xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision de089d462ca0d23fa2c3406d427431cdc850b2e5)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCXXABI.h"
20 #include "CGObjCRuntime.h"
21 #include "TargetInfo.h"
22 #include "clang/Frontend/CodeGenOptions.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/CharUnits.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclTemplate.h"
28 #include "clang/AST/Mangle.h"
29 #include "clang/AST/RecordLayout.h"
30 #include "clang/Basic/Builtins.h"
31 #include "clang/Basic/Diagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Basic/ConvertUTF.h"
35 #include "llvm/CallingConv.h"
36 #include "llvm/Module.h"
37 #include "llvm/Intrinsics.h"
38 #include "llvm/LLVMContext.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/Target/TargetData.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/ErrorHandling.h"
43 using namespace clang;
44 using namespace CodeGen;
45 
46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47   switch (CGM.getContext().Target.getCXXABI()) {
48   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51   }
52 
53   llvm_unreachable("invalid C++ ABI kind");
54   return *CreateItaniumCXXABI(CGM);
55 }
56 
57 
58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                              llvm::Module &M, const llvm::TargetData &TD,
60                              Diagnostic &diags)
61   : BlockModule(C, M, TD, Types, *this), Context(C),
62     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64     ABI(createCXXABI(*this)),
65     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66     TBAA(0),
67     VTables(*this), Runtime(0),
68     CFConstantStringClassRef(0), ConstantStringClassRef(0),
69     VMContext(M.getContext()),
70     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73     BlockObjectAssign(0), BlockObjectDispose(0){
74 
75   if (!Features.ObjC1)
76     Runtime = 0;
77   else if (!Features.NeXTRuntime)
78     Runtime = CreateGNUObjCRuntime(*this);
79   else if (Features.ObjCNonFragileABI)
80     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81   else
82     Runtime = CreateMacObjCRuntime(*this);
83 
84   // Enable TBAA unless it's suppressed.
85   if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86     TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                            ABI.getMangleContext());
88 
89   // If debug info generation is enabled, create the CGDebugInfo object.
90   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91 }
92 
93 CodeGenModule::~CodeGenModule() {
94   delete Runtime;
95   delete &ABI;
96   delete TBAA;
97   delete DebugInfo;
98 }
99 
100 void CodeGenModule::createObjCRuntime() {
101   if (!Features.NeXTRuntime)
102     Runtime = CreateGNUObjCRuntime(*this);
103   else if (Features.ObjCNonFragileABI)
104     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105   else
106     Runtime = CreateMacObjCRuntime(*this);
107 }
108 
109 void CodeGenModule::Release() {
110   EmitDeferred();
111   EmitCXXGlobalInitFunc();
112   EmitCXXGlobalDtorFunc();
113   if (Runtime)
114     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115       AddGlobalCtor(ObjCInitFunction);
116   EmitCtorList(GlobalCtors, "llvm.global_ctors");
117   EmitCtorList(GlobalDtors, "llvm.global_dtors");
118   EmitAnnotations();
119   EmitLLVMUsed();
120 
121   SimplifyPersonality();
122 
123   if (getCodeGenOpts().EmitDeclMetadata)
124     EmitDeclMetadata();
125 }
126 
127 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128   if (!TBAA)
129     return 0;
130   return TBAA->getTBAAInfo(QTy);
131 }
132 
133 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                         llvm::MDNode *TBAAInfo) {
135   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136 }
137 
138 bool CodeGenModule::isTargetDarwin() const {
139   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140 }
141 
142 /// ErrorUnsupported - Print out an error that codegen doesn't support the
143 /// specified stmt yet.
144 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                      bool OmitOnError) {
146   if (OmitOnError && getDiags().hasErrorOccurred())
147     return;
148   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                                "cannot compile this %0 yet");
150   std::string Msg = Type;
151   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152     << Msg << S->getSourceRange();
153 }
154 
155 /// ErrorUnsupported - Print out an error that codegen doesn't support the
156 /// specified decl yet.
157 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                      bool OmitOnError) {
159   if (OmitOnError && getDiags().hasErrorOccurred())
160     return;
161   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                                "cannot compile this %0 yet");
163   std::string Msg = Type;
164   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165 }
166 
167 static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168   switch (V) {
169   case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170   case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171   case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172   }
173   llvm_unreachable("unknown visibility!");
174   return llvm::GlobalValue::DefaultVisibility;
175 }
176 
177 
178 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                         const NamedDecl *D,
180                                         bool IsForDefinition) const {
181   // Internal definitions always have default visibility.
182   if (GV->hasLocalLinkage()) {
183     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184     return;
185   }
186 
187   // Set visibility for definitions.
188   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189   if (LV.visibilityExplicit() ||
190       (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
191     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
192 }
193 
194 /// Set the symbol visibility of type information (vtable and RTTI)
195 /// associated with the given type.
196 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
197                                       const CXXRecordDecl *RD,
198                                       bool IsForRTTI,
199                                       bool IsForDefinition) const {
200   setGlobalVisibility(GV, RD, IsForDefinition);
201 
202   if (!CodeGenOpts.HiddenWeakVTables)
203     return;
204 
205   // We want to drop the visibility to hidden for weak type symbols.
206   // This isn't possible if there might be unresolved references
207   // elsewhere that rely on this symbol being visible.
208 
209   // This should be kept roughly in sync with setThunkVisibility
210   // in CGVTables.cpp.
211 
212   // Preconditions.
213   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
214       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
215     return;
216 
217   // Don't override an explicit visibility attribute.
218   if (RD->hasAttr<VisibilityAttr>())
219     return;
220 
221   switch (RD->getTemplateSpecializationKind()) {
222   // We have to disable the optimization if this is an EI definition
223   // because there might be EI declarations in other shared objects.
224   case TSK_ExplicitInstantiationDefinition:
225   case TSK_ExplicitInstantiationDeclaration:
226     return;
227 
228   // Every use of a non-template class's type information has to emit it.
229   case TSK_Undeclared:
230     break;
231 
232   // In theory, implicit instantiations can ignore the possibility of
233   // an explicit instantiation declaration because there necessarily
234   // must be an EI definition somewhere with default visibility.  In
235   // practice, it's possible to have an explicit instantiation for
236   // an arbitrary template class, and linkers aren't necessarily able
237   // to deal with mixed-visibility symbols.
238   case TSK_ExplicitSpecialization:
239   case TSK_ImplicitInstantiation:
240     if (!CodeGenOpts.HiddenWeakTemplateVTables)
241       return;
242     break;
243   }
244 
245   // If there's a key function, there may be translation units
246   // that don't have the key function's definition.  But ignore
247   // this if we're emitting RTTI under -fno-rtti.
248   if (!IsForRTTI || Features.RTTI)
249     if (Context.getKeyFunction(RD))
250       return;
251 
252   // Otherwise, drop the visibility to hidden.
253   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
254   GV->setUnnamedAddr(true);
255 }
256 
257 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
258   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
259 
260   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
261   if (!Str.empty())
262     return Str;
263 
264   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
265     IdentifierInfo *II = ND->getIdentifier();
266     assert(II && "Attempt to mangle unnamed decl.");
267 
268     Str = II->getName();
269     return Str;
270   }
271 
272   llvm::SmallString<256> Buffer;
273   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
274     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
275   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
276     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
277   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
278     getCXXABI().getMangleContext().mangleBlock(BD, Buffer);
279   else
280     getCXXABI().getMangleContext().mangleName(ND, Buffer);
281 
282   // Allocate space for the mangled name.
283   size_t Length = Buffer.size();
284   char *Name = MangledNamesAllocator.Allocate<char>(Length);
285   std::copy(Buffer.begin(), Buffer.end(), Name);
286 
287   Str = llvm::StringRef(Name, Length);
288 
289   return Str;
290 }
291 
292 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
293                                         const BlockDecl *BD) {
294   MangleContext &MangleCtx = getCXXABI().getMangleContext();
295   const Decl *D = GD.getDecl();
296   if (D == 0)
297     MangleCtx.mangleGlobalBlock(BD, Buffer.getBuffer());
298   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
299     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Buffer.getBuffer());
300   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
301     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Buffer.getBuffer());
302   else
303     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Buffer.getBuffer());
304 }
305 
306 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
307   return getModule().getNamedValue(Name);
308 }
309 
310 /// AddGlobalCtor - Add a function to the list that will be called before
311 /// main() runs.
312 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
313   // FIXME: Type coercion of void()* types.
314   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
315 }
316 
317 /// AddGlobalDtor - Add a function to the list that will be called
318 /// when the module is unloaded.
319 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
320   // FIXME: Type coercion of void()* types.
321   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
322 }
323 
324 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
325   // Ctor function type is void()*.
326   llvm::FunctionType* CtorFTy =
327     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
328                             std::vector<const llvm::Type*>(),
329                             false);
330   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
331 
332   // Get the type of a ctor entry, { i32, void ()* }.
333   llvm::StructType* CtorStructTy =
334     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
335                           llvm::PointerType::getUnqual(CtorFTy), NULL);
336 
337   // Construct the constructor and destructor arrays.
338   std::vector<llvm::Constant*> Ctors;
339   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
340     std::vector<llvm::Constant*> S;
341     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
342                 I->second, false));
343     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
344     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
345   }
346 
347   if (!Ctors.empty()) {
348     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
349     new llvm::GlobalVariable(TheModule, AT, false,
350                              llvm::GlobalValue::AppendingLinkage,
351                              llvm::ConstantArray::get(AT, Ctors),
352                              GlobalName);
353   }
354 }
355 
356 void CodeGenModule::EmitAnnotations() {
357   if (Annotations.empty())
358     return;
359 
360   // Create a new global variable for the ConstantStruct in the Module.
361   llvm::Constant *Array =
362   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
363                                                 Annotations.size()),
364                            Annotations);
365   llvm::GlobalValue *gv =
366   new llvm::GlobalVariable(TheModule, Array->getType(), false,
367                            llvm::GlobalValue::AppendingLinkage, Array,
368                            "llvm.global.annotations");
369   gv->setSection("llvm.metadata");
370 }
371 
372 llvm::GlobalValue::LinkageTypes
373 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
374   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
375 
376   if (Linkage == GVA_Internal)
377     return llvm::Function::InternalLinkage;
378 
379   if (D->hasAttr<DLLExportAttr>())
380     return llvm::Function::DLLExportLinkage;
381 
382   if (D->hasAttr<WeakAttr>())
383     return llvm::Function::WeakAnyLinkage;
384 
385   // In C99 mode, 'inline' functions are guaranteed to have a strong
386   // definition somewhere else, so we can use available_externally linkage.
387   if (Linkage == GVA_C99Inline)
388     return llvm::Function::AvailableExternallyLinkage;
389 
390   // In C++, the compiler has to emit a definition in every translation unit
391   // that references the function.  We should use linkonce_odr because
392   // a) if all references in this translation unit are optimized away, we
393   // don't need to codegen it.  b) if the function persists, it needs to be
394   // merged with other definitions. c) C++ has the ODR, so we know the
395   // definition is dependable.
396   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
397     return llvm::Function::LinkOnceODRLinkage;
398 
399   // An explicit instantiation of a template has weak linkage, since
400   // explicit instantiations can occur in multiple translation units
401   // and must all be equivalent. However, we are not allowed to
402   // throw away these explicit instantiations.
403   if (Linkage == GVA_ExplicitTemplateInstantiation)
404     return llvm::Function::WeakODRLinkage;
405 
406   // Otherwise, we have strong external linkage.
407   assert(Linkage == GVA_StrongExternal);
408   return llvm::Function::ExternalLinkage;
409 }
410 
411 
412 /// SetFunctionDefinitionAttributes - Set attributes for a global.
413 ///
414 /// FIXME: This is currently only done for aliases and functions, but not for
415 /// variables (these details are set in EmitGlobalVarDefinition for variables).
416 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
417                                                     llvm::GlobalValue *GV) {
418   SetCommonAttributes(D, GV);
419 }
420 
421 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
422                                               const CGFunctionInfo &Info,
423                                               llvm::Function *F) {
424   unsigned CallingConv;
425   AttributeListType AttributeList;
426   ConstructAttributeList(Info, D, AttributeList, CallingConv);
427   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
428                                           AttributeList.size()));
429   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
430 }
431 
432 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
433                                                            llvm::Function *F) {
434   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
435     F->addFnAttr(llvm::Attribute::NoUnwind);
436 
437   if (D->hasAttr<AlwaysInlineAttr>())
438     F->addFnAttr(llvm::Attribute::AlwaysInline);
439 
440   if (D->hasAttr<NakedAttr>())
441     F->addFnAttr(llvm::Attribute::Naked);
442 
443   if (D->hasAttr<NoInlineAttr>())
444     F->addFnAttr(llvm::Attribute::NoInline);
445 
446   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
447     F->setUnnamedAddr(true);
448 
449   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
450     F->addFnAttr(llvm::Attribute::StackProtect);
451   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
452     F->addFnAttr(llvm::Attribute::StackProtectReq);
453 
454   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
455   if (alignment)
456     F->setAlignment(alignment);
457 
458   // C++ ABI requires 2-byte alignment for member functions.
459   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
460     F->setAlignment(2);
461 }
462 
463 void CodeGenModule::SetCommonAttributes(const Decl *D,
464                                         llvm::GlobalValue *GV) {
465   if (isa<NamedDecl>(D))
466     setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true);
467   else
468     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
469 
470   if (D->hasAttr<UsedAttr>())
471     AddUsedGlobal(GV);
472 
473   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
474     GV->setSection(SA->getName());
475 
476   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
477 }
478 
479 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
480                                                   llvm::Function *F,
481                                                   const CGFunctionInfo &FI) {
482   SetLLVMFunctionAttributes(D, FI, F);
483   SetLLVMFunctionAttributesForDefinition(D, F);
484 
485   F->setLinkage(llvm::Function::InternalLinkage);
486 
487   SetCommonAttributes(D, F);
488 }
489 
490 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
491                                           llvm::Function *F,
492                                           bool IsIncompleteFunction) {
493   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
494 
495   if (!IsIncompleteFunction)
496     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
497 
498   // Only a few attributes are set on declarations; these may later be
499   // overridden by a definition.
500 
501   if (FD->hasAttr<DLLImportAttr>()) {
502     F->setLinkage(llvm::Function::DLLImportLinkage);
503   } else if (FD->hasAttr<WeakAttr>() ||
504              FD->hasAttr<WeakImportAttr>()) {
505     // "extern_weak" is overloaded in LLVM; we probably should have
506     // separate linkage types for this.
507     F->setLinkage(llvm::Function::ExternalWeakLinkage);
508   } else {
509     F->setLinkage(llvm::Function::ExternalLinkage);
510 
511     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
512     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
513       F->setVisibility(GetLLVMVisibility(LV.visibility()));
514     }
515   }
516 
517   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
518     F->setSection(SA->getName());
519 }
520 
521 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
522   assert(!GV->isDeclaration() &&
523          "Only globals with definition can force usage.");
524   LLVMUsed.push_back(GV);
525 }
526 
527 void CodeGenModule::EmitLLVMUsed() {
528   // Don't create llvm.used if there is no need.
529   if (LLVMUsed.empty())
530     return;
531 
532   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
533 
534   // Convert LLVMUsed to what ConstantArray needs.
535   std::vector<llvm::Constant*> UsedArray;
536   UsedArray.resize(LLVMUsed.size());
537   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
538     UsedArray[i] =
539      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
540                                       i8PTy);
541   }
542 
543   if (UsedArray.empty())
544     return;
545   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
546 
547   llvm::GlobalVariable *GV =
548     new llvm::GlobalVariable(getModule(), ATy, false,
549                              llvm::GlobalValue::AppendingLinkage,
550                              llvm::ConstantArray::get(ATy, UsedArray),
551                              "llvm.used");
552 
553   GV->setSection("llvm.metadata");
554 }
555 
556 void CodeGenModule::EmitDeferred() {
557   // Emit code for any potentially referenced deferred decls.  Since a
558   // previously unused static decl may become used during the generation of code
559   // for a static function, iterate until no  changes are made.
560 
561   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
562     if (!DeferredVTables.empty()) {
563       const CXXRecordDecl *RD = DeferredVTables.back();
564       DeferredVTables.pop_back();
565       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
566       continue;
567     }
568 
569     GlobalDecl D = DeferredDeclsToEmit.back();
570     DeferredDeclsToEmit.pop_back();
571 
572     // Check to see if we've already emitted this.  This is necessary
573     // for a couple of reasons: first, decls can end up in the
574     // deferred-decls queue multiple times, and second, decls can end
575     // up with definitions in unusual ways (e.g. by an extern inline
576     // function acquiring a strong function redefinition).  Just
577     // ignore these cases.
578     //
579     // TODO: That said, looking this up multiple times is very wasteful.
580     llvm::StringRef Name = getMangledName(D);
581     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
582     assert(CGRef && "Deferred decl wasn't referenced?");
583 
584     if (!CGRef->isDeclaration())
585       continue;
586 
587     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
588     // purposes an alias counts as a definition.
589     if (isa<llvm::GlobalAlias>(CGRef))
590       continue;
591 
592     // Otherwise, emit the definition and move on to the next one.
593     EmitGlobalDefinition(D);
594   }
595 }
596 
597 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
598 /// annotation information for a given GlobalValue.  The annotation struct is
599 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
600 /// GlobalValue being annotated.  The second field is the constant string
601 /// created from the AnnotateAttr's annotation.  The third field is a constant
602 /// string containing the name of the translation unit.  The fourth field is
603 /// the line number in the file of the annotated value declaration.
604 ///
605 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
606 ///        appears to.
607 ///
608 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
609                                                 const AnnotateAttr *AA,
610                                                 unsigned LineNo) {
611   llvm::Module *M = &getModule();
612 
613   // get [N x i8] constants for the annotation string, and the filename string
614   // which are the 2nd and 3rd elements of the global annotation structure.
615   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
616   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
617                                                   AA->getAnnotation(), true);
618   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
619                                                   M->getModuleIdentifier(),
620                                                   true);
621 
622   // Get the two global values corresponding to the ConstantArrays we just
623   // created to hold the bytes of the strings.
624   llvm::GlobalValue *annoGV =
625     new llvm::GlobalVariable(*M, anno->getType(), false,
626                              llvm::GlobalValue::PrivateLinkage, anno,
627                              GV->getName());
628   // translation unit name string, emitted into the llvm.metadata section.
629   llvm::GlobalValue *unitGV =
630     new llvm::GlobalVariable(*M, unit->getType(), false,
631                              llvm::GlobalValue::PrivateLinkage, unit,
632                              ".str");
633 
634   // Create the ConstantStruct for the global annotation.
635   llvm::Constant *Fields[4] = {
636     llvm::ConstantExpr::getBitCast(GV, SBP),
637     llvm::ConstantExpr::getBitCast(annoGV, SBP),
638     llvm::ConstantExpr::getBitCast(unitGV, SBP),
639     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
640   };
641   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
642 }
643 
644 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
645   // Never defer when EmitAllDecls is specified.
646   if (Features.EmitAllDecls)
647     return false;
648 
649   return !getContext().DeclMustBeEmitted(Global);
650 }
651 
652 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
653   const AliasAttr *AA = VD->getAttr<AliasAttr>();
654   assert(AA && "No alias?");
655 
656   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
657 
658   // See if there is already something with the target's name in the module.
659   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
660 
661   llvm::Constant *Aliasee;
662   if (isa<llvm::FunctionType>(DeclTy))
663     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
664   else
665     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
666                                     llvm::PointerType::getUnqual(DeclTy), 0);
667   if (!Entry) {
668     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
669     F->setLinkage(llvm::Function::ExternalWeakLinkage);
670     WeakRefReferences.insert(F);
671   }
672 
673   return Aliasee;
674 }
675 
676 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
677   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
678 
679   // Weak references don't produce any output by themselves.
680   if (Global->hasAttr<WeakRefAttr>())
681     return;
682 
683   // If this is an alias definition (which otherwise looks like a declaration)
684   // emit it now.
685   if (Global->hasAttr<AliasAttr>())
686     return EmitAliasDefinition(GD);
687 
688   // Ignore declarations, they will be emitted on their first use.
689   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
690     if (FD->getIdentifier()) {
691       llvm::StringRef Name = FD->getName();
692       if (Name == "_Block_object_assign") {
693         BlockObjectAssignDecl = FD;
694       } else if (Name == "_Block_object_dispose") {
695         BlockObjectDisposeDecl = FD;
696       }
697     }
698 
699     // Forward declarations are emitted lazily on first use.
700     if (!FD->isThisDeclarationADefinition())
701       return;
702   } else {
703     const VarDecl *VD = cast<VarDecl>(Global);
704     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
705 
706     if (VD->getIdentifier()) {
707       llvm::StringRef Name = VD->getName();
708       if (Name == "_NSConcreteGlobalBlock") {
709         NSConcreteGlobalBlockDecl = VD;
710       } else if (Name == "_NSConcreteStackBlock") {
711         NSConcreteStackBlockDecl = VD;
712       }
713     }
714 
715 
716     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
717       return;
718   }
719 
720   // Defer code generation when possible if this is a static definition, inline
721   // function etc.  These we only want to emit if they are used.
722   if (!MayDeferGeneration(Global)) {
723     // Emit the definition if it can't be deferred.
724     EmitGlobalDefinition(GD);
725     return;
726   }
727 
728   // If we're deferring emission of a C++ variable with an
729   // initializer, remember the order in which it appeared in the file.
730   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
731       cast<VarDecl>(Global)->hasInit()) {
732     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
733     CXXGlobalInits.push_back(0);
734   }
735 
736   // If the value has already been used, add it directly to the
737   // DeferredDeclsToEmit list.
738   llvm::StringRef MangledName = getMangledName(GD);
739   if (GetGlobalValue(MangledName))
740     DeferredDeclsToEmit.push_back(GD);
741   else {
742     // Otherwise, remember that we saw a deferred decl with this name.  The
743     // first use of the mangled name will cause it to move into
744     // DeferredDeclsToEmit.
745     DeferredDecls[MangledName] = GD;
746   }
747 }
748 
749 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
750   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
751 
752   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
753                                  Context.getSourceManager(),
754                                  "Generating code for declaration");
755 
756   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
757     // At -O0, don't generate IR for functions with available_externally
758     // linkage.
759     if (CodeGenOpts.OptimizationLevel == 0 &&
760         !Function->hasAttr<AlwaysInlineAttr>() &&
761         getFunctionLinkage(Function)
762                                   == llvm::Function::AvailableExternallyLinkage)
763       return;
764 
765     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
766       if (Method->isVirtual())
767         getVTables().EmitThunks(GD);
768 
769       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
770         return EmitCXXConstructor(CD, GD.getCtorType());
771 
772       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
773         return EmitCXXDestructor(DD, GD.getDtorType());
774     }
775 
776     return EmitGlobalFunctionDefinition(GD);
777   }
778 
779   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
780     return EmitGlobalVarDefinition(VD);
781 
782   assert(0 && "Invalid argument to EmitGlobalDefinition()");
783 }
784 
785 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
786 /// module, create and return an llvm Function with the specified type. If there
787 /// is something in the module with the specified name, return it potentially
788 /// bitcasted to the right type.
789 ///
790 /// If D is non-null, it specifies a decl that correspond to this.  This is used
791 /// to set the attributes on the function when it is first created.
792 llvm::Constant *
793 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
794                                        const llvm::Type *Ty,
795                                        GlobalDecl D) {
796   // Lookup the entry, lazily creating it if necessary.
797   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
798   if (Entry) {
799     if (WeakRefReferences.count(Entry)) {
800       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
801       if (FD && !FD->hasAttr<WeakAttr>())
802         Entry->setLinkage(llvm::Function::ExternalLinkage);
803 
804       WeakRefReferences.erase(Entry);
805     }
806 
807     if (Entry->getType()->getElementType() == Ty)
808       return Entry;
809 
810     // Make sure the result is of the correct type.
811     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
812     return llvm::ConstantExpr::getBitCast(Entry, PTy);
813   }
814 
815   // This function doesn't have a complete type (for example, the return
816   // type is an incomplete struct). Use a fake type instead, and make
817   // sure not to try to set attributes.
818   bool IsIncompleteFunction = false;
819 
820   const llvm::FunctionType *FTy;
821   if (isa<llvm::FunctionType>(Ty)) {
822     FTy = cast<llvm::FunctionType>(Ty);
823   } else {
824     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
825                                   std::vector<const llvm::Type*>(), false);
826     IsIncompleteFunction = true;
827   }
828 
829   llvm::Function *F = llvm::Function::Create(FTy,
830                                              llvm::Function::ExternalLinkage,
831                                              MangledName, &getModule());
832   assert(F->getName() == MangledName && "name was uniqued!");
833   if (D.getDecl())
834     SetFunctionAttributes(D, F, IsIncompleteFunction);
835 
836   // This is the first use or definition of a mangled name.  If there is a
837   // deferred decl with this name, remember that we need to emit it at the end
838   // of the file.
839   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
840   if (DDI != DeferredDecls.end()) {
841     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
842     // list, and remove it from DeferredDecls (since we don't need it anymore).
843     DeferredDeclsToEmit.push_back(DDI->second);
844     DeferredDecls.erase(DDI);
845 
846   // Otherwise, there are cases we have to worry about where we're
847   // using a declaration for which we must emit a definition but where
848   // we might not find a top-level definition:
849   //   - member functions defined inline in their classes
850   //   - friend functions defined inline in some class
851   //   - special member functions with implicit definitions
852   // If we ever change our AST traversal to walk into class methods,
853   // this will be unnecessary.
854   } else if (getLangOptions().CPlusPlus && D.getDecl()) {
855     // Look for a declaration that's lexically in a record.
856     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
857     do {
858       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
859         if (FD->isImplicit()) {
860           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
861           DeferredDeclsToEmit.push_back(D);
862           break;
863         } else if (FD->isThisDeclarationADefinition()) {
864           DeferredDeclsToEmit.push_back(D);
865           break;
866         }
867       }
868       FD = FD->getPreviousDeclaration();
869     } while (FD);
870   }
871 
872   // Make sure the result is of the requested type.
873   if (!IsIncompleteFunction) {
874     assert(F->getType()->getElementType() == Ty);
875     return F;
876   }
877 
878   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
879   return llvm::ConstantExpr::getBitCast(F, PTy);
880 }
881 
882 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
883 /// non-null, then this function will use the specified type if it has to
884 /// create it (this occurs when we see a definition of the function).
885 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
886                                                  const llvm::Type *Ty) {
887   // If there was no specific requested type, just convert it now.
888   if (!Ty)
889     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
890 
891   llvm::StringRef MangledName = getMangledName(GD);
892   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
893 }
894 
895 /// CreateRuntimeFunction - Create a new runtime function with the specified
896 /// type and name.
897 llvm::Constant *
898 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
899                                      llvm::StringRef Name) {
900   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
901 }
902 
903 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
904   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
905     return false;
906   if (Context.getLangOptions().CPlusPlus &&
907       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
908     // FIXME: We should do something fancier here!
909     return false;
910   }
911   return true;
912 }
913 
914 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
915 /// create and return an llvm GlobalVariable with the specified type.  If there
916 /// is something in the module with the specified name, return it potentially
917 /// bitcasted to the right type.
918 ///
919 /// If D is non-null, it specifies a decl that correspond to this.  This is used
920 /// to set the attributes on the global when it is first created.
921 llvm::Constant *
922 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
923                                      const llvm::PointerType *Ty,
924                                      const VarDecl *D) {
925   // Lookup the entry, lazily creating it if necessary.
926   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
927   if (Entry) {
928     if (WeakRefReferences.count(Entry)) {
929       if (D && !D->hasAttr<WeakAttr>())
930         Entry->setLinkage(llvm::Function::ExternalLinkage);
931 
932       WeakRefReferences.erase(Entry);
933     }
934 
935     if (Entry->getType() == Ty)
936       return Entry;
937 
938     // Make sure the result is of the correct type.
939     return llvm::ConstantExpr::getBitCast(Entry, Ty);
940   }
941 
942   // This is the first use or definition of a mangled name.  If there is a
943   // deferred decl with this name, remember that we need to emit it at the end
944   // of the file.
945   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
946   if (DDI != DeferredDecls.end()) {
947     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
948     // list, and remove it from DeferredDecls (since we don't need it anymore).
949     DeferredDeclsToEmit.push_back(DDI->second);
950     DeferredDecls.erase(DDI);
951   }
952 
953   llvm::GlobalVariable *GV =
954     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
955                              llvm::GlobalValue::ExternalLinkage,
956                              0, MangledName, 0,
957                              false, Ty->getAddressSpace());
958 
959   // Handle things which are present even on external declarations.
960   if (D) {
961     // FIXME: This code is overly simple and should be merged with other global
962     // handling.
963     GV->setConstant(DeclIsConstantGlobal(Context, D));
964 
965     // Set linkage and visibility in case we never see a definition.
966     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
967     if (LV.linkage() != ExternalLinkage) {
968       GV->setLinkage(llvm::GlobalValue::InternalLinkage);
969     } else {
970       if (D->hasAttr<DLLImportAttr>())
971         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
972       else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
973         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
974 
975       // Set visibility on a declaration only if it's explicit.
976       if (LV.visibilityExplicit())
977         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
978     }
979 
980     GV->setThreadLocal(D->isThreadSpecified());
981   }
982 
983   return GV;
984 }
985 
986 
987 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
988 /// given global variable.  If Ty is non-null and if the global doesn't exist,
989 /// then it will be greated with the specified type instead of whatever the
990 /// normal requested type would be.
991 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
992                                                   const llvm::Type *Ty) {
993   assert(D->hasGlobalStorage() && "Not a global variable");
994   QualType ASTTy = D->getType();
995   if (Ty == 0)
996     Ty = getTypes().ConvertTypeForMem(ASTTy);
997 
998   const llvm::PointerType *PTy =
999     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
1000 
1001   llvm::StringRef MangledName = getMangledName(D);
1002   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1003 }
1004 
1005 /// CreateRuntimeVariable - Create a new runtime global variable with the
1006 /// specified type and name.
1007 llvm::Constant *
1008 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1009                                      llvm::StringRef Name) {
1010   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1011 }
1012 
1013 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1014   assert(!D->getInit() && "Cannot emit definite definitions here!");
1015 
1016   if (MayDeferGeneration(D)) {
1017     // If we have not seen a reference to this variable yet, place it
1018     // into the deferred declarations table to be emitted if needed
1019     // later.
1020     llvm::StringRef MangledName = getMangledName(D);
1021     if (!GetGlobalValue(MangledName)) {
1022       DeferredDecls[MangledName] = D;
1023       return;
1024     }
1025   }
1026 
1027   // The tentative definition is the only definition.
1028   EmitGlobalVarDefinition(D);
1029 }
1030 
1031 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1032   if (DefinitionRequired)
1033     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1034 }
1035 
1036 llvm::GlobalVariable::LinkageTypes
1037 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1038   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1039     return llvm::GlobalVariable::InternalLinkage;
1040 
1041   if (const CXXMethodDecl *KeyFunction
1042                                     = RD->getASTContext().getKeyFunction(RD)) {
1043     // If this class has a key function, use that to determine the linkage of
1044     // the vtable.
1045     const FunctionDecl *Def = 0;
1046     if (KeyFunction->hasBody(Def))
1047       KeyFunction = cast<CXXMethodDecl>(Def);
1048 
1049     switch (KeyFunction->getTemplateSpecializationKind()) {
1050       case TSK_Undeclared:
1051       case TSK_ExplicitSpecialization:
1052         if (KeyFunction->isInlined())
1053           return llvm::GlobalVariable::WeakODRLinkage;
1054 
1055         return llvm::GlobalVariable::ExternalLinkage;
1056 
1057       case TSK_ImplicitInstantiation:
1058       case TSK_ExplicitInstantiationDefinition:
1059         return llvm::GlobalVariable::WeakODRLinkage;
1060 
1061       case TSK_ExplicitInstantiationDeclaration:
1062         // FIXME: Use available_externally linkage. However, this currently
1063         // breaks LLVM's build due to undefined symbols.
1064         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1065         return llvm::GlobalVariable::WeakODRLinkage;
1066     }
1067   }
1068 
1069   switch (RD->getTemplateSpecializationKind()) {
1070   case TSK_Undeclared:
1071   case TSK_ExplicitSpecialization:
1072   case TSK_ImplicitInstantiation:
1073   case TSK_ExplicitInstantiationDefinition:
1074     return llvm::GlobalVariable::WeakODRLinkage;
1075 
1076   case TSK_ExplicitInstantiationDeclaration:
1077     // FIXME: Use available_externally linkage. However, this currently
1078     // breaks LLVM's build due to undefined symbols.
1079     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1080     return llvm::GlobalVariable::WeakODRLinkage;
1081   }
1082 
1083   // Silence GCC warning.
1084   return llvm::GlobalVariable::WeakODRLinkage;
1085 }
1086 
1087 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1088     return CharUnits::fromQuantity(
1089       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1090 }
1091 
1092 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1093   llvm::Constant *Init = 0;
1094   QualType ASTTy = D->getType();
1095   bool NonConstInit = false;
1096 
1097   const Expr *InitExpr = D->getAnyInitializer();
1098 
1099   if (!InitExpr) {
1100     // This is a tentative definition; tentative definitions are
1101     // implicitly initialized with { 0 }.
1102     //
1103     // Note that tentative definitions are only emitted at the end of
1104     // a translation unit, so they should never have incomplete
1105     // type. In addition, EmitTentativeDefinition makes sure that we
1106     // never attempt to emit a tentative definition if a real one
1107     // exists. A use may still exists, however, so we still may need
1108     // to do a RAUW.
1109     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1110     Init = EmitNullConstant(D->getType());
1111   } else {
1112     Init = EmitConstantExpr(InitExpr, D->getType());
1113     if (!Init) {
1114       QualType T = InitExpr->getType();
1115       if (D->getType()->isReferenceType())
1116         T = D->getType();
1117 
1118       if (getLangOptions().CPlusPlus) {
1119         Init = EmitNullConstant(T);
1120         NonConstInit = true;
1121       } else {
1122         ErrorUnsupported(D, "static initializer");
1123         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1124       }
1125     } else {
1126       // We don't need an initializer, so remove the entry for the delayed
1127       // initializer position (just in case this entry was delayed).
1128       if (getLangOptions().CPlusPlus)
1129         DelayedCXXInitPosition.erase(D);
1130     }
1131   }
1132 
1133   const llvm::Type* InitType = Init->getType();
1134   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1135 
1136   // Strip off a bitcast if we got one back.
1137   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1138     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1139            // all zero index gep.
1140            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1141     Entry = CE->getOperand(0);
1142   }
1143 
1144   // Entry is now either a Function or GlobalVariable.
1145   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1146 
1147   // We have a definition after a declaration with the wrong type.
1148   // We must make a new GlobalVariable* and update everything that used OldGV
1149   // (a declaration or tentative definition) with the new GlobalVariable*
1150   // (which will be a definition).
1151   //
1152   // This happens if there is a prototype for a global (e.g.
1153   // "extern int x[];") and then a definition of a different type (e.g.
1154   // "int x[10];"). This also happens when an initializer has a different type
1155   // from the type of the global (this happens with unions).
1156   if (GV == 0 ||
1157       GV->getType()->getElementType() != InitType ||
1158       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1159 
1160     // Move the old entry aside so that we'll create a new one.
1161     Entry->setName(llvm::StringRef());
1162 
1163     // Make a new global with the correct type, this is now guaranteed to work.
1164     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1165 
1166     // Replace all uses of the old global with the new global
1167     llvm::Constant *NewPtrForOldDecl =
1168         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1169     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1170 
1171     // Erase the old global, since it is no longer used.
1172     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1173   }
1174 
1175   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1176     SourceManager &SM = Context.getSourceManager();
1177     AddAnnotation(EmitAnnotateAttr(GV, AA,
1178                               SM.getInstantiationLineNumber(D->getLocation())));
1179   }
1180 
1181   GV->setInitializer(Init);
1182 
1183   // If it is safe to mark the global 'constant', do so now.
1184   GV->setConstant(false);
1185   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1186     GV->setConstant(true);
1187 
1188   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1189 
1190   // Set the llvm linkage type as appropriate.
1191   llvm::GlobalValue::LinkageTypes Linkage =
1192     GetLLVMLinkageVarDefinition(D, GV);
1193   GV->setLinkage(Linkage);
1194   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1195     // common vars aren't constant even if declared const.
1196     GV->setConstant(false);
1197 
1198   SetCommonAttributes(D, GV);
1199 
1200   // Emit the initializer function if necessary.
1201   if (NonConstInit)
1202     EmitCXXGlobalVarDeclInitFunc(D, GV);
1203 
1204   // Emit global variable debug information.
1205   if (CGDebugInfo *DI = getDebugInfo()) {
1206     DI->setLocation(D->getLocation());
1207     DI->EmitGlobalVariable(GV, D);
1208   }
1209 }
1210 
1211 llvm::GlobalValue::LinkageTypes
1212 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1213                                            llvm::GlobalVariable *GV) {
1214   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1215   if (Linkage == GVA_Internal)
1216     return llvm::Function::InternalLinkage;
1217   else if (D->hasAttr<DLLImportAttr>())
1218     return llvm::Function::DLLImportLinkage;
1219   else if (D->hasAttr<DLLExportAttr>())
1220     return llvm::Function::DLLExportLinkage;
1221   else if (D->hasAttr<WeakAttr>()) {
1222     if (GV->isConstant())
1223       return llvm::GlobalVariable::WeakODRLinkage;
1224     else
1225       return llvm::GlobalVariable::WeakAnyLinkage;
1226   } else if (Linkage == GVA_TemplateInstantiation ||
1227              Linkage == GVA_ExplicitTemplateInstantiation)
1228     // FIXME: It seems like we can provide more specific linkage here
1229     // (LinkOnceODR, WeakODR).
1230     return llvm::GlobalVariable::WeakAnyLinkage;
1231   else if (!getLangOptions().CPlusPlus &&
1232            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1233              D->getAttr<CommonAttr>()) &&
1234            !D->hasExternalStorage() && !D->getInit() &&
1235            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1236     // Thread local vars aren't considered common linkage.
1237     return llvm::GlobalVariable::CommonLinkage;
1238   }
1239   return llvm::GlobalVariable::ExternalLinkage;
1240 }
1241 
1242 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1243 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1244 /// existing call uses of the old function in the module, this adjusts them to
1245 /// call the new function directly.
1246 ///
1247 /// This is not just a cleanup: the always_inline pass requires direct calls to
1248 /// functions to be able to inline them.  If there is a bitcast in the way, it
1249 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1250 /// run at -O0.
1251 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1252                                                       llvm::Function *NewFn) {
1253   // If we're redefining a global as a function, don't transform it.
1254   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1255   if (OldFn == 0) return;
1256 
1257   const llvm::Type *NewRetTy = NewFn->getReturnType();
1258   llvm::SmallVector<llvm::Value*, 4> ArgList;
1259 
1260   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1261        UI != E; ) {
1262     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1263     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1264     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1265     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1266     llvm::CallSite CS(CI);
1267     if (!CI || !CS.isCallee(I)) continue;
1268 
1269     // If the return types don't match exactly, and if the call isn't dead, then
1270     // we can't transform this call.
1271     if (CI->getType() != NewRetTy && !CI->use_empty())
1272       continue;
1273 
1274     // If the function was passed too few arguments, don't transform.  If extra
1275     // arguments were passed, we silently drop them.  If any of the types
1276     // mismatch, we don't transform.
1277     unsigned ArgNo = 0;
1278     bool DontTransform = false;
1279     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1280          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1281       if (CS.arg_size() == ArgNo ||
1282           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1283         DontTransform = true;
1284         break;
1285       }
1286     }
1287     if (DontTransform)
1288       continue;
1289 
1290     // Okay, we can transform this.  Create the new call instruction and copy
1291     // over the required information.
1292     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1293     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1294                                                      ArgList.end(), "", CI);
1295     ArgList.clear();
1296     if (!NewCall->getType()->isVoidTy())
1297       NewCall->takeName(CI);
1298     NewCall->setAttributes(CI->getAttributes());
1299     NewCall->setCallingConv(CI->getCallingConv());
1300 
1301     // Finally, remove the old call, replacing any uses with the new one.
1302     if (!CI->use_empty())
1303       CI->replaceAllUsesWith(NewCall);
1304 
1305     // Copy debug location attached to CI.
1306     if (!CI->getDebugLoc().isUnknown())
1307       NewCall->setDebugLoc(CI->getDebugLoc());
1308     CI->eraseFromParent();
1309   }
1310 }
1311 
1312 
1313 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1314   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1315   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1316   // Get or create the prototype for the function.
1317   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1318 
1319   // Strip off a bitcast if we got one back.
1320   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1321     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1322     Entry = CE->getOperand(0);
1323   }
1324 
1325 
1326   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1327     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1328 
1329     // If the types mismatch then we have to rewrite the definition.
1330     assert(OldFn->isDeclaration() &&
1331            "Shouldn't replace non-declaration");
1332 
1333     // F is the Function* for the one with the wrong type, we must make a new
1334     // Function* and update everything that used F (a declaration) with the new
1335     // Function* (which will be a definition).
1336     //
1337     // This happens if there is a prototype for a function
1338     // (e.g. "int f()") and then a definition of a different type
1339     // (e.g. "int f(int x)").  Move the old function aside so that it
1340     // doesn't interfere with GetAddrOfFunction.
1341     OldFn->setName(llvm::StringRef());
1342     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1343 
1344     // If this is an implementation of a function without a prototype, try to
1345     // replace any existing uses of the function (which may be calls) with uses
1346     // of the new function
1347     if (D->getType()->isFunctionNoProtoType()) {
1348       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1349       OldFn->removeDeadConstantUsers();
1350     }
1351 
1352     // Replace uses of F with the Function we will endow with a body.
1353     if (!Entry->use_empty()) {
1354       llvm::Constant *NewPtrForOldDecl =
1355         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1356       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1357     }
1358 
1359     // Ok, delete the old function now, which is dead.
1360     OldFn->eraseFromParent();
1361 
1362     Entry = NewFn;
1363   }
1364 
1365   // We need to set linkage and visibility on the function before
1366   // generating code for it because various parts of IR generation
1367   // want to propagate this information down (e.g. to local static
1368   // declarations).
1369   llvm::Function *Fn = cast<llvm::Function>(Entry);
1370   setFunctionLinkage(D, Fn);
1371 
1372   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1373   setGlobalVisibility(Fn, D, /*ForDef*/ true);
1374 
1375   CodeGenFunction(*this).GenerateCode(D, Fn);
1376 
1377   SetFunctionDefinitionAttributes(D, Fn);
1378   SetLLVMFunctionAttributesForDefinition(D, Fn);
1379 
1380   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1381     AddGlobalCtor(Fn, CA->getPriority());
1382   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1383     AddGlobalDtor(Fn, DA->getPriority());
1384 }
1385 
1386 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1387   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1388   const AliasAttr *AA = D->getAttr<AliasAttr>();
1389   assert(AA && "Not an alias?");
1390 
1391   llvm::StringRef MangledName = getMangledName(GD);
1392 
1393   // If there is a definition in the module, then it wins over the alias.
1394   // This is dubious, but allow it to be safe.  Just ignore the alias.
1395   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1396   if (Entry && !Entry->isDeclaration())
1397     return;
1398 
1399   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1400 
1401   // Create a reference to the named value.  This ensures that it is emitted
1402   // if a deferred decl.
1403   llvm::Constant *Aliasee;
1404   if (isa<llvm::FunctionType>(DeclTy))
1405     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1406   else
1407     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1408                                     llvm::PointerType::getUnqual(DeclTy), 0);
1409 
1410   // Create the new alias itself, but don't set a name yet.
1411   llvm::GlobalValue *GA =
1412     new llvm::GlobalAlias(Aliasee->getType(),
1413                           llvm::Function::ExternalLinkage,
1414                           "", Aliasee, &getModule());
1415 
1416   if (Entry) {
1417     assert(Entry->isDeclaration());
1418 
1419     // If there is a declaration in the module, then we had an extern followed
1420     // by the alias, as in:
1421     //   extern int test6();
1422     //   ...
1423     //   int test6() __attribute__((alias("test7")));
1424     //
1425     // Remove it and replace uses of it with the alias.
1426     GA->takeName(Entry);
1427 
1428     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1429                                                           Entry->getType()));
1430     Entry->eraseFromParent();
1431   } else {
1432     GA->setName(MangledName);
1433   }
1434 
1435   // Set attributes which are particular to an alias; this is a
1436   // specialization of the attributes which may be set on a global
1437   // variable/function.
1438   if (D->hasAttr<DLLExportAttr>()) {
1439     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1440       // The dllexport attribute is ignored for undefined symbols.
1441       if (FD->hasBody())
1442         GA->setLinkage(llvm::Function::DLLExportLinkage);
1443     } else {
1444       GA->setLinkage(llvm::Function::DLLExportLinkage);
1445     }
1446   } else if (D->hasAttr<WeakAttr>() ||
1447              D->hasAttr<WeakRefAttr>() ||
1448              D->hasAttr<WeakImportAttr>()) {
1449     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1450   }
1451 
1452   SetCommonAttributes(D, GA);
1453 }
1454 
1455 /// getBuiltinLibFunction - Given a builtin id for a function like
1456 /// "__builtin_fabsf", return a Function* for "fabsf".
1457 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1458                                                   unsigned BuiltinID) {
1459   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1460           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1461          "isn't a lib fn");
1462 
1463   // Get the name, skip over the __builtin_ prefix (if necessary).
1464   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1465   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1466     Name += 10;
1467 
1468   const llvm::FunctionType *Ty =
1469     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1470 
1471   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1472 }
1473 
1474 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1475                                             unsigned NumTys) {
1476   return llvm::Intrinsic::getDeclaration(&getModule(),
1477                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1478 }
1479 
1480 static llvm::StringMapEntry<llvm::Constant*> &
1481 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1482                          const StringLiteral *Literal,
1483                          bool TargetIsLSB,
1484                          bool &IsUTF16,
1485                          unsigned &StringLength) {
1486   llvm::StringRef String = Literal->getString();
1487   unsigned NumBytes = String.size();
1488 
1489   // Check for simple case.
1490   if (!Literal->containsNonAsciiOrNull()) {
1491     StringLength = NumBytes;
1492     return Map.GetOrCreateValue(String);
1493   }
1494 
1495   // Otherwise, convert the UTF8 literals into a byte string.
1496   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1497   const UTF8 *FromPtr = (UTF8 *)String.data();
1498   UTF16 *ToPtr = &ToBuf[0];
1499 
1500   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1501                            &ToPtr, ToPtr + NumBytes,
1502                            strictConversion);
1503 
1504   // ConvertUTF8toUTF16 returns the length in ToPtr.
1505   StringLength = ToPtr - &ToBuf[0];
1506 
1507   // Render the UTF-16 string into a byte array and convert to the target byte
1508   // order.
1509   //
1510   // FIXME: This isn't something we should need to do here.
1511   llvm::SmallString<128> AsBytes;
1512   AsBytes.reserve(StringLength * 2);
1513   for (unsigned i = 0; i != StringLength; ++i) {
1514     unsigned short Val = ToBuf[i];
1515     if (TargetIsLSB) {
1516       AsBytes.push_back(Val & 0xFF);
1517       AsBytes.push_back(Val >> 8);
1518     } else {
1519       AsBytes.push_back(Val >> 8);
1520       AsBytes.push_back(Val & 0xFF);
1521     }
1522   }
1523   // Append one extra null character, the second is automatically added by our
1524   // caller.
1525   AsBytes.push_back(0);
1526 
1527   IsUTF16 = true;
1528   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1529 }
1530 
1531 llvm::Constant *
1532 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1533   unsigned StringLength = 0;
1534   bool isUTF16 = false;
1535   llvm::StringMapEntry<llvm::Constant*> &Entry =
1536     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1537                              getTargetData().isLittleEndian(),
1538                              isUTF16, StringLength);
1539 
1540   if (llvm::Constant *C = Entry.getValue())
1541     return C;
1542 
1543   llvm::Constant *Zero =
1544       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1545   llvm::Constant *Zeros[] = { Zero, Zero };
1546 
1547   // If we don't already have it, get __CFConstantStringClassReference.
1548   if (!CFConstantStringClassRef) {
1549     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1550     Ty = llvm::ArrayType::get(Ty, 0);
1551     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1552                                            "__CFConstantStringClassReference");
1553     // Decay array -> ptr
1554     CFConstantStringClassRef =
1555       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1556   }
1557 
1558   QualType CFTy = getContext().getCFConstantStringType();
1559 
1560   const llvm::StructType *STy =
1561     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1562 
1563   std::vector<llvm::Constant*> Fields(4);
1564 
1565   // Class pointer.
1566   Fields[0] = CFConstantStringClassRef;
1567 
1568   // Flags.
1569   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1570   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1571     llvm::ConstantInt::get(Ty, 0x07C8);
1572 
1573   // String pointer.
1574   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1575 
1576   llvm::GlobalValue::LinkageTypes Linkage;
1577   bool isConstant;
1578   if (isUTF16) {
1579     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1580     Linkage = llvm::GlobalValue::InternalLinkage;
1581     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1582     // does make plain ascii ones writable.
1583     isConstant = true;
1584   } else {
1585     Linkage = llvm::GlobalValue::PrivateLinkage;
1586     isConstant = !Features.WritableStrings;
1587   }
1588 
1589   llvm::GlobalVariable *GV =
1590     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1591                              ".str");
1592   GV->setUnnamedAddr(true);
1593   if (isUTF16) {
1594     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1595     GV->setAlignment(Align.getQuantity());
1596   }
1597   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1598 
1599   // String length.
1600   Ty = getTypes().ConvertType(getContext().LongTy);
1601   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1602 
1603   // The struct.
1604   C = llvm::ConstantStruct::get(STy, Fields);
1605   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1606                                 llvm::GlobalVariable::PrivateLinkage, C,
1607                                 "_unnamed_cfstring_");
1608   if (const char *Sect = getContext().Target.getCFStringSection())
1609     GV->setSection(Sect);
1610   Entry.setValue(GV);
1611 
1612   return GV;
1613 }
1614 
1615 llvm::Constant *
1616 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1617   unsigned StringLength = 0;
1618   bool isUTF16 = false;
1619   llvm::StringMapEntry<llvm::Constant*> &Entry =
1620     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1621                              getTargetData().isLittleEndian(),
1622                              isUTF16, StringLength);
1623 
1624   if (llvm::Constant *C = Entry.getValue())
1625     return C;
1626 
1627   llvm::Constant *Zero =
1628   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1629   llvm::Constant *Zeros[] = { Zero, Zero };
1630 
1631   // If we don't already have it, get _NSConstantStringClassReference.
1632   if (!ConstantStringClassRef) {
1633     std::string StringClass(getLangOptions().ObjCConstantStringClass);
1634     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1635     Ty = llvm::ArrayType::get(Ty, 0);
1636     llvm::Constant *GV;
1637     if (StringClass.empty())
1638       GV = CreateRuntimeVariable(Ty,
1639                                  Features.ObjCNonFragileABI ?
1640                                  "OBJC_CLASS_$_NSConstantString" :
1641                                  "_NSConstantStringClassReference");
1642     else {
1643       std::string str;
1644       if (Features.ObjCNonFragileABI)
1645         str = "OBJC_CLASS_$_" + StringClass;
1646       else
1647         str = "_" + StringClass + "ClassReference";
1648       GV = CreateRuntimeVariable(Ty, str);
1649     }
1650     // Decay array -> ptr
1651     ConstantStringClassRef =
1652     llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1653   }
1654 
1655   QualType NSTy = getContext().getNSConstantStringType();
1656 
1657   const llvm::StructType *STy =
1658   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1659 
1660   std::vector<llvm::Constant*> Fields(3);
1661 
1662   // Class pointer.
1663   Fields[0] = ConstantStringClassRef;
1664 
1665   // String pointer.
1666   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1667 
1668   llvm::GlobalValue::LinkageTypes Linkage;
1669   bool isConstant;
1670   if (isUTF16) {
1671     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1672     Linkage = llvm::GlobalValue::InternalLinkage;
1673     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1674     // does make plain ascii ones writable.
1675     isConstant = true;
1676   } else {
1677     Linkage = llvm::GlobalValue::PrivateLinkage;
1678     isConstant = !Features.WritableStrings;
1679   }
1680 
1681   llvm::GlobalVariable *GV =
1682   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1683                            ".str");
1684   GV->setUnnamedAddr(true);
1685   if (isUTF16) {
1686     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1687     GV->setAlignment(Align.getQuantity());
1688   }
1689   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1690 
1691   // String length.
1692   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1693   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1694 
1695   // The struct.
1696   C = llvm::ConstantStruct::get(STy, Fields);
1697   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1698                                 llvm::GlobalVariable::PrivateLinkage, C,
1699                                 "_unnamed_nsstring_");
1700   // FIXME. Fix section.
1701   if (const char *Sect =
1702         Features.ObjCNonFragileABI
1703           ? getContext().Target.getNSStringNonFragileABISection()
1704           : getContext().Target.getNSStringSection())
1705     GV->setSection(Sect);
1706   Entry.setValue(GV);
1707 
1708   return GV;
1709 }
1710 
1711 /// GetStringForStringLiteral - Return the appropriate bytes for a
1712 /// string literal, properly padded to match the literal type.
1713 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1714   const ConstantArrayType *CAT =
1715     getContext().getAsConstantArrayType(E->getType());
1716   assert(CAT && "String isn't pointer or array!");
1717 
1718   // Resize the string to the right size.
1719   uint64_t RealLen = CAT->getSize().getZExtValue();
1720 
1721   if (E->isWide())
1722     RealLen *= getContext().Target.getWCharWidth()/8;
1723 
1724   std::string Str = E->getString().str();
1725   Str.resize(RealLen, '\0');
1726 
1727   return Str;
1728 }
1729 
1730 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1731 /// constant array for the given string literal.
1732 llvm::Constant *
1733 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1734   // FIXME: This can be more efficient.
1735   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1736   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1737   if (S->isWide()) {
1738     llvm::Type *DestTy =
1739         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1740     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1741   }
1742   return C;
1743 }
1744 
1745 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1746 /// array for the given ObjCEncodeExpr node.
1747 llvm::Constant *
1748 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1749   std::string Str;
1750   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1751 
1752   return GetAddrOfConstantCString(Str);
1753 }
1754 
1755 
1756 /// GenerateWritableString -- Creates storage for a string literal.
1757 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1758                                              bool constant,
1759                                              CodeGenModule &CGM,
1760                                              const char *GlobalName) {
1761   // Create Constant for this string literal. Don't add a '\0'.
1762   llvm::Constant *C =
1763       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1764 
1765   // Create a global variable for this string
1766   llvm::GlobalVariable *GV =
1767     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1768                              llvm::GlobalValue::PrivateLinkage,
1769                              C, GlobalName);
1770   GV->setUnnamedAddr(true);
1771   return GV;
1772 }
1773 
1774 /// GetAddrOfConstantString - Returns a pointer to a character array
1775 /// containing the literal. This contents are exactly that of the
1776 /// given string, i.e. it will not be null terminated automatically;
1777 /// see GetAddrOfConstantCString. Note that whether the result is
1778 /// actually a pointer to an LLVM constant depends on
1779 /// Feature.WriteableStrings.
1780 ///
1781 /// The result has pointer to array type.
1782 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1783                                                        const char *GlobalName) {
1784   bool IsConstant = !Features.WritableStrings;
1785 
1786   // Get the default prefix if a name wasn't specified.
1787   if (!GlobalName)
1788     GlobalName = ".str";
1789 
1790   // Don't share any string literals if strings aren't constant.
1791   if (!IsConstant)
1792     return GenerateStringLiteral(str, false, *this, GlobalName);
1793 
1794   llvm::StringMapEntry<llvm::Constant *> &Entry =
1795     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1796 
1797   if (Entry.getValue())
1798     return Entry.getValue();
1799 
1800   // Create a global variable for this.
1801   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1802   Entry.setValue(C);
1803   return C;
1804 }
1805 
1806 /// GetAddrOfConstantCString - Returns a pointer to a character
1807 /// array containing the literal and a terminating '\-'
1808 /// character. The result has pointer to array type.
1809 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1810                                                         const char *GlobalName){
1811   return GetAddrOfConstantString(str + '\0', GlobalName);
1812 }
1813 
1814 /// EmitObjCPropertyImplementations - Emit information for synthesized
1815 /// properties for an implementation.
1816 void CodeGenModule::EmitObjCPropertyImplementations(const
1817                                                     ObjCImplementationDecl *D) {
1818   for (ObjCImplementationDecl::propimpl_iterator
1819          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1820     ObjCPropertyImplDecl *PID = *i;
1821 
1822     // Dynamic is just for type-checking.
1823     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1824       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1825 
1826       // Determine which methods need to be implemented, some may have
1827       // been overridden. Note that ::isSynthesized is not the method
1828       // we want, that just indicates if the decl came from a
1829       // property. What we want to know is if the method is defined in
1830       // this implementation.
1831       if (!D->getInstanceMethod(PD->getGetterName()))
1832         CodeGenFunction(*this).GenerateObjCGetter(
1833                                  const_cast<ObjCImplementationDecl *>(D), PID);
1834       if (!PD->isReadOnly() &&
1835           !D->getInstanceMethod(PD->getSetterName()))
1836         CodeGenFunction(*this).GenerateObjCSetter(
1837                                  const_cast<ObjCImplementationDecl *>(D), PID);
1838     }
1839   }
1840 }
1841 
1842 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1843 /// for an implementation.
1844 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1845   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1846     return;
1847   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1848   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1849   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1850   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1851   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1852                                                   D->getLocation(),
1853                                                   D->getLocation(), cxxSelector,
1854                                                   getContext().VoidTy, 0,
1855                                                   DC, true, false, true, false,
1856                                                   ObjCMethodDecl::Required);
1857   D->addInstanceMethod(DTORMethod);
1858   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1859 
1860   II = &getContext().Idents.get(".cxx_construct");
1861   cxxSelector = getContext().Selectors.getSelector(0, &II);
1862   // The constructor returns 'self'.
1863   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1864                                                 D->getLocation(),
1865                                                 D->getLocation(), cxxSelector,
1866                                                 getContext().getObjCIdType(), 0,
1867                                                 DC, true, false, true, false,
1868                                                 ObjCMethodDecl::Required);
1869   D->addInstanceMethod(CTORMethod);
1870   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1871 
1872 
1873 }
1874 
1875 /// EmitNamespace - Emit all declarations in a namespace.
1876 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1877   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1878        I != E; ++I)
1879     EmitTopLevelDecl(*I);
1880 }
1881 
1882 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1883 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1884   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1885       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1886     ErrorUnsupported(LSD, "linkage spec");
1887     return;
1888   }
1889 
1890   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1891        I != E; ++I)
1892     EmitTopLevelDecl(*I);
1893 }
1894 
1895 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1896 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1897   // If an error has occurred, stop code generation, but continue
1898   // parsing and semantic analysis (to ensure all warnings and errors
1899   // are emitted).
1900   if (Diags.hasErrorOccurred())
1901     return;
1902 
1903   // Ignore dependent declarations.
1904   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1905     return;
1906 
1907   switch (D->getKind()) {
1908   case Decl::CXXConversion:
1909   case Decl::CXXMethod:
1910   case Decl::Function:
1911     // Skip function templates
1912     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1913       return;
1914 
1915     EmitGlobal(cast<FunctionDecl>(D));
1916     break;
1917 
1918   case Decl::Var:
1919     EmitGlobal(cast<VarDecl>(D));
1920     break;
1921 
1922   // C++ Decls
1923   case Decl::Namespace:
1924     EmitNamespace(cast<NamespaceDecl>(D));
1925     break;
1926     // No code generation needed.
1927   case Decl::UsingShadow:
1928   case Decl::Using:
1929   case Decl::UsingDirective:
1930   case Decl::ClassTemplate:
1931   case Decl::FunctionTemplate:
1932   case Decl::NamespaceAlias:
1933     break;
1934   case Decl::CXXConstructor:
1935     // Skip function templates
1936     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1937       return;
1938 
1939     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1940     break;
1941   case Decl::CXXDestructor:
1942     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1943     break;
1944 
1945   case Decl::StaticAssert:
1946     // Nothing to do.
1947     break;
1948 
1949   // Objective-C Decls
1950 
1951   // Forward declarations, no (immediate) code generation.
1952   case Decl::ObjCClass:
1953   case Decl::ObjCForwardProtocol:
1954   case Decl::ObjCInterface:
1955     break;
1956 
1957     case Decl::ObjCCategory: {
1958       ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1959       if (CD->IsClassExtension() && CD->hasSynthBitfield())
1960         Context.ResetObjCLayout(CD->getClassInterface());
1961       break;
1962     }
1963 
1964 
1965   case Decl::ObjCProtocol:
1966     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1967     break;
1968 
1969   case Decl::ObjCCategoryImpl:
1970     // Categories have properties but don't support synthesize so we
1971     // can ignore them here.
1972     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1973     break;
1974 
1975   case Decl::ObjCImplementation: {
1976     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1977     if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1978       Context.ResetObjCLayout(OMD->getClassInterface());
1979     EmitObjCPropertyImplementations(OMD);
1980     EmitObjCIvarInitializations(OMD);
1981     Runtime->GenerateClass(OMD);
1982     break;
1983   }
1984   case Decl::ObjCMethod: {
1985     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1986     // If this is not a prototype, emit the body.
1987     if (OMD->getBody())
1988       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1989     break;
1990   }
1991   case Decl::ObjCCompatibleAlias:
1992     // compatibility-alias is a directive and has no code gen.
1993     break;
1994 
1995   case Decl::LinkageSpec:
1996     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1997     break;
1998 
1999   case Decl::FileScopeAsm: {
2000     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2001     llvm::StringRef AsmString = AD->getAsmString()->getString();
2002 
2003     const std::string &S = getModule().getModuleInlineAsm();
2004     if (S.empty())
2005       getModule().setModuleInlineAsm(AsmString);
2006     else
2007       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2008     break;
2009   }
2010 
2011   default:
2012     // Make sure we handled everything we should, every other kind is a
2013     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2014     // function. Need to recode Decl::Kind to do that easily.
2015     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2016   }
2017 }
2018 
2019 /// Turns the given pointer into a constant.
2020 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2021                                           const void *Ptr) {
2022   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2023   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2024   return llvm::ConstantInt::get(i64, PtrInt);
2025 }
2026 
2027 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2028                                    llvm::NamedMDNode *&GlobalMetadata,
2029                                    GlobalDecl D,
2030                                    llvm::GlobalValue *Addr) {
2031   if (!GlobalMetadata)
2032     GlobalMetadata =
2033       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2034 
2035   // TODO: should we report variant information for ctors/dtors?
2036   llvm::Value *Ops[] = {
2037     Addr,
2038     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2039   };
2040   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2041 }
2042 
2043 /// Emits metadata nodes associating all the global values in the
2044 /// current module with the Decls they came from.  This is useful for
2045 /// projects using IR gen as a subroutine.
2046 ///
2047 /// Since there's currently no way to associate an MDNode directly
2048 /// with an llvm::GlobalValue, we create a global named metadata
2049 /// with the name 'clang.global.decl.ptrs'.
2050 void CodeGenModule::EmitDeclMetadata() {
2051   llvm::NamedMDNode *GlobalMetadata = 0;
2052 
2053   // StaticLocalDeclMap
2054   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2055          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2056        I != E; ++I) {
2057     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2058     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2059   }
2060 }
2061 
2062 /// Emits metadata nodes for all the local variables in the current
2063 /// function.
2064 void CodeGenFunction::EmitDeclMetadata() {
2065   if (LocalDeclMap.empty()) return;
2066 
2067   llvm::LLVMContext &Context = getLLVMContext();
2068 
2069   // Find the unique metadata ID for this name.
2070   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2071 
2072   llvm::NamedMDNode *GlobalMetadata = 0;
2073 
2074   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2075          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2076     const Decl *D = I->first;
2077     llvm::Value *Addr = I->second;
2078 
2079     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2080       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2081       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2082     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2083       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2084       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2085     }
2086   }
2087 }
2088 
2089 ///@name Custom Runtime Function Interfaces
2090 ///@{
2091 //
2092 // FIXME: These can be eliminated once we can have clients just get the required
2093 // AST nodes from the builtin tables.
2094 
2095 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2096   if (BlockObjectDispose)
2097     return BlockObjectDispose;
2098 
2099   // If we saw an explicit decl, use that.
2100   if (BlockObjectDisposeDecl) {
2101     return BlockObjectDispose = GetAddrOfFunction(
2102       BlockObjectDisposeDecl,
2103       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2104   }
2105 
2106   // Otherwise construct the function by hand.
2107   const llvm::FunctionType *FTy;
2108   std::vector<const llvm::Type*> ArgTys;
2109   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2110   ArgTys.push_back(PtrToInt8Ty);
2111   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2112   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2113   return BlockObjectDispose =
2114     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2115 }
2116 
2117 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2118   if (BlockObjectAssign)
2119     return BlockObjectAssign;
2120 
2121   // If we saw an explicit decl, use that.
2122   if (BlockObjectAssignDecl) {
2123     return BlockObjectAssign = GetAddrOfFunction(
2124       BlockObjectAssignDecl,
2125       getTypes().GetFunctionType(BlockObjectAssignDecl));
2126   }
2127 
2128   // Otherwise construct the function by hand.
2129   const llvm::FunctionType *FTy;
2130   std::vector<const llvm::Type*> ArgTys;
2131   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2132   ArgTys.push_back(PtrToInt8Ty);
2133   ArgTys.push_back(PtrToInt8Ty);
2134   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2135   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2136   return BlockObjectAssign =
2137     CreateRuntimeFunction(FTy, "_Block_object_assign");
2138 }
2139 
2140 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2141   if (NSConcreteGlobalBlock)
2142     return NSConcreteGlobalBlock;
2143 
2144   // If we saw an explicit decl, use that.
2145   if (NSConcreteGlobalBlockDecl) {
2146     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2147       NSConcreteGlobalBlockDecl,
2148       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2149   }
2150 
2151   // Otherwise construct the variable by hand.
2152   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2153     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2154 }
2155 
2156 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2157   if (NSConcreteStackBlock)
2158     return NSConcreteStackBlock;
2159 
2160   // If we saw an explicit decl, use that.
2161   if (NSConcreteStackBlockDecl) {
2162     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2163       NSConcreteStackBlockDecl,
2164       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2165   }
2166 
2167   // Otherwise construct the variable by hand.
2168   return NSConcreteStackBlock = CreateRuntimeVariable(
2169     PtrToInt8Ty, "_NSConcreteStackBlock");
2170 }
2171 
2172 ///@}
2173