1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "CodeGenTBAA.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecordLayout.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/Module.h" 42 #include "clang/Basic/SourceManager.h" 43 #include "clang/Basic/TargetInfo.h" 44 #include "clang/Basic/Version.h" 45 #include "clang/CodeGen/ConstantInitBuilder.h" 46 #include "clang/Frontend/CodeGenOptions.h" 47 #include "clang/Sema/SemaDiagnostic.h" 48 #include "llvm/ADT/Triple.h" 49 #include "llvm/Analysis/TargetLibraryInfo.h" 50 #include "llvm/IR/CallSite.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/ProfileData/InstrProfReader.h" 57 #include "llvm/Support/ConvertUTF.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MD5.h" 60 61 using namespace clang; 62 using namespace CodeGen; 63 64 static const char AnnotationSection[] = "llvm.metadata"; 65 66 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 67 switch (CGM.getTarget().getCXXABI().getKind()) { 68 case TargetCXXABI::GenericAArch64: 69 case TargetCXXABI::GenericARM: 70 case TargetCXXABI::iOS: 71 case TargetCXXABI::iOS64: 72 case TargetCXXABI::WatchOS: 73 case TargetCXXABI::GenericMIPS: 74 case TargetCXXABI::GenericItanium: 75 case TargetCXXABI::WebAssembly: 76 return CreateItaniumCXXABI(CGM); 77 case TargetCXXABI::Microsoft: 78 return CreateMicrosoftCXXABI(CGM); 79 } 80 81 llvm_unreachable("invalid C++ ABI kind"); 82 } 83 84 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 85 const PreprocessorOptions &PPO, 86 const CodeGenOptions &CGO, llvm::Module &M, 87 DiagnosticsEngine &diags, 88 CoverageSourceInfo *CoverageInfo) 89 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 90 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 91 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 92 VMContext(M.getContext()), Types(*this), VTables(*this), 93 SanitizerMD(new SanitizerMetadata(*this)) { 94 95 // Initialize the type cache. 96 llvm::LLVMContext &LLVMContext = M.getContext(); 97 VoidTy = llvm::Type::getVoidTy(LLVMContext); 98 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 99 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 100 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 101 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 102 FloatTy = llvm::Type::getFloatTy(LLVMContext); 103 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 104 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 105 PointerAlignInBytes = 106 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 107 SizeSizeInBytes = 108 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 109 IntAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 111 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 112 IntPtrTy = llvm::IntegerType::get(LLVMContext, 113 C.getTargetInfo().getMaxPointerWidth()); 114 Int8PtrTy = Int8Ty->getPointerTo(0); 115 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 116 AllocaInt8PtrTy = Int8Ty->getPointerTo( 117 M.getDataLayout().getAllocaAddrSpace()); 118 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 119 120 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 121 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 122 123 if (LangOpts.ObjC1) 124 createObjCRuntime(); 125 if (LangOpts.OpenCL) 126 createOpenCLRuntime(); 127 if (LangOpts.OpenMP) 128 createOpenMPRuntime(); 129 if (LangOpts.CUDA) 130 createCUDARuntime(); 131 132 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 133 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 134 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 135 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 136 getCXXABI().getMangleContext())); 137 138 // If debug info or coverage generation is enabled, create the CGDebugInfo 139 // object. 140 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 141 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 142 DebugInfo.reset(new CGDebugInfo(*this)); 143 144 Block.GlobalUniqueCount = 0; 145 146 if (C.getLangOpts().ObjC1) 147 ObjCData.reset(new ObjCEntrypoints()); 148 149 if (CodeGenOpts.hasProfileClangUse()) { 150 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 151 CodeGenOpts.ProfileInstrumentUsePath); 152 if (auto E = ReaderOrErr.takeError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 156 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 157 << EI.message(); 158 }); 159 } else 160 PGOReader = std::move(ReaderOrErr.get()); 161 } 162 163 // If coverage mapping generation is enabled, create the 164 // CoverageMappingModuleGen object. 165 if (CodeGenOpts.CoverageMapping) 166 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 167 } 168 169 CodeGenModule::~CodeGenModule() {} 170 171 void CodeGenModule::createObjCRuntime() { 172 // This is just isGNUFamily(), but we want to force implementors of 173 // new ABIs to decide how best to do this. 174 switch (LangOpts.ObjCRuntime.getKind()) { 175 case ObjCRuntime::GNUstep: 176 case ObjCRuntime::GCC: 177 case ObjCRuntime::ObjFW: 178 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 179 return; 180 181 case ObjCRuntime::FragileMacOSX: 182 case ObjCRuntime::MacOSX: 183 case ObjCRuntime::iOS: 184 case ObjCRuntime::WatchOS: 185 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 186 return; 187 } 188 llvm_unreachable("bad runtime kind"); 189 } 190 191 void CodeGenModule::createOpenCLRuntime() { 192 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 193 } 194 195 void CodeGenModule::createOpenMPRuntime() { 196 // Select a specialized code generation class based on the target, if any. 197 // If it does not exist use the default implementation. 198 switch (getTriple().getArch()) { 199 case llvm::Triple::nvptx: 200 case llvm::Triple::nvptx64: 201 assert(getLangOpts().OpenMPIsDevice && 202 "OpenMP NVPTX is only prepared to deal with device code."); 203 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 204 break; 205 default: 206 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 207 break; 208 } 209 } 210 211 void CodeGenModule::createCUDARuntime() { 212 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 213 } 214 215 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 216 Replacements[Name] = C; 217 } 218 219 void CodeGenModule::applyReplacements() { 220 for (auto &I : Replacements) { 221 StringRef MangledName = I.first(); 222 llvm::Constant *Replacement = I.second; 223 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 224 if (!Entry) 225 continue; 226 auto *OldF = cast<llvm::Function>(Entry); 227 auto *NewF = dyn_cast<llvm::Function>(Replacement); 228 if (!NewF) { 229 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 230 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 231 } else { 232 auto *CE = cast<llvm::ConstantExpr>(Replacement); 233 assert(CE->getOpcode() == llvm::Instruction::BitCast || 234 CE->getOpcode() == llvm::Instruction::GetElementPtr); 235 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 236 } 237 } 238 239 // Replace old with new, but keep the old order. 240 OldF->replaceAllUsesWith(Replacement); 241 if (NewF) { 242 NewF->removeFromParent(); 243 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 244 NewF); 245 } 246 OldF->eraseFromParent(); 247 } 248 } 249 250 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 251 GlobalValReplacements.push_back(std::make_pair(GV, C)); 252 } 253 254 void CodeGenModule::applyGlobalValReplacements() { 255 for (auto &I : GlobalValReplacements) { 256 llvm::GlobalValue *GV = I.first; 257 llvm::Constant *C = I.second; 258 259 GV->replaceAllUsesWith(C); 260 GV->eraseFromParent(); 261 } 262 } 263 264 // This is only used in aliases that we created and we know they have a 265 // linear structure. 266 static const llvm::GlobalObject *getAliasedGlobal( 267 const llvm::GlobalIndirectSymbol &GIS) { 268 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 269 const llvm::Constant *C = &GIS; 270 for (;;) { 271 C = C->stripPointerCasts(); 272 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 273 return GO; 274 // stripPointerCasts will not walk over weak aliases. 275 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 276 if (!GIS2) 277 return nullptr; 278 if (!Visited.insert(GIS2).second) 279 return nullptr; 280 C = GIS2->getIndirectSymbol(); 281 } 282 } 283 284 void CodeGenModule::checkAliases() { 285 // Check if the constructed aliases are well formed. It is really unfortunate 286 // that we have to do this in CodeGen, but we only construct mangled names 287 // and aliases during codegen. 288 bool Error = false; 289 DiagnosticsEngine &Diags = getDiags(); 290 for (const GlobalDecl &GD : Aliases) { 291 const auto *D = cast<ValueDecl>(GD.getDecl()); 292 SourceLocation Location; 293 bool IsIFunc = D->hasAttr<IFuncAttr>(); 294 if (const Attr *A = D->getDefiningAttr()) 295 Location = A->getLocation(); 296 else 297 llvm_unreachable("Not an alias or ifunc?"); 298 StringRef MangledName = getMangledName(GD); 299 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 300 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 301 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 302 if (!GV) { 303 Error = true; 304 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 305 } else if (GV->isDeclaration()) { 306 Error = true; 307 Diags.Report(Location, diag::err_alias_to_undefined) 308 << IsIFunc << IsIFunc; 309 } else if (IsIFunc) { 310 // Check resolver function type. 311 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 312 GV->getType()->getPointerElementType()); 313 assert(FTy); 314 if (!FTy->getReturnType()->isPointerTy()) 315 Diags.Report(Location, diag::err_ifunc_resolver_return); 316 if (FTy->getNumParams()) 317 Diags.Report(Location, diag::err_ifunc_resolver_params); 318 } 319 320 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 321 llvm::GlobalValue *AliaseeGV; 322 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 323 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 324 else 325 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 326 327 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 328 StringRef AliasSection = SA->getName(); 329 if (AliasSection != AliaseeGV->getSection()) 330 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 331 << AliasSection << IsIFunc << IsIFunc; 332 } 333 334 // We have to handle alias to weak aliases in here. LLVM itself disallows 335 // this since the object semantics would not match the IL one. For 336 // compatibility with gcc we implement it by just pointing the alias 337 // to its aliasee's aliasee. We also warn, since the user is probably 338 // expecting the link to be weak. 339 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 340 if (GA->isInterposable()) { 341 Diags.Report(Location, diag::warn_alias_to_weak_alias) 342 << GV->getName() << GA->getName() << IsIFunc; 343 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 344 GA->getIndirectSymbol(), Alias->getType()); 345 Alias->setIndirectSymbol(Aliasee); 346 } 347 } 348 } 349 if (!Error) 350 return; 351 352 for (const GlobalDecl &GD : Aliases) { 353 StringRef MangledName = getMangledName(GD); 354 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 355 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 356 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 357 Alias->eraseFromParent(); 358 } 359 } 360 361 void CodeGenModule::clear() { 362 DeferredDeclsToEmit.clear(); 363 if (OpenMPRuntime) 364 OpenMPRuntime->clear(); 365 } 366 367 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 368 StringRef MainFile) { 369 if (!hasDiagnostics()) 370 return; 371 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 372 if (MainFile.empty()) 373 MainFile = "<stdin>"; 374 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 375 } else { 376 if (Mismatched > 0) 377 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 378 379 if (Missing > 0) 380 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 381 } 382 } 383 384 void CodeGenModule::Release() { 385 EmitDeferred(); 386 EmitVTablesOpportunistically(); 387 applyGlobalValReplacements(); 388 applyReplacements(); 389 checkAliases(); 390 EmitCXXGlobalInitFunc(); 391 EmitCXXGlobalDtorFunc(); 392 EmitCXXThreadLocalInitFunc(); 393 if (ObjCRuntime) 394 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 395 AddGlobalCtor(ObjCInitFunction); 396 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 397 CUDARuntime) { 398 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 399 AddGlobalCtor(CudaCtorFunction); 400 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 401 AddGlobalDtor(CudaDtorFunction); 402 } 403 if (OpenMPRuntime) 404 if (llvm::Function *OpenMPRegistrationFunction = 405 OpenMPRuntime->emitRegistrationFunction()) { 406 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 407 OpenMPRegistrationFunction : nullptr; 408 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 409 } 410 if (PGOReader) { 411 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 412 if (PGOStats.hasDiagnostics()) 413 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 414 } 415 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 416 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 417 EmitGlobalAnnotations(); 418 EmitStaticExternCAliases(); 419 EmitDeferredUnusedCoverageMappings(); 420 if (CoverageMapping) 421 CoverageMapping->emit(); 422 if (CodeGenOpts.SanitizeCfiCrossDso) { 423 CodeGenFunction(*this).EmitCfiCheckFail(); 424 CodeGenFunction(*this).EmitCfiCheckStub(); 425 } 426 emitAtAvailableLinkGuard(); 427 emitLLVMUsed(); 428 if (SanStats) 429 SanStats->finish(); 430 431 if (CodeGenOpts.Autolink && 432 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 433 EmitModuleLinkOptions(); 434 } 435 436 // Record mregparm value now so it is visible through rest of codegen. 437 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 438 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 439 CodeGenOpts.NumRegisterParameters); 440 441 if (CodeGenOpts.DwarfVersion) { 442 // We actually want the latest version when there are conflicts. 443 // We can change from Warning to Latest if such mode is supported. 444 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 445 CodeGenOpts.DwarfVersion); 446 } 447 if (CodeGenOpts.EmitCodeView) { 448 // Indicate that we want CodeView in the metadata. 449 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 450 } 451 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 452 // We don't support LTO with 2 with different StrictVTablePointers 453 // FIXME: we could support it by stripping all the information introduced 454 // by StrictVTablePointers. 455 456 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 457 458 llvm::Metadata *Ops[2] = { 459 llvm::MDString::get(VMContext, "StrictVTablePointers"), 460 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 461 llvm::Type::getInt32Ty(VMContext), 1))}; 462 463 getModule().addModuleFlag(llvm::Module::Require, 464 "StrictVTablePointersRequirement", 465 llvm::MDNode::get(VMContext, Ops)); 466 } 467 if (DebugInfo) 468 // We support a single version in the linked module. The LLVM 469 // parser will drop debug info with a different version number 470 // (and warn about it, too). 471 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 472 llvm::DEBUG_METADATA_VERSION); 473 474 // Width of wchar_t in bytes 475 uint64_t WCharWidth = 476 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 477 assert((LangOpts.ShortWChar || 478 llvm::TargetLibraryInfoImpl::getTargetWCharSize(Target.getTriple()) == 479 Target.getWCharWidth() / 8) && 480 "LLVM wchar_t size out of sync"); 481 482 // We need to record the widths of enums and wchar_t, so that we can generate 483 // the correct build attributes in the ARM backend. wchar_size is also used by 484 // TargetLibraryInfo. 485 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 486 487 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 488 if ( Arch == llvm::Triple::arm 489 || Arch == llvm::Triple::armeb 490 || Arch == llvm::Triple::thumb 491 || Arch == llvm::Triple::thumbeb) { 492 // The minimum width of an enum in bytes 493 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 494 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 495 } 496 497 if (CodeGenOpts.SanitizeCfiCrossDso) { 498 // Indicate that we want cross-DSO control flow integrity checks. 499 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 500 } 501 502 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 503 // Indicate whether __nvvm_reflect should be configured to flush denormal 504 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 505 // property.) 506 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 507 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 508 } 509 510 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 511 if (LangOpts.OpenCL) { 512 EmitOpenCLMetadata(); 513 // Emit SPIR version. 514 if (getTriple().getArch() == llvm::Triple::spir || 515 getTriple().getArch() == llvm::Triple::spir64) { 516 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 517 // opencl.spir.version named metadata. 518 llvm::Metadata *SPIRVerElts[] = { 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, LangOpts.OpenCLVersion / 100)), 521 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 522 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 523 llvm::NamedMDNode *SPIRVerMD = 524 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 525 llvm::LLVMContext &Ctx = TheModule.getContext(); 526 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 527 } 528 } 529 530 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 531 assert(PLevel < 3 && "Invalid PIC Level"); 532 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 533 if (Context.getLangOpts().PIE) 534 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 535 } 536 537 SimplifyPersonality(); 538 539 if (getCodeGenOpts().EmitDeclMetadata) 540 EmitDeclMetadata(); 541 542 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 543 EmitCoverageFile(); 544 545 if (DebugInfo) 546 DebugInfo->finalize(); 547 548 EmitVersionIdentMetadata(); 549 550 EmitTargetMetadata(); 551 } 552 553 void CodeGenModule::EmitOpenCLMetadata() { 554 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 555 // opencl.ocl.version named metadata node. 556 llvm::Metadata *OCLVerElts[] = { 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, LangOpts.OpenCLVersion / 100)), 559 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 560 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 561 llvm::NamedMDNode *OCLVerMD = 562 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 563 llvm::LLVMContext &Ctx = TheModule.getContext(); 564 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 565 } 566 567 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 568 // Make sure that this type is translated. 569 Types.UpdateCompletedType(TD); 570 } 571 572 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 573 // Make sure that this type is translated. 574 Types.RefreshTypeCacheForClass(RD); 575 } 576 577 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 578 if (!TBAA) 579 return nullptr; 580 return TBAA->getTBAAInfo(QTy); 581 } 582 583 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 584 if (!TBAA) 585 return nullptr; 586 return TBAA->getTBAAInfoForVTablePtr(); 587 } 588 589 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 590 if (!TBAA) 591 return nullptr; 592 return TBAA->getTBAAStructInfo(QTy); 593 } 594 595 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 596 llvm::MDNode *AccessN, 597 uint64_t O) { 598 if (!TBAA) 599 return nullptr; 600 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 601 } 602 603 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 604 /// and struct-path aware TBAA, the tag has the same format: 605 /// base type, access type and offset. 606 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 607 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 608 llvm::MDNode *TBAAInfo, 609 bool ConvertTypeToTag) { 610 if (ConvertTypeToTag && TBAA) 611 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 612 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 613 else 614 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 615 } 616 617 void CodeGenModule::DecorateInstructionWithInvariantGroup( 618 llvm::Instruction *I, const CXXRecordDecl *RD) { 619 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 620 llvm::MDNode::get(getLLVMContext(), {})); 621 } 622 623 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 624 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 625 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 626 } 627 628 /// ErrorUnsupported - Print out an error that codegen doesn't support the 629 /// specified stmt yet. 630 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 631 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 632 "cannot compile this %0 yet"); 633 std::string Msg = Type; 634 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 635 << Msg << S->getSourceRange(); 636 } 637 638 /// ErrorUnsupported - Print out an error that codegen doesn't support the 639 /// specified decl yet. 640 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 641 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 642 "cannot compile this %0 yet"); 643 std::string Msg = Type; 644 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 645 } 646 647 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 648 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 649 } 650 651 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 652 const NamedDecl *D) const { 653 // Internal definitions always have default visibility. 654 if (GV->hasLocalLinkage()) { 655 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 656 return; 657 } 658 659 // Set visibility for definitions. 660 LinkageInfo LV = D->getLinkageAndVisibility(); 661 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 662 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 663 } 664 665 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 666 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 667 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 668 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 669 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 670 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 671 } 672 673 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 674 CodeGenOptions::TLSModel M) { 675 switch (M) { 676 case CodeGenOptions::GeneralDynamicTLSModel: 677 return llvm::GlobalVariable::GeneralDynamicTLSModel; 678 case CodeGenOptions::LocalDynamicTLSModel: 679 return llvm::GlobalVariable::LocalDynamicTLSModel; 680 case CodeGenOptions::InitialExecTLSModel: 681 return llvm::GlobalVariable::InitialExecTLSModel; 682 case CodeGenOptions::LocalExecTLSModel: 683 return llvm::GlobalVariable::LocalExecTLSModel; 684 } 685 llvm_unreachable("Invalid TLS model!"); 686 } 687 688 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 689 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 690 691 llvm::GlobalValue::ThreadLocalMode TLM; 692 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 693 694 // Override the TLS model if it is explicitly specified. 695 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 696 TLM = GetLLVMTLSModel(Attr->getModel()); 697 } 698 699 GV->setThreadLocalMode(TLM); 700 } 701 702 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 703 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 704 705 // Some ABIs don't have constructor variants. Make sure that base and 706 // complete constructors get mangled the same. 707 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 708 if (!getTarget().getCXXABI().hasConstructorVariants()) { 709 CXXCtorType OrigCtorType = GD.getCtorType(); 710 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 711 if (OrigCtorType == Ctor_Base) 712 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 713 } 714 } 715 716 auto FoundName = MangledDeclNames.find(CanonicalGD); 717 if (FoundName != MangledDeclNames.end()) 718 return FoundName->second; 719 720 const auto *ND = cast<NamedDecl>(GD.getDecl()); 721 SmallString<256> Buffer; 722 StringRef Str; 723 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 724 llvm::raw_svector_ostream Out(Buffer); 725 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 726 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 727 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 728 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 729 else 730 getCXXABI().getMangleContext().mangleName(ND, Out); 731 Str = Out.str(); 732 } else { 733 IdentifierInfo *II = ND->getIdentifier(); 734 assert(II && "Attempt to mangle unnamed decl."); 735 const auto *FD = dyn_cast<FunctionDecl>(ND); 736 737 if (FD && 738 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 739 llvm::raw_svector_ostream Out(Buffer); 740 Out << "__regcall3__" << II->getName(); 741 Str = Out.str(); 742 } else { 743 Str = II->getName(); 744 } 745 } 746 747 // Keep the first result in the case of a mangling collision. 748 auto Result = Manglings.insert(std::make_pair(Str, GD)); 749 return MangledDeclNames[CanonicalGD] = Result.first->first(); 750 } 751 752 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 753 const BlockDecl *BD) { 754 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 755 const Decl *D = GD.getDecl(); 756 757 SmallString<256> Buffer; 758 llvm::raw_svector_ostream Out(Buffer); 759 if (!D) 760 MangleCtx.mangleGlobalBlock(BD, 761 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 762 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 763 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 764 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 765 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 766 else 767 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 768 769 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 770 return Result.first->first(); 771 } 772 773 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 774 return getModule().getNamedValue(Name); 775 } 776 777 /// AddGlobalCtor - Add a function to the list that will be called before 778 /// main() runs. 779 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 780 llvm::Constant *AssociatedData) { 781 // FIXME: Type coercion of void()* types. 782 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 783 } 784 785 /// AddGlobalDtor - Add a function to the list that will be called 786 /// when the module is unloaded. 787 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 788 // FIXME: Type coercion of void()* types. 789 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 790 } 791 792 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 793 if (Fns.empty()) return; 794 795 // Ctor function type is void()*. 796 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 797 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 798 799 // Get the type of a ctor entry, { i32, void ()*, i8* }. 800 llvm::StructType *CtorStructTy = llvm::StructType::get( 801 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 802 803 // Construct the constructor and destructor arrays. 804 ConstantInitBuilder builder(*this); 805 auto ctors = builder.beginArray(CtorStructTy); 806 for (const auto &I : Fns) { 807 auto ctor = ctors.beginStruct(CtorStructTy); 808 ctor.addInt(Int32Ty, I.Priority); 809 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 810 if (I.AssociatedData) 811 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 812 else 813 ctor.addNullPointer(VoidPtrTy); 814 ctor.finishAndAddTo(ctors); 815 } 816 817 auto list = 818 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 819 /*constant*/ false, 820 llvm::GlobalValue::AppendingLinkage); 821 822 // The LTO linker doesn't seem to like it when we set an alignment 823 // on appending variables. Take it off as a workaround. 824 list->setAlignment(0); 825 826 Fns.clear(); 827 } 828 829 llvm::GlobalValue::LinkageTypes 830 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 831 const auto *D = cast<FunctionDecl>(GD.getDecl()); 832 833 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 834 835 if (isa<CXXDestructorDecl>(D) && 836 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 837 GD.getDtorType())) { 838 // Destructor variants in the Microsoft C++ ABI are always internal or 839 // linkonce_odr thunks emitted on an as-needed basis. 840 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 841 : llvm::GlobalValue::LinkOnceODRLinkage; 842 } 843 844 if (isa<CXXConstructorDecl>(D) && 845 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 846 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 847 // Our approach to inheriting constructors is fundamentally different from 848 // that used by the MS ABI, so keep our inheriting constructor thunks 849 // internal rather than trying to pick an unambiguous mangling for them. 850 return llvm::GlobalValue::InternalLinkage; 851 } 852 853 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 854 } 855 856 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 857 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 858 859 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 860 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 861 // Don't dllexport/import destructor thunks. 862 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 863 return; 864 } 865 } 866 867 if (FD->hasAttr<DLLImportAttr>()) 868 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 869 else if (FD->hasAttr<DLLExportAttr>()) 870 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 871 else 872 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 873 } 874 875 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 876 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 877 if (!MDS) return nullptr; 878 879 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 880 } 881 882 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 883 llvm::Function *F) { 884 setNonAliasAttributes(D, F); 885 } 886 887 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 888 const CGFunctionInfo &Info, 889 llvm::Function *F) { 890 unsigned CallingConv; 891 llvm::AttributeList PAL; 892 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 893 F->setAttributes(PAL); 894 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 895 } 896 897 /// Determines whether the language options require us to model 898 /// unwind exceptions. We treat -fexceptions as mandating this 899 /// except under the fragile ObjC ABI with only ObjC exceptions 900 /// enabled. This means, for example, that C with -fexceptions 901 /// enables this. 902 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 903 // If exceptions are completely disabled, obviously this is false. 904 if (!LangOpts.Exceptions) return false; 905 906 // If C++ exceptions are enabled, this is true. 907 if (LangOpts.CXXExceptions) return true; 908 909 // If ObjC exceptions are enabled, this depends on the ABI. 910 if (LangOpts.ObjCExceptions) { 911 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 912 } 913 914 return true; 915 } 916 917 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 918 llvm::Function *F) { 919 llvm::AttrBuilder B; 920 921 if (CodeGenOpts.UnwindTables) 922 B.addAttribute(llvm::Attribute::UWTable); 923 924 if (!hasUnwindExceptions(LangOpts)) 925 B.addAttribute(llvm::Attribute::NoUnwind); 926 927 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 928 B.addAttribute(llvm::Attribute::StackProtect); 929 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 930 B.addAttribute(llvm::Attribute::StackProtectStrong); 931 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 932 B.addAttribute(llvm::Attribute::StackProtectReq); 933 934 if (!D) { 935 // If we don't have a declaration to control inlining, the function isn't 936 // explicitly marked as alwaysinline for semantic reasons, and inlining is 937 // disabled, mark the function as noinline. 938 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 939 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 940 B.addAttribute(llvm::Attribute::NoInline); 941 942 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 943 return; 944 } 945 946 // Track whether we need to add the optnone LLVM attribute, 947 // starting with the default for this optimization level. 948 bool ShouldAddOptNone = 949 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 950 // We can't add optnone in the following cases, it won't pass the verifier. 951 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 952 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 953 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 954 955 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 956 B.addAttribute(llvm::Attribute::OptimizeNone); 957 958 // OptimizeNone implies noinline; we should not be inlining such functions. 959 B.addAttribute(llvm::Attribute::NoInline); 960 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 961 "OptimizeNone and AlwaysInline on same function!"); 962 963 // We still need to handle naked functions even though optnone subsumes 964 // much of their semantics. 965 if (D->hasAttr<NakedAttr>()) 966 B.addAttribute(llvm::Attribute::Naked); 967 968 // OptimizeNone wins over OptimizeForSize and MinSize. 969 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 970 F->removeFnAttr(llvm::Attribute::MinSize); 971 } else if (D->hasAttr<NakedAttr>()) { 972 // Naked implies noinline: we should not be inlining such functions. 973 B.addAttribute(llvm::Attribute::Naked); 974 B.addAttribute(llvm::Attribute::NoInline); 975 } else if (D->hasAttr<NoDuplicateAttr>()) { 976 B.addAttribute(llvm::Attribute::NoDuplicate); 977 } else if (D->hasAttr<NoInlineAttr>()) { 978 B.addAttribute(llvm::Attribute::NoInline); 979 } else if (D->hasAttr<AlwaysInlineAttr>() && 980 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 981 // (noinline wins over always_inline, and we can't specify both in IR) 982 B.addAttribute(llvm::Attribute::AlwaysInline); 983 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 984 // If we're not inlining, then force everything that isn't always_inline to 985 // carry an explicit noinline attribute. 986 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 987 B.addAttribute(llvm::Attribute::NoInline); 988 } else { 989 // Otherwise, propagate the inline hint attribute and potentially use its 990 // absence to mark things as noinline. 991 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 992 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 993 return Redecl->isInlineSpecified(); 994 })) { 995 B.addAttribute(llvm::Attribute::InlineHint); 996 } else if (CodeGenOpts.getInlining() == 997 CodeGenOptions::OnlyHintInlining && 998 !FD->isInlined() && 999 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1000 B.addAttribute(llvm::Attribute::NoInline); 1001 } 1002 } 1003 } 1004 1005 // Add other optimization related attributes if we are optimizing this 1006 // function. 1007 if (!D->hasAttr<OptimizeNoneAttr>()) { 1008 if (D->hasAttr<ColdAttr>()) { 1009 if (!ShouldAddOptNone) 1010 B.addAttribute(llvm::Attribute::OptimizeForSize); 1011 B.addAttribute(llvm::Attribute::Cold); 1012 } 1013 1014 if (D->hasAttr<MinSizeAttr>()) 1015 B.addAttribute(llvm::Attribute::MinSize); 1016 } 1017 1018 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1019 1020 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1021 if (alignment) 1022 F->setAlignment(alignment); 1023 1024 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1025 // reserve a bit for differentiating between virtual and non-virtual member 1026 // functions. If the current target's C++ ABI requires this and this is a 1027 // member function, set its alignment accordingly. 1028 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1029 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1030 F->setAlignment(2); 1031 } 1032 1033 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1034 if (CodeGenOpts.SanitizeCfiCrossDso) 1035 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1036 CreateFunctionTypeMetadata(FD, F); 1037 } 1038 1039 void CodeGenModule::SetCommonAttributes(const Decl *D, 1040 llvm::GlobalValue *GV) { 1041 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1042 setGlobalVisibility(GV, ND); 1043 else 1044 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1045 1046 if (D && D->hasAttr<UsedAttr>()) 1047 addUsedGlobal(GV); 1048 } 1049 1050 void CodeGenModule::setAliasAttributes(const Decl *D, 1051 llvm::GlobalValue *GV) { 1052 SetCommonAttributes(D, GV); 1053 1054 // Process the dllexport attribute based on whether the original definition 1055 // (not necessarily the aliasee) was exported. 1056 if (D->hasAttr<DLLExportAttr>()) 1057 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1058 } 1059 1060 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1061 llvm::GlobalObject *GO) { 1062 SetCommonAttributes(D, GO); 1063 1064 if (D) { 1065 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1066 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1067 GV->addAttribute("bss-section", SA->getName()); 1068 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1069 GV->addAttribute("data-section", SA->getName()); 1070 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1071 GV->addAttribute("rodata-section", SA->getName()); 1072 } 1073 1074 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1075 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1076 if (!D->getAttr<SectionAttr>()) 1077 F->addFnAttr("implicit-section-name", SA->getName()); 1078 } 1079 1080 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1081 GO->setSection(SA->getName()); 1082 } 1083 1084 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1085 } 1086 1087 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1088 llvm::Function *F, 1089 const CGFunctionInfo &FI) { 1090 SetLLVMFunctionAttributes(D, FI, F); 1091 SetLLVMFunctionAttributesForDefinition(D, F); 1092 1093 F->setLinkage(llvm::Function::InternalLinkage); 1094 1095 setNonAliasAttributes(D, F); 1096 } 1097 1098 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1099 const NamedDecl *ND) { 1100 // Set linkage and visibility in case we never see a definition. 1101 LinkageInfo LV = ND->getLinkageAndVisibility(); 1102 if (!isExternallyVisible(LV.getLinkage())) { 1103 // Don't set internal linkage on declarations. 1104 } else { 1105 if (ND->hasAttr<DLLImportAttr>()) { 1106 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1107 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1108 } else if (ND->hasAttr<DLLExportAttr>()) { 1109 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1110 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1111 // "extern_weak" is overloaded in LLVM; we probably should have 1112 // separate linkage types for this. 1113 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1114 } 1115 1116 // Set visibility on a declaration only if it's explicit. 1117 if (LV.isVisibilityExplicit()) 1118 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1119 } 1120 } 1121 1122 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1123 llvm::Function *F) { 1124 // Only if we are checking indirect calls. 1125 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1126 return; 1127 1128 // Non-static class methods are handled via vtable pointer checks elsewhere. 1129 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1130 return; 1131 1132 // Additionally, if building with cross-DSO support... 1133 if (CodeGenOpts.SanitizeCfiCrossDso) { 1134 // Skip available_externally functions. They won't be codegen'ed in the 1135 // current module anyway. 1136 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1137 return; 1138 } 1139 1140 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1141 F->addTypeMetadata(0, MD); 1142 1143 // Emit a hash-based bit set entry for cross-DSO calls. 1144 if (CodeGenOpts.SanitizeCfiCrossDso) 1145 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1146 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1147 } 1148 1149 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1150 bool IsIncompleteFunction, 1151 bool IsThunk, 1152 ForDefinition_t IsForDefinition) { 1153 1154 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1155 // If this is an intrinsic function, set the function's attributes 1156 // to the intrinsic's attributes. 1157 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1158 return; 1159 } 1160 1161 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1162 1163 if (!IsIncompleteFunction) { 1164 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1165 // Setup target-specific attributes. 1166 if (!IsForDefinition) 1167 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1168 NotForDefinition); 1169 } 1170 1171 // Add the Returned attribute for "this", except for iOS 5 and earlier 1172 // where substantial code, including the libstdc++ dylib, was compiled with 1173 // GCC and does not actually return "this". 1174 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1175 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1176 assert(!F->arg_empty() && 1177 F->arg_begin()->getType() 1178 ->canLosslesslyBitCastTo(F->getReturnType()) && 1179 "unexpected this return"); 1180 F->addAttribute(1, llvm::Attribute::Returned); 1181 } 1182 1183 // Only a few attributes are set on declarations; these may later be 1184 // overridden by a definition. 1185 1186 setLinkageAndVisibilityForGV(F, FD); 1187 1188 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1189 F->addFnAttr("implicit-section-name"); 1190 } 1191 1192 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1193 F->setSection(SA->getName()); 1194 1195 if (FD->isReplaceableGlobalAllocationFunction()) { 1196 // A replaceable global allocation function does not act like a builtin by 1197 // default, only if it is invoked by a new-expression or delete-expression. 1198 F->addAttribute(llvm::AttributeList::FunctionIndex, 1199 llvm::Attribute::NoBuiltin); 1200 1201 // A sane operator new returns a non-aliasing pointer. 1202 // FIXME: Also add NonNull attribute to the return value 1203 // for the non-nothrow forms? 1204 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1205 if (getCodeGenOpts().AssumeSaneOperatorNew && 1206 (Kind == OO_New || Kind == OO_Array_New)) 1207 F->addAttribute(llvm::AttributeList::ReturnIndex, 1208 llvm::Attribute::NoAlias); 1209 } 1210 1211 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1212 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1213 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1214 if (MD->isVirtual()) 1215 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1216 1217 // Don't emit entries for function declarations in the cross-DSO mode. This 1218 // is handled with better precision by the receiving DSO. 1219 if (!CodeGenOpts.SanitizeCfiCrossDso) 1220 CreateFunctionTypeMetadata(FD, F); 1221 } 1222 1223 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1224 assert(!GV->isDeclaration() && 1225 "Only globals with definition can force usage."); 1226 LLVMUsed.emplace_back(GV); 1227 } 1228 1229 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1230 assert(!GV->isDeclaration() && 1231 "Only globals with definition can force usage."); 1232 LLVMCompilerUsed.emplace_back(GV); 1233 } 1234 1235 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1236 std::vector<llvm::WeakTrackingVH> &List) { 1237 // Don't create llvm.used if there is no need. 1238 if (List.empty()) 1239 return; 1240 1241 // Convert List to what ConstantArray needs. 1242 SmallVector<llvm::Constant*, 8> UsedArray; 1243 UsedArray.resize(List.size()); 1244 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1245 UsedArray[i] = 1246 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1247 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1248 } 1249 1250 if (UsedArray.empty()) 1251 return; 1252 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1253 1254 auto *GV = new llvm::GlobalVariable( 1255 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1256 llvm::ConstantArray::get(ATy, UsedArray), Name); 1257 1258 GV->setSection("llvm.metadata"); 1259 } 1260 1261 void CodeGenModule::emitLLVMUsed() { 1262 emitUsed(*this, "llvm.used", LLVMUsed); 1263 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1264 } 1265 1266 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1267 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1268 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1269 } 1270 1271 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1272 llvm::SmallString<32> Opt; 1273 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1274 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1275 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1276 } 1277 1278 void CodeGenModule::AddDependentLib(StringRef Lib) { 1279 llvm::SmallString<24> Opt; 1280 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1281 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1282 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1283 } 1284 1285 /// \brief Add link options implied by the given module, including modules 1286 /// it depends on, using a postorder walk. 1287 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1288 SmallVectorImpl<llvm::MDNode *> &Metadata, 1289 llvm::SmallPtrSet<Module *, 16> &Visited) { 1290 // Import this module's parent. 1291 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1292 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1293 } 1294 1295 // Import this module's dependencies. 1296 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1297 if (Visited.insert(Mod->Imports[I - 1]).second) 1298 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1299 } 1300 1301 // Add linker options to link against the libraries/frameworks 1302 // described by this module. 1303 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1304 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1305 // Link against a framework. Frameworks are currently Darwin only, so we 1306 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1307 if (Mod->LinkLibraries[I-1].IsFramework) { 1308 llvm::Metadata *Args[2] = { 1309 llvm::MDString::get(Context, "-framework"), 1310 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1311 1312 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1313 continue; 1314 } 1315 1316 // Link against a library. 1317 llvm::SmallString<24> Opt; 1318 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1319 Mod->LinkLibraries[I-1].Library, Opt); 1320 auto *OptString = llvm::MDString::get(Context, Opt); 1321 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1322 } 1323 } 1324 1325 void CodeGenModule::EmitModuleLinkOptions() { 1326 // Collect the set of all of the modules we want to visit to emit link 1327 // options, which is essentially the imported modules and all of their 1328 // non-explicit child modules. 1329 llvm::SetVector<clang::Module *> LinkModules; 1330 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1331 SmallVector<clang::Module *, 16> Stack; 1332 1333 // Seed the stack with imported modules. 1334 for (Module *M : ImportedModules) { 1335 // Do not add any link flags when an implementation TU of a module imports 1336 // a header of that same module. 1337 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1338 !getLangOpts().isCompilingModule()) 1339 continue; 1340 if (Visited.insert(M).second) 1341 Stack.push_back(M); 1342 } 1343 1344 // Find all of the modules to import, making a little effort to prune 1345 // non-leaf modules. 1346 while (!Stack.empty()) { 1347 clang::Module *Mod = Stack.pop_back_val(); 1348 1349 bool AnyChildren = false; 1350 1351 // Visit the submodules of this module. 1352 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1353 SubEnd = Mod->submodule_end(); 1354 Sub != SubEnd; ++Sub) { 1355 // Skip explicit children; they need to be explicitly imported to be 1356 // linked against. 1357 if ((*Sub)->IsExplicit) 1358 continue; 1359 1360 if (Visited.insert(*Sub).second) { 1361 Stack.push_back(*Sub); 1362 AnyChildren = true; 1363 } 1364 } 1365 1366 // We didn't find any children, so add this module to the list of 1367 // modules to link against. 1368 if (!AnyChildren) { 1369 LinkModules.insert(Mod); 1370 } 1371 } 1372 1373 // Add link options for all of the imported modules in reverse topological 1374 // order. We don't do anything to try to order import link flags with respect 1375 // to linker options inserted by things like #pragma comment(). 1376 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1377 Visited.clear(); 1378 for (Module *M : LinkModules) 1379 if (Visited.insert(M).second) 1380 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1381 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1382 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1383 1384 // Add the linker options metadata flag. 1385 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1386 for (auto *MD : LinkerOptionsMetadata) 1387 NMD->addOperand(MD); 1388 } 1389 1390 void CodeGenModule::EmitDeferred() { 1391 // Emit code for any potentially referenced deferred decls. Since a 1392 // previously unused static decl may become used during the generation of code 1393 // for a static function, iterate until no changes are made. 1394 1395 if (!DeferredVTables.empty()) { 1396 EmitDeferredVTables(); 1397 1398 // Emitting a vtable doesn't directly cause more vtables to 1399 // become deferred, although it can cause functions to be 1400 // emitted that then need those vtables. 1401 assert(DeferredVTables.empty()); 1402 } 1403 1404 // Stop if we're out of both deferred vtables and deferred declarations. 1405 if (DeferredDeclsToEmit.empty()) 1406 return; 1407 1408 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1409 // work, it will not interfere with this. 1410 std::vector<GlobalDecl> CurDeclsToEmit; 1411 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1412 1413 for (GlobalDecl &D : CurDeclsToEmit) { 1414 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1415 // to get GlobalValue with exactly the type we need, not something that 1416 // might had been created for another decl with the same mangled name but 1417 // different type. 1418 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1419 GetAddrOfGlobal(D, ForDefinition)); 1420 1421 // In case of different address spaces, we may still get a cast, even with 1422 // IsForDefinition equal to true. Query mangled names table to get 1423 // GlobalValue. 1424 if (!GV) 1425 GV = GetGlobalValue(getMangledName(D)); 1426 1427 // Make sure GetGlobalValue returned non-null. 1428 assert(GV); 1429 1430 // Check to see if we've already emitted this. This is necessary 1431 // for a couple of reasons: first, decls can end up in the 1432 // deferred-decls queue multiple times, and second, decls can end 1433 // up with definitions in unusual ways (e.g. by an extern inline 1434 // function acquiring a strong function redefinition). Just 1435 // ignore these cases. 1436 if (!GV->isDeclaration()) 1437 continue; 1438 1439 // Otherwise, emit the definition and move on to the next one. 1440 EmitGlobalDefinition(D, GV); 1441 1442 // If we found out that we need to emit more decls, do that recursively. 1443 // This has the advantage that the decls are emitted in a DFS and related 1444 // ones are close together, which is convenient for testing. 1445 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1446 EmitDeferred(); 1447 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1448 } 1449 } 1450 } 1451 1452 void CodeGenModule::EmitVTablesOpportunistically() { 1453 // Try to emit external vtables as available_externally if they have emitted 1454 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1455 // is not allowed to create new references to things that need to be emitted 1456 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1457 1458 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1459 && "Only emit opportunistic vtables with optimizations"); 1460 1461 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1462 assert(getVTables().isVTableExternal(RD) && 1463 "This queue should only contain external vtables"); 1464 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1465 VTables.GenerateClassData(RD); 1466 } 1467 OpportunisticVTables.clear(); 1468 } 1469 1470 void CodeGenModule::EmitGlobalAnnotations() { 1471 if (Annotations.empty()) 1472 return; 1473 1474 // Create a new global variable for the ConstantStruct in the Module. 1475 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1476 Annotations[0]->getType(), Annotations.size()), Annotations); 1477 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1478 llvm::GlobalValue::AppendingLinkage, 1479 Array, "llvm.global.annotations"); 1480 gv->setSection(AnnotationSection); 1481 } 1482 1483 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1484 llvm::Constant *&AStr = AnnotationStrings[Str]; 1485 if (AStr) 1486 return AStr; 1487 1488 // Not found yet, create a new global. 1489 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1490 auto *gv = 1491 new llvm::GlobalVariable(getModule(), s->getType(), true, 1492 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1493 gv->setSection(AnnotationSection); 1494 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1495 AStr = gv; 1496 return gv; 1497 } 1498 1499 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1500 SourceManager &SM = getContext().getSourceManager(); 1501 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1502 if (PLoc.isValid()) 1503 return EmitAnnotationString(PLoc.getFilename()); 1504 return EmitAnnotationString(SM.getBufferName(Loc)); 1505 } 1506 1507 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1508 SourceManager &SM = getContext().getSourceManager(); 1509 PresumedLoc PLoc = SM.getPresumedLoc(L); 1510 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1511 SM.getExpansionLineNumber(L); 1512 return llvm::ConstantInt::get(Int32Ty, LineNo); 1513 } 1514 1515 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1516 const AnnotateAttr *AA, 1517 SourceLocation L) { 1518 // Get the globals for file name, annotation, and the line number. 1519 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1520 *UnitGV = EmitAnnotationUnit(L), 1521 *LineNoCst = EmitAnnotationLineNo(L); 1522 1523 // Create the ConstantStruct for the global annotation. 1524 llvm::Constant *Fields[4] = { 1525 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1526 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1527 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1528 LineNoCst 1529 }; 1530 return llvm::ConstantStruct::getAnon(Fields); 1531 } 1532 1533 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1534 llvm::GlobalValue *GV) { 1535 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1536 // Get the struct elements for these annotations. 1537 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1538 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1539 } 1540 1541 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1542 SourceLocation Loc) const { 1543 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1544 // Blacklist by function name. 1545 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1546 return true; 1547 // Blacklist by location. 1548 if (Loc.isValid()) 1549 return SanitizerBL.isBlacklistedLocation(Loc); 1550 // If location is unknown, this may be a compiler-generated function. Assume 1551 // it's located in the main file. 1552 auto &SM = Context.getSourceManager(); 1553 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1554 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1555 } 1556 return false; 1557 } 1558 1559 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1560 SourceLocation Loc, QualType Ty, 1561 StringRef Category) const { 1562 // For now globals can be blacklisted only in ASan and KASan. 1563 if (!LangOpts.Sanitize.hasOneOf( 1564 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1565 return false; 1566 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1567 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1568 return true; 1569 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1570 return true; 1571 // Check global type. 1572 if (!Ty.isNull()) { 1573 // Drill down the array types: if global variable of a fixed type is 1574 // blacklisted, we also don't instrument arrays of them. 1575 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1576 Ty = AT->getElementType(); 1577 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1578 // We allow to blacklist only record types (classes, structs etc.) 1579 if (Ty->isRecordType()) { 1580 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1581 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1582 return true; 1583 } 1584 } 1585 return false; 1586 } 1587 1588 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1589 StringRef Category) const { 1590 if (!LangOpts.XRayInstrument) 1591 return false; 1592 const auto &XRayFilter = getContext().getXRayFilter(); 1593 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1594 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1595 if (Loc.isValid()) 1596 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1597 if (Attr == ImbueAttr::NONE) 1598 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1599 switch (Attr) { 1600 case ImbueAttr::NONE: 1601 return false; 1602 case ImbueAttr::ALWAYS: 1603 Fn->addFnAttr("function-instrument", "xray-always"); 1604 break; 1605 case ImbueAttr::ALWAYS_ARG1: 1606 Fn->addFnAttr("function-instrument", "xray-always"); 1607 Fn->addFnAttr("xray-log-args", "1"); 1608 break; 1609 case ImbueAttr::NEVER: 1610 Fn->addFnAttr("function-instrument", "xray-never"); 1611 break; 1612 } 1613 return true; 1614 } 1615 1616 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1617 // Never defer when EmitAllDecls is specified. 1618 if (LangOpts.EmitAllDecls) 1619 return true; 1620 1621 return getContext().DeclMustBeEmitted(Global); 1622 } 1623 1624 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1625 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1626 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1627 // Implicit template instantiations may change linkage if they are later 1628 // explicitly instantiated, so they should not be emitted eagerly. 1629 return false; 1630 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1631 if (Context.getInlineVariableDefinitionKind(VD) == 1632 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1633 // A definition of an inline constexpr static data member may change 1634 // linkage later if it's redeclared outside the class. 1635 return false; 1636 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1637 // codegen for global variables, because they may be marked as threadprivate. 1638 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1639 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1640 return false; 1641 1642 return true; 1643 } 1644 1645 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1646 const CXXUuidofExpr* E) { 1647 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1648 // well-formed. 1649 StringRef Uuid = E->getUuidStr(); 1650 std::string Name = "_GUID_" + Uuid.lower(); 1651 std::replace(Name.begin(), Name.end(), '-', '_'); 1652 1653 // The UUID descriptor should be pointer aligned. 1654 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1655 1656 // Look for an existing global. 1657 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1658 return ConstantAddress(GV, Alignment); 1659 1660 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1661 assert(Init && "failed to initialize as constant"); 1662 1663 auto *GV = new llvm::GlobalVariable( 1664 getModule(), Init->getType(), 1665 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1666 if (supportsCOMDAT()) 1667 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1668 return ConstantAddress(GV, Alignment); 1669 } 1670 1671 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1672 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1673 assert(AA && "No alias?"); 1674 1675 CharUnits Alignment = getContext().getDeclAlign(VD); 1676 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1677 1678 // See if there is already something with the target's name in the module. 1679 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1680 if (Entry) { 1681 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1682 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1683 return ConstantAddress(Ptr, Alignment); 1684 } 1685 1686 llvm::Constant *Aliasee; 1687 if (isa<llvm::FunctionType>(DeclTy)) 1688 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1689 GlobalDecl(cast<FunctionDecl>(VD)), 1690 /*ForVTable=*/false); 1691 else 1692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1693 llvm::PointerType::getUnqual(DeclTy), 1694 nullptr); 1695 1696 auto *F = cast<llvm::GlobalValue>(Aliasee); 1697 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1698 WeakRefReferences.insert(F); 1699 1700 return ConstantAddress(Aliasee, Alignment); 1701 } 1702 1703 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1704 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1705 1706 // Weak references don't produce any output by themselves. 1707 if (Global->hasAttr<WeakRefAttr>()) 1708 return; 1709 1710 // If this is an alias definition (which otherwise looks like a declaration) 1711 // emit it now. 1712 if (Global->hasAttr<AliasAttr>()) 1713 return EmitAliasDefinition(GD); 1714 1715 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1716 if (Global->hasAttr<IFuncAttr>()) 1717 return emitIFuncDefinition(GD); 1718 1719 // If this is CUDA, be selective about which declarations we emit. 1720 if (LangOpts.CUDA) { 1721 if (LangOpts.CUDAIsDevice) { 1722 if (!Global->hasAttr<CUDADeviceAttr>() && 1723 !Global->hasAttr<CUDAGlobalAttr>() && 1724 !Global->hasAttr<CUDAConstantAttr>() && 1725 !Global->hasAttr<CUDASharedAttr>()) 1726 return; 1727 } else { 1728 // We need to emit host-side 'shadows' for all global 1729 // device-side variables because the CUDA runtime needs their 1730 // size and host-side address in order to provide access to 1731 // their device-side incarnations. 1732 1733 // So device-only functions are the only things we skip. 1734 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1735 Global->hasAttr<CUDADeviceAttr>()) 1736 return; 1737 1738 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1739 "Expected Variable or Function"); 1740 } 1741 } 1742 1743 if (LangOpts.OpenMP) { 1744 // If this is OpenMP device, check if it is legal to emit this global 1745 // normally. 1746 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1747 return; 1748 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1749 if (MustBeEmitted(Global)) 1750 EmitOMPDeclareReduction(DRD); 1751 return; 1752 } 1753 } 1754 1755 // Ignore declarations, they will be emitted on their first use. 1756 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1757 // Forward declarations are emitted lazily on first use. 1758 if (!FD->doesThisDeclarationHaveABody()) { 1759 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1760 return; 1761 1762 StringRef MangledName = getMangledName(GD); 1763 1764 // Compute the function info and LLVM type. 1765 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1766 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1767 1768 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1769 /*DontDefer=*/false); 1770 return; 1771 } 1772 } else { 1773 const auto *VD = cast<VarDecl>(Global); 1774 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1775 // We need to emit device-side global CUDA variables even if a 1776 // variable does not have a definition -- we still need to define 1777 // host-side shadow for it. 1778 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1779 !VD->hasDefinition() && 1780 (VD->hasAttr<CUDAConstantAttr>() || 1781 VD->hasAttr<CUDADeviceAttr>()); 1782 if (!MustEmitForCuda && 1783 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1784 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1785 // If this declaration may have caused an inline variable definition to 1786 // change linkage, make sure that it's emitted. 1787 if (Context.getInlineVariableDefinitionKind(VD) == 1788 ASTContext::InlineVariableDefinitionKind::Strong) 1789 GetAddrOfGlobalVar(VD); 1790 return; 1791 } 1792 } 1793 1794 // Defer code generation to first use when possible, e.g. if this is an inline 1795 // function. If the global must always be emitted, do it eagerly if possible 1796 // to benefit from cache locality. 1797 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1798 // Emit the definition if it can't be deferred. 1799 EmitGlobalDefinition(GD); 1800 return; 1801 } 1802 1803 // If we're deferring emission of a C++ variable with an 1804 // initializer, remember the order in which it appeared in the file. 1805 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1806 cast<VarDecl>(Global)->hasInit()) { 1807 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1808 CXXGlobalInits.push_back(nullptr); 1809 } 1810 1811 StringRef MangledName = getMangledName(GD); 1812 if (GetGlobalValue(MangledName) != nullptr) { 1813 // The value has already been used and should therefore be emitted. 1814 addDeferredDeclToEmit(GD); 1815 } else if (MustBeEmitted(Global)) { 1816 // The value must be emitted, but cannot be emitted eagerly. 1817 assert(!MayBeEmittedEagerly(Global)); 1818 addDeferredDeclToEmit(GD); 1819 } else { 1820 // Otherwise, remember that we saw a deferred decl with this name. The 1821 // first use of the mangled name will cause it to move into 1822 // DeferredDeclsToEmit. 1823 DeferredDecls[MangledName] = GD; 1824 } 1825 } 1826 1827 // Check if T is a class type with a destructor that's not dllimport. 1828 static bool HasNonDllImportDtor(QualType T) { 1829 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1830 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1831 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1832 return true; 1833 1834 return false; 1835 } 1836 1837 namespace { 1838 struct FunctionIsDirectlyRecursive : 1839 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1840 const StringRef Name; 1841 const Builtin::Context &BI; 1842 bool Result; 1843 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1844 Name(N), BI(C), Result(false) { 1845 } 1846 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1847 1848 bool TraverseCallExpr(CallExpr *E) { 1849 const FunctionDecl *FD = E->getDirectCallee(); 1850 if (!FD) 1851 return true; 1852 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1853 if (Attr && Name == Attr->getLabel()) { 1854 Result = true; 1855 return false; 1856 } 1857 unsigned BuiltinID = FD->getBuiltinID(); 1858 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1859 return true; 1860 StringRef BuiltinName = BI.getName(BuiltinID); 1861 if (BuiltinName.startswith("__builtin_") && 1862 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1863 Result = true; 1864 return false; 1865 } 1866 return true; 1867 } 1868 }; 1869 1870 // Make sure we're not referencing non-imported vars or functions. 1871 struct DLLImportFunctionVisitor 1872 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1873 bool SafeToInline = true; 1874 1875 bool shouldVisitImplicitCode() const { return true; } 1876 1877 bool VisitVarDecl(VarDecl *VD) { 1878 if (VD->getTLSKind()) { 1879 // A thread-local variable cannot be imported. 1880 SafeToInline = false; 1881 return SafeToInline; 1882 } 1883 1884 // A variable definition might imply a destructor call. 1885 if (VD->isThisDeclarationADefinition()) 1886 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1887 1888 return SafeToInline; 1889 } 1890 1891 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1892 if (const auto *D = E->getTemporary()->getDestructor()) 1893 SafeToInline = D->hasAttr<DLLImportAttr>(); 1894 return SafeToInline; 1895 } 1896 1897 bool VisitDeclRefExpr(DeclRefExpr *E) { 1898 ValueDecl *VD = E->getDecl(); 1899 if (isa<FunctionDecl>(VD)) 1900 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1901 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1902 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1903 return SafeToInline; 1904 } 1905 1906 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1907 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1908 return SafeToInline; 1909 } 1910 1911 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1912 CXXMethodDecl *M = E->getMethodDecl(); 1913 if (!M) { 1914 // Call through a pointer to member function. This is safe to inline. 1915 SafeToInline = true; 1916 } else { 1917 SafeToInline = M->hasAttr<DLLImportAttr>(); 1918 } 1919 return SafeToInline; 1920 } 1921 1922 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1923 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1924 return SafeToInline; 1925 } 1926 1927 bool VisitCXXNewExpr(CXXNewExpr *E) { 1928 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1929 return SafeToInline; 1930 } 1931 }; 1932 } 1933 1934 // isTriviallyRecursive - Check if this function calls another 1935 // decl that, because of the asm attribute or the other decl being a builtin, 1936 // ends up pointing to itself. 1937 bool 1938 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1939 StringRef Name; 1940 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1941 // asm labels are a special kind of mangling we have to support. 1942 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1943 if (!Attr) 1944 return false; 1945 Name = Attr->getLabel(); 1946 } else { 1947 Name = FD->getName(); 1948 } 1949 1950 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1951 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1952 return Walker.Result; 1953 } 1954 1955 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1956 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1957 return true; 1958 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1959 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1960 return false; 1961 1962 if (F->hasAttr<DLLImportAttr>()) { 1963 // Check whether it would be safe to inline this dllimport function. 1964 DLLImportFunctionVisitor Visitor; 1965 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1966 if (!Visitor.SafeToInline) 1967 return false; 1968 1969 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1970 // Implicit destructor invocations aren't captured in the AST, so the 1971 // check above can't see them. Check for them manually here. 1972 for (const Decl *Member : Dtor->getParent()->decls()) 1973 if (isa<FieldDecl>(Member)) 1974 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1975 return false; 1976 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1977 if (HasNonDllImportDtor(B.getType())) 1978 return false; 1979 } 1980 } 1981 1982 // PR9614. Avoid cases where the source code is lying to us. An available 1983 // externally function should have an equivalent function somewhere else, 1984 // but a function that calls itself is clearly not equivalent to the real 1985 // implementation. 1986 // This happens in glibc's btowc and in some configure checks. 1987 return !isTriviallyRecursive(F); 1988 } 1989 1990 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 1991 return CodeGenOpts.OptimizationLevel > 0; 1992 } 1993 1994 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1995 const auto *D = cast<ValueDecl>(GD.getDecl()); 1996 1997 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1998 Context.getSourceManager(), 1999 "Generating code for declaration"); 2000 2001 if (isa<FunctionDecl>(D)) { 2002 // At -O0, don't generate IR for functions with available_externally 2003 // linkage. 2004 if (!shouldEmitFunction(GD)) 2005 return; 2006 2007 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2008 // Make sure to emit the definition(s) before we emit the thunks. 2009 // This is necessary for the generation of certain thunks. 2010 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2011 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2012 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2013 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2014 else 2015 EmitGlobalFunctionDefinition(GD, GV); 2016 2017 if (Method->isVirtual()) 2018 getVTables().EmitThunks(GD); 2019 2020 return; 2021 } 2022 2023 return EmitGlobalFunctionDefinition(GD, GV); 2024 } 2025 2026 if (const auto *VD = dyn_cast<VarDecl>(D)) 2027 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2028 2029 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2030 } 2031 2032 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2033 llvm::Function *NewFn); 2034 2035 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2036 /// module, create and return an llvm Function with the specified type. If there 2037 /// is something in the module with the specified name, return it potentially 2038 /// bitcasted to the right type. 2039 /// 2040 /// If D is non-null, it specifies a decl that correspond to this. This is used 2041 /// to set the attributes on the function when it is first created. 2042 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2043 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2044 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2045 ForDefinition_t IsForDefinition) { 2046 const Decl *D = GD.getDecl(); 2047 2048 // Lookup the entry, lazily creating it if necessary. 2049 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2050 if (Entry) { 2051 if (WeakRefReferences.erase(Entry)) { 2052 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2053 if (FD && !FD->hasAttr<WeakAttr>()) 2054 Entry->setLinkage(llvm::Function::ExternalLinkage); 2055 } 2056 2057 // Handle dropped DLL attributes. 2058 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2059 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2060 2061 // If there are two attempts to define the same mangled name, issue an 2062 // error. 2063 if (IsForDefinition && !Entry->isDeclaration()) { 2064 GlobalDecl OtherGD; 2065 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2066 // to make sure that we issue an error only once. 2067 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2068 (GD.getCanonicalDecl().getDecl() != 2069 OtherGD.getCanonicalDecl().getDecl()) && 2070 DiagnosedConflictingDefinitions.insert(GD).second) { 2071 getDiags().Report(D->getLocation(), 2072 diag::err_duplicate_mangled_name); 2073 getDiags().Report(OtherGD.getDecl()->getLocation(), 2074 diag::note_previous_definition); 2075 } 2076 } 2077 2078 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2079 (Entry->getType()->getElementType() == Ty)) { 2080 return Entry; 2081 } 2082 2083 // Make sure the result is of the correct type. 2084 // (If function is requested for a definition, we always need to create a new 2085 // function, not just return a bitcast.) 2086 if (!IsForDefinition) 2087 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2088 } 2089 2090 // This function doesn't have a complete type (for example, the return 2091 // type is an incomplete struct). Use a fake type instead, and make 2092 // sure not to try to set attributes. 2093 bool IsIncompleteFunction = false; 2094 2095 llvm::FunctionType *FTy; 2096 if (isa<llvm::FunctionType>(Ty)) { 2097 FTy = cast<llvm::FunctionType>(Ty); 2098 } else { 2099 FTy = llvm::FunctionType::get(VoidTy, false); 2100 IsIncompleteFunction = true; 2101 } 2102 2103 llvm::Function *F = 2104 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2105 Entry ? StringRef() : MangledName, &getModule()); 2106 2107 // If we already created a function with the same mangled name (but different 2108 // type) before, take its name and add it to the list of functions to be 2109 // replaced with F at the end of CodeGen. 2110 // 2111 // This happens if there is a prototype for a function (e.g. "int f()") and 2112 // then a definition of a different type (e.g. "int f(int x)"). 2113 if (Entry) { 2114 F->takeName(Entry); 2115 2116 // This might be an implementation of a function without a prototype, in 2117 // which case, try to do special replacement of calls which match the new 2118 // prototype. The really key thing here is that we also potentially drop 2119 // arguments from the call site so as to make a direct call, which makes the 2120 // inliner happier and suppresses a number of optimizer warnings (!) about 2121 // dropping arguments. 2122 if (!Entry->use_empty()) { 2123 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2124 Entry->removeDeadConstantUsers(); 2125 } 2126 2127 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2128 F, Entry->getType()->getElementType()->getPointerTo()); 2129 addGlobalValReplacement(Entry, BC); 2130 } 2131 2132 assert(F->getName() == MangledName && "name was uniqued!"); 2133 if (D) 2134 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2135 IsForDefinition); 2136 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2137 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2138 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2139 } 2140 2141 if (!DontDefer) { 2142 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2143 // each other bottoming out with the base dtor. Therefore we emit non-base 2144 // dtors on usage, even if there is no dtor definition in the TU. 2145 if (D && isa<CXXDestructorDecl>(D) && 2146 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2147 GD.getDtorType())) 2148 addDeferredDeclToEmit(GD); 2149 2150 // This is the first use or definition of a mangled name. If there is a 2151 // deferred decl with this name, remember that we need to emit it at the end 2152 // of the file. 2153 auto DDI = DeferredDecls.find(MangledName); 2154 if (DDI != DeferredDecls.end()) { 2155 // Move the potentially referenced deferred decl to the 2156 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2157 // don't need it anymore). 2158 addDeferredDeclToEmit(DDI->second); 2159 DeferredDecls.erase(DDI); 2160 2161 // Otherwise, there are cases we have to worry about where we're 2162 // using a declaration for which we must emit a definition but where 2163 // we might not find a top-level definition: 2164 // - member functions defined inline in their classes 2165 // - friend functions defined inline in some class 2166 // - special member functions with implicit definitions 2167 // If we ever change our AST traversal to walk into class methods, 2168 // this will be unnecessary. 2169 // 2170 // We also don't emit a definition for a function if it's going to be an 2171 // entry in a vtable, unless it's already marked as used. 2172 } else if (getLangOpts().CPlusPlus && D) { 2173 // Look for a declaration that's lexically in a record. 2174 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2175 FD = FD->getPreviousDecl()) { 2176 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2177 if (FD->doesThisDeclarationHaveABody()) { 2178 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2179 break; 2180 } 2181 } 2182 } 2183 } 2184 } 2185 2186 // Make sure the result is of the requested type. 2187 if (!IsIncompleteFunction) { 2188 assert(F->getType()->getElementType() == Ty); 2189 return F; 2190 } 2191 2192 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2193 return llvm::ConstantExpr::getBitCast(F, PTy); 2194 } 2195 2196 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2197 /// non-null, then this function will use the specified type if it has to 2198 /// create it (this occurs when we see a definition of the function). 2199 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2200 llvm::Type *Ty, 2201 bool ForVTable, 2202 bool DontDefer, 2203 ForDefinition_t IsForDefinition) { 2204 // If there was no specific requested type, just convert it now. 2205 if (!Ty) { 2206 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2207 auto CanonTy = Context.getCanonicalType(FD->getType()); 2208 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2209 } 2210 2211 StringRef MangledName = getMangledName(GD); 2212 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2213 /*IsThunk=*/false, llvm::AttributeList(), 2214 IsForDefinition); 2215 } 2216 2217 static const FunctionDecl * 2218 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2219 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2220 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2221 2222 IdentifierInfo &CII = C.Idents.get(Name); 2223 for (const auto &Result : DC->lookup(&CII)) 2224 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2225 return FD; 2226 2227 if (!C.getLangOpts().CPlusPlus) 2228 return nullptr; 2229 2230 // Demangle the premangled name from getTerminateFn() 2231 IdentifierInfo &CXXII = 2232 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2233 ? C.Idents.get("terminate") 2234 : C.Idents.get(Name); 2235 2236 for (const auto &N : {"__cxxabiv1", "std"}) { 2237 IdentifierInfo &NS = C.Idents.get(N); 2238 for (const auto &Result : DC->lookup(&NS)) { 2239 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2240 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2241 for (const auto &Result : LSD->lookup(&NS)) 2242 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2243 break; 2244 2245 if (ND) 2246 for (const auto &Result : ND->lookup(&CXXII)) 2247 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2248 return FD; 2249 } 2250 } 2251 2252 return nullptr; 2253 } 2254 2255 /// CreateRuntimeFunction - Create a new runtime function with the specified 2256 /// type and name. 2257 llvm::Constant * 2258 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2259 llvm::AttributeList ExtraAttrs, 2260 bool Local) { 2261 llvm::Constant *C = 2262 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2263 /*DontDefer=*/false, /*IsThunk=*/false, 2264 ExtraAttrs); 2265 2266 if (auto *F = dyn_cast<llvm::Function>(C)) { 2267 if (F->empty()) { 2268 F->setCallingConv(getRuntimeCC()); 2269 2270 if (!Local && getTriple().isOSBinFormatCOFF() && 2271 !getCodeGenOpts().LTOVisibilityPublicStd) { 2272 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2273 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2274 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2275 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2276 } 2277 } 2278 } 2279 } 2280 2281 return C; 2282 } 2283 2284 /// CreateBuiltinFunction - Create a new builtin function with the specified 2285 /// type and name. 2286 llvm::Constant * 2287 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2288 llvm::AttributeList ExtraAttrs) { 2289 llvm::Constant *C = 2290 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2291 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2292 if (auto *F = dyn_cast<llvm::Function>(C)) 2293 if (F->empty()) 2294 F->setCallingConv(getBuiltinCC()); 2295 return C; 2296 } 2297 2298 /// isTypeConstant - Determine whether an object of this type can be emitted 2299 /// as a constant. 2300 /// 2301 /// If ExcludeCtor is true, the duration when the object's constructor runs 2302 /// will not be considered. The caller will need to verify that the object is 2303 /// not written to during its construction. 2304 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2305 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2306 return false; 2307 2308 if (Context.getLangOpts().CPlusPlus) { 2309 if (const CXXRecordDecl *Record 2310 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2311 return ExcludeCtor && !Record->hasMutableFields() && 2312 Record->hasTrivialDestructor(); 2313 } 2314 2315 return true; 2316 } 2317 2318 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2319 /// create and return an llvm GlobalVariable with the specified type. If there 2320 /// is something in the module with the specified name, return it potentially 2321 /// bitcasted to the right type. 2322 /// 2323 /// If D is non-null, it specifies a decl that correspond to this. This is used 2324 /// to set the attributes on the global when it is first created. 2325 /// 2326 /// If IsForDefinition is true, it is guranteed that an actual global with 2327 /// type Ty will be returned, not conversion of a variable with the same 2328 /// mangled name but some other type. 2329 llvm::Constant * 2330 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2331 llvm::PointerType *Ty, 2332 const VarDecl *D, 2333 ForDefinition_t IsForDefinition) { 2334 // Lookup the entry, lazily creating it if necessary. 2335 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2336 if (Entry) { 2337 if (WeakRefReferences.erase(Entry)) { 2338 if (D && !D->hasAttr<WeakAttr>()) 2339 Entry->setLinkage(llvm::Function::ExternalLinkage); 2340 } 2341 2342 // Handle dropped DLL attributes. 2343 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2344 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2345 2346 if (Entry->getType() == Ty) 2347 return Entry; 2348 2349 // If there are two attempts to define the same mangled name, issue an 2350 // error. 2351 if (IsForDefinition && !Entry->isDeclaration()) { 2352 GlobalDecl OtherGD; 2353 const VarDecl *OtherD; 2354 2355 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2356 // to make sure that we issue an error only once. 2357 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2358 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2359 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2360 OtherD->hasInit() && 2361 DiagnosedConflictingDefinitions.insert(D).second) { 2362 getDiags().Report(D->getLocation(), 2363 diag::err_duplicate_mangled_name); 2364 getDiags().Report(OtherGD.getDecl()->getLocation(), 2365 diag::note_previous_definition); 2366 } 2367 } 2368 2369 // Make sure the result is of the correct type. 2370 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2371 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2372 2373 // (If global is requested for a definition, we always need to create a new 2374 // global, not just return a bitcast.) 2375 if (!IsForDefinition) 2376 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2377 } 2378 2379 auto AddrSpace = GetGlobalVarAddressSpace(D); 2380 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2381 2382 auto *GV = new llvm::GlobalVariable( 2383 getModule(), Ty->getElementType(), false, 2384 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2385 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2386 2387 // If we already created a global with the same mangled name (but different 2388 // type) before, take its name and remove it from its parent. 2389 if (Entry) { 2390 GV->takeName(Entry); 2391 2392 if (!Entry->use_empty()) { 2393 llvm::Constant *NewPtrForOldDecl = 2394 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2395 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2396 } 2397 2398 Entry->eraseFromParent(); 2399 } 2400 2401 // This is the first use or definition of a mangled name. If there is a 2402 // deferred decl with this name, remember that we need to emit it at the end 2403 // of the file. 2404 auto DDI = DeferredDecls.find(MangledName); 2405 if (DDI != DeferredDecls.end()) { 2406 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2407 // list, and remove it from DeferredDecls (since we don't need it anymore). 2408 addDeferredDeclToEmit(DDI->second); 2409 DeferredDecls.erase(DDI); 2410 } 2411 2412 // Handle things which are present even on external declarations. 2413 if (D) { 2414 // FIXME: This code is overly simple and should be merged with other global 2415 // handling. 2416 GV->setConstant(isTypeConstant(D->getType(), false)); 2417 2418 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2419 2420 setLinkageAndVisibilityForGV(GV, D); 2421 2422 if (D->getTLSKind()) { 2423 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2424 CXXThreadLocals.push_back(D); 2425 setTLSMode(GV, *D); 2426 } 2427 2428 // If required by the ABI, treat declarations of static data members with 2429 // inline initializers as definitions. 2430 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2431 EmitGlobalVarDefinition(D); 2432 } 2433 2434 // Handle XCore specific ABI requirements. 2435 if (getTriple().getArch() == llvm::Triple::xcore && 2436 D->getLanguageLinkage() == CLanguageLinkage && 2437 D->getType().isConstant(Context) && 2438 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2439 GV->setSection(".cp.rodata"); 2440 } 2441 2442 auto ExpectedAS = 2443 D ? D->getType().getAddressSpace() 2444 : static_cast<unsigned>(LangOpts.OpenCL ? LangAS::opencl_global 2445 : LangAS::Default); 2446 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2447 Ty->getPointerAddressSpace()); 2448 if (AddrSpace != ExpectedAS) 2449 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2450 ExpectedAS, Ty); 2451 2452 return GV; 2453 } 2454 2455 llvm::Constant * 2456 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2457 ForDefinition_t IsForDefinition) { 2458 const Decl *D = GD.getDecl(); 2459 if (isa<CXXConstructorDecl>(D)) 2460 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2461 getFromCtorType(GD.getCtorType()), 2462 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2463 /*DontDefer=*/false, IsForDefinition); 2464 else if (isa<CXXDestructorDecl>(D)) 2465 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2466 getFromDtorType(GD.getDtorType()), 2467 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2468 /*DontDefer=*/false, IsForDefinition); 2469 else if (isa<CXXMethodDecl>(D)) { 2470 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2471 cast<CXXMethodDecl>(D)); 2472 auto Ty = getTypes().GetFunctionType(*FInfo); 2473 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2474 IsForDefinition); 2475 } else if (isa<FunctionDecl>(D)) { 2476 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2477 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2478 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2479 IsForDefinition); 2480 } else 2481 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2482 IsForDefinition); 2483 } 2484 2485 llvm::GlobalVariable * 2486 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2487 llvm::Type *Ty, 2488 llvm::GlobalValue::LinkageTypes Linkage) { 2489 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2490 llvm::GlobalVariable *OldGV = nullptr; 2491 2492 if (GV) { 2493 // Check if the variable has the right type. 2494 if (GV->getType()->getElementType() == Ty) 2495 return GV; 2496 2497 // Because C++ name mangling, the only way we can end up with an already 2498 // existing global with the same name is if it has been declared extern "C". 2499 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2500 OldGV = GV; 2501 } 2502 2503 // Create a new variable. 2504 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2505 Linkage, nullptr, Name); 2506 2507 if (OldGV) { 2508 // Replace occurrences of the old variable if needed. 2509 GV->takeName(OldGV); 2510 2511 if (!OldGV->use_empty()) { 2512 llvm::Constant *NewPtrForOldDecl = 2513 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2514 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2515 } 2516 2517 OldGV->eraseFromParent(); 2518 } 2519 2520 if (supportsCOMDAT() && GV->isWeakForLinker() && 2521 !GV->hasAvailableExternallyLinkage()) 2522 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2523 2524 return GV; 2525 } 2526 2527 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2528 /// given global variable. If Ty is non-null and if the global doesn't exist, 2529 /// then it will be created with the specified type instead of whatever the 2530 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2531 /// that an actual global with type Ty will be returned, not conversion of a 2532 /// variable with the same mangled name but some other type. 2533 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2534 llvm::Type *Ty, 2535 ForDefinition_t IsForDefinition) { 2536 assert(D->hasGlobalStorage() && "Not a global variable"); 2537 QualType ASTTy = D->getType(); 2538 if (!Ty) 2539 Ty = getTypes().ConvertTypeForMem(ASTTy); 2540 2541 llvm::PointerType *PTy = 2542 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2543 2544 StringRef MangledName = getMangledName(D); 2545 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2546 } 2547 2548 /// CreateRuntimeVariable - Create a new runtime global variable with the 2549 /// specified type and name. 2550 llvm::Constant * 2551 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2552 StringRef Name) { 2553 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2554 } 2555 2556 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2557 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2558 2559 StringRef MangledName = getMangledName(D); 2560 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2561 2562 // We already have a definition, not declaration, with the same mangled name. 2563 // Emitting of declaration is not required (and actually overwrites emitted 2564 // definition). 2565 if (GV && !GV->isDeclaration()) 2566 return; 2567 2568 // If we have not seen a reference to this variable yet, place it into the 2569 // deferred declarations table to be emitted if needed later. 2570 if (!MustBeEmitted(D) && !GV) { 2571 DeferredDecls[MangledName] = D; 2572 return; 2573 } 2574 2575 // The tentative definition is the only definition. 2576 EmitGlobalVarDefinition(D); 2577 } 2578 2579 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2580 return Context.toCharUnitsFromBits( 2581 getDataLayout().getTypeStoreSizeInBits(Ty)); 2582 } 2583 2584 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2585 unsigned AddrSpace; 2586 if (LangOpts.OpenCL) { 2587 AddrSpace = D ? D->getType().getAddressSpace() 2588 : static_cast<unsigned>(LangAS::opencl_global); 2589 assert(AddrSpace == LangAS::opencl_global || 2590 AddrSpace == LangAS::opencl_constant || 2591 AddrSpace == LangAS::opencl_local || 2592 AddrSpace >= LangAS::FirstTargetAddressSpace); 2593 return AddrSpace; 2594 } 2595 2596 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2597 if (D && D->hasAttr<CUDAConstantAttr>()) 2598 return LangAS::cuda_constant; 2599 else if (D && D->hasAttr<CUDASharedAttr>()) 2600 return LangAS::cuda_shared; 2601 else 2602 return LangAS::cuda_device; 2603 } 2604 2605 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2606 } 2607 2608 template<typename SomeDecl> 2609 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2610 llvm::GlobalValue *GV) { 2611 if (!getLangOpts().CPlusPlus) 2612 return; 2613 2614 // Must have 'used' attribute, or else inline assembly can't rely on 2615 // the name existing. 2616 if (!D->template hasAttr<UsedAttr>()) 2617 return; 2618 2619 // Must have internal linkage and an ordinary name. 2620 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2621 return; 2622 2623 // Must be in an extern "C" context. Entities declared directly within 2624 // a record are not extern "C" even if the record is in such a context. 2625 const SomeDecl *First = D->getFirstDecl(); 2626 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2627 return; 2628 2629 // OK, this is an internal linkage entity inside an extern "C" linkage 2630 // specification. Make a note of that so we can give it the "expected" 2631 // mangled name if nothing else is using that name. 2632 std::pair<StaticExternCMap::iterator, bool> R = 2633 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2634 2635 // If we have multiple internal linkage entities with the same name 2636 // in extern "C" regions, none of them gets that name. 2637 if (!R.second) 2638 R.first->second = nullptr; 2639 } 2640 2641 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2642 if (!CGM.supportsCOMDAT()) 2643 return false; 2644 2645 if (D.hasAttr<SelectAnyAttr>()) 2646 return true; 2647 2648 GVALinkage Linkage; 2649 if (auto *VD = dyn_cast<VarDecl>(&D)) 2650 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2651 else 2652 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2653 2654 switch (Linkage) { 2655 case GVA_Internal: 2656 case GVA_AvailableExternally: 2657 case GVA_StrongExternal: 2658 return false; 2659 case GVA_DiscardableODR: 2660 case GVA_StrongODR: 2661 return true; 2662 } 2663 llvm_unreachable("No such linkage"); 2664 } 2665 2666 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2667 llvm::GlobalObject &GO) { 2668 if (!shouldBeInCOMDAT(*this, D)) 2669 return; 2670 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2671 } 2672 2673 /// Pass IsTentative as true if you want to create a tentative definition. 2674 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2675 bool IsTentative) { 2676 // OpenCL global variables of sampler type are translated to function calls, 2677 // therefore no need to be translated. 2678 QualType ASTTy = D->getType(); 2679 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2680 return; 2681 2682 llvm::Constant *Init = nullptr; 2683 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2684 bool NeedsGlobalCtor = false; 2685 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2686 2687 const VarDecl *InitDecl; 2688 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2689 2690 Optional<ConstantEmitter> emitter; 2691 2692 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2693 // as part of their declaration." Sema has already checked for 2694 // error cases, so we just need to set Init to UndefValue. 2695 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2696 D->hasAttr<CUDASharedAttr>()) 2697 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2698 else if (!InitExpr) { 2699 // This is a tentative definition; tentative definitions are 2700 // implicitly initialized with { 0 }. 2701 // 2702 // Note that tentative definitions are only emitted at the end of 2703 // a translation unit, so they should never have incomplete 2704 // type. In addition, EmitTentativeDefinition makes sure that we 2705 // never attempt to emit a tentative definition if a real one 2706 // exists. A use may still exists, however, so we still may need 2707 // to do a RAUW. 2708 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2709 Init = EmitNullConstant(D->getType()); 2710 } else { 2711 initializedGlobalDecl = GlobalDecl(D); 2712 emitter.emplace(*this); 2713 Init = emitter->tryEmitForInitializer(*InitDecl); 2714 2715 if (!Init) { 2716 QualType T = InitExpr->getType(); 2717 if (D->getType()->isReferenceType()) 2718 T = D->getType(); 2719 2720 if (getLangOpts().CPlusPlus) { 2721 Init = EmitNullConstant(T); 2722 NeedsGlobalCtor = true; 2723 } else { 2724 ErrorUnsupported(D, "static initializer"); 2725 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2726 } 2727 } else { 2728 // We don't need an initializer, so remove the entry for the delayed 2729 // initializer position (just in case this entry was delayed) if we 2730 // also don't need to register a destructor. 2731 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2732 DelayedCXXInitPosition.erase(D); 2733 } 2734 } 2735 2736 llvm::Type* InitType = Init->getType(); 2737 llvm::Constant *Entry = 2738 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2739 2740 // Strip off a bitcast if we got one back. 2741 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2742 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2743 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2744 // All zero index gep. 2745 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2746 Entry = CE->getOperand(0); 2747 } 2748 2749 // Entry is now either a Function or GlobalVariable. 2750 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2751 2752 // We have a definition after a declaration with the wrong type. 2753 // We must make a new GlobalVariable* and update everything that used OldGV 2754 // (a declaration or tentative definition) with the new GlobalVariable* 2755 // (which will be a definition). 2756 // 2757 // This happens if there is a prototype for a global (e.g. 2758 // "extern int x[];") and then a definition of a different type (e.g. 2759 // "int x[10];"). This also happens when an initializer has a different type 2760 // from the type of the global (this happens with unions). 2761 if (!GV || GV->getType()->getElementType() != InitType || 2762 GV->getType()->getAddressSpace() != 2763 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2764 2765 // Move the old entry aside so that we'll create a new one. 2766 Entry->setName(StringRef()); 2767 2768 // Make a new global with the correct type, this is now guaranteed to work. 2769 GV = cast<llvm::GlobalVariable>( 2770 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2771 2772 // Replace all uses of the old global with the new global 2773 llvm::Constant *NewPtrForOldDecl = 2774 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2775 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2776 2777 // Erase the old global, since it is no longer used. 2778 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2779 } 2780 2781 MaybeHandleStaticInExternC(D, GV); 2782 2783 if (D->hasAttr<AnnotateAttr>()) 2784 AddGlobalAnnotations(D, GV); 2785 2786 // Set the llvm linkage type as appropriate. 2787 llvm::GlobalValue::LinkageTypes Linkage = 2788 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2789 2790 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2791 // the device. [...]" 2792 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2793 // __device__, declares a variable that: [...] 2794 // Is accessible from all the threads within the grid and from the host 2795 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2796 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2797 if (GV && LangOpts.CUDA) { 2798 if (LangOpts.CUDAIsDevice) { 2799 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2800 GV->setExternallyInitialized(true); 2801 } else { 2802 // Host-side shadows of external declarations of device-side 2803 // global variables become internal definitions. These have to 2804 // be internal in order to prevent name conflicts with global 2805 // host variables with the same name in a different TUs. 2806 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2807 Linkage = llvm::GlobalValue::InternalLinkage; 2808 2809 // Shadow variables and their properties must be registered 2810 // with CUDA runtime. 2811 unsigned Flags = 0; 2812 if (!D->hasDefinition()) 2813 Flags |= CGCUDARuntime::ExternDeviceVar; 2814 if (D->hasAttr<CUDAConstantAttr>()) 2815 Flags |= CGCUDARuntime::ConstantDeviceVar; 2816 getCUDARuntime().registerDeviceVar(*GV, Flags); 2817 } else if (D->hasAttr<CUDASharedAttr>()) 2818 // __shared__ variables are odd. Shadows do get created, but 2819 // they are not registered with the CUDA runtime, so they 2820 // can't really be used to access their device-side 2821 // counterparts. It's not clear yet whether it's nvcc's bug or 2822 // a feature, but we've got to do the same for compatibility. 2823 Linkage = llvm::GlobalValue::InternalLinkage; 2824 } 2825 } 2826 2827 GV->setInitializer(Init); 2828 if (emitter) emitter->finalize(GV); 2829 2830 // If it is safe to mark the global 'constant', do so now. 2831 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2832 isTypeConstant(D->getType(), true)); 2833 2834 // If it is in a read-only section, mark it 'constant'. 2835 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2836 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2837 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2838 GV->setConstant(true); 2839 } 2840 2841 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2842 2843 2844 // On Darwin, if the normal linkage of a C++ thread_local variable is 2845 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2846 // copies within a linkage unit; otherwise, the backing variable has 2847 // internal linkage and all accesses should just be calls to the 2848 // Itanium-specified entry point, which has the normal linkage of the 2849 // variable. This is to preserve the ability to change the implementation 2850 // behind the scenes. 2851 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2852 Context.getTargetInfo().getTriple().isOSDarwin() && 2853 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2854 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2855 Linkage = llvm::GlobalValue::InternalLinkage; 2856 2857 GV->setLinkage(Linkage); 2858 if (D->hasAttr<DLLImportAttr>()) 2859 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2860 else if (D->hasAttr<DLLExportAttr>()) 2861 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2862 else 2863 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2864 2865 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2866 // common vars aren't constant even if declared const. 2867 GV->setConstant(false); 2868 // Tentative definition of global variables may be initialized with 2869 // non-zero null pointers. In this case they should have weak linkage 2870 // since common linkage must have zero initializer and must not have 2871 // explicit section therefore cannot have non-zero initial value. 2872 if (!GV->getInitializer()->isNullValue()) 2873 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2874 } 2875 2876 setNonAliasAttributes(D, GV); 2877 2878 if (D->getTLSKind() && !GV->isThreadLocal()) { 2879 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2880 CXXThreadLocals.push_back(D); 2881 setTLSMode(GV, *D); 2882 } 2883 2884 maybeSetTrivialComdat(*D, *GV); 2885 2886 // Emit the initializer function if necessary. 2887 if (NeedsGlobalCtor || NeedsGlobalDtor) 2888 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2889 2890 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2891 2892 // Emit global variable debug information. 2893 if (CGDebugInfo *DI = getModuleDebugInfo()) 2894 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2895 DI->EmitGlobalVariable(GV, D); 2896 } 2897 2898 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2899 CodeGenModule &CGM, const VarDecl *D, 2900 bool NoCommon) { 2901 // Don't give variables common linkage if -fno-common was specified unless it 2902 // was overridden by a NoCommon attribute. 2903 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2904 return true; 2905 2906 // C11 6.9.2/2: 2907 // A declaration of an identifier for an object that has file scope without 2908 // an initializer, and without a storage-class specifier or with the 2909 // storage-class specifier static, constitutes a tentative definition. 2910 if (D->getInit() || D->hasExternalStorage()) 2911 return true; 2912 2913 // A variable cannot be both common and exist in a section. 2914 if (D->hasAttr<SectionAttr>()) 2915 return true; 2916 2917 // A variable cannot be both common and exist in a section. 2918 // We dont try to determine which is the right section in the front-end. 2919 // If no specialized section name is applicable, it will resort to default. 2920 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2921 D->hasAttr<PragmaClangDataSectionAttr>() || 2922 D->hasAttr<PragmaClangRodataSectionAttr>()) 2923 return true; 2924 2925 // Thread local vars aren't considered common linkage. 2926 if (D->getTLSKind()) 2927 return true; 2928 2929 // Tentative definitions marked with WeakImportAttr are true definitions. 2930 if (D->hasAttr<WeakImportAttr>()) 2931 return true; 2932 2933 // A variable cannot be both common and exist in a comdat. 2934 if (shouldBeInCOMDAT(CGM, *D)) 2935 return true; 2936 2937 // Declarations with a required alignment do not have common linkage in MSVC 2938 // mode. 2939 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2940 if (D->hasAttr<AlignedAttr>()) 2941 return true; 2942 QualType VarType = D->getType(); 2943 if (Context.isAlignmentRequired(VarType)) 2944 return true; 2945 2946 if (const auto *RT = VarType->getAs<RecordType>()) { 2947 const RecordDecl *RD = RT->getDecl(); 2948 for (const FieldDecl *FD : RD->fields()) { 2949 if (FD->isBitField()) 2950 continue; 2951 if (FD->hasAttr<AlignedAttr>()) 2952 return true; 2953 if (Context.isAlignmentRequired(FD->getType())) 2954 return true; 2955 } 2956 } 2957 } 2958 2959 return false; 2960 } 2961 2962 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2963 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2964 if (Linkage == GVA_Internal) 2965 return llvm::Function::InternalLinkage; 2966 2967 if (D->hasAttr<WeakAttr>()) { 2968 if (IsConstantVariable) 2969 return llvm::GlobalVariable::WeakODRLinkage; 2970 else 2971 return llvm::GlobalVariable::WeakAnyLinkage; 2972 } 2973 2974 // We are guaranteed to have a strong definition somewhere else, 2975 // so we can use available_externally linkage. 2976 if (Linkage == GVA_AvailableExternally) 2977 return llvm::GlobalValue::AvailableExternallyLinkage; 2978 2979 // Note that Apple's kernel linker doesn't support symbol 2980 // coalescing, so we need to avoid linkonce and weak linkages there. 2981 // Normally, this means we just map to internal, but for explicit 2982 // instantiations we'll map to external. 2983 2984 // In C++, the compiler has to emit a definition in every translation unit 2985 // that references the function. We should use linkonce_odr because 2986 // a) if all references in this translation unit are optimized away, we 2987 // don't need to codegen it. b) if the function persists, it needs to be 2988 // merged with other definitions. c) C++ has the ODR, so we know the 2989 // definition is dependable. 2990 if (Linkage == GVA_DiscardableODR) 2991 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2992 : llvm::Function::InternalLinkage; 2993 2994 // An explicit instantiation of a template has weak linkage, since 2995 // explicit instantiations can occur in multiple translation units 2996 // and must all be equivalent. However, we are not allowed to 2997 // throw away these explicit instantiations. 2998 // 2999 // We don't currently support CUDA device code spread out across multiple TUs, 3000 // so say that CUDA templates are either external (for kernels) or internal. 3001 // This lets llvm perform aggressive inter-procedural optimizations. 3002 if (Linkage == GVA_StrongODR) { 3003 if (Context.getLangOpts().AppleKext) 3004 return llvm::Function::ExternalLinkage; 3005 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3006 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3007 : llvm::Function::InternalLinkage; 3008 return llvm::Function::WeakODRLinkage; 3009 } 3010 3011 // C++ doesn't have tentative definitions and thus cannot have common 3012 // linkage. 3013 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3014 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3015 CodeGenOpts.NoCommon)) 3016 return llvm::GlobalVariable::CommonLinkage; 3017 3018 // selectany symbols are externally visible, so use weak instead of 3019 // linkonce. MSVC optimizes away references to const selectany globals, so 3020 // all definitions should be the same and ODR linkage should be used. 3021 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3022 if (D->hasAttr<SelectAnyAttr>()) 3023 return llvm::GlobalVariable::WeakODRLinkage; 3024 3025 // Otherwise, we have strong external linkage. 3026 assert(Linkage == GVA_StrongExternal); 3027 return llvm::GlobalVariable::ExternalLinkage; 3028 } 3029 3030 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3031 const VarDecl *VD, bool IsConstant) { 3032 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3033 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3034 } 3035 3036 /// Replace the uses of a function that was declared with a non-proto type. 3037 /// We want to silently drop extra arguments from call sites 3038 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3039 llvm::Function *newFn) { 3040 // Fast path. 3041 if (old->use_empty()) return; 3042 3043 llvm::Type *newRetTy = newFn->getReturnType(); 3044 SmallVector<llvm::Value*, 4> newArgs; 3045 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3046 3047 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3048 ui != ue; ) { 3049 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3050 llvm::User *user = use->getUser(); 3051 3052 // Recognize and replace uses of bitcasts. Most calls to 3053 // unprototyped functions will use bitcasts. 3054 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3055 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3056 replaceUsesOfNonProtoConstant(bitcast, newFn); 3057 continue; 3058 } 3059 3060 // Recognize calls to the function. 3061 llvm::CallSite callSite(user); 3062 if (!callSite) continue; 3063 if (!callSite.isCallee(&*use)) continue; 3064 3065 // If the return types don't match exactly, then we can't 3066 // transform this call unless it's dead. 3067 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3068 continue; 3069 3070 // Get the call site's attribute list. 3071 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3072 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3073 3074 // If the function was passed too few arguments, don't transform. 3075 unsigned newNumArgs = newFn->arg_size(); 3076 if (callSite.arg_size() < newNumArgs) continue; 3077 3078 // If extra arguments were passed, we silently drop them. 3079 // If any of the types mismatch, we don't transform. 3080 unsigned argNo = 0; 3081 bool dontTransform = false; 3082 for (llvm::Argument &A : newFn->args()) { 3083 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3084 dontTransform = true; 3085 break; 3086 } 3087 3088 // Add any parameter attributes. 3089 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3090 argNo++; 3091 } 3092 if (dontTransform) 3093 continue; 3094 3095 // Okay, we can transform this. Create the new call instruction and copy 3096 // over the required information. 3097 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3098 3099 // Copy over any operand bundles. 3100 callSite.getOperandBundlesAsDefs(newBundles); 3101 3102 llvm::CallSite newCall; 3103 if (callSite.isCall()) { 3104 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3105 callSite.getInstruction()); 3106 } else { 3107 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3108 newCall = llvm::InvokeInst::Create(newFn, 3109 oldInvoke->getNormalDest(), 3110 oldInvoke->getUnwindDest(), 3111 newArgs, newBundles, "", 3112 callSite.getInstruction()); 3113 } 3114 newArgs.clear(); // for the next iteration 3115 3116 if (!newCall->getType()->isVoidTy()) 3117 newCall->takeName(callSite.getInstruction()); 3118 newCall.setAttributes(llvm::AttributeList::get( 3119 newFn->getContext(), oldAttrs.getFnAttributes(), 3120 oldAttrs.getRetAttributes(), newArgAttrs)); 3121 newCall.setCallingConv(callSite.getCallingConv()); 3122 3123 // Finally, remove the old call, replacing any uses with the new one. 3124 if (!callSite->use_empty()) 3125 callSite->replaceAllUsesWith(newCall.getInstruction()); 3126 3127 // Copy debug location attached to CI. 3128 if (callSite->getDebugLoc()) 3129 newCall->setDebugLoc(callSite->getDebugLoc()); 3130 3131 callSite->eraseFromParent(); 3132 } 3133 } 3134 3135 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3136 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3137 /// existing call uses of the old function in the module, this adjusts them to 3138 /// call the new function directly. 3139 /// 3140 /// This is not just a cleanup: the always_inline pass requires direct calls to 3141 /// functions to be able to inline them. If there is a bitcast in the way, it 3142 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3143 /// run at -O0. 3144 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3145 llvm::Function *NewFn) { 3146 // If we're redefining a global as a function, don't transform it. 3147 if (!isa<llvm::Function>(Old)) return; 3148 3149 replaceUsesOfNonProtoConstant(Old, NewFn); 3150 } 3151 3152 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3153 auto DK = VD->isThisDeclarationADefinition(); 3154 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3155 return; 3156 3157 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3158 // If we have a definition, this might be a deferred decl. If the 3159 // instantiation is explicit, make sure we emit it at the end. 3160 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3161 GetAddrOfGlobalVar(VD); 3162 3163 EmitTopLevelDecl(VD); 3164 } 3165 3166 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3167 llvm::GlobalValue *GV) { 3168 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3169 3170 // Compute the function info and LLVM type. 3171 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3172 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3173 3174 // Get or create the prototype for the function. 3175 if (!GV || (GV->getType()->getElementType() != Ty)) 3176 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3177 /*DontDefer=*/true, 3178 ForDefinition)); 3179 3180 // Already emitted. 3181 if (!GV->isDeclaration()) 3182 return; 3183 3184 // We need to set linkage and visibility on the function before 3185 // generating code for it because various parts of IR generation 3186 // want to propagate this information down (e.g. to local static 3187 // declarations). 3188 auto *Fn = cast<llvm::Function>(GV); 3189 setFunctionLinkage(GD, Fn); 3190 setFunctionDLLStorageClass(GD, Fn); 3191 3192 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3193 setGlobalVisibility(Fn, D); 3194 3195 MaybeHandleStaticInExternC(D, Fn); 3196 3197 maybeSetTrivialComdat(*D, *Fn); 3198 3199 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3200 3201 setFunctionDefinitionAttributes(D, Fn); 3202 SetLLVMFunctionAttributesForDefinition(D, Fn); 3203 3204 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3205 AddGlobalCtor(Fn, CA->getPriority()); 3206 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3207 AddGlobalDtor(Fn, DA->getPriority()); 3208 if (D->hasAttr<AnnotateAttr>()) 3209 AddGlobalAnnotations(D, Fn); 3210 } 3211 3212 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3213 const auto *D = cast<ValueDecl>(GD.getDecl()); 3214 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3215 assert(AA && "Not an alias?"); 3216 3217 StringRef MangledName = getMangledName(GD); 3218 3219 if (AA->getAliasee() == MangledName) { 3220 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3221 return; 3222 } 3223 3224 // If there is a definition in the module, then it wins over the alias. 3225 // This is dubious, but allow it to be safe. Just ignore the alias. 3226 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3227 if (Entry && !Entry->isDeclaration()) 3228 return; 3229 3230 Aliases.push_back(GD); 3231 3232 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3233 3234 // Create a reference to the named value. This ensures that it is emitted 3235 // if a deferred decl. 3236 llvm::Constant *Aliasee; 3237 if (isa<llvm::FunctionType>(DeclTy)) 3238 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3239 /*ForVTable=*/false); 3240 else 3241 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3242 llvm::PointerType::getUnqual(DeclTy), 3243 /*D=*/nullptr); 3244 3245 // Create the new alias itself, but don't set a name yet. 3246 auto *GA = llvm::GlobalAlias::create( 3247 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3248 3249 if (Entry) { 3250 if (GA->getAliasee() == Entry) { 3251 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3252 return; 3253 } 3254 3255 assert(Entry->isDeclaration()); 3256 3257 // If there is a declaration in the module, then we had an extern followed 3258 // by the alias, as in: 3259 // extern int test6(); 3260 // ... 3261 // int test6() __attribute__((alias("test7"))); 3262 // 3263 // Remove it and replace uses of it with the alias. 3264 GA->takeName(Entry); 3265 3266 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3267 Entry->getType())); 3268 Entry->eraseFromParent(); 3269 } else { 3270 GA->setName(MangledName); 3271 } 3272 3273 // Set attributes which are particular to an alias; this is a 3274 // specialization of the attributes which may be set on a global 3275 // variable/function. 3276 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3277 D->isWeakImported()) { 3278 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3279 } 3280 3281 if (const auto *VD = dyn_cast<VarDecl>(D)) 3282 if (VD->getTLSKind()) 3283 setTLSMode(GA, *VD); 3284 3285 setAliasAttributes(D, GA); 3286 } 3287 3288 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3289 const auto *D = cast<ValueDecl>(GD.getDecl()); 3290 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3291 assert(IFA && "Not an ifunc?"); 3292 3293 StringRef MangledName = getMangledName(GD); 3294 3295 if (IFA->getResolver() == MangledName) { 3296 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3297 return; 3298 } 3299 3300 // Report an error if some definition overrides ifunc. 3301 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3302 if (Entry && !Entry->isDeclaration()) { 3303 GlobalDecl OtherGD; 3304 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3305 DiagnosedConflictingDefinitions.insert(GD).second) { 3306 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3307 Diags.Report(OtherGD.getDecl()->getLocation(), 3308 diag::note_previous_definition); 3309 } 3310 return; 3311 } 3312 3313 Aliases.push_back(GD); 3314 3315 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3316 llvm::Constant *Resolver = 3317 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3318 /*ForVTable=*/false); 3319 llvm::GlobalIFunc *GIF = 3320 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3321 "", Resolver, &getModule()); 3322 if (Entry) { 3323 if (GIF->getResolver() == Entry) { 3324 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3325 return; 3326 } 3327 assert(Entry->isDeclaration()); 3328 3329 // If there is a declaration in the module, then we had an extern followed 3330 // by the ifunc, as in: 3331 // extern int test(); 3332 // ... 3333 // int test() __attribute__((ifunc("resolver"))); 3334 // 3335 // Remove it and replace uses of it with the ifunc. 3336 GIF->takeName(Entry); 3337 3338 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3339 Entry->getType())); 3340 Entry->eraseFromParent(); 3341 } else 3342 GIF->setName(MangledName); 3343 3344 SetCommonAttributes(D, GIF); 3345 } 3346 3347 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3348 ArrayRef<llvm::Type*> Tys) { 3349 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3350 Tys); 3351 } 3352 3353 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3354 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3355 const StringLiteral *Literal, bool TargetIsLSB, 3356 bool &IsUTF16, unsigned &StringLength) { 3357 StringRef String = Literal->getString(); 3358 unsigned NumBytes = String.size(); 3359 3360 // Check for simple case. 3361 if (!Literal->containsNonAsciiOrNull()) { 3362 StringLength = NumBytes; 3363 return *Map.insert(std::make_pair(String, nullptr)).first; 3364 } 3365 3366 // Otherwise, convert the UTF8 literals into a string of shorts. 3367 IsUTF16 = true; 3368 3369 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3370 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3371 llvm::UTF16 *ToPtr = &ToBuf[0]; 3372 3373 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3374 ToPtr + NumBytes, llvm::strictConversion); 3375 3376 // ConvertUTF8toUTF16 returns the length in ToPtr. 3377 StringLength = ToPtr - &ToBuf[0]; 3378 3379 // Add an explicit null. 3380 *ToPtr = 0; 3381 return *Map.insert(std::make_pair( 3382 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3383 (StringLength + 1) * 2), 3384 nullptr)).first; 3385 } 3386 3387 ConstantAddress 3388 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3389 unsigned StringLength = 0; 3390 bool isUTF16 = false; 3391 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3392 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3393 getDataLayout().isLittleEndian(), isUTF16, 3394 StringLength); 3395 3396 if (auto *C = Entry.second) 3397 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3398 3399 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3400 llvm::Constant *Zeros[] = { Zero, Zero }; 3401 3402 // If we don't already have it, get __CFConstantStringClassReference. 3403 if (!CFConstantStringClassRef) { 3404 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3405 Ty = llvm::ArrayType::get(Ty, 0); 3406 llvm::Constant *GV = 3407 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3408 3409 if (getTriple().isOSBinFormatCOFF()) { 3410 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3411 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3412 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3413 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3414 3415 const VarDecl *VD = nullptr; 3416 for (const auto &Result : DC->lookup(&II)) 3417 if ((VD = dyn_cast<VarDecl>(Result))) 3418 break; 3419 3420 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3421 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3422 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3423 } else { 3424 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3425 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3426 } 3427 } 3428 3429 // Decay array -> ptr 3430 CFConstantStringClassRef = 3431 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3432 } 3433 3434 QualType CFTy = getContext().getCFConstantStringType(); 3435 3436 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3437 3438 ConstantInitBuilder Builder(*this); 3439 auto Fields = Builder.beginStruct(STy); 3440 3441 // Class pointer. 3442 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3443 3444 // Flags. 3445 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3446 3447 // String pointer. 3448 llvm::Constant *C = nullptr; 3449 if (isUTF16) { 3450 auto Arr = llvm::makeArrayRef( 3451 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3452 Entry.first().size() / 2); 3453 C = llvm::ConstantDataArray::get(VMContext, Arr); 3454 } else { 3455 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3456 } 3457 3458 // Note: -fwritable-strings doesn't make the backing store strings of 3459 // CFStrings writable. (See <rdar://problem/10657500>) 3460 auto *GV = 3461 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3462 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3463 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3464 // Don't enforce the target's minimum global alignment, since the only use 3465 // of the string is via this class initializer. 3466 CharUnits Align = isUTF16 3467 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3468 : getContext().getTypeAlignInChars(getContext().CharTy); 3469 GV->setAlignment(Align.getQuantity()); 3470 3471 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3472 // Without it LLVM can merge the string with a non unnamed_addr one during 3473 // LTO. Doing that changes the section it ends in, which surprises ld64. 3474 if (getTriple().isOSBinFormatMachO()) 3475 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3476 : "__TEXT,__cstring,cstring_literals"); 3477 3478 // String. 3479 llvm::Constant *Str = 3480 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3481 3482 if (isUTF16) 3483 // Cast the UTF16 string to the correct type. 3484 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3485 Fields.add(Str); 3486 3487 // String length. 3488 auto Ty = getTypes().ConvertType(getContext().LongTy); 3489 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3490 3491 CharUnits Alignment = getPointerAlign(); 3492 3493 // The struct. 3494 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3495 /*isConstant=*/false, 3496 llvm::GlobalVariable::PrivateLinkage); 3497 switch (getTriple().getObjectFormat()) { 3498 case llvm::Triple::UnknownObjectFormat: 3499 llvm_unreachable("unknown file format"); 3500 case llvm::Triple::COFF: 3501 case llvm::Triple::ELF: 3502 case llvm::Triple::Wasm: 3503 GV->setSection("cfstring"); 3504 break; 3505 case llvm::Triple::MachO: 3506 GV->setSection("__DATA,__cfstring"); 3507 break; 3508 } 3509 Entry.second = GV; 3510 3511 return ConstantAddress(GV, Alignment); 3512 } 3513 3514 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3515 if (ObjCFastEnumerationStateType.isNull()) { 3516 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3517 D->startDefinition(); 3518 3519 QualType FieldTypes[] = { 3520 Context.UnsignedLongTy, 3521 Context.getPointerType(Context.getObjCIdType()), 3522 Context.getPointerType(Context.UnsignedLongTy), 3523 Context.getConstantArrayType(Context.UnsignedLongTy, 3524 llvm::APInt(32, 5), ArrayType::Normal, 0) 3525 }; 3526 3527 for (size_t i = 0; i < 4; ++i) { 3528 FieldDecl *Field = FieldDecl::Create(Context, 3529 D, 3530 SourceLocation(), 3531 SourceLocation(), nullptr, 3532 FieldTypes[i], /*TInfo=*/nullptr, 3533 /*BitWidth=*/nullptr, 3534 /*Mutable=*/false, 3535 ICIS_NoInit); 3536 Field->setAccess(AS_public); 3537 D->addDecl(Field); 3538 } 3539 3540 D->completeDefinition(); 3541 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3542 } 3543 3544 return ObjCFastEnumerationStateType; 3545 } 3546 3547 llvm::Constant * 3548 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3549 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3550 3551 // Don't emit it as the address of the string, emit the string data itself 3552 // as an inline array. 3553 if (E->getCharByteWidth() == 1) { 3554 SmallString<64> Str(E->getString()); 3555 3556 // Resize the string to the right size, which is indicated by its type. 3557 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3558 Str.resize(CAT->getSize().getZExtValue()); 3559 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3560 } 3561 3562 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3563 llvm::Type *ElemTy = AType->getElementType(); 3564 unsigned NumElements = AType->getNumElements(); 3565 3566 // Wide strings have either 2-byte or 4-byte elements. 3567 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3568 SmallVector<uint16_t, 32> Elements; 3569 Elements.reserve(NumElements); 3570 3571 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3572 Elements.push_back(E->getCodeUnit(i)); 3573 Elements.resize(NumElements); 3574 return llvm::ConstantDataArray::get(VMContext, Elements); 3575 } 3576 3577 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3578 SmallVector<uint32_t, 32> Elements; 3579 Elements.reserve(NumElements); 3580 3581 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3582 Elements.push_back(E->getCodeUnit(i)); 3583 Elements.resize(NumElements); 3584 return llvm::ConstantDataArray::get(VMContext, Elements); 3585 } 3586 3587 static llvm::GlobalVariable * 3588 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3589 CodeGenModule &CGM, StringRef GlobalName, 3590 CharUnits Alignment) { 3591 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3592 unsigned AddrSpace = 0; 3593 if (CGM.getLangOpts().OpenCL) 3594 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3595 3596 llvm::Module &M = CGM.getModule(); 3597 // Create a global variable for this string 3598 auto *GV = new llvm::GlobalVariable( 3599 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3600 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3601 GV->setAlignment(Alignment.getQuantity()); 3602 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3603 if (GV->isWeakForLinker()) { 3604 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3605 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3606 } 3607 3608 return GV; 3609 } 3610 3611 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3612 /// constant array for the given string literal. 3613 ConstantAddress 3614 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3615 StringRef Name) { 3616 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3617 3618 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3619 llvm::GlobalVariable **Entry = nullptr; 3620 if (!LangOpts.WritableStrings) { 3621 Entry = &ConstantStringMap[C]; 3622 if (auto GV = *Entry) { 3623 if (Alignment.getQuantity() > GV->getAlignment()) 3624 GV->setAlignment(Alignment.getQuantity()); 3625 return ConstantAddress(GV, Alignment); 3626 } 3627 } 3628 3629 SmallString<256> MangledNameBuffer; 3630 StringRef GlobalVariableName; 3631 llvm::GlobalValue::LinkageTypes LT; 3632 3633 // Mangle the string literal if the ABI allows for it. However, we cannot 3634 // do this if we are compiling with ASan or -fwritable-strings because they 3635 // rely on strings having normal linkage. 3636 if (!LangOpts.WritableStrings && 3637 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3638 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3639 llvm::raw_svector_ostream Out(MangledNameBuffer); 3640 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3641 3642 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3643 GlobalVariableName = MangledNameBuffer; 3644 } else { 3645 LT = llvm::GlobalValue::PrivateLinkage; 3646 GlobalVariableName = Name; 3647 } 3648 3649 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3650 if (Entry) 3651 *Entry = GV; 3652 3653 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3654 QualType()); 3655 return ConstantAddress(GV, Alignment); 3656 } 3657 3658 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3659 /// array for the given ObjCEncodeExpr node. 3660 ConstantAddress 3661 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3662 std::string Str; 3663 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3664 3665 return GetAddrOfConstantCString(Str); 3666 } 3667 3668 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3669 /// the literal and a terminating '\0' character. 3670 /// The result has pointer to array type. 3671 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3672 const std::string &Str, const char *GlobalName) { 3673 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3674 CharUnits Alignment = 3675 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3676 3677 llvm::Constant *C = 3678 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3679 3680 // Don't share any string literals if strings aren't constant. 3681 llvm::GlobalVariable **Entry = nullptr; 3682 if (!LangOpts.WritableStrings) { 3683 Entry = &ConstantStringMap[C]; 3684 if (auto GV = *Entry) { 3685 if (Alignment.getQuantity() > GV->getAlignment()) 3686 GV->setAlignment(Alignment.getQuantity()); 3687 return ConstantAddress(GV, Alignment); 3688 } 3689 } 3690 3691 // Get the default prefix if a name wasn't specified. 3692 if (!GlobalName) 3693 GlobalName = ".str"; 3694 // Create a global variable for this. 3695 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3696 GlobalName, Alignment); 3697 if (Entry) 3698 *Entry = GV; 3699 return ConstantAddress(GV, Alignment); 3700 } 3701 3702 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3703 const MaterializeTemporaryExpr *E, const Expr *Init) { 3704 assert((E->getStorageDuration() == SD_Static || 3705 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3706 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3707 3708 // If we're not materializing a subobject of the temporary, keep the 3709 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3710 QualType MaterializedType = Init->getType(); 3711 if (Init == E->GetTemporaryExpr()) 3712 MaterializedType = E->getType(); 3713 3714 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3715 3716 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3717 return ConstantAddress(Slot, Align); 3718 3719 // FIXME: If an externally-visible declaration extends multiple temporaries, 3720 // we need to give each temporary the same name in every translation unit (and 3721 // we also need to make the temporaries externally-visible). 3722 SmallString<256> Name; 3723 llvm::raw_svector_ostream Out(Name); 3724 getCXXABI().getMangleContext().mangleReferenceTemporary( 3725 VD, E->getManglingNumber(), Out); 3726 3727 APValue *Value = nullptr; 3728 if (E->getStorageDuration() == SD_Static) { 3729 // We might have a cached constant initializer for this temporary. Note 3730 // that this might have a different value from the value computed by 3731 // evaluating the initializer if the surrounding constant expression 3732 // modifies the temporary. 3733 Value = getContext().getMaterializedTemporaryValue(E, false); 3734 if (Value && Value->isUninit()) 3735 Value = nullptr; 3736 } 3737 3738 // Try evaluating it now, it might have a constant initializer. 3739 Expr::EvalResult EvalResult; 3740 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3741 !EvalResult.hasSideEffects()) 3742 Value = &EvalResult.Val; 3743 3744 unsigned AddrSpace = 3745 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3746 3747 Optional<ConstantEmitter> emitter; 3748 llvm::Constant *InitialValue = nullptr; 3749 bool Constant = false; 3750 llvm::Type *Type; 3751 if (Value) { 3752 // The temporary has a constant initializer, use it. 3753 emitter.emplace(*this); 3754 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3755 MaterializedType); 3756 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3757 Type = InitialValue->getType(); 3758 } else { 3759 // No initializer, the initialization will be provided when we 3760 // initialize the declaration which performed lifetime extension. 3761 Type = getTypes().ConvertTypeForMem(MaterializedType); 3762 } 3763 3764 // Create a global variable for this lifetime-extended temporary. 3765 llvm::GlobalValue::LinkageTypes Linkage = 3766 getLLVMLinkageVarDefinition(VD, Constant); 3767 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3768 const VarDecl *InitVD; 3769 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3770 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3771 // Temporaries defined inside a class get linkonce_odr linkage because the 3772 // class can be defined in multipe translation units. 3773 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3774 } else { 3775 // There is no need for this temporary to have external linkage if the 3776 // VarDecl has external linkage. 3777 Linkage = llvm::GlobalVariable::InternalLinkage; 3778 } 3779 } 3780 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3781 auto *GV = new llvm::GlobalVariable( 3782 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3783 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3784 if (emitter) emitter->finalize(GV); 3785 setGlobalVisibility(GV, VD); 3786 GV->setAlignment(Align.getQuantity()); 3787 if (supportsCOMDAT() && GV->isWeakForLinker()) 3788 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3789 if (VD->getTLSKind()) 3790 setTLSMode(GV, *VD); 3791 llvm::Constant *CV = GV; 3792 if (AddrSpace != LangAS::Default) 3793 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3794 *this, GV, AddrSpace, LangAS::Default, 3795 Type->getPointerTo( 3796 getContext().getTargetAddressSpace(LangAS::Default))); 3797 MaterializedGlobalTemporaryMap[E] = CV; 3798 return ConstantAddress(CV, Align); 3799 } 3800 3801 /// EmitObjCPropertyImplementations - Emit information for synthesized 3802 /// properties for an implementation. 3803 void CodeGenModule::EmitObjCPropertyImplementations(const 3804 ObjCImplementationDecl *D) { 3805 for (const auto *PID : D->property_impls()) { 3806 // Dynamic is just for type-checking. 3807 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3808 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3809 3810 // Determine which methods need to be implemented, some may have 3811 // been overridden. Note that ::isPropertyAccessor is not the method 3812 // we want, that just indicates if the decl came from a 3813 // property. What we want to know is if the method is defined in 3814 // this implementation. 3815 if (!D->getInstanceMethod(PD->getGetterName())) 3816 CodeGenFunction(*this).GenerateObjCGetter( 3817 const_cast<ObjCImplementationDecl *>(D), PID); 3818 if (!PD->isReadOnly() && 3819 !D->getInstanceMethod(PD->getSetterName())) 3820 CodeGenFunction(*this).GenerateObjCSetter( 3821 const_cast<ObjCImplementationDecl *>(D), PID); 3822 } 3823 } 3824 } 3825 3826 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3827 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3828 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3829 ivar; ivar = ivar->getNextIvar()) 3830 if (ivar->getType().isDestructedType()) 3831 return true; 3832 3833 return false; 3834 } 3835 3836 static bool AllTrivialInitializers(CodeGenModule &CGM, 3837 ObjCImplementationDecl *D) { 3838 CodeGenFunction CGF(CGM); 3839 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3840 E = D->init_end(); B != E; ++B) { 3841 CXXCtorInitializer *CtorInitExp = *B; 3842 Expr *Init = CtorInitExp->getInit(); 3843 if (!CGF.isTrivialInitializer(Init)) 3844 return false; 3845 } 3846 return true; 3847 } 3848 3849 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3850 /// for an implementation. 3851 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3852 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3853 if (needsDestructMethod(D)) { 3854 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3855 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3856 ObjCMethodDecl *DTORMethod = 3857 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3858 cxxSelector, getContext().VoidTy, nullptr, D, 3859 /*isInstance=*/true, /*isVariadic=*/false, 3860 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3861 /*isDefined=*/false, ObjCMethodDecl::Required); 3862 D->addInstanceMethod(DTORMethod); 3863 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3864 D->setHasDestructors(true); 3865 } 3866 3867 // If the implementation doesn't have any ivar initializers, we don't need 3868 // a .cxx_construct. 3869 if (D->getNumIvarInitializers() == 0 || 3870 AllTrivialInitializers(*this, D)) 3871 return; 3872 3873 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3874 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3875 // The constructor returns 'self'. 3876 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3877 D->getLocation(), 3878 D->getLocation(), 3879 cxxSelector, 3880 getContext().getObjCIdType(), 3881 nullptr, D, /*isInstance=*/true, 3882 /*isVariadic=*/false, 3883 /*isPropertyAccessor=*/true, 3884 /*isImplicitlyDeclared=*/true, 3885 /*isDefined=*/false, 3886 ObjCMethodDecl::Required); 3887 D->addInstanceMethod(CTORMethod); 3888 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3889 D->setHasNonZeroConstructors(true); 3890 } 3891 3892 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3893 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3894 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3895 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3896 ErrorUnsupported(LSD, "linkage spec"); 3897 return; 3898 } 3899 3900 EmitDeclContext(LSD); 3901 } 3902 3903 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3904 for (auto *I : DC->decls()) { 3905 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3906 // are themselves considered "top-level", so EmitTopLevelDecl on an 3907 // ObjCImplDecl does not recursively visit them. We need to do that in 3908 // case they're nested inside another construct (LinkageSpecDecl / 3909 // ExportDecl) that does stop them from being considered "top-level". 3910 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3911 for (auto *M : OID->methods()) 3912 EmitTopLevelDecl(M); 3913 } 3914 3915 EmitTopLevelDecl(I); 3916 } 3917 } 3918 3919 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3920 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3921 // Ignore dependent declarations. 3922 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3923 return; 3924 3925 switch (D->getKind()) { 3926 case Decl::CXXConversion: 3927 case Decl::CXXMethod: 3928 case Decl::Function: 3929 // Skip function templates 3930 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3931 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3932 return; 3933 3934 EmitGlobal(cast<FunctionDecl>(D)); 3935 // Always provide some coverage mapping 3936 // even for the functions that aren't emitted. 3937 AddDeferredUnusedCoverageMapping(D); 3938 break; 3939 3940 case Decl::CXXDeductionGuide: 3941 // Function-like, but does not result in code emission. 3942 break; 3943 3944 case Decl::Var: 3945 case Decl::Decomposition: 3946 // Skip variable templates 3947 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3948 return; 3949 LLVM_FALLTHROUGH; 3950 case Decl::VarTemplateSpecialization: 3951 EmitGlobal(cast<VarDecl>(D)); 3952 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 3953 for (auto *B : DD->bindings()) 3954 if (auto *HD = B->getHoldingVar()) 3955 EmitGlobal(HD); 3956 break; 3957 3958 // Indirect fields from global anonymous structs and unions can be 3959 // ignored; only the actual variable requires IR gen support. 3960 case Decl::IndirectField: 3961 break; 3962 3963 // C++ Decls 3964 case Decl::Namespace: 3965 EmitDeclContext(cast<NamespaceDecl>(D)); 3966 break; 3967 case Decl::CXXRecord: 3968 if (DebugInfo) { 3969 if (auto *ES = D->getASTContext().getExternalSource()) 3970 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 3971 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 3972 } 3973 // Emit any static data members, they may be definitions. 3974 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 3975 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 3976 EmitTopLevelDecl(I); 3977 break; 3978 // No code generation needed. 3979 case Decl::UsingShadow: 3980 case Decl::ClassTemplate: 3981 case Decl::VarTemplate: 3982 case Decl::VarTemplatePartialSpecialization: 3983 case Decl::FunctionTemplate: 3984 case Decl::TypeAliasTemplate: 3985 case Decl::Block: 3986 case Decl::Empty: 3987 break; 3988 case Decl::Using: // using X; [C++] 3989 if (CGDebugInfo *DI = getModuleDebugInfo()) 3990 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3991 return; 3992 case Decl::NamespaceAlias: 3993 if (CGDebugInfo *DI = getModuleDebugInfo()) 3994 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3995 return; 3996 case Decl::UsingDirective: // using namespace X; [C++] 3997 if (CGDebugInfo *DI = getModuleDebugInfo()) 3998 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3999 return; 4000 case Decl::CXXConstructor: 4001 // Skip function templates 4002 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4003 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4004 return; 4005 4006 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4007 break; 4008 case Decl::CXXDestructor: 4009 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4010 return; 4011 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4012 break; 4013 4014 case Decl::StaticAssert: 4015 // Nothing to do. 4016 break; 4017 4018 // Objective-C Decls 4019 4020 // Forward declarations, no (immediate) code generation. 4021 case Decl::ObjCInterface: 4022 case Decl::ObjCCategory: 4023 break; 4024 4025 case Decl::ObjCProtocol: { 4026 auto *Proto = cast<ObjCProtocolDecl>(D); 4027 if (Proto->isThisDeclarationADefinition()) 4028 ObjCRuntime->GenerateProtocol(Proto); 4029 break; 4030 } 4031 4032 case Decl::ObjCCategoryImpl: 4033 // Categories have properties but don't support synthesize so we 4034 // can ignore them here. 4035 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4036 break; 4037 4038 case Decl::ObjCImplementation: { 4039 auto *OMD = cast<ObjCImplementationDecl>(D); 4040 EmitObjCPropertyImplementations(OMD); 4041 EmitObjCIvarInitializations(OMD); 4042 ObjCRuntime->GenerateClass(OMD); 4043 // Emit global variable debug information. 4044 if (CGDebugInfo *DI = getModuleDebugInfo()) 4045 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4046 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4047 OMD->getClassInterface()), OMD->getLocation()); 4048 break; 4049 } 4050 case Decl::ObjCMethod: { 4051 auto *OMD = cast<ObjCMethodDecl>(D); 4052 // If this is not a prototype, emit the body. 4053 if (OMD->getBody()) 4054 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4055 break; 4056 } 4057 case Decl::ObjCCompatibleAlias: 4058 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4059 break; 4060 4061 case Decl::PragmaComment: { 4062 const auto *PCD = cast<PragmaCommentDecl>(D); 4063 switch (PCD->getCommentKind()) { 4064 case PCK_Unknown: 4065 llvm_unreachable("unexpected pragma comment kind"); 4066 case PCK_Linker: 4067 AppendLinkerOptions(PCD->getArg()); 4068 break; 4069 case PCK_Lib: 4070 AddDependentLib(PCD->getArg()); 4071 break; 4072 case PCK_Compiler: 4073 case PCK_ExeStr: 4074 case PCK_User: 4075 break; // We ignore all of these. 4076 } 4077 break; 4078 } 4079 4080 case Decl::PragmaDetectMismatch: { 4081 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4082 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4083 break; 4084 } 4085 4086 case Decl::LinkageSpec: 4087 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4088 break; 4089 4090 case Decl::FileScopeAsm: { 4091 // File-scope asm is ignored during device-side CUDA compilation. 4092 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4093 break; 4094 // File-scope asm is ignored during device-side OpenMP compilation. 4095 if (LangOpts.OpenMPIsDevice) 4096 break; 4097 auto *AD = cast<FileScopeAsmDecl>(D); 4098 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4099 break; 4100 } 4101 4102 case Decl::Import: { 4103 auto *Import = cast<ImportDecl>(D); 4104 4105 // If we've already imported this module, we're done. 4106 if (!ImportedModules.insert(Import->getImportedModule())) 4107 break; 4108 4109 // Emit debug information for direct imports. 4110 if (!Import->getImportedOwningModule()) { 4111 if (CGDebugInfo *DI = getModuleDebugInfo()) 4112 DI->EmitImportDecl(*Import); 4113 } 4114 4115 // Find all of the submodules and emit the module initializers. 4116 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4117 SmallVector<clang::Module *, 16> Stack; 4118 Visited.insert(Import->getImportedModule()); 4119 Stack.push_back(Import->getImportedModule()); 4120 4121 while (!Stack.empty()) { 4122 clang::Module *Mod = Stack.pop_back_val(); 4123 if (!EmittedModuleInitializers.insert(Mod).second) 4124 continue; 4125 4126 for (auto *D : Context.getModuleInitializers(Mod)) 4127 EmitTopLevelDecl(D); 4128 4129 // Visit the submodules of this module. 4130 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4131 SubEnd = Mod->submodule_end(); 4132 Sub != SubEnd; ++Sub) { 4133 // Skip explicit children; they need to be explicitly imported to emit 4134 // the initializers. 4135 if ((*Sub)->IsExplicit) 4136 continue; 4137 4138 if (Visited.insert(*Sub).second) 4139 Stack.push_back(*Sub); 4140 } 4141 } 4142 break; 4143 } 4144 4145 case Decl::Export: 4146 EmitDeclContext(cast<ExportDecl>(D)); 4147 break; 4148 4149 case Decl::OMPThreadPrivate: 4150 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4151 break; 4152 4153 case Decl::ClassTemplateSpecialization: { 4154 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4155 if (DebugInfo && 4156 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4157 Spec->hasDefinition()) 4158 DebugInfo->completeTemplateDefinition(*Spec); 4159 break; 4160 } 4161 4162 case Decl::OMPDeclareReduction: 4163 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4164 break; 4165 4166 default: 4167 // Make sure we handled everything we should, every other kind is a 4168 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4169 // function. Need to recode Decl::Kind to do that easily. 4170 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4171 break; 4172 } 4173 } 4174 4175 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4176 // Do we need to generate coverage mapping? 4177 if (!CodeGenOpts.CoverageMapping) 4178 return; 4179 switch (D->getKind()) { 4180 case Decl::CXXConversion: 4181 case Decl::CXXMethod: 4182 case Decl::Function: 4183 case Decl::ObjCMethod: 4184 case Decl::CXXConstructor: 4185 case Decl::CXXDestructor: { 4186 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4187 return; 4188 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4189 if (I == DeferredEmptyCoverageMappingDecls.end()) 4190 DeferredEmptyCoverageMappingDecls[D] = true; 4191 break; 4192 } 4193 default: 4194 break; 4195 }; 4196 } 4197 4198 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4199 // Do we need to generate coverage mapping? 4200 if (!CodeGenOpts.CoverageMapping) 4201 return; 4202 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4203 if (Fn->isTemplateInstantiation()) 4204 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4205 } 4206 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4207 if (I == DeferredEmptyCoverageMappingDecls.end()) 4208 DeferredEmptyCoverageMappingDecls[D] = false; 4209 else 4210 I->second = false; 4211 } 4212 4213 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4214 std::vector<const Decl *> DeferredDecls; 4215 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4216 if (!I.second) 4217 continue; 4218 DeferredDecls.push_back(I.first); 4219 } 4220 // Sort the declarations by their location to make sure that the tests get a 4221 // predictable order for the coverage mapping for the unused declarations. 4222 if (CodeGenOpts.DumpCoverageMapping) 4223 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4224 [] (const Decl *LHS, const Decl *RHS) { 4225 return LHS->getLocStart() < RHS->getLocStart(); 4226 }); 4227 for (const auto *D : DeferredDecls) { 4228 switch (D->getKind()) { 4229 case Decl::CXXConversion: 4230 case Decl::CXXMethod: 4231 case Decl::Function: 4232 case Decl::ObjCMethod: { 4233 CodeGenPGO PGO(*this); 4234 GlobalDecl GD(cast<FunctionDecl>(D)); 4235 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4236 getFunctionLinkage(GD)); 4237 break; 4238 } 4239 case Decl::CXXConstructor: { 4240 CodeGenPGO PGO(*this); 4241 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4242 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4243 getFunctionLinkage(GD)); 4244 break; 4245 } 4246 case Decl::CXXDestructor: { 4247 CodeGenPGO PGO(*this); 4248 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4249 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4250 getFunctionLinkage(GD)); 4251 break; 4252 } 4253 default: 4254 break; 4255 }; 4256 } 4257 } 4258 4259 /// Turns the given pointer into a constant. 4260 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4261 const void *Ptr) { 4262 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4263 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4264 return llvm::ConstantInt::get(i64, PtrInt); 4265 } 4266 4267 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4268 llvm::NamedMDNode *&GlobalMetadata, 4269 GlobalDecl D, 4270 llvm::GlobalValue *Addr) { 4271 if (!GlobalMetadata) 4272 GlobalMetadata = 4273 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4274 4275 // TODO: should we report variant information for ctors/dtors? 4276 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4277 llvm::ConstantAsMetadata::get(GetPointerConstant( 4278 CGM.getLLVMContext(), D.getDecl()))}; 4279 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4280 } 4281 4282 /// For each function which is declared within an extern "C" region and marked 4283 /// as 'used', but has internal linkage, create an alias from the unmangled 4284 /// name to the mangled name if possible. People expect to be able to refer 4285 /// to such functions with an unmangled name from inline assembly within the 4286 /// same translation unit. 4287 void CodeGenModule::EmitStaticExternCAliases() { 4288 // Don't do anything if we're generating CUDA device code -- the NVPTX 4289 // assembly target doesn't support aliases. 4290 if (Context.getTargetInfo().getTriple().isNVPTX()) 4291 return; 4292 for (auto &I : StaticExternCValues) { 4293 IdentifierInfo *Name = I.first; 4294 llvm::GlobalValue *Val = I.second; 4295 if (Val && !getModule().getNamedValue(Name->getName())) 4296 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4297 } 4298 } 4299 4300 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4301 GlobalDecl &Result) const { 4302 auto Res = Manglings.find(MangledName); 4303 if (Res == Manglings.end()) 4304 return false; 4305 Result = Res->getValue(); 4306 return true; 4307 } 4308 4309 /// Emits metadata nodes associating all the global values in the 4310 /// current module with the Decls they came from. This is useful for 4311 /// projects using IR gen as a subroutine. 4312 /// 4313 /// Since there's currently no way to associate an MDNode directly 4314 /// with an llvm::GlobalValue, we create a global named metadata 4315 /// with the name 'clang.global.decl.ptrs'. 4316 void CodeGenModule::EmitDeclMetadata() { 4317 llvm::NamedMDNode *GlobalMetadata = nullptr; 4318 4319 for (auto &I : MangledDeclNames) { 4320 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4321 // Some mangled names don't necessarily have an associated GlobalValue 4322 // in this module, e.g. if we mangled it for DebugInfo. 4323 if (Addr) 4324 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4325 } 4326 } 4327 4328 /// Emits metadata nodes for all the local variables in the current 4329 /// function. 4330 void CodeGenFunction::EmitDeclMetadata() { 4331 if (LocalDeclMap.empty()) return; 4332 4333 llvm::LLVMContext &Context = getLLVMContext(); 4334 4335 // Find the unique metadata ID for this name. 4336 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4337 4338 llvm::NamedMDNode *GlobalMetadata = nullptr; 4339 4340 for (auto &I : LocalDeclMap) { 4341 const Decl *D = I.first; 4342 llvm::Value *Addr = I.second.getPointer(); 4343 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4344 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4345 Alloca->setMetadata( 4346 DeclPtrKind, llvm::MDNode::get( 4347 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4348 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4349 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4350 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4351 } 4352 } 4353 } 4354 4355 void CodeGenModule::EmitVersionIdentMetadata() { 4356 llvm::NamedMDNode *IdentMetadata = 4357 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4358 std::string Version = getClangFullVersion(); 4359 llvm::LLVMContext &Ctx = TheModule.getContext(); 4360 4361 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4362 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4363 } 4364 4365 void CodeGenModule::EmitTargetMetadata() { 4366 // Warning, new MangledDeclNames may be appended within this loop. 4367 // We rely on MapVector insertions adding new elements to the end 4368 // of the container. 4369 // FIXME: Move this loop into the one target that needs it, and only 4370 // loop over those declarations for which we couldn't emit the target 4371 // metadata when we emitted the declaration. 4372 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4373 auto Val = *(MangledDeclNames.begin() + I); 4374 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4375 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4376 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4377 } 4378 } 4379 4380 void CodeGenModule::EmitCoverageFile() { 4381 if (getCodeGenOpts().CoverageDataFile.empty() && 4382 getCodeGenOpts().CoverageNotesFile.empty()) 4383 return; 4384 4385 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4386 if (!CUNode) 4387 return; 4388 4389 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4390 llvm::LLVMContext &Ctx = TheModule.getContext(); 4391 auto *CoverageDataFile = 4392 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4393 auto *CoverageNotesFile = 4394 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4395 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4396 llvm::MDNode *CU = CUNode->getOperand(i); 4397 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4398 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4399 } 4400 } 4401 4402 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4403 // Sema has checked that all uuid strings are of the form 4404 // "12345678-1234-1234-1234-1234567890ab". 4405 assert(Uuid.size() == 36); 4406 for (unsigned i = 0; i < 36; ++i) { 4407 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4408 else assert(isHexDigit(Uuid[i])); 4409 } 4410 4411 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4412 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4413 4414 llvm::Constant *Field3[8]; 4415 for (unsigned Idx = 0; Idx < 8; ++Idx) 4416 Field3[Idx] = llvm::ConstantInt::get( 4417 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4418 4419 llvm::Constant *Fields[4] = { 4420 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4421 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4422 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4423 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4424 }; 4425 4426 return llvm::ConstantStruct::getAnon(Fields); 4427 } 4428 4429 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4430 bool ForEH) { 4431 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4432 // FIXME: should we even be calling this method if RTTI is disabled 4433 // and it's not for EH? 4434 if (!ForEH && !getLangOpts().RTTI) 4435 return llvm::Constant::getNullValue(Int8PtrTy); 4436 4437 if (ForEH && Ty->isObjCObjectPointerType() && 4438 LangOpts.ObjCRuntime.isGNUFamily()) 4439 return ObjCRuntime->GetEHType(Ty); 4440 4441 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4442 } 4443 4444 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4445 for (auto RefExpr : D->varlists()) { 4446 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4447 bool PerformInit = 4448 VD->getAnyInitializer() && 4449 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4450 /*ForRef=*/false); 4451 4452 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4453 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4454 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4455 CXXGlobalInits.push_back(InitFunction); 4456 } 4457 } 4458 4459 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4460 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4461 if (InternalId) 4462 return InternalId; 4463 4464 if (isExternallyVisible(T->getLinkage())) { 4465 std::string OutName; 4466 llvm::raw_string_ostream Out(OutName); 4467 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4468 4469 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4470 } else { 4471 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4472 llvm::ArrayRef<llvm::Metadata *>()); 4473 } 4474 4475 return InternalId; 4476 } 4477 4478 /// Returns whether this module needs the "all-vtables" type identifier. 4479 bool CodeGenModule::NeedAllVtablesTypeId() const { 4480 // Returns true if at least one of vtable-based CFI checkers is enabled and 4481 // is not in the trapping mode. 4482 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4483 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4484 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4485 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4486 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4487 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4488 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4489 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4490 } 4491 4492 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4493 CharUnits Offset, 4494 const CXXRecordDecl *RD) { 4495 llvm::Metadata *MD = 4496 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4497 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4498 4499 if (CodeGenOpts.SanitizeCfiCrossDso) 4500 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4501 VTable->addTypeMetadata(Offset.getQuantity(), 4502 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4503 4504 if (NeedAllVtablesTypeId()) { 4505 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4506 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4507 } 4508 } 4509 4510 // Fills in the supplied string map with the set of target features for the 4511 // passed in function. 4512 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4513 const FunctionDecl *FD) { 4514 StringRef TargetCPU = Target.getTargetOpts().CPU; 4515 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4516 // If we have a TargetAttr build up the feature map based on that. 4517 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4518 4519 // Make a copy of the features as passed on the command line into the 4520 // beginning of the additional features from the function to override. 4521 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4522 Target.getTargetOpts().FeaturesAsWritten.begin(), 4523 Target.getTargetOpts().FeaturesAsWritten.end()); 4524 4525 if (ParsedAttr.Architecture != "") 4526 TargetCPU = ParsedAttr.Architecture ; 4527 4528 // Now populate the feature map, first with the TargetCPU which is either 4529 // the default or a new one from the target attribute string. Then we'll use 4530 // the passed in features (FeaturesAsWritten) along with the new ones from 4531 // the attribute. 4532 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4533 ParsedAttr.Features); 4534 } else { 4535 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4536 Target.getTargetOpts().Features); 4537 } 4538 } 4539 4540 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4541 if (!SanStats) 4542 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4543 4544 return *SanStats; 4545 } 4546 llvm::Value * 4547 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4548 CodeGenFunction &CGF) { 4549 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4550 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4551 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4552 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4553 "__translate_sampler_initializer"), 4554 {C}); 4555 } 4556