 B.addAttribute(llvm::Attribute::NoInline); 2519 } else if (D->hasAttr<NoDuplicateAttr>()) { 2520 B.addAttribute(llvm::Attribute::NoDuplicate); 2521 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2522 // Add noinline if the function isn't always_inline. 2523 B.addAttribute(llvm::Attribute::NoInline); 2524 } else if (D->hasAttr<AlwaysInlineAttr>() && 2525 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2526 // (noinline wins over always_inline, and we can't specify both in IR) 2527 B.addAttribute(llvm::Attribute::AlwaysInline); 2528 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2529 // If we're not inlining, then force everything that isn't always_inline to 2530 // carry an explicit noinline attribute. 2531 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2532 B.addAttribute(llvm::Attribute::NoInline); 2533 } else { 2534 // Otherwise, propagate the inline hint attribute and potentially use its 2535 // absence to mark things as noinline. 2536 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2537 // Search function and template pattern redeclarations for inline. 2538 auto CheckForInline = [](const FunctionDecl *FD) { 2539 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2540 return Redecl->isInlineSpecified(); 2541 }; 2542 if (any_of(FD->redecls(), CheckRedeclForInline)) 2543 return true; 2544 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2545 if (!Pattern) 2546 return false; 2547 return any_of(Pattern->redecls(), CheckRedeclForInline); 2548 }; 2549 if (CheckForInline(FD)) { 2550 B.addAttribute(llvm::Attribute::InlineHint); 2551 } else if (CodeGenOpts.getInlining() == 2552 CodeGenOptions::OnlyHintInlining && 2553 !FD->isInlined() && 2554 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2555 B.addAttribute(llvm::Attribute::NoInline); 2556 } 2557 } 2558 } 2559 2560 // Add other optimization related attributes if we are optimizing this 2561 // function. 2562 if (!D->hasAttr<OptimizeNoneAttr>()) { 2563 if (D->hasAttr<ColdAttr>()) { 2564 if (!ShouldAddOptNone) 2565 B.addAttribute(llvm::Attribute::OptimizeForSize); 2566 B.addAttribute(llvm::Attribute::Cold); 2567 } 2568 if (D->hasAttr<HotAttr>()) 2569 B.addAttribute(llvm::Attribute::Hot); 2570 if (D->hasAttr<MinSizeAttr>()) 2571 B.addAttribute(llvm::Attribute::MinSize); 2572 } 2573 2574 F->addFnAttrs(B); 2575 2576 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2577 if (alignment) 2578 F->setAlignment(llvm::Align(alignment)); 2579 2580 if (!D->hasAttr<AlignedAttr>()) 2581 if (LangOpts.FunctionAlignment) 2582 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2583 2584 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2585 // reserve a bit for differentiating between virtual and non-virtual member 2586 // functions. If the current target's C++ ABI requires this and this is a 2587 // member function, set its alignment accordingly. 2588 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2589 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2590 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2591 } 2592 2593 // In the cross-dso CFI mode with canonical jump tables, we want !type 2594 // attributes on definitions only. 2595 if (CodeGenOpts.SanitizeCfiCrossDso && 2596 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2597 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2598 // Skip available_externally functions. They won't be codegen'ed in the 2599 // current module anyway. 2600 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2601 CreateFunctionTypeMetadataForIcall(FD, F); 2602 } 2603 } 2604 2605 // Emit type metadata on member functions for member function pointer checks. 2606 // These are only ever necessary on definitions; we're guaranteed that the 2607 // definition will be present in the LTO unit as a result of LTO visibility. 2608 auto *MD = dyn_cast<CXXMethodDecl>(D); 2609 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2610 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2611 llvm::Metadata *Id = 2612 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2613 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2614 F->addTypeMetadata(0, Id); 2615 } 2616 } 2617 } 2618 2619 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2620 const Decl *D = GD.getDecl(); 2621 if (isa_and_nonnull<NamedDecl>(D)) 2622 setGVProperties(GV, GD); 2623 else 2624 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2625 2626 if (D && D->hasAttr<UsedAttr>()) 2627 addUsedOrCompilerUsedGlobal(GV); 2628 2629 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2630 VD && 2631 ((CodeGenOpts.KeepPersistentStorageVariables && 2632 (VD->getStorageDuration() == SD_Static || 2633 VD->getStorageDuration() == SD_Thread)) || 2634 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2635 VD->getType().isConstQualified()))) 2636 addUsedOrCompilerUsedGlobal(GV); 2637 } 2638 2639 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2640 llvm::AttrBuilder &Attrs, 2641 bool SetTargetFeatures) { 2642 // Add target-cpu and target-features attributes to functions. If 2643 // we have a decl for the function and it has a target attribute then 2644 // parse that and add it to the feature set. 2645 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2646 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2647 std::vector<std::string> Features; 2648 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2649 FD = FD ? FD->getMostRecentDecl() : FD; 2650 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2651 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2652 assert((!TD || !TV) && "both target_version and target specified"); 2653 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2654 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2655 bool AddedAttr = false; 2656 if (TD || TV || SD || TC) { 2657 llvm::StringMap<bool> FeatureMap; 2658 getContext().getFunctionFeatureMap(FeatureMap, GD); 2659 2660 // Produce the canonical string for this set of features. 2661 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2662 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2663 2664 // Now add the target-cpu and target-features to the function. 2665 // While we populated the feature map above, we still need to 2666 // get and parse the target attribute so we can get the cpu for 2667 // the function. 2668 if (TD) { 2669 ParsedTargetAttr ParsedAttr = 2670 Target.parseTargetAttr(TD->getFeaturesStr()); 2671 if (!ParsedAttr.CPU.empty() && 2672 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2673 TargetCPU = ParsedAttr.CPU; 2674 TuneCPU = ""; // Clear the tune CPU. 2675 } 2676 if (!ParsedAttr.Tune.empty() && 2677 getTarget().isValidCPUName(ParsedAttr.Tune)) 2678 TuneCPU = ParsedAttr.Tune; 2679 } 2680 2681 if (SD) { 2682 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2683 // favor this processor. 2684 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2685 } 2686 } else { 2687 // Otherwise just add the existing target cpu and target features to the 2688 // function. 2689 Features = getTarget().getTargetOpts().Features; 2690 } 2691 2692 if (!TargetCPU.empty()) { 2693 Attrs.addAttribute("target-cpu", TargetCPU); 2694 AddedAttr = true; 2695 } 2696 if (!TuneCPU.empty()) { 2697 Attrs.addAttribute("tune-cpu", TuneCPU); 2698 AddedAttr = true; 2699 } 2700 if (!Features.empty() && SetTargetFeatures) { 2701 llvm::erase_if(Features, [&](const std::string& F) { 2702 return getTarget().isReadOnlyFeature(F.substr(1)); 2703 }); 2704 llvm::sort(Features); 2705 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2706 AddedAttr = true; 2707 } 2708 2709 return AddedAttr; 2710 } 2711 2712 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2713 llvm::GlobalObject *GO) { 2714 const Decl *D = GD.getDecl(); 2715 SetCommonAttributes(GD, GO); 2716 2717 if (D) { 2718 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2719 if (D->hasAttr<RetainAttr>()) 2720 addUsedGlobal(GV); 2721 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2722 GV->addAttribute("bss-section", SA->getName()); 2723 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2724 GV->addAttribute("data-section", SA->getName()); 2725 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2726 GV->addAttribute("rodata-section", SA->getName()); 2727 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2728 GV->addAttribute("relro-section", SA->getName()); 2729 } 2730 2731 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2732 if (D->hasAttr<RetainAttr>()) 2733 addUsedGlobal(F); 2734 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2735 if (!D->getAttr<SectionAttr>()) 2736 F->setSection(SA->getName()); 2737 2738 llvm::AttrBuilder Attrs(F->getContext()); 2739 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2740 // We know that GetCPUAndFeaturesAttributes will always have the 2741 // newest set, since it has the newest possible FunctionDecl, so the 2742 // new ones should replace the old. 2743 llvm::AttributeMask RemoveAttrs; 2744 RemoveAttrs.addAttribute("target-cpu"); 2745 RemoveAttrs.addAttribute("target-features"); 2746 RemoveAttrs.addAttribute("tune-cpu"); 2747 F->removeFnAttrs(RemoveAttrs); 2748 F->addFnAttrs(Attrs); 2749 } 2750 } 2751 2752 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2753 GO->setSection(CSA->getName()); 2754 else if (const auto *SA = D->getAttr<SectionAttr>()) 2755 GO->setSection(SA->getName()); 2756 } 2757 2758 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2759 } 2760 2761 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2762 llvm::Function *F, 2763 const CGFunctionInfo &FI) { 2764 const Decl *D = GD.getDecl(); 2765 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2766 SetLLVMFunctionAttributesForDefinition(D, F); 2767 2768 F->setLinkage(llvm::Function::InternalLinkage); 2769 2770 setNonAliasAttributes(GD, F); 2771 } 2772 2773 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2774 // Set linkage and visibility in case we never see a definition. 2775 LinkageInfo LV = ND->getLinkageAndVisibility(); 2776 // Don't set internal linkage on declarations. 2777 // "extern_weak" is overloaded in LLVM; we probably should have 2778 // separate linkage types for this. 2779 if (isExternallyVisible(LV.getLinkage()) && 2780 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2781 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2782 } 2783 2784 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2785 llvm::Function *F) { 2786 // Only if we are checking indirect calls. 2787 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2788 return; 2789 2790 // Non-static class methods are handled via vtable or member function pointer 2791 // checks elsewhere. 2792 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2793 return; 2794 2795 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2796 F->addTypeMetadata(0, MD); 2797 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2798 2799 // Emit a hash-based bit set entry for cross-DSO calls. 2800 if (CodeGenOpts.SanitizeCfiCrossDso) 2801 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2802 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2803 } 2804 2805 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2806 llvm::LLVMContext &Ctx = F->getContext(); 2807 llvm::MDBuilder MDB(Ctx); 2808 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2809 llvm::MDNode::get( 2810 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2811 } 2812 2813 static bool allowKCFIIdentifier(StringRef Name) { 2814 // KCFI type identifier constants are only necessary for external assembly 2815 // functions, which means it's safe to skip unusual names. Subset of 2816 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2817 return llvm::all_of(Name, [](const char &C) { 2818 return llvm::isAlnum(C) || C == '_' || C == '.'; 2819 }); 2820 } 2821 2822 void CodeGenModule::finalizeKCFITypes() { 2823 llvm::Module &M = getModule(); 2824 for (auto &F : M.functions()) { 2825 // Remove KCFI type metadata from non-address-taken local functions. 2826 bool AddressTaken = F.hasAddressTaken(); 2827 if (!AddressTaken && F.hasLocalLinkage()) 2828 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2829 2830 // Generate a constant with the expected KCFI type identifier for all 2831 // address-taken function declarations to support annotating indirectly 2832 // called assembly functions. 2833 if (!AddressTaken || !F.isDeclaration()) 2834 continue; 2835 2836 const llvm::ConstantInt *Type; 2837 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2838 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2839 else 2840 continue; 2841 2842 StringRef Name = F.getName(); 2843 if (!allowKCFIIdentifier(Name)) 2844 continue; 2845 2846 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2847 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2848 .str(); 2849 M.appendModuleInlineAsm(Asm); 2850 } 2851 } 2852 2853 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2854 bool IsIncompleteFunction, 2855 bool IsThunk) { 2856 2857 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2858 // If this is an intrinsic function, set the function's attributes 2859 // to the intrinsic's attributes. 2860 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2861 return; 2862 } 2863 2864 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2865 2866 if (!IsIncompleteFunction) 2867 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2868 IsThunk); 2869 2870 // Add the Returned attribute for "this", except for iOS 5 and earlier 2871 // where substantial code, including the libstdc++ dylib, was compiled with 2872 // GCC and does not actually return "this". 2873 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2874 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2875 assert(!F->arg_empty() && 2876 F->arg_begin()->getType() 2877 ->canLosslesslyBitCastTo(F->getReturnType()) && 2878 "unexpected this return"); 2879 F->addParamAttr(0, llvm::Attribute::Returned); 2880 } 2881 2882 // Only a few attributes are set on declarations; these may later be 2883 // overridden by a definition. 2884 2885 setLinkageForGV(F, FD); 2886 setGVProperties(F, FD); 2887 2888 // Setup target-specific attributes. 2889 if (!IsIncompleteFunction && F->isDeclaration()) 2890 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2891 2892 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2893 F->setSection(CSA->getName()); 2894 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2895 F->setSection(SA->getName()); 2896 2897 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2898 if (EA->isError()) 2899 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2900 else if (EA->isWarning()) 2901 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2902 } 2903 2904 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2905 if (FD->isInlineBuiltinDeclaration()) { 2906 const FunctionDecl *FDBody; 2907 bool HasBody = FD->hasBody(FDBody); 2908 (void)HasBody; 2909 assert(HasBody && "Inline builtin declarations should always have an " 2910 "available body!"); 2911 if (shouldEmitFunction(FDBody)) 2912 F->addFnAttr(llvm::Attribute::NoBuiltin); 2913 } 2914 2915 if (FD->isReplaceableGlobalAllocationFunction()) { 2916 // A replaceable global allocation function does not act like a builtin by 2917 // default, only if it is invoked by a new-expression or delete-expression. 2918 F->addFnAttr(llvm::Attribute::NoBuiltin); 2919 } 2920 2921 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2922 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2923 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2924 if (MD->isVirtual()) 2925 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2926 2927 // Don't emit entries for function declarations in the cross-DSO mode. This 2928 // is handled with better precision by the receiving DSO. But if jump tables 2929 // are non-canonical then we need type metadata in order to produce the local 2930 // jump table. 2931 if (!CodeGenOpts.SanitizeCfiCrossDso || 2932 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2933 CreateFunctionTypeMetadataForIcall(FD, F); 2934 2935 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2936 setKCFIType(FD, F); 2937 2938 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2939 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2940 2941 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2942 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2943 2944 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2945 // Annotate the callback behavior as metadata: 2946 // - The callback callee (as argument number). 2947 // - The callback payloads (as argument numbers). 2948 llvm::LLVMContext &Ctx = F->getContext(); 2949 llvm::MDBuilder MDB(Ctx); 2950 2951 // The payload indices are all but the first one in the encoding. The first 2952 // identifies the callback callee. 2953 int CalleeIdx = *CB->encoding_begin(); 2954 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2955 F->addMetadata(llvm::LLVMContext::MD_callback, 2956 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2957 CalleeIdx, PayloadIndices, 2958 /* VarArgsArePassed */ false)})); 2959 } 2960 } 2961 2962 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2963 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2964 "Only globals with definition can force usage."); 2965 LLVMUsed.emplace_back(GV); 2966 } 2967 2968 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2969 assert(!GV->isDeclaration() && 2970 "Only globals with definition can force usage."); 2971 LLVMCompilerUsed.emplace_back(GV); 2972 } 2973 2974 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2975 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2976 "Only globals with definition can force usage."); 2977 if (getTriple().isOSBinFormatELF()) 2978 LLVMCompilerUsed.emplace_back(GV); 2979 else 2980 LLVMUsed.emplace_back(GV); 2981 } 2982 2983 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2984 std::vector<llvm::WeakTrackingVH> &List) { 2985 // Don't create llvm.used if there is no need. 2986 if (List.empty()) 2987 return; 2988 2989 // Convert List to what ConstantArray needs. 2990 SmallVector<llvm::Constant*, 8> UsedArray; 2991 UsedArray.resize(List.size()); 2992 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2993 UsedArray[i] = 2994 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2995 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2996 } 2997 2998 if (UsedArray.empty()) 2999 return; 3000 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 3001 3002 auto *GV = new llvm::GlobalVariable( 3003 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 3004 llvm::ConstantArray::get(ATy, UsedArray), Name); 3005 3006 GV->setSection("llvm.metadata"); 3007 } 3008 3009 void CodeGenModule::emitLLVMUsed() { 3010 emitUsed(*this, "llvm.used", LLVMUsed); 3011 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 3012 } 3013 3014 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 3015 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 3016 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3017 } 3018 3019 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 3020 llvm::SmallString<32> Opt; 3021 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 3022 if (Opt.empty()) 3023 return; 3024 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3025 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 3026 } 3027 3028 void CodeGenModule::AddDependentLib(StringRef Lib) { 3029 auto &C = getLLVMContext(); 3030 if (getTarget().getTriple().isOSBinFormatELF()) { 3031 ELFDependentLibraries.push_back( 3032 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 3033 return; 3034 } 3035 3036 llvm::SmallString<24> Opt; 3037 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 3038 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 3039 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 3040 } 3041 3042 /// Add link options implied by the given module, including modules 3043 /// it depends on, using a postorder walk. 3044 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 3045 SmallVectorImpl<llvm::MDNode *> &Metadata, 3046 llvm::SmallPtrSet<Module *, 16> &Visited) { 3047 // Import this module's parent. 3048 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 3049 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 3050 } 3051 3052 // Import this module's dependencies. 3053 for (Module *Import : llvm::reverse(Mod->Imports)) { 3054 if (Visited.insert(Import).second) 3055 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3056 } 3057 3058 // Add linker options to link against the libraries/frameworks 3059 // described by this module. 3060 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3061 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3062 3063 // For modules that use export_as for linking, use that module 3064 // name instead. 3065 if (Mod->UseExportAsModuleLinkName) 3066 return; 3067 3068 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3069 // Link against a framework. Frameworks are currently Darwin only, so we 3070 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3071 if (LL.IsFramework) { 3072 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3073 llvm::MDString::get(Context, LL.Library)}; 3074 3075 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3076 continue; 3077 } 3078 3079 // Link against a library. 3080 if (IsELF) { 3081 llvm::Metadata *Args[2] = { 3082 llvm::MDString::get(Context, "lib"), 3083 llvm::MDString::get(Context, LL.Library), 3084 }; 3085 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3086 } else { 3087 llvm::SmallString<24> Opt; 3088 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3089 auto *OptString = llvm::MDString::get(Context, Opt); 3090 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3091 } 3092 } 3093 } 3094 3095 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3096 assert(Primary->isNamedModuleUnit() && 3097 "We should only emit module initializers for named modules."); 3098 3099 // Emit the initializers in the order that sub-modules appear in the 3100 // source, first Global Module Fragments, if present. 3101 if (auto GMF = Primary->getGlobalModuleFragment()) { 3102 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3103 if (isa<ImportDecl>(D)) 3104 continue; 3105 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3106 EmitTopLevelDecl(D); 3107 } 3108 } 3109 // Second any associated with the module, itself. 3110 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3111 // Skip import decls, the inits for those are called explicitly. 3112 if (isa<ImportDecl>(D)) 3113 continue; 3114 EmitTopLevelDecl(D); 3115 } 3116 // Third any associated with the Privat eMOdule Fragment, if present. 3117 if (auto PMF = Primary->getPrivateModuleFragment()) { 3118 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3119 // Skip import decls, the inits for those are called explicitly. 3120 if (isa<ImportDecl>(D)) 3121 continue; 3122 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3123 EmitTopLevelDecl(D); 3124 } 3125 } 3126 } 3127 3128 void CodeGenModule::EmitModuleLinkOptions() { 3129 // Collect the set of all of the modules we want to visit to emit link 3130 // options, which is essentially the imported modules and all of their 3131 // non-explicit child modules. 3132 llvm::SetVector<clang::Module *> LinkModules; 3133 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3134 SmallVector<clang::Module *, 16> Stack; 3135 3136 // Seed the stack with imported modules. 3137 for (Module *M : ImportedModules) { 3138 // Do not add any link flags when an implementation TU of a module imports 3139 // a header of that same module. 3140 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3141 !getLangOpts().isCompilingModule()) 3142 continue; 3143 if (Visited.insert(M).second) 3144 Stack.push_back(M); 3145 } 3146 3147 // Find all of the modules to import, making a little effort to prune 3148 // non-leaf modules. 3149 while (!Stack.empty()) { 3150 clang::Module *Mod = Stack.pop_back_val(); 3151 3152 bool AnyChildren = false; 3153 3154 // Visit the submodules of this module. 3155 for (const auto &SM : Mod->submodules()) { 3156 // Skip explicit children; they need to be explicitly imported to be 3157 // linked against. 3158 if (SM->IsExplicit) 3159 continue; 3160 3161 if (Visited.insert(SM).second) { 3162 Stack.push_back(SM); 3163 AnyChildren = true; 3164 } 3165 } 3166 3167 // We didn't find any children, so add this module to the list of 3168 // modules to link against. 3169 if (!AnyChildren) { 3170 LinkModules.insert(Mod); 3171 } 3172 } 3173 3174 // Add link options for all of the imported modules in reverse topological 3175 // order. We don't do anything to try to order import link flags with respect 3176 // to linker options inserted by things like #pragma comment(). 3177 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3178 Visited.clear(); 3179 for (Module *M : LinkModules) 3180 if (Visited.insert(M).second) 3181 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3182 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3183 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3184 3185 // Add the linker options metadata flag. 3186 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3187 for (auto *MD : LinkerOptionsMetadata) 3188 NMD->addOperand(MD); 3189 } 3190 3191 void CodeGenModule::EmitDeferred() { 3192 // Emit deferred declare target declarations. 3193 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3194 getOpenMPRuntime().emitDeferredTargetDecls(); 3195 3196 // Emit code for any potentially referenced deferred decls. Since a 3197 // previously unused static decl may become used during the generation of code 3198 // for a static function, iterate until no changes are made. 3199 3200 if (!DeferredVTables.empty()) { 3201 EmitDeferredVTables(); 3202 3203 // Emitting a vtable doesn't directly cause more vtables to 3204 // become deferred, although it can cause functions to be 3205 // emitted that then need those vtables. 3206 assert(DeferredVTables.empty()); 3207 } 3208 3209 // Emit CUDA/HIP static device variables referenced by host code only. 3210 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3211 // needed for further handling. 3212 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3213 llvm::append_range(DeferredDeclsToEmit, 3214 getContext().CUDADeviceVarODRUsedByHost); 3215 3216 // Stop if we're out of both deferred vtables and deferred declarations. 3217 if (DeferredDeclsToEmit.empty()) 3218 return; 3219 3220 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3221 // work, it will not interfere with this. 3222 std::vector<GlobalDecl> CurDeclsToEmit; 3223 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3224 3225 for (GlobalDecl &D : CurDeclsToEmit) { 3226 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3227 // to get GlobalValue with exactly the type we need, not something that 3228 // might had been created for another decl with the same mangled name but 3229 // different type. 3230 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3231 GetAddrOfGlobal(D, ForDefinition)); 3232 3233 // In case of different address spaces, we may still get a cast, even with 3234 // IsForDefinition equal to true. Query mangled names table to get 3235 // GlobalValue. 3236 if (!GV) 3237 GV = GetGlobalValue(getMangledName(D)); 3238 3239 // Make sure GetGlobalValue returned non-null. 3240 assert(GV); 3241 3242 // Check to see if we've already emitted this. This is necessary 3243 // for a couple of reasons: first, decls can end up in the 3244 // deferred-decls queue multiple times, and second, decls can end 3245 // up with definitions in unusual ways (e.g. by an extern inline 3246 // function acquiring a strong function redefinition). Just 3247 // ignore these cases. 3248 if (!GV->isDeclaration()) 3249 continue; 3250 3251 // If this is OpenMP, check if it is legal to emit this global normally. 3252 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3253 continue; 3254 3255 // Otherwise, emit the definition and move on to the next one. 3256 EmitGlobalDefinition(D, GV); 3257 3258 // If we found out that we need to emit more decls, do that recursively. 3259 // This has the advantage that the decls are emitted in a DFS and related 3260 // ones are close together, which is convenient for testing. 3261 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3262 EmitDeferred(); 3263 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3264 } 3265 } 3266 } 3267 3268 void CodeGenModule::EmitVTablesOpportunistically() { 3269 // Try to emit external vtables as available_externally if they have emitted 3270 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3271 // is not allowed to create new references to things that need to be emitted 3272 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3273 3274 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3275 && "Only emit opportunistic vtables with optimizations"); 3276 3277 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3278 assert(getVTables().isVTableExternal(RD) && 3279 "This queue should only contain external vtables"); 3280 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3281 VTables.GenerateClassData(RD); 3282 } 3283 OpportunisticVTables.clear(); 3284 } 3285 3286 void CodeGenModule::EmitGlobalAnnotations() { 3287 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3288 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3289 if (GV) 3290 AddGlobalAnnotations(VD, GV); 3291 } 3292 DeferredAnnotations.clear(); 3293 3294 if (Annotations.empty()) 3295 return; 3296 3297 // Create a new global variable for the ConstantStruct in the Module. 3298 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3299 Annotations[0]->getType(), Annotations.size()), Annotations); 3300 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3301 llvm::GlobalValue::AppendingLinkage, 3302 Array, "llvm.global.annotations"); 3303 gv->setSection(AnnotationSection); 3304 } 3305 3306 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3307 llvm::Constant *&AStr = AnnotationStrings[Str]; 3308 if (AStr) 3309 return AStr; 3310 3311 // Not found yet, create a new global. 3312 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3313 auto *gv = new llvm::GlobalVariable( 3314 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3315 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3316 ConstGlobalsPtrTy->getAddressSpace()); 3317 gv->setSection(AnnotationSection); 3318 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3319 AStr = gv; 3320 return gv; 3321 } 3322 3323 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3324 SourceManager &SM = getContext().getSourceManager(); 3325 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3326 if (PLoc.isValid()) 3327 return EmitAnnotationString(PLoc.getFilename()); 3328 return EmitAnnotationString(SM.getBufferName(Loc)); 3329 } 3330 3331 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3332 SourceManager &SM = getContext().getSourceManager(); 3333 PresumedLoc PLoc = SM.getPresumedLoc(L); 3334 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3335 SM.getExpansionLineNumber(L); 3336 return llvm::ConstantInt::get(Int32Ty, LineNo); 3337 } 3338 3339 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3340 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3341 if (Exprs.empty()) 3342 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3343 3344 llvm::FoldingSetNodeID ID; 3345 for (Expr *E : Exprs) { 3346 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3347 } 3348 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3349 if (Lookup) 3350 return Lookup; 3351 3352 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3353 LLVMArgs.reserve(Exprs.size()); 3354 ConstantEmitter ConstEmiter(*this); 3355 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3356 const auto *CE = cast<clang::ConstantExpr>(E); 3357 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3358 CE->getType()); 3359 }); 3360 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3361 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3362 llvm::GlobalValue::PrivateLinkage, Struct, 3363 ".args"); 3364 GV->setSection(AnnotationSection); 3365 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3366 3367 Lookup = GV; 3368 return GV; 3369 } 3370 3371 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3372 const AnnotateAttr *AA, 3373 SourceLocation L) { 3374 // Get the globals for file name, annotation, and the line number. 3375 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3376 *UnitGV = EmitAnnotationUnit(L), 3377 *LineNoCst = EmitAnnotationLineNo(L), 3378 *Args = EmitAnnotationArgs(AA); 3379 3380 llvm::Constant *GVInGlobalsAS = GV; 3381 if (GV->getAddressSpace() != 3382 getDataLayout().getDefaultGlobalsAddressSpace()) { 3383 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3384 GV, 3385 llvm::PointerType::get( 3386 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3387 } 3388 3389 // Create the ConstantStruct for the global annotation. 3390 llvm::Constant *Fields[] = { 3391 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3392 }; 3393 return llvm::ConstantStruct::getAnon(Fields); 3394 } 3395 3396 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3397 llvm::GlobalValue *GV) { 3398 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3399 // Get the struct elements for these annotations. 3400 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3401 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3402 } 3403 3404 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3405 SourceLocation Loc) const { 3406 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3407 // NoSanitize by function name. 3408 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3409 return true; 3410 // NoSanitize by location. Check "mainfile" prefix. 3411 auto &SM = Context.getSourceManager(); 3412 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3413 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3414 return true; 3415 3416 // Check "src" prefix. 3417 if (Loc.isValid()) 3418 return NoSanitizeL.containsLocation(Kind, Loc); 3419 // If location is unknown, this may be a compiler-generated function. Assume 3420 // it's located in the main file. 3421 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3422 } 3423 3424 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3425 llvm::GlobalVariable *GV, 3426 SourceLocation Loc, QualType Ty, 3427 StringRef Category) const { 3428 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3429 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3430 return true; 3431 auto &SM = Context.getSourceManager(); 3432 if (NoSanitizeL.containsMainFile( 3433 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3434 Category)) 3435 return true; 3436 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3437 return true; 3438 3439 // Check global type. 3440 if (!Ty.isNull()) { 3441 // Drill down the array types: if global variable of a fixed type is 3442 // not sanitized, we also don't instrument arrays of them. 3443 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3444 Ty = AT->getElementType(); 3445 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3446 // Only record types (classes, structs etc.) are ignored. 3447 if (Ty->isRecordType()) { 3448 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3449 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3450 return true; 3451 } 3452 } 3453 return false; 3454 } 3455 3456 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3457 StringRef Category) const { 3458 const auto &XRayFilter = getContext().getXRayFilter(); 3459 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3460 auto Attr = ImbueAttr::NONE; 3461 if (Loc.isValid()) 3462 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3463 if (Attr == ImbueAttr::NONE) 3464 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3465 switch (Attr) { 3466 case ImbueAttr::NONE: 3467 return false; 3468 case ImbueAttr::ALWAYS: 3469 Fn->addFnAttr("function-instrument", "xray-always"); 3470 break; 3471 case ImbueAttr::ALWAYS_ARG1: 3472 Fn->addFnAttr("function-instrument", "xray-always"); 3473 Fn->addFnAttr("xray-log-args", "1"); 3474 break; 3475 case ImbueAttr::NEVER: 3476 Fn->addFnAttr("function-instrument", "xray-never"); 3477 break; 3478 } 3479 return true; 3480 } 3481 3482 ProfileList::ExclusionType 3483 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3484 SourceLocation Loc) const { 3485 const auto &ProfileList = getContext().getProfileList(); 3486 // If the profile list is empty, then instrument everything. 3487 if (ProfileList.isEmpty()) 3488 return ProfileList::Allow; 3489 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3490 // First, check the function name. 3491 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3492 return *V; 3493 // Next, check the source location. 3494 if (Loc.isValid()) 3495 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3496 return *V; 3497 // If location is unknown, this may be a compiler-generated function. Assume 3498 // it's located in the main file. 3499 auto &SM = Context.getSourceManager(); 3500 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3501 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3502 return *V; 3503 return ProfileList.getDefault(Kind); 3504 } 3505 3506 ProfileList::ExclusionType 3507 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3508 SourceLocation Loc) const { 3509 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3510 if (V != ProfileList::Allow) 3511 return V; 3512 3513 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3514 if (NumGroups > 1) { 3515 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3516 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3517 return ProfileList::Skip; 3518 } 3519 return ProfileList::Allow; 3520 } 3521 3522 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3523 // Never defer when EmitAllDecls is specified. 3524 if (LangOpts.EmitAllDecls) 3525 return true; 3526 3527 const auto *VD = dyn_cast<VarDecl>(Global); 3528 if (VD && 3529 ((CodeGenOpts.KeepPersistentStorageVariables && 3530 (VD->getStorageDuration() == SD_Static || 3531 VD->getStorageDuration() == SD_Thread)) || 3532 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3533 VD->getType().isConstQualified()))) 3534 return true; 3535 3536 return getContext().DeclMustBeEmitted(Global); 3537 } 3538 3539 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3540 // In OpenMP 5.0 variables and function may be marked as 3541 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3542 // that they must be emitted on the host/device. To be sure we need to have 3543 // seen a declare target with an explicit mentioning of the function, we know 3544 // we have if the level of the declare target attribute is -1. Note that we 3545 // check somewhere else if we should emit this at all. 3546 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3547 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3548 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3549 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3550 return false; 3551 } 3552 3553 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3554 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3555 // Implicit template instantiations may change linkage if they are later 3556 // explicitly instantiated, so they should not be emitted eagerly. 3557 return false; 3558 // Defer until all versions have been semantically checked. 3559 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion()) 3560 return false; 3561 } 3562 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3563 if (Context.getInlineVariableDefinitionKind(VD) == 3564 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3565 // A definition of an inline constexpr static data member may change 3566 // linkage later if it's redeclared outside the class. 3567 return false; 3568 if (CXX20ModuleInits && VD->getOwningModule() && 3569 !VD->getOwningModule()->isModuleMapModule()) { 3570 // For CXX20, module-owned initializers need to be deferred, since it is 3571 // not known at this point if they will be run for the current module or 3572 // as part of the initializer for an imported one. 3573 return false; 3574 } 3575 } 3576 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3577 // codegen for global variables, because they may be marked as threadprivate. 3578 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3579 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3580 !Global->getType().isConstantStorage(getContext(), false, false) && 3581 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3582 return false; 3583 3584 return true; 3585 } 3586 3587 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3588 StringRef Name = getMangledName(GD); 3589 3590 // The UUID descriptor should be pointer aligned. 3591 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3592 3593 // Look for an existing global. 3594 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3595 return ConstantAddress(GV, GV->getValueType(), Alignment); 3596 3597 ConstantEmitter Emitter(*this); 3598 llvm::Constant *Init; 3599 3600 APValue &V = GD->getAsAPValue(); 3601 if (!V.isAbsent()) { 3602 // If possible, emit the APValue version of the initializer. In particular, 3603 // this gets the type of the constant right. 3604 Init = Emitter.emitForInitializer( 3605 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3606 } else { 3607 // As a fallback, directly construct the constant. 3608 // FIXME: This may get padding wrong under esoteric struct layout rules. 3609 // MSVC appears to create a complete type 'struct __s_GUID' that it 3610 // presumably uses to represent these constants. 3611 MSGuidDecl::Parts Parts = GD->getParts(); 3612 llvm::Constant *Fields[4] = { 3613 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3614 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3615 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3616 llvm::ConstantDataArray::getRaw( 3617 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3618 Int8Ty)}; 3619 Init = llvm::ConstantStruct::getAnon(Fields); 3620 } 3621 3622 auto *GV = new llvm::GlobalVariable( 3623 getModule(), Init->getType(), 3624 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3625 if (supportsCOMDAT()) 3626 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3627 setDSOLocal(GV); 3628 3629 if (!V.isAbsent()) { 3630 Emitter.finalize(GV); 3631 return ConstantAddress(GV, GV->getValueType(), Alignment); 3632 } 3633 3634 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3635 return ConstantAddress(GV, Ty, Alignment); 3636 } 3637 3638 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3639 const UnnamedGlobalConstantDecl *GCD) { 3640 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3641 3642 llvm::GlobalVariable **Entry = nullptr; 3643 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3644 if (*Entry) 3645 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3646 3647 ConstantEmitter Emitter(*this); 3648 llvm::Constant *Init; 3649 3650 const APValue &V = GCD->getValue(); 3651 3652 assert(!V.isAbsent()); 3653 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3654 GCD->getType()); 3655 3656 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3657 /*isConstant=*/true, 3658 llvm::GlobalValue::PrivateLinkage, Init, 3659 ".constant"); 3660 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3661 GV->setAlignment(Alignment.getAsAlign()); 3662 3663 Emitter.finalize(GV); 3664 3665 *Entry = GV; 3666 return ConstantAddress(GV, GV->getValueType(), Alignment); 3667 } 3668 3669 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3670 const TemplateParamObjectDecl *TPO) { 3671 StringRef Name = getMangledName(TPO); 3672 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3673 3674 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3675 return ConstantAddress(GV, GV->getValueType(), Alignment); 3676 3677 ConstantEmitter Emitter(*this); 3678 llvm::Constant *Init = Emitter.emitForInitializer( 3679 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3680 3681 if (!Init) { 3682 ErrorUnsupported(TPO, "template parameter object"); 3683 return ConstantAddress::invalid(); 3684 } 3685 3686 llvm::GlobalValue::LinkageTypes Linkage = 3687 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3688 ? llvm::GlobalValue::LinkOnceODRLinkage 3689 : llvm::GlobalValue::InternalLinkage; 3690 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3691 /*isConstant=*/true, Linkage, Init, Name); 3692 setGVProperties(GV, TPO); 3693 if (supportsCOMDAT()) 3694 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3695 Emitter.finalize(GV); 3696 3697 return ConstantAddress(GV, GV->getValueType(), Alignment); 3698 } 3699 3700 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3701 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3702 assert(AA && "No alias?"); 3703 3704 CharUnits Alignment = getContext().getDeclAlign(VD); 3705 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3706 3707 // See if there is already something with the target's name in the module. 3708 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3709 if (Entry) 3710 return ConstantAddress(Entry, DeclTy, Alignment); 3711 3712 llvm::Constant *Aliasee; 3713 if (isa<llvm::FunctionType>(DeclTy)) 3714 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3715 GlobalDecl(cast<FunctionDecl>(VD)), 3716 /*ForVTable=*/false); 3717 else 3718 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3719 nullptr); 3720 3721 auto *F = cast<llvm::GlobalValue>(Aliasee); 3722 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3723 WeakRefReferences.insert(F); 3724 3725 return ConstantAddress(Aliasee, DeclTy, Alignment); 3726 } 3727 3728 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3729 if (!D) 3730 return false; 3731 if (auto *A = D->getAttr<AttrT>()) 3732 return A->isImplicit(); 3733 return D->isImplicit(); 3734 } 3735 3736 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const { 3737 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages"); 3738 // We need to emit host-side 'shadows' for all global 3739 // device-side variables because the CUDA runtime needs their 3740 // size and host-side address in order to provide access to 3741 // their device-side incarnations. 3742 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() || 3743 Global->hasAttr<CUDAConstantAttr>() || 3744 Global->hasAttr<CUDASharedAttr>() || 3745 Global->getType()->isCUDADeviceBuiltinSurfaceType() || 3746 Global->getType()->isCUDADeviceBuiltinTextureType(); 3747 } 3748 3749 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3750 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3751 3752 // Weak references don't produce any output by themselves. 3753 if (Global->hasAttr<WeakRefAttr>()) 3754 return; 3755 3756 // If this is an alias definition (which otherwise looks like a declaration) 3757 // emit it now. 3758 if (Global->hasAttr<AliasAttr>()) 3759 return EmitAliasDefinition(GD); 3760 3761 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3762 if (Global->hasAttr<IFuncAttr>()) 3763 return emitIFuncDefinition(GD); 3764 3765 // If this is a cpu_dispatch multiversion function, emit the resolver. 3766 if (Global->hasAttr<CPUDispatchAttr>()) 3767 return emitCPUDispatchDefinition(GD); 3768 3769 // If this is CUDA, be selective about which declarations we emit. 3770 // Non-constexpr non-lambda implicit host device functions are not emitted 3771 // unless they are used on device side. 3772 if (LangOpts.CUDA) { 3773 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3774 "Expected Variable or Function"); 3775 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3776 if (!shouldEmitCUDAGlobalVar(VD)) 3777 return; 3778 } else if (LangOpts.CUDAIsDevice) { 3779 const auto *FD = dyn_cast<FunctionDecl>(Global); 3780 if ((!Global->hasAttr<CUDADeviceAttr>() || 3781 (LangOpts.OffloadImplicitHostDeviceTemplates && 3782 hasImplicitAttr<CUDAHostAttr>(FD) && 3783 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3784 !isLambdaCallOperator(FD) && 3785 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3786 !Global->hasAttr<CUDAGlobalAttr>() && 3787 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3788 !Global->hasAttr<CUDAHostAttr>())) 3789 return; 3790 // Device-only functions are the only things we skip. 3791 } else if (!Global->hasAttr<CUDAHostAttr>() && 3792 Global->hasAttr<CUDADeviceAttr>()) 3793 return; 3794 } 3795 3796 if (LangOpts.OpenMP) { 3797 // If this is OpenMP, check if it is legal to emit this global normally. 3798 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3799 return; 3800 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3801 if (MustBeEmitted(Global)) 3802 EmitOMPDeclareReduction(DRD); 3803 return; 3804 } 3805 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3806 if (MustBeEmitted(Global)) 3807 EmitOMPDeclareMapper(DMD); 3808 return; 3809 } 3810 } 3811 3812 // Ignore declarations, they will be emitted on their first use. 3813 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3814 // Update deferred annotations with the latest declaration if the function 3815 // function was already used or defined. 3816 if (FD->hasAttr<AnnotateAttr>()) { 3817 StringRef MangledName = getMangledName(GD); 3818 if (GetGlobalValue(MangledName)) 3819 DeferredAnnotations[MangledName] = FD; 3820 } 3821 3822 // Forward declarations are emitted lazily on first use. 3823 if (!FD->doesThisDeclarationHaveABody()) { 3824 if (!FD->doesDeclarationForceExternallyVisibleDefinition() && 3825 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64())) 3826 return; 3827 3828 StringRef MangledName = getMangledName(GD); 3829 3830 // Compute the function info and LLVM type. 3831 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3832 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3833 3834 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3835 /*DontDefer=*/false); 3836 return; 3837 } 3838 } else { 3839 const auto *VD = cast<VarDecl>(Global); 3840 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3841 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3842 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3843 if (LangOpts.OpenMP) { 3844 // Emit declaration of the must-be-emitted declare target variable. 3845 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3846 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3847 3848 // If this variable has external storage and doesn't require special 3849 // link handling we defer to its canonical definition. 3850 if (VD->hasExternalStorage() && 3851 Res != OMPDeclareTargetDeclAttr::MT_Link) 3852 return; 3853 3854 bool UnifiedMemoryEnabled = 3855 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3856 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3857 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3858 !UnifiedMemoryEnabled) { 3859 (void)GetAddrOfGlobalVar(VD); 3860 } else { 3861 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3862 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3863 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3864 UnifiedMemoryEnabled)) && 3865 "Link clause or to clause with unified memory expected."); 3866 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3867 } 3868 3869 return; 3870 } 3871 } 3872 // If this declaration may have caused an inline variable definition to 3873 // change linkage, make sure that it's emitted. 3874 if (Context.getInlineVariableDefinitionKind(VD) == 3875 ASTContext::InlineVariableDefinitionKind::Strong) 3876 GetAddrOfGlobalVar(VD); 3877 return; 3878 } 3879 } 3880 3881 // Defer code generation to first use when possible, e.g. if this is an inline 3882 // function. If the global must always be emitted, do it eagerly if possible 3883 // to benefit from cache locality. 3884 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3885 // Emit the definition if it can't be deferred. 3886 EmitGlobalDefinition(GD); 3887 addEmittedDeferredDecl(GD); 3888 return; 3889 } 3890 3891 // If we're deferring emission of a C++ variable with an 3892 // initializer, remember the order in which it appeared in the file. 3893 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3894 cast<VarDecl>(Global)->hasInit()) { 3895 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3896 CXXGlobalInits.push_back(nullptr); 3897 } 3898 3899 StringRef MangledName = getMangledName(GD); 3900 if (GetGlobalValue(MangledName) != nullptr) { 3901 // The value has already been used and should therefore be emitted. 3902 addDeferredDeclToEmit(GD); 3903 } else if (MustBeEmitted(Global)) { 3904 // The value must be emitted, but cannot be emitted eagerly. 3905 assert(!MayBeEmittedEagerly(Global)); 3906 addDeferredDeclToEmit(GD); 3907 } else { 3908 // Otherwise, remember that we saw a deferred decl with this name. The 3909 // first use of the mangled name will cause it to move into 3910 // DeferredDeclsToEmit. 3911 DeferredDecls[MangledName] = GD; 3912 } 3913 } 3914 3915 // Check if T is a class type with a destructor that's not dllimport. 3916 static bool HasNonDllImportDtor(QualType T) { 3917 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3918 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3919 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3920 return true; 3921 3922 return false; 3923 } 3924 3925 namespace { 3926 struct FunctionIsDirectlyRecursive 3927 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3928 const StringRef Name; 3929 const Builtin::Context &BI; 3930 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3931 : Name(N), BI(C) {} 3932 3933 bool VisitCallExpr(const CallExpr *E) { 3934 const FunctionDecl *FD = E->getDirectCallee(); 3935 if (!FD) 3936 return false; 3937 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3938 if (Attr && Name == Attr->getLabel()) 3939 return true; 3940 unsigned BuiltinID = FD->getBuiltinID(); 3941 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3942 return false; 3943 StringRef BuiltinName = BI.getName(BuiltinID); 3944 if (BuiltinName.starts_with("__builtin_") && 3945 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3946 return true; 3947 } 3948 return false; 3949 } 3950 3951 bool VisitStmt(const Stmt *S) { 3952 for (const Stmt *Child : S->children()) 3953 if (Child && this->Visit(Child)) 3954 return true; 3955 return false; 3956 } 3957 }; 3958 3959 // Make sure we're not referencing non-imported vars or functions. 3960 struct DLLImportFunctionVisitor 3961 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3962 bool SafeToInline = true; 3963 3964 bool shouldVisitImplicitCode() const { return true; } 3965 3966 bool VisitVarDecl(VarDecl *VD) { 3967 if (VD->getTLSKind()) { 3968 // A thread-local variable cannot be imported. 3969 SafeToInline = false; 3970 return SafeToInline; 3971 } 3972 3973 // A variable definition might imply a destructor call. 3974 if (VD->isThisDeclarationADefinition()) 3975 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3976 3977 return SafeToInline; 3978 } 3979 3980 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3981 if (const auto *D = E->getTemporary()->getDestructor()) 3982 SafeToInline = D->hasAttr<DLLImportAttr>(); 3983 return SafeToInline; 3984 } 3985 3986 bool VisitDeclRefExpr(DeclRefExpr *E) { 3987 ValueDecl *VD = E->getDecl(); 3988 if (isa<FunctionDecl>(VD)) 3989 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3990 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3991 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3992 return SafeToInline; 3993 } 3994 3995 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3996 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3997 return SafeToInline; 3998 } 3999 4000 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 4001 CXXMethodDecl *M = E->getMethodDecl(); 4002 if (!M) { 4003 // Call through a pointer to member function. This is safe to inline. 4004 SafeToInline = true; 4005 } else { 4006 SafeToInline = M->hasAttr<DLLImportAttr>(); 4007 } 4008 return SafeToInline; 4009 } 4010 4011 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 4012 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 4013 return SafeToInline; 4014 } 4015 4016 bool VisitCXXNewExpr(CXXNewExpr *E) { 4017 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 4018 return SafeToInline; 4019 } 4020 }; 4021 } 4022 4023 // isTriviallyRecursive - Check if this function calls another 4024 // decl that, because of the asm attribute or the other decl being a builtin, 4025 // ends up pointing to itself. 4026 bool 4027 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 4028 StringRef Name; 4029 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 4030 // asm labels are a special kind of mangling we have to support. 4031 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 4032 if (!Attr) 4033 return false; 4034 Name = Attr->getLabel(); 4035 } else { 4036 Name = FD->getName(); 4037 } 4038 4039 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 4040 const Stmt *Body = FD->getBody(); 4041 return Body ? Walker.Visit(Body) : false; 4042 } 4043 4044 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 4045 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 4046 return true; 4047 4048 const auto *F = cast<FunctionDecl>(GD.getDecl()); 4049 // Inline builtins declaration must be emitted. They often are fortified 4050 // functions. 4051 if (F->isInlineBuiltinDeclaration()) 4052 return true; 4053 4054 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 4055 return false; 4056 4057 // We don't import function bodies from other named module units since that 4058 // behavior may break ABI compatibility of the current unit. 4059 if (const Module *M = F->getOwningModule(); 4060 M && M->getTopLevelModule()->isNamedModule() && 4061 getContext().getCurrentNamedModule() != M->getTopLevelModule()) { 4062 // There are practices to mark template member function as always-inline 4063 // and mark the template as extern explicit instantiation but not give 4064 // the definition for member function. So we have to emit the function 4065 // from explicitly instantiation with always-inline. 4066 // 4067 // See https://github.com/llvm/llvm-project/issues/86893 for details. 4068 // 4069 // TODO: Maybe it is better to give it a warning if we call a non-inline 4070 // function from other module units which is marked as always-inline. 4071 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) { 4072 return false; 4073 } 4074 } 4075 4076 if (F->hasAttr<NoInlineAttr>()) 4077 return false; 4078 4079 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4080 // Check whether it would be safe to inline this dllimport function. 4081 DLLImportFunctionVisitor Visitor; 4082 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4083 if (!Visitor.SafeToInline) 4084 return false; 4085 4086 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4087 // Implicit destructor invocations aren't captured in the AST, so the 4088 // check above can't see them. Check for them manually here. 4089 for (const Decl *Member : Dtor->getParent()->decls()) 4090 if (isa<FieldDecl>(Member)) 4091 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4092 return false; 4093 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4094 if (HasNonDllImportDtor(B.getType())) 4095 return false; 4096 } 4097 } 4098 4099 // PR9614. Avoid cases where the source code is lying to us. An available 4100 // externally function should have an equivalent function somewhere else, 4101 // but a function that calls itself through asm label/`__builtin_` trickery is 4102 // clearly not equivalent to the real implementation. 4103 // This happens in glibc's btowc and in some configure checks. 4104 return !isTriviallyRecursive(F); 4105 } 4106 4107 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4108 return CodeGenOpts.OptimizationLevel > 0; 4109 } 4110 4111 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4112 llvm::GlobalValue *GV) { 4113 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4114 4115 if (FD->isCPUSpecificMultiVersion()) { 4116 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4117 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4118 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4119 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) { 4120 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) 4121 // AArch64 favors the default target version over the clone if any. 4122 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) && 4123 TC->isFirstOfVersion(I)) 4124 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4125 // Ensure that the resolver function is also emitted. 4126 GetOrCreateMultiVersionResolver(GD); 4127 } else 4128 EmitGlobalFunctionDefinition(GD, GV); 4129 4130 // Defer the resolver emission until we can reason whether the TU 4131 // contains a default target version implementation. 4132 if (FD->isTargetVersionMultiVersion()) 4133 AddDeferredMultiVersionResolverToEmit(GD); 4134 } 4135 4136 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4137 const auto *D = cast<ValueDecl>(GD.getDecl()); 4138 4139 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4140 Context.getSourceManager(), 4141 "Generating code for declaration"); 4142 4143 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4144 // At -O0, don't generate IR for functions with available_externally 4145 // linkage. 4146 if (!shouldEmitFunction(GD)) 4147 return; 4148 4149 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4150 std::string Name; 4151 llvm::raw_string_ostream OS(Name); 4152 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4153 /*Qualified=*/true); 4154 return Name; 4155 }); 4156 4157 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4158 // Make sure to emit the definition(s) before we emit the thunks. 4159 // This is necessary for the generation of certain thunks. 4160 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4161 ABI->emitCXXStructor(GD); 4162 else if (FD->isMultiVersion()) 4163 EmitMultiVersionFunctionDefinition(GD, GV); 4164 else 4165 EmitGlobalFunctionDefinition(GD, GV); 4166 4167 if (Method->isVirtual()) 4168 getVTables().EmitThunks(GD); 4169 4170 return; 4171 } 4172 4173 if (FD->isMultiVersion()) 4174 return EmitMultiVersionFunctionDefinition(GD, GV); 4175 return EmitGlobalFunctionDefinition(GD, GV); 4176 } 4177 4178 if (const auto *VD = dyn_cast<VarDecl>(D)) 4179 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4180 4181 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4182 } 4183 4184 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4185 llvm::Function *NewFn); 4186 4187 static unsigned 4188 TargetMVPriority(const TargetInfo &TI, 4189 const CodeGenFunction::MultiVersionResolverOption &RO) { 4190 unsigned Priority = 0; 4191 unsigned NumFeatures = 0; 4192 for (StringRef Feat : RO.Conditions.Features) { 4193 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4194 NumFeatures++; 4195 } 4196 4197 if (!RO.Conditions.Architecture.empty()) 4198 Priority = std::max( 4199 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4200 4201 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4202 4203 return Priority; 4204 } 4205 4206 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4207 // TU can forward declare the function without causing problems. Particularly 4208 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4209 // work with internal linkage functions, so that the same function name can be 4210 // used with internal linkage in multiple TUs. 4211 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4212 GlobalDecl GD) { 4213 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4214 if (FD->getFormalLinkage() == Linkage::Internal) 4215 return llvm::GlobalValue::InternalLinkage; 4216 return llvm::GlobalValue::WeakODRLinkage; 4217 } 4218 4219 void CodeGenModule::emitMultiVersionFunctions() { 4220 std::vector<GlobalDecl> MVFuncsToEmit; 4221 MultiVersionFuncs.swap(MVFuncsToEmit); 4222 for (GlobalDecl GD : MVFuncsToEmit) { 4223 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4224 assert(FD && "Expected a FunctionDecl"); 4225 4226 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) { 4227 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx}; 4228 StringRef MangledName = getMangledName(CurGD); 4229 llvm::Constant *Func = GetGlobalValue(MangledName); 4230 if (!Func) { 4231 if (Decl->isDefined()) { 4232 EmitGlobalFunctionDefinition(CurGD, nullptr); 4233 Func = GetGlobalValue(MangledName); 4234 } else { 4235 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); 4236 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4237 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4238 /*DontDefer=*/false, ForDefinition); 4239 } 4240 assert(Func && "This should have just been created"); 4241 } 4242 return cast<llvm::Function>(Func); 4243 }; 4244 4245 // For AArch64, a resolver is only emitted if a function marked with 4246 // target_version("default")) or target_clones() is present and defined 4247 // in this TU. For other architectures it is always emitted. 4248 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64(); 4249 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4250 4251 getContext().forEachMultiversionedFunctionVersion( 4252 FD, [&](const FunctionDecl *CurFD) { 4253 llvm::SmallVector<StringRef, 8> Feats; 4254 bool IsDefined = CurFD->doesThisDeclarationHaveABody(); 4255 4256 if (const auto *TA = CurFD->getAttr<TargetAttr>()) { 4257 TA->getAddedFeatures(Feats); 4258 llvm::Function *Func = createFunction(CurFD); 4259 Options.emplace_back(Func, TA->getArchitecture(), Feats); 4260 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) { 4261 if (TVA->isDefaultVersion() && IsDefined) 4262 ShouldEmitResolver = true; 4263 TVA->getFeatures(Feats); 4264 llvm::Function *Func = createFunction(CurFD); 4265 Options.emplace_back(Func, /*Architecture*/ "", Feats); 4266 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) { 4267 if (IsDefined) 4268 ShouldEmitResolver = true; 4269 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) { 4270 if (!TC->isFirstOfVersion(I)) 4271 continue; 4272 4273 llvm::Function *Func = createFunction(CurFD, I); 4274 StringRef Architecture; 4275 Feats.clear(); 4276 if (getTarget().getTriple().isAArch64()) 4277 TC->getFeatures(Feats, I); 4278 else { 4279 StringRef Version = TC->getFeatureStr(I); 4280 if (Version.starts_with("arch=")) 4281 Architecture = Version.drop_front(sizeof("arch=") - 1); 4282 else if (Version != "default") 4283 Feats.push_back(Version); 4284 } 4285 Options.emplace_back(Func, Architecture, Feats); 4286 } 4287 } else 4288 llvm_unreachable("unexpected MultiVersionKind"); 4289 }); 4290 4291 if (!ShouldEmitResolver) 4292 continue; 4293 4294 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4295 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4296 ResolverConstant = IFunc->getResolver(); 4297 if (FD->isTargetClonesMultiVersion() && 4298 !getTarget().getTriple().isAArch64()) { 4299 std::string MangledName = getMangledNameImpl( 4300 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4301 if (!GetGlobalValue(MangledName + ".ifunc")) { 4302 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4303 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4304 // In prior versions of Clang, the mangling for ifuncs incorrectly 4305 // included an .ifunc suffix. This alias is generated for backward 4306 // compatibility. It is deprecated, and may be removed in the future. 4307 auto *Alias = llvm::GlobalAlias::create( 4308 DeclTy, 0, getMultiversionLinkage(*this, GD), 4309 MangledName + ".ifunc", IFunc, &getModule()); 4310 SetCommonAttributes(FD, Alias); 4311 } 4312 } 4313 } 4314 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4315 4316 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4317 4318 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4319 ResolverFunc->setComdat( 4320 getModule().getOrInsertComdat(ResolverFunc->getName())); 4321 4322 const TargetInfo &TI = getTarget(); 4323 llvm::stable_sort( 4324 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4325 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4326 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4327 }); 4328 CodeGenFunction CGF(*this); 4329 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4330 } 4331 4332 // Ensure that any additions to the deferred decls list caused by emitting a 4333 // variant are emitted. This can happen when the variant itself is inline and 4334 // calls a function without linkage. 4335 if (!MVFuncsToEmit.empty()) 4336 EmitDeferred(); 4337 4338 // Ensure that any additions to the multiversion funcs list from either the 4339 // deferred decls or the multiversion functions themselves are emitted. 4340 if (!MultiVersionFuncs.empty()) 4341 emitMultiVersionFunctions(); 4342 } 4343 4344 static void replaceDeclarationWith(llvm::GlobalValue *Old, 4345 llvm::Constant *New) { 4346 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration"); 4347 New->takeName(Old); 4348 Old->replaceAllUsesWith(New); 4349 Old->eraseFromParent(); 4350 } 4351 4352 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4353 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4354 assert(FD && "Not a FunctionDecl?"); 4355 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4356 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4357 assert(DD && "Not a cpu_dispatch Function?"); 4358 4359 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4360 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4361 4362 StringRef ResolverName = getMangledName(GD); 4363 UpdateMultiVersionNames(GD, FD, ResolverName); 4364 4365 llvm::Type *ResolverType; 4366 GlobalDecl ResolverGD; 4367 if (getTarget().supportsIFunc()) { 4368 ResolverType = llvm::FunctionType::get( 4369 llvm::PointerType::get(DeclTy, 4370 getTypes().getTargetAddressSpace(FD->getType())), 4371 false); 4372 } 4373 else { 4374 ResolverType = DeclTy; 4375 ResolverGD = GD; 4376 } 4377 4378 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4379 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4380 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4381 if (supportsCOMDAT()) 4382 ResolverFunc->setComdat( 4383 getModule().getOrInsertComdat(ResolverFunc->getName())); 4384 4385 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4386 const TargetInfo &Target = getTarget(); 4387 unsigned Index = 0; 4388 for (const IdentifierInfo *II : DD->cpus()) { 4389 // Get the name of the target function so we can look it up/create it. 4390 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4391 getCPUSpecificMangling(*this, II->getName()); 4392 4393 llvm::Constant *Func = GetGlobalValue(MangledName); 4394 4395 if (!Func) { 4396 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4397 if (ExistingDecl.getDecl() && 4398 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4399 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4400 Func = GetGlobalValue(MangledName); 4401 } else { 4402 if (!ExistingDecl.getDecl()) 4403 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4404 4405 Func = GetOrCreateLLVMFunction( 4406 MangledName, DeclTy, ExistingDecl, 4407 /*ForVTable=*/false, /*DontDefer=*/true, 4408 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4409 } 4410 } 4411 4412 llvm::SmallVector<StringRef, 32> Features; 4413 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4414 llvm::transform(Features, Features.begin(), 4415 [](StringRef Str) { return Str.substr(1); }); 4416 llvm::erase_if(Features, [&Target](StringRef Feat) { 4417 return !Target.validateCpuSupports(Feat); 4418 }); 4419 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4420 ++Index; 4421 } 4422 4423 llvm::stable_sort( 4424 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4425 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4426 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4427 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4428 }); 4429 4430 // If the list contains multiple 'default' versions, such as when it contains 4431 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4432 // always run on at least a 'pentium'). We do this by deleting the 'least 4433 // advanced' (read, lowest mangling letter). 4434 while (Options.size() > 1 && 4435 llvm::all_of(llvm::X86::getCpuSupportsMask( 4436 (Options.end() - 2)->Conditions.Features), 4437 [](auto X) { return X == 0; })) { 4438 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4439 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4440 if (LHSName.compare(RHSName) < 0) 4441 Options.erase(Options.end() - 2); 4442 else 4443 Options.erase(Options.end() - 1); 4444 } 4445 4446 CodeGenFunction CGF(*this); 4447 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4448 4449 if (getTarget().supportsIFunc()) { 4450 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4451 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4452 4453 // Fix up function declarations that were created for cpu_specific before 4454 // cpu_dispatch was known 4455 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4456 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4457 &getModule()); 4458 replaceDeclarationWith(IFunc, GI); 4459 IFunc = GI; 4460 } 4461 4462 std::string AliasName = getMangledNameImpl( 4463 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4464 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4465 if (!AliasFunc) { 4466 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4467 &getModule()); 4468 SetCommonAttributes(GD, GA); 4469 } 4470 } 4471 } 4472 4473 /// Adds a declaration to the list of multi version functions if not present. 4474 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) { 4475 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4476 assert(FD && "Not a FunctionDecl?"); 4477 4478 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) { 4479 std::string MangledName = 4480 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4481 if (!DeferredResolversToEmit.insert(MangledName).second) 4482 return; 4483 } 4484 MultiVersionFuncs.push_back(GD); 4485 } 4486 4487 /// If a dispatcher for the specified mangled name is not in the module, create 4488 /// and return it. The dispatcher is either an llvm Function with the specified 4489 /// type, or a global ifunc. 4490 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4491 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4492 assert(FD && "Not a FunctionDecl?"); 4493 4494 std::string MangledName = 4495 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4496 4497 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4498 // a separate resolver). 4499 std::string ResolverName = MangledName; 4500 if (getTarget().supportsIFunc()) { 4501 switch (FD->getMultiVersionKind()) { 4502 case MultiVersionKind::None: 4503 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4504 case MultiVersionKind::Target: 4505 case MultiVersionKind::CPUSpecific: 4506 case MultiVersionKind::CPUDispatch: 4507 ResolverName += ".ifunc"; 4508 break; 4509 case MultiVersionKind::TargetClones: 4510 case MultiVersionKind::TargetVersion: 4511 break; 4512 } 4513 } else if (FD->isTargetMultiVersion()) { 4514 ResolverName += ".resolver"; 4515 } 4516 4517 // If the resolver has already been created, just return it. This lookup may 4518 // yield a function declaration instead of a resolver on AArch64. That is 4519 // because we didn't know whether a resolver will be generated when we first 4520 // encountered a use of the symbol named after this resolver. Therefore, 4521 // targets which support ifuncs should not return here unless we actually 4522 // found an ifunc. 4523 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName); 4524 if (ResolverGV && 4525 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc())) 4526 return ResolverGV; 4527 4528 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4529 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4530 4531 // The resolver needs to be created. For target and target_clones, defer 4532 // creation until the end of the TU. 4533 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4534 AddDeferredMultiVersionResolverToEmit(GD); 4535 4536 // For cpu_specific, don't create an ifunc yet because we don't know if the 4537 // cpu_dispatch will be emitted in this translation unit. 4538 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4539 llvm::Type *ResolverType = llvm::FunctionType::get( 4540 llvm::PointerType::get(DeclTy, 4541 getTypes().getTargetAddressSpace(FD->getType())), 4542 false); 4543 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4544 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4545 /*ForVTable=*/false); 4546 llvm::GlobalIFunc *GIF = 4547 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4548 "", Resolver, &getModule()); 4549 GIF->setName(ResolverName); 4550 SetCommonAttributes(FD, GIF); 4551 if (ResolverGV) 4552 replaceDeclarationWith(ResolverGV, GIF); 4553 return GIF; 4554 } 4555 4556 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4557 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4558 assert(isa<llvm::GlobalValue>(Resolver) && 4559 "Resolver should be created for the first time"); 4560 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4561 if (ResolverGV) 4562 replaceDeclarationWith(ResolverGV, Resolver); 4563 return Resolver; 4564 } 4565 4566 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D, 4567 const llvm::GlobalValue *GV) const { 4568 auto SC = GV->getDLLStorageClass(); 4569 if (SC == llvm::GlobalValue::DefaultStorageClass) 4570 return false; 4571 const Decl *MRD = D->getMostRecentDecl(); 4572 return (((SC == llvm::GlobalValue::DLLImportStorageClass && 4573 !MRD->hasAttr<DLLImportAttr>()) || 4574 (SC == llvm::GlobalValue::DLLExportStorageClass && 4575 !MRD->hasAttr<DLLExportAttr>())) && 4576 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD))); 4577 } 4578 4579 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4580 /// module, create and return an llvm Function with the specified type. If there 4581 /// is something in the module with the specified name, return it potentially 4582 /// bitcasted to the right type. 4583 /// 4584 /// If D is non-null, it specifies a decl that correspond to this. This is used 4585 /// to set the attributes on the function when it is first created. 4586 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4587 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4588 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4589 ForDefinition_t IsForDefinition) { 4590 const Decl *D = GD.getDecl(); 4591 4592 std::string NameWithoutMultiVersionMangling; 4593 // Any attempts to use a MultiVersion function should result in retrieving 4594 // the iFunc instead. Name Mangling will handle the rest of the changes. 4595 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4596 // For the device mark the function as one that should be emitted. 4597 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4598 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4599 !DontDefer && !IsForDefinition) { 4600 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4601 GlobalDecl GDDef; 4602 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4603 GDDef = GlobalDecl(CD, GD.getCtorType()); 4604 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4605 GDDef = GlobalDecl(DD, GD.getDtorType()); 4606 else 4607 GDDef = GlobalDecl(FDDef); 4608 EmitGlobal(GDDef); 4609 } 4610 } 4611 4612 if (FD->isMultiVersion()) { 4613 UpdateMultiVersionNames(GD, FD, MangledName); 4614 if (!IsForDefinition) { 4615 // On AArch64 we do not immediatelly emit an ifunc resolver when a 4616 // function is used. Instead we defer the emission until we see a 4617 // default definition. In the meantime we just reference the symbol 4618 // without FMV mangling (it may or may not be replaced later). 4619 if (getTarget().getTriple().isAArch64()) { 4620 AddDeferredMultiVersionResolverToEmit(GD); 4621 NameWithoutMultiVersionMangling = getMangledNameImpl( 4622 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4623 } else 4624 return GetOrCreateMultiVersionResolver(GD); 4625 } 4626 } 4627 } 4628 4629 if (!NameWithoutMultiVersionMangling.empty()) 4630 MangledName = NameWithoutMultiVersionMangling; 4631 4632 // Lookup the entry, lazily creating it if necessary. 4633 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4634 if (Entry) { 4635 if (WeakRefReferences.erase(Entry)) { 4636 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4637 if (FD && !FD->hasAttr<WeakAttr>()) 4638 Entry->setLinkage(llvm::Function::ExternalLinkage); 4639 } 4640 4641 // Handle dropped DLL attributes. 4642 if (D && shouldDropDLLAttribute(D, Entry)) { 4643 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4644 setDSOLocal(Entry); 4645 } 4646 4647 // If there are two attempts to define the same mangled name, issue an 4648 // error. 4649 if (IsForDefinition && !Entry->isDeclaration()) { 4650 GlobalDecl OtherGD; 4651 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4652 // to make sure that we issue an error only once. 4653 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4654 (GD.getCanonicalDecl().getDecl() != 4655 OtherGD.getCanonicalDecl().getDecl()) && 4656 DiagnosedConflictingDefinitions.insert(GD).second) { 4657 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4658 << MangledName; 4659 getDiags().Report(OtherGD.getDecl()->getLocation(), 4660 diag::note_previous_definition); 4661 } 4662 } 4663 4664 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4665 (Entry->getValueType() == Ty)) { 4666 return Entry; 4667 } 4668 4669 // Make sure the result is of the correct type. 4670 // (If function is requested for a definition, we always need to create a new 4671 // function, not just return a bitcast.) 4672 if (!IsForDefinition) 4673 return Entry; 4674 } 4675 4676 // This function doesn't have a complete type (for example, the return 4677 // type is an incomplete struct). Use a fake type instead, and make 4678 // sure not to try to set attributes. 4679 bool IsIncompleteFunction = false; 4680 4681 llvm::FunctionType *FTy; 4682 if (isa<llvm::FunctionType>(Ty)) { 4683 FTy = cast<llvm::FunctionType>(Ty); 4684 } else { 4685 FTy = llvm::FunctionType::get(VoidTy, false); 4686 IsIncompleteFunction = true; 4687 } 4688 4689 llvm::Function *F = 4690 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4691 Entry ? StringRef() : MangledName, &getModule()); 4692 4693 // Store the declaration associated with this function so it is potentially 4694 // updated by further declarations or definitions and emitted at the end. 4695 if (D && D->hasAttr<AnnotateAttr>()) 4696 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4697 4698 // If we already created a function with the same mangled name (but different 4699 // type) before, take its name and add it to the list of functions to be 4700 // replaced with F at the end of CodeGen. 4701 // 4702 // This happens if there is a prototype for a function (e.g. "int f()") and 4703 // then a definition of a different type (e.g. "int f(int x)"). 4704 if (Entry) { 4705 F->takeName(Entry); 4706 4707 // This might be an implementation of a function without a prototype, in 4708 // which case, try to do special replacement of calls which match the new 4709 // prototype. The really key thing here is that we also potentially drop 4710 // arguments from the call site so as to make a direct call, which makes the 4711 // inliner happier and suppresses a number of optimizer warnings (!) about 4712 // dropping arguments. 4713 if (!Entry->use_empty()) { 4714 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4715 Entry->removeDeadConstantUsers(); 4716 } 4717 4718 addGlobalValReplacement(Entry, F); 4719 } 4720 4721 assert(F->getName() == MangledName && "name was uniqued!"); 4722 if (D) 4723 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4724 if (ExtraAttrs.hasFnAttrs()) { 4725 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4726 F->addFnAttrs(B); 4727 } 4728 4729 if (!DontDefer) { 4730 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4731 // each other bottoming out with the base dtor. Therefore we emit non-base 4732 // dtors on usage, even if there is no dtor definition in the TU. 4733 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4734 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4735 GD.getDtorType())) 4736 addDeferredDeclToEmit(GD); 4737 4738 // This is the first use or definition of a mangled name. If there is a 4739 // deferred decl with this name, remember that we need to emit it at the end 4740 // of the file. 4741 auto DDI = DeferredDecls.find(MangledName); 4742 if (DDI != DeferredDecls.end()) { 4743 // Move the potentially referenced deferred decl to the 4744 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4745 // don't need it anymore). 4746 addDeferredDeclToEmit(DDI->second); 4747 DeferredDecls.erase(DDI); 4748 4749 // Otherwise, there are cases we have to worry about where we're 4750 // using a declaration for which we must emit a definition but where 4751 // we might not find a top-level definition: 4752 // - member functions defined inline in their classes 4753 // - friend functions defined inline in some class 4754 // - special member functions with implicit definitions 4755 // If we ever change our AST traversal to walk into class methods, 4756 // this will be unnecessary. 4757 // 4758 // We also don't emit a definition for a function if it's going to be an 4759 // entry in a vtable, unless it's already marked as used. 4760 } else if (getLangOpts().CPlusPlus && D) { 4761 // Look for a declaration that's lexically in a record. 4762 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4763 FD = FD->getPreviousDecl()) { 4764 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4765 if (FD->doesThisDeclarationHaveABody()) { 4766 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4767 break; 4768 } 4769 } 4770 } 4771 } 4772 } 4773 4774 // Make sure the result is of the requested type. 4775 if (!IsIncompleteFunction) { 4776 assert(F->getFunctionType() == Ty); 4777 return F; 4778 } 4779 4780 return F; 4781 } 4782 4783 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4784 /// non-null, then this function will use the specified type if it has to 4785 /// create it (this occurs when we see a definition of the function). 4786 llvm::Constant * 4787 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4788 bool DontDefer, 4789 ForDefinition_t IsForDefinition) { 4790 // If there was no specific requested type, just convert it now. 4791 if (!Ty) { 4792 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4793 Ty = getTypes().ConvertType(FD->getType()); 4794 } 4795 4796 // Devirtualized destructor calls may come through here instead of via 4797 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4798 // of the complete destructor when necessary. 4799 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4800 if (getTarget().getCXXABI().isMicrosoft() && 4801 GD.getDtorType() == Dtor_Complete && 4802 DD->getParent()->getNumVBases() == 0) 4803 GD = GlobalDecl(DD, Dtor_Base); 4804 } 4805 4806 StringRef MangledName = getMangledName(GD); 4807 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4808 /*IsThunk=*/false, llvm::AttributeList(), 4809 IsForDefinition); 4810 // Returns kernel handle for HIP kernel stub function. 4811 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4812 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4813 auto *Handle = getCUDARuntime().getKernelHandle( 4814 cast<llvm::Function>(F->stripPointerCasts()), GD); 4815 if (IsForDefinition) 4816 return F; 4817 return Handle; 4818 } 4819 return F; 4820 } 4821 4822 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4823 llvm::GlobalValue *F = 4824 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4825 4826 return llvm::NoCFIValue::get(F); 4827 } 4828 4829 static const FunctionDecl * 4830 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4831 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4832 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4833 4834 IdentifierInfo &CII = C.Idents.get(Name); 4835 for (const auto *Result : DC->lookup(&CII)) 4836 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4837 return FD; 4838 4839 if (!C.getLangOpts().CPlusPlus) 4840 return nullptr; 4841 4842 // Demangle the premangled name from getTerminateFn() 4843 IdentifierInfo &CXXII = 4844 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4845 ? C.Idents.get("terminate") 4846 : C.Idents.get(Name); 4847 4848 for (const auto &N : {"__cxxabiv1", "std"}) { 4849 IdentifierInfo &NS = C.Idents.get(N); 4850 for (const auto *Result : DC->lookup(&NS)) { 4851 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4852 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4853 for (const auto *Result : LSD->lookup(&NS)) 4854 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4855 break; 4856 4857 if (ND) 4858 for (const auto *Result : ND->lookup(&CXXII)) 4859 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4860 return FD; 4861 } 4862 } 4863 4864 return nullptr; 4865 } 4866 4867 /// CreateRuntimeFunction - Create a new runtime function with the specified 4868 /// type and name. 4869 llvm::FunctionCallee 4870 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4871 llvm::AttributeList ExtraAttrs, bool Local, 4872 bool AssumeConvergent) { 4873 if (AssumeConvergent) { 4874 ExtraAttrs = 4875 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4876 } 4877 4878 llvm::Constant *C = 4879 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4880 /*DontDefer=*/false, /*IsThunk=*/false, 4881 ExtraAttrs); 4882 4883 if (auto *F = dyn_cast<llvm::Function>(C)) { 4884 if (F->empty()) { 4885 F->setCallingConv(getRuntimeCC()); 4886 4887 // In Windows Itanium environments, try to mark runtime functions 4888 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4889 // will link their standard library statically or dynamically. Marking 4890 // functions imported when they are not imported can cause linker errors 4891 // and warnings. 4892 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4893 !getCodeGenOpts().LTOVisibilityPublicStd) { 4894 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4895 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4896 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4897 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4898 } 4899 } 4900 setDSOLocal(F); 4901 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead 4902 // of trying to approximate the attributes using the LLVM function 4903 // signature. This requires revising the API of CreateRuntimeFunction(). 4904 markRegisterParameterAttributes(F); 4905 } 4906 } 4907 4908 return {FTy, C}; 4909 } 4910 4911 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4912 /// create and return an llvm GlobalVariable with the specified type and address 4913 /// space. If there is something in the module with the specified name, return 4914 /// it potentially bitcasted to the right type. 4915 /// 4916 /// If D is non-null, it specifies a decl that correspond to this. This is used 4917 /// to set the attributes on the global when it is first created. 4918 /// 4919 /// If IsForDefinition is true, it is guaranteed that an actual global with 4920 /// type Ty will be returned, not conversion of a variable with the same 4921 /// mangled name but some other type. 4922 llvm::Constant * 4923 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4924 LangAS AddrSpace, const VarDecl *D, 4925 ForDefinition_t IsForDefinition) { 4926 // Lookup the entry, lazily creating it if necessary. 4927 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4928 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4929 if (Entry) { 4930 if (WeakRefReferences.erase(Entry)) { 4931 if (D && !D->hasAttr<WeakAttr>()) 4932 Entry->setLinkage(llvm::Function::ExternalLinkage); 4933 } 4934 4935 // Handle dropped DLL attributes. 4936 if (D && shouldDropDLLAttribute(D, Entry)) 4937 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4938 4939 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4940 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4941 4942 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4943 return Entry; 4944 4945 // If there are two attempts to define the same mangled name, issue an 4946 // error. 4947 if (IsForDefinition && !Entry->isDeclaration()) { 4948 GlobalDecl OtherGD; 4949 const VarDecl *OtherD; 4950 4951 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4952 // to make sure that we issue an error only once. 4953 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4954 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4955 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4956 OtherD->hasInit() && 4957 DiagnosedConflictingDefinitions.insert(D).second) { 4958 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4959 << MangledName; 4960 getDiags().Report(OtherGD.getDecl()->getLocation(), 4961 diag::note_previous_definition); 4962 } 4963 } 4964 4965 // Make sure the result is of the correct type. 4966 if (Entry->getType()->getAddressSpace() != TargetAS) 4967 return llvm::ConstantExpr::getAddrSpaceCast( 4968 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4969 4970 // (If global is requested for a definition, we always need to create a new 4971 // global, not just return a bitcast.) 4972 if (!IsForDefinition) 4973 return Entry; 4974 } 4975 4976 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4977 4978 auto *GV = new llvm::GlobalVariable( 4979 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4980 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4981 getContext().getTargetAddressSpace(DAddrSpace)); 4982 4983 // If we already created a global with the same mangled name (but different 4984 // type) before, take its name and remove it from its parent. 4985 if (Entry) { 4986 GV->takeName(Entry); 4987 4988 if (!Entry->use_empty()) { 4989 Entry->replaceAllUsesWith(GV); 4990 } 4991 4992 Entry->eraseFromParent(); 4993 } 4994 4995 // This is the first use or definition of a mangled name. If there is a 4996 // deferred decl with this name, remember that we need to emit it at the end 4997 // of the file. 4998 auto DDI = DeferredDecls.find(MangledName); 4999 if (DDI != DeferredDecls.end()) { 5000 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 5001 // list, and remove it from DeferredDecls (since we don't need it anymore). 5002 addDeferredDeclToEmit(DDI->second); 5003 DeferredDecls.erase(DDI); 5004 } 5005 5006 // Handle things which are present even on external declarations. 5007 if (D) { 5008 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 5009 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 5010 5011 // FIXME: This code is overly simple and should be merged with other global 5012 // handling. 5013 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 5014 5015 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 5016 5017 setLinkageForGV(GV, D); 5018 5019 if (D->getTLSKind()) { 5020 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5021 CXXThreadLocals.push_back(D); 5022 setTLSMode(GV, *D); 5023 } 5024 5025 setGVProperties(GV, D); 5026 5027 // If required by the ABI, treat declarations of static data members with 5028 // inline initializers as definitions. 5029 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 5030 EmitGlobalVarDefinition(D); 5031 } 5032 5033 // Emit section information for extern variables. 5034 if (D->hasExternalStorage()) { 5035 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 5036 GV->setSection(SA->getName()); 5037 } 5038 5039 // Handle XCore specific ABI requirements. 5040 if (getTriple().getArch() == llvm::Triple::xcore && 5041 D->getLanguageLinkage() == CLanguageLinkage && 5042 D->getType().isConstant(Context) && 5043 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 5044 GV->setSection(".cp.rodata"); 5045 5046 // Handle code model attribute 5047 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 5048 GV->setCodeModel(CMA->getModel()); 5049 5050 // Check if we a have a const declaration with an initializer, we may be 5051 // able to emit it as available_externally to expose it's value to the 5052 // optimizer. 5053 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 5054 D->getType().isConstQualified() && !GV->hasInitializer() && 5055 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 5056 const auto *Record = 5057 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 5058 bool HasMutableFields = Record && Record->hasMutableFields(); 5059 if (!HasMutableFields) { 5060 const VarDecl *InitDecl; 5061 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5062 if (InitExpr) { 5063 ConstantEmitter emitter(*this); 5064 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 5065 if (Init) { 5066 auto *InitType = Init->getType(); 5067 if (GV->getValueType() != InitType) { 5068 // The type of the initializer does not match the definition. 5069 // This happens when an initializer has a different type from 5070 // the type of the global (because of padding at the end of a 5071 // structure for instance). 5072 GV->setName(StringRef()); 5073 // Make a new global with the correct type, this is now guaranteed 5074 // to work. 5075 auto *NewGV = cast<llvm::GlobalVariable>( 5076 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 5077 ->stripPointerCasts()); 5078 5079 // Erase the old global, since it is no longer used. 5080 GV->eraseFromParent(); 5081 GV = NewGV; 5082 } else { 5083 GV->setInitializer(Init); 5084 GV->setConstant(true); 5085 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 5086 } 5087 emitter.finalize(GV); 5088 } 5089 } 5090 } 5091 } 5092 } 5093 5094 if (D && 5095 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 5096 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 5097 // External HIP managed variables needed to be recorded for transformation 5098 // in both device and host compilations. 5099 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 5100 D->hasExternalStorage()) 5101 getCUDARuntime().handleVarRegistration(D, *GV); 5102 } 5103 5104 if (D) 5105 SanitizerMD->reportGlobal(GV, *D); 5106 5107 LangAS ExpectedAS = 5108 D ? D->getType().getAddressSpace() 5109 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 5110 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 5111 if (DAddrSpace != ExpectedAS) { 5112 return getTargetCodeGenInfo().performAddrSpaceCast( 5113 *this, GV, DAddrSpace, ExpectedAS, 5114 llvm::PointerType::get(getLLVMContext(), TargetAS)); 5115 } 5116 5117 return GV; 5118 } 5119 5120 llvm::Constant * 5121 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 5122 const Decl *D = GD.getDecl(); 5123 5124 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5125 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5126 /*DontDefer=*/false, IsForDefinition); 5127 5128 if (isa<CXXMethodDecl>(D)) { 5129 auto FInfo = 5130 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5131 auto Ty = getTypes().GetFunctionType(*FInfo); 5132 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5133 IsForDefinition); 5134 } 5135 5136 if (isa<FunctionDecl>(D)) { 5137 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5138 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5139 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5140 IsForDefinition); 5141 } 5142 5143 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5144 } 5145 5146 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5147 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5148 llvm::Align Alignment) { 5149 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5150 llvm::GlobalVariable *OldGV = nullptr; 5151 5152 if (GV) { 5153 // Check if the variable has the right type. 5154 if (GV->getValueType() == Ty) 5155 return GV; 5156 5157 // Because C++ name mangling, the only way we can end up with an already 5158 // existing global with the same name is if it has been declared extern "C". 5159 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5160 OldGV = GV; 5161 } 5162 5163 // Create a new variable. 5164 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5165 Linkage, nullptr, Name); 5166 5167 if (OldGV) { 5168 // Replace occurrences of the old variable if needed. 5169 GV->takeName(OldGV); 5170 5171 if (!OldGV->use_empty()) { 5172 OldGV->replaceAllUsesWith(GV); 5173 } 5174 5175 OldGV->eraseFromParent(); 5176 } 5177 5178 if (supportsCOMDAT() && GV->isWeakForLinker() && 5179 !GV->hasAvailableExternallyLinkage()) 5180 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5181 5182 GV->setAlignment(Alignment); 5183 5184 return GV; 5185 } 5186 5187 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5188 /// given global variable. If Ty is non-null and if the global doesn't exist, 5189 /// then it will be created with the specified type instead of whatever the 5190 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5191 /// that an actual global with type Ty will be returned, not conversion of a 5192 /// variable with the same mangled name but some other type. 5193 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5194 llvm::Type *Ty, 5195 ForDefinition_t IsForDefinition) { 5196 assert(D->hasGlobalStorage() && "Not a global variable"); 5197 QualType ASTTy = D->getType(); 5198 if (!Ty) 5199 Ty = getTypes().ConvertTypeForMem(ASTTy); 5200 5201 StringRef MangledName = getMangledName(D); 5202 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5203 IsForDefinition); 5204 } 5205 5206 /// CreateRuntimeVariable - Create a new runtime global variable with the 5207 /// specified type and name. 5208 llvm::Constant * 5209 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5210 StringRef Name) { 5211 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5212 : LangAS::Default; 5213 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5214 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5215 return Ret; 5216 } 5217 5218 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5219 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5220 5221 StringRef MangledName = getMangledName(D); 5222 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5223 5224 // We already have a definition, not declaration, with the same mangled name. 5225 // Emitting of declaration is not required (and actually overwrites emitted 5226 // definition). 5227 if (GV && !GV->isDeclaration()) 5228 return; 5229 5230 // If we have not seen a reference to this variable yet, place it into the 5231 // deferred declarations table to be emitted if needed later. 5232 if (!MustBeEmitted(D) && !GV) { 5233 DeferredDecls[MangledName] = D; 5234 return; 5235 } 5236 5237 // The tentative definition is the only definition. 5238 EmitGlobalVarDefinition(D); 5239 } 5240 5241 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) { 5242 if (auto const *V = dyn_cast<const VarDecl>(D)) 5243 EmitExternalVarDeclaration(V); 5244 if (auto const *FD = dyn_cast<const FunctionDecl>(D)) 5245 EmitExternalFunctionDeclaration(FD); 5246 } 5247 5248 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5249 return Context.toCharUnitsFromBits( 5250 getDataLayout().getTypeStoreSizeInBits(Ty)); 5251 } 5252 5253 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5254 if (LangOpts.OpenCL) { 5255 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5256 assert(AS == LangAS::opencl_global || 5257 AS == LangAS::opencl_global_device || 5258 AS == LangAS::opencl_global_host || 5259 AS == LangAS::opencl_constant || 5260 AS == LangAS::opencl_local || 5261 AS >= LangAS::FirstTargetAddressSpace); 5262 return AS; 5263 } 5264 5265 if (LangOpts.SYCLIsDevice && 5266 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5267 return LangAS::sycl_global; 5268 5269 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5270 if (D) { 5271 if (D->hasAttr<CUDAConstantAttr>()) 5272 return LangAS::cuda_constant; 5273 if (D->hasAttr<CUDASharedAttr>()) 5274 return LangAS::cuda_shared; 5275 if (D->hasAttr<CUDADeviceAttr>()) 5276 return LangAS::cuda_device; 5277 if (D->getType().isConstQualified()) 5278 return LangAS::cuda_constant; 5279 } 5280 return LangAS::cuda_device; 5281 } 5282 5283 if (LangOpts.OpenMP) { 5284 LangAS AS; 5285 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5286 return AS; 5287 } 5288 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5289 } 5290 5291 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5292 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5293 if (LangOpts.OpenCL) 5294 return LangAS::opencl_constant; 5295 if (LangOpts.SYCLIsDevice) 5296 return LangAS::sycl_global; 5297 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5298 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5299 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5300 // with OpVariable instructions with Generic storage class which is not 5301 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5302 // UniformConstant storage class is not viable as pointers to it may not be 5303 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5304 return LangAS::cuda_device; 5305 if (auto AS = getTarget().getConstantAddressSpace()) 5306 return *AS; 5307 return LangAS::Default; 5308 } 5309 5310 // In address space agnostic languages, string literals are in default address 5311 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5312 // emitted in constant address space in LLVM IR. To be consistent with other 5313 // parts of AST, string literal global variables in constant address space 5314 // need to be casted to default address space before being put into address 5315 // map and referenced by other part of CodeGen. 5316 // In OpenCL, string literals are in constant address space in AST, therefore 5317 // they should not be casted to default address space. 5318 static llvm::Constant * 5319 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5320 llvm::GlobalVariable *GV) { 5321 llvm::Constant *Cast = GV; 5322 if (!CGM.getLangOpts().OpenCL) { 5323 auto AS = CGM.GetGlobalConstantAddressSpace(); 5324 if (AS != LangAS::Default) 5325 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5326 CGM, GV, AS, LangAS::Default, 5327 llvm::PointerType::get( 5328 CGM.getLLVMContext(), 5329 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5330 } 5331 return Cast; 5332 } 5333 5334 template<typename SomeDecl> 5335 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5336 llvm::GlobalValue *GV) { 5337 if (!getLangOpts().CPlusPlus) 5338 return; 5339 5340 // Must have 'used' attribute, or else inline assembly can't rely on 5341 // the name existing. 5342 if (!D->template hasAttr<UsedAttr>()) 5343 return; 5344 5345 // Must have internal linkage and an ordinary name. 5346 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5347 return; 5348 5349 // Must be in an extern "C" context. Entities declared directly within 5350 // a record are not extern "C" even if the record is in such a context. 5351 const SomeDecl *First = D->getFirstDecl(); 5352 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5353 return; 5354 5355 // OK, this is an internal linkage entity inside an extern "C" linkage 5356 // specification. Make a note of that so we can give it the "expected" 5357 // mangled name if nothing else is using that name. 5358 std::pair<StaticExternCMap::iterator, bool> R = 5359 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5360 5361 // If we have multiple internal linkage entities with the same name 5362 // in extern "C" regions, none of them gets that name. 5363 if (!R.second) 5364 R.first->second = nullptr; 5365 } 5366 5367 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5368 if (!CGM.supportsCOMDAT()) 5369 return false; 5370 5371 if (D.hasAttr<SelectAnyAttr>()) 5372 return true; 5373 5374 GVALinkage Linkage; 5375 if (auto *VD = dyn_cast<VarDecl>(&D)) 5376 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5377 else 5378 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5379 5380 switch (Linkage) { 5381 case GVA_Internal: 5382 case GVA_AvailableExternally: 5383 case GVA_StrongExternal: 5384 return false; 5385 case GVA_DiscardableODR: 5386 case GVA_StrongODR: 5387 return true; 5388 } 5389 llvm_unreachable("No such linkage"); 5390 } 5391 5392 bool CodeGenModule::supportsCOMDAT() const { 5393 return getTriple().supportsCOMDAT(); 5394 } 5395 5396 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5397 llvm::GlobalObject &GO) { 5398 if (!shouldBeInCOMDAT(*this, D)) 5399 return; 5400 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5401 } 5402 5403 /// Pass IsTentative as true if you want to create a tentative definition. 5404 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5405 bool IsTentative) { 5406 // OpenCL global variables of sampler type are translated to function calls, 5407 // therefore no need to be translated. 5408 QualType ASTTy = D->getType(); 5409 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5410 return; 5411 5412 // If this is OpenMP device, check if it is legal to emit this global 5413 // normally. 5414 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5415 OpenMPRuntime->emitTargetGlobalVariable(D)) 5416 return; 5417 5418 llvm::TrackingVH<llvm::Constant> Init; 5419 bool NeedsGlobalCtor = false; 5420 // Whether the definition of the variable is available externally. 5421 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5422 // since this is the job for its original source. 5423 bool IsDefinitionAvailableExternally = 5424 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5425 bool NeedsGlobalDtor = 5426 !IsDefinitionAvailableExternally && 5427 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5428 5429 // It is helpless to emit the definition for an available_externally variable 5430 // which can't be marked as const. 5431 // We don't need to check if it needs global ctor or dtor. See the above 5432 // comment for ideas. 5433 if (IsDefinitionAvailableExternally && 5434 (!D->hasConstantInitialization() || 5435 // TODO: Update this when we have interface to check constexpr 5436 // destructor. 5437 D->needsDestruction(getContext()) || 5438 !D->getType().isConstantStorage(getContext(), true, true))) 5439 return; 5440 5441 const VarDecl *InitDecl; 5442 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5443 5444 std::optional<ConstantEmitter> emitter; 5445 5446 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5447 // as part of their declaration." Sema has already checked for 5448 // error cases, so we just need to set Init to UndefValue. 5449 bool IsCUDASharedVar = 5450 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5451 // Shadows of initialized device-side global variables are also left 5452 // undefined. 5453 // Managed Variables should be initialized on both host side and device side. 5454 bool IsCUDAShadowVar = 5455 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5456 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5457 D->hasAttr<CUDASharedAttr>()); 5458 bool IsCUDADeviceShadowVar = 5459 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5460 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5461 D->getType()->isCUDADeviceBuiltinTextureType()); 5462 if (getLangOpts().CUDA && 5463 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5464 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5465 else if (D->hasAttr<LoaderUninitializedAttr>()) 5466 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5467 else if (!InitExpr) { 5468 // This is a tentative definition; tentative definitions are 5469 // implicitly initialized with { 0 }. 5470 // 5471 // Note that tentative definitions are only emitted at the end of 5472 // a translation unit, so they should never have incomplete 5473 // type. In addition, EmitTentativeDefinition makes sure that we 5474 // never attempt to emit a tentative definition if a real one 5475 // exists. A use may still exists, however, so we still may need 5476 // to do a RAUW. 5477 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5478 Init = EmitNullConstant(D->getType()); 5479 } else { 5480 initializedGlobalDecl = GlobalDecl(D); 5481 emitter.emplace(*this); 5482 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5483 if (!Initializer) { 5484 QualType T = InitExpr->getType(); 5485 if (D->getType()->isReferenceType()) 5486 T = D->getType(); 5487 5488 if (getLangOpts().CPlusPlus) { 5489 if (InitDecl->hasFlexibleArrayInit(getContext())) 5490 ErrorUnsupported(D, "flexible array initializer"); 5491 Init = EmitNullConstant(T); 5492 5493 if (!IsDefinitionAvailableExternally) 5494 NeedsGlobalCtor = true; 5495 } else { 5496 ErrorUnsupported(D, "static initializer"); 5497 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5498 } 5499 } else { 5500 Init = Initializer; 5501 // We don't need an initializer, so remove the entry for the delayed 5502 // initializer position (just in case this entry was delayed) if we 5503 // also don't need to register a destructor. 5504 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5505 DelayedCXXInitPosition.erase(D); 5506 5507 #ifndef NDEBUG 5508 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5509 InitDecl->getFlexibleArrayInitChars(getContext()); 5510 CharUnits CstSize = CharUnits::fromQuantity( 5511 getDataLayout().getTypeAllocSize(Init->getType())); 5512 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5513 #endif 5514 } 5515 } 5516 5517 llvm::Type* InitType = Init->getType(); 5518 llvm::Constant *Entry = 5519 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5520 5521 // Strip off pointer casts if we got them. 5522 Entry = Entry->stripPointerCasts(); 5523 5524 // Entry is now either a Function or GlobalVariable. 5525 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5526 5527 // We have a definition after a declaration with the wrong type. 5528 // We must make a new GlobalVariable* and update everything that used OldGV 5529 // (a declaration or tentative definition) with the new GlobalVariable* 5530 // (which will be a definition). 5531 // 5532 // This happens if there is a prototype for a global (e.g. 5533 // "extern int x[];") and then a definition of a different type (e.g. 5534 // "int x[10];"). This also happens when an initializer has a different type 5535 // from the type of the global (this happens with unions). 5536 if (!GV || GV->getValueType() != InitType || 5537 GV->getType()->getAddressSpace() != 5538 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5539 5540 // Move the old entry aside so that we'll create a new one. 5541 Entry->setName(StringRef()); 5542 5543 // Make a new global with the correct type, this is now guaranteed to work. 5544 GV = cast<llvm::GlobalVariable>( 5545 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5546 ->stripPointerCasts()); 5547 5548 // Replace all uses of the old global with the new global 5549 llvm::Constant *NewPtrForOldDecl = 5550 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5551 Entry->getType()); 5552 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5553 5554 // Erase the old global, since it is no longer used. 5555 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5556 } 5557 5558 MaybeHandleStaticInExternC(D, GV); 5559 5560 if (D->hasAttr<AnnotateAttr>()) 5561 AddGlobalAnnotations(D, GV); 5562 5563 // Set the llvm linkage type as appropriate. 5564 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5565 5566 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5567 // the device. [...]" 5568 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5569 // __device__, declares a variable that: [...] 5570 // Is accessible from all the threads within the grid and from the host 5571 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5572 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5573 if (LangOpts.CUDA) { 5574 if (LangOpts.CUDAIsDevice) { 5575 if (Linkage != llvm::GlobalValue::InternalLinkage && 5576 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5577 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5578 D->getType()->isCUDADeviceBuiltinTextureType())) 5579 GV->setExternallyInitialized(true); 5580 } else { 5581 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5582 } 5583 getCUDARuntime().handleVarRegistration(D, *GV); 5584 } 5585 5586 GV->setInitializer(Init); 5587 if (emitter) 5588 emitter->finalize(GV); 5589 5590 // If it is safe to mark the global 'constant', do so now. 5591 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5592 D->getType().isConstantStorage(getContext(), true, true)); 5593 5594 // If it is in a read-only section, mark it 'constant'. 5595 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5596 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5597 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5598 GV->setConstant(true); 5599 } 5600 5601 CharUnits AlignVal = getContext().getDeclAlign(D); 5602 // Check for alignment specifed in an 'omp allocate' directive. 5603 if (std::optional<CharUnits> AlignValFromAllocate = 5604 getOMPAllocateAlignment(D)) 5605 AlignVal = *AlignValFromAllocate; 5606 GV->setAlignment(AlignVal.getAsAlign()); 5607 5608 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5609 // function is only defined alongside the variable, not also alongside 5610 // callers. Normally, all accesses to a thread_local go through the 5611 // thread-wrapper in order to ensure initialization has occurred, underlying 5612 // variable will never be used other than the thread-wrapper, so it can be 5613 // converted to internal linkage. 5614 // 5615 // However, if the variable has the 'constinit' attribute, it _can_ be 5616 // referenced directly, without calling the thread-wrapper, so the linkage 5617 // must not be changed. 5618 // 5619 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5620 // weak or linkonce, the de-duplication semantics are important to preserve, 5621 // so we don't change the linkage. 5622 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5623 Linkage == llvm::GlobalValue::ExternalLinkage && 5624 Context.getTargetInfo().getTriple().isOSDarwin() && 5625 !D->hasAttr<ConstInitAttr>()) 5626 Linkage = llvm::GlobalValue::InternalLinkage; 5627 5628 GV->setLinkage(Linkage); 5629 if (D->hasAttr<DLLImportAttr>()) 5630 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5631 else if (D->hasAttr<DLLExportAttr>()) 5632 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5633 else 5634 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5635 5636 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5637 // common vars aren't constant even if declared const. 5638 GV->setConstant(false); 5639 // Tentative definition of global variables may be initialized with 5640 // non-zero null pointers. In this case they should have weak linkage 5641 // since common linkage must have zero initializer and must not have 5642 // explicit section therefore cannot have non-zero initial value. 5643 if (!GV->getInitializer()->isNullValue()) 5644 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5645 } 5646 5647 setNonAliasAttributes(D, GV); 5648 5649 if (D->getTLSKind() && !GV->isThreadLocal()) { 5650 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5651 CXXThreadLocals.push_back(D); 5652 setTLSMode(GV, *D); 5653 } 5654 5655 maybeSetTrivialComdat(*D, *GV); 5656 5657 // Emit the initializer function if necessary. 5658 if (NeedsGlobalCtor || NeedsGlobalDtor) 5659 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5660 5661 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5662 5663 // Emit global variable debug information. 5664 if (CGDebugInfo *DI = getModuleDebugInfo()) 5665 if (getCodeGenOpts().hasReducedDebugInfo()) 5666 DI->EmitGlobalVariable(GV, D); 5667 } 5668 5669 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5670 if (CGDebugInfo *DI = getModuleDebugInfo()) 5671 if (getCodeGenOpts().hasReducedDebugInfo()) { 5672 QualType ASTTy = D->getType(); 5673 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5674 llvm::Constant *GV = 5675 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5676 DI->EmitExternalVariable( 5677 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5678 } 5679 } 5680 5681 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) { 5682 if (CGDebugInfo *DI = getModuleDebugInfo()) 5683 if (getCodeGenOpts().hasReducedDebugInfo()) { 5684 auto *Ty = getTypes().ConvertType(FD->getType()); 5685 StringRef MangledName = getMangledName(FD); 5686 auto *Fn = cast<llvm::Function>( 5687 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false)); 5688 if (!Fn->getSubprogram()) 5689 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn); 5690 } 5691 } 5692 5693 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5694 CodeGenModule &CGM, const VarDecl *D, 5695 bool NoCommon) { 5696 // Don't give variables common linkage if -fno-common was specified unless it 5697 // was overridden by a NoCommon attribute. 5698 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5699 return true; 5700 5701 // C11 6.9.2/2: 5702 // A declaration of an identifier for an object that has file scope without 5703 // an initializer, and without a storage-class specifier or with the 5704 // storage-class specifier static, constitutes a tentative definition. 5705 if (D->getInit() || D->hasExternalStorage()) 5706 return true; 5707 5708 // A variable cannot be both common and exist in a section. 5709 if (D->hasAttr<SectionAttr>()) 5710 return true; 5711 5712 // A variable cannot be both common and exist in a section. 5713 // We don't try to determine which is the right section in the front-end. 5714 // If no specialized section name is applicable, it will resort to default. 5715 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5716 D->hasAttr<PragmaClangDataSectionAttr>() || 5717 D->hasAttr<PragmaClangRelroSectionAttr>() || 5718 D->hasAttr<PragmaClangRodataSectionAttr>()) 5719 return true; 5720 5721 // Thread local vars aren't considered common linkage. 5722 if (D->getTLSKind()) 5723 return true; 5724 5725 // Tentative definitions marked with WeakImportAttr are true definitions. 5726 if (D->hasAttr<WeakImportAttr>()) 5727 return true; 5728 5729 // A variable cannot be both common and exist in a comdat. 5730 if (shouldBeInCOMDAT(CGM, *D)) 5731 return true; 5732 5733 // Declarations with a required alignment do not have common linkage in MSVC 5734 // mode. 5735 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5736 if (D->hasAttr<AlignedAttr>()) 5737 return true; 5738 QualType VarType = D->getType(); 5739 if (Context.isAlignmentRequired(VarType)) 5740 return true; 5741 5742 if (const auto *RT = VarType->getAs<RecordType>()) { 5743 const RecordDecl *RD = RT->getDecl(); 5744 for (const FieldDecl *FD : RD->fields()) { 5745 if (FD->isBitField()) 5746 continue; 5747 if (FD->hasAttr<AlignedAttr>()) 5748 return true; 5749 if (Context.isAlignmentRequired(FD->getType())) 5750 return true; 5751 } 5752 } 5753 } 5754 5755 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5756 // common symbols, so symbols with greater alignment requirements cannot be 5757 // common. 5758 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5759 // alignments for common symbols via the aligncomm directive, so this 5760 // restriction only applies to MSVC environments. 5761 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5762 Context.getTypeAlignIfKnown(D->getType()) > 5763 Context.toBits(CharUnits::fromQuantity(32))) 5764 return true; 5765 5766 return false; 5767 } 5768 5769 llvm::GlobalValue::LinkageTypes 5770 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5771 GVALinkage Linkage) { 5772 if (Linkage == GVA_Internal) 5773 return llvm::Function::InternalLinkage; 5774 5775 if (D->hasAttr<WeakAttr>()) 5776 return llvm::GlobalVariable::WeakAnyLinkage; 5777 5778 if (const auto *FD = D->getAsFunction()) 5779 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5780 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5781 5782 // We are guaranteed to have a strong definition somewhere else, 5783 // so we can use available_externally linkage. 5784 if (Linkage == GVA_AvailableExternally) 5785 return llvm::GlobalValue::AvailableExternallyLinkage; 5786 5787 // Note that Apple's kernel linker doesn't support symbol 5788 // coalescing, so we need to avoid linkonce and weak linkages there. 5789 // Normally, this means we just map to internal, but for explicit 5790 // instantiations we'll map to external. 5791 5792 // In C++, the compiler has to emit a definition in every translation unit 5793 // that references the function. We should use linkonce_odr because 5794 // a) if all references in this translation unit are optimized away, we 5795 // don't need to codegen it. b) if the function persists, it needs to be 5796 // merged with other definitions. c) C++ has the ODR, so we know the 5797 // definition is dependable. 5798 if (Linkage == GVA_DiscardableODR) 5799 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5800 : llvm::Function::InternalLinkage; 5801 5802 // An explicit instantiation of a template has weak linkage, since 5803 // explicit instantiations can occur in multiple translation units 5804 // and must all be equivalent. However, we are not allowed to 5805 // throw away these explicit instantiations. 5806 // 5807 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5808 // so say that CUDA templates are either external (for kernels) or internal. 5809 // This lets llvm perform aggressive inter-procedural optimizations. For 5810 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5811 // therefore we need to follow the normal linkage paradigm. 5812 if (Linkage == GVA_StrongODR) { 5813 if (getLangOpts().AppleKext) 5814 return llvm::Function::ExternalLinkage; 5815 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5816 !getLangOpts().GPURelocatableDeviceCode) 5817 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5818 : llvm::Function::InternalLinkage; 5819 return llvm::Function::WeakODRLinkage; 5820 } 5821 5822 // C++ doesn't have tentative definitions and thus cannot have common 5823 // linkage. 5824 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5825 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5826 CodeGenOpts.NoCommon)) 5827 return llvm::GlobalVariable::CommonLinkage; 5828 5829 // selectany symbols are externally visible, so use weak instead of 5830 // linkonce. MSVC optimizes away references to const selectany globals, so 5831 // all definitions should be the same and ODR linkage should be used. 5832 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5833 if (D->hasAttr<SelectAnyAttr>()) 5834 return llvm::GlobalVariable::WeakODRLinkage; 5835 5836 // Otherwise, we have strong external linkage. 5837 assert(Linkage == GVA_StrongExternal); 5838 return llvm::GlobalVariable::ExternalLinkage; 5839 } 5840 5841 llvm::GlobalValue::LinkageTypes 5842 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5843 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5844 return getLLVMLinkageForDeclarator(VD, Linkage); 5845 } 5846 5847 /// Replace the uses of a function that was declared with a non-proto type. 5848 /// We want to silently drop extra arguments from call sites 5849 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5850 llvm::Function *newFn) { 5851 // Fast path. 5852 if (old->use_empty()) 5853 return; 5854 5855 llvm::Type *newRetTy = newFn->getReturnType(); 5856 SmallVector<llvm::Value *, 4> newArgs; 5857 5858 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent; 5859 5860 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5861 ui != ue; ui++) { 5862 llvm::User *user = ui->getUser(); 5863 5864 // Recognize and replace uses of bitcasts. Most calls to 5865 // unprototyped functions will use bitcasts. 5866 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5867 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5868 replaceUsesOfNonProtoConstant(bitcast, newFn); 5869 continue; 5870 } 5871 5872 // Recognize calls to the function. 5873 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5874 if (!callSite) 5875 continue; 5876 if (!callSite->isCallee(&*ui)) 5877 continue; 5878 5879 // If the return types don't match exactly, then we can't 5880 // transform this call unless it's dead. 5881 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5882 continue; 5883 5884 // Get the call site's attribute list. 5885 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5886 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5887 5888 // If the function was passed too few arguments, don't transform. 5889 unsigned newNumArgs = newFn->arg_size(); 5890 if (callSite->arg_size() < newNumArgs) 5891 continue; 5892 5893 // If extra arguments were passed, we silently drop them. 5894 // If any of the types mismatch, we don't transform. 5895 unsigned argNo = 0; 5896 bool dontTransform = false; 5897 for (llvm::Argument &A : newFn->args()) { 5898 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5899 dontTransform = true; 5900 break; 5901 } 5902 5903 // Add any parameter attributes. 5904 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5905 argNo++; 5906 } 5907 if (dontTransform) 5908 continue; 5909 5910 // Okay, we can transform this. Create the new call instruction and copy 5911 // over the required information. 5912 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5913 5914 // Copy over any operand bundles. 5915 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5916 callSite->getOperandBundlesAsDefs(newBundles); 5917 5918 llvm::CallBase *newCall; 5919 if (isa<llvm::CallInst>(callSite)) { 5920 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 5921 callSite->getIterator()); 5922 } else { 5923 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5924 newCall = llvm::InvokeInst::Create( 5925 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), 5926 newArgs, newBundles, "", callSite->getIterator()); 5927 } 5928 newArgs.clear(); // for the next iteration 5929 5930 if (!newCall->getType()->isVoidTy()) 5931 newCall->takeName(callSite); 5932 newCall->setAttributes( 5933 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5934 oldAttrs.getRetAttrs(), newArgAttrs)); 5935 newCall->setCallingConv(callSite->getCallingConv()); 5936 5937 // Finally, remove the old call, replacing any uses with the new one. 5938 if (!callSite->use_empty()) 5939 callSite->replaceAllUsesWith(newCall); 5940 5941 // Copy debug location attached to CI. 5942 if (callSite->getDebugLoc()) 5943 newCall->setDebugLoc(callSite->getDebugLoc()); 5944 5945 callSitesToBeRemovedFromParent.push_back(callSite); 5946 } 5947 5948 for (auto *callSite : callSitesToBeRemovedFromParent) { 5949 callSite->eraseFromParent(); 5950 } 5951 } 5952 5953 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5954 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5955 /// existing call uses of the old function in the module, this adjusts them to 5956 /// call the new function directly. 5957 /// 5958 /// This is not just a cleanup: the always_inline pass requires direct calls to 5959 /// functions to be able to inline them. If there is a bitcast in the way, it 5960 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5961 /// run at -O0. 5962 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5963 llvm::Function *NewFn) { 5964 // If we're redefining a global as a function, don't transform it. 5965 if (!isa<llvm::Function>(Old)) return; 5966 5967 replaceUsesOfNonProtoConstant(Old, NewFn); 5968 } 5969 5970 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5971 auto DK = VD->isThisDeclarationADefinition(); 5972 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) || 5973 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD))) 5974 return; 5975 5976 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5977 // If we have a definition, this might be a deferred decl. If the 5978 // instantiation is explicit, make sure we emit it at the end. 5979 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5980 GetAddrOfGlobalVar(VD); 5981 5982 EmitTopLevelDecl(VD); 5983 } 5984 5985 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5986 llvm::GlobalValue *GV) { 5987 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5988 5989 // Compute the function info and LLVM type. 5990 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5991 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5992 5993 // Get or create the prototype for the function. 5994 if (!GV || (GV->getValueType() != Ty)) 5995 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5996 /*DontDefer=*/true, 5997 ForDefinition)); 5998 5999 // Already emitted. 6000 if (!GV->isDeclaration()) 6001 return; 6002 6003 // We need to set linkage and visibility on the function before 6004 // generating code for it because various parts of IR generation 6005 // want to propagate this information down (e.g. to local static 6006 // declarations). 6007 auto *Fn = cast<llvm::Function>(GV); 6008 setFunctionLinkage(GD, Fn); 6009 6010 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 6011 setGVProperties(Fn, GD); 6012 6013 MaybeHandleStaticInExternC(D, Fn); 6014 6015 maybeSetTrivialComdat(*D, *Fn); 6016 6017 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 6018 6019 setNonAliasAttributes(GD, Fn); 6020 SetLLVMFunctionAttributesForDefinition(D, Fn); 6021 6022 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 6023 AddGlobalCtor(Fn, CA->getPriority()); 6024 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 6025 AddGlobalDtor(Fn, DA->getPriority(), true); 6026 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 6027 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 6028 } 6029 6030 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 6031 const auto *D = cast<ValueDecl>(GD.getDecl()); 6032 const AliasAttr *AA = D->getAttr<AliasAttr>(); 6033 assert(AA && "Not an alias?"); 6034 6035 StringRef MangledName = getMangledName(GD); 6036 6037 if (AA->getAliasee() == MangledName) { 6038 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6039 return; 6040 } 6041 6042 // If there is a definition in the module, then it wins over the alias. 6043 // This is dubious, but allow it to be safe. Just ignore the alias. 6044 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6045 if (Entry && !Entry->isDeclaration()) 6046 return; 6047 6048 Aliases.push_back(GD); 6049 6050 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6051 6052 // Create a reference to the named value. This ensures that it is emitted 6053 // if a deferred decl. 6054 llvm::Constant *Aliasee; 6055 llvm::GlobalValue::LinkageTypes LT; 6056 if (isa<llvm::FunctionType>(DeclTy)) { 6057 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 6058 /*ForVTable=*/false); 6059 LT = getFunctionLinkage(GD); 6060 } else { 6061 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 6062 /*D=*/nullptr); 6063 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 6064 LT = getLLVMLinkageVarDefinition(VD); 6065 else 6066 LT = getFunctionLinkage(GD); 6067 } 6068 6069 // Create the new alias itself, but don't set a name yet. 6070 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 6071 auto *GA = 6072 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 6073 6074 if (Entry) { 6075 if (GA->getAliasee() == Entry) { 6076 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 6077 return; 6078 } 6079 6080 assert(Entry->isDeclaration()); 6081 6082 // If there is a declaration in the module, then we had an extern followed 6083 // by the alias, as in: 6084 // extern int test6(); 6085 // ... 6086 // int test6() __attribute__((alias("test7"))); 6087 // 6088 // Remove it and replace uses of it with the alias. 6089 GA->takeName(Entry); 6090 6091 Entry->replaceAllUsesWith(GA); 6092 Entry->eraseFromParent(); 6093 } else { 6094 GA->setName(MangledName); 6095 } 6096 6097 // Set attributes which are particular to an alias; this is a 6098 // specialization of the attributes which may be set on a global 6099 // variable/function. 6100 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 6101 D->isWeakImported()) { 6102 GA->setLinkage(llvm::Function::WeakAnyLinkage); 6103 } 6104 6105 if (const auto *VD = dyn_cast<VarDecl>(D)) 6106 if (VD->getTLSKind()) 6107 setTLSMode(GA, *VD); 6108 6109 SetCommonAttributes(GD, GA); 6110 6111 // Emit global alias debug information. 6112 if (isa<VarDecl>(D)) 6113 if (CGDebugInfo *DI = getModuleDebugInfo()) 6114 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 6115 } 6116 6117 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 6118 const auto *D = cast<ValueDecl>(GD.getDecl()); 6119 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 6120 assert(IFA && "Not an ifunc?"); 6121 6122 StringRef MangledName = getMangledName(GD); 6123 6124 if (IFA->getResolver() == MangledName) { 6125 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6126 return; 6127 } 6128 6129 // Report an error if some definition overrides ifunc. 6130 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 6131 if (Entry && !Entry->isDeclaration()) { 6132 GlobalDecl OtherGD; 6133 if (lookupRepresentativeDecl(MangledName, OtherGD) && 6134 DiagnosedConflictingDefinitions.insert(GD).second) { 6135 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 6136 << MangledName; 6137 Diags.Report(OtherGD.getDecl()->getLocation(), 6138 diag::note_previous_definition); 6139 } 6140 return; 6141 } 6142 6143 Aliases.push_back(GD); 6144 6145 // The resolver might not be visited yet. Specify a dummy non-function type to 6146 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver 6147 // was emitted) or the whole function will be replaced (if the resolver has 6148 // not been emitted). 6149 llvm::Constant *Resolver = 6150 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {}, 6151 /*ForVTable=*/false); 6152 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 6153 llvm::GlobalIFunc *GIF = 6154 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 6155 "", Resolver, &getModule()); 6156 if (Entry) { 6157 if (GIF->getResolver() == Entry) { 6158 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 6159 return; 6160 } 6161 assert(Entry->isDeclaration()); 6162 6163 // If there is a declaration in the module, then we had an extern followed 6164 // by the ifunc, as in: 6165 // extern int test(); 6166 // ... 6167 // int test() __attribute__((ifunc("resolver"))); 6168 // 6169 // Remove it and replace uses of it with the ifunc. 6170 GIF->takeName(Entry); 6171 6172 Entry->replaceAllUsesWith(GIF); 6173 Entry->eraseFromParent(); 6174 } else 6175 GIF->setName(MangledName); 6176 SetCommonAttributes(GD, GIF); 6177 } 6178 6179 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6180 ArrayRef<llvm::Type*> Tys) { 6181 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6182 Tys); 6183 } 6184 6185 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6186 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6187 const StringLiteral *Literal, bool TargetIsLSB, 6188 bool &IsUTF16, unsigned &StringLength) { 6189 StringRef String = Literal->getString(); 6190 unsigned NumBytes = String.size(); 6191 6192 // Check for simple case. 6193 if (!Literal->containsNonAsciiOrNull()) { 6194 StringLength = NumBytes; 6195 return *Map.insert(std::make_pair(String, nullptr)).first; 6196 } 6197 6198 // Otherwise, convert the UTF8 literals into a string of shorts. 6199 IsUTF16 = true; 6200 6201 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6202 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6203 llvm::UTF16 *ToPtr = &ToBuf[0]; 6204 6205 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6206 ToPtr + NumBytes, llvm::strictConversion); 6207 6208 // ConvertUTF8toUTF16 returns the length in ToPtr. 6209 StringLength = ToPtr - &ToBuf[0]; 6210 6211 // Add an explicit null. 6212 *ToPtr = 0; 6213 return *Map.insert(std::make_pair( 6214 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6215 (StringLength + 1) * 2), 6216 nullptr)).first; 6217 } 6218 6219 ConstantAddress 6220 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6221 unsigned StringLength = 0; 6222 bool isUTF16 = false; 6223 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6224 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6225 getDataLayout().isLittleEndian(), isUTF16, 6226 StringLength); 6227 6228 if (auto *C = Entry.second) 6229 return ConstantAddress( 6230 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6231 6232 const ASTContext &Context = getContext(); 6233 const llvm::Triple &Triple = getTriple(); 6234 6235 const auto CFRuntime = getLangOpts().CFRuntime; 6236 const bool IsSwiftABI = 6237 static_cast<unsigned>(CFRuntime) >= 6238 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6239 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6240 6241 // If we don't already have it, get __CFConstantStringClassReference. 6242 if (!CFConstantStringClassRef) { 6243 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6244 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6245 Ty = llvm::ArrayType::get(Ty, 0); 6246 6247 switch (CFRuntime) { 6248 default: break; 6249 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6250 case LangOptions::CoreFoundationABI::Swift5_0: 6251 CFConstantStringClassName = 6252 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6253 : "$s10Foundation19_NSCFConstantStringCN"; 6254 Ty = IntPtrTy; 6255 break; 6256 case LangOptions::CoreFoundationABI::Swift4_2: 6257 CFConstantStringClassName = 6258 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6259 : "$S10Foundation19_NSCFConstantStringCN"; 6260 Ty = IntPtrTy; 6261 break; 6262 case LangOptions::CoreFoundationABI::Swift4_1: 6263 CFConstantStringClassName = 6264 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6265 : "__T010Foundation19_NSCFConstantStringCN"; 6266 Ty = IntPtrTy; 6267 break; 6268 } 6269 6270 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6271 6272 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6273 llvm::GlobalValue *GV = nullptr; 6274 6275 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6276 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6277 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6278 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6279 6280 const VarDecl *VD = nullptr; 6281 for (const auto *Result : DC->lookup(&II)) 6282 if ((VD = dyn_cast<VarDecl>(Result))) 6283 break; 6284 6285 if (Triple.isOSBinFormatELF()) { 6286 if (!VD) 6287 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6288 } else { 6289 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6290 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6291 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6292 else 6293 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6294 } 6295 6296 setDSOLocal(GV); 6297 } 6298 } 6299 6300 // Decay array -> ptr 6301 CFConstantStringClassRef = 6302 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C; 6303 } 6304 6305 QualType CFTy = Context.getCFConstantStringType(); 6306 6307 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6308 6309 ConstantInitBuilder Builder(*this); 6310 auto Fields = Builder.beginStruct(STy); 6311 6312 // Class pointer. 6313 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6314 6315 // Flags. 6316 if (IsSwiftABI) { 6317 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6318 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6319 } else { 6320 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6321 } 6322 6323 // String pointer. 6324 llvm::Constant *C = nullptr; 6325 if (isUTF16) { 6326 auto Arr = llvm::ArrayRef( 6327 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6328 Entry.first().size() / 2); 6329 C = llvm::ConstantDataArray::get(VMContext, Arr); 6330 } else { 6331 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6332 } 6333 6334 // Note: -fwritable-strings doesn't make the backing store strings of 6335 // CFStrings writable. 6336 auto *GV = 6337 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6338 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6339 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6340 // Don't enforce the target's minimum global alignment, since the only use 6341 // of the string is via this class initializer. 6342 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6343 : Context.getTypeAlignInChars(Context.CharTy); 6344 GV->setAlignment(Align.getAsAlign()); 6345 6346 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6347 // Without it LLVM can merge the string with a non unnamed_addr one during 6348 // LTO. Doing that changes the section it ends in, which surprises ld64. 6349 if (Triple.isOSBinFormatMachO()) 6350 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6351 : "__TEXT,__cstring,cstring_literals"); 6352 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6353 // the static linker to adjust permissions to read-only later on. 6354 else if (Triple.isOSBinFormatELF()) 6355 GV->setSection(".rodata"); 6356 6357 // String. 6358 Fields.add(GV); 6359 6360 // String length. 6361 llvm::IntegerType *LengthTy = 6362 llvm::IntegerType::get(getModule().getContext(), 6363 Context.getTargetInfo().getLongWidth()); 6364 if (IsSwiftABI) { 6365 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6366 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6367 LengthTy = Int32Ty; 6368 else 6369 LengthTy = IntPtrTy; 6370 } 6371 Fields.addInt(LengthTy, StringLength); 6372 6373 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6374 // properly aligned on 32-bit platforms. 6375 CharUnits Alignment = 6376 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6377 6378 // The struct. 6379 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6380 /*isConstant=*/false, 6381 llvm::GlobalVariable::PrivateLinkage); 6382 GV->addAttribute("objc_arc_inert"); 6383 switch (Triple.getObjectFormat()) { 6384 case llvm::Triple::UnknownObjectFormat: 6385 llvm_unreachable("unknown file format"); 6386 case llvm::Triple::DXContainer: 6387 case llvm::Triple::GOFF: 6388 case llvm::Triple::SPIRV: 6389 case llvm::Triple::XCOFF: 6390 llvm_unreachable("unimplemented"); 6391 case llvm::Triple::COFF: 6392 case llvm::Triple::ELF: 6393 case llvm::Triple::Wasm: 6394 GV->setSection("cfstring"); 6395 break; 6396 case llvm::Triple::MachO: 6397 GV->setSection("__DATA,__cfstring"); 6398 break; 6399 } 6400 Entry.second = GV; 6401 6402 return ConstantAddress(GV, GV->getValueType(), Alignment); 6403 } 6404 6405 bool CodeGenModule::getExpressionLocationsEnabled() const { 6406 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6407 } 6408 6409 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6410 if (ObjCFastEnumerationStateType.isNull()) { 6411 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6412 D->startDefinition(); 6413 6414 QualType FieldTypes[] = { 6415 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6416 Context.getPointerType(Context.UnsignedLongTy), 6417 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6418 nullptr, ArraySizeModifier::Normal, 0)}; 6419 6420 for (size_t i = 0; i < 4; ++i) { 6421 FieldDecl *Field = FieldDecl::Create(Context, 6422 D, 6423 SourceLocation(), 6424 SourceLocation(), nullptr, 6425 FieldTypes[i], /*TInfo=*/nullptr, 6426 /*BitWidth=*/nullptr, 6427 /*Mutable=*/false, 6428 ICIS_NoInit); 6429 Field->setAccess(AS_public); 6430 D->addDecl(Field); 6431 } 6432 6433 D->completeDefinition(); 6434 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6435 } 6436 6437 return ObjCFastEnumerationStateType; 6438 } 6439 6440 llvm::Constant * 6441 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6442 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6443 6444 // Don't emit it as the address of the string, emit the string data itself 6445 // as an inline array. 6446 if (E->getCharByteWidth() == 1) { 6447 SmallString<64> Str(E->getString()); 6448 6449 // Resize the string to the right size, which is indicated by its type. 6450 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6451 assert(CAT && "String literal not of constant array type!"); 6452 Str.resize(CAT->getZExtSize()); 6453 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6454 } 6455 6456 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6457 llvm::Type *ElemTy = AType->getElementType(); 6458 unsigned NumElements = AType->getNumElements(); 6459 6460 // Wide strings have either 2-byte or 4-byte elements. 6461 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6462 SmallVector<uint16_t, 32> Elements; 6463 Elements.reserve(NumElements); 6464 6465 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6466 Elements.push_back(E->getCodeUnit(i)); 6467 Elements.resize(NumElements); 6468 return llvm::ConstantDataArray::get(VMContext, Elements); 6469 } 6470 6471 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6472 SmallVector<uint32_t, 32> Elements; 6473 Elements.reserve(NumElements); 6474 6475 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6476 Elements.push_back(E->getCodeUnit(i)); 6477 Elements.resize(NumElements); 6478 return llvm::ConstantDataArray::get(VMContext, Elements); 6479 } 6480 6481 static llvm::GlobalVariable * 6482 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6483 CodeGenModule &CGM, StringRef GlobalName, 6484 CharUnits Alignment) { 6485 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6486 CGM.GetGlobalConstantAddressSpace()); 6487 6488 llvm::Module &M = CGM.getModule(); 6489 // Create a global variable for this string 6490 auto *GV = new llvm::GlobalVariable( 6491 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6492 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6493 GV->setAlignment(Alignment.getAsAlign()); 6494 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6495 if (GV->isWeakForLinker()) { 6496 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6497 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6498 } 6499 CGM.setDSOLocal(GV); 6500 6501 return GV; 6502 } 6503 6504 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6505 /// constant array for the given string literal. 6506 ConstantAddress 6507 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6508 StringRef Name) { 6509 CharUnits Alignment = 6510 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6511 6512 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6513 llvm::GlobalVariable **Entry = nullptr; 6514 if (!LangOpts.WritableStrings) { 6515 Entry = &ConstantStringMap[C]; 6516 if (auto GV = *Entry) { 6517 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6518 GV->setAlignment(Alignment.getAsAlign()); 6519 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6520 GV->getValueType(), Alignment); 6521 } 6522 } 6523 6524 SmallString<256> MangledNameBuffer; 6525 StringRef GlobalVariableName; 6526 llvm::GlobalValue::LinkageTypes LT; 6527 6528 // Mangle the string literal if that's how the ABI merges duplicate strings. 6529 // Don't do it if they are writable, since we don't want writes in one TU to 6530 // affect strings in another. 6531 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6532 !LangOpts.WritableStrings) { 6533 llvm::raw_svector_ostream Out(MangledNameBuffer); 6534 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6535 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6536 GlobalVariableName = MangledNameBuffer; 6537 } else { 6538 LT = llvm::GlobalValue::PrivateLinkage; 6539 GlobalVariableName = Name; 6540 } 6541 6542 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6543 6544 CGDebugInfo *DI = getModuleDebugInfo(); 6545 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6546 DI->AddStringLiteralDebugInfo(GV, S); 6547 6548 if (Entry) 6549 *Entry = GV; 6550 6551 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6552 6553 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6554 GV->getValueType(), Alignment); 6555 } 6556 6557 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6558 /// array for the given ObjCEncodeExpr node. 6559 ConstantAddress 6560 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6561 std::string Str; 6562 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6563 6564 return GetAddrOfConstantCString(Str); 6565 } 6566 6567 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6568 /// the literal and a terminating '\0' character. 6569 /// The result has pointer to array type. 6570 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6571 const std::string &Str, const char *GlobalName) { 6572 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6573 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6574 getContext().CharTy, /*VD=*/nullptr); 6575 6576 llvm::Constant *C = 6577 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6578 6579 // Don't share any string literals if strings aren't constant. 6580 llvm::GlobalVariable **Entry = nullptr; 6581 if (!LangOpts.WritableStrings) { 6582 Entry = &ConstantStringMap[C]; 6583 if (auto GV = *Entry) { 6584 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6585 GV->setAlignment(Alignment.getAsAlign()); 6586 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6587 GV->getValueType(), Alignment); 6588 } 6589 } 6590 6591 // Get the default prefix if a name wasn't specified. 6592 if (!GlobalName) 6593 GlobalName = ".str"; 6594 // Create a global variable for this. 6595 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6596 GlobalName, Alignment); 6597 if (Entry) 6598 *Entry = GV; 6599 6600 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6601 GV->getValueType(), Alignment); 6602 } 6603 6604 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6605 const MaterializeTemporaryExpr *E, const Expr *Init) { 6606 assert((E->getStorageDuration() == SD_Static || 6607 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6608 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6609 6610 // If we're not materializing a subobject of the temporary, keep the 6611 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6612 QualType MaterializedType = Init->getType(); 6613 if (Init == E->getSubExpr()) 6614 MaterializedType = E->getType(); 6615 6616 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6617 6618 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6619 if (!InsertResult.second) { 6620 // We've seen this before: either we already created it or we're in the 6621 // process of doing so. 6622 if (!InsertResult.first->second) { 6623 // We recursively re-entered this function, probably during emission of 6624 // the initializer. Create a placeholder. We'll clean this up in the 6625 // outer call, at the end of this function. 6626 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6627 InsertResult.first->second = new llvm::GlobalVariable( 6628 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6629 nullptr); 6630 } 6631 return ConstantAddress(InsertResult.first->second, 6632 llvm::cast<llvm::GlobalVariable>( 6633 InsertResult.first->second->stripPointerCasts()) 6634 ->getValueType(), 6635 Align); 6636 } 6637 6638 // FIXME: If an externally-visible declaration extends multiple temporaries, 6639 // we need to give each temporary the same name in every translation unit (and 6640 // we also need to make the temporaries externally-visible). 6641 SmallString<256> Name; 6642 llvm::raw_svector_ostream Out(Name); 6643 getCXXABI().getMangleContext().mangleReferenceTemporary( 6644 VD, E->getManglingNumber(), Out); 6645 6646 APValue *Value = nullptr; 6647 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6648 // If the initializer of the extending declaration is a constant 6649 // initializer, we should have a cached constant initializer for this 6650 // temporary. Note that this might have a different value from the value 6651 // computed by evaluating the initializer if the surrounding constant 6652 // expression modifies the temporary. 6653 Value = E->getOrCreateValue(false); 6654 } 6655 6656 // Try evaluating it now, it might have a constant initializer. 6657 Expr::EvalResult EvalResult; 6658 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6659 !EvalResult.hasSideEffects()) 6660 Value = &EvalResult.Val; 6661 6662 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6663 6664 std::optional<ConstantEmitter> emitter; 6665 llvm::Constant *InitialValue = nullptr; 6666 bool Constant = false; 6667 llvm::Type *Type; 6668 if (Value) { 6669 // The temporary has a constant initializer, use it. 6670 emitter.emplace(*this); 6671 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6672 MaterializedType); 6673 Constant = 6674 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6675 /*ExcludeDtor*/ false); 6676 Type = InitialValue->getType(); 6677 } else { 6678 // No initializer, the initialization will be provided when we 6679 // initialize the declaration which performed lifetime extension. 6680 Type = getTypes().ConvertTypeForMem(MaterializedType); 6681 } 6682 6683 // Create a global variable for this lifetime-extended temporary. 6684 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6685 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6686 const VarDecl *InitVD; 6687 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6688 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6689 // Temporaries defined inside a class get linkonce_odr linkage because the 6690 // class can be defined in multiple translation units. 6691 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6692 } else { 6693 // There is no need for this temporary to have external linkage if the 6694 // VarDecl has external linkage. 6695 Linkage = llvm::GlobalVariable::InternalLinkage; 6696 } 6697 } 6698 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6699 auto *GV = new llvm::GlobalVariable( 6700 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6701 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6702 if (emitter) emitter->finalize(GV); 6703 // Don't assign dllimport or dllexport to local linkage globals. 6704 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6705 setGVProperties(GV, VD); 6706 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6707 // The reference temporary should never be dllexport. 6708 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6709 } 6710 GV->setAlignment(Align.getAsAlign()); 6711 if (supportsCOMDAT() && GV->isWeakForLinker()) 6712 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6713 if (VD->getTLSKind()) 6714 setTLSMode(GV, *VD); 6715 llvm::Constant *CV = GV; 6716 if (AddrSpace != LangAS::Default) 6717 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6718 *this, GV, AddrSpace, LangAS::Default, 6719 llvm::PointerType::get( 6720 getLLVMContext(), 6721 getContext().getTargetAddressSpace(LangAS::Default))); 6722 6723 // Update the map with the new temporary. If we created a placeholder above, 6724 // replace it with the new global now. 6725 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6726 if (Entry) { 6727 Entry->replaceAllUsesWith(CV); 6728 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6729 } 6730 Entry = CV; 6731 6732 return ConstantAddress(CV, Type, Align); 6733 } 6734 6735 /// EmitObjCPropertyImplementations - Emit information for synthesized 6736 /// properties for an implementation. 6737 void CodeGenModule::EmitObjCPropertyImplementations(const 6738 ObjCImplementationDecl *D) { 6739 for (const auto *PID : D->property_impls()) { 6740 // Dynamic is just for type-checking. 6741 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6742 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6743 6744 // Determine which methods need to be implemented, some may have 6745 // been overridden. Note that ::isPropertyAccessor is not the method 6746 // we want, that just indicates if the decl came from a 6747 // property. What we want to know is if the method is defined in 6748 // this implementation. 6749 auto *Getter = PID->getGetterMethodDecl(); 6750 if (!Getter || Getter->isSynthesizedAccessorStub()) 6751 CodeGenFunction(*this).GenerateObjCGetter( 6752 const_cast<ObjCImplementationDecl *>(D), PID); 6753 auto *Setter = PID->getSetterMethodDecl(); 6754 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6755 CodeGenFunction(*this).GenerateObjCSetter( 6756 const_cast<ObjCImplementationDecl *>(D), PID); 6757 } 6758 } 6759 } 6760 6761 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6762 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6763 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6764 ivar; ivar = ivar->getNextIvar()) 6765 if (ivar->getType().isDestructedType()) 6766 return true; 6767 6768 return false; 6769 } 6770 6771 static bool AllTrivialInitializers(CodeGenModule &CGM, 6772 ObjCImplementationDecl *D) { 6773 CodeGenFunction CGF(CGM); 6774 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6775 E = D->init_end(); B != E; ++B) { 6776 CXXCtorInitializer *CtorInitExp = *B; 6777 Expr *Init = CtorInitExp->getInit(); 6778 if (!CGF.isTrivialInitializer(Init)) 6779 return false; 6780 } 6781 return true; 6782 } 6783 6784 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6785 /// for an implementation. 6786 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6787 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6788 if (needsDestructMethod(D)) { 6789 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6790 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6791 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6792 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6793 getContext().VoidTy, nullptr, D, 6794 /*isInstance=*/true, /*isVariadic=*/false, 6795 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6796 /*isImplicitlyDeclared=*/true, 6797 /*isDefined=*/false, ObjCImplementationControl::Required); 6798 D->addInstanceMethod(DTORMethod); 6799 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6800 D->setHasDestructors(true); 6801 } 6802 6803 // If the implementation doesn't have any ivar initializers, we don't need 6804 // a .cxx_construct. 6805 if (D->getNumIvarInitializers() == 0 || 6806 AllTrivialInitializers(*this, D)) 6807 return; 6808 6809 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6810 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6811 // The constructor returns 'self'. 6812 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6813 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6814 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6815 /*isVariadic=*/false, 6816 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6817 /*isImplicitlyDeclared=*/true, 6818 /*isDefined=*/false, ObjCImplementationControl::Required); 6819 D->addInstanceMethod(CTORMethod); 6820 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6821 D->setHasNonZeroConstructors(true); 6822 } 6823 6824 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6825 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6826 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6827 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6828 ErrorUnsupported(LSD, "linkage spec"); 6829 return; 6830 } 6831 6832 EmitDeclContext(LSD); 6833 } 6834 6835 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6836 // Device code should not be at top level. 6837 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6838 return; 6839 6840 std::unique_ptr<CodeGenFunction> &CurCGF = 6841 GlobalTopLevelStmtBlockInFlight.first; 6842 6843 // We emitted a top-level stmt but after it there is initialization. 6844 // Stop squashing the top-level stmts into a single function. 6845 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6846 CurCGF->FinishFunction(D->getEndLoc()); 6847 CurCGF = nullptr; 6848 } 6849 6850 if (!CurCGF) { 6851 // void __stmts__N(void) 6852 // FIXME: Ask the ABI name mangler to pick a name. 6853 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6854 FunctionArgList Args; 6855 QualType RetTy = getContext().VoidTy; 6856 const CGFunctionInfo &FnInfo = 6857 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6858 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6859 llvm::Function *Fn = llvm::Function::Create( 6860 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6861 6862 CurCGF.reset(new CodeGenFunction(*this)); 6863 GlobalTopLevelStmtBlockInFlight.second = D; 6864 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6865 D->getBeginLoc(), D->getBeginLoc()); 6866 CXXGlobalInits.push_back(Fn); 6867 } 6868 6869 CurCGF->EmitStmt(D->getStmt()); 6870 } 6871 6872 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6873 for (auto *I : DC->decls()) { 6874 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6875 // are themselves considered "top-level", so EmitTopLevelDecl on an 6876 // ObjCImplDecl does not recursively visit them. We need to do that in 6877 // case they're nested inside another construct (LinkageSpecDecl / 6878 // ExportDecl) that does stop them from being considered "top-level". 6879 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6880 for (auto *M : OID->methods()) 6881 EmitTopLevelDecl(M); 6882 } 6883 6884 EmitTopLevelDecl(I); 6885 } 6886 } 6887 6888 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6889 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6890 // Ignore dependent declarations. 6891 if (D->isTemplated()) 6892 return; 6893 6894 // Consteval function shouldn't be emitted. 6895 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6896 return; 6897 6898 switch (D->getKind()) { 6899 case Decl::CXXConversion: 6900 case Decl::CXXMethod: 6901 case Decl::Function: 6902 EmitGlobal(cast<FunctionDecl>(D)); 6903 // Always provide some coverage mapping 6904 // even for the functions that aren't emitted. 6905 AddDeferredUnusedCoverageMapping(D); 6906 break; 6907 6908 case Decl::CXXDeductionGuide: 6909 // Function-like, but does not result in code emission. 6910 break; 6911 6912 case Decl::Var: 6913 case Decl::Decomposition: 6914 case Decl::VarTemplateSpecialization: 6915 EmitGlobal(cast<VarDecl>(D)); 6916 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6917 for (auto *B : DD->bindings()) 6918 if (auto *HD = B->getHoldingVar()) 6919 EmitGlobal(HD); 6920 break; 6921 6922 // Indirect fields from global anonymous structs and unions can be 6923 // ignored; only the actual variable requires IR gen support. 6924 case Decl::IndirectField: 6925 break; 6926 6927 // C++ Decls 6928 case Decl::Namespace: 6929 EmitDeclContext(cast<NamespaceDecl>(D)); 6930 break; 6931 case Decl::ClassTemplateSpecialization: { 6932 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6933 if (CGDebugInfo *DI = getModuleDebugInfo()) 6934 if (Spec->getSpecializationKind() == 6935 TSK_ExplicitInstantiationDefinition && 6936 Spec->hasDefinition()) 6937 DI->completeTemplateDefinition(*Spec); 6938 } [[fallthrough]]; 6939 case Decl::CXXRecord: { 6940 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6941 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6942 if (CRD->hasDefinition()) 6943 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6944 if (auto *ES = D->getASTContext().getExternalSource()) 6945 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6946 DI->completeUnusedClass(*CRD); 6947 } 6948 // Emit any static data members, they may be definitions. 6949 for (auto *I : CRD->decls()) 6950 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6951 EmitTopLevelDecl(I); 6952 break; 6953 } 6954 // No code generation needed. 6955 case Decl::UsingShadow: 6956 case Decl::ClassTemplate: 6957 case Decl::VarTemplate: 6958 case Decl::Concept: 6959 case Decl::VarTemplatePartialSpecialization: 6960 case Decl::FunctionTemplate: 6961 case Decl::TypeAliasTemplate: 6962 case Decl::Block: 6963 case Decl::Empty: 6964 case Decl::Binding: 6965 break; 6966 case Decl::Using: // using X; [C++] 6967 if (CGDebugInfo *DI = getModuleDebugInfo()) 6968 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6969 break; 6970 case Decl::UsingEnum: // using enum X; [C++] 6971 if (CGDebugInfo *DI = getModuleDebugInfo()) 6972 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6973 break; 6974 case Decl::NamespaceAlias: 6975 if (CGDebugInfo *DI = getModuleDebugInfo()) 6976 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6977 break; 6978 case Decl::UsingDirective: // using namespace X; [C++] 6979 if (CGDebugInfo *DI = getModuleDebugInfo()) 6980 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6981 break; 6982 case Decl::CXXConstructor: 6983 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6984 break; 6985 case Decl::CXXDestructor: 6986 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6987 break; 6988 6989 case Decl::StaticAssert: 6990 // Nothing to do. 6991 break; 6992 6993 // Objective-C Decls 6994 6995 // Forward declarations, no (immediate) code generation. 6996 case Decl::ObjCInterface: 6997 case Decl::ObjCCategory: 6998 break; 6999 7000 case Decl::ObjCProtocol: { 7001 auto *Proto = cast<ObjCProtocolDecl>(D); 7002 if (Proto->isThisDeclarationADefinition()) 7003 ObjCRuntime->GenerateProtocol(Proto); 7004 break; 7005 } 7006 7007 case Decl::ObjCCategoryImpl: 7008 // Categories have properties but don't support synthesize so we 7009 // can ignore them here. 7010 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 7011 break; 7012 7013 case Decl::ObjCImplementation: { 7014 auto *OMD = cast<ObjCImplementationDecl>(D); 7015 EmitObjCPropertyImplementations(OMD); 7016 EmitObjCIvarInitializations(OMD); 7017 ObjCRuntime->GenerateClass(OMD); 7018 // Emit global variable debug information. 7019 if (CGDebugInfo *DI = getModuleDebugInfo()) 7020 if (getCodeGenOpts().hasReducedDebugInfo()) 7021 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 7022 OMD->getClassInterface()), OMD->getLocation()); 7023 break; 7024 } 7025 case Decl::ObjCMethod: { 7026 auto *OMD = cast<ObjCMethodDecl>(D); 7027 // If this is not a prototype, emit the body. 7028 if (OMD->getBody()) 7029 CodeGenFunction(*this).GenerateObjCMethod(OMD); 7030 break; 7031 } 7032 case Decl::ObjCCompatibleAlias: 7033 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 7034 break; 7035 7036 case Decl::PragmaComment: { 7037 const auto *PCD = cast<PragmaCommentDecl>(D); 7038 switch (PCD->getCommentKind()) { 7039 case PCK_Unknown: 7040 llvm_unreachable("unexpected pragma comment kind"); 7041 case PCK_Linker: 7042 AppendLinkerOptions(PCD->getArg()); 7043 break; 7044 case PCK_Lib: 7045 AddDependentLib(PCD->getArg()); 7046 break; 7047 case PCK_Compiler: 7048 case PCK_ExeStr: 7049 case PCK_User: 7050 break; // We ignore all of these. 7051 } 7052 break; 7053 } 7054 7055 case Decl::PragmaDetectMismatch: { 7056 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 7057 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 7058 break; 7059 } 7060 7061 case Decl::LinkageSpec: 7062 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 7063 break; 7064 7065 case Decl::FileScopeAsm: { 7066 // File-scope asm is ignored during device-side CUDA compilation. 7067 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 7068 break; 7069 // File-scope asm is ignored during device-side OpenMP compilation. 7070 if (LangOpts.OpenMPIsTargetDevice) 7071 break; 7072 // File-scope asm is ignored during device-side SYCL compilation. 7073 if (LangOpts.SYCLIsDevice) 7074 break; 7075 auto *AD = cast<FileScopeAsmDecl>(D); 7076 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 7077 break; 7078 } 7079 7080 case Decl::TopLevelStmt: 7081 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 7082 break; 7083 7084 case Decl::Import: { 7085 auto *Import = cast<ImportDecl>(D); 7086 7087 // If we've already imported this module, we're done. 7088 if (!ImportedModules.insert(Import->getImportedModule())) 7089 break; 7090 7091 // Emit debug information for direct imports. 7092 if (!Import->getImportedOwningModule()) { 7093 if (CGDebugInfo *DI = getModuleDebugInfo()) 7094 DI->EmitImportDecl(*Import); 7095 } 7096 7097 // For C++ standard modules we are done - we will call the module 7098 // initializer for imported modules, and that will likewise call those for 7099 // any imports it has. 7100 if (CXX20ModuleInits && Import->getImportedOwningModule() && 7101 !Import->getImportedOwningModule()->isModuleMapModule()) 7102 break; 7103 7104 // For clang C++ module map modules the initializers for sub-modules are 7105 // emitted here. 7106 7107 // Find all of the submodules and emit the module initializers. 7108 llvm::SmallPtrSet<clang::Module *, 16> Visited; 7109 SmallVector<clang::Module *, 16> Stack; 7110 Visited.insert(Import->getImportedModule()); 7111 Stack.push_back(Import->getImportedModule()); 7112 7113 while (!Stack.empty()) { 7114 clang::Module *Mod = Stack.pop_back_val(); 7115 if (!EmittedModuleInitializers.insert(Mod).second) 7116 continue; 7117 7118 for (auto *D : Context.getModuleInitializers(Mod)) 7119 EmitTopLevelDecl(D); 7120 7121 // Visit the submodules of this module. 7122 for (auto *Submodule : Mod->submodules()) { 7123 // Skip explicit children; they need to be explicitly imported to emit 7124 // the initializers. 7125 if (Submodule->IsExplicit) 7126 continue; 7127 7128 if (Visited.insert(Submodule).second) 7129 Stack.push_back(Submodule); 7130 } 7131 } 7132 break; 7133 } 7134 7135 case Decl::Export: 7136 EmitDeclContext(cast<ExportDecl>(D)); 7137 break; 7138 7139 case Decl::OMPThreadPrivate: 7140 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 7141 break; 7142 7143 case Decl::OMPAllocate: 7144 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 7145 break; 7146 7147 case Decl::OMPDeclareReduction: 7148 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 7149 break; 7150 7151 case Decl::OMPDeclareMapper: 7152 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7153 break; 7154 7155 case Decl::OMPRequires: 7156 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7157 break; 7158 7159 case Decl::Typedef: 7160 case Decl::TypeAlias: // using foo = bar; [C++11] 7161 if (CGDebugInfo *DI = getModuleDebugInfo()) 7162 DI->EmitAndRetainType( 7163 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7164 break; 7165 7166 case Decl::Record: 7167 if (CGDebugInfo *DI = getModuleDebugInfo()) 7168 if (cast<RecordDecl>(D)->getDefinition()) 7169 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7170 break; 7171 7172 case Decl::Enum: 7173 if (CGDebugInfo *DI = getModuleDebugInfo()) 7174 if (cast<EnumDecl>(D)->getDefinition()) 7175 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7176 break; 7177 7178 case Decl::HLSLBuffer: 7179 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7180 break; 7181 7182 default: 7183 // Make sure we handled everything we should, every other kind is a 7184 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7185 // function. Need to recode Decl::Kind to do that easily. 7186 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7187 break; 7188 } 7189 } 7190 7191 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7192 // Do we need to generate coverage mapping? 7193 if (!CodeGenOpts.CoverageMapping) 7194 return; 7195 switch (D->getKind()) { 7196 case Decl::CXXConversion: 7197 case Decl::CXXMethod: 7198 case Decl::Function: 7199 case Decl::ObjCMethod: 7200 case Decl::CXXConstructor: 7201 case Decl::CXXDestructor: { 7202 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7203 break; 7204 SourceManager &SM = getContext().getSourceManager(); 7205 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7206 break; 7207 if (!llvm::coverage::SystemHeadersCoverage && 7208 SM.isInSystemHeader(D->getBeginLoc())) 7209 break; 7210 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7211 break; 7212 } 7213 default: 7214 break; 7215 }; 7216 } 7217 7218 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7219 // Do we need to generate coverage mapping? 7220 if (!CodeGenOpts.CoverageMapping) 7221 return; 7222 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7223 if (Fn->isTemplateInstantiation()) 7224 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7225 } 7226 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7227 } 7228 7229 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7230 // We call takeVector() here to avoid use-after-free. 7231 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7232 // we deserialize function bodies to emit coverage info for them, and that 7233 // deserializes more declarations. How should we handle that case? 7234 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7235 if (!Entry.second) 7236 continue; 7237 const Decl *D = Entry.first; 7238 switch (D->getKind()) { 7239 case Decl::CXXConversion: 7240 case Decl::CXXMethod: 7241 case Decl::Function: 7242 case Decl::ObjCMethod: { 7243 CodeGenPGO PGO(*this); 7244 GlobalDecl GD(cast<FunctionDecl>(D)); 7245 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7246 getFunctionLinkage(GD)); 7247 break; 7248 } 7249 case Decl::CXXConstructor: { 7250 CodeGenPGO PGO(*this); 7251 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7252 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7253 getFunctionLinkage(GD)); 7254 break; 7255 } 7256 case Decl::CXXDestructor: { 7257 CodeGenPGO PGO(*this); 7258 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7259 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7260 getFunctionLinkage(GD)); 7261 break; 7262 } 7263 default: 7264 break; 7265 }; 7266 } 7267 } 7268 7269 void CodeGenModule::EmitMainVoidAlias() { 7270 // In order to transition away from "__original_main" gracefully, emit an 7271 // alias for "main" in the no-argument case so that libc can detect when 7272 // new-style no-argument main is in used. 7273 if (llvm::Function *F = getModule().getFunction("main")) { 7274 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7275 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7276 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7277 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7278 } 7279 } 7280 } 7281 7282 /// Turns the given pointer into a constant. 7283 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7284 const void *Ptr) { 7285 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7286 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7287 return llvm::ConstantInt::get(i64, PtrInt); 7288 } 7289 7290 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7291 llvm::NamedMDNode *&GlobalMetadata, 7292 GlobalDecl D, 7293 llvm::GlobalValue *Addr) { 7294 if (!GlobalMetadata) 7295 GlobalMetadata = 7296 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7297 7298 // TODO: should we report variant information for ctors/dtors? 7299 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7300 llvm::ConstantAsMetadata::get(GetPointerConstant( 7301 CGM.getLLVMContext(), D.getDecl()))}; 7302 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7303 } 7304 7305 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7306 llvm::GlobalValue *CppFunc) { 7307 // Store the list of ifuncs we need to replace uses in. 7308 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7309 // List of ConstantExprs that we should be able to delete when we're done 7310 // here. 7311 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7312 7313 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7314 if (Elem == CppFunc) 7315 return false; 7316 7317 // First make sure that all users of this are ifuncs (or ifuncs via a 7318 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7319 // later. 7320 for (llvm::User *User : Elem->users()) { 7321 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7322 // ifunc directly. In any other case, just give up, as we don't know what we 7323 // could break by changing those. 7324 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7325 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7326 return false; 7327 7328 for (llvm::User *CEUser : ConstExpr->users()) { 7329 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7330 IFuncs.push_back(IFunc); 7331 } else { 7332 return false; 7333 } 7334 } 7335 CEs.push_back(ConstExpr); 7336 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7337 IFuncs.push_back(IFunc); 7338 } else { 7339 // This user is one we don't know how to handle, so fail redirection. This 7340 // will result in an ifunc retaining a resolver name that will ultimately 7341 // fail to be resolved to a defined function. 7342 return false; 7343 } 7344 } 7345 7346 // Now we know this is a valid case where we can do this alias replacement, we 7347 // need to remove all of the references to Elem (and the bitcasts!) so we can 7348 // delete it. 7349 for (llvm::GlobalIFunc *IFunc : IFuncs) 7350 IFunc->setResolver(nullptr); 7351 for (llvm::ConstantExpr *ConstExpr : CEs) 7352 ConstExpr->destroyConstant(); 7353 7354 // We should now be out of uses for the 'old' version of this function, so we 7355 // can erase it as well. 7356 Elem->eraseFromParent(); 7357 7358 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7359 // The type of the resolver is always just a function-type that returns the 7360 // type of the IFunc, so create that here. If the type of the actual 7361 // resolver doesn't match, it just gets bitcast to the right thing. 7362 auto *ResolverTy = 7363 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7364 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7365 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7366 IFunc->setResolver(Resolver); 7367 } 7368 return true; 7369 } 7370 7371 /// For each function which is declared within an extern "C" region and marked 7372 /// as 'used', but has internal linkage, create an alias from the unmangled 7373 /// name to the mangled name if possible. People expect to be able to refer 7374 /// to such functions with an unmangled name from inline assembly within the 7375 /// same translation unit. 7376 void CodeGenModule::EmitStaticExternCAliases() { 7377 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7378 return; 7379 for (auto &I : StaticExternCValues) { 7380 const IdentifierInfo *Name = I.first; 7381 llvm::GlobalValue *Val = I.second; 7382 7383 // If Val is null, that implies there were multiple declarations that each 7384 // had a claim to the unmangled name. In this case, generation of the alias 7385 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7386 if (!Val) 7387 break; 7388 7389 llvm::GlobalValue *ExistingElem = 7390 getModule().getNamedValue(Name->getName()); 7391 7392 // If there is either not something already by this name, or we were able to 7393 // replace all uses from IFuncs, create the alias. 7394 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7395 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7396 } 7397 } 7398 7399 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7400 GlobalDecl &Result) const { 7401 auto Res = Manglings.find(MangledName); 7402 if (Res == Manglings.end()) 7403 return false; 7404 Result = Res->getValue(); 7405 return true; 7406 } 7407 7408 /// Emits metadata nodes associating all the global values in the 7409 /// current module with the Decls they came from. This is useful for 7410 /// projects using IR gen as a subroutine. 7411 /// 7412 /// Since there's currently no way to associate an MDNode directly 7413 /// with an llvm::GlobalValue, we create a global named metadata 7414 /// with the name 'clang.global.decl.ptrs'. 7415 void CodeGenModule::EmitDeclMetadata() { 7416 llvm::NamedMDNode *GlobalMetadata = nullptr; 7417 7418 for (auto &I : MangledDeclNames) { 7419 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7420 // Some mangled names don't necessarily have an associated GlobalValue 7421 // in this module, e.g. if we mangled it for DebugInfo. 7422 if (Addr) 7423 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7424 } 7425 } 7426 7427 /// Emits metadata nodes for all the local variables in the current 7428 /// function. 7429 void CodeGenFunction::EmitDeclMetadata() { 7430 if (LocalDeclMap.empty()) return; 7431 7432 llvm::LLVMContext &Context = getLLVMContext(); 7433 7434 // Find the unique metadata ID for this name. 7435 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7436 7437 llvm::NamedMDNode *GlobalMetadata = nullptr; 7438 7439 for (auto &I : LocalDeclMap) { 7440 const Decl *D = I.first; 7441 llvm::Value *Addr = I.second.emitRawPointer(*this); 7442 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7443 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7444 Alloca->setMetadata( 7445 DeclPtrKind, llvm::MDNode::get( 7446 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7447 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7448 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7449 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7450 } 7451 } 7452 } 7453 7454 void CodeGenModule::EmitVersionIdentMetadata() { 7455 llvm::NamedMDNode *IdentMetadata = 7456 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7457 std::string Version = getClangFullVersion(); 7458 llvm::LLVMContext &Ctx = TheModule.getContext(); 7459 7460 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7461 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7462 } 7463 7464 void CodeGenModule::EmitCommandLineMetadata() { 7465 llvm::NamedMDNode *CommandLineMetadata = 7466 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7467 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7468 llvm::LLVMContext &Ctx = TheModule.getContext(); 7469 7470 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7471 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7472 } 7473 7474 void CodeGenModule::EmitCoverageFile() { 7475 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7476 if (!CUNode) 7477 return; 7478 7479 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7480 llvm::LLVMContext &Ctx = TheModule.getContext(); 7481 auto *CoverageDataFile = 7482 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7483 auto *CoverageNotesFile = 7484 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7485 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7486 llvm::MDNode *CU = CUNode->getOperand(i); 7487 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7488 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7489 } 7490 } 7491 7492 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7493 bool ForEH) { 7494 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7495 // FIXME: should we even be calling this method if RTTI is disabled 7496 // and it's not for EH? 7497 if (!shouldEmitRTTI(ForEH)) 7498 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7499 7500 if (ForEH && Ty->isObjCObjectPointerType() && 7501 LangOpts.ObjCRuntime.isGNUFamily()) 7502 return ObjCRuntime->GetEHType(Ty); 7503 7504 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7505 } 7506 7507 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7508 // Do not emit threadprivates in simd-only mode. 7509 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7510 return; 7511 for (auto RefExpr : D->varlist()) { 7512 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7513 bool PerformInit = 7514 VD->getAnyInitializer() && 7515 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7516 /*ForRef=*/false); 7517 7518 Address Addr(GetAddrOfGlobalVar(VD), 7519 getTypes().ConvertTypeForMem(VD->getType()), 7520 getContext().getDeclAlign(VD)); 7521 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7522 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7523 CXXGlobalInits.push_back(InitFunction); 7524 } 7525 } 7526 7527 llvm::Metadata * 7528 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7529 StringRef Suffix) { 7530 if (auto *FnType = T->getAs<FunctionProtoType>()) 7531 T = getContext().getFunctionType( 7532 FnType->getReturnType(), FnType->getParamTypes(), 7533 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7534 7535 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7536 if (InternalId) 7537 return InternalId; 7538 7539 if (isExternallyVisible(T->getLinkage())) { 7540 std::string OutName; 7541 llvm::raw_string_ostream Out(OutName); 7542 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7543 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7544 7545 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7546 Out << ".normalized"; 7547 7548 Out << Suffix; 7549 7550 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7551 } else { 7552 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7553 llvm::ArrayRef<llvm::Metadata *>()); 7554 } 7555 7556 return InternalId; 7557 } 7558 7559 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7560 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7561 } 7562 7563 llvm::Metadata * 7564 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7565 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7566 } 7567 7568 // Generalize pointer types to a void pointer with the qualifiers of the 7569 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7570 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7571 // 'void *'. 7572 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7573 if (!Ty->isPointerType()) 7574 return Ty; 7575 7576 return Ctx.getPointerType( 7577 QualType(Ctx.VoidTy).withCVRQualifiers( 7578 Ty->getPointeeType().getCVRQualifiers())); 7579 } 7580 7581 // Apply type generalization to a FunctionType's return and argument types 7582 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7583 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7584 SmallVector<QualType, 8> GeneralizedParams; 7585 for (auto &Param : FnType->param_types()) 7586 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7587 7588 return Ctx.getFunctionType( 7589 GeneralizeType(Ctx, FnType->getReturnType()), 7590 GeneralizedParams, FnType->getExtProtoInfo()); 7591 } 7592 7593 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7594 return Ctx.getFunctionNoProtoType( 7595 GeneralizeType(Ctx, FnType->getReturnType())); 7596 7597 llvm_unreachable("Encountered unknown FunctionType"); 7598 } 7599 7600 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7601 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7602 GeneralizedMetadataIdMap, ".generalized"); 7603 } 7604 7605 /// Returns whether this module needs the "all-vtables" type identifier. 7606 bool CodeGenModule::NeedAllVtablesTypeId() const { 7607 // Returns true if at least one of vtable-based CFI checkers is enabled and 7608 // is not in the trapping mode. 7609 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7610 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7611 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7612 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7613 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7614 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7615 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7616 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7617 } 7618 7619 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7620 CharUnits Offset, 7621 const CXXRecordDecl *RD) { 7622 llvm::Metadata *MD = 7623 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7624 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7625 7626 if (CodeGenOpts.SanitizeCfiCrossDso) 7627 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7628 VTable->addTypeMetadata(Offset.getQuantity(), 7629 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7630 7631 if (NeedAllVtablesTypeId()) { 7632 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7633 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7634 } 7635 } 7636 7637 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7638 if (!SanStats) 7639 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7640 7641 return *SanStats; 7642 } 7643 7644 llvm::Value * 7645 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7646 CodeGenFunction &CGF) { 7647 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7648 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7649 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7650 auto *Call = CGF.EmitRuntimeCall( 7651 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7652 return Call; 7653 } 7654 7655 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7656 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7657 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7658 /* forPointeeType= */ true); 7659 } 7660 7661 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7662 LValueBaseInfo *BaseInfo, 7663 TBAAAccessInfo *TBAAInfo, 7664 bool forPointeeType) { 7665 if (TBAAInfo) 7666 *TBAAInfo = getTBAAAccessInfo(T); 7667 7668 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7669 // that doesn't return the information we need to compute BaseInfo. 7670 7671 // Honor alignment typedef attributes even on incomplete types. 7672 // We also honor them straight for C++ class types, even as pointees; 7673 // there's an expressivity gap here. 7674 if (auto TT = T->getAs<TypedefType>()) { 7675 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7676 if (BaseInfo) 7677 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7678 return getContext().toCharUnitsFromBits(Align); 7679 } 7680 } 7681 7682 bool AlignForArray = T->isArrayType(); 7683 7684 // Analyze the base element type, so we don't get confused by incomplete 7685 // array types. 7686 T = getContext().getBaseElementType(T); 7687 7688 if (T->isIncompleteType()) { 7689 // We could try to replicate the logic from 7690 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7691 // type is incomplete, so it's impossible to test. We could try to reuse 7692 // getTypeAlignIfKnown, but that doesn't return the information we need 7693 // to set BaseInfo. So just ignore the possibility that the alignment is 7694 // greater than one. 7695 if (BaseInfo) 7696 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7697 return CharUnits::One(); 7698 } 7699 7700 if (BaseInfo) 7701 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7702 7703 CharUnits Alignment; 7704 const CXXRecordDecl *RD; 7705 if (T.getQualifiers().hasUnaligned()) { 7706 Alignment = CharUnits::One(); 7707 } else if (forPointeeType && !AlignForArray && 7708 (RD = T->getAsCXXRecordDecl())) { 7709 // For C++ class pointees, we don't know whether we're pointing at a 7710 // base or a complete object, so we generally need to use the 7711 // non-virtual alignment. 7712 Alignment = getClassPointerAlignment(RD); 7713 } else { 7714 Alignment = getContext().getTypeAlignInChars(T); 7715 } 7716 7717 // Cap to the global maximum type alignment unless the alignment 7718 // was somehow explicit on the type. 7719 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7720 if (Alignment.getQuantity() > MaxAlign && 7721 !getContext().isAlignmentRequired(T)) 7722 Alignment = CharUnits::fromQuantity(MaxAlign); 7723 } 7724 return Alignment; 7725 } 7726 7727 bool CodeGenModule::stopAutoInit() { 7728 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7729 if (StopAfter) { 7730 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7731 // used 7732 if (NumAutoVarInit >= StopAfter) { 7733 return true; 7734 } 7735 if (!NumAutoVarInit) { 7736 unsigned DiagID = getDiags().getCustomDiagID( 7737 DiagnosticsEngine::Warning, 7738 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7739 "number of times ftrivial-auto-var-init=%1 gets applied."); 7740 getDiags().Report(DiagID) 7741 << StopAfter 7742 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7743 LangOptions::TrivialAutoVarInitKind::Zero 7744 ? "zero" 7745 : "pattern"); 7746 } 7747 ++NumAutoVarInit; 7748 } 7749 return false; 7750 } 7751 7752 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7753 const Decl *D) const { 7754 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7755 // postfix beginning with '.' since the symbol name can be demangled. 7756 if (LangOpts.HIP) 7757 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7758 else 7759 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7760 7761 // If the CUID is not specified we try to generate a unique postfix. 7762 if (getLangOpts().CUID.empty()) { 7763 SourceManager &SM = getContext().getSourceManager(); 7764 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7765 assert(PLoc.isValid() && "Source location is expected to be valid."); 7766 7767 // Get the hash of the user defined macros. 7768 llvm::MD5 Hash; 7769 llvm::MD5::MD5Result Result; 7770 for (const auto &Arg : PreprocessorOpts.Macros) 7771 Hash.update(Arg.first); 7772 Hash.final(Result); 7773 7774 // Get the UniqueID for the file containing the decl. 7775 llvm::sys::fs::UniqueID ID; 7776 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7777 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7778 assert(PLoc.isValid() && "Source location is expected to be valid."); 7779 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7780 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7781 << PLoc.getFilename() << EC.message(); 7782 } 7783 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7784 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7785 } else { 7786 OS << getContext().getCUIDHash(); 7787 } 7788 } 7789 7790 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7791 assert(DeferredDeclsToEmit.empty() && 7792 "Should have emitted all decls deferred to emit."); 7793 assert(NewBuilder->DeferredDecls.empty() && 7794 "Newly created module should not have deferred decls"); 7795 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7796 assert(EmittedDeferredDecls.empty() && 7797 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7798 7799 assert(NewBuilder->DeferredVTables.empty() && 7800 "Newly created module should not have deferred vtables"); 7801 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7802 7803 assert(NewBuilder->MangledDeclNames.empty() && 7804 "Newly created module should not have mangled decl names"); 7805 assert(NewBuilder->Manglings.empty() && 7806 "Newly created module should not have manglings"); 7807 NewBuilder->Manglings = std::move(Manglings); 7808 7809 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7810 7811 NewBuilder->TBAA = std::move(TBAA); 7812 7813 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7814 } 7815