1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/Analysis/TargetLibraryInfo.h" 54 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 55 #include "llvm/IR/AttributeMask.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/xxhash.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include "llvm/TargetParser/X86TargetParser.h" 73 #include <optional> 74 75 using namespace clang; 76 using namespace CodeGen; 77 78 static llvm::cl::opt<bool> LimitedCoverage( 79 "limited-coverage-experimental", llvm::cl::Hidden, 80 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 81 82 static const char AnnotationSection[] = "llvm.metadata"; 83 84 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 85 switch (CGM.getContext().getCXXABIKind()) { 86 case TargetCXXABI::AppleARM64: 87 case TargetCXXABI::Fuchsia: 88 case TargetCXXABI::GenericAArch64: 89 case TargetCXXABI::GenericARM: 90 case TargetCXXABI::iOS: 91 case TargetCXXABI::WatchOS: 92 case TargetCXXABI::GenericMIPS: 93 case TargetCXXABI::GenericItanium: 94 case TargetCXXABI::WebAssembly: 95 case TargetCXXABI::XL: 96 return CreateItaniumCXXABI(CGM); 97 case TargetCXXABI::Microsoft: 98 return CreateMicrosoftCXXABI(CGM); 99 } 100 101 llvm_unreachable("invalid C++ ABI kind"); 102 } 103 104 static std::unique_ptr<TargetCodeGenInfo> 105 createTargetCodeGenInfo(CodeGenModule &CGM) { 106 const TargetInfo &Target = CGM.getTarget(); 107 const llvm::Triple &Triple = Target.getTriple(); 108 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 109 110 switch (Triple.getArch()) { 111 default: 112 return createDefaultTargetCodeGenInfo(CGM); 113 114 case llvm::Triple::le32: 115 return createPNaClTargetCodeGenInfo(CGM); 116 case llvm::Triple::m68k: 117 return createM68kTargetCodeGenInfo(CGM); 118 case llvm::Triple::mips: 119 case llvm::Triple::mipsel: 120 if (Triple.getOS() == llvm::Triple::NaCl) 121 return createPNaClTargetCodeGenInfo(CGM); 122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 123 124 case llvm::Triple::mips64: 125 case llvm::Triple::mips64el: 126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 127 128 case llvm::Triple::avr: { 129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 130 // on avrtiny. For passing return value, R18~R25 are used on avr, and 131 // R22~R25 are used on avrtiny. 132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 135 } 136 137 case llvm::Triple::aarch64: 138 case llvm::Triple::aarch64_32: 139 case llvm::Triple::aarch64_be: { 140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 141 if (Target.getABI() == "darwinpcs") 142 Kind = AArch64ABIKind::DarwinPCS; 143 else if (Triple.isOSWindows()) 144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 145 146 return createAArch64TargetCodeGenInfo(CGM, Kind); 147 } 148 149 case llvm::Triple::wasm32: 150 case llvm::Triple::wasm64: { 151 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 152 if (Target.getABI() == "experimental-mv") 153 Kind = WebAssemblyABIKind::ExperimentalMV; 154 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 155 } 156 157 case llvm::Triple::arm: 158 case llvm::Triple::armeb: 159 case llvm::Triple::thumb: 160 case llvm::Triple::thumbeb: { 161 if (Triple.getOS() == llvm::Triple::Win32) 162 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 163 164 ARMABIKind Kind = ARMABIKind::AAPCS; 165 StringRef ABIStr = Target.getABI(); 166 if (ABIStr == "apcs-gnu") 167 Kind = ARMABIKind::APCS; 168 else if (ABIStr == "aapcs16") 169 Kind = ARMABIKind::AAPCS16_VFP; 170 else if (CodeGenOpts.FloatABI == "hard" || 171 (CodeGenOpts.FloatABI != "soft" && 172 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 173 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 174 Triple.getEnvironment() == llvm::Triple::EABIHF))) 175 Kind = ARMABIKind::AAPCS_VFP; 176 177 return createARMTargetCodeGenInfo(CGM, Kind); 178 } 179 180 case llvm::Triple::ppc: { 181 if (Triple.isOSAIX()) 182 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 183 184 bool IsSoftFloat = 185 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 186 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 187 } 188 case llvm::Triple::ppcle: { 189 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 190 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 191 } 192 case llvm::Triple::ppc64: 193 if (Triple.isOSAIX()) 194 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 195 196 if (Triple.isOSBinFormatELF()) { 197 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 198 if (Target.getABI() == "elfv2") 199 Kind = PPC64_SVR4_ABIKind::ELFv2; 200 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 201 202 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 203 } 204 return createPPC64TargetCodeGenInfo(CGM); 205 case llvm::Triple::ppc64le: { 206 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 207 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 208 if (Target.getABI() == "elfv1") 209 Kind = PPC64_SVR4_ABIKind::ELFv1; 210 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 211 212 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 213 } 214 215 case llvm::Triple::nvptx: 216 case llvm::Triple::nvptx64: 217 return createNVPTXTargetCodeGenInfo(CGM); 218 219 case llvm::Triple::msp430: 220 return createMSP430TargetCodeGenInfo(CGM); 221 222 case llvm::Triple::riscv32: 223 case llvm::Triple::riscv64: { 224 StringRef ABIStr = Target.getABI(); 225 unsigned XLen = Target.getPointerWidth(LangAS::Default); 226 unsigned ABIFLen = 0; 227 if (ABIStr.endswith("f")) 228 ABIFLen = 32; 229 else if (ABIStr.endswith("d")) 230 ABIFLen = 64; 231 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen); 232 } 233 234 case llvm::Triple::systemz: { 235 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 236 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 237 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 238 } 239 240 case llvm::Triple::tce: 241 case llvm::Triple::tcele: 242 return createTCETargetCodeGenInfo(CGM); 243 244 case llvm::Triple::x86: { 245 bool IsDarwinVectorABI = Triple.isOSDarwin(); 246 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 247 248 if (Triple.getOS() == llvm::Triple::Win32) { 249 return createWinX86_32TargetCodeGenInfo( 250 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 251 CodeGenOpts.NumRegisterParameters); 252 } 253 return createX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 256 } 257 258 case llvm::Triple::x86_64: { 259 StringRef ABI = Target.getABI(); 260 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 261 : ABI == "avx" ? X86AVXABILevel::AVX 262 : X86AVXABILevel::None); 263 264 switch (Triple.getOS()) { 265 case llvm::Triple::Win32: 266 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 267 default: 268 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 } 270 } 271 case llvm::Triple::hexagon: 272 return createHexagonTargetCodeGenInfo(CGM); 273 case llvm::Triple::lanai: 274 return createLanaiTargetCodeGenInfo(CGM); 275 case llvm::Triple::r600: 276 return createAMDGPUTargetCodeGenInfo(CGM); 277 case llvm::Triple::amdgcn: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::sparc: 280 return createSparcV8TargetCodeGenInfo(CGM); 281 case llvm::Triple::sparcv9: 282 return createSparcV9TargetCodeGenInfo(CGM); 283 case llvm::Triple::xcore: 284 return createXCoreTargetCodeGenInfo(CGM); 285 case llvm::Triple::arc: 286 return createARCTargetCodeGenInfo(CGM); 287 case llvm::Triple::spir: 288 case llvm::Triple::spir64: 289 return createCommonSPIRTargetCodeGenInfo(CGM); 290 case llvm::Triple::spirv32: 291 case llvm::Triple::spirv64: 292 return createSPIRVTargetCodeGenInfo(CGM); 293 case llvm::Triple::ve: 294 return createVETargetCodeGenInfo(CGM); 295 case llvm::Triple::csky: { 296 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 297 bool hasFP64 = 298 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 299 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 300 : hasFP64 ? 64 301 : 32); 302 } 303 case llvm::Triple::bpfeb: 304 case llvm::Triple::bpfel: 305 return createBPFTargetCodeGenInfo(CGM); 306 case llvm::Triple::loongarch32: 307 case llvm::Triple::loongarch64: { 308 StringRef ABIStr = Target.getABI(); 309 unsigned ABIFRLen = 0; 310 if (ABIStr.endswith("f")) 311 ABIFRLen = 32; 312 else if (ABIStr.endswith("d")) 313 ABIFRLen = 64; 314 return createLoongArchTargetCodeGenInfo( 315 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 316 } 317 } 318 } 319 320 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 321 if (!TheTargetCodeGenInfo) 322 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 323 return *TheTargetCodeGenInfo; 324 } 325 326 CodeGenModule::CodeGenModule(ASTContext &C, 327 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 328 const HeaderSearchOptions &HSO, 329 const PreprocessorOptions &PPO, 330 const CodeGenOptions &CGO, llvm::Module &M, 331 DiagnosticsEngine &diags, 332 CoverageSourceInfo *CoverageInfo) 333 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 334 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 335 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 336 VMContext(M.getContext()), Types(*this), VTables(*this), 337 SanitizerMD(new SanitizerMetadata(*this)) { 338 339 // Initialize the type cache. 340 llvm::LLVMContext &LLVMContext = M.getContext(); 341 VoidTy = llvm::Type::getVoidTy(LLVMContext); 342 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 343 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 344 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 345 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 346 HalfTy = llvm::Type::getHalfTy(LLVMContext); 347 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 348 FloatTy = llvm::Type::getFloatTy(LLVMContext); 349 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 350 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 351 PointerAlignInBytes = 352 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 353 .getQuantity(); 354 SizeSizeInBytes = 355 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 356 IntAlignInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 358 CharTy = 359 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 360 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 361 IntPtrTy = llvm::IntegerType::get(LLVMContext, 362 C.getTargetInfo().getMaxPointerWidth()); 363 Int8PtrTy = Int8Ty->getPointerTo(0); 364 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 365 const llvm::DataLayout &DL = M.getDataLayout(); 366 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 367 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 368 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 369 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 370 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 371 372 // Build C++20 Module initializers. 373 // TODO: Add Microsoft here once we know the mangling required for the 374 // initializers. 375 CXX20ModuleInits = 376 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 377 ItaniumMangleContext::MK_Itanium; 378 379 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 380 381 if (LangOpts.ObjC) 382 createObjCRuntime(); 383 if (LangOpts.OpenCL) 384 createOpenCLRuntime(); 385 if (LangOpts.OpenMP) 386 createOpenMPRuntime(); 387 if (LangOpts.CUDA) 388 createCUDARuntime(); 389 if (LangOpts.HLSL) 390 createHLSLRuntime(); 391 392 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 393 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 394 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 395 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 396 getCXXABI().getMangleContext())); 397 398 // If debug info or coverage generation is enabled, create the CGDebugInfo 399 // object. 400 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 401 CodeGenOpts.CoverageNotesFile.size() || 402 CodeGenOpts.CoverageDataFile.size()) 403 DebugInfo.reset(new CGDebugInfo(*this)); 404 405 Block.GlobalUniqueCount = 0; 406 407 if (C.getLangOpts().ObjC) 408 ObjCData.reset(new ObjCEntrypoints()); 409 410 if (CodeGenOpts.hasProfileClangUse()) { 411 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 412 CodeGenOpts.ProfileInstrumentUsePath, *FS, 413 CodeGenOpts.ProfileRemappingFile); 414 // We're checking for profile read errors in CompilerInvocation, so if 415 // there was an error it should've already been caught. If it hasn't been 416 // somehow, trip an assertion. 417 assert(ReaderOrErr); 418 PGOReader = std::move(ReaderOrErr.get()); 419 } 420 421 // If coverage mapping generation is enabled, create the 422 // CoverageMappingModuleGen object. 423 if (CodeGenOpts.CoverageMapping) 424 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 425 426 // Generate the module name hash here if needed. 427 if (CodeGenOpts.UniqueInternalLinkageNames && 428 !getModule().getSourceFileName().empty()) { 429 std::string Path = getModule().getSourceFileName(); 430 // Check if a path substitution is needed from the MacroPrefixMap. 431 for (const auto &Entry : LangOpts.MacroPrefixMap) 432 if (Path.rfind(Entry.first, 0) != std::string::npos) { 433 Path = Entry.second + Path.substr(Entry.first.size()); 434 break; 435 } 436 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 437 } 438 } 439 440 CodeGenModule::~CodeGenModule() {} 441 442 void CodeGenModule::createObjCRuntime() { 443 // This is just isGNUFamily(), but we want to force implementors of 444 // new ABIs to decide how best to do this. 445 switch (LangOpts.ObjCRuntime.getKind()) { 446 case ObjCRuntime::GNUstep: 447 case ObjCRuntime::GCC: 448 case ObjCRuntime::ObjFW: 449 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 450 return; 451 452 case ObjCRuntime::FragileMacOSX: 453 case ObjCRuntime::MacOSX: 454 case ObjCRuntime::iOS: 455 case ObjCRuntime::WatchOS: 456 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 457 return; 458 } 459 llvm_unreachable("bad runtime kind"); 460 } 461 462 void CodeGenModule::createOpenCLRuntime() { 463 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 464 } 465 466 void CodeGenModule::createOpenMPRuntime() { 467 // Select a specialized code generation class based on the target, if any. 468 // If it does not exist use the default implementation. 469 switch (getTriple().getArch()) { 470 case llvm::Triple::nvptx: 471 case llvm::Triple::nvptx64: 472 case llvm::Triple::amdgcn: 473 assert(getLangOpts().OpenMPIsTargetDevice && 474 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 475 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 476 break; 477 default: 478 if (LangOpts.OpenMPSimd) 479 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 480 else 481 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 482 break; 483 } 484 } 485 486 void CodeGenModule::createCUDARuntime() { 487 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 488 } 489 490 void CodeGenModule::createHLSLRuntime() { 491 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 492 } 493 494 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 495 Replacements[Name] = C; 496 } 497 498 void CodeGenModule::applyReplacements() { 499 for (auto &I : Replacements) { 500 StringRef MangledName = I.first; 501 llvm::Constant *Replacement = I.second; 502 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 503 if (!Entry) 504 continue; 505 auto *OldF = cast<llvm::Function>(Entry); 506 auto *NewF = dyn_cast<llvm::Function>(Replacement); 507 if (!NewF) { 508 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 509 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 510 } else { 511 auto *CE = cast<llvm::ConstantExpr>(Replacement); 512 assert(CE->getOpcode() == llvm::Instruction::BitCast || 513 CE->getOpcode() == llvm::Instruction::GetElementPtr); 514 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 515 } 516 } 517 518 // Replace old with new, but keep the old order. 519 OldF->replaceAllUsesWith(Replacement); 520 if (NewF) { 521 NewF->removeFromParent(); 522 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 523 NewF); 524 } 525 OldF->eraseFromParent(); 526 } 527 } 528 529 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 530 GlobalValReplacements.push_back(std::make_pair(GV, C)); 531 } 532 533 void CodeGenModule::applyGlobalValReplacements() { 534 for (auto &I : GlobalValReplacements) { 535 llvm::GlobalValue *GV = I.first; 536 llvm::Constant *C = I.second; 537 538 GV->replaceAllUsesWith(C); 539 GV->eraseFromParent(); 540 } 541 } 542 543 // This is only used in aliases that we created and we know they have a 544 // linear structure. 545 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 546 const llvm::Constant *C; 547 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 548 C = GA->getAliasee(); 549 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 550 C = GI->getResolver(); 551 else 552 return GV; 553 554 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 555 if (!AliaseeGV) 556 return nullptr; 557 558 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 559 if (FinalGV == GV) 560 return nullptr; 561 562 return FinalGV; 563 } 564 565 static bool checkAliasedGlobal( 566 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 567 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 568 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 569 SourceRange AliasRange) { 570 GV = getAliasedGlobal(Alias); 571 if (!GV) { 572 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 573 return false; 574 } 575 576 if (GV->hasCommonLinkage()) { 577 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 578 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 579 Diags.Report(Location, diag::err_alias_to_common); 580 return false; 581 } 582 } 583 584 if (GV->isDeclaration()) { 585 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 586 Diags.Report(Location, diag::note_alias_requires_mangled_name) 587 << IsIFunc << IsIFunc; 588 // Provide a note if the given function is not found and exists as a 589 // mangled name. 590 for (const auto &[Decl, Name] : MangledDeclNames) { 591 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 592 if (ND->getName() == GV->getName()) { 593 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 594 << Name 595 << FixItHint::CreateReplacement( 596 AliasRange, 597 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 598 .str()); 599 } 600 } 601 } 602 return false; 603 } 604 605 if (IsIFunc) { 606 // Check resolver function type. 607 const auto *F = dyn_cast<llvm::Function>(GV); 608 if (!F) { 609 Diags.Report(Location, diag::err_alias_to_undefined) 610 << IsIFunc << IsIFunc; 611 return false; 612 } 613 614 llvm::FunctionType *FTy = F->getFunctionType(); 615 if (!FTy->getReturnType()->isPointerTy()) { 616 Diags.Report(Location, diag::err_ifunc_resolver_return); 617 return false; 618 } 619 } 620 621 return true; 622 } 623 624 void CodeGenModule::checkAliases() { 625 // Check if the constructed aliases are well formed. It is really unfortunate 626 // that we have to do this in CodeGen, but we only construct mangled names 627 // and aliases during codegen. 628 bool Error = false; 629 DiagnosticsEngine &Diags = getDiags(); 630 for (const GlobalDecl &GD : Aliases) { 631 const auto *D = cast<ValueDecl>(GD.getDecl()); 632 SourceLocation Location; 633 SourceRange Range; 634 bool IsIFunc = D->hasAttr<IFuncAttr>(); 635 if (const Attr *A = D->getDefiningAttr()) { 636 Location = A->getLocation(); 637 Range = A->getRange(); 638 } else 639 llvm_unreachable("Not an alias or ifunc?"); 640 641 StringRef MangledName = getMangledName(GD); 642 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 643 const llvm::GlobalValue *GV = nullptr; 644 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 645 MangledDeclNames, Range)) { 646 Error = true; 647 continue; 648 } 649 650 llvm::Constant *Aliasee = 651 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 652 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 653 654 llvm::GlobalValue *AliaseeGV; 655 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 656 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 657 else 658 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 659 660 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 661 StringRef AliasSection = SA->getName(); 662 if (AliasSection != AliaseeGV->getSection()) 663 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 664 << AliasSection << IsIFunc << IsIFunc; 665 } 666 667 // We have to handle alias to weak aliases in here. LLVM itself disallows 668 // this since the object semantics would not match the IL one. For 669 // compatibility with gcc we implement it by just pointing the alias 670 // to its aliasee's aliasee. We also warn, since the user is probably 671 // expecting the link to be weak. 672 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 673 if (GA->isInterposable()) { 674 Diags.Report(Location, diag::warn_alias_to_weak_alias) 675 << GV->getName() << GA->getName() << IsIFunc; 676 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 677 GA->getAliasee(), Alias->getType()); 678 679 if (IsIFunc) 680 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 681 else 682 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 683 } 684 } 685 } 686 if (!Error) 687 return; 688 689 for (const GlobalDecl &GD : Aliases) { 690 StringRef MangledName = getMangledName(GD); 691 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 692 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 693 Alias->eraseFromParent(); 694 } 695 } 696 697 void CodeGenModule::clear() { 698 DeferredDeclsToEmit.clear(); 699 EmittedDeferredDecls.clear(); 700 if (OpenMPRuntime) 701 OpenMPRuntime->clear(); 702 } 703 704 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 705 StringRef MainFile) { 706 if (!hasDiagnostics()) 707 return; 708 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 709 if (MainFile.empty()) 710 MainFile = "<stdin>"; 711 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 712 } else { 713 if (Mismatched > 0) 714 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 715 716 if (Missing > 0) 717 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 718 } 719 } 720 721 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 722 llvm::Module &M) { 723 if (!LO.VisibilityFromDLLStorageClass) 724 return; 725 726 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 727 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 728 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 729 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 730 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 731 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 732 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 733 CodeGenModule::GetLLVMVisibility( 734 LO.getExternDeclNoDLLStorageClassVisibility()); 735 736 for (llvm::GlobalValue &GV : M.global_values()) { 737 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 738 continue; 739 740 // Reset DSO locality before setting the visibility. This removes 741 // any effects that visibility options and annotations may have 742 // had on the DSO locality. Setting the visibility will implicitly set 743 // appropriate globals to DSO Local; however, this will be pessimistic 744 // w.r.t. to the normal compiler IRGen. 745 GV.setDSOLocal(false); 746 747 if (GV.isDeclarationForLinker()) { 748 GV.setVisibility(GV.getDLLStorageClass() == 749 llvm::GlobalValue::DLLImportStorageClass 750 ? ExternDeclDLLImportVisibility 751 : ExternDeclNoDLLStorageClassVisibility); 752 } else { 753 GV.setVisibility(GV.getDLLStorageClass() == 754 llvm::GlobalValue::DLLExportStorageClass 755 ? DLLExportVisibility 756 : NoDLLStorageClassVisibility); 757 } 758 759 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 760 } 761 } 762 763 void CodeGenModule::Release() { 764 Module *Primary = getContext().getCurrentNamedModule(); 765 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 766 EmitModuleInitializers(Primary); 767 EmitDeferred(); 768 DeferredDecls.insert(EmittedDeferredDecls.begin(), 769 EmittedDeferredDecls.end()); 770 EmittedDeferredDecls.clear(); 771 EmitVTablesOpportunistically(); 772 applyGlobalValReplacements(); 773 applyReplacements(); 774 emitMultiVersionFunctions(); 775 776 if (Context.getLangOpts().IncrementalExtensions && 777 GlobalTopLevelStmtBlockInFlight.first) { 778 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 779 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 780 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 781 } 782 783 // Module implementations are initialized the same way as a regular TU that 784 // imports one or more modules. 785 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 786 EmitCXXModuleInitFunc(Primary); 787 else 788 EmitCXXGlobalInitFunc(); 789 EmitCXXGlobalCleanUpFunc(); 790 registerGlobalDtorsWithAtExit(); 791 EmitCXXThreadLocalInitFunc(); 792 if (ObjCRuntime) 793 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 794 AddGlobalCtor(ObjCInitFunction); 795 if (Context.getLangOpts().CUDA && CUDARuntime) { 796 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 797 AddGlobalCtor(CudaCtorFunction); 798 } 799 if (OpenMPRuntime) { 800 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 801 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 802 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 803 } 804 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 805 OpenMPRuntime->clear(); 806 } 807 if (PGOReader) { 808 getModule().setProfileSummary( 809 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 810 llvm::ProfileSummary::PSK_Instr); 811 if (PGOStats.hasDiagnostics()) 812 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 813 } 814 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 815 return L.LexOrder < R.LexOrder; 816 }); 817 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 818 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 819 EmitGlobalAnnotations(); 820 EmitStaticExternCAliases(); 821 checkAliases(); 822 EmitDeferredUnusedCoverageMappings(); 823 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 824 if (CoverageMapping) 825 CoverageMapping->emit(); 826 if (CodeGenOpts.SanitizeCfiCrossDso) { 827 CodeGenFunction(*this).EmitCfiCheckFail(); 828 CodeGenFunction(*this).EmitCfiCheckStub(); 829 } 830 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 831 finalizeKCFITypes(); 832 emitAtAvailableLinkGuard(); 833 if (Context.getTargetInfo().getTriple().isWasm()) 834 EmitMainVoidAlias(); 835 836 if (getTriple().isAMDGPU()) { 837 // Emit amdgpu_code_object_version module flag, which is code object version 838 // times 100. 839 if (getTarget().getTargetOpts().CodeObjectVersion != 840 TargetOptions::COV_None) { 841 getModule().addModuleFlag(llvm::Module::Error, 842 "amdgpu_code_object_version", 843 getTarget().getTargetOpts().CodeObjectVersion); 844 } 845 846 // Currently, "-mprintf-kind" option is only supported for HIP 847 if (LangOpts.HIP) { 848 auto *MDStr = llvm::MDString::get( 849 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 850 TargetOptions::AMDGPUPrintfKind::Hostcall) 851 ? "hostcall" 852 : "buffered"); 853 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 854 MDStr); 855 } 856 } 857 858 // Emit a global array containing all external kernels or device variables 859 // used by host functions and mark it as used for CUDA/HIP. This is necessary 860 // to get kernels or device variables in archives linked in even if these 861 // kernels or device variables are only used in host functions. 862 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 863 SmallVector<llvm::Constant *, 8> UsedArray; 864 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 865 GlobalDecl GD; 866 if (auto *FD = dyn_cast<FunctionDecl>(D)) 867 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 868 else 869 GD = GlobalDecl(D); 870 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 871 GetAddrOfGlobal(GD), Int8PtrTy)); 872 } 873 874 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 875 876 auto *GV = new llvm::GlobalVariable( 877 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 878 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 879 addCompilerUsedGlobal(GV); 880 } 881 882 emitLLVMUsed(); 883 if (SanStats) 884 SanStats->finish(); 885 886 if (CodeGenOpts.Autolink && 887 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 888 EmitModuleLinkOptions(); 889 } 890 891 // On ELF we pass the dependent library specifiers directly to the linker 892 // without manipulating them. This is in contrast to other platforms where 893 // they are mapped to a specific linker option by the compiler. This 894 // difference is a result of the greater variety of ELF linkers and the fact 895 // that ELF linkers tend to handle libraries in a more complicated fashion 896 // than on other platforms. This forces us to defer handling the dependent 897 // libs to the linker. 898 // 899 // CUDA/HIP device and host libraries are different. Currently there is no 900 // way to differentiate dependent libraries for host or device. Existing 901 // usage of #pragma comment(lib, *) is intended for host libraries on 902 // Windows. Therefore emit llvm.dependent-libraries only for host. 903 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 904 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 905 for (auto *MD : ELFDependentLibraries) 906 NMD->addOperand(MD); 907 } 908 909 // Record mregparm value now so it is visible through rest of codegen. 910 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 911 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 912 CodeGenOpts.NumRegisterParameters); 913 914 if (CodeGenOpts.DwarfVersion) { 915 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 916 CodeGenOpts.DwarfVersion); 917 } 918 919 if (CodeGenOpts.Dwarf64) 920 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 921 922 if (Context.getLangOpts().SemanticInterposition) 923 // Require various optimization to respect semantic interposition. 924 getModule().setSemanticInterposition(true); 925 926 if (CodeGenOpts.EmitCodeView) { 927 // Indicate that we want CodeView in the metadata. 928 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 929 } 930 if (CodeGenOpts.CodeViewGHash) { 931 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 932 } 933 if (CodeGenOpts.ControlFlowGuard) { 934 // Function ID tables and checks for Control Flow Guard (cfguard=2). 935 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 936 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 937 // Function ID tables for Control Flow Guard (cfguard=1). 938 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 939 } 940 if (CodeGenOpts.EHContGuard) { 941 // Function ID tables for EH Continuation Guard. 942 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 943 } 944 if (Context.getLangOpts().Kernel) { 945 // Note if we are compiling with /kernel. 946 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 947 } 948 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 949 // We don't support LTO with 2 with different StrictVTablePointers 950 // FIXME: we could support it by stripping all the information introduced 951 // by StrictVTablePointers. 952 953 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 954 955 llvm::Metadata *Ops[2] = { 956 llvm::MDString::get(VMContext, "StrictVTablePointers"), 957 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 958 llvm::Type::getInt32Ty(VMContext), 1))}; 959 960 getModule().addModuleFlag(llvm::Module::Require, 961 "StrictVTablePointersRequirement", 962 llvm::MDNode::get(VMContext, Ops)); 963 } 964 if (getModuleDebugInfo()) 965 // We support a single version in the linked module. The LLVM 966 // parser will drop debug info with a different version number 967 // (and warn about it, too). 968 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 969 llvm::DEBUG_METADATA_VERSION); 970 971 // We need to record the widths of enums and wchar_t, so that we can generate 972 // the correct build attributes in the ARM backend. wchar_size is also used by 973 // TargetLibraryInfo. 974 uint64_t WCharWidth = 975 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 976 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 977 978 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 979 if ( Arch == llvm::Triple::arm 980 || Arch == llvm::Triple::armeb 981 || Arch == llvm::Triple::thumb 982 || Arch == llvm::Triple::thumbeb) { 983 // The minimum width of an enum in bytes 984 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 985 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 986 } 987 988 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 989 StringRef ABIStr = Target.getABI(); 990 llvm::LLVMContext &Ctx = TheModule.getContext(); 991 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 992 llvm::MDString::get(Ctx, ABIStr)); 993 } 994 995 if (CodeGenOpts.SanitizeCfiCrossDso) { 996 // Indicate that we want cross-DSO control flow integrity checks. 997 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 998 } 999 1000 if (CodeGenOpts.WholeProgramVTables) { 1001 // Indicate whether VFE was enabled for this module, so that the 1002 // vcall_visibility metadata added under whole program vtables is handled 1003 // appropriately in the optimizer. 1004 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1005 CodeGenOpts.VirtualFunctionElimination); 1006 } 1007 1008 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1009 getModule().addModuleFlag(llvm::Module::Override, 1010 "CFI Canonical Jump Tables", 1011 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1012 } 1013 1014 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1015 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1016 // KCFI assumes patchable-function-prefix is the same for all indirectly 1017 // called functions. Store the expected offset for code generation. 1018 if (CodeGenOpts.PatchableFunctionEntryOffset) 1019 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1020 CodeGenOpts.PatchableFunctionEntryOffset); 1021 } 1022 1023 if (CodeGenOpts.CFProtectionReturn && 1024 Target.checkCFProtectionReturnSupported(getDiags())) { 1025 // Indicate that we want to instrument return control flow protection. 1026 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1027 1); 1028 } 1029 1030 if (CodeGenOpts.CFProtectionBranch && 1031 Target.checkCFProtectionBranchSupported(getDiags())) { 1032 // Indicate that we want to instrument branch control flow protection. 1033 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1034 1); 1035 } 1036 1037 if (CodeGenOpts.FunctionReturnThunks) 1038 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1039 1040 if (CodeGenOpts.IndirectBranchCSPrefix) 1041 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1042 1043 // Add module metadata for return address signing (ignoring 1044 // non-leaf/all) and stack tagging. These are actually turned on by function 1045 // attributes, but we use module metadata to emit build attributes. This is 1046 // needed for LTO, where the function attributes are inside bitcode 1047 // serialised into a global variable by the time build attributes are 1048 // emitted, so we can't access them. LTO objects could be compiled with 1049 // different flags therefore module flags are set to "Min" behavior to achieve 1050 // the same end result of the normal build where e.g BTI is off if any object 1051 // doesn't support it. 1052 if (Context.getTargetInfo().hasFeature("ptrauth") && 1053 LangOpts.getSignReturnAddressScope() != 1054 LangOptions::SignReturnAddressScopeKind::None) 1055 getModule().addModuleFlag(llvm::Module::Override, 1056 "sign-return-address-buildattr", 1); 1057 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1058 getModule().addModuleFlag(llvm::Module::Override, 1059 "tag-stack-memory-buildattr", 1); 1060 1061 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1062 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1063 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1064 Arch == llvm::Triple::aarch64_be) { 1065 if (LangOpts.BranchTargetEnforcement) 1066 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1067 1); 1068 if (LangOpts.hasSignReturnAddress()) 1069 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1070 if (LangOpts.isSignReturnAddressScopeAll()) 1071 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1072 1); 1073 if (!LangOpts.isSignReturnAddressWithAKey()) 1074 getModule().addModuleFlag(llvm::Module::Min, 1075 "sign-return-address-with-bkey", 1); 1076 } 1077 1078 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1079 llvm::LLVMContext &Ctx = TheModule.getContext(); 1080 getModule().addModuleFlag( 1081 llvm::Module::Error, "MemProfProfileFilename", 1082 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1083 } 1084 1085 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1086 // Indicate whether __nvvm_reflect should be configured to flush denormal 1087 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1088 // property.) 1089 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1090 CodeGenOpts.FP32DenormalMode.Output != 1091 llvm::DenormalMode::IEEE); 1092 } 1093 1094 if (LangOpts.EHAsynch) 1095 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1096 1097 // Indicate whether this Module was compiled with -fopenmp 1098 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1099 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1100 if (getLangOpts().OpenMPIsTargetDevice) 1101 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1102 LangOpts.OpenMP); 1103 1104 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1105 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1106 EmitOpenCLMetadata(); 1107 // Emit SPIR version. 1108 if (getTriple().isSPIR()) { 1109 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1110 // opencl.spir.version named metadata. 1111 // C++ for OpenCL has a distinct mapping for version compatibility with 1112 // OpenCL. 1113 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1114 llvm::Metadata *SPIRVerElts[] = { 1115 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1116 Int32Ty, Version / 100)), 1117 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1118 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1119 llvm::NamedMDNode *SPIRVerMD = 1120 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1121 llvm::LLVMContext &Ctx = TheModule.getContext(); 1122 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1123 } 1124 } 1125 1126 // HLSL related end of code gen work items. 1127 if (LangOpts.HLSL) 1128 getHLSLRuntime().finishCodeGen(); 1129 1130 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1131 assert(PLevel < 3 && "Invalid PIC Level"); 1132 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1133 if (Context.getLangOpts().PIE) 1134 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1135 } 1136 1137 if (getCodeGenOpts().CodeModel.size() > 0) { 1138 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1139 .Case("tiny", llvm::CodeModel::Tiny) 1140 .Case("small", llvm::CodeModel::Small) 1141 .Case("kernel", llvm::CodeModel::Kernel) 1142 .Case("medium", llvm::CodeModel::Medium) 1143 .Case("large", llvm::CodeModel::Large) 1144 .Default(~0u); 1145 if (CM != ~0u) { 1146 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1147 getModule().setCodeModel(codeModel); 1148 } 1149 } 1150 1151 if (CodeGenOpts.NoPLT) 1152 getModule().setRtLibUseGOT(); 1153 if (getTriple().isOSBinFormatELF() && 1154 CodeGenOpts.DirectAccessExternalData != 1155 getModule().getDirectAccessExternalData()) { 1156 getModule().setDirectAccessExternalData( 1157 CodeGenOpts.DirectAccessExternalData); 1158 } 1159 if (CodeGenOpts.UnwindTables) 1160 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1161 1162 switch (CodeGenOpts.getFramePointer()) { 1163 case CodeGenOptions::FramePointerKind::None: 1164 // 0 ("none") is the default. 1165 break; 1166 case CodeGenOptions::FramePointerKind::NonLeaf: 1167 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1168 break; 1169 case CodeGenOptions::FramePointerKind::All: 1170 getModule().setFramePointer(llvm::FramePointerKind::All); 1171 break; 1172 } 1173 1174 SimplifyPersonality(); 1175 1176 if (getCodeGenOpts().EmitDeclMetadata) 1177 EmitDeclMetadata(); 1178 1179 if (getCodeGenOpts().CoverageNotesFile.size() || 1180 getCodeGenOpts().CoverageDataFile.size()) 1181 EmitCoverageFile(); 1182 1183 if (CGDebugInfo *DI = getModuleDebugInfo()) 1184 DI->finalize(); 1185 1186 if (getCodeGenOpts().EmitVersionIdentMetadata) 1187 EmitVersionIdentMetadata(); 1188 1189 if (!getCodeGenOpts().RecordCommandLine.empty()) 1190 EmitCommandLineMetadata(); 1191 1192 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1193 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1194 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1195 getModule().setStackProtectorGuardReg( 1196 getCodeGenOpts().StackProtectorGuardReg); 1197 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1198 getModule().setStackProtectorGuardSymbol( 1199 getCodeGenOpts().StackProtectorGuardSymbol); 1200 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1201 getModule().setStackProtectorGuardOffset( 1202 getCodeGenOpts().StackProtectorGuardOffset); 1203 if (getCodeGenOpts().StackAlignment) 1204 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1205 if (getCodeGenOpts().SkipRaxSetup) 1206 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1207 if (getLangOpts().RegCall4) 1208 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1209 1210 if (getContext().getTargetInfo().getMaxTLSAlign()) 1211 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1212 getContext().getTargetInfo().getMaxTLSAlign()); 1213 1214 getTargetCodeGenInfo().emitTargetGlobals(*this); 1215 1216 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1217 1218 EmitBackendOptionsMetadata(getCodeGenOpts()); 1219 1220 // If there is device offloading code embed it in the host now. 1221 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1222 1223 // Set visibility from DLL storage class 1224 // We do this at the end of LLVM IR generation; after any operation 1225 // that might affect the DLL storage class or the visibility, and 1226 // before anything that might act on these. 1227 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1228 } 1229 1230 void CodeGenModule::EmitOpenCLMetadata() { 1231 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1232 // opencl.ocl.version named metadata node. 1233 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1234 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1235 llvm::Metadata *OCLVerElts[] = { 1236 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1237 Int32Ty, Version / 100)), 1238 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1239 Int32Ty, (Version % 100) / 10))}; 1240 llvm::NamedMDNode *OCLVerMD = 1241 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1242 llvm::LLVMContext &Ctx = TheModule.getContext(); 1243 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1244 } 1245 1246 void CodeGenModule::EmitBackendOptionsMetadata( 1247 const CodeGenOptions &CodeGenOpts) { 1248 if (getTriple().isRISCV()) { 1249 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1250 CodeGenOpts.SmallDataLimit); 1251 } 1252 } 1253 1254 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1255 // Make sure that this type is translated. 1256 Types.UpdateCompletedType(TD); 1257 } 1258 1259 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1260 // Make sure that this type is translated. 1261 Types.RefreshTypeCacheForClass(RD); 1262 } 1263 1264 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1265 if (!TBAA) 1266 return nullptr; 1267 return TBAA->getTypeInfo(QTy); 1268 } 1269 1270 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1271 if (!TBAA) 1272 return TBAAAccessInfo(); 1273 if (getLangOpts().CUDAIsDevice) { 1274 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1275 // access info. 1276 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1277 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1278 nullptr) 1279 return TBAAAccessInfo(); 1280 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1281 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1282 nullptr) 1283 return TBAAAccessInfo(); 1284 } 1285 } 1286 return TBAA->getAccessInfo(AccessType); 1287 } 1288 1289 TBAAAccessInfo 1290 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1291 if (!TBAA) 1292 return TBAAAccessInfo(); 1293 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1294 } 1295 1296 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1297 if (!TBAA) 1298 return nullptr; 1299 return TBAA->getTBAAStructInfo(QTy); 1300 } 1301 1302 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1303 if (!TBAA) 1304 return nullptr; 1305 return TBAA->getBaseTypeInfo(QTy); 1306 } 1307 1308 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1309 if (!TBAA) 1310 return nullptr; 1311 return TBAA->getAccessTagInfo(Info); 1312 } 1313 1314 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1315 TBAAAccessInfo TargetInfo) { 1316 if (!TBAA) 1317 return TBAAAccessInfo(); 1318 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1319 } 1320 1321 TBAAAccessInfo 1322 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1323 TBAAAccessInfo InfoB) { 1324 if (!TBAA) 1325 return TBAAAccessInfo(); 1326 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1327 } 1328 1329 TBAAAccessInfo 1330 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1331 TBAAAccessInfo SrcInfo) { 1332 if (!TBAA) 1333 return TBAAAccessInfo(); 1334 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1335 } 1336 1337 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1338 TBAAAccessInfo TBAAInfo) { 1339 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1340 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1341 } 1342 1343 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1344 llvm::Instruction *I, const CXXRecordDecl *RD) { 1345 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1346 llvm::MDNode::get(getLLVMContext(), {})); 1347 } 1348 1349 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1350 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1351 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1352 } 1353 1354 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1355 /// specified stmt yet. 1356 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1357 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1358 "cannot compile this %0 yet"); 1359 std::string Msg = Type; 1360 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1361 << Msg << S->getSourceRange(); 1362 } 1363 1364 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1365 /// specified decl yet. 1366 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1367 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1368 "cannot compile this %0 yet"); 1369 std::string Msg = Type; 1370 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1371 } 1372 1373 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1374 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1375 } 1376 1377 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1378 const NamedDecl *D) const { 1379 // Internal definitions always have default visibility. 1380 if (GV->hasLocalLinkage()) { 1381 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1382 return; 1383 } 1384 if (!D) 1385 return; 1386 // Set visibility for definitions, and for declarations if requested globally 1387 // or set explicitly. 1388 LinkageInfo LV = D->getLinkageAndVisibility(); 1389 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1390 // Reject incompatible dlllstorage and visibility annotations. 1391 if (!LV.isVisibilityExplicit()) 1392 return; 1393 if (GV->hasDLLExportStorageClass()) { 1394 if (LV.getVisibility() == HiddenVisibility) 1395 getDiags().Report(D->getLocation(), 1396 diag::err_hidden_visibility_dllexport); 1397 } else if (LV.getVisibility() != DefaultVisibility) { 1398 getDiags().Report(D->getLocation(), 1399 diag::err_non_default_visibility_dllimport); 1400 } 1401 return; 1402 } 1403 1404 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1405 !GV->isDeclarationForLinker()) 1406 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1407 } 1408 1409 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1410 llvm::GlobalValue *GV) { 1411 if (GV->hasLocalLinkage()) 1412 return true; 1413 1414 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1415 return true; 1416 1417 // DLLImport explicitly marks the GV as external. 1418 if (GV->hasDLLImportStorageClass()) 1419 return false; 1420 1421 const llvm::Triple &TT = CGM.getTriple(); 1422 const auto &CGOpts = CGM.getCodeGenOpts(); 1423 if (TT.isWindowsGNUEnvironment()) { 1424 // In MinGW, variables without DLLImport can still be automatically 1425 // imported from a DLL by the linker; don't mark variables that 1426 // potentially could come from another DLL as DSO local. 1427 1428 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1429 // (and this actually happens in the public interface of libstdc++), so 1430 // such variables can't be marked as DSO local. (Native TLS variables 1431 // can't be dllimported at all, though.) 1432 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1433 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1434 CGOpts.AutoImport) 1435 return false; 1436 } 1437 1438 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1439 // remain unresolved in the link, they can be resolved to zero, which is 1440 // outside the current DSO. 1441 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1442 return false; 1443 1444 // Every other GV is local on COFF. 1445 // Make an exception for windows OS in the triple: Some firmware builds use 1446 // *-win32-macho triples. This (accidentally?) produced windows relocations 1447 // without GOT tables in older clang versions; Keep this behaviour. 1448 // FIXME: even thread local variables? 1449 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1450 return true; 1451 1452 // Only handle COFF and ELF for now. 1453 if (!TT.isOSBinFormatELF()) 1454 return false; 1455 1456 // If this is not an executable, don't assume anything is local. 1457 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1458 const auto &LOpts = CGM.getLangOpts(); 1459 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1460 // On ELF, if -fno-semantic-interposition is specified and the target 1461 // supports local aliases, there will be neither CC1 1462 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1463 // dso_local on the function if using a local alias is preferable (can avoid 1464 // PLT indirection). 1465 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1466 return false; 1467 return !(CGM.getLangOpts().SemanticInterposition || 1468 CGM.getLangOpts().HalfNoSemanticInterposition); 1469 } 1470 1471 // A definition cannot be preempted from an executable. 1472 if (!GV->isDeclarationForLinker()) 1473 return true; 1474 1475 // Most PIC code sequences that assume that a symbol is local cannot produce a 1476 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1477 // depended, it seems worth it to handle it here. 1478 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1479 return false; 1480 1481 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1482 if (TT.isPPC64()) 1483 return false; 1484 1485 if (CGOpts.DirectAccessExternalData) { 1486 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1487 // for non-thread-local variables. If the symbol is not defined in the 1488 // executable, a copy relocation will be needed at link time. dso_local is 1489 // excluded for thread-local variables because they generally don't support 1490 // copy relocations. 1491 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1492 if (!Var->isThreadLocal()) 1493 return true; 1494 1495 // -fno-pic sets dso_local on a function declaration to allow direct 1496 // accesses when taking its address (similar to a data symbol). If the 1497 // function is not defined in the executable, a canonical PLT entry will be 1498 // needed at link time. -fno-direct-access-external-data can avoid the 1499 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1500 // it could just cause trouble without providing perceptible benefits. 1501 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1502 return true; 1503 } 1504 1505 // If we can use copy relocations we can assume it is local. 1506 1507 // Otherwise don't assume it is local. 1508 return false; 1509 } 1510 1511 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1512 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1513 } 1514 1515 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1516 GlobalDecl GD) const { 1517 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1518 // C++ destructors have a few C++ ABI specific special cases. 1519 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1520 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1521 return; 1522 } 1523 setDLLImportDLLExport(GV, D); 1524 } 1525 1526 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1527 const NamedDecl *D) const { 1528 if (D && D->isExternallyVisible()) { 1529 if (D->hasAttr<DLLImportAttr>()) 1530 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1531 else if ((D->hasAttr<DLLExportAttr>() || 1532 shouldMapVisibilityToDLLExport(D)) && 1533 !GV->isDeclarationForLinker()) 1534 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1535 } 1536 } 1537 1538 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1539 GlobalDecl GD) const { 1540 setDLLImportDLLExport(GV, GD); 1541 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1542 } 1543 1544 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1545 const NamedDecl *D) const { 1546 setDLLImportDLLExport(GV, D); 1547 setGVPropertiesAux(GV, D); 1548 } 1549 1550 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1551 const NamedDecl *D) const { 1552 setGlobalVisibility(GV, D); 1553 setDSOLocal(GV); 1554 GV->setPartition(CodeGenOpts.SymbolPartition); 1555 } 1556 1557 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1558 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1559 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1560 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1561 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1562 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1563 } 1564 1565 llvm::GlobalVariable::ThreadLocalMode 1566 CodeGenModule::GetDefaultLLVMTLSModel() const { 1567 switch (CodeGenOpts.getDefaultTLSModel()) { 1568 case CodeGenOptions::GeneralDynamicTLSModel: 1569 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1570 case CodeGenOptions::LocalDynamicTLSModel: 1571 return llvm::GlobalVariable::LocalDynamicTLSModel; 1572 case CodeGenOptions::InitialExecTLSModel: 1573 return llvm::GlobalVariable::InitialExecTLSModel; 1574 case CodeGenOptions::LocalExecTLSModel: 1575 return llvm::GlobalVariable::LocalExecTLSModel; 1576 } 1577 llvm_unreachable("Invalid TLS model!"); 1578 } 1579 1580 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1581 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1582 1583 llvm::GlobalValue::ThreadLocalMode TLM; 1584 TLM = GetDefaultLLVMTLSModel(); 1585 1586 // Override the TLS model if it is explicitly specified. 1587 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1588 TLM = GetLLVMTLSModel(Attr->getModel()); 1589 } 1590 1591 GV->setThreadLocalMode(TLM); 1592 } 1593 1594 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1595 StringRef Name) { 1596 const TargetInfo &Target = CGM.getTarget(); 1597 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1598 } 1599 1600 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1601 const CPUSpecificAttr *Attr, 1602 unsigned CPUIndex, 1603 raw_ostream &Out) { 1604 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1605 // supported. 1606 if (Attr) 1607 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1608 else if (CGM.getTarget().supportsIFunc()) 1609 Out << ".resolver"; 1610 } 1611 1612 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1613 const TargetVersionAttr *Attr, 1614 raw_ostream &Out) { 1615 if (Attr->isDefaultVersion()) 1616 return; 1617 Out << "._"; 1618 const TargetInfo &TI = CGM.getTarget(); 1619 llvm::SmallVector<StringRef, 8> Feats; 1620 Attr->getFeatures(Feats); 1621 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1622 return TI.multiVersionSortPriority(FeatL) < 1623 TI.multiVersionSortPriority(FeatR); 1624 }); 1625 for (const auto &Feat : Feats) { 1626 Out << 'M'; 1627 Out << Feat; 1628 } 1629 } 1630 1631 static void AppendTargetMangling(const CodeGenModule &CGM, 1632 const TargetAttr *Attr, raw_ostream &Out) { 1633 if (Attr->isDefaultVersion()) 1634 return; 1635 1636 Out << '.'; 1637 const TargetInfo &Target = CGM.getTarget(); 1638 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1639 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1640 // Multiversioning doesn't allow "no-${feature}", so we can 1641 // only have "+" prefixes here. 1642 assert(LHS.startswith("+") && RHS.startswith("+") && 1643 "Features should always have a prefix."); 1644 return Target.multiVersionSortPriority(LHS.substr(1)) > 1645 Target.multiVersionSortPriority(RHS.substr(1)); 1646 }); 1647 1648 bool IsFirst = true; 1649 1650 if (!Info.CPU.empty()) { 1651 IsFirst = false; 1652 Out << "arch_" << Info.CPU; 1653 } 1654 1655 for (StringRef Feat : Info.Features) { 1656 if (!IsFirst) 1657 Out << '_'; 1658 IsFirst = false; 1659 Out << Feat.substr(1); 1660 } 1661 } 1662 1663 // Returns true if GD is a function decl with internal linkage and 1664 // needs a unique suffix after the mangled name. 1665 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1666 CodeGenModule &CGM) { 1667 const Decl *D = GD.getDecl(); 1668 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1669 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1670 } 1671 1672 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1673 const TargetClonesAttr *Attr, 1674 unsigned VersionIndex, 1675 raw_ostream &Out) { 1676 const TargetInfo &TI = CGM.getTarget(); 1677 if (TI.getTriple().isAArch64()) { 1678 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1679 if (FeatureStr == "default") 1680 return; 1681 Out << "._"; 1682 SmallVector<StringRef, 8> Features; 1683 FeatureStr.split(Features, "+"); 1684 llvm::stable_sort(Features, 1685 [&TI](const StringRef FeatL, const StringRef FeatR) { 1686 return TI.multiVersionSortPriority(FeatL) < 1687 TI.multiVersionSortPriority(FeatR); 1688 }); 1689 for (auto &Feat : Features) { 1690 Out << 'M'; 1691 Out << Feat; 1692 } 1693 } else { 1694 Out << '.'; 1695 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1696 if (FeatureStr.startswith("arch=")) 1697 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1698 else 1699 Out << FeatureStr; 1700 1701 Out << '.' << Attr->getMangledIndex(VersionIndex); 1702 } 1703 } 1704 1705 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1706 const NamedDecl *ND, 1707 bool OmitMultiVersionMangling = false) { 1708 SmallString<256> Buffer; 1709 llvm::raw_svector_ostream Out(Buffer); 1710 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1711 if (!CGM.getModuleNameHash().empty()) 1712 MC.needsUniqueInternalLinkageNames(); 1713 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1714 if (ShouldMangle) 1715 MC.mangleName(GD.getWithDecl(ND), Out); 1716 else { 1717 IdentifierInfo *II = ND->getIdentifier(); 1718 assert(II && "Attempt to mangle unnamed decl."); 1719 const auto *FD = dyn_cast<FunctionDecl>(ND); 1720 1721 if (FD && 1722 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1723 if (CGM.getLangOpts().RegCall4) 1724 Out << "__regcall4__" << II->getName(); 1725 else 1726 Out << "__regcall3__" << II->getName(); 1727 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1728 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1729 Out << "__device_stub__" << II->getName(); 1730 } else { 1731 Out << II->getName(); 1732 } 1733 } 1734 1735 // Check if the module name hash should be appended for internal linkage 1736 // symbols. This should come before multi-version target suffixes are 1737 // appended. This is to keep the name and module hash suffix of the 1738 // internal linkage function together. The unique suffix should only be 1739 // added when name mangling is done to make sure that the final name can 1740 // be properly demangled. For example, for C functions without prototypes, 1741 // name mangling is not done and the unique suffix should not be appeneded 1742 // then. 1743 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1744 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1745 "Hash computed when not explicitly requested"); 1746 Out << CGM.getModuleNameHash(); 1747 } 1748 1749 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1750 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1751 switch (FD->getMultiVersionKind()) { 1752 case MultiVersionKind::CPUDispatch: 1753 case MultiVersionKind::CPUSpecific: 1754 AppendCPUSpecificCPUDispatchMangling(CGM, 1755 FD->getAttr<CPUSpecificAttr>(), 1756 GD.getMultiVersionIndex(), Out); 1757 break; 1758 case MultiVersionKind::Target: 1759 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1760 break; 1761 case MultiVersionKind::TargetVersion: 1762 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1763 break; 1764 case MultiVersionKind::TargetClones: 1765 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1766 GD.getMultiVersionIndex(), Out); 1767 break; 1768 case MultiVersionKind::None: 1769 llvm_unreachable("None multiversion type isn't valid here"); 1770 } 1771 } 1772 1773 // Make unique name for device side static file-scope variable for HIP. 1774 if (CGM.getContext().shouldExternalize(ND) && 1775 CGM.getLangOpts().GPURelocatableDeviceCode && 1776 CGM.getLangOpts().CUDAIsDevice) 1777 CGM.printPostfixForExternalizedDecl(Out, ND); 1778 1779 return std::string(Out.str()); 1780 } 1781 1782 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1783 const FunctionDecl *FD, 1784 StringRef &CurName) { 1785 if (!FD->isMultiVersion()) 1786 return; 1787 1788 // Get the name of what this would be without the 'target' attribute. This 1789 // allows us to lookup the version that was emitted when this wasn't a 1790 // multiversion function. 1791 std::string NonTargetName = 1792 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1793 GlobalDecl OtherGD; 1794 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1795 assert(OtherGD.getCanonicalDecl() 1796 .getDecl() 1797 ->getAsFunction() 1798 ->isMultiVersion() && 1799 "Other GD should now be a multiversioned function"); 1800 // OtherFD is the version of this function that was mangled BEFORE 1801 // becoming a MultiVersion function. It potentially needs to be updated. 1802 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1803 .getDecl() 1804 ->getAsFunction() 1805 ->getMostRecentDecl(); 1806 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1807 // This is so that if the initial version was already the 'default' 1808 // version, we don't try to update it. 1809 if (OtherName != NonTargetName) { 1810 // Remove instead of erase, since others may have stored the StringRef 1811 // to this. 1812 const auto ExistingRecord = Manglings.find(NonTargetName); 1813 if (ExistingRecord != std::end(Manglings)) 1814 Manglings.remove(&(*ExistingRecord)); 1815 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1816 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1817 Result.first->first(); 1818 // If this is the current decl is being created, make sure we update the name. 1819 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1820 CurName = OtherNameRef; 1821 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1822 Entry->setName(OtherName); 1823 } 1824 } 1825 } 1826 1827 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1828 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1829 1830 // Some ABIs don't have constructor variants. Make sure that base and 1831 // complete constructors get mangled the same. 1832 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1833 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1834 CXXCtorType OrigCtorType = GD.getCtorType(); 1835 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1836 if (OrigCtorType == Ctor_Base) 1837 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1838 } 1839 } 1840 1841 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1842 // static device variable depends on whether the variable is referenced by 1843 // a host or device host function. Therefore the mangled name cannot be 1844 // cached. 1845 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1846 auto FoundName = MangledDeclNames.find(CanonicalGD); 1847 if (FoundName != MangledDeclNames.end()) 1848 return FoundName->second; 1849 } 1850 1851 // Keep the first result in the case of a mangling collision. 1852 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1853 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1854 1855 // Ensure either we have different ABIs between host and device compilations, 1856 // says host compilation following MSVC ABI but device compilation follows 1857 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1858 // mangling should be the same after name stubbing. The later checking is 1859 // very important as the device kernel name being mangled in host-compilation 1860 // is used to resolve the device binaries to be executed. Inconsistent naming 1861 // result in undefined behavior. Even though we cannot check that naming 1862 // directly between host- and device-compilations, the host- and 1863 // device-mangling in host compilation could help catching certain ones. 1864 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1865 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1866 (getContext().getAuxTargetInfo() && 1867 (getContext().getAuxTargetInfo()->getCXXABI() != 1868 getContext().getTargetInfo().getCXXABI())) || 1869 getCUDARuntime().getDeviceSideName(ND) == 1870 getMangledNameImpl( 1871 *this, 1872 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1873 ND)); 1874 1875 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1876 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1877 } 1878 1879 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1880 const BlockDecl *BD) { 1881 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1882 const Decl *D = GD.getDecl(); 1883 1884 SmallString<256> Buffer; 1885 llvm::raw_svector_ostream Out(Buffer); 1886 if (!D) 1887 MangleCtx.mangleGlobalBlock(BD, 1888 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1889 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1890 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1891 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1892 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1893 else 1894 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1895 1896 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1897 return Result.first->first(); 1898 } 1899 1900 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1901 auto it = MangledDeclNames.begin(); 1902 while (it != MangledDeclNames.end()) { 1903 if (it->second == Name) 1904 return it->first; 1905 it++; 1906 } 1907 return GlobalDecl(); 1908 } 1909 1910 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1911 return getModule().getNamedValue(Name); 1912 } 1913 1914 /// AddGlobalCtor - Add a function to the list that will be called before 1915 /// main() runs. 1916 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1917 unsigned LexOrder, 1918 llvm::Constant *AssociatedData) { 1919 // FIXME: Type coercion of void()* types. 1920 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1921 } 1922 1923 /// AddGlobalDtor - Add a function to the list that will be called 1924 /// when the module is unloaded. 1925 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1926 bool IsDtorAttrFunc) { 1927 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1928 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1929 DtorsUsingAtExit[Priority].push_back(Dtor); 1930 return; 1931 } 1932 1933 // FIXME: Type coercion of void()* types. 1934 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1935 } 1936 1937 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1938 if (Fns.empty()) return; 1939 1940 // Ctor function type is void()*. 1941 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1942 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1943 TheModule.getDataLayout().getProgramAddressSpace()); 1944 1945 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1946 llvm::StructType *CtorStructTy = llvm::StructType::get( 1947 Int32Ty, CtorPFTy, VoidPtrTy); 1948 1949 // Construct the constructor and destructor arrays. 1950 ConstantInitBuilder builder(*this); 1951 auto ctors = builder.beginArray(CtorStructTy); 1952 for (const auto &I : Fns) { 1953 auto ctor = ctors.beginStruct(CtorStructTy); 1954 ctor.addInt(Int32Ty, I.Priority); 1955 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1956 if (I.AssociatedData) 1957 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1958 else 1959 ctor.addNullPointer(VoidPtrTy); 1960 ctor.finishAndAddTo(ctors); 1961 } 1962 1963 auto list = 1964 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1965 /*constant*/ false, 1966 llvm::GlobalValue::AppendingLinkage); 1967 1968 // The LTO linker doesn't seem to like it when we set an alignment 1969 // on appending variables. Take it off as a workaround. 1970 list->setAlignment(std::nullopt); 1971 1972 Fns.clear(); 1973 } 1974 1975 llvm::GlobalValue::LinkageTypes 1976 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1977 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1978 1979 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1980 1981 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1982 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1983 1984 return getLLVMLinkageForDeclarator(D, Linkage); 1985 } 1986 1987 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1988 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1989 if (!MDS) return nullptr; 1990 1991 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1992 } 1993 1994 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1995 if (auto *FnType = T->getAs<FunctionProtoType>()) 1996 T = getContext().getFunctionType( 1997 FnType->getReturnType(), FnType->getParamTypes(), 1998 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1999 2000 std::string OutName; 2001 llvm::raw_string_ostream Out(OutName); 2002 getCXXABI().getMangleContext().mangleTypeName( 2003 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2004 2005 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2006 Out << ".normalized"; 2007 2008 return llvm::ConstantInt::get(Int32Ty, 2009 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2010 } 2011 2012 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2013 const CGFunctionInfo &Info, 2014 llvm::Function *F, bool IsThunk) { 2015 unsigned CallingConv; 2016 llvm::AttributeList PAL; 2017 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2018 /*AttrOnCallSite=*/false, IsThunk); 2019 F->setAttributes(PAL); 2020 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2021 } 2022 2023 static void removeImageAccessQualifier(std::string& TyName) { 2024 std::string ReadOnlyQual("__read_only"); 2025 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2026 if (ReadOnlyPos != std::string::npos) 2027 // "+ 1" for the space after access qualifier. 2028 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2029 else { 2030 std::string WriteOnlyQual("__write_only"); 2031 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2032 if (WriteOnlyPos != std::string::npos) 2033 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2034 else { 2035 std::string ReadWriteQual("__read_write"); 2036 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2037 if (ReadWritePos != std::string::npos) 2038 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2039 } 2040 } 2041 } 2042 2043 // Returns the address space id that should be produced to the 2044 // kernel_arg_addr_space metadata. This is always fixed to the ids 2045 // as specified in the SPIR 2.0 specification in order to differentiate 2046 // for example in clGetKernelArgInfo() implementation between the address 2047 // spaces with targets without unique mapping to the OpenCL address spaces 2048 // (basically all single AS CPUs). 2049 static unsigned ArgInfoAddressSpace(LangAS AS) { 2050 switch (AS) { 2051 case LangAS::opencl_global: 2052 return 1; 2053 case LangAS::opencl_constant: 2054 return 2; 2055 case LangAS::opencl_local: 2056 return 3; 2057 case LangAS::opencl_generic: 2058 return 4; // Not in SPIR 2.0 specs. 2059 case LangAS::opencl_global_device: 2060 return 5; 2061 case LangAS::opencl_global_host: 2062 return 6; 2063 default: 2064 return 0; // Assume private. 2065 } 2066 } 2067 2068 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2069 const FunctionDecl *FD, 2070 CodeGenFunction *CGF) { 2071 assert(((FD && CGF) || (!FD && !CGF)) && 2072 "Incorrect use - FD and CGF should either be both null or not!"); 2073 // Create MDNodes that represent the kernel arg metadata. 2074 // Each MDNode is a list in the form of "key", N number of values which is 2075 // the same number of values as their are kernel arguments. 2076 2077 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2078 2079 // MDNode for the kernel argument address space qualifiers. 2080 SmallVector<llvm::Metadata *, 8> addressQuals; 2081 2082 // MDNode for the kernel argument access qualifiers (images only). 2083 SmallVector<llvm::Metadata *, 8> accessQuals; 2084 2085 // MDNode for the kernel argument type names. 2086 SmallVector<llvm::Metadata *, 8> argTypeNames; 2087 2088 // MDNode for the kernel argument base type names. 2089 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2090 2091 // MDNode for the kernel argument type qualifiers. 2092 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2093 2094 // MDNode for the kernel argument names. 2095 SmallVector<llvm::Metadata *, 8> argNames; 2096 2097 if (FD && CGF) 2098 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2099 const ParmVarDecl *parm = FD->getParamDecl(i); 2100 // Get argument name. 2101 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2102 2103 if (!getLangOpts().OpenCL) 2104 continue; 2105 QualType ty = parm->getType(); 2106 std::string typeQuals; 2107 2108 // Get image and pipe access qualifier: 2109 if (ty->isImageType() || ty->isPipeType()) { 2110 const Decl *PDecl = parm; 2111 if (const auto *TD = ty->getAs<TypedefType>()) 2112 PDecl = TD->getDecl(); 2113 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2114 if (A && A->isWriteOnly()) 2115 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2116 else if (A && A->isReadWrite()) 2117 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2118 else 2119 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2120 } else 2121 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2122 2123 auto getTypeSpelling = [&](QualType Ty) { 2124 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2125 2126 if (Ty.isCanonical()) { 2127 StringRef typeNameRef = typeName; 2128 // Turn "unsigned type" to "utype" 2129 if (typeNameRef.consume_front("unsigned ")) 2130 return std::string("u") + typeNameRef.str(); 2131 if (typeNameRef.consume_front("signed ")) 2132 return typeNameRef.str(); 2133 } 2134 2135 return typeName; 2136 }; 2137 2138 if (ty->isPointerType()) { 2139 QualType pointeeTy = ty->getPointeeType(); 2140 2141 // Get address qualifier. 2142 addressQuals.push_back( 2143 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2144 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2145 2146 // Get argument type name. 2147 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2148 std::string baseTypeName = 2149 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2150 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2151 argBaseTypeNames.push_back( 2152 llvm::MDString::get(VMContext, baseTypeName)); 2153 2154 // Get argument type qualifiers: 2155 if (ty.isRestrictQualified()) 2156 typeQuals = "restrict"; 2157 if (pointeeTy.isConstQualified() || 2158 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2159 typeQuals += typeQuals.empty() ? "const" : " const"; 2160 if (pointeeTy.isVolatileQualified()) 2161 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2162 } else { 2163 uint32_t AddrSpc = 0; 2164 bool isPipe = ty->isPipeType(); 2165 if (ty->isImageType() || isPipe) 2166 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2167 2168 addressQuals.push_back( 2169 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2170 2171 // Get argument type name. 2172 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2173 std::string typeName = getTypeSpelling(ty); 2174 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2175 2176 // Remove access qualifiers on images 2177 // (as they are inseparable from type in clang implementation, 2178 // but OpenCL spec provides a special query to get access qualifier 2179 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2180 if (ty->isImageType()) { 2181 removeImageAccessQualifier(typeName); 2182 removeImageAccessQualifier(baseTypeName); 2183 } 2184 2185 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2186 argBaseTypeNames.push_back( 2187 llvm::MDString::get(VMContext, baseTypeName)); 2188 2189 if (isPipe) 2190 typeQuals = "pipe"; 2191 } 2192 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2193 } 2194 2195 if (getLangOpts().OpenCL) { 2196 Fn->setMetadata("kernel_arg_addr_space", 2197 llvm::MDNode::get(VMContext, addressQuals)); 2198 Fn->setMetadata("kernel_arg_access_qual", 2199 llvm::MDNode::get(VMContext, accessQuals)); 2200 Fn->setMetadata("kernel_arg_type", 2201 llvm::MDNode::get(VMContext, argTypeNames)); 2202 Fn->setMetadata("kernel_arg_base_type", 2203 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2204 Fn->setMetadata("kernel_arg_type_qual", 2205 llvm::MDNode::get(VMContext, argTypeQuals)); 2206 } 2207 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2208 getCodeGenOpts().HIPSaveKernelArgName) 2209 Fn->setMetadata("kernel_arg_name", 2210 llvm::MDNode::get(VMContext, argNames)); 2211 } 2212 2213 /// Determines whether the language options require us to model 2214 /// unwind exceptions. We treat -fexceptions as mandating this 2215 /// except under the fragile ObjC ABI with only ObjC exceptions 2216 /// enabled. This means, for example, that C with -fexceptions 2217 /// enables this. 2218 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2219 // If exceptions are completely disabled, obviously this is false. 2220 if (!LangOpts.Exceptions) return false; 2221 2222 // If C++ exceptions are enabled, this is true. 2223 if (LangOpts.CXXExceptions) return true; 2224 2225 // If ObjC exceptions are enabled, this depends on the ABI. 2226 if (LangOpts.ObjCExceptions) { 2227 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2228 } 2229 2230 return true; 2231 } 2232 2233 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2234 const CXXMethodDecl *MD) { 2235 // Check that the type metadata can ever actually be used by a call. 2236 if (!CGM.getCodeGenOpts().LTOUnit || 2237 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2238 return false; 2239 2240 // Only functions whose address can be taken with a member function pointer 2241 // need this sort of type metadata. 2242 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 2243 !isa<CXXDestructorDecl>(MD); 2244 } 2245 2246 SmallVector<const CXXRecordDecl *, 0> 2247 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2248 llvm::SetVector<const CXXRecordDecl *> MostBases; 2249 2250 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2251 CollectMostBases = [&](const CXXRecordDecl *RD) { 2252 if (RD->getNumBases() == 0) 2253 MostBases.insert(RD); 2254 for (const CXXBaseSpecifier &B : RD->bases()) 2255 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2256 }; 2257 CollectMostBases(RD); 2258 return MostBases.takeVector(); 2259 } 2260 2261 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2262 llvm::Function *F) { 2263 llvm::AttrBuilder B(F->getContext()); 2264 2265 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2266 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2267 2268 if (CodeGenOpts.StackClashProtector) 2269 B.addAttribute("probe-stack", "inline-asm"); 2270 2271 if (!hasUnwindExceptions(LangOpts)) 2272 B.addAttribute(llvm::Attribute::NoUnwind); 2273 2274 if (D && D->hasAttr<NoStackProtectorAttr>()) 2275 ; // Do nothing. 2276 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2277 LangOpts.getStackProtector() == LangOptions::SSPOn) 2278 B.addAttribute(llvm::Attribute::StackProtectStrong); 2279 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2280 B.addAttribute(llvm::Attribute::StackProtect); 2281 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2282 B.addAttribute(llvm::Attribute::StackProtectStrong); 2283 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2284 B.addAttribute(llvm::Attribute::StackProtectReq); 2285 2286 if (!D) { 2287 // If we don't have a declaration to control inlining, the function isn't 2288 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2289 // disabled, mark the function as noinline. 2290 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2291 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2292 B.addAttribute(llvm::Attribute::NoInline); 2293 2294 F->addFnAttrs(B); 2295 return; 2296 } 2297 2298 // Handle SME attributes that apply to function definitions, 2299 // rather than to function prototypes. 2300 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2301 B.addAttribute("aarch64_pstate_sm_body"); 2302 2303 if (D->hasAttr<ArmNewZAAttr>()) 2304 B.addAttribute("aarch64_pstate_za_new"); 2305 2306 // Track whether we need to add the optnone LLVM attribute, 2307 // starting with the default for this optimization level. 2308 bool ShouldAddOptNone = 2309 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2310 // We can't add optnone in the following cases, it won't pass the verifier. 2311 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2312 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2313 2314 // Add optnone, but do so only if the function isn't always_inline. 2315 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2316 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2317 B.addAttribute(llvm::Attribute::OptimizeNone); 2318 2319 // OptimizeNone implies noinline; we should not be inlining such functions. 2320 B.addAttribute(llvm::Attribute::NoInline); 2321 2322 // We still need to handle naked functions even though optnone subsumes 2323 // much of their semantics. 2324 if (D->hasAttr<NakedAttr>()) 2325 B.addAttribute(llvm::Attribute::Naked); 2326 2327 // OptimizeNone wins over OptimizeForSize and MinSize. 2328 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2329 F->removeFnAttr(llvm::Attribute::MinSize); 2330 } else if (D->hasAttr<NakedAttr>()) { 2331 // Naked implies noinline: we should not be inlining such functions. 2332 B.addAttribute(llvm::Attribute::Naked); 2333 B.addAttribute(llvm::Attribute::NoInline); 2334 } else if (D->hasAttr<NoDuplicateAttr>()) { 2335 B.addAttribute(llvm::Attribute::NoDuplicate); 2336 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2337 // Add noinline if the function isn't always_inline. 2338 B.addAttribute(llvm::Attribute::NoInline); 2339 } else if (D->hasAttr<AlwaysInlineAttr>() && 2340 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2341 // (noinline wins over always_inline, and we can't specify both in IR) 2342 B.addAttribute(llvm::Attribute::AlwaysInline); 2343 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2344 // If we're not inlining, then force everything that isn't always_inline to 2345 // carry an explicit noinline attribute. 2346 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2347 B.addAttribute(llvm::Attribute::NoInline); 2348 } else { 2349 // Otherwise, propagate the inline hint attribute and potentially use its 2350 // absence to mark things as noinline. 2351 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2352 // Search function and template pattern redeclarations for inline. 2353 auto CheckForInline = [](const FunctionDecl *FD) { 2354 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2355 return Redecl->isInlineSpecified(); 2356 }; 2357 if (any_of(FD->redecls(), CheckRedeclForInline)) 2358 return true; 2359 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2360 if (!Pattern) 2361 return false; 2362 return any_of(Pattern->redecls(), CheckRedeclForInline); 2363 }; 2364 if (CheckForInline(FD)) { 2365 B.addAttribute(llvm::Attribute::InlineHint); 2366 } else if (CodeGenOpts.getInlining() == 2367 CodeGenOptions::OnlyHintInlining && 2368 !FD->isInlined() && 2369 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2370 B.addAttribute(llvm::Attribute::NoInline); 2371 } 2372 } 2373 } 2374 2375 // Add other optimization related attributes if we are optimizing this 2376 // function. 2377 if (!D->hasAttr<OptimizeNoneAttr>()) { 2378 if (D->hasAttr<ColdAttr>()) { 2379 if (!ShouldAddOptNone) 2380 B.addAttribute(llvm::Attribute::OptimizeForSize); 2381 B.addAttribute(llvm::Attribute::Cold); 2382 } 2383 if (D->hasAttr<HotAttr>()) 2384 B.addAttribute(llvm::Attribute::Hot); 2385 if (D->hasAttr<MinSizeAttr>()) 2386 B.addAttribute(llvm::Attribute::MinSize); 2387 } 2388 2389 F->addFnAttrs(B); 2390 2391 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2392 if (alignment) 2393 F->setAlignment(llvm::Align(alignment)); 2394 2395 if (!D->hasAttr<AlignedAttr>()) 2396 if (LangOpts.FunctionAlignment) 2397 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2398 2399 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2400 // reserve a bit for differentiating between virtual and non-virtual member 2401 // functions. If the current target's C++ ABI requires this and this is a 2402 // member function, set its alignment accordingly. 2403 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2404 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2405 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2406 } 2407 2408 // In the cross-dso CFI mode with canonical jump tables, we want !type 2409 // attributes on definitions only. 2410 if (CodeGenOpts.SanitizeCfiCrossDso && 2411 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2412 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2413 // Skip available_externally functions. They won't be codegen'ed in the 2414 // current module anyway. 2415 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2416 CreateFunctionTypeMetadataForIcall(FD, F); 2417 } 2418 } 2419 2420 // Emit type metadata on member functions for member function pointer checks. 2421 // These are only ever necessary on definitions; we're guaranteed that the 2422 // definition will be present in the LTO unit as a result of LTO visibility. 2423 auto *MD = dyn_cast<CXXMethodDecl>(D); 2424 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2425 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2426 llvm::Metadata *Id = 2427 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2428 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2429 F->addTypeMetadata(0, Id); 2430 } 2431 } 2432 } 2433 2434 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2435 const Decl *D = GD.getDecl(); 2436 if (isa_and_nonnull<NamedDecl>(D)) 2437 setGVProperties(GV, GD); 2438 else 2439 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2440 2441 if (D && D->hasAttr<UsedAttr>()) 2442 addUsedOrCompilerUsedGlobal(GV); 2443 2444 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2445 VD && 2446 ((CodeGenOpts.KeepPersistentStorageVariables && 2447 (VD->getStorageDuration() == SD_Static || 2448 VD->getStorageDuration() == SD_Thread)) || 2449 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2450 VD->getType().isConstQualified()))) 2451 addUsedOrCompilerUsedGlobal(GV); 2452 } 2453 2454 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2455 llvm::AttrBuilder &Attrs, 2456 bool SetTargetFeatures) { 2457 // Add target-cpu and target-features attributes to functions. If 2458 // we have a decl for the function and it has a target attribute then 2459 // parse that and add it to the feature set. 2460 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2461 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2462 std::vector<std::string> Features; 2463 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2464 FD = FD ? FD->getMostRecentDecl() : FD; 2465 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2466 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2467 assert((!TD || !TV) && "both target_version and target specified"); 2468 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2469 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2470 bool AddedAttr = false; 2471 if (TD || TV || SD || TC) { 2472 llvm::StringMap<bool> FeatureMap; 2473 getContext().getFunctionFeatureMap(FeatureMap, GD); 2474 2475 // Produce the canonical string for this set of features. 2476 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2477 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2478 2479 // Now add the target-cpu and target-features to the function. 2480 // While we populated the feature map above, we still need to 2481 // get and parse the target attribute so we can get the cpu for 2482 // the function. 2483 if (TD) { 2484 ParsedTargetAttr ParsedAttr = 2485 Target.parseTargetAttr(TD->getFeaturesStr()); 2486 if (!ParsedAttr.CPU.empty() && 2487 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2488 TargetCPU = ParsedAttr.CPU; 2489 TuneCPU = ""; // Clear the tune CPU. 2490 } 2491 if (!ParsedAttr.Tune.empty() && 2492 getTarget().isValidCPUName(ParsedAttr.Tune)) 2493 TuneCPU = ParsedAttr.Tune; 2494 } 2495 2496 if (SD) { 2497 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2498 // favor this processor. 2499 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2500 } 2501 } else { 2502 // Otherwise just add the existing target cpu and target features to the 2503 // function. 2504 Features = getTarget().getTargetOpts().Features; 2505 } 2506 2507 if (!TargetCPU.empty()) { 2508 Attrs.addAttribute("target-cpu", TargetCPU); 2509 AddedAttr = true; 2510 } 2511 if (!TuneCPU.empty()) { 2512 Attrs.addAttribute("tune-cpu", TuneCPU); 2513 AddedAttr = true; 2514 } 2515 if (!Features.empty() && SetTargetFeatures) { 2516 llvm::erase_if(Features, [&](const std::string& F) { 2517 return getTarget().isReadOnlyFeature(F.substr(1)); 2518 }); 2519 llvm::sort(Features); 2520 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2521 AddedAttr = true; 2522 } 2523 2524 return AddedAttr; 2525 } 2526 2527 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2528 llvm::GlobalObject *GO) { 2529 const Decl *D = GD.getDecl(); 2530 SetCommonAttributes(GD, GO); 2531 2532 if (D) { 2533 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2534 if (D->hasAttr<RetainAttr>()) 2535 addUsedGlobal(GV); 2536 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2537 GV->addAttribute("bss-section", SA->getName()); 2538 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2539 GV->addAttribute("data-section", SA->getName()); 2540 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2541 GV->addAttribute("rodata-section", SA->getName()); 2542 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2543 GV->addAttribute("relro-section", SA->getName()); 2544 } 2545 2546 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2547 if (D->hasAttr<RetainAttr>()) 2548 addUsedGlobal(F); 2549 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2550 if (!D->getAttr<SectionAttr>()) 2551 F->addFnAttr("implicit-section-name", SA->getName()); 2552 2553 llvm::AttrBuilder Attrs(F->getContext()); 2554 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2555 // We know that GetCPUAndFeaturesAttributes will always have the 2556 // newest set, since it has the newest possible FunctionDecl, so the 2557 // new ones should replace the old. 2558 llvm::AttributeMask RemoveAttrs; 2559 RemoveAttrs.addAttribute("target-cpu"); 2560 RemoveAttrs.addAttribute("target-features"); 2561 RemoveAttrs.addAttribute("tune-cpu"); 2562 F->removeFnAttrs(RemoveAttrs); 2563 F->addFnAttrs(Attrs); 2564 } 2565 } 2566 2567 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2568 GO->setSection(CSA->getName()); 2569 else if (const auto *SA = D->getAttr<SectionAttr>()) 2570 GO->setSection(SA->getName()); 2571 } 2572 2573 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2574 } 2575 2576 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2577 llvm::Function *F, 2578 const CGFunctionInfo &FI) { 2579 const Decl *D = GD.getDecl(); 2580 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2581 SetLLVMFunctionAttributesForDefinition(D, F); 2582 2583 F->setLinkage(llvm::Function::InternalLinkage); 2584 2585 setNonAliasAttributes(GD, F); 2586 } 2587 2588 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2589 // Set linkage and visibility in case we never see a definition. 2590 LinkageInfo LV = ND->getLinkageAndVisibility(); 2591 // Don't set internal linkage on declarations. 2592 // "extern_weak" is overloaded in LLVM; we probably should have 2593 // separate linkage types for this. 2594 if (isExternallyVisible(LV.getLinkage()) && 2595 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2596 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2597 } 2598 2599 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2600 llvm::Function *F) { 2601 // Only if we are checking indirect calls. 2602 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2603 return; 2604 2605 // Non-static class methods are handled via vtable or member function pointer 2606 // checks elsewhere. 2607 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2608 return; 2609 2610 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2611 F->addTypeMetadata(0, MD); 2612 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2613 2614 // Emit a hash-based bit set entry for cross-DSO calls. 2615 if (CodeGenOpts.SanitizeCfiCrossDso) 2616 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2617 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2618 } 2619 2620 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2621 llvm::LLVMContext &Ctx = F->getContext(); 2622 llvm::MDBuilder MDB(Ctx); 2623 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2624 llvm::MDNode::get( 2625 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2626 } 2627 2628 static bool allowKCFIIdentifier(StringRef Name) { 2629 // KCFI type identifier constants are only necessary for external assembly 2630 // functions, which means it's safe to skip unusual names. Subset of 2631 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2632 return llvm::all_of(Name, [](const char &C) { 2633 return llvm::isAlnum(C) || C == '_' || C == '.'; 2634 }); 2635 } 2636 2637 void CodeGenModule::finalizeKCFITypes() { 2638 llvm::Module &M = getModule(); 2639 for (auto &F : M.functions()) { 2640 // Remove KCFI type metadata from non-address-taken local functions. 2641 bool AddressTaken = F.hasAddressTaken(); 2642 if (!AddressTaken && F.hasLocalLinkage()) 2643 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2644 2645 // Generate a constant with the expected KCFI type identifier for all 2646 // address-taken function declarations to support annotating indirectly 2647 // called assembly functions. 2648 if (!AddressTaken || !F.isDeclaration()) 2649 continue; 2650 2651 const llvm::ConstantInt *Type; 2652 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2653 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2654 else 2655 continue; 2656 2657 StringRef Name = F.getName(); 2658 if (!allowKCFIIdentifier(Name)) 2659 continue; 2660 2661 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2662 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2663 .str(); 2664 M.appendModuleInlineAsm(Asm); 2665 } 2666 } 2667 2668 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2669 bool IsIncompleteFunction, 2670 bool IsThunk) { 2671 2672 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2673 // If this is an intrinsic function, set the function's attributes 2674 // to the intrinsic's attributes. 2675 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2676 return; 2677 } 2678 2679 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2680 2681 if (!IsIncompleteFunction) 2682 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2683 IsThunk); 2684 2685 // Add the Returned attribute for "this", except for iOS 5 and earlier 2686 // where substantial code, including the libstdc++ dylib, was compiled with 2687 // GCC and does not actually return "this". 2688 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2689 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2690 assert(!F->arg_empty() && 2691 F->arg_begin()->getType() 2692 ->canLosslesslyBitCastTo(F->getReturnType()) && 2693 "unexpected this return"); 2694 F->addParamAttr(0, llvm::Attribute::Returned); 2695 } 2696 2697 // Only a few attributes are set on declarations; these may later be 2698 // overridden by a definition. 2699 2700 setLinkageForGV(F, FD); 2701 setGVProperties(F, FD); 2702 2703 // Setup target-specific attributes. 2704 if (!IsIncompleteFunction && F->isDeclaration()) 2705 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2706 2707 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2708 F->setSection(CSA->getName()); 2709 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2710 F->setSection(SA->getName()); 2711 2712 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2713 if (EA->isError()) 2714 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2715 else if (EA->isWarning()) 2716 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2717 } 2718 2719 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2720 if (FD->isInlineBuiltinDeclaration()) { 2721 const FunctionDecl *FDBody; 2722 bool HasBody = FD->hasBody(FDBody); 2723 (void)HasBody; 2724 assert(HasBody && "Inline builtin declarations should always have an " 2725 "available body!"); 2726 if (shouldEmitFunction(FDBody)) 2727 F->addFnAttr(llvm::Attribute::NoBuiltin); 2728 } 2729 2730 if (FD->isReplaceableGlobalAllocationFunction()) { 2731 // A replaceable global allocation function does not act like a builtin by 2732 // default, only if it is invoked by a new-expression or delete-expression. 2733 F->addFnAttr(llvm::Attribute::NoBuiltin); 2734 } 2735 2736 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2737 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2738 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2739 if (MD->isVirtual()) 2740 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2741 2742 // Don't emit entries for function declarations in the cross-DSO mode. This 2743 // is handled with better precision by the receiving DSO. But if jump tables 2744 // are non-canonical then we need type metadata in order to produce the local 2745 // jump table. 2746 if (!CodeGenOpts.SanitizeCfiCrossDso || 2747 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2748 CreateFunctionTypeMetadataForIcall(FD, F); 2749 2750 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2751 setKCFIType(FD, F); 2752 2753 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2754 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2755 2756 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2757 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2758 2759 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2760 // Annotate the callback behavior as metadata: 2761 // - The callback callee (as argument number). 2762 // - The callback payloads (as argument numbers). 2763 llvm::LLVMContext &Ctx = F->getContext(); 2764 llvm::MDBuilder MDB(Ctx); 2765 2766 // The payload indices are all but the first one in the encoding. The first 2767 // identifies the callback callee. 2768 int CalleeIdx = *CB->encoding_begin(); 2769 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2770 F->addMetadata(llvm::LLVMContext::MD_callback, 2771 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2772 CalleeIdx, PayloadIndices, 2773 /* VarArgsArePassed */ false)})); 2774 } 2775 } 2776 2777 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2778 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2779 "Only globals with definition can force usage."); 2780 LLVMUsed.emplace_back(GV); 2781 } 2782 2783 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2784 assert(!GV->isDeclaration() && 2785 "Only globals with definition can force usage."); 2786 LLVMCompilerUsed.emplace_back(GV); 2787 } 2788 2789 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2790 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2791 "Only globals with definition can force usage."); 2792 if (getTriple().isOSBinFormatELF()) 2793 LLVMCompilerUsed.emplace_back(GV); 2794 else 2795 LLVMUsed.emplace_back(GV); 2796 } 2797 2798 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2799 std::vector<llvm::WeakTrackingVH> &List) { 2800 // Don't create llvm.used if there is no need. 2801 if (List.empty()) 2802 return; 2803 2804 // Convert List to what ConstantArray needs. 2805 SmallVector<llvm::Constant*, 8> UsedArray; 2806 UsedArray.resize(List.size()); 2807 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2808 UsedArray[i] = 2809 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2810 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2811 } 2812 2813 if (UsedArray.empty()) 2814 return; 2815 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2816 2817 auto *GV = new llvm::GlobalVariable( 2818 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2819 llvm::ConstantArray::get(ATy, UsedArray), Name); 2820 2821 GV->setSection("llvm.metadata"); 2822 } 2823 2824 void CodeGenModule::emitLLVMUsed() { 2825 emitUsed(*this, "llvm.used", LLVMUsed); 2826 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2827 } 2828 2829 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2830 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2831 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2832 } 2833 2834 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2835 llvm::SmallString<32> Opt; 2836 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2837 if (Opt.empty()) 2838 return; 2839 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2840 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2841 } 2842 2843 void CodeGenModule::AddDependentLib(StringRef Lib) { 2844 auto &C = getLLVMContext(); 2845 if (getTarget().getTriple().isOSBinFormatELF()) { 2846 ELFDependentLibraries.push_back( 2847 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2848 return; 2849 } 2850 2851 llvm::SmallString<24> Opt; 2852 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2853 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2854 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2855 } 2856 2857 /// Add link options implied by the given module, including modules 2858 /// it depends on, using a postorder walk. 2859 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2860 SmallVectorImpl<llvm::MDNode *> &Metadata, 2861 llvm::SmallPtrSet<Module *, 16> &Visited) { 2862 // Import this module's parent. 2863 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2864 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2865 } 2866 2867 // Import this module's dependencies. 2868 for (Module *Import : llvm::reverse(Mod->Imports)) { 2869 if (Visited.insert(Import).second) 2870 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2871 } 2872 2873 // Add linker options to link against the libraries/frameworks 2874 // described by this module. 2875 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2876 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2877 2878 // For modules that use export_as for linking, use that module 2879 // name instead. 2880 if (Mod->UseExportAsModuleLinkName) 2881 return; 2882 2883 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2884 // Link against a framework. Frameworks are currently Darwin only, so we 2885 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2886 if (LL.IsFramework) { 2887 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2888 llvm::MDString::get(Context, LL.Library)}; 2889 2890 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2891 continue; 2892 } 2893 2894 // Link against a library. 2895 if (IsELF) { 2896 llvm::Metadata *Args[2] = { 2897 llvm::MDString::get(Context, "lib"), 2898 llvm::MDString::get(Context, LL.Library), 2899 }; 2900 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2901 } else { 2902 llvm::SmallString<24> Opt; 2903 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2904 auto *OptString = llvm::MDString::get(Context, Opt); 2905 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2906 } 2907 } 2908 } 2909 2910 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2911 // Emit the initializers in the order that sub-modules appear in the 2912 // source, first Global Module Fragments, if present. 2913 if (auto GMF = Primary->getGlobalModuleFragment()) { 2914 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2915 if (isa<ImportDecl>(D)) 2916 continue; 2917 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2918 EmitTopLevelDecl(D); 2919 } 2920 } 2921 // Second any associated with the module, itself. 2922 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2923 // Skip import decls, the inits for those are called explicitly. 2924 if (isa<ImportDecl>(D)) 2925 continue; 2926 EmitTopLevelDecl(D); 2927 } 2928 // Third any associated with the Privat eMOdule Fragment, if present. 2929 if (auto PMF = Primary->getPrivateModuleFragment()) { 2930 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2931 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2932 EmitTopLevelDecl(D); 2933 } 2934 } 2935 } 2936 2937 void CodeGenModule::EmitModuleLinkOptions() { 2938 // Collect the set of all of the modules we want to visit to emit link 2939 // options, which is essentially the imported modules and all of their 2940 // non-explicit child modules. 2941 llvm::SetVector<clang::Module *> LinkModules; 2942 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2943 SmallVector<clang::Module *, 16> Stack; 2944 2945 // Seed the stack with imported modules. 2946 for (Module *M : ImportedModules) { 2947 // Do not add any link flags when an implementation TU of a module imports 2948 // a header of that same module. 2949 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2950 !getLangOpts().isCompilingModule()) 2951 continue; 2952 if (Visited.insert(M).second) 2953 Stack.push_back(M); 2954 } 2955 2956 // Find all of the modules to import, making a little effort to prune 2957 // non-leaf modules. 2958 while (!Stack.empty()) { 2959 clang::Module *Mod = Stack.pop_back_val(); 2960 2961 bool AnyChildren = false; 2962 2963 // Visit the submodules of this module. 2964 for (const auto &SM : Mod->submodules()) { 2965 // Skip explicit children; they need to be explicitly imported to be 2966 // linked against. 2967 if (SM->IsExplicit) 2968 continue; 2969 2970 if (Visited.insert(SM).second) { 2971 Stack.push_back(SM); 2972 AnyChildren = true; 2973 } 2974 } 2975 2976 // We didn't find any children, so add this module to the list of 2977 // modules to link against. 2978 if (!AnyChildren) { 2979 LinkModules.insert(Mod); 2980 } 2981 } 2982 2983 // Add link options for all of the imported modules in reverse topological 2984 // order. We don't do anything to try to order import link flags with respect 2985 // to linker options inserted by things like #pragma comment(). 2986 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2987 Visited.clear(); 2988 for (Module *M : LinkModules) 2989 if (Visited.insert(M).second) 2990 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2991 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2992 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2993 2994 // Add the linker options metadata flag. 2995 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2996 for (auto *MD : LinkerOptionsMetadata) 2997 NMD->addOperand(MD); 2998 } 2999 3000 void CodeGenModule::EmitDeferred() { 3001 // Emit deferred declare target declarations. 3002 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3003 getOpenMPRuntime().emitDeferredTargetDecls(); 3004 3005 // Emit code for any potentially referenced deferred decls. Since a 3006 // previously unused static decl may become used during the generation of code 3007 // for a static function, iterate until no changes are made. 3008 3009 if (!DeferredVTables.empty()) { 3010 EmitDeferredVTables(); 3011 3012 // Emitting a vtable doesn't directly cause more vtables to 3013 // become deferred, although it can cause functions to be 3014 // emitted that then need those vtables. 3015 assert(DeferredVTables.empty()); 3016 } 3017 3018 // Emit CUDA/HIP static device variables referenced by host code only. 3019 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3020 // needed for further handling. 3021 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3022 llvm::append_range(DeferredDeclsToEmit, 3023 getContext().CUDADeviceVarODRUsedByHost); 3024 3025 // Stop if we're out of both deferred vtables and deferred declarations. 3026 if (DeferredDeclsToEmit.empty()) 3027 return; 3028 3029 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3030 // work, it will not interfere with this. 3031 std::vector<GlobalDecl> CurDeclsToEmit; 3032 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3033 3034 for (GlobalDecl &D : CurDeclsToEmit) { 3035 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3036 // to get GlobalValue with exactly the type we need, not something that 3037 // might had been created for another decl with the same mangled name but 3038 // different type. 3039 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3040 GetAddrOfGlobal(D, ForDefinition)); 3041 3042 // In case of different address spaces, we may still get a cast, even with 3043 // IsForDefinition equal to true. Query mangled names table to get 3044 // GlobalValue. 3045 if (!GV) 3046 GV = GetGlobalValue(getMangledName(D)); 3047 3048 // Make sure GetGlobalValue returned non-null. 3049 assert(GV); 3050 3051 // Check to see if we've already emitted this. This is necessary 3052 // for a couple of reasons: first, decls can end up in the 3053 // deferred-decls queue multiple times, and second, decls can end 3054 // up with definitions in unusual ways (e.g. by an extern inline 3055 // function acquiring a strong function redefinition). Just 3056 // ignore these cases. 3057 if (!GV->isDeclaration()) 3058 continue; 3059 3060 // If this is OpenMP, check if it is legal to emit this global normally. 3061 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3062 continue; 3063 3064 // Otherwise, emit the definition and move on to the next one. 3065 EmitGlobalDefinition(D, GV); 3066 3067 // If we found out that we need to emit more decls, do that recursively. 3068 // This has the advantage that the decls are emitted in a DFS and related 3069 // ones are close together, which is convenient for testing. 3070 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3071 EmitDeferred(); 3072 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3073 } 3074 } 3075 } 3076 3077 void CodeGenModule::EmitVTablesOpportunistically() { 3078 // Try to emit external vtables as available_externally if they have emitted 3079 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3080 // is not allowed to create new references to things that need to be emitted 3081 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3082 3083 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3084 && "Only emit opportunistic vtables with optimizations"); 3085 3086 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3087 assert(getVTables().isVTableExternal(RD) && 3088 "This queue should only contain external vtables"); 3089 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3090 VTables.GenerateClassData(RD); 3091 } 3092 OpportunisticVTables.clear(); 3093 } 3094 3095 void CodeGenModule::EmitGlobalAnnotations() { 3096 if (Annotations.empty()) 3097 return; 3098 3099 // Create a new global variable for the ConstantStruct in the Module. 3100 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3101 Annotations[0]->getType(), Annotations.size()), Annotations); 3102 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3103 llvm::GlobalValue::AppendingLinkage, 3104 Array, "llvm.global.annotations"); 3105 gv->setSection(AnnotationSection); 3106 } 3107 3108 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3109 llvm::Constant *&AStr = AnnotationStrings[Str]; 3110 if (AStr) 3111 return AStr; 3112 3113 // Not found yet, create a new global. 3114 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3115 auto *gv = new llvm::GlobalVariable( 3116 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3117 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3118 ConstGlobalsPtrTy->getAddressSpace()); 3119 gv->setSection(AnnotationSection); 3120 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3121 AStr = gv; 3122 return gv; 3123 } 3124 3125 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3126 SourceManager &SM = getContext().getSourceManager(); 3127 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3128 if (PLoc.isValid()) 3129 return EmitAnnotationString(PLoc.getFilename()); 3130 return EmitAnnotationString(SM.getBufferName(Loc)); 3131 } 3132 3133 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3134 SourceManager &SM = getContext().getSourceManager(); 3135 PresumedLoc PLoc = SM.getPresumedLoc(L); 3136 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3137 SM.getExpansionLineNumber(L); 3138 return llvm::ConstantInt::get(Int32Ty, LineNo); 3139 } 3140 3141 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3142 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3143 if (Exprs.empty()) 3144 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3145 3146 llvm::FoldingSetNodeID ID; 3147 for (Expr *E : Exprs) { 3148 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3149 } 3150 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3151 if (Lookup) 3152 return Lookup; 3153 3154 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3155 LLVMArgs.reserve(Exprs.size()); 3156 ConstantEmitter ConstEmiter(*this); 3157 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3158 const auto *CE = cast<clang::ConstantExpr>(E); 3159 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3160 CE->getType()); 3161 }); 3162 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3163 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3164 llvm::GlobalValue::PrivateLinkage, Struct, 3165 ".args"); 3166 GV->setSection(AnnotationSection); 3167 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3168 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 3169 3170 Lookup = Bitcasted; 3171 return Bitcasted; 3172 } 3173 3174 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3175 const AnnotateAttr *AA, 3176 SourceLocation L) { 3177 // Get the globals for file name, annotation, and the line number. 3178 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3179 *UnitGV = EmitAnnotationUnit(L), 3180 *LineNoCst = EmitAnnotationLineNo(L), 3181 *Args = EmitAnnotationArgs(AA); 3182 3183 llvm::Constant *GVInGlobalsAS = GV; 3184 if (GV->getAddressSpace() != 3185 getDataLayout().getDefaultGlobalsAddressSpace()) { 3186 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3187 GV, GV->getValueType()->getPointerTo( 3188 getDataLayout().getDefaultGlobalsAddressSpace())); 3189 } 3190 3191 // Create the ConstantStruct for the global annotation. 3192 llvm::Constant *Fields[] = { 3193 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 3194 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 3195 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 3196 LineNoCst, 3197 Args, 3198 }; 3199 return llvm::ConstantStruct::getAnon(Fields); 3200 } 3201 3202 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3203 llvm::GlobalValue *GV) { 3204 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3205 // Get the struct elements for these annotations. 3206 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3207 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3208 } 3209 3210 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3211 SourceLocation Loc) const { 3212 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3213 // NoSanitize by function name. 3214 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3215 return true; 3216 // NoSanitize by location. Check "mainfile" prefix. 3217 auto &SM = Context.getSourceManager(); 3218 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3219 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3220 return true; 3221 3222 // Check "src" prefix. 3223 if (Loc.isValid()) 3224 return NoSanitizeL.containsLocation(Kind, Loc); 3225 // If location is unknown, this may be a compiler-generated function. Assume 3226 // it's located in the main file. 3227 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3228 } 3229 3230 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3231 llvm::GlobalVariable *GV, 3232 SourceLocation Loc, QualType Ty, 3233 StringRef Category) const { 3234 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3235 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3236 return true; 3237 auto &SM = Context.getSourceManager(); 3238 if (NoSanitizeL.containsMainFile( 3239 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), Category)) 3240 return true; 3241 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3242 return true; 3243 3244 // Check global type. 3245 if (!Ty.isNull()) { 3246 // Drill down the array types: if global variable of a fixed type is 3247 // not sanitized, we also don't instrument arrays of them. 3248 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3249 Ty = AT->getElementType(); 3250 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3251 // Only record types (classes, structs etc.) are ignored. 3252 if (Ty->isRecordType()) { 3253 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3254 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3255 return true; 3256 } 3257 } 3258 return false; 3259 } 3260 3261 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3262 StringRef Category) const { 3263 const auto &XRayFilter = getContext().getXRayFilter(); 3264 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3265 auto Attr = ImbueAttr::NONE; 3266 if (Loc.isValid()) 3267 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3268 if (Attr == ImbueAttr::NONE) 3269 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3270 switch (Attr) { 3271 case ImbueAttr::NONE: 3272 return false; 3273 case ImbueAttr::ALWAYS: 3274 Fn->addFnAttr("function-instrument", "xray-always"); 3275 break; 3276 case ImbueAttr::ALWAYS_ARG1: 3277 Fn->addFnAttr("function-instrument", "xray-always"); 3278 Fn->addFnAttr("xray-log-args", "1"); 3279 break; 3280 case ImbueAttr::NEVER: 3281 Fn->addFnAttr("function-instrument", "xray-never"); 3282 break; 3283 } 3284 return true; 3285 } 3286 3287 ProfileList::ExclusionType 3288 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3289 SourceLocation Loc) const { 3290 const auto &ProfileList = getContext().getProfileList(); 3291 // If the profile list is empty, then instrument everything. 3292 if (ProfileList.isEmpty()) 3293 return ProfileList::Allow; 3294 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3295 // First, check the function name. 3296 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3297 return *V; 3298 // Next, check the source location. 3299 if (Loc.isValid()) 3300 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3301 return *V; 3302 // If location is unknown, this may be a compiler-generated function. Assume 3303 // it's located in the main file. 3304 auto &SM = Context.getSourceManager(); 3305 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3306 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3307 return *V; 3308 return ProfileList.getDefault(Kind); 3309 } 3310 3311 ProfileList::ExclusionType 3312 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3313 SourceLocation Loc) const { 3314 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3315 if (V != ProfileList::Allow) 3316 return V; 3317 3318 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3319 if (NumGroups > 1) { 3320 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3321 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3322 return ProfileList::Skip; 3323 } 3324 return ProfileList::Allow; 3325 } 3326 3327 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3328 // Never defer when EmitAllDecls is specified. 3329 if (LangOpts.EmitAllDecls) 3330 return true; 3331 3332 const auto *VD = dyn_cast<VarDecl>(Global); 3333 if (VD && 3334 ((CodeGenOpts.KeepPersistentStorageVariables && 3335 (VD->getStorageDuration() == SD_Static || 3336 VD->getStorageDuration() == SD_Thread)) || 3337 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3338 VD->getType().isConstQualified()))) 3339 return true; 3340 3341 return getContext().DeclMustBeEmitted(Global); 3342 } 3343 3344 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3345 // In OpenMP 5.0 variables and function may be marked as 3346 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3347 // that they must be emitted on the host/device. To be sure we need to have 3348 // seen a declare target with an explicit mentioning of the function, we know 3349 // we have if the level of the declare target attribute is -1. Note that we 3350 // check somewhere else if we should emit this at all. 3351 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3352 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3353 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3354 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3355 return false; 3356 } 3357 3358 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3359 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3360 // Implicit template instantiations may change linkage if they are later 3361 // explicitly instantiated, so they should not be emitted eagerly. 3362 return false; 3363 } 3364 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3365 if (Context.getInlineVariableDefinitionKind(VD) == 3366 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3367 // A definition of an inline constexpr static data member may change 3368 // linkage later if it's redeclared outside the class. 3369 return false; 3370 if (CXX20ModuleInits && VD->getOwningModule() && 3371 !VD->getOwningModule()->isModuleMapModule()) { 3372 // For CXX20, module-owned initializers need to be deferred, since it is 3373 // not known at this point if they will be run for the current module or 3374 // as part of the initializer for an imported one. 3375 return false; 3376 } 3377 } 3378 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3379 // codegen for global variables, because they may be marked as threadprivate. 3380 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3381 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3382 !Global->getType().isConstantStorage(getContext(), false, false) && 3383 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3384 return false; 3385 3386 return true; 3387 } 3388 3389 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3390 StringRef Name = getMangledName(GD); 3391 3392 // The UUID descriptor should be pointer aligned. 3393 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3394 3395 // Look for an existing global. 3396 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3397 return ConstantAddress(GV, GV->getValueType(), Alignment); 3398 3399 ConstantEmitter Emitter(*this); 3400 llvm::Constant *Init; 3401 3402 APValue &V = GD->getAsAPValue(); 3403 if (!V.isAbsent()) { 3404 // If possible, emit the APValue version of the initializer. In particular, 3405 // this gets the type of the constant right. 3406 Init = Emitter.emitForInitializer( 3407 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3408 } else { 3409 // As a fallback, directly construct the constant. 3410 // FIXME: This may get padding wrong under esoteric struct layout rules. 3411 // MSVC appears to create a complete type 'struct __s_GUID' that it 3412 // presumably uses to represent these constants. 3413 MSGuidDecl::Parts Parts = GD->getParts(); 3414 llvm::Constant *Fields[4] = { 3415 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3416 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3417 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3418 llvm::ConstantDataArray::getRaw( 3419 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3420 Int8Ty)}; 3421 Init = llvm::ConstantStruct::getAnon(Fields); 3422 } 3423 3424 auto *GV = new llvm::GlobalVariable( 3425 getModule(), Init->getType(), 3426 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3427 if (supportsCOMDAT()) 3428 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3429 setDSOLocal(GV); 3430 3431 if (!V.isAbsent()) { 3432 Emitter.finalize(GV); 3433 return ConstantAddress(GV, GV->getValueType(), Alignment); 3434 } 3435 3436 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3437 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3438 GV, Ty->getPointerTo(GV->getAddressSpace())); 3439 return ConstantAddress(Addr, Ty, Alignment); 3440 } 3441 3442 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3443 const UnnamedGlobalConstantDecl *GCD) { 3444 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3445 3446 llvm::GlobalVariable **Entry = nullptr; 3447 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3448 if (*Entry) 3449 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3450 3451 ConstantEmitter Emitter(*this); 3452 llvm::Constant *Init; 3453 3454 const APValue &V = GCD->getValue(); 3455 3456 assert(!V.isAbsent()); 3457 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3458 GCD->getType()); 3459 3460 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3461 /*isConstant=*/true, 3462 llvm::GlobalValue::PrivateLinkage, Init, 3463 ".constant"); 3464 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3465 GV->setAlignment(Alignment.getAsAlign()); 3466 3467 Emitter.finalize(GV); 3468 3469 *Entry = GV; 3470 return ConstantAddress(GV, GV->getValueType(), Alignment); 3471 } 3472 3473 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3474 const TemplateParamObjectDecl *TPO) { 3475 StringRef Name = getMangledName(TPO); 3476 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3477 3478 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3479 return ConstantAddress(GV, GV->getValueType(), Alignment); 3480 3481 ConstantEmitter Emitter(*this); 3482 llvm::Constant *Init = Emitter.emitForInitializer( 3483 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3484 3485 if (!Init) { 3486 ErrorUnsupported(TPO, "template parameter object"); 3487 return ConstantAddress::invalid(); 3488 } 3489 3490 llvm::GlobalValue::LinkageTypes Linkage = 3491 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3492 ? llvm::GlobalValue::LinkOnceODRLinkage 3493 : llvm::GlobalValue::InternalLinkage; 3494 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3495 /*isConstant=*/true, Linkage, Init, Name); 3496 setGVProperties(GV, TPO); 3497 if (supportsCOMDAT()) 3498 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3499 Emitter.finalize(GV); 3500 3501 return ConstantAddress(GV, GV->getValueType(), Alignment); 3502 } 3503 3504 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3505 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3506 assert(AA && "No alias?"); 3507 3508 CharUnits Alignment = getContext().getDeclAlign(VD); 3509 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3510 3511 // See if there is already something with the target's name in the module. 3512 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3513 if (Entry) { 3514 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3515 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3516 return ConstantAddress(Ptr, DeclTy, Alignment); 3517 } 3518 3519 llvm::Constant *Aliasee; 3520 if (isa<llvm::FunctionType>(DeclTy)) 3521 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3522 GlobalDecl(cast<FunctionDecl>(VD)), 3523 /*ForVTable=*/false); 3524 else 3525 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3526 nullptr); 3527 3528 auto *F = cast<llvm::GlobalValue>(Aliasee); 3529 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3530 WeakRefReferences.insert(F); 3531 3532 return ConstantAddress(Aliasee, DeclTy, Alignment); 3533 } 3534 3535 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3536 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3537 3538 // Weak references don't produce any output by themselves. 3539 if (Global->hasAttr<WeakRefAttr>()) 3540 return; 3541 3542 // If this is an alias definition (which otherwise looks like a declaration) 3543 // emit it now. 3544 if (Global->hasAttr<AliasAttr>()) 3545 return EmitAliasDefinition(GD); 3546 3547 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3548 if (Global->hasAttr<IFuncAttr>()) 3549 return emitIFuncDefinition(GD); 3550 3551 // If this is a cpu_dispatch multiversion function, emit the resolver. 3552 if (Global->hasAttr<CPUDispatchAttr>()) 3553 return emitCPUDispatchDefinition(GD); 3554 3555 // If this is CUDA, be selective about which declarations we emit. 3556 if (LangOpts.CUDA) { 3557 if (LangOpts.CUDAIsDevice) { 3558 if (!Global->hasAttr<CUDADeviceAttr>() && 3559 !Global->hasAttr<CUDAGlobalAttr>() && 3560 !Global->hasAttr<CUDAConstantAttr>() && 3561 !Global->hasAttr<CUDASharedAttr>() && 3562 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3563 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3564 return; 3565 } else { 3566 // We need to emit host-side 'shadows' for all global 3567 // device-side variables because the CUDA runtime needs their 3568 // size and host-side address in order to provide access to 3569 // their device-side incarnations. 3570 3571 // So device-only functions are the only things we skip. 3572 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3573 Global->hasAttr<CUDADeviceAttr>()) 3574 return; 3575 3576 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3577 "Expected Variable or Function"); 3578 } 3579 } 3580 3581 if (LangOpts.OpenMP) { 3582 // If this is OpenMP, check if it is legal to emit this global normally. 3583 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3584 return; 3585 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3586 if (MustBeEmitted(Global)) 3587 EmitOMPDeclareReduction(DRD); 3588 return; 3589 } 3590 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3591 if (MustBeEmitted(Global)) 3592 EmitOMPDeclareMapper(DMD); 3593 return; 3594 } 3595 } 3596 3597 // Ignore declarations, they will be emitted on their first use. 3598 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3599 // Forward declarations are emitted lazily on first use. 3600 if (!FD->doesThisDeclarationHaveABody()) { 3601 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3602 return; 3603 3604 StringRef MangledName = getMangledName(GD); 3605 3606 // Compute the function info and LLVM type. 3607 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3608 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3609 3610 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3611 /*DontDefer=*/false); 3612 return; 3613 } 3614 } else { 3615 const auto *VD = cast<VarDecl>(Global); 3616 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3617 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3618 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3619 if (LangOpts.OpenMP) { 3620 // Emit declaration of the must-be-emitted declare target variable. 3621 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3622 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3623 3624 // If this variable has external storage and doesn't require special 3625 // link handling we defer to its canonical definition. 3626 if (VD->hasExternalStorage() && 3627 Res != OMPDeclareTargetDeclAttr::MT_Link) 3628 return; 3629 3630 bool UnifiedMemoryEnabled = 3631 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3632 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3633 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3634 !UnifiedMemoryEnabled) { 3635 (void)GetAddrOfGlobalVar(VD); 3636 } else { 3637 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3638 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3639 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3640 UnifiedMemoryEnabled)) && 3641 "Link clause or to clause with unified memory expected."); 3642 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3643 } 3644 3645 return; 3646 } 3647 } 3648 // If this declaration may have caused an inline variable definition to 3649 // change linkage, make sure that it's emitted. 3650 if (Context.getInlineVariableDefinitionKind(VD) == 3651 ASTContext::InlineVariableDefinitionKind::Strong) 3652 GetAddrOfGlobalVar(VD); 3653 return; 3654 } 3655 } 3656 3657 // Defer code generation to first use when possible, e.g. if this is an inline 3658 // function. If the global must always be emitted, do it eagerly if possible 3659 // to benefit from cache locality. 3660 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3661 // Emit the definition if it can't be deferred. 3662 EmitGlobalDefinition(GD); 3663 addEmittedDeferredDecl(GD); 3664 return; 3665 } 3666 3667 // If we're deferring emission of a C++ variable with an 3668 // initializer, remember the order in which it appeared in the file. 3669 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3670 cast<VarDecl>(Global)->hasInit()) { 3671 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3672 CXXGlobalInits.push_back(nullptr); 3673 } 3674 3675 StringRef MangledName = getMangledName(GD); 3676 if (GetGlobalValue(MangledName) != nullptr) { 3677 // The value has already been used and should therefore be emitted. 3678 addDeferredDeclToEmit(GD); 3679 } else if (MustBeEmitted(Global)) { 3680 // The value must be emitted, but cannot be emitted eagerly. 3681 assert(!MayBeEmittedEagerly(Global)); 3682 addDeferredDeclToEmit(GD); 3683 } else { 3684 // Otherwise, remember that we saw a deferred decl with this name. The 3685 // first use of the mangled name will cause it to move into 3686 // DeferredDeclsToEmit. 3687 DeferredDecls[MangledName] = GD; 3688 } 3689 } 3690 3691 // Check if T is a class type with a destructor that's not dllimport. 3692 static bool HasNonDllImportDtor(QualType T) { 3693 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3694 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3695 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3696 return true; 3697 3698 return false; 3699 } 3700 3701 namespace { 3702 struct FunctionIsDirectlyRecursive 3703 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3704 const StringRef Name; 3705 const Builtin::Context &BI; 3706 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3707 : Name(N), BI(C) {} 3708 3709 bool VisitCallExpr(const CallExpr *E) { 3710 const FunctionDecl *FD = E->getDirectCallee(); 3711 if (!FD) 3712 return false; 3713 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3714 if (Attr && Name == Attr->getLabel()) 3715 return true; 3716 unsigned BuiltinID = FD->getBuiltinID(); 3717 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3718 return false; 3719 StringRef BuiltinName = BI.getName(BuiltinID); 3720 if (BuiltinName.startswith("__builtin_") && 3721 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3722 return true; 3723 } 3724 return false; 3725 } 3726 3727 bool VisitStmt(const Stmt *S) { 3728 for (const Stmt *Child : S->children()) 3729 if (Child && this->Visit(Child)) 3730 return true; 3731 return false; 3732 } 3733 }; 3734 3735 // Make sure we're not referencing non-imported vars or functions. 3736 struct DLLImportFunctionVisitor 3737 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3738 bool SafeToInline = true; 3739 3740 bool shouldVisitImplicitCode() const { return true; } 3741 3742 bool VisitVarDecl(VarDecl *VD) { 3743 if (VD->getTLSKind()) { 3744 // A thread-local variable cannot be imported. 3745 SafeToInline = false; 3746 return SafeToInline; 3747 } 3748 3749 // A variable definition might imply a destructor call. 3750 if (VD->isThisDeclarationADefinition()) 3751 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3752 3753 return SafeToInline; 3754 } 3755 3756 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3757 if (const auto *D = E->getTemporary()->getDestructor()) 3758 SafeToInline = D->hasAttr<DLLImportAttr>(); 3759 return SafeToInline; 3760 } 3761 3762 bool VisitDeclRefExpr(DeclRefExpr *E) { 3763 ValueDecl *VD = E->getDecl(); 3764 if (isa<FunctionDecl>(VD)) 3765 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3766 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3767 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3768 return SafeToInline; 3769 } 3770 3771 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3772 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3773 return SafeToInline; 3774 } 3775 3776 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3777 CXXMethodDecl *M = E->getMethodDecl(); 3778 if (!M) { 3779 // Call through a pointer to member function. This is safe to inline. 3780 SafeToInline = true; 3781 } else { 3782 SafeToInline = M->hasAttr<DLLImportAttr>(); 3783 } 3784 return SafeToInline; 3785 } 3786 3787 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3788 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3789 return SafeToInline; 3790 } 3791 3792 bool VisitCXXNewExpr(CXXNewExpr *E) { 3793 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3794 return SafeToInline; 3795 } 3796 }; 3797 } 3798 3799 // isTriviallyRecursive - Check if this function calls another 3800 // decl that, because of the asm attribute or the other decl being a builtin, 3801 // ends up pointing to itself. 3802 bool 3803 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3804 StringRef Name; 3805 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3806 // asm labels are a special kind of mangling we have to support. 3807 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3808 if (!Attr) 3809 return false; 3810 Name = Attr->getLabel(); 3811 } else { 3812 Name = FD->getName(); 3813 } 3814 3815 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3816 const Stmt *Body = FD->getBody(); 3817 return Body ? Walker.Visit(Body) : false; 3818 } 3819 3820 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3821 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3822 return true; 3823 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3824 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3825 return false; 3826 3827 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3828 // Check whether it would be safe to inline this dllimport function. 3829 DLLImportFunctionVisitor Visitor; 3830 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3831 if (!Visitor.SafeToInline) 3832 return false; 3833 3834 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3835 // Implicit destructor invocations aren't captured in the AST, so the 3836 // check above can't see them. Check for them manually here. 3837 for (const Decl *Member : Dtor->getParent()->decls()) 3838 if (isa<FieldDecl>(Member)) 3839 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3840 return false; 3841 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3842 if (HasNonDllImportDtor(B.getType())) 3843 return false; 3844 } 3845 } 3846 3847 // Inline builtins declaration must be emitted. They often are fortified 3848 // functions. 3849 if (F->isInlineBuiltinDeclaration()) 3850 return true; 3851 3852 // PR9614. Avoid cases where the source code is lying to us. An available 3853 // externally function should have an equivalent function somewhere else, 3854 // but a function that calls itself through asm label/`__builtin_` trickery is 3855 // clearly not equivalent to the real implementation. 3856 // This happens in glibc's btowc and in some configure checks. 3857 return !isTriviallyRecursive(F); 3858 } 3859 3860 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3861 return CodeGenOpts.OptimizationLevel > 0; 3862 } 3863 3864 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3865 llvm::GlobalValue *GV) { 3866 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3867 3868 if (FD->isCPUSpecificMultiVersion()) { 3869 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3870 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3871 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3872 } else if (FD->isTargetClonesMultiVersion()) { 3873 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3874 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3875 if (Clone->isFirstOfVersion(I)) 3876 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3877 // Ensure that the resolver function is also emitted. 3878 GetOrCreateMultiVersionResolver(GD); 3879 } else 3880 EmitGlobalFunctionDefinition(GD, GV); 3881 } 3882 3883 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3884 const auto *D = cast<ValueDecl>(GD.getDecl()); 3885 3886 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3887 Context.getSourceManager(), 3888 "Generating code for declaration"); 3889 3890 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3891 // At -O0, don't generate IR for functions with available_externally 3892 // linkage. 3893 if (!shouldEmitFunction(GD)) 3894 return; 3895 3896 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3897 std::string Name; 3898 llvm::raw_string_ostream OS(Name); 3899 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3900 /*Qualified=*/true); 3901 return Name; 3902 }); 3903 3904 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3905 // Make sure to emit the definition(s) before we emit the thunks. 3906 // This is necessary for the generation of certain thunks. 3907 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3908 ABI->emitCXXStructor(GD); 3909 else if (FD->isMultiVersion()) 3910 EmitMultiVersionFunctionDefinition(GD, GV); 3911 else 3912 EmitGlobalFunctionDefinition(GD, GV); 3913 3914 if (Method->isVirtual()) 3915 getVTables().EmitThunks(GD); 3916 3917 return; 3918 } 3919 3920 if (FD->isMultiVersion()) 3921 return EmitMultiVersionFunctionDefinition(GD, GV); 3922 return EmitGlobalFunctionDefinition(GD, GV); 3923 } 3924 3925 if (const auto *VD = dyn_cast<VarDecl>(D)) 3926 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3927 3928 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3929 } 3930 3931 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3932 llvm::Function *NewFn); 3933 3934 static unsigned 3935 TargetMVPriority(const TargetInfo &TI, 3936 const CodeGenFunction::MultiVersionResolverOption &RO) { 3937 unsigned Priority = 0; 3938 unsigned NumFeatures = 0; 3939 for (StringRef Feat : RO.Conditions.Features) { 3940 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3941 NumFeatures++; 3942 } 3943 3944 if (!RO.Conditions.Architecture.empty()) 3945 Priority = std::max( 3946 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3947 3948 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3949 3950 return Priority; 3951 } 3952 3953 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3954 // TU can forward declare the function without causing problems. Particularly 3955 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3956 // work with internal linkage functions, so that the same function name can be 3957 // used with internal linkage in multiple TUs. 3958 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3959 GlobalDecl GD) { 3960 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3961 if (FD->getFormalLinkage() == InternalLinkage) 3962 return llvm::GlobalValue::InternalLinkage; 3963 return llvm::GlobalValue::WeakODRLinkage; 3964 } 3965 3966 void CodeGenModule::emitMultiVersionFunctions() { 3967 std::vector<GlobalDecl> MVFuncsToEmit; 3968 MultiVersionFuncs.swap(MVFuncsToEmit); 3969 for (GlobalDecl GD : MVFuncsToEmit) { 3970 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3971 assert(FD && "Expected a FunctionDecl"); 3972 3973 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3974 if (FD->isTargetMultiVersion()) { 3975 getContext().forEachMultiversionedFunctionVersion( 3976 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3977 GlobalDecl CurGD{ 3978 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3979 StringRef MangledName = getMangledName(CurGD); 3980 llvm::Constant *Func = GetGlobalValue(MangledName); 3981 if (!Func) { 3982 if (CurFD->isDefined()) { 3983 EmitGlobalFunctionDefinition(CurGD, nullptr); 3984 Func = GetGlobalValue(MangledName); 3985 } else { 3986 const CGFunctionInfo &FI = 3987 getTypes().arrangeGlobalDeclaration(GD); 3988 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3989 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3990 /*DontDefer=*/false, ForDefinition); 3991 } 3992 assert(Func && "This should have just been created"); 3993 } 3994 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3995 const auto *TA = CurFD->getAttr<TargetAttr>(); 3996 llvm::SmallVector<StringRef, 8> Feats; 3997 TA->getAddedFeatures(Feats); 3998 Options.emplace_back(cast<llvm::Function>(Func), 3999 TA->getArchitecture(), Feats); 4000 } else { 4001 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4002 llvm::SmallVector<StringRef, 8> Feats; 4003 TVA->getFeatures(Feats); 4004 Options.emplace_back(cast<llvm::Function>(Func), 4005 /*Architecture*/ "", Feats); 4006 } 4007 }); 4008 } else if (FD->isTargetClonesMultiVersion()) { 4009 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4010 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4011 ++VersionIndex) { 4012 if (!TC->isFirstOfVersion(VersionIndex)) 4013 continue; 4014 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4015 VersionIndex}; 4016 StringRef Version = TC->getFeatureStr(VersionIndex); 4017 StringRef MangledName = getMangledName(CurGD); 4018 llvm::Constant *Func = GetGlobalValue(MangledName); 4019 if (!Func) { 4020 if (FD->isDefined()) { 4021 EmitGlobalFunctionDefinition(CurGD, nullptr); 4022 Func = GetGlobalValue(MangledName); 4023 } else { 4024 const CGFunctionInfo &FI = 4025 getTypes().arrangeGlobalDeclaration(CurGD); 4026 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4027 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4028 /*DontDefer=*/false, ForDefinition); 4029 } 4030 assert(Func && "This should have just been created"); 4031 } 4032 4033 StringRef Architecture; 4034 llvm::SmallVector<StringRef, 1> Feature; 4035 4036 if (getTarget().getTriple().isAArch64()) { 4037 if (Version != "default") { 4038 llvm::SmallVector<StringRef, 8> VerFeats; 4039 Version.split(VerFeats, "+"); 4040 for (auto &CurFeat : VerFeats) 4041 Feature.push_back(CurFeat.trim()); 4042 } 4043 } else { 4044 if (Version.startswith("arch=")) 4045 Architecture = Version.drop_front(sizeof("arch=") - 1); 4046 else if (Version != "default") 4047 Feature.push_back(Version); 4048 } 4049 4050 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4051 } 4052 } else { 4053 assert(0 && "Expected a target or target_clones multiversion function"); 4054 continue; 4055 } 4056 4057 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4058 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 4059 ResolverConstant = IFunc->getResolver(); 4060 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4061 4062 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4063 4064 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4065 ResolverFunc->setComdat( 4066 getModule().getOrInsertComdat(ResolverFunc->getName())); 4067 4068 const TargetInfo &TI = getTarget(); 4069 llvm::stable_sort( 4070 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4071 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4072 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4073 }); 4074 CodeGenFunction CGF(*this); 4075 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4076 } 4077 4078 // Ensure that any additions to the deferred decls list caused by emitting a 4079 // variant are emitted. This can happen when the variant itself is inline and 4080 // calls a function without linkage. 4081 if (!MVFuncsToEmit.empty()) 4082 EmitDeferred(); 4083 4084 // Ensure that any additions to the multiversion funcs list from either the 4085 // deferred decls or the multiversion functions themselves are emitted. 4086 if (!MultiVersionFuncs.empty()) 4087 emitMultiVersionFunctions(); 4088 } 4089 4090 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4091 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4092 assert(FD && "Not a FunctionDecl?"); 4093 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4094 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4095 assert(DD && "Not a cpu_dispatch Function?"); 4096 4097 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4098 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4099 4100 StringRef ResolverName = getMangledName(GD); 4101 UpdateMultiVersionNames(GD, FD, ResolverName); 4102 4103 llvm::Type *ResolverType; 4104 GlobalDecl ResolverGD; 4105 if (getTarget().supportsIFunc()) { 4106 ResolverType = llvm::FunctionType::get( 4107 llvm::PointerType::get(DeclTy, 4108 getTypes().getTargetAddressSpace(FD->getType())), 4109 false); 4110 } 4111 else { 4112 ResolverType = DeclTy; 4113 ResolverGD = GD; 4114 } 4115 4116 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4117 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4118 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4119 if (supportsCOMDAT()) 4120 ResolverFunc->setComdat( 4121 getModule().getOrInsertComdat(ResolverFunc->getName())); 4122 4123 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4124 const TargetInfo &Target = getTarget(); 4125 unsigned Index = 0; 4126 for (const IdentifierInfo *II : DD->cpus()) { 4127 // Get the name of the target function so we can look it up/create it. 4128 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4129 getCPUSpecificMangling(*this, II->getName()); 4130 4131 llvm::Constant *Func = GetGlobalValue(MangledName); 4132 4133 if (!Func) { 4134 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4135 if (ExistingDecl.getDecl() && 4136 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4137 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4138 Func = GetGlobalValue(MangledName); 4139 } else { 4140 if (!ExistingDecl.getDecl()) 4141 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4142 4143 Func = GetOrCreateLLVMFunction( 4144 MangledName, DeclTy, ExistingDecl, 4145 /*ForVTable=*/false, /*DontDefer=*/true, 4146 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4147 } 4148 } 4149 4150 llvm::SmallVector<StringRef, 32> Features; 4151 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4152 llvm::transform(Features, Features.begin(), 4153 [](StringRef Str) { return Str.substr(1); }); 4154 llvm::erase_if(Features, [&Target](StringRef Feat) { 4155 return !Target.validateCpuSupports(Feat); 4156 }); 4157 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4158 ++Index; 4159 } 4160 4161 llvm::stable_sort( 4162 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4163 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4164 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4165 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4166 }); 4167 4168 // If the list contains multiple 'default' versions, such as when it contains 4169 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4170 // always run on at least a 'pentium'). We do this by deleting the 'least 4171 // advanced' (read, lowest mangling letter). 4172 while (Options.size() > 1 && 4173 llvm::all_of(llvm::X86::getCpuSupportsMask( 4174 (Options.end() - 2)->Conditions.Features), 4175 [](auto X) { return X == 0; })) { 4176 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4177 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4178 if (LHSName.compare(RHSName) < 0) 4179 Options.erase(Options.end() - 2); 4180 else 4181 Options.erase(Options.end() - 1); 4182 } 4183 4184 CodeGenFunction CGF(*this); 4185 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4186 4187 if (getTarget().supportsIFunc()) { 4188 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4189 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4190 4191 // Fix up function declarations that were created for cpu_specific before 4192 // cpu_dispatch was known 4193 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4194 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4195 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4196 &getModule()); 4197 GI->takeName(IFunc); 4198 IFunc->replaceAllUsesWith(GI); 4199 IFunc->eraseFromParent(); 4200 IFunc = GI; 4201 } 4202 4203 std::string AliasName = getMangledNameImpl( 4204 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4205 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4206 if (!AliasFunc) { 4207 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4208 &getModule()); 4209 SetCommonAttributes(GD, GA); 4210 } 4211 } 4212 } 4213 4214 /// If a dispatcher for the specified mangled name is not in the module, create 4215 /// and return an llvm Function with the specified type. 4216 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4217 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4218 assert(FD && "Not a FunctionDecl?"); 4219 4220 std::string MangledName = 4221 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4222 4223 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4224 // a separate resolver). 4225 std::string ResolverName = MangledName; 4226 if (getTarget().supportsIFunc()) 4227 ResolverName += ".ifunc"; 4228 else if (FD->isTargetMultiVersion()) 4229 ResolverName += ".resolver"; 4230 4231 // If the resolver has already been created, just return it. 4232 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4233 return ResolverGV; 4234 4235 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4236 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4237 4238 // The resolver needs to be created. For target and target_clones, defer 4239 // creation until the end of the TU. 4240 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4241 MultiVersionFuncs.push_back(GD); 4242 4243 // For cpu_specific, don't create an ifunc yet because we don't know if the 4244 // cpu_dispatch will be emitted in this translation unit. 4245 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4246 llvm::Type *ResolverType = llvm::FunctionType::get( 4247 llvm::PointerType::get(DeclTy, 4248 getTypes().getTargetAddressSpace(FD->getType())), 4249 false); 4250 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4251 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4252 /*ForVTable=*/false); 4253 llvm::GlobalIFunc *GIF = 4254 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4255 "", Resolver, &getModule()); 4256 GIF->setName(ResolverName); 4257 SetCommonAttributes(FD, GIF); 4258 4259 return GIF; 4260 } 4261 4262 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4263 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4264 assert(isa<llvm::GlobalValue>(Resolver) && 4265 "Resolver should be created for the first time"); 4266 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4267 return Resolver; 4268 } 4269 4270 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4271 /// module, create and return an llvm Function with the specified type. If there 4272 /// is something in the module with the specified name, return it potentially 4273 /// bitcasted to the right type. 4274 /// 4275 /// If D is non-null, it specifies a decl that correspond to this. This is used 4276 /// to set the attributes on the function when it is first created. 4277 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4278 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4279 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4280 ForDefinition_t IsForDefinition) { 4281 const Decl *D = GD.getDecl(); 4282 4283 // Any attempts to use a MultiVersion function should result in retrieving 4284 // the iFunc instead. Name Mangling will handle the rest of the changes. 4285 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4286 // For the device mark the function as one that should be emitted. 4287 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4288 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4289 !DontDefer && !IsForDefinition) { 4290 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4291 GlobalDecl GDDef; 4292 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4293 GDDef = GlobalDecl(CD, GD.getCtorType()); 4294 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4295 GDDef = GlobalDecl(DD, GD.getDtorType()); 4296 else 4297 GDDef = GlobalDecl(FDDef); 4298 EmitGlobal(GDDef); 4299 } 4300 } 4301 4302 if (FD->isMultiVersion()) { 4303 UpdateMultiVersionNames(GD, FD, MangledName); 4304 if (!IsForDefinition) 4305 return GetOrCreateMultiVersionResolver(GD); 4306 } 4307 } 4308 4309 // Lookup the entry, lazily creating it if necessary. 4310 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4311 if (Entry) { 4312 if (WeakRefReferences.erase(Entry)) { 4313 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4314 if (FD && !FD->hasAttr<WeakAttr>()) 4315 Entry->setLinkage(llvm::Function::ExternalLinkage); 4316 } 4317 4318 // Handle dropped DLL attributes. 4319 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4320 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4321 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4322 setDSOLocal(Entry); 4323 } 4324 4325 // If there are two attempts to define the same mangled name, issue an 4326 // error. 4327 if (IsForDefinition && !Entry->isDeclaration()) { 4328 GlobalDecl OtherGD; 4329 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4330 // to make sure that we issue an error only once. 4331 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4332 (GD.getCanonicalDecl().getDecl() != 4333 OtherGD.getCanonicalDecl().getDecl()) && 4334 DiagnosedConflictingDefinitions.insert(GD).second) { 4335 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4336 << MangledName; 4337 getDiags().Report(OtherGD.getDecl()->getLocation(), 4338 diag::note_previous_definition); 4339 } 4340 } 4341 4342 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4343 (Entry->getValueType() == Ty)) { 4344 return Entry; 4345 } 4346 4347 // Make sure the result is of the correct type. 4348 // (If function is requested for a definition, we always need to create a new 4349 // function, not just return a bitcast.) 4350 if (!IsForDefinition) 4351 return llvm::ConstantExpr::getBitCast( 4352 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4353 } 4354 4355 // This function doesn't have a complete type (for example, the return 4356 // type is an incomplete struct). Use a fake type instead, and make 4357 // sure not to try to set attributes. 4358 bool IsIncompleteFunction = false; 4359 4360 llvm::FunctionType *FTy; 4361 if (isa<llvm::FunctionType>(Ty)) { 4362 FTy = cast<llvm::FunctionType>(Ty); 4363 } else { 4364 FTy = llvm::FunctionType::get(VoidTy, false); 4365 IsIncompleteFunction = true; 4366 } 4367 4368 llvm::Function *F = 4369 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4370 Entry ? StringRef() : MangledName, &getModule()); 4371 4372 // If we already created a function with the same mangled name (but different 4373 // type) before, take its name and add it to the list of functions to be 4374 // replaced with F at the end of CodeGen. 4375 // 4376 // This happens if there is a prototype for a function (e.g. "int f()") and 4377 // then a definition of a different type (e.g. "int f(int x)"). 4378 if (Entry) { 4379 F->takeName(Entry); 4380 4381 // This might be an implementation of a function without a prototype, in 4382 // which case, try to do special replacement of calls which match the new 4383 // prototype. The really key thing here is that we also potentially drop 4384 // arguments from the call site so as to make a direct call, which makes the 4385 // inliner happier and suppresses a number of optimizer warnings (!) about 4386 // dropping arguments. 4387 if (!Entry->use_empty()) { 4388 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4389 Entry->removeDeadConstantUsers(); 4390 } 4391 4392 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4393 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4394 addGlobalValReplacement(Entry, BC); 4395 } 4396 4397 assert(F->getName() == MangledName && "name was uniqued!"); 4398 if (D) 4399 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4400 if (ExtraAttrs.hasFnAttrs()) { 4401 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4402 F->addFnAttrs(B); 4403 } 4404 4405 if (!DontDefer) { 4406 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4407 // each other bottoming out with the base dtor. Therefore we emit non-base 4408 // dtors on usage, even if there is no dtor definition in the TU. 4409 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4410 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4411 GD.getDtorType())) 4412 addDeferredDeclToEmit(GD); 4413 4414 // This is the first use or definition of a mangled name. If there is a 4415 // deferred decl with this name, remember that we need to emit it at the end 4416 // of the file. 4417 auto DDI = DeferredDecls.find(MangledName); 4418 if (DDI != DeferredDecls.end()) { 4419 // Move the potentially referenced deferred decl to the 4420 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4421 // don't need it anymore). 4422 addDeferredDeclToEmit(DDI->second); 4423 DeferredDecls.erase(DDI); 4424 4425 // Otherwise, there are cases we have to worry about where we're 4426 // using a declaration for which we must emit a definition but where 4427 // we might not find a top-level definition: 4428 // - member functions defined inline in their classes 4429 // - friend functions defined inline in some class 4430 // - special member functions with implicit definitions 4431 // If we ever change our AST traversal to walk into class methods, 4432 // this will be unnecessary. 4433 // 4434 // We also don't emit a definition for a function if it's going to be an 4435 // entry in a vtable, unless it's already marked as used. 4436 } else if (getLangOpts().CPlusPlus && D) { 4437 // Look for a declaration that's lexically in a record. 4438 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4439 FD = FD->getPreviousDecl()) { 4440 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4441 if (FD->doesThisDeclarationHaveABody()) { 4442 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4443 break; 4444 } 4445 } 4446 } 4447 } 4448 } 4449 4450 // Make sure the result is of the requested type. 4451 if (!IsIncompleteFunction) { 4452 assert(F->getFunctionType() == Ty); 4453 return F; 4454 } 4455 4456 return llvm::ConstantExpr::getBitCast(F, 4457 Ty->getPointerTo(F->getAddressSpace())); 4458 } 4459 4460 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4461 /// non-null, then this function will use the specified type if it has to 4462 /// create it (this occurs when we see a definition of the function). 4463 llvm::Constant * 4464 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4465 bool DontDefer, 4466 ForDefinition_t IsForDefinition) { 4467 // If there was no specific requested type, just convert it now. 4468 if (!Ty) { 4469 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4470 Ty = getTypes().ConvertType(FD->getType()); 4471 } 4472 4473 // Devirtualized destructor calls may come through here instead of via 4474 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4475 // of the complete destructor when necessary. 4476 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4477 if (getTarget().getCXXABI().isMicrosoft() && 4478 GD.getDtorType() == Dtor_Complete && 4479 DD->getParent()->getNumVBases() == 0) 4480 GD = GlobalDecl(DD, Dtor_Base); 4481 } 4482 4483 StringRef MangledName = getMangledName(GD); 4484 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4485 /*IsThunk=*/false, llvm::AttributeList(), 4486 IsForDefinition); 4487 // Returns kernel handle for HIP kernel stub function. 4488 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4489 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4490 auto *Handle = getCUDARuntime().getKernelHandle( 4491 cast<llvm::Function>(F->stripPointerCasts()), GD); 4492 if (IsForDefinition) 4493 return F; 4494 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4495 } 4496 return F; 4497 } 4498 4499 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4500 llvm::GlobalValue *F = 4501 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4502 4503 return llvm::ConstantExpr::getBitCast( 4504 llvm::NoCFIValue::get(F), 4505 llvm::PointerType::get(VMContext, F->getAddressSpace())); 4506 } 4507 4508 static const FunctionDecl * 4509 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4510 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4511 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4512 4513 IdentifierInfo &CII = C.Idents.get(Name); 4514 for (const auto *Result : DC->lookup(&CII)) 4515 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4516 return FD; 4517 4518 if (!C.getLangOpts().CPlusPlus) 4519 return nullptr; 4520 4521 // Demangle the premangled name from getTerminateFn() 4522 IdentifierInfo &CXXII = 4523 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4524 ? C.Idents.get("terminate") 4525 : C.Idents.get(Name); 4526 4527 for (const auto &N : {"__cxxabiv1", "std"}) { 4528 IdentifierInfo &NS = C.Idents.get(N); 4529 for (const auto *Result : DC->lookup(&NS)) { 4530 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4531 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4532 for (const auto *Result : LSD->lookup(&NS)) 4533 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4534 break; 4535 4536 if (ND) 4537 for (const auto *Result : ND->lookup(&CXXII)) 4538 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4539 return FD; 4540 } 4541 } 4542 4543 return nullptr; 4544 } 4545 4546 /// CreateRuntimeFunction - Create a new runtime function with the specified 4547 /// type and name. 4548 llvm::FunctionCallee 4549 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4550 llvm::AttributeList ExtraAttrs, bool Local, 4551 bool AssumeConvergent) { 4552 if (AssumeConvergent) { 4553 ExtraAttrs = 4554 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4555 } 4556 4557 llvm::Constant *C = 4558 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4559 /*DontDefer=*/false, /*IsThunk=*/false, 4560 ExtraAttrs); 4561 4562 if (auto *F = dyn_cast<llvm::Function>(C)) { 4563 if (F->empty()) { 4564 F->setCallingConv(getRuntimeCC()); 4565 4566 // In Windows Itanium environments, try to mark runtime functions 4567 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4568 // will link their standard library statically or dynamically. Marking 4569 // functions imported when they are not imported can cause linker errors 4570 // and warnings. 4571 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4572 !getCodeGenOpts().LTOVisibilityPublicStd) { 4573 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4574 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4575 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4576 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4577 } 4578 } 4579 setDSOLocal(F); 4580 } 4581 } 4582 4583 return {FTy, C}; 4584 } 4585 4586 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4587 /// create and return an llvm GlobalVariable with the specified type and address 4588 /// space. If there is something in the module with the specified name, return 4589 /// it potentially bitcasted to the right type. 4590 /// 4591 /// If D is non-null, it specifies a decl that correspond to this. This is used 4592 /// to set the attributes on the global when it is first created. 4593 /// 4594 /// If IsForDefinition is true, it is guaranteed that an actual global with 4595 /// type Ty will be returned, not conversion of a variable with the same 4596 /// mangled name but some other type. 4597 llvm::Constant * 4598 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4599 LangAS AddrSpace, const VarDecl *D, 4600 ForDefinition_t IsForDefinition) { 4601 // Lookup the entry, lazily creating it if necessary. 4602 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4603 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4604 if (Entry) { 4605 if (WeakRefReferences.erase(Entry)) { 4606 if (D && !D->hasAttr<WeakAttr>()) 4607 Entry->setLinkage(llvm::Function::ExternalLinkage); 4608 } 4609 4610 // Handle dropped DLL attributes. 4611 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4612 !shouldMapVisibilityToDLLExport(D)) 4613 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4614 4615 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4616 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4617 4618 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4619 return Entry; 4620 4621 // If there are two attempts to define the same mangled name, issue an 4622 // error. 4623 if (IsForDefinition && !Entry->isDeclaration()) { 4624 GlobalDecl OtherGD; 4625 const VarDecl *OtherD; 4626 4627 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4628 // to make sure that we issue an error only once. 4629 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4630 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4631 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4632 OtherD->hasInit() && 4633 DiagnosedConflictingDefinitions.insert(D).second) { 4634 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4635 << MangledName; 4636 getDiags().Report(OtherGD.getDecl()->getLocation(), 4637 diag::note_previous_definition); 4638 } 4639 } 4640 4641 // Make sure the result is of the correct type. 4642 if (Entry->getType()->getAddressSpace() != TargetAS) { 4643 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4644 Ty->getPointerTo(TargetAS)); 4645 } 4646 4647 // (If global is requested for a definition, we always need to create a new 4648 // global, not just return a bitcast.) 4649 if (!IsForDefinition) 4650 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4651 } 4652 4653 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4654 4655 auto *GV = new llvm::GlobalVariable( 4656 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4657 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4658 getContext().getTargetAddressSpace(DAddrSpace)); 4659 4660 // If we already created a global with the same mangled name (but different 4661 // type) before, take its name and remove it from its parent. 4662 if (Entry) { 4663 GV->takeName(Entry); 4664 4665 if (!Entry->use_empty()) { 4666 llvm::Constant *NewPtrForOldDecl = 4667 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4668 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4669 } 4670 4671 Entry->eraseFromParent(); 4672 } 4673 4674 // This is the first use or definition of a mangled name. If there is a 4675 // deferred decl with this name, remember that we need to emit it at the end 4676 // of the file. 4677 auto DDI = DeferredDecls.find(MangledName); 4678 if (DDI != DeferredDecls.end()) { 4679 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4680 // list, and remove it from DeferredDecls (since we don't need it anymore). 4681 addDeferredDeclToEmit(DDI->second); 4682 DeferredDecls.erase(DDI); 4683 } 4684 4685 // Handle things which are present even on external declarations. 4686 if (D) { 4687 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4688 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4689 4690 // FIXME: This code is overly simple and should be merged with other global 4691 // handling. 4692 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4693 4694 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4695 4696 setLinkageForGV(GV, D); 4697 4698 if (D->getTLSKind()) { 4699 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4700 CXXThreadLocals.push_back(D); 4701 setTLSMode(GV, *D); 4702 } 4703 4704 setGVProperties(GV, D); 4705 4706 // If required by the ABI, treat declarations of static data members with 4707 // inline initializers as definitions. 4708 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4709 EmitGlobalVarDefinition(D); 4710 } 4711 4712 // Emit section information for extern variables. 4713 if (D->hasExternalStorage()) { 4714 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4715 GV->setSection(SA->getName()); 4716 } 4717 4718 // Handle XCore specific ABI requirements. 4719 if (getTriple().getArch() == llvm::Triple::xcore && 4720 D->getLanguageLinkage() == CLanguageLinkage && 4721 D->getType().isConstant(Context) && 4722 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4723 GV->setSection(".cp.rodata"); 4724 4725 // Check if we a have a const declaration with an initializer, we may be 4726 // able to emit it as available_externally to expose it's value to the 4727 // optimizer. 4728 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4729 D->getType().isConstQualified() && !GV->hasInitializer() && 4730 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4731 const auto *Record = 4732 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4733 bool HasMutableFields = Record && Record->hasMutableFields(); 4734 if (!HasMutableFields) { 4735 const VarDecl *InitDecl; 4736 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4737 if (InitExpr) { 4738 ConstantEmitter emitter(*this); 4739 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4740 if (Init) { 4741 auto *InitType = Init->getType(); 4742 if (GV->getValueType() != InitType) { 4743 // The type of the initializer does not match the definition. 4744 // This happens when an initializer has a different type from 4745 // the type of the global (because of padding at the end of a 4746 // structure for instance). 4747 GV->setName(StringRef()); 4748 // Make a new global with the correct type, this is now guaranteed 4749 // to work. 4750 auto *NewGV = cast<llvm::GlobalVariable>( 4751 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4752 ->stripPointerCasts()); 4753 4754 // Erase the old global, since it is no longer used. 4755 GV->eraseFromParent(); 4756 GV = NewGV; 4757 } else { 4758 GV->setInitializer(Init); 4759 GV->setConstant(true); 4760 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4761 } 4762 emitter.finalize(GV); 4763 } 4764 } 4765 } 4766 } 4767 } 4768 4769 if (D && 4770 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4771 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4772 // External HIP managed variables needed to be recorded for transformation 4773 // in both device and host compilations. 4774 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4775 D->hasExternalStorage()) 4776 getCUDARuntime().handleVarRegistration(D, *GV); 4777 } 4778 4779 if (D) 4780 SanitizerMD->reportGlobal(GV, *D); 4781 4782 LangAS ExpectedAS = 4783 D ? D->getType().getAddressSpace() 4784 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4785 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4786 if (DAddrSpace != ExpectedAS) { 4787 return getTargetCodeGenInfo().performAddrSpaceCast( 4788 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4789 } 4790 4791 return GV; 4792 } 4793 4794 llvm::Constant * 4795 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4796 const Decl *D = GD.getDecl(); 4797 4798 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4799 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4800 /*DontDefer=*/false, IsForDefinition); 4801 4802 if (isa<CXXMethodDecl>(D)) { 4803 auto FInfo = 4804 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4805 auto Ty = getTypes().GetFunctionType(*FInfo); 4806 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4807 IsForDefinition); 4808 } 4809 4810 if (isa<FunctionDecl>(D)) { 4811 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4812 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4813 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4814 IsForDefinition); 4815 } 4816 4817 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4818 } 4819 4820 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4821 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4822 llvm::Align Alignment) { 4823 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4824 llvm::GlobalVariable *OldGV = nullptr; 4825 4826 if (GV) { 4827 // Check if the variable has the right type. 4828 if (GV->getValueType() == Ty) 4829 return GV; 4830 4831 // Because C++ name mangling, the only way we can end up with an already 4832 // existing global with the same name is if it has been declared extern "C". 4833 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4834 OldGV = GV; 4835 } 4836 4837 // Create a new variable. 4838 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4839 Linkage, nullptr, Name); 4840 4841 if (OldGV) { 4842 // Replace occurrences of the old variable if needed. 4843 GV->takeName(OldGV); 4844 4845 if (!OldGV->use_empty()) { 4846 llvm::Constant *NewPtrForOldDecl = 4847 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4848 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4849 } 4850 4851 OldGV->eraseFromParent(); 4852 } 4853 4854 if (supportsCOMDAT() && GV->isWeakForLinker() && 4855 !GV->hasAvailableExternallyLinkage()) 4856 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4857 4858 GV->setAlignment(Alignment); 4859 4860 return GV; 4861 } 4862 4863 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4864 /// given global variable. If Ty is non-null and if the global doesn't exist, 4865 /// then it will be created with the specified type instead of whatever the 4866 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4867 /// that an actual global with type Ty will be returned, not conversion of a 4868 /// variable with the same mangled name but some other type. 4869 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4870 llvm::Type *Ty, 4871 ForDefinition_t IsForDefinition) { 4872 assert(D->hasGlobalStorage() && "Not a global variable"); 4873 QualType ASTTy = D->getType(); 4874 if (!Ty) 4875 Ty = getTypes().ConvertTypeForMem(ASTTy); 4876 4877 StringRef MangledName = getMangledName(D); 4878 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4879 IsForDefinition); 4880 } 4881 4882 /// CreateRuntimeVariable - Create a new runtime global variable with the 4883 /// specified type and name. 4884 llvm::Constant * 4885 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4886 StringRef Name) { 4887 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4888 : LangAS::Default; 4889 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4890 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4891 return Ret; 4892 } 4893 4894 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4895 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4896 4897 StringRef MangledName = getMangledName(D); 4898 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4899 4900 // We already have a definition, not declaration, with the same mangled name. 4901 // Emitting of declaration is not required (and actually overwrites emitted 4902 // definition). 4903 if (GV && !GV->isDeclaration()) 4904 return; 4905 4906 // If we have not seen a reference to this variable yet, place it into the 4907 // deferred declarations table to be emitted if needed later. 4908 if (!MustBeEmitted(D) && !GV) { 4909 DeferredDecls[MangledName] = D; 4910 return; 4911 } 4912 4913 // The tentative definition is the only definition. 4914 EmitGlobalVarDefinition(D); 4915 } 4916 4917 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4918 EmitExternalVarDeclaration(D); 4919 } 4920 4921 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4922 return Context.toCharUnitsFromBits( 4923 getDataLayout().getTypeStoreSizeInBits(Ty)); 4924 } 4925 4926 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4927 if (LangOpts.OpenCL) { 4928 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4929 assert(AS == LangAS::opencl_global || 4930 AS == LangAS::opencl_global_device || 4931 AS == LangAS::opencl_global_host || 4932 AS == LangAS::opencl_constant || 4933 AS == LangAS::opencl_local || 4934 AS >= LangAS::FirstTargetAddressSpace); 4935 return AS; 4936 } 4937 4938 if (LangOpts.SYCLIsDevice && 4939 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4940 return LangAS::sycl_global; 4941 4942 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4943 if (D) { 4944 if (D->hasAttr<CUDAConstantAttr>()) 4945 return LangAS::cuda_constant; 4946 if (D->hasAttr<CUDASharedAttr>()) 4947 return LangAS::cuda_shared; 4948 if (D->hasAttr<CUDADeviceAttr>()) 4949 return LangAS::cuda_device; 4950 if (D->getType().isConstQualified()) 4951 return LangAS::cuda_constant; 4952 } 4953 return LangAS::cuda_device; 4954 } 4955 4956 if (LangOpts.OpenMP) { 4957 LangAS AS; 4958 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4959 return AS; 4960 } 4961 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4962 } 4963 4964 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4965 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4966 if (LangOpts.OpenCL) 4967 return LangAS::opencl_constant; 4968 if (LangOpts.SYCLIsDevice) 4969 return LangAS::sycl_global; 4970 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4971 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4972 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4973 // with OpVariable instructions with Generic storage class which is not 4974 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4975 // UniformConstant storage class is not viable as pointers to it may not be 4976 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4977 return LangAS::cuda_device; 4978 if (auto AS = getTarget().getConstantAddressSpace()) 4979 return *AS; 4980 return LangAS::Default; 4981 } 4982 4983 // In address space agnostic languages, string literals are in default address 4984 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4985 // emitted in constant address space in LLVM IR. To be consistent with other 4986 // parts of AST, string literal global variables in constant address space 4987 // need to be casted to default address space before being put into address 4988 // map and referenced by other part of CodeGen. 4989 // In OpenCL, string literals are in constant address space in AST, therefore 4990 // they should not be casted to default address space. 4991 static llvm::Constant * 4992 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4993 llvm::GlobalVariable *GV) { 4994 llvm::Constant *Cast = GV; 4995 if (!CGM.getLangOpts().OpenCL) { 4996 auto AS = CGM.GetGlobalConstantAddressSpace(); 4997 if (AS != LangAS::Default) 4998 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4999 CGM, GV, AS, LangAS::Default, 5000 GV->getValueType()->getPointerTo( 5001 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5002 } 5003 return Cast; 5004 } 5005 5006 template<typename SomeDecl> 5007 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5008 llvm::GlobalValue *GV) { 5009 if (!getLangOpts().CPlusPlus) 5010 return; 5011 5012 // Must have 'used' attribute, or else inline assembly can't rely on 5013 // the name existing. 5014 if (!D->template hasAttr<UsedAttr>()) 5015 return; 5016 5017 // Must have internal linkage and an ordinary name. 5018 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 5019 return; 5020 5021 // Must be in an extern "C" context. Entities declared directly within 5022 // a record are not extern "C" even if the record is in such a context. 5023 const SomeDecl *First = D->getFirstDecl(); 5024 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5025 return; 5026 5027 // OK, this is an internal linkage entity inside an extern "C" linkage 5028 // specification. Make a note of that so we can give it the "expected" 5029 // mangled name if nothing else is using that name. 5030 std::pair<StaticExternCMap::iterator, bool> R = 5031 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5032 5033 // If we have multiple internal linkage entities with the same name 5034 // in extern "C" regions, none of them gets that name. 5035 if (!R.second) 5036 R.first->second = nullptr; 5037 } 5038 5039 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5040 if (!CGM.supportsCOMDAT()) 5041 return false; 5042 5043 if (D.hasAttr<SelectAnyAttr>()) 5044 return true; 5045 5046 GVALinkage Linkage; 5047 if (auto *VD = dyn_cast<VarDecl>(&D)) 5048 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5049 else 5050 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5051 5052 switch (Linkage) { 5053 case GVA_Internal: 5054 case GVA_AvailableExternally: 5055 case GVA_StrongExternal: 5056 return false; 5057 case GVA_DiscardableODR: 5058 case GVA_StrongODR: 5059 return true; 5060 } 5061 llvm_unreachable("No such linkage"); 5062 } 5063 5064 bool CodeGenModule::supportsCOMDAT() const { 5065 return getTriple().supportsCOMDAT(); 5066 } 5067 5068 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5069 llvm::GlobalObject &GO) { 5070 if (!shouldBeInCOMDAT(*this, D)) 5071 return; 5072 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5073 } 5074 5075 /// Pass IsTentative as true if you want to create a tentative definition. 5076 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5077 bool IsTentative) { 5078 // OpenCL global variables of sampler type are translated to function calls, 5079 // therefore no need to be translated. 5080 QualType ASTTy = D->getType(); 5081 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5082 return; 5083 5084 // If this is OpenMP device, check if it is legal to emit this global 5085 // normally. 5086 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5087 OpenMPRuntime->emitTargetGlobalVariable(D)) 5088 return; 5089 5090 llvm::TrackingVH<llvm::Constant> Init; 5091 bool NeedsGlobalCtor = false; 5092 // Whether the definition of the variable is available externally. 5093 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5094 // since this is the job for its original source. 5095 bool IsDefinitionAvailableExternally = 5096 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5097 bool NeedsGlobalDtor = 5098 !IsDefinitionAvailableExternally && 5099 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5100 5101 const VarDecl *InitDecl; 5102 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5103 5104 std::optional<ConstantEmitter> emitter; 5105 5106 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5107 // as part of their declaration." Sema has already checked for 5108 // error cases, so we just need to set Init to UndefValue. 5109 bool IsCUDASharedVar = 5110 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5111 // Shadows of initialized device-side global variables are also left 5112 // undefined. 5113 // Managed Variables should be initialized on both host side and device side. 5114 bool IsCUDAShadowVar = 5115 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5116 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5117 D->hasAttr<CUDASharedAttr>()); 5118 bool IsCUDADeviceShadowVar = 5119 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5120 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5121 D->getType()->isCUDADeviceBuiltinTextureType()); 5122 if (getLangOpts().CUDA && 5123 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5124 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5125 else if (D->hasAttr<LoaderUninitializedAttr>()) 5126 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5127 else if (!InitExpr) { 5128 // This is a tentative definition; tentative definitions are 5129 // implicitly initialized with { 0 }. 5130 // 5131 // Note that tentative definitions are only emitted at the end of 5132 // a translation unit, so they should never have incomplete 5133 // type. In addition, EmitTentativeDefinition makes sure that we 5134 // never attempt to emit a tentative definition if a real one 5135 // exists. A use may still exists, however, so we still may need 5136 // to do a RAUW. 5137 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5138 Init = EmitNullConstant(D->getType()); 5139 } else { 5140 initializedGlobalDecl = GlobalDecl(D); 5141 emitter.emplace(*this); 5142 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5143 if (!Initializer) { 5144 QualType T = InitExpr->getType(); 5145 if (D->getType()->isReferenceType()) 5146 T = D->getType(); 5147 5148 if (getLangOpts().CPlusPlus) { 5149 if (InitDecl->hasFlexibleArrayInit(getContext())) 5150 ErrorUnsupported(D, "flexible array initializer"); 5151 Init = EmitNullConstant(T); 5152 5153 if (!IsDefinitionAvailableExternally) 5154 NeedsGlobalCtor = true; 5155 } else { 5156 ErrorUnsupported(D, "static initializer"); 5157 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5158 } 5159 } else { 5160 Init = Initializer; 5161 // We don't need an initializer, so remove the entry for the delayed 5162 // initializer position (just in case this entry was delayed) if we 5163 // also don't need to register a destructor. 5164 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5165 DelayedCXXInitPosition.erase(D); 5166 5167 #ifndef NDEBUG 5168 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5169 InitDecl->getFlexibleArrayInitChars(getContext()); 5170 CharUnits CstSize = CharUnits::fromQuantity( 5171 getDataLayout().getTypeAllocSize(Init->getType())); 5172 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5173 #endif 5174 } 5175 } 5176 5177 llvm::Type* InitType = Init->getType(); 5178 llvm::Constant *Entry = 5179 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5180 5181 // Strip off pointer casts if we got them. 5182 Entry = Entry->stripPointerCasts(); 5183 5184 // Entry is now either a Function or GlobalVariable. 5185 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5186 5187 // We have a definition after a declaration with the wrong type. 5188 // We must make a new GlobalVariable* and update everything that used OldGV 5189 // (a declaration or tentative definition) with the new GlobalVariable* 5190 // (which will be a definition). 5191 // 5192 // This happens if there is a prototype for a global (e.g. 5193 // "extern int x[];") and then a definition of a different type (e.g. 5194 // "int x[10];"). This also happens when an initializer has a different type 5195 // from the type of the global (this happens with unions). 5196 if (!GV || GV->getValueType() != InitType || 5197 GV->getType()->getAddressSpace() != 5198 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5199 5200 // Move the old entry aside so that we'll create a new one. 5201 Entry->setName(StringRef()); 5202 5203 // Make a new global with the correct type, this is now guaranteed to work. 5204 GV = cast<llvm::GlobalVariable>( 5205 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5206 ->stripPointerCasts()); 5207 5208 // Replace all uses of the old global with the new global 5209 llvm::Constant *NewPtrForOldDecl = 5210 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5211 Entry->getType()); 5212 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5213 5214 // Erase the old global, since it is no longer used. 5215 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5216 } 5217 5218 MaybeHandleStaticInExternC(D, GV); 5219 5220 if (D->hasAttr<AnnotateAttr>()) 5221 AddGlobalAnnotations(D, GV); 5222 5223 // Set the llvm linkage type as appropriate. 5224 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5225 5226 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5227 // the device. [...]" 5228 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5229 // __device__, declares a variable that: [...] 5230 // Is accessible from all the threads within the grid and from the host 5231 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5232 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5233 if (LangOpts.CUDA) { 5234 if (LangOpts.CUDAIsDevice) { 5235 if (Linkage != llvm::GlobalValue::InternalLinkage && 5236 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5237 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5238 D->getType()->isCUDADeviceBuiltinTextureType())) 5239 GV->setExternallyInitialized(true); 5240 } else { 5241 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5242 } 5243 getCUDARuntime().handleVarRegistration(D, *GV); 5244 } 5245 5246 GV->setInitializer(Init); 5247 if (emitter) 5248 emitter->finalize(GV); 5249 5250 // If it is safe to mark the global 'constant', do so now. 5251 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5252 D->getType().isConstantStorage(getContext(), true, true)); 5253 5254 // If it is in a read-only section, mark it 'constant'. 5255 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5256 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5257 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5258 GV->setConstant(true); 5259 } 5260 5261 CharUnits AlignVal = getContext().getDeclAlign(D); 5262 // Check for alignment specifed in an 'omp allocate' directive. 5263 if (std::optional<CharUnits> AlignValFromAllocate = 5264 getOMPAllocateAlignment(D)) 5265 AlignVal = *AlignValFromAllocate; 5266 GV->setAlignment(AlignVal.getAsAlign()); 5267 5268 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5269 // function is only defined alongside the variable, not also alongside 5270 // callers. Normally, all accesses to a thread_local go through the 5271 // thread-wrapper in order to ensure initialization has occurred, underlying 5272 // variable will never be used other than the thread-wrapper, so it can be 5273 // converted to internal linkage. 5274 // 5275 // However, if the variable has the 'constinit' attribute, it _can_ be 5276 // referenced directly, without calling the thread-wrapper, so the linkage 5277 // must not be changed. 5278 // 5279 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5280 // weak or linkonce, the de-duplication semantics are important to preserve, 5281 // so we don't change the linkage. 5282 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5283 Linkage == llvm::GlobalValue::ExternalLinkage && 5284 Context.getTargetInfo().getTriple().isOSDarwin() && 5285 !D->hasAttr<ConstInitAttr>()) 5286 Linkage = llvm::GlobalValue::InternalLinkage; 5287 5288 GV->setLinkage(Linkage); 5289 if (D->hasAttr<DLLImportAttr>()) 5290 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5291 else if (D->hasAttr<DLLExportAttr>()) 5292 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5293 else 5294 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5295 5296 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5297 // common vars aren't constant even if declared const. 5298 GV->setConstant(false); 5299 // Tentative definition of global variables may be initialized with 5300 // non-zero null pointers. In this case they should have weak linkage 5301 // since common linkage must have zero initializer and must not have 5302 // explicit section therefore cannot have non-zero initial value. 5303 if (!GV->getInitializer()->isNullValue()) 5304 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5305 } 5306 5307 setNonAliasAttributes(D, GV); 5308 5309 if (D->getTLSKind() && !GV->isThreadLocal()) { 5310 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5311 CXXThreadLocals.push_back(D); 5312 setTLSMode(GV, *D); 5313 } 5314 5315 maybeSetTrivialComdat(*D, *GV); 5316 5317 // Emit the initializer function if necessary. 5318 if (NeedsGlobalCtor || NeedsGlobalDtor) 5319 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5320 5321 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5322 5323 // Emit global variable debug information. 5324 if (CGDebugInfo *DI = getModuleDebugInfo()) 5325 if (getCodeGenOpts().hasReducedDebugInfo()) 5326 DI->EmitGlobalVariable(GV, D); 5327 } 5328 5329 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5330 if (CGDebugInfo *DI = getModuleDebugInfo()) 5331 if (getCodeGenOpts().hasReducedDebugInfo()) { 5332 QualType ASTTy = D->getType(); 5333 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5334 llvm::Constant *GV = 5335 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5336 DI->EmitExternalVariable( 5337 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5338 } 5339 } 5340 5341 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5342 CodeGenModule &CGM, const VarDecl *D, 5343 bool NoCommon) { 5344 // Don't give variables common linkage if -fno-common was specified unless it 5345 // was overridden by a NoCommon attribute. 5346 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5347 return true; 5348 5349 // C11 6.9.2/2: 5350 // A declaration of an identifier for an object that has file scope without 5351 // an initializer, and without a storage-class specifier or with the 5352 // storage-class specifier static, constitutes a tentative definition. 5353 if (D->getInit() || D->hasExternalStorage()) 5354 return true; 5355 5356 // A variable cannot be both common and exist in a section. 5357 if (D->hasAttr<SectionAttr>()) 5358 return true; 5359 5360 // A variable cannot be both common and exist in a section. 5361 // We don't try to determine which is the right section in the front-end. 5362 // If no specialized section name is applicable, it will resort to default. 5363 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5364 D->hasAttr<PragmaClangDataSectionAttr>() || 5365 D->hasAttr<PragmaClangRelroSectionAttr>() || 5366 D->hasAttr<PragmaClangRodataSectionAttr>()) 5367 return true; 5368 5369 // Thread local vars aren't considered common linkage. 5370 if (D->getTLSKind()) 5371 return true; 5372 5373 // Tentative definitions marked with WeakImportAttr are true definitions. 5374 if (D->hasAttr<WeakImportAttr>()) 5375 return true; 5376 5377 // A variable cannot be both common and exist in a comdat. 5378 if (shouldBeInCOMDAT(CGM, *D)) 5379 return true; 5380 5381 // Declarations with a required alignment do not have common linkage in MSVC 5382 // mode. 5383 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5384 if (D->hasAttr<AlignedAttr>()) 5385 return true; 5386 QualType VarType = D->getType(); 5387 if (Context.isAlignmentRequired(VarType)) 5388 return true; 5389 5390 if (const auto *RT = VarType->getAs<RecordType>()) { 5391 const RecordDecl *RD = RT->getDecl(); 5392 for (const FieldDecl *FD : RD->fields()) { 5393 if (FD->isBitField()) 5394 continue; 5395 if (FD->hasAttr<AlignedAttr>()) 5396 return true; 5397 if (Context.isAlignmentRequired(FD->getType())) 5398 return true; 5399 } 5400 } 5401 } 5402 5403 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5404 // common symbols, so symbols with greater alignment requirements cannot be 5405 // common. 5406 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5407 // alignments for common symbols via the aligncomm directive, so this 5408 // restriction only applies to MSVC environments. 5409 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5410 Context.getTypeAlignIfKnown(D->getType()) > 5411 Context.toBits(CharUnits::fromQuantity(32))) 5412 return true; 5413 5414 return false; 5415 } 5416 5417 llvm::GlobalValue::LinkageTypes 5418 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5419 GVALinkage Linkage) { 5420 if (Linkage == GVA_Internal) 5421 return llvm::Function::InternalLinkage; 5422 5423 if (D->hasAttr<WeakAttr>()) 5424 return llvm::GlobalVariable::WeakAnyLinkage; 5425 5426 if (const auto *FD = D->getAsFunction()) 5427 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5428 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5429 5430 // We are guaranteed to have a strong definition somewhere else, 5431 // so we can use available_externally linkage. 5432 if (Linkage == GVA_AvailableExternally) 5433 return llvm::GlobalValue::AvailableExternallyLinkage; 5434 5435 // Note that Apple's kernel linker doesn't support symbol 5436 // coalescing, so we need to avoid linkonce and weak linkages there. 5437 // Normally, this means we just map to internal, but for explicit 5438 // instantiations we'll map to external. 5439 5440 // In C++, the compiler has to emit a definition in every translation unit 5441 // that references the function. We should use linkonce_odr because 5442 // a) if all references in this translation unit are optimized away, we 5443 // don't need to codegen it. b) if the function persists, it needs to be 5444 // merged with other definitions. c) C++ has the ODR, so we know the 5445 // definition is dependable. 5446 if (Linkage == GVA_DiscardableODR) 5447 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5448 : llvm::Function::InternalLinkage; 5449 5450 // An explicit instantiation of a template has weak linkage, since 5451 // explicit instantiations can occur in multiple translation units 5452 // and must all be equivalent. However, we are not allowed to 5453 // throw away these explicit instantiations. 5454 // 5455 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5456 // so say that CUDA templates are either external (for kernels) or internal. 5457 // This lets llvm perform aggressive inter-procedural optimizations. For 5458 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5459 // therefore we need to follow the normal linkage paradigm. 5460 if (Linkage == GVA_StrongODR) { 5461 if (getLangOpts().AppleKext) 5462 return llvm::Function::ExternalLinkage; 5463 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5464 !getLangOpts().GPURelocatableDeviceCode) 5465 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5466 : llvm::Function::InternalLinkage; 5467 return llvm::Function::WeakODRLinkage; 5468 } 5469 5470 // C++ doesn't have tentative definitions and thus cannot have common 5471 // linkage. 5472 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5473 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5474 CodeGenOpts.NoCommon)) 5475 return llvm::GlobalVariable::CommonLinkage; 5476 5477 // selectany symbols are externally visible, so use weak instead of 5478 // linkonce. MSVC optimizes away references to const selectany globals, so 5479 // all definitions should be the same and ODR linkage should be used. 5480 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5481 if (D->hasAttr<SelectAnyAttr>()) 5482 return llvm::GlobalVariable::WeakODRLinkage; 5483 5484 // Otherwise, we have strong external linkage. 5485 assert(Linkage == GVA_StrongExternal); 5486 return llvm::GlobalVariable::ExternalLinkage; 5487 } 5488 5489 llvm::GlobalValue::LinkageTypes 5490 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5491 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5492 return getLLVMLinkageForDeclarator(VD, Linkage); 5493 } 5494 5495 /// Replace the uses of a function that was declared with a non-proto type. 5496 /// We want to silently drop extra arguments from call sites 5497 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5498 llvm::Function *newFn) { 5499 // Fast path. 5500 if (old->use_empty()) return; 5501 5502 llvm::Type *newRetTy = newFn->getReturnType(); 5503 SmallVector<llvm::Value*, 4> newArgs; 5504 5505 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5506 ui != ue; ) { 5507 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5508 llvm::User *user = use->getUser(); 5509 5510 // Recognize and replace uses of bitcasts. Most calls to 5511 // unprototyped functions will use bitcasts. 5512 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5513 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5514 replaceUsesOfNonProtoConstant(bitcast, newFn); 5515 continue; 5516 } 5517 5518 // Recognize calls to the function. 5519 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5520 if (!callSite) continue; 5521 if (!callSite->isCallee(&*use)) 5522 continue; 5523 5524 // If the return types don't match exactly, then we can't 5525 // transform this call unless it's dead. 5526 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5527 continue; 5528 5529 // Get the call site's attribute list. 5530 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5531 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5532 5533 // If the function was passed too few arguments, don't transform. 5534 unsigned newNumArgs = newFn->arg_size(); 5535 if (callSite->arg_size() < newNumArgs) 5536 continue; 5537 5538 // If extra arguments were passed, we silently drop them. 5539 // If any of the types mismatch, we don't transform. 5540 unsigned argNo = 0; 5541 bool dontTransform = false; 5542 for (llvm::Argument &A : newFn->args()) { 5543 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5544 dontTransform = true; 5545 break; 5546 } 5547 5548 // Add any parameter attributes. 5549 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5550 argNo++; 5551 } 5552 if (dontTransform) 5553 continue; 5554 5555 // Okay, we can transform this. Create the new call instruction and copy 5556 // over the required information. 5557 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5558 5559 // Copy over any operand bundles. 5560 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5561 callSite->getOperandBundlesAsDefs(newBundles); 5562 5563 llvm::CallBase *newCall; 5564 if (isa<llvm::CallInst>(callSite)) { 5565 newCall = 5566 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5567 } else { 5568 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5569 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5570 oldInvoke->getUnwindDest(), newArgs, 5571 newBundles, "", callSite); 5572 } 5573 newArgs.clear(); // for the next iteration 5574 5575 if (!newCall->getType()->isVoidTy()) 5576 newCall->takeName(callSite); 5577 newCall->setAttributes( 5578 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5579 oldAttrs.getRetAttrs(), newArgAttrs)); 5580 newCall->setCallingConv(callSite->getCallingConv()); 5581 5582 // Finally, remove the old call, replacing any uses with the new one. 5583 if (!callSite->use_empty()) 5584 callSite->replaceAllUsesWith(newCall); 5585 5586 // Copy debug location attached to CI. 5587 if (callSite->getDebugLoc()) 5588 newCall->setDebugLoc(callSite->getDebugLoc()); 5589 5590 callSite->eraseFromParent(); 5591 } 5592 } 5593 5594 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5595 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5596 /// existing call uses of the old function in the module, this adjusts them to 5597 /// call the new function directly. 5598 /// 5599 /// This is not just a cleanup: the always_inline pass requires direct calls to 5600 /// functions to be able to inline them. If there is a bitcast in the way, it 5601 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5602 /// run at -O0. 5603 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5604 llvm::Function *NewFn) { 5605 // If we're redefining a global as a function, don't transform it. 5606 if (!isa<llvm::Function>(Old)) return; 5607 5608 replaceUsesOfNonProtoConstant(Old, NewFn); 5609 } 5610 5611 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5612 auto DK = VD->isThisDeclarationADefinition(); 5613 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5614 return; 5615 5616 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5617 // If we have a definition, this might be a deferred decl. If the 5618 // instantiation is explicit, make sure we emit it at the end. 5619 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5620 GetAddrOfGlobalVar(VD); 5621 5622 EmitTopLevelDecl(VD); 5623 } 5624 5625 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5626 llvm::GlobalValue *GV) { 5627 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5628 5629 // Compute the function info and LLVM type. 5630 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5631 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5632 5633 // Get or create the prototype for the function. 5634 if (!GV || (GV->getValueType() != Ty)) 5635 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5636 /*DontDefer=*/true, 5637 ForDefinition)); 5638 5639 // Already emitted. 5640 if (!GV->isDeclaration()) 5641 return; 5642 5643 // We need to set linkage and visibility on the function before 5644 // generating code for it because various parts of IR generation 5645 // want to propagate this information down (e.g. to local static 5646 // declarations). 5647 auto *Fn = cast<llvm::Function>(GV); 5648 setFunctionLinkage(GD, Fn); 5649 5650 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5651 setGVProperties(Fn, GD); 5652 5653 MaybeHandleStaticInExternC(D, Fn); 5654 5655 maybeSetTrivialComdat(*D, *Fn); 5656 5657 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5658 5659 setNonAliasAttributes(GD, Fn); 5660 SetLLVMFunctionAttributesForDefinition(D, Fn); 5661 5662 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5663 AddGlobalCtor(Fn, CA->getPriority()); 5664 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5665 AddGlobalDtor(Fn, DA->getPriority(), true); 5666 if (D->hasAttr<AnnotateAttr>()) 5667 AddGlobalAnnotations(D, Fn); 5668 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5669 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5670 } 5671 5672 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5673 const auto *D = cast<ValueDecl>(GD.getDecl()); 5674 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5675 assert(AA && "Not an alias?"); 5676 5677 StringRef MangledName = getMangledName(GD); 5678 5679 if (AA->getAliasee() == MangledName) { 5680 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5681 return; 5682 } 5683 5684 // If there is a definition in the module, then it wins over the alias. 5685 // This is dubious, but allow it to be safe. Just ignore the alias. 5686 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5687 if (Entry && !Entry->isDeclaration()) 5688 return; 5689 5690 Aliases.push_back(GD); 5691 5692 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5693 5694 // Create a reference to the named value. This ensures that it is emitted 5695 // if a deferred decl. 5696 llvm::Constant *Aliasee; 5697 llvm::GlobalValue::LinkageTypes LT; 5698 if (isa<llvm::FunctionType>(DeclTy)) { 5699 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5700 /*ForVTable=*/false); 5701 LT = getFunctionLinkage(GD); 5702 } else { 5703 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5704 /*D=*/nullptr); 5705 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5706 LT = getLLVMLinkageVarDefinition(VD); 5707 else 5708 LT = getFunctionLinkage(GD); 5709 } 5710 5711 // Create the new alias itself, but don't set a name yet. 5712 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5713 auto *GA = 5714 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5715 5716 if (Entry) { 5717 if (GA->getAliasee() == Entry) { 5718 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5719 return; 5720 } 5721 5722 assert(Entry->isDeclaration()); 5723 5724 // If there is a declaration in the module, then we had an extern followed 5725 // by the alias, as in: 5726 // extern int test6(); 5727 // ... 5728 // int test6() __attribute__((alias("test7"))); 5729 // 5730 // Remove it and replace uses of it with the alias. 5731 GA->takeName(Entry); 5732 5733 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5734 Entry->getType())); 5735 Entry->eraseFromParent(); 5736 } else { 5737 GA->setName(MangledName); 5738 } 5739 5740 // Set attributes which are particular to an alias; this is a 5741 // specialization of the attributes which may be set on a global 5742 // variable/function. 5743 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5744 D->isWeakImported()) { 5745 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5746 } 5747 5748 if (const auto *VD = dyn_cast<VarDecl>(D)) 5749 if (VD->getTLSKind()) 5750 setTLSMode(GA, *VD); 5751 5752 SetCommonAttributes(GD, GA); 5753 5754 // Emit global alias debug information. 5755 if (isa<VarDecl>(D)) 5756 if (CGDebugInfo *DI = getModuleDebugInfo()) 5757 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5758 } 5759 5760 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5761 const auto *D = cast<ValueDecl>(GD.getDecl()); 5762 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5763 assert(IFA && "Not an ifunc?"); 5764 5765 StringRef MangledName = getMangledName(GD); 5766 5767 if (IFA->getResolver() == MangledName) { 5768 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5769 return; 5770 } 5771 5772 // Report an error if some definition overrides ifunc. 5773 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5774 if (Entry && !Entry->isDeclaration()) { 5775 GlobalDecl OtherGD; 5776 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5777 DiagnosedConflictingDefinitions.insert(GD).second) { 5778 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5779 << MangledName; 5780 Diags.Report(OtherGD.getDecl()->getLocation(), 5781 diag::note_previous_definition); 5782 } 5783 return; 5784 } 5785 5786 Aliases.push_back(GD); 5787 5788 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5789 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5790 llvm::Constant *Resolver = 5791 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5792 /*ForVTable=*/false); 5793 llvm::GlobalIFunc *GIF = 5794 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5795 "", Resolver, &getModule()); 5796 if (Entry) { 5797 if (GIF->getResolver() == Entry) { 5798 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5799 return; 5800 } 5801 assert(Entry->isDeclaration()); 5802 5803 // If there is a declaration in the module, then we had an extern followed 5804 // by the ifunc, as in: 5805 // extern int test(); 5806 // ... 5807 // int test() __attribute__((ifunc("resolver"))); 5808 // 5809 // Remove it and replace uses of it with the ifunc. 5810 GIF->takeName(Entry); 5811 5812 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5813 Entry->getType())); 5814 Entry->eraseFromParent(); 5815 } else 5816 GIF->setName(MangledName); 5817 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5818 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5819 } 5820 SetCommonAttributes(GD, GIF); 5821 } 5822 5823 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5824 ArrayRef<llvm::Type*> Tys) { 5825 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5826 Tys); 5827 } 5828 5829 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5830 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5831 const StringLiteral *Literal, bool TargetIsLSB, 5832 bool &IsUTF16, unsigned &StringLength) { 5833 StringRef String = Literal->getString(); 5834 unsigned NumBytes = String.size(); 5835 5836 // Check for simple case. 5837 if (!Literal->containsNonAsciiOrNull()) { 5838 StringLength = NumBytes; 5839 return *Map.insert(std::make_pair(String, nullptr)).first; 5840 } 5841 5842 // Otherwise, convert the UTF8 literals into a string of shorts. 5843 IsUTF16 = true; 5844 5845 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5846 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5847 llvm::UTF16 *ToPtr = &ToBuf[0]; 5848 5849 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5850 ToPtr + NumBytes, llvm::strictConversion); 5851 5852 // ConvertUTF8toUTF16 returns the length in ToPtr. 5853 StringLength = ToPtr - &ToBuf[0]; 5854 5855 // Add an explicit null. 5856 *ToPtr = 0; 5857 return *Map.insert(std::make_pair( 5858 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5859 (StringLength + 1) * 2), 5860 nullptr)).first; 5861 } 5862 5863 ConstantAddress 5864 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5865 unsigned StringLength = 0; 5866 bool isUTF16 = false; 5867 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5868 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5869 getDataLayout().isLittleEndian(), isUTF16, 5870 StringLength); 5871 5872 if (auto *C = Entry.second) 5873 return ConstantAddress( 5874 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5875 5876 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5877 llvm::Constant *Zeros[] = { Zero, Zero }; 5878 5879 const ASTContext &Context = getContext(); 5880 const llvm::Triple &Triple = getTriple(); 5881 5882 const auto CFRuntime = getLangOpts().CFRuntime; 5883 const bool IsSwiftABI = 5884 static_cast<unsigned>(CFRuntime) >= 5885 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5886 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5887 5888 // If we don't already have it, get __CFConstantStringClassReference. 5889 if (!CFConstantStringClassRef) { 5890 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5891 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5892 Ty = llvm::ArrayType::get(Ty, 0); 5893 5894 switch (CFRuntime) { 5895 default: break; 5896 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5897 case LangOptions::CoreFoundationABI::Swift5_0: 5898 CFConstantStringClassName = 5899 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5900 : "$s10Foundation19_NSCFConstantStringCN"; 5901 Ty = IntPtrTy; 5902 break; 5903 case LangOptions::CoreFoundationABI::Swift4_2: 5904 CFConstantStringClassName = 5905 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5906 : "$S10Foundation19_NSCFConstantStringCN"; 5907 Ty = IntPtrTy; 5908 break; 5909 case LangOptions::CoreFoundationABI::Swift4_1: 5910 CFConstantStringClassName = 5911 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5912 : "__T010Foundation19_NSCFConstantStringCN"; 5913 Ty = IntPtrTy; 5914 break; 5915 } 5916 5917 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5918 5919 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5920 llvm::GlobalValue *GV = nullptr; 5921 5922 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5923 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5924 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5925 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5926 5927 const VarDecl *VD = nullptr; 5928 for (const auto *Result : DC->lookup(&II)) 5929 if ((VD = dyn_cast<VarDecl>(Result))) 5930 break; 5931 5932 if (Triple.isOSBinFormatELF()) { 5933 if (!VD) 5934 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5935 } else { 5936 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5937 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5938 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5939 else 5940 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5941 } 5942 5943 setDSOLocal(GV); 5944 } 5945 } 5946 5947 // Decay array -> ptr 5948 CFConstantStringClassRef = 5949 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5950 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5951 } 5952 5953 QualType CFTy = Context.getCFConstantStringType(); 5954 5955 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5956 5957 ConstantInitBuilder Builder(*this); 5958 auto Fields = Builder.beginStruct(STy); 5959 5960 // Class pointer. 5961 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5962 5963 // Flags. 5964 if (IsSwiftABI) { 5965 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5966 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5967 } else { 5968 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5969 } 5970 5971 // String pointer. 5972 llvm::Constant *C = nullptr; 5973 if (isUTF16) { 5974 auto Arr = llvm::ArrayRef( 5975 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5976 Entry.first().size() / 2); 5977 C = llvm::ConstantDataArray::get(VMContext, Arr); 5978 } else { 5979 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5980 } 5981 5982 // Note: -fwritable-strings doesn't make the backing store strings of 5983 // CFStrings writable. 5984 auto *GV = 5985 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5986 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5987 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5988 // Don't enforce the target's minimum global alignment, since the only use 5989 // of the string is via this class initializer. 5990 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5991 : Context.getTypeAlignInChars(Context.CharTy); 5992 GV->setAlignment(Align.getAsAlign()); 5993 5994 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5995 // Without it LLVM can merge the string with a non unnamed_addr one during 5996 // LTO. Doing that changes the section it ends in, which surprises ld64. 5997 if (Triple.isOSBinFormatMachO()) 5998 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5999 : "__TEXT,__cstring,cstring_literals"); 6000 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6001 // the static linker to adjust permissions to read-only later on. 6002 else if (Triple.isOSBinFormatELF()) 6003 GV->setSection(".rodata"); 6004 6005 // String. 6006 llvm::Constant *Str = 6007 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6008 6009 if (isUTF16) 6010 // Cast the UTF16 string to the correct type. 6011 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 6012 Fields.add(Str); 6013 6014 // String length. 6015 llvm::IntegerType *LengthTy = 6016 llvm::IntegerType::get(getModule().getContext(), 6017 Context.getTargetInfo().getLongWidth()); 6018 if (IsSwiftABI) { 6019 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6020 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6021 LengthTy = Int32Ty; 6022 else 6023 LengthTy = IntPtrTy; 6024 } 6025 Fields.addInt(LengthTy, StringLength); 6026 6027 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6028 // properly aligned on 32-bit platforms. 6029 CharUnits Alignment = 6030 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6031 6032 // The struct. 6033 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6034 /*isConstant=*/false, 6035 llvm::GlobalVariable::PrivateLinkage); 6036 GV->addAttribute("objc_arc_inert"); 6037 switch (Triple.getObjectFormat()) { 6038 case llvm::Triple::UnknownObjectFormat: 6039 llvm_unreachable("unknown file format"); 6040 case llvm::Triple::DXContainer: 6041 case llvm::Triple::GOFF: 6042 case llvm::Triple::SPIRV: 6043 case llvm::Triple::XCOFF: 6044 llvm_unreachable("unimplemented"); 6045 case llvm::Triple::COFF: 6046 case llvm::Triple::ELF: 6047 case llvm::Triple::Wasm: 6048 GV->setSection("cfstring"); 6049 break; 6050 case llvm::Triple::MachO: 6051 GV->setSection("__DATA,__cfstring"); 6052 break; 6053 } 6054 Entry.second = GV; 6055 6056 return ConstantAddress(GV, GV->getValueType(), Alignment); 6057 } 6058 6059 bool CodeGenModule::getExpressionLocationsEnabled() const { 6060 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6061 } 6062 6063 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6064 if (ObjCFastEnumerationStateType.isNull()) { 6065 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6066 D->startDefinition(); 6067 6068 QualType FieldTypes[] = { 6069 Context.UnsignedLongTy, 6070 Context.getPointerType(Context.getObjCIdType()), 6071 Context.getPointerType(Context.UnsignedLongTy), 6072 Context.getConstantArrayType(Context.UnsignedLongTy, 6073 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 6074 }; 6075 6076 for (size_t i = 0; i < 4; ++i) { 6077 FieldDecl *Field = FieldDecl::Create(Context, 6078 D, 6079 SourceLocation(), 6080 SourceLocation(), nullptr, 6081 FieldTypes[i], /*TInfo=*/nullptr, 6082 /*BitWidth=*/nullptr, 6083 /*Mutable=*/false, 6084 ICIS_NoInit); 6085 Field->setAccess(AS_public); 6086 D->addDecl(Field); 6087 } 6088 6089 D->completeDefinition(); 6090 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6091 } 6092 6093 return ObjCFastEnumerationStateType; 6094 } 6095 6096 llvm::Constant * 6097 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6098 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6099 6100 // Don't emit it as the address of the string, emit the string data itself 6101 // as an inline array. 6102 if (E->getCharByteWidth() == 1) { 6103 SmallString<64> Str(E->getString()); 6104 6105 // Resize the string to the right size, which is indicated by its type. 6106 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6107 assert(CAT && "String literal not of constant array type!"); 6108 Str.resize(CAT->getSize().getZExtValue()); 6109 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6110 } 6111 6112 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6113 llvm::Type *ElemTy = AType->getElementType(); 6114 unsigned NumElements = AType->getNumElements(); 6115 6116 // Wide strings have either 2-byte or 4-byte elements. 6117 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6118 SmallVector<uint16_t, 32> Elements; 6119 Elements.reserve(NumElements); 6120 6121 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6122 Elements.push_back(E->getCodeUnit(i)); 6123 Elements.resize(NumElements); 6124 return llvm::ConstantDataArray::get(VMContext, Elements); 6125 } 6126 6127 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6128 SmallVector<uint32_t, 32> Elements; 6129 Elements.reserve(NumElements); 6130 6131 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6132 Elements.push_back(E->getCodeUnit(i)); 6133 Elements.resize(NumElements); 6134 return llvm::ConstantDataArray::get(VMContext, Elements); 6135 } 6136 6137 static llvm::GlobalVariable * 6138 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6139 CodeGenModule &CGM, StringRef GlobalName, 6140 CharUnits Alignment) { 6141 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6142 CGM.GetGlobalConstantAddressSpace()); 6143 6144 llvm::Module &M = CGM.getModule(); 6145 // Create a global variable for this string 6146 auto *GV = new llvm::GlobalVariable( 6147 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6148 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6149 GV->setAlignment(Alignment.getAsAlign()); 6150 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6151 if (GV->isWeakForLinker()) { 6152 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6153 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6154 } 6155 CGM.setDSOLocal(GV); 6156 6157 return GV; 6158 } 6159 6160 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6161 /// constant array for the given string literal. 6162 ConstantAddress 6163 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6164 StringRef Name) { 6165 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6166 6167 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6168 llvm::GlobalVariable **Entry = nullptr; 6169 if (!LangOpts.WritableStrings) { 6170 Entry = &ConstantStringMap[C]; 6171 if (auto GV = *Entry) { 6172 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6173 GV->setAlignment(Alignment.getAsAlign()); 6174 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6175 GV->getValueType(), Alignment); 6176 } 6177 } 6178 6179 SmallString<256> MangledNameBuffer; 6180 StringRef GlobalVariableName; 6181 llvm::GlobalValue::LinkageTypes LT; 6182 6183 // Mangle the string literal if that's how the ABI merges duplicate strings. 6184 // Don't do it if they are writable, since we don't want writes in one TU to 6185 // affect strings in another. 6186 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6187 !LangOpts.WritableStrings) { 6188 llvm::raw_svector_ostream Out(MangledNameBuffer); 6189 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6190 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6191 GlobalVariableName = MangledNameBuffer; 6192 } else { 6193 LT = llvm::GlobalValue::PrivateLinkage; 6194 GlobalVariableName = Name; 6195 } 6196 6197 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6198 6199 CGDebugInfo *DI = getModuleDebugInfo(); 6200 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6201 DI->AddStringLiteralDebugInfo(GV, S); 6202 6203 if (Entry) 6204 *Entry = GV; 6205 6206 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6207 6208 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6209 GV->getValueType(), Alignment); 6210 } 6211 6212 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6213 /// array for the given ObjCEncodeExpr node. 6214 ConstantAddress 6215 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6216 std::string Str; 6217 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6218 6219 return GetAddrOfConstantCString(Str); 6220 } 6221 6222 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6223 /// the literal and a terminating '\0' character. 6224 /// The result has pointer to array type. 6225 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6226 const std::string &Str, const char *GlobalName) { 6227 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6228 CharUnits Alignment = 6229 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6230 6231 llvm::Constant *C = 6232 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6233 6234 // Don't share any string literals if strings aren't constant. 6235 llvm::GlobalVariable **Entry = nullptr; 6236 if (!LangOpts.WritableStrings) { 6237 Entry = &ConstantStringMap[C]; 6238 if (auto GV = *Entry) { 6239 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6240 GV->setAlignment(Alignment.getAsAlign()); 6241 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6242 GV->getValueType(), Alignment); 6243 } 6244 } 6245 6246 // Get the default prefix if a name wasn't specified. 6247 if (!GlobalName) 6248 GlobalName = ".str"; 6249 // Create a global variable for this. 6250 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6251 GlobalName, Alignment); 6252 if (Entry) 6253 *Entry = GV; 6254 6255 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6256 GV->getValueType(), Alignment); 6257 } 6258 6259 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6260 const MaterializeTemporaryExpr *E, const Expr *Init) { 6261 assert((E->getStorageDuration() == SD_Static || 6262 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6263 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6264 6265 // If we're not materializing a subobject of the temporary, keep the 6266 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6267 QualType MaterializedType = Init->getType(); 6268 if (Init == E->getSubExpr()) 6269 MaterializedType = E->getType(); 6270 6271 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6272 6273 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6274 if (!InsertResult.second) { 6275 // We've seen this before: either we already created it or we're in the 6276 // process of doing so. 6277 if (!InsertResult.first->second) { 6278 // We recursively re-entered this function, probably during emission of 6279 // the initializer. Create a placeholder. We'll clean this up in the 6280 // outer call, at the end of this function. 6281 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6282 InsertResult.first->second = new llvm::GlobalVariable( 6283 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6284 nullptr); 6285 } 6286 return ConstantAddress(InsertResult.first->second, 6287 llvm::cast<llvm::GlobalVariable>( 6288 InsertResult.first->second->stripPointerCasts()) 6289 ->getValueType(), 6290 Align); 6291 } 6292 6293 // FIXME: If an externally-visible declaration extends multiple temporaries, 6294 // we need to give each temporary the same name in every translation unit (and 6295 // we also need to make the temporaries externally-visible). 6296 SmallString<256> Name; 6297 llvm::raw_svector_ostream Out(Name); 6298 getCXXABI().getMangleContext().mangleReferenceTemporary( 6299 VD, E->getManglingNumber(), Out); 6300 6301 APValue *Value = nullptr; 6302 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6303 // If the initializer of the extending declaration is a constant 6304 // initializer, we should have a cached constant initializer for this 6305 // temporary. Note that this might have a different value from the value 6306 // computed by evaluating the initializer if the surrounding constant 6307 // expression modifies the temporary. 6308 Value = E->getOrCreateValue(false); 6309 } 6310 6311 // Try evaluating it now, it might have a constant initializer. 6312 Expr::EvalResult EvalResult; 6313 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6314 !EvalResult.hasSideEffects()) 6315 Value = &EvalResult.Val; 6316 6317 LangAS AddrSpace = 6318 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6319 6320 std::optional<ConstantEmitter> emitter; 6321 llvm::Constant *InitialValue = nullptr; 6322 bool Constant = false; 6323 llvm::Type *Type; 6324 if (Value) { 6325 // The temporary has a constant initializer, use it. 6326 emitter.emplace(*this); 6327 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6328 MaterializedType); 6329 Constant = 6330 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6331 /*ExcludeDtor*/ false); 6332 Type = InitialValue->getType(); 6333 } else { 6334 // No initializer, the initialization will be provided when we 6335 // initialize the declaration which performed lifetime extension. 6336 Type = getTypes().ConvertTypeForMem(MaterializedType); 6337 } 6338 6339 // Create a global variable for this lifetime-extended temporary. 6340 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6341 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6342 const VarDecl *InitVD; 6343 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6344 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6345 // Temporaries defined inside a class get linkonce_odr linkage because the 6346 // class can be defined in multiple translation units. 6347 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6348 } else { 6349 // There is no need for this temporary to have external linkage if the 6350 // VarDecl has external linkage. 6351 Linkage = llvm::GlobalVariable::InternalLinkage; 6352 } 6353 } 6354 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6355 auto *GV = new llvm::GlobalVariable( 6356 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6357 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6358 if (emitter) emitter->finalize(GV); 6359 // Don't assign dllimport or dllexport to local linkage globals. 6360 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6361 setGVProperties(GV, VD); 6362 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6363 // The reference temporary should never be dllexport. 6364 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6365 } 6366 GV->setAlignment(Align.getAsAlign()); 6367 if (supportsCOMDAT() && GV->isWeakForLinker()) 6368 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6369 if (VD->getTLSKind()) 6370 setTLSMode(GV, *VD); 6371 llvm::Constant *CV = GV; 6372 if (AddrSpace != LangAS::Default) 6373 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6374 *this, GV, AddrSpace, LangAS::Default, 6375 Type->getPointerTo( 6376 getContext().getTargetAddressSpace(LangAS::Default))); 6377 6378 // Update the map with the new temporary. If we created a placeholder above, 6379 // replace it with the new global now. 6380 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6381 if (Entry) { 6382 Entry->replaceAllUsesWith( 6383 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6384 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6385 } 6386 Entry = CV; 6387 6388 return ConstantAddress(CV, Type, Align); 6389 } 6390 6391 /// EmitObjCPropertyImplementations - Emit information for synthesized 6392 /// properties for an implementation. 6393 void CodeGenModule::EmitObjCPropertyImplementations(const 6394 ObjCImplementationDecl *D) { 6395 for (const auto *PID : D->property_impls()) { 6396 // Dynamic is just for type-checking. 6397 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6398 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6399 6400 // Determine which methods need to be implemented, some may have 6401 // been overridden. Note that ::isPropertyAccessor is not the method 6402 // we want, that just indicates if the decl came from a 6403 // property. What we want to know is if the method is defined in 6404 // this implementation. 6405 auto *Getter = PID->getGetterMethodDecl(); 6406 if (!Getter || Getter->isSynthesizedAccessorStub()) 6407 CodeGenFunction(*this).GenerateObjCGetter( 6408 const_cast<ObjCImplementationDecl *>(D), PID); 6409 auto *Setter = PID->getSetterMethodDecl(); 6410 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6411 CodeGenFunction(*this).GenerateObjCSetter( 6412 const_cast<ObjCImplementationDecl *>(D), PID); 6413 } 6414 } 6415 } 6416 6417 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6418 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6419 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6420 ivar; ivar = ivar->getNextIvar()) 6421 if (ivar->getType().isDestructedType()) 6422 return true; 6423 6424 return false; 6425 } 6426 6427 static bool AllTrivialInitializers(CodeGenModule &CGM, 6428 ObjCImplementationDecl *D) { 6429 CodeGenFunction CGF(CGM); 6430 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6431 E = D->init_end(); B != E; ++B) { 6432 CXXCtorInitializer *CtorInitExp = *B; 6433 Expr *Init = CtorInitExp->getInit(); 6434 if (!CGF.isTrivialInitializer(Init)) 6435 return false; 6436 } 6437 return true; 6438 } 6439 6440 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6441 /// for an implementation. 6442 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6443 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6444 if (needsDestructMethod(D)) { 6445 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6446 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6447 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6448 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6449 getContext().VoidTy, nullptr, D, 6450 /*isInstance=*/true, /*isVariadic=*/false, 6451 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6452 /*isImplicitlyDeclared=*/true, 6453 /*isDefined=*/false, ObjCMethodDecl::Required); 6454 D->addInstanceMethod(DTORMethod); 6455 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6456 D->setHasDestructors(true); 6457 } 6458 6459 // If the implementation doesn't have any ivar initializers, we don't need 6460 // a .cxx_construct. 6461 if (D->getNumIvarInitializers() == 0 || 6462 AllTrivialInitializers(*this, D)) 6463 return; 6464 6465 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6466 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6467 // The constructor returns 'self'. 6468 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6469 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6470 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6471 /*isVariadic=*/false, 6472 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6473 /*isImplicitlyDeclared=*/true, 6474 /*isDefined=*/false, ObjCMethodDecl::Required); 6475 D->addInstanceMethod(CTORMethod); 6476 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6477 D->setHasNonZeroConstructors(true); 6478 } 6479 6480 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6481 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6482 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6483 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6484 ErrorUnsupported(LSD, "linkage spec"); 6485 return; 6486 } 6487 6488 EmitDeclContext(LSD); 6489 } 6490 6491 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6492 // Device code should not be at top level. 6493 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6494 return; 6495 6496 std::unique_ptr<CodeGenFunction> &CurCGF = 6497 GlobalTopLevelStmtBlockInFlight.first; 6498 6499 // We emitted a top-level stmt but after it there is initialization. 6500 // Stop squashing the top-level stmts into a single function. 6501 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6502 CurCGF->FinishFunction(D->getEndLoc()); 6503 CurCGF = nullptr; 6504 } 6505 6506 if (!CurCGF) { 6507 // void __stmts__N(void) 6508 // FIXME: Ask the ABI name mangler to pick a name. 6509 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6510 FunctionArgList Args; 6511 QualType RetTy = getContext().VoidTy; 6512 const CGFunctionInfo &FnInfo = 6513 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6514 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6515 llvm::Function *Fn = llvm::Function::Create( 6516 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6517 6518 CurCGF.reset(new CodeGenFunction(*this)); 6519 GlobalTopLevelStmtBlockInFlight.second = D; 6520 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6521 D->getBeginLoc(), D->getBeginLoc()); 6522 CXXGlobalInits.push_back(Fn); 6523 } 6524 6525 CurCGF->EmitStmt(D->getStmt()); 6526 } 6527 6528 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6529 for (auto *I : DC->decls()) { 6530 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6531 // are themselves considered "top-level", so EmitTopLevelDecl on an 6532 // ObjCImplDecl does not recursively visit them. We need to do that in 6533 // case they're nested inside another construct (LinkageSpecDecl / 6534 // ExportDecl) that does stop them from being considered "top-level". 6535 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6536 for (auto *M : OID->methods()) 6537 EmitTopLevelDecl(M); 6538 } 6539 6540 EmitTopLevelDecl(I); 6541 } 6542 } 6543 6544 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6545 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6546 // Ignore dependent declarations. 6547 if (D->isTemplated()) 6548 return; 6549 6550 // Consteval function shouldn't be emitted. 6551 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6552 return; 6553 6554 switch (D->getKind()) { 6555 case Decl::CXXConversion: 6556 case Decl::CXXMethod: 6557 case Decl::Function: 6558 EmitGlobal(cast<FunctionDecl>(D)); 6559 // Always provide some coverage mapping 6560 // even for the functions that aren't emitted. 6561 AddDeferredUnusedCoverageMapping(D); 6562 break; 6563 6564 case Decl::CXXDeductionGuide: 6565 // Function-like, but does not result in code emission. 6566 break; 6567 6568 case Decl::Var: 6569 case Decl::Decomposition: 6570 case Decl::VarTemplateSpecialization: 6571 EmitGlobal(cast<VarDecl>(D)); 6572 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6573 for (auto *B : DD->bindings()) 6574 if (auto *HD = B->getHoldingVar()) 6575 EmitGlobal(HD); 6576 break; 6577 6578 // Indirect fields from global anonymous structs and unions can be 6579 // ignored; only the actual variable requires IR gen support. 6580 case Decl::IndirectField: 6581 break; 6582 6583 // C++ Decls 6584 case Decl::Namespace: 6585 EmitDeclContext(cast<NamespaceDecl>(D)); 6586 break; 6587 case Decl::ClassTemplateSpecialization: { 6588 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6589 if (CGDebugInfo *DI = getModuleDebugInfo()) 6590 if (Spec->getSpecializationKind() == 6591 TSK_ExplicitInstantiationDefinition && 6592 Spec->hasDefinition()) 6593 DI->completeTemplateDefinition(*Spec); 6594 } [[fallthrough]]; 6595 case Decl::CXXRecord: { 6596 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6597 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6598 if (CRD->hasDefinition()) 6599 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6600 if (auto *ES = D->getASTContext().getExternalSource()) 6601 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6602 DI->completeUnusedClass(*CRD); 6603 } 6604 // Emit any static data members, they may be definitions. 6605 for (auto *I : CRD->decls()) 6606 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6607 EmitTopLevelDecl(I); 6608 break; 6609 } 6610 // No code generation needed. 6611 case Decl::UsingShadow: 6612 case Decl::ClassTemplate: 6613 case Decl::VarTemplate: 6614 case Decl::Concept: 6615 case Decl::VarTemplatePartialSpecialization: 6616 case Decl::FunctionTemplate: 6617 case Decl::TypeAliasTemplate: 6618 case Decl::Block: 6619 case Decl::Empty: 6620 case Decl::Binding: 6621 break; 6622 case Decl::Using: // using X; [C++] 6623 if (CGDebugInfo *DI = getModuleDebugInfo()) 6624 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6625 break; 6626 case Decl::UsingEnum: // using enum X; [C++] 6627 if (CGDebugInfo *DI = getModuleDebugInfo()) 6628 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6629 break; 6630 case Decl::NamespaceAlias: 6631 if (CGDebugInfo *DI = getModuleDebugInfo()) 6632 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6633 break; 6634 case Decl::UsingDirective: // using namespace X; [C++] 6635 if (CGDebugInfo *DI = getModuleDebugInfo()) 6636 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6637 break; 6638 case Decl::CXXConstructor: 6639 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6640 break; 6641 case Decl::CXXDestructor: 6642 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6643 break; 6644 6645 case Decl::StaticAssert: 6646 // Nothing to do. 6647 break; 6648 6649 // Objective-C Decls 6650 6651 // Forward declarations, no (immediate) code generation. 6652 case Decl::ObjCInterface: 6653 case Decl::ObjCCategory: 6654 break; 6655 6656 case Decl::ObjCProtocol: { 6657 auto *Proto = cast<ObjCProtocolDecl>(D); 6658 if (Proto->isThisDeclarationADefinition()) 6659 ObjCRuntime->GenerateProtocol(Proto); 6660 break; 6661 } 6662 6663 case Decl::ObjCCategoryImpl: 6664 // Categories have properties but don't support synthesize so we 6665 // can ignore them here. 6666 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6667 break; 6668 6669 case Decl::ObjCImplementation: { 6670 auto *OMD = cast<ObjCImplementationDecl>(D); 6671 EmitObjCPropertyImplementations(OMD); 6672 EmitObjCIvarInitializations(OMD); 6673 ObjCRuntime->GenerateClass(OMD); 6674 // Emit global variable debug information. 6675 if (CGDebugInfo *DI = getModuleDebugInfo()) 6676 if (getCodeGenOpts().hasReducedDebugInfo()) 6677 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6678 OMD->getClassInterface()), OMD->getLocation()); 6679 break; 6680 } 6681 case Decl::ObjCMethod: { 6682 auto *OMD = cast<ObjCMethodDecl>(D); 6683 // If this is not a prototype, emit the body. 6684 if (OMD->getBody()) 6685 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6686 break; 6687 } 6688 case Decl::ObjCCompatibleAlias: 6689 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6690 break; 6691 6692 case Decl::PragmaComment: { 6693 const auto *PCD = cast<PragmaCommentDecl>(D); 6694 switch (PCD->getCommentKind()) { 6695 case PCK_Unknown: 6696 llvm_unreachable("unexpected pragma comment kind"); 6697 case PCK_Linker: 6698 AppendLinkerOptions(PCD->getArg()); 6699 break; 6700 case PCK_Lib: 6701 AddDependentLib(PCD->getArg()); 6702 break; 6703 case PCK_Compiler: 6704 case PCK_ExeStr: 6705 case PCK_User: 6706 break; // We ignore all of these. 6707 } 6708 break; 6709 } 6710 6711 case Decl::PragmaDetectMismatch: { 6712 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6713 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6714 break; 6715 } 6716 6717 case Decl::LinkageSpec: 6718 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6719 break; 6720 6721 case Decl::FileScopeAsm: { 6722 // File-scope asm is ignored during device-side CUDA compilation. 6723 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6724 break; 6725 // File-scope asm is ignored during device-side OpenMP compilation. 6726 if (LangOpts.OpenMPIsTargetDevice) 6727 break; 6728 // File-scope asm is ignored during device-side SYCL compilation. 6729 if (LangOpts.SYCLIsDevice) 6730 break; 6731 auto *AD = cast<FileScopeAsmDecl>(D); 6732 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6733 break; 6734 } 6735 6736 case Decl::TopLevelStmt: 6737 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6738 break; 6739 6740 case Decl::Import: { 6741 auto *Import = cast<ImportDecl>(D); 6742 6743 // If we've already imported this module, we're done. 6744 if (!ImportedModules.insert(Import->getImportedModule())) 6745 break; 6746 6747 // Emit debug information for direct imports. 6748 if (!Import->getImportedOwningModule()) { 6749 if (CGDebugInfo *DI = getModuleDebugInfo()) 6750 DI->EmitImportDecl(*Import); 6751 } 6752 6753 // For C++ standard modules we are done - we will call the module 6754 // initializer for imported modules, and that will likewise call those for 6755 // any imports it has. 6756 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6757 !Import->getImportedOwningModule()->isModuleMapModule()) 6758 break; 6759 6760 // For clang C++ module map modules the initializers for sub-modules are 6761 // emitted here. 6762 6763 // Find all of the submodules and emit the module initializers. 6764 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6765 SmallVector<clang::Module *, 16> Stack; 6766 Visited.insert(Import->getImportedModule()); 6767 Stack.push_back(Import->getImportedModule()); 6768 6769 while (!Stack.empty()) { 6770 clang::Module *Mod = Stack.pop_back_val(); 6771 if (!EmittedModuleInitializers.insert(Mod).second) 6772 continue; 6773 6774 for (auto *D : Context.getModuleInitializers(Mod)) 6775 EmitTopLevelDecl(D); 6776 6777 // Visit the submodules of this module. 6778 for (auto *Submodule : Mod->submodules()) { 6779 // Skip explicit children; they need to be explicitly imported to emit 6780 // the initializers. 6781 if (Submodule->IsExplicit) 6782 continue; 6783 6784 if (Visited.insert(Submodule).second) 6785 Stack.push_back(Submodule); 6786 } 6787 } 6788 break; 6789 } 6790 6791 case Decl::Export: 6792 EmitDeclContext(cast<ExportDecl>(D)); 6793 break; 6794 6795 case Decl::OMPThreadPrivate: 6796 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6797 break; 6798 6799 case Decl::OMPAllocate: 6800 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6801 break; 6802 6803 case Decl::OMPDeclareReduction: 6804 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6805 break; 6806 6807 case Decl::OMPDeclareMapper: 6808 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6809 break; 6810 6811 case Decl::OMPRequires: 6812 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6813 break; 6814 6815 case Decl::Typedef: 6816 case Decl::TypeAlias: // using foo = bar; [C++11] 6817 if (CGDebugInfo *DI = getModuleDebugInfo()) 6818 DI->EmitAndRetainType( 6819 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6820 break; 6821 6822 case Decl::Record: 6823 if (CGDebugInfo *DI = getModuleDebugInfo()) 6824 if (cast<RecordDecl>(D)->getDefinition()) 6825 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6826 break; 6827 6828 case Decl::Enum: 6829 if (CGDebugInfo *DI = getModuleDebugInfo()) 6830 if (cast<EnumDecl>(D)->getDefinition()) 6831 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6832 break; 6833 6834 case Decl::HLSLBuffer: 6835 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6836 break; 6837 6838 default: 6839 // Make sure we handled everything we should, every other kind is a 6840 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6841 // function. Need to recode Decl::Kind to do that easily. 6842 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6843 break; 6844 } 6845 } 6846 6847 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6848 // Do we need to generate coverage mapping? 6849 if (!CodeGenOpts.CoverageMapping) 6850 return; 6851 switch (D->getKind()) { 6852 case Decl::CXXConversion: 6853 case Decl::CXXMethod: 6854 case Decl::Function: 6855 case Decl::ObjCMethod: 6856 case Decl::CXXConstructor: 6857 case Decl::CXXDestructor: { 6858 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6859 break; 6860 SourceManager &SM = getContext().getSourceManager(); 6861 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6862 break; 6863 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6864 if (I == DeferredEmptyCoverageMappingDecls.end()) 6865 DeferredEmptyCoverageMappingDecls[D] = true; 6866 break; 6867 } 6868 default: 6869 break; 6870 }; 6871 } 6872 6873 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6874 // Do we need to generate coverage mapping? 6875 if (!CodeGenOpts.CoverageMapping) 6876 return; 6877 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6878 if (Fn->isTemplateInstantiation()) 6879 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6880 } 6881 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6882 if (I == DeferredEmptyCoverageMappingDecls.end()) 6883 DeferredEmptyCoverageMappingDecls[D] = false; 6884 else 6885 I->second = false; 6886 } 6887 6888 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6889 // We call takeVector() here to avoid use-after-free. 6890 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6891 // we deserialize function bodies to emit coverage info for them, and that 6892 // deserializes more declarations. How should we handle that case? 6893 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6894 if (!Entry.second) 6895 continue; 6896 const Decl *D = Entry.first; 6897 switch (D->getKind()) { 6898 case Decl::CXXConversion: 6899 case Decl::CXXMethod: 6900 case Decl::Function: 6901 case Decl::ObjCMethod: { 6902 CodeGenPGO PGO(*this); 6903 GlobalDecl GD(cast<FunctionDecl>(D)); 6904 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6905 getFunctionLinkage(GD)); 6906 break; 6907 } 6908 case Decl::CXXConstructor: { 6909 CodeGenPGO PGO(*this); 6910 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6911 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6912 getFunctionLinkage(GD)); 6913 break; 6914 } 6915 case Decl::CXXDestructor: { 6916 CodeGenPGO PGO(*this); 6917 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6918 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6919 getFunctionLinkage(GD)); 6920 break; 6921 } 6922 default: 6923 break; 6924 }; 6925 } 6926 } 6927 6928 void CodeGenModule::EmitMainVoidAlias() { 6929 // In order to transition away from "__original_main" gracefully, emit an 6930 // alias for "main" in the no-argument case so that libc can detect when 6931 // new-style no-argument main is in used. 6932 if (llvm::Function *F = getModule().getFunction("main")) { 6933 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6934 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6935 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6936 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6937 } 6938 } 6939 } 6940 6941 /// Turns the given pointer into a constant. 6942 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6943 const void *Ptr) { 6944 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6945 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6946 return llvm::ConstantInt::get(i64, PtrInt); 6947 } 6948 6949 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6950 llvm::NamedMDNode *&GlobalMetadata, 6951 GlobalDecl D, 6952 llvm::GlobalValue *Addr) { 6953 if (!GlobalMetadata) 6954 GlobalMetadata = 6955 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6956 6957 // TODO: should we report variant information for ctors/dtors? 6958 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6959 llvm::ConstantAsMetadata::get(GetPointerConstant( 6960 CGM.getLLVMContext(), D.getDecl()))}; 6961 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6962 } 6963 6964 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6965 llvm::GlobalValue *CppFunc) { 6966 // Store the list of ifuncs we need to replace uses in. 6967 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6968 // List of ConstantExprs that we should be able to delete when we're done 6969 // here. 6970 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6971 6972 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6973 if (Elem == CppFunc) 6974 return false; 6975 6976 // First make sure that all users of this are ifuncs (or ifuncs via a 6977 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6978 // later. 6979 for (llvm::User *User : Elem->users()) { 6980 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6981 // ifunc directly. In any other case, just give up, as we don't know what we 6982 // could break by changing those. 6983 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6984 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6985 return false; 6986 6987 for (llvm::User *CEUser : ConstExpr->users()) { 6988 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6989 IFuncs.push_back(IFunc); 6990 } else { 6991 return false; 6992 } 6993 } 6994 CEs.push_back(ConstExpr); 6995 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6996 IFuncs.push_back(IFunc); 6997 } else { 6998 // This user is one we don't know how to handle, so fail redirection. This 6999 // will result in an ifunc retaining a resolver name that will ultimately 7000 // fail to be resolved to a defined function. 7001 return false; 7002 } 7003 } 7004 7005 // Now we know this is a valid case where we can do this alias replacement, we 7006 // need to remove all of the references to Elem (and the bitcasts!) so we can 7007 // delete it. 7008 for (llvm::GlobalIFunc *IFunc : IFuncs) 7009 IFunc->setResolver(nullptr); 7010 for (llvm::ConstantExpr *ConstExpr : CEs) 7011 ConstExpr->destroyConstant(); 7012 7013 // We should now be out of uses for the 'old' version of this function, so we 7014 // can erase it as well. 7015 Elem->eraseFromParent(); 7016 7017 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7018 // The type of the resolver is always just a function-type that returns the 7019 // type of the IFunc, so create that here. If the type of the actual 7020 // resolver doesn't match, it just gets bitcast to the right thing. 7021 auto *ResolverTy = 7022 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7023 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7024 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7025 IFunc->setResolver(Resolver); 7026 } 7027 return true; 7028 } 7029 7030 /// For each function which is declared within an extern "C" region and marked 7031 /// as 'used', but has internal linkage, create an alias from the unmangled 7032 /// name to the mangled name if possible. People expect to be able to refer 7033 /// to such functions with an unmangled name from inline assembly within the 7034 /// same translation unit. 7035 void CodeGenModule::EmitStaticExternCAliases() { 7036 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7037 return; 7038 for (auto &I : StaticExternCValues) { 7039 IdentifierInfo *Name = I.first; 7040 llvm::GlobalValue *Val = I.second; 7041 7042 // If Val is null, that implies there were multiple declarations that each 7043 // had a claim to the unmangled name. In this case, generation of the alias 7044 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7045 if (!Val) 7046 break; 7047 7048 llvm::GlobalValue *ExistingElem = 7049 getModule().getNamedValue(Name->getName()); 7050 7051 // If there is either not something already by this name, or we were able to 7052 // replace all uses from IFuncs, create the alias. 7053 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7054 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7055 } 7056 } 7057 7058 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7059 GlobalDecl &Result) const { 7060 auto Res = Manglings.find(MangledName); 7061 if (Res == Manglings.end()) 7062 return false; 7063 Result = Res->getValue(); 7064 return true; 7065 } 7066 7067 /// Emits metadata nodes associating all the global values in the 7068 /// current module with the Decls they came from. This is useful for 7069 /// projects using IR gen as a subroutine. 7070 /// 7071 /// Since there's currently no way to associate an MDNode directly 7072 /// with an llvm::GlobalValue, we create a global named metadata 7073 /// with the name 'clang.global.decl.ptrs'. 7074 void CodeGenModule::EmitDeclMetadata() { 7075 llvm::NamedMDNode *GlobalMetadata = nullptr; 7076 7077 for (auto &I : MangledDeclNames) { 7078 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7079 // Some mangled names don't necessarily have an associated GlobalValue 7080 // in this module, e.g. if we mangled it for DebugInfo. 7081 if (Addr) 7082 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7083 } 7084 } 7085 7086 /// Emits metadata nodes for all the local variables in the current 7087 /// function. 7088 void CodeGenFunction::EmitDeclMetadata() { 7089 if (LocalDeclMap.empty()) return; 7090 7091 llvm::LLVMContext &Context = getLLVMContext(); 7092 7093 // Find the unique metadata ID for this name. 7094 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7095 7096 llvm::NamedMDNode *GlobalMetadata = nullptr; 7097 7098 for (auto &I : LocalDeclMap) { 7099 const Decl *D = I.first; 7100 llvm::Value *Addr = I.second.getPointer(); 7101 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7102 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7103 Alloca->setMetadata( 7104 DeclPtrKind, llvm::MDNode::get( 7105 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7106 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7107 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7108 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7109 } 7110 } 7111 } 7112 7113 void CodeGenModule::EmitVersionIdentMetadata() { 7114 llvm::NamedMDNode *IdentMetadata = 7115 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7116 std::string Version = getClangFullVersion(); 7117 llvm::LLVMContext &Ctx = TheModule.getContext(); 7118 7119 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7120 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7121 } 7122 7123 void CodeGenModule::EmitCommandLineMetadata() { 7124 llvm::NamedMDNode *CommandLineMetadata = 7125 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7126 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7127 llvm::LLVMContext &Ctx = TheModule.getContext(); 7128 7129 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7130 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7131 } 7132 7133 void CodeGenModule::EmitCoverageFile() { 7134 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7135 if (!CUNode) 7136 return; 7137 7138 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7139 llvm::LLVMContext &Ctx = TheModule.getContext(); 7140 auto *CoverageDataFile = 7141 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7142 auto *CoverageNotesFile = 7143 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7144 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7145 llvm::MDNode *CU = CUNode->getOperand(i); 7146 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7147 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7148 } 7149 } 7150 7151 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7152 bool ForEH) { 7153 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7154 // FIXME: should we even be calling this method if RTTI is disabled 7155 // and it's not for EH? 7156 if (!shouldEmitRTTI(ForEH)) 7157 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7158 7159 if (ForEH && Ty->isObjCObjectPointerType() && 7160 LangOpts.ObjCRuntime.isGNUFamily()) 7161 return ObjCRuntime->GetEHType(Ty); 7162 7163 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7164 } 7165 7166 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7167 // Do not emit threadprivates in simd-only mode. 7168 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7169 return; 7170 for (auto RefExpr : D->varlists()) { 7171 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7172 bool PerformInit = 7173 VD->getAnyInitializer() && 7174 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7175 /*ForRef=*/false); 7176 7177 Address Addr(GetAddrOfGlobalVar(VD), 7178 getTypes().ConvertTypeForMem(VD->getType()), 7179 getContext().getDeclAlign(VD)); 7180 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7181 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7182 CXXGlobalInits.push_back(InitFunction); 7183 } 7184 } 7185 7186 llvm::Metadata * 7187 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7188 StringRef Suffix) { 7189 if (auto *FnType = T->getAs<FunctionProtoType>()) 7190 T = getContext().getFunctionType( 7191 FnType->getReturnType(), FnType->getParamTypes(), 7192 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7193 7194 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7195 if (InternalId) 7196 return InternalId; 7197 7198 if (isExternallyVisible(T->getLinkage())) { 7199 std::string OutName; 7200 llvm::raw_string_ostream Out(OutName); 7201 getCXXABI().getMangleContext().mangleTypeName( 7202 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7203 7204 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7205 Out << ".normalized"; 7206 7207 Out << Suffix; 7208 7209 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7210 } else { 7211 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7212 llvm::ArrayRef<llvm::Metadata *>()); 7213 } 7214 7215 return InternalId; 7216 } 7217 7218 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7219 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7220 } 7221 7222 llvm::Metadata * 7223 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7224 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7225 } 7226 7227 // Generalize pointer types to a void pointer with the qualifiers of the 7228 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7229 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7230 // 'void *'. 7231 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7232 if (!Ty->isPointerType()) 7233 return Ty; 7234 7235 return Ctx.getPointerType( 7236 QualType(Ctx.VoidTy).withCVRQualifiers( 7237 Ty->getPointeeType().getCVRQualifiers())); 7238 } 7239 7240 // Apply type generalization to a FunctionType's return and argument types 7241 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7242 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7243 SmallVector<QualType, 8> GeneralizedParams; 7244 for (auto &Param : FnType->param_types()) 7245 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7246 7247 return Ctx.getFunctionType( 7248 GeneralizeType(Ctx, FnType->getReturnType()), 7249 GeneralizedParams, FnType->getExtProtoInfo()); 7250 } 7251 7252 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7253 return Ctx.getFunctionNoProtoType( 7254 GeneralizeType(Ctx, FnType->getReturnType())); 7255 7256 llvm_unreachable("Encountered unknown FunctionType"); 7257 } 7258 7259 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7260 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7261 GeneralizedMetadataIdMap, ".generalized"); 7262 } 7263 7264 /// Returns whether this module needs the "all-vtables" type identifier. 7265 bool CodeGenModule::NeedAllVtablesTypeId() const { 7266 // Returns true if at least one of vtable-based CFI checkers is enabled and 7267 // is not in the trapping mode. 7268 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7269 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7270 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7271 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7272 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7273 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7274 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7275 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7276 } 7277 7278 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7279 CharUnits Offset, 7280 const CXXRecordDecl *RD) { 7281 llvm::Metadata *MD = 7282 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7283 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7284 7285 if (CodeGenOpts.SanitizeCfiCrossDso) 7286 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7287 VTable->addTypeMetadata(Offset.getQuantity(), 7288 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7289 7290 if (NeedAllVtablesTypeId()) { 7291 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7292 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7293 } 7294 } 7295 7296 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7297 if (!SanStats) 7298 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7299 7300 return *SanStats; 7301 } 7302 7303 llvm::Value * 7304 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7305 CodeGenFunction &CGF) { 7306 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7307 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7308 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7309 auto *Call = CGF.EmitRuntimeCall( 7310 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7311 return Call; 7312 } 7313 7314 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7315 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7316 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7317 /* forPointeeType= */ true); 7318 } 7319 7320 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7321 LValueBaseInfo *BaseInfo, 7322 TBAAAccessInfo *TBAAInfo, 7323 bool forPointeeType) { 7324 if (TBAAInfo) 7325 *TBAAInfo = getTBAAAccessInfo(T); 7326 7327 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7328 // that doesn't return the information we need to compute BaseInfo. 7329 7330 // Honor alignment typedef attributes even on incomplete types. 7331 // We also honor them straight for C++ class types, even as pointees; 7332 // there's an expressivity gap here. 7333 if (auto TT = T->getAs<TypedefType>()) { 7334 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7335 if (BaseInfo) 7336 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7337 return getContext().toCharUnitsFromBits(Align); 7338 } 7339 } 7340 7341 bool AlignForArray = T->isArrayType(); 7342 7343 // Analyze the base element type, so we don't get confused by incomplete 7344 // array types. 7345 T = getContext().getBaseElementType(T); 7346 7347 if (T->isIncompleteType()) { 7348 // We could try to replicate the logic from 7349 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7350 // type is incomplete, so it's impossible to test. We could try to reuse 7351 // getTypeAlignIfKnown, but that doesn't return the information we need 7352 // to set BaseInfo. So just ignore the possibility that the alignment is 7353 // greater than one. 7354 if (BaseInfo) 7355 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7356 return CharUnits::One(); 7357 } 7358 7359 if (BaseInfo) 7360 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7361 7362 CharUnits Alignment; 7363 const CXXRecordDecl *RD; 7364 if (T.getQualifiers().hasUnaligned()) { 7365 Alignment = CharUnits::One(); 7366 } else if (forPointeeType && !AlignForArray && 7367 (RD = T->getAsCXXRecordDecl())) { 7368 // For C++ class pointees, we don't know whether we're pointing at a 7369 // base or a complete object, so we generally need to use the 7370 // non-virtual alignment. 7371 Alignment = getClassPointerAlignment(RD); 7372 } else { 7373 Alignment = getContext().getTypeAlignInChars(T); 7374 } 7375 7376 // Cap to the global maximum type alignment unless the alignment 7377 // was somehow explicit on the type. 7378 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7379 if (Alignment.getQuantity() > MaxAlign && 7380 !getContext().isAlignmentRequired(T)) 7381 Alignment = CharUnits::fromQuantity(MaxAlign); 7382 } 7383 return Alignment; 7384 } 7385 7386 bool CodeGenModule::stopAutoInit() { 7387 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7388 if (StopAfter) { 7389 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7390 // used 7391 if (NumAutoVarInit >= StopAfter) { 7392 return true; 7393 } 7394 if (!NumAutoVarInit) { 7395 unsigned DiagID = getDiags().getCustomDiagID( 7396 DiagnosticsEngine::Warning, 7397 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7398 "number of times ftrivial-auto-var-init=%1 gets applied."); 7399 getDiags().Report(DiagID) 7400 << StopAfter 7401 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7402 LangOptions::TrivialAutoVarInitKind::Zero 7403 ? "zero" 7404 : "pattern"); 7405 } 7406 ++NumAutoVarInit; 7407 } 7408 return false; 7409 } 7410 7411 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7412 const Decl *D) const { 7413 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7414 // postfix beginning with '.' since the symbol name can be demangled. 7415 if (LangOpts.HIP) 7416 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7417 else 7418 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7419 7420 // If the CUID is not specified we try to generate a unique postfix. 7421 if (getLangOpts().CUID.empty()) { 7422 SourceManager &SM = getContext().getSourceManager(); 7423 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7424 assert(PLoc.isValid() && "Source location is expected to be valid."); 7425 7426 // Get the hash of the user defined macros. 7427 llvm::MD5 Hash; 7428 llvm::MD5::MD5Result Result; 7429 for (const auto &Arg : PreprocessorOpts.Macros) 7430 Hash.update(Arg.first); 7431 Hash.final(Result); 7432 7433 // Get the UniqueID for the file containing the decl. 7434 llvm::sys::fs::UniqueID ID; 7435 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7436 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7437 assert(PLoc.isValid() && "Source location is expected to be valid."); 7438 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7439 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7440 << PLoc.getFilename() << EC.message(); 7441 } 7442 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7443 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7444 } else { 7445 OS << getContext().getCUIDHash(); 7446 } 7447 } 7448 7449 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7450 assert(DeferredDeclsToEmit.empty() && 7451 "Should have emitted all decls deferred to emit."); 7452 assert(NewBuilder->DeferredDecls.empty() && 7453 "Newly created module should not have deferred decls"); 7454 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7455 assert(EmittedDeferredDecls.empty() && 7456 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7457 7458 assert(NewBuilder->DeferredVTables.empty() && 7459 "Newly created module should not have deferred vtables"); 7460 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7461 7462 assert(NewBuilder->MangledDeclNames.empty() && 7463 "Newly created module should not have mangled decl names"); 7464 assert(NewBuilder->Manglings.empty() && 7465 "Newly created module should not have manglings"); 7466 NewBuilder->Manglings = std::move(Manglings); 7467 7468 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7469 7470 NewBuilder->TBAA = std::move(TBAA); 7471 7472 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7473 } 7474