xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision dd31ca10ef61f8b4cd6fbd323e008dbae1aaabee)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/DataLayout.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::DataLayout &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNUstep:
142   case ObjCRuntime::GCC:
143   case ObjCRuntime::ObjFW:
144     ObjCRuntime = CreateGNUObjCRuntime(*this);
145     return;
146 
147   case ObjCRuntime::FragileMacOSX:
148   case ObjCRuntime::MacOSX:
149   case ObjCRuntime::iOS:
150     ObjCRuntime = CreateMacObjCRuntime(*this);
151     return;
152   }
153   llvm_unreachable("bad runtime kind");
154 }
155 
156 void CodeGenModule::createOpenCLRuntime() {
157   OpenCLRuntime = new CGOpenCLRuntime(*this);
158 }
159 
160 void CodeGenModule::createCUDARuntime() {
161   CUDARuntime = CreateNVCUDARuntime(*this);
162 }
163 
164 void CodeGenModule::Release() {
165   EmitDeferred();
166   EmitCXXGlobalInitFunc();
167   EmitCXXGlobalDtorFunc();
168   if (ObjCRuntime)
169     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170       AddGlobalCtor(ObjCInitFunction);
171   EmitCtorList(GlobalCtors, "llvm.global_ctors");
172   EmitCtorList(GlobalDtors, "llvm.global_dtors");
173   EmitGlobalAnnotations();
174   EmitLLVMUsed();
175 
176   SimplifyPersonality();
177 
178   if (getCodeGenOpts().EmitDeclMetadata)
179     EmitDeclMetadata();
180 
181   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182     EmitCoverageFile();
183 
184   if (DebugInfo)
185     DebugInfo->finalize();
186 }
187 
188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189   // Make sure that this type is translated.
190   Types.UpdateCompletedType(TD);
191 }
192 
193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194   if (!TBAA)
195     return 0;
196   return TBAA->getTBAAInfo(QTy);
197 }
198 
199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200   if (!TBAA)
201     return 0;
202   return TBAA->getTBAAInfoForVTablePtr();
203 }
204 
205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206   if (!TBAA)
207     return 0;
208   return TBAA->getTBAAStructInfo(QTy);
209 }
210 
211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                         llvm::MDNode *TBAAInfo) {
213   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214 }
215 
216 bool CodeGenModule::isTargetDarwin() const {
217   return getContext().getTargetInfo().getTriple().isOSDarwin();
218 }
219 
220 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222   getDiags().Report(Context.getFullLoc(loc), diagID);
223 }
224 
225 /// ErrorUnsupported - Print out an error that codegen doesn't support the
226 /// specified stmt yet.
227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                      bool OmitOnError) {
229   if (OmitOnError && getDiags().hasErrorOccurred())
230     return;
231   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                                "cannot compile this %0 yet");
233   std::string Msg = Type;
234   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235     << Msg << S->getSourceRange();
236 }
237 
238 /// ErrorUnsupported - Print out an error that codegen doesn't support the
239 /// specified decl yet.
240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                      bool OmitOnError) {
242   if (OmitOnError && getDiags().hasErrorOccurred())
243     return;
244   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                                "cannot compile this %0 yet");
246   std::string Msg = Type;
247   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248 }
249 
250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252 }
253 
254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                         const NamedDecl *D) const {
256   // Internal definitions always have default visibility.
257   if (GV->hasLocalLinkage()) {
258     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259     return;
260   }
261 
262   // Set visibility for definitions.
263   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266 }
267 
268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277     CodeGenOptions::TLSModel M) {
278   switch (M) {
279   case CodeGenOptions::GeneralDynamicTLSModel:
280     return llvm::GlobalVariable::GeneralDynamicTLSModel;
281   case CodeGenOptions::LocalDynamicTLSModel:
282     return llvm::GlobalVariable::LocalDynamicTLSModel;
283   case CodeGenOptions::InitialExecTLSModel:
284     return llvm::GlobalVariable::InitialExecTLSModel;
285   case CodeGenOptions::LocalExecTLSModel:
286     return llvm::GlobalVariable::LocalExecTLSModel;
287   }
288   llvm_unreachable("Invalid TLS model!");
289 }
290 
291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                                const VarDecl &D) const {
293   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294 
295   llvm::GlobalVariable::ThreadLocalMode TLM;
296   TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297 
298   // Override the TLS model if it is explicitly specified.
299   if (D.hasAttr<TLSModelAttr>()) {
300     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301     TLM = GetLLVMTLSModel(Attr->getModel());
302   }
303 
304   GV->setThreadLocalMode(TLM);
305 }
306 
307 /// Set the symbol visibility of type information (vtable and RTTI)
308 /// associated with the given type.
309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                       const CXXRecordDecl *RD,
311                                       TypeVisibilityKind TVK) const {
312   setGlobalVisibility(GV, RD);
313 
314   if (!CodeGenOpts.HiddenWeakVTables)
315     return;
316 
317   // We never want to drop the visibility for RTTI names.
318   if (TVK == TVK_ForRTTIName)
319     return;
320 
321   // We want to drop the visibility to hidden for weak type symbols.
322   // This isn't possible if there might be unresolved references
323   // elsewhere that rely on this symbol being visible.
324 
325   // This should be kept roughly in sync with setThunkVisibility
326   // in CGVTables.cpp.
327 
328   // Preconditions.
329   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331     return;
332 
333   // Don't override an explicit visibility attribute.
334   if (RD->getExplicitVisibility())
335     return;
336 
337   switch (RD->getTemplateSpecializationKind()) {
338   // We have to disable the optimization if this is an EI definition
339   // because there might be EI declarations in other shared objects.
340   case TSK_ExplicitInstantiationDefinition:
341   case TSK_ExplicitInstantiationDeclaration:
342     return;
343 
344   // Every use of a non-template class's type information has to emit it.
345   case TSK_Undeclared:
346     break;
347 
348   // In theory, implicit instantiations can ignore the possibility of
349   // an explicit instantiation declaration because there necessarily
350   // must be an EI definition somewhere with default visibility.  In
351   // practice, it's possible to have an explicit instantiation for
352   // an arbitrary template class, and linkers aren't necessarily able
353   // to deal with mixed-visibility symbols.
354   case TSK_ExplicitSpecialization:
355   case TSK_ImplicitInstantiation:
356     if (!CodeGenOpts.HiddenWeakTemplateVTables)
357       return;
358     break;
359   }
360 
361   // If there's a key function, there may be translation units
362   // that don't have the key function's definition.  But ignore
363   // this if we're emitting RTTI under -fno-rtti.
364   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365     if (Context.getKeyFunction(RD))
366       return;
367   }
368 
369   // Otherwise, drop the visibility to hidden.
370   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371   GV->setUnnamedAddr(true);
372 }
373 
374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376 
377   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378   if (!Str.empty())
379     return Str;
380 
381   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382     IdentifierInfo *II = ND->getIdentifier();
383     assert(II && "Attempt to mangle unnamed decl.");
384 
385     Str = II->getName();
386     return Str;
387   }
388 
389   SmallString<256> Buffer;
390   llvm::raw_svector_ostream Out(Buffer);
391   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396     getCXXABI().getMangleContext().mangleBlock(BD, Out,
397       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398   else
399     getCXXABI().getMangleContext().mangleName(ND, Out);
400 
401   // Allocate space for the mangled name.
402   Out.flush();
403   size_t Length = Buffer.size();
404   char *Name = MangledNamesAllocator.Allocate<char>(Length);
405   std::copy(Buffer.begin(), Buffer.end(), Name);
406 
407   Str = StringRef(Name, Length);
408 
409   return Str;
410 }
411 
412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                         const BlockDecl *BD) {
414   MangleContext &MangleCtx = getCXXABI().getMangleContext();
415   const Decl *D = GD.getDecl();
416   llvm::raw_svector_ostream Out(Buffer.getBuffer());
417   if (D == 0)
418     MangleCtx.mangleGlobalBlock(BD,
419       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424   else
425     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426 }
427 
428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429   return getModule().getNamedValue(Name);
430 }
431 
432 /// AddGlobalCtor - Add a function to the list that will be called before
433 /// main() runs.
434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437 }
438 
439 /// AddGlobalDtor - Add a function to the list that will be called
440 /// when the module is unloaded.
441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442   // FIXME: Type coercion of void()* types.
443   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444 }
445 
446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447   // Ctor function type is void()*.
448   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450 
451   // Get the type of a ctor entry, { i32, void ()* }.
452   llvm::StructType *CtorStructTy =
453     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454 
455   // Construct the constructor and destructor arrays.
456   SmallVector<llvm::Constant*, 8> Ctors;
457   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458     llvm::Constant *S[] = {
459       llvm::ConstantInt::get(Int32Ty, I->second, false),
460       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461     };
462     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463   }
464 
465   if (!Ctors.empty()) {
466     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467     new llvm::GlobalVariable(TheModule, AT, false,
468                              llvm::GlobalValue::AppendingLinkage,
469                              llvm::ConstantArray::get(AT, Ctors),
470                              GlobalName);
471   }
472 }
473 
474 llvm::GlobalValue::LinkageTypes
475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477 
478   if (Linkage == GVA_Internal)
479     return llvm::Function::InternalLinkage;
480 
481   if (D->hasAttr<DLLExportAttr>())
482     return llvm::Function::DLLExportLinkage;
483 
484   if (D->hasAttr<WeakAttr>())
485     return llvm::Function::WeakAnyLinkage;
486 
487   // In C99 mode, 'inline' functions are guaranteed to have a strong
488   // definition somewhere else, so we can use available_externally linkage.
489   if (Linkage == GVA_C99Inline)
490     return llvm::Function::AvailableExternallyLinkage;
491 
492   // Note that Apple's kernel linker doesn't support symbol
493   // coalescing, so we need to avoid linkonce and weak linkages there.
494   // Normally, this means we just map to internal, but for explicit
495   // instantiations we'll map to external.
496 
497   // In C++, the compiler has to emit a definition in every translation unit
498   // that references the function.  We should use linkonce_odr because
499   // a) if all references in this translation unit are optimized away, we
500   // don't need to codegen it.  b) if the function persists, it needs to be
501   // merged with other definitions. c) C++ has the ODR, so we know the
502   // definition is dependable.
503   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504     return !Context.getLangOpts().AppleKext
505              ? llvm::Function::LinkOnceODRLinkage
506              : llvm::Function::InternalLinkage;
507 
508   // An explicit instantiation of a template has weak linkage, since
509   // explicit instantiations can occur in multiple translation units
510   // and must all be equivalent. However, we are not allowed to
511   // throw away these explicit instantiations.
512   if (Linkage == GVA_ExplicitTemplateInstantiation)
513     return !Context.getLangOpts().AppleKext
514              ? llvm::Function::WeakODRLinkage
515              : llvm::Function::ExternalLinkage;
516 
517   // Otherwise, we have strong external linkage.
518   assert(Linkage == GVA_StrongExternal);
519   return llvm::Function::ExternalLinkage;
520 }
521 
522 
523 /// SetFunctionDefinitionAttributes - Set attributes for a global.
524 ///
525 /// FIXME: This is currently only done for aliases and functions, but not for
526 /// variables (these details are set in EmitGlobalVarDefinition for variables).
527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                     llvm::GlobalValue *GV) {
529   SetCommonAttributes(D, GV);
530 }
531 
532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                               const CGFunctionInfo &Info,
534                                               llvm::Function *F) {
535   unsigned CallingConv;
536   AttributeListType AttributeList;
537   ConstructAttributeList(Info, D, AttributeList, CallingConv);
538   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540 }
541 
542 /// Determines whether the language options require us to model
543 /// unwind exceptions.  We treat -fexceptions as mandating this
544 /// except under the fragile ObjC ABI with only ObjC exceptions
545 /// enabled.  This means, for example, that C with -fexceptions
546 /// enables this.
547 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548   // If exceptions are completely disabled, obviously this is false.
549   if (!LangOpts.Exceptions) return false;
550 
551   // If C++ exceptions are enabled, this is true.
552   if (LangOpts.CXXExceptions) return true;
553 
554   // If ObjC exceptions are enabled, this depends on the ABI.
555   if (LangOpts.ObjCExceptions) {
556     return LangOpts.ObjCRuntime.hasUnwindExceptions();
557   }
558 
559   return true;
560 }
561 
562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                            llvm::Function *F) {
564   if (CodeGenOpts.UnwindTables)
565     F->setHasUWTable();
566 
567   if (!hasUnwindExceptions(LangOpts))
568     F->addFnAttr(llvm::Attribute::NoUnwind);
569 
570   if (D->hasAttr<NakedAttr>()) {
571     // Naked implies noinline: we should not be inlining such functions.
572     F->addFnAttr(llvm::Attribute::Naked);
573     F->addFnAttr(llvm::Attribute::NoInline);
574   }
575 
576   if (D->hasAttr<NoInlineAttr>())
577     F->addFnAttr(llvm::Attribute::NoInline);
578 
579   // (noinline wins over always_inline, and we can't specify both in IR)
580   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581       !F->getFnAttributes().hasNoInlineAttr())
582     F->addFnAttr(llvm::Attribute::AlwaysInline);
583 
584   // FIXME: Communicate hot and cold attributes to LLVM more directly.
585   if (D->hasAttr<ColdAttr>())
586     F->addFnAttr(llvm::Attribute::OptimizeForSize);
587 
588   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589     F->setUnnamedAddr(true);
590 
591   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592     if (MD->isVirtual())
593       F->setUnnamedAddr(true);
594 
595   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596     F->addFnAttr(llvm::Attribute::StackProtect);
597   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598     F->addFnAttr(llvm::Attribute::StackProtectReq);
599 
600   if (LangOpts.AddressSanitizer) {
601     // When AddressSanitizer is enabled, set AddressSafety attribute
602     // unless __attribute__((no_address_safety_analysis)) is used.
603     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604       F->addFnAttr(llvm::Attribute::AddressSafety);
605   }
606 
607   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608   if (alignment)
609     F->setAlignment(alignment);
610 
611   // C++ ABI requires 2-byte alignment for member functions.
612   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613     F->setAlignment(2);
614 }
615 
616 void CodeGenModule::SetCommonAttributes(const Decl *D,
617                                         llvm::GlobalValue *GV) {
618   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619     setGlobalVisibility(GV, ND);
620   else
621     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622 
623   if (D->hasAttr<UsedAttr>())
624     AddUsedGlobal(GV);
625 
626   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627     GV->setSection(SA->getName());
628 
629   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630 }
631 
632 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633                                                   llvm::Function *F,
634                                                   const CGFunctionInfo &FI) {
635   SetLLVMFunctionAttributes(D, FI, F);
636   SetLLVMFunctionAttributesForDefinition(D, F);
637 
638   F->setLinkage(llvm::Function::InternalLinkage);
639 
640   SetCommonAttributes(D, F);
641 }
642 
643 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644                                           llvm::Function *F,
645                                           bool IsIncompleteFunction) {
646   if (unsigned IID = F->getIntrinsicID()) {
647     // If this is an intrinsic function, set the function's attributes
648     // to the intrinsic's attributes.
649     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650     return;
651   }
652 
653   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654 
655   if (!IsIncompleteFunction)
656     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657 
658   // Only a few attributes are set on declarations; these may later be
659   // overridden by a definition.
660 
661   if (FD->hasAttr<DLLImportAttr>()) {
662     F->setLinkage(llvm::Function::DLLImportLinkage);
663   } else if (FD->hasAttr<WeakAttr>() ||
664              FD->isWeakImported()) {
665     // "extern_weak" is overloaded in LLVM; we probably should have
666     // separate linkage types for this.
667     F->setLinkage(llvm::Function::ExternalWeakLinkage);
668   } else {
669     F->setLinkage(llvm::Function::ExternalLinkage);
670 
671     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673       F->setVisibility(GetLLVMVisibility(LV.visibility()));
674     }
675   }
676 
677   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678     F->setSection(SA->getName());
679 }
680 
681 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682   assert(!GV->isDeclaration() &&
683          "Only globals with definition can force usage.");
684   LLVMUsed.push_back(GV);
685 }
686 
687 void CodeGenModule::EmitLLVMUsed() {
688   // Don't create llvm.used if there is no need.
689   if (LLVMUsed.empty())
690     return;
691 
692   // Convert LLVMUsed to what ConstantArray needs.
693   SmallVector<llvm::Constant*, 8> UsedArray;
694   UsedArray.resize(LLVMUsed.size());
695   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696     UsedArray[i] =
697      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698                                     Int8PtrTy);
699   }
700 
701   if (UsedArray.empty())
702     return;
703   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704 
705   llvm::GlobalVariable *GV =
706     new llvm::GlobalVariable(getModule(), ATy, false,
707                              llvm::GlobalValue::AppendingLinkage,
708                              llvm::ConstantArray::get(ATy, UsedArray),
709                              "llvm.used");
710 
711   GV->setSection("llvm.metadata");
712 }
713 
714 void CodeGenModule::EmitDeferred() {
715   // Emit code for any potentially referenced deferred decls.  Since a
716   // previously unused static decl may become used during the generation of code
717   // for a static function, iterate until no changes are made.
718 
719   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720     if (!DeferredVTables.empty()) {
721       const CXXRecordDecl *RD = DeferredVTables.back();
722       DeferredVTables.pop_back();
723       getCXXABI().EmitVTables(RD);
724       continue;
725     }
726 
727     GlobalDecl D = DeferredDeclsToEmit.back();
728     DeferredDeclsToEmit.pop_back();
729 
730     // Check to see if we've already emitted this.  This is necessary
731     // for a couple of reasons: first, decls can end up in the
732     // deferred-decls queue multiple times, and second, decls can end
733     // up with definitions in unusual ways (e.g. by an extern inline
734     // function acquiring a strong function redefinition).  Just
735     // ignore these cases.
736     //
737     // TODO: That said, looking this up multiple times is very wasteful.
738     StringRef Name = getMangledName(D);
739     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740     assert(CGRef && "Deferred decl wasn't referenced?");
741 
742     if (!CGRef->isDeclaration())
743       continue;
744 
745     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746     // purposes an alias counts as a definition.
747     if (isa<llvm::GlobalAlias>(CGRef))
748       continue;
749 
750     // Otherwise, emit the definition and move on to the next one.
751     EmitGlobalDefinition(D);
752   }
753 }
754 
755 void CodeGenModule::EmitGlobalAnnotations() {
756   if (Annotations.empty())
757     return;
758 
759   // Create a new global variable for the ConstantStruct in the Module.
760   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761     Annotations[0]->getType(), Annotations.size()), Annotations);
762   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764     "llvm.global.annotations");
765   gv->setSection(AnnotationSection);
766 }
767 
768 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770   if (i != AnnotationStrings.end())
771     return i->second;
772 
773   // Not found yet, create a new global.
774   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777   gv->setSection(AnnotationSection);
778   gv->setUnnamedAddr(true);
779   AnnotationStrings[Str] = gv;
780   return gv;
781 }
782 
783 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784   SourceManager &SM = getContext().getSourceManager();
785   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786   if (PLoc.isValid())
787     return EmitAnnotationString(PLoc.getFilename());
788   return EmitAnnotationString(SM.getBufferName(Loc));
789 }
790 
791 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792   SourceManager &SM = getContext().getSourceManager();
793   PresumedLoc PLoc = SM.getPresumedLoc(L);
794   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795     SM.getExpansionLineNumber(L);
796   return llvm::ConstantInt::get(Int32Ty, LineNo);
797 }
798 
799 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800                                                 const AnnotateAttr *AA,
801                                                 SourceLocation L) {
802   // Get the globals for file name, annotation, and the line number.
803   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804                  *UnitGV = EmitAnnotationUnit(L),
805                  *LineNoCst = EmitAnnotationLineNo(L);
806 
807   // Create the ConstantStruct for the global annotation.
808   llvm::Constant *Fields[4] = {
809     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812     LineNoCst
813   };
814   return llvm::ConstantStruct::getAnon(Fields);
815 }
816 
817 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818                                          llvm::GlobalValue *GV) {
819   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820   // Get the struct elements for these annotations.
821   for (specific_attr_iterator<AnnotateAttr>
822        ai = D->specific_attr_begin<AnnotateAttr>(),
823        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825 }
826 
827 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828   // Never defer when EmitAllDecls is specified.
829   if (LangOpts.EmitAllDecls)
830     return false;
831 
832   return !getContext().DeclMustBeEmitted(Global);
833 }
834 
835 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
836   const AliasAttr *AA = VD->getAttr<AliasAttr>();
837   assert(AA && "No alias?");
838 
839   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
840 
841   // See if there is already something with the target's name in the module.
842   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
843 
844   llvm::Constant *Aliasee;
845   if (isa<llvm::FunctionType>(DeclTy))
846     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
847                                       GlobalDecl(cast<FunctionDecl>(VD)),
848                                       /*ForVTable=*/false);
849   else
850     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
851                                     llvm::PointerType::getUnqual(DeclTy), 0);
852   if (!Entry) {
853     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
854     F->setLinkage(llvm::Function::ExternalWeakLinkage);
855     WeakRefReferences.insert(F);
856   }
857 
858   return Aliasee;
859 }
860 
861 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
862   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
863 
864   // Weak references don't produce any output by themselves.
865   if (Global->hasAttr<WeakRefAttr>())
866     return;
867 
868   // If this is an alias definition (which otherwise looks like a declaration)
869   // emit it now.
870   if (Global->hasAttr<AliasAttr>())
871     return EmitAliasDefinition(GD);
872 
873   // If this is CUDA, be selective about which declarations we emit.
874   if (LangOpts.CUDA) {
875     if (CodeGenOpts.CUDAIsDevice) {
876       if (!Global->hasAttr<CUDADeviceAttr>() &&
877           !Global->hasAttr<CUDAGlobalAttr>() &&
878           !Global->hasAttr<CUDAConstantAttr>() &&
879           !Global->hasAttr<CUDASharedAttr>())
880         return;
881     } else {
882       if (!Global->hasAttr<CUDAHostAttr>() && (
883             Global->hasAttr<CUDADeviceAttr>() ||
884             Global->hasAttr<CUDAConstantAttr>() ||
885             Global->hasAttr<CUDASharedAttr>()))
886         return;
887     }
888   }
889 
890   // Ignore declarations, they will be emitted on their first use.
891   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
892     // Forward declarations are emitted lazily on first use.
893     if (!FD->doesThisDeclarationHaveABody()) {
894       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
895         return;
896 
897       const FunctionDecl *InlineDefinition = 0;
898       FD->getBody(InlineDefinition);
899 
900       StringRef MangledName = getMangledName(GD);
901       DeferredDecls.erase(MangledName);
902       EmitGlobalDefinition(InlineDefinition);
903       return;
904     }
905   } else {
906     const VarDecl *VD = cast<VarDecl>(Global);
907     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
908 
909     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
910       return;
911   }
912 
913   // Defer code generation when possible if this is a static definition, inline
914   // function etc.  These we only want to emit if they are used.
915   if (!MayDeferGeneration(Global)) {
916     // Emit the definition if it can't be deferred.
917     EmitGlobalDefinition(GD);
918     return;
919   }
920 
921   // If we're deferring emission of a C++ variable with an
922   // initializer, remember the order in which it appeared in the file.
923   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
924       cast<VarDecl>(Global)->hasInit()) {
925     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
926     CXXGlobalInits.push_back(0);
927   }
928 
929   // If the value has already been used, add it directly to the
930   // DeferredDeclsToEmit list.
931   StringRef MangledName = getMangledName(GD);
932   if (GetGlobalValue(MangledName))
933     DeferredDeclsToEmit.push_back(GD);
934   else {
935     // Otherwise, remember that we saw a deferred decl with this name.  The
936     // first use of the mangled name will cause it to move into
937     // DeferredDeclsToEmit.
938     DeferredDecls[MangledName] = GD;
939   }
940 }
941 
942 namespace {
943   struct FunctionIsDirectlyRecursive :
944     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
945     const StringRef Name;
946     const Builtin::Context &BI;
947     bool Result;
948     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
949       Name(N), BI(C), Result(false) {
950     }
951     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
952 
953     bool TraverseCallExpr(CallExpr *E) {
954       const FunctionDecl *FD = E->getDirectCallee();
955       if (!FD)
956         return true;
957       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
958       if (Attr && Name == Attr->getLabel()) {
959         Result = true;
960         return false;
961       }
962       unsigned BuiltinID = FD->getBuiltinID();
963       if (!BuiltinID)
964         return true;
965       StringRef BuiltinName = BI.GetName(BuiltinID);
966       if (BuiltinName.startswith("__builtin_") &&
967           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
968         Result = true;
969         return false;
970       }
971       return true;
972     }
973   };
974 }
975 
976 // isTriviallyRecursive - Check if this function calls another
977 // decl that, because of the asm attribute or the other decl being a builtin,
978 // ends up pointing to itself.
979 bool
980 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
981   StringRef Name;
982   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
983     // asm labels are a special kind of mangling we have to support.
984     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
985     if (!Attr)
986       return false;
987     Name = Attr->getLabel();
988   } else {
989     Name = FD->getName();
990   }
991 
992   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
993   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
994   return Walker.Result;
995 }
996 
997 bool
998 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
999   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1000     return true;
1001   if (CodeGenOpts.OptimizationLevel == 0 &&
1002       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1003     return false;
1004   // PR9614. Avoid cases where the source code is lying to us. An available
1005   // externally function should have an equivalent function somewhere else,
1006   // but a function that calls itself is clearly not equivalent to the real
1007   // implementation.
1008   // This happens in glibc's btowc and in some configure checks.
1009   return !isTriviallyRecursive(F);
1010 }
1011 
1012 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1013   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1014 
1015   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1016                                  Context.getSourceManager(),
1017                                  "Generating code for declaration");
1018 
1019   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1020     // At -O0, don't generate IR for functions with available_externally
1021     // linkage.
1022     if (!shouldEmitFunction(Function))
1023       return;
1024 
1025     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1026       // Make sure to emit the definition(s) before we emit the thunks.
1027       // This is necessary for the generation of certain thunks.
1028       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1029         EmitCXXConstructor(CD, GD.getCtorType());
1030       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1031         EmitCXXDestructor(DD, GD.getDtorType());
1032       else
1033         EmitGlobalFunctionDefinition(GD);
1034 
1035       if (Method->isVirtual())
1036         getVTables().EmitThunks(GD);
1037 
1038       return;
1039     }
1040 
1041     return EmitGlobalFunctionDefinition(GD);
1042   }
1043 
1044   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1045     return EmitGlobalVarDefinition(VD);
1046 
1047   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1048 }
1049 
1050 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1051 /// module, create and return an llvm Function with the specified type. If there
1052 /// is something in the module with the specified name, return it potentially
1053 /// bitcasted to the right type.
1054 ///
1055 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1056 /// to set the attributes on the function when it is first created.
1057 llvm::Constant *
1058 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1059                                        llvm::Type *Ty,
1060                                        GlobalDecl D, bool ForVTable,
1061                                        llvm::Attributes ExtraAttrs) {
1062   // Lookup the entry, lazily creating it if necessary.
1063   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1064   if (Entry) {
1065     if (WeakRefReferences.erase(Entry)) {
1066       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1067       if (FD && !FD->hasAttr<WeakAttr>())
1068         Entry->setLinkage(llvm::Function::ExternalLinkage);
1069     }
1070 
1071     if (Entry->getType()->getElementType() == Ty)
1072       return Entry;
1073 
1074     // Make sure the result is of the correct type.
1075     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1076   }
1077 
1078   // This function doesn't have a complete type (for example, the return
1079   // type is an incomplete struct). Use a fake type instead, and make
1080   // sure not to try to set attributes.
1081   bool IsIncompleteFunction = false;
1082 
1083   llvm::FunctionType *FTy;
1084   if (isa<llvm::FunctionType>(Ty)) {
1085     FTy = cast<llvm::FunctionType>(Ty);
1086   } else {
1087     FTy = llvm::FunctionType::get(VoidTy, false);
1088     IsIncompleteFunction = true;
1089   }
1090 
1091   llvm::Function *F = llvm::Function::Create(FTy,
1092                                              llvm::Function::ExternalLinkage,
1093                                              MangledName, &getModule());
1094   assert(F->getName() == MangledName && "name was uniqued!");
1095   if (D.getDecl())
1096     SetFunctionAttributes(D, F, IsIncompleteFunction);
1097   if (ExtraAttrs != llvm::Attribute::None)
1098     F->addFnAttr(ExtraAttrs);
1099 
1100   // This is the first use or definition of a mangled name.  If there is a
1101   // deferred decl with this name, remember that we need to emit it at the end
1102   // of the file.
1103   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1104   if (DDI != DeferredDecls.end()) {
1105     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1106     // list, and remove it from DeferredDecls (since we don't need it anymore).
1107     DeferredDeclsToEmit.push_back(DDI->second);
1108     DeferredDecls.erase(DDI);
1109 
1110   // Otherwise, there are cases we have to worry about where we're
1111   // using a declaration for which we must emit a definition but where
1112   // we might not find a top-level definition:
1113   //   - member functions defined inline in their classes
1114   //   - friend functions defined inline in some class
1115   //   - special member functions with implicit definitions
1116   // If we ever change our AST traversal to walk into class methods,
1117   // this will be unnecessary.
1118   //
1119   // We also don't emit a definition for a function if it's going to be an entry
1120   // in a vtable, unless it's already marked as used.
1121   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1122     // Look for a declaration that's lexically in a record.
1123     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1124     FD = FD->getMostRecentDecl();
1125     do {
1126       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1127         if (FD->isImplicit() && !ForVTable) {
1128           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1129           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1130           break;
1131         } else if (FD->doesThisDeclarationHaveABody()) {
1132           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1133           break;
1134         }
1135       }
1136       FD = FD->getPreviousDecl();
1137     } while (FD);
1138   }
1139 
1140   // Make sure the result is of the requested type.
1141   if (!IsIncompleteFunction) {
1142     assert(F->getType()->getElementType() == Ty);
1143     return F;
1144   }
1145 
1146   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1147   return llvm::ConstantExpr::getBitCast(F, PTy);
1148 }
1149 
1150 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1151 /// non-null, then this function will use the specified type if it has to
1152 /// create it (this occurs when we see a definition of the function).
1153 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1154                                                  llvm::Type *Ty,
1155                                                  bool ForVTable) {
1156   // If there was no specific requested type, just convert it now.
1157   if (!Ty)
1158     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1159 
1160   StringRef MangledName = getMangledName(GD);
1161   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1162 }
1163 
1164 /// CreateRuntimeFunction - Create a new runtime function with the specified
1165 /// type and name.
1166 llvm::Constant *
1167 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1168                                      StringRef Name,
1169                                      llvm::Attributes ExtraAttrs) {
1170   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1171                                  ExtraAttrs);
1172 }
1173 
1174 /// isTypeConstant - Determine whether an object of this type can be emitted
1175 /// as a constant.
1176 ///
1177 /// If ExcludeCtor is true, the duration when the object's constructor runs
1178 /// will not be considered. The caller will need to verify that the object is
1179 /// not written to during its construction.
1180 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1181   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1182     return false;
1183 
1184   if (Context.getLangOpts().CPlusPlus) {
1185     if (const CXXRecordDecl *Record
1186           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1187       return ExcludeCtor && !Record->hasMutableFields() &&
1188              Record->hasTrivialDestructor();
1189   }
1190 
1191   return true;
1192 }
1193 
1194 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1195 /// create and return an llvm GlobalVariable with the specified type.  If there
1196 /// is something in the module with the specified name, return it potentially
1197 /// bitcasted to the right type.
1198 ///
1199 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1200 /// to set the attributes on the global when it is first created.
1201 llvm::Constant *
1202 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1203                                      llvm::PointerType *Ty,
1204                                      const VarDecl *D,
1205                                      bool UnnamedAddr) {
1206   // Lookup the entry, lazily creating it if necessary.
1207   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1208   if (Entry) {
1209     if (WeakRefReferences.erase(Entry)) {
1210       if (D && !D->hasAttr<WeakAttr>())
1211         Entry->setLinkage(llvm::Function::ExternalLinkage);
1212     }
1213 
1214     if (UnnamedAddr)
1215       Entry->setUnnamedAddr(true);
1216 
1217     if (Entry->getType() == Ty)
1218       return Entry;
1219 
1220     // Make sure the result is of the correct type.
1221     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1222   }
1223 
1224   // This is the first use or definition of a mangled name.  If there is a
1225   // deferred decl with this name, remember that we need to emit it at the end
1226   // of the file.
1227   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1228   if (DDI != DeferredDecls.end()) {
1229     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1230     // list, and remove it from DeferredDecls (since we don't need it anymore).
1231     DeferredDeclsToEmit.push_back(DDI->second);
1232     DeferredDecls.erase(DDI);
1233   }
1234 
1235   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1236   llvm::GlobalVariable *GV =
1237     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1238                              llvm::GlobalValue::ExternalLinkage,
1239                              0, MangledName, 0,
1240                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1241 
1242   // Handle things which are present even on external declarations.
1243   if (D) {
1244     // FIXME: This code is overly simple and should be merged with other global
1245     // handling.
1246     GV->setConstant(isTypeConstant(D->getType(), false));
1247 
1248     // Set linkage and visibility in case we never see a definition.
1249     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1250     if (LV.linkage() != ExternalLinkage) {
1251       // Don't set internal linkage on declarations.
1252     } else {
1253       if (D->hasAttr<DLLImportAttr>())
1254         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1255       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1256         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1257 
1258       // Set visibility on a declaration only if it's explicit.
1259       if (LV.visibilityExplicit())
1260         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1261     }
1262 
1263     if (D->isThreadSpecified())
1264       setTLSMode(GV, *D);
1265   }
1266 
1267   if (AddrSpace != Ty->getAddressSpace())
1268     return llvm::ConstantExpr::getBitCast(GV, Ty);
1269   else
1270     return GV;
1271 }
1272 
1273 
1274 llvm::GlobalVariable *
1275 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1276                                       llvm::Type *Ty,
1277                                       llvm::GlobalValue::LinkageTypes Linkage) {
1278   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1279   llvm::GlobalVariable *OldGV = 0;
1280 
1281 
1282   if (GV) {
1283     // Check if the variable has the right type.
1284     if (GV->getType()->getElementType() == Ty)
1285       return GV;
1286 
1287     // Because C++ name mangling, the only way we can end up with an already
1288     // existing global with the same name is if it has been declared extern "C".
1289       assert(GV->isDeclaration() && "Declaration has wrong type!");
1290     OldGV = GV;
1291   }
1292 
1293   // Create a new variable.
1294   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1295                                 Linkage, 0, Name);
1296 
1297   if (OldGV) {
1298     // Replace occurrences of the old variable if needed.
1299     GV->takeName(OldGV);
1300 
1301     if (!OldGV->use_empty()) {
1302       llvm::Constant *NewPtrForOldDecl =
1303       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1304       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1305     }
1306 
1307     OldGV->eraseFromParent();
1308   }
1309 
1310   return GV;
1311 }
1312 
1313 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1314 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1315 /// then it will be created with the specified type instead of whatever the
1316 /// normal requested type would be.
1317 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1318                                                   llvm::Type *Ty) {
1319   assert(D->hasGlobalStorage() && "Not a global variable");
1320   QualType ASTTy = D->getType();
1321   if (Ty == 0)
1322     Ty = getTypes().ConvertTypeForMem(ASTTy);
1323 
1324   llvm::PointerType *PTy =
1325     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1326 
1327   StringRef MangledName = getMangledName(D);
1328   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1329 }
1330 
1331 /// CreateRuntimeVariable - Create a new runtime global variable with the
1332 /// specified type and name.
1333 llvm::Constant *
1334 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1335                                      StringRef Name) {
1336   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1337                                true);
1338 }
1339 
1340 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1341   assert(!D->getInit() && "Cannot emit definite definitions here!");
1342 
1343   if (MayDeferGeneration(D)) {
1344     // If we have not seen a reference to this variable yet, place it
1345     // into the deferred declarations table to be emitted if needed
1346     // later.
1347     StringRef MangledName = getMangledName(D);
1348     if (!GetGlobalValue(MangledName)) {
1349       DeferredDecls[MangledName] = D;
1350       return;
1351     }
1352   }
1353 
1354   // The tentative definition is the only definition.
1355   EmitGlobalVarDefinition(D);
1356 }
1357 
1358 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1359   if (DefinitionRequired)
1360     getCXXABI().EmitVTables(Class);
1361 }
1362 
1363 llvm::GlobalVariable::LinkageTypes
1364 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1365   if (RD->getLinkage() != ExternalLinkage)
1366     return llvm::GlobalVariable::InternalLinkage;
1367 
1368   if (const CXXMethodDecl *KeyFunction
1369                                     = RD->getASTContext().getKeyFunction(RD)) {
1370     // If this class has a key function, use that to determine the linkage of
1371     // the vtable.
1372     const FunctionDecl *Def = 0;
1373     if (KeyFunction->hasBody(Def))
1374       KeyFunction = cast<CXXMethodDecl>(Def);
1375 
1376     switch (KeyFunction->getTemplateSpecializationKind()) {
1377       case TSK_Undeclared:
1378       case TSK_ExplicitSpecialization:
1379         // When compiling with optimizations turned on, we emit all vtables,
1380         // even if the key function is not defined in the current translation
1381         // unit. If this is the case, use available_externally linkage.
1382         if (!Def && CodeGenOpts.OptimizationLevel)
1383           return llvm::GlobalVariable::AvailableExternallyLinkage;
1384 
1385         if (KeyFunction->isInlined())
1386           return !Context.getLangOpts().AppleKext ?
1387                    llvm::GlobalVariable::LinkOnceODRLinkage :
1388                    llvm::Function::InternalLinkage;
1389 
1390         return llvm::GlobalVariable::ExternalLinkage;
1391 
1392       case TSK_ImplicitInstantiation:
1393         return !Context.getLangOpts().AppleKext ?
1394                  llvm::GlobalVariable::LinkOnceODRLinkage :
1395                  llvm::Function::InternalLinkage;
1396 
1397       case TSK_ExplicitInstantiationDefinition:
1398         return !Context.getLangOpts().AppleKext ?
1399                  llvm::GlobalVariable::WeakODRLinkage :
1400                  llvm::Function::InternalLinkage;
1401 
1402       case TSK_ExplicitInstantiationDeclaration:
1403         // FIXME: Use available_externally linkage. However, this currently
1404         // breaks LLVM's build due to undefined symbols.
1405         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1406         return !Context.getLangOpts().AppleKext ?
1407                  llvm::GlobalVariable::LinkOnceODRLinkage :
1408                  llvm::Function::InternalLinkage;
1409     }
1410   }
1411 
1412   if (Context.getLangOpts().AppleKext)
1413     return llvm::Function::InternalLinkage;
1414 
1415   switch (RD->getTemplateSpecializationKind()) {
1416   case TSK_Undeclared:
1417   case TSK_ExplicitSpecialization:
1418   case TSK_ImplicitInstantiation:
1419     // FIXME: Use available_externally linkage. However, this currently
1420     // breaks LLVM's build due to undefined symbols.
1421     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1422   case TSK_ExplicitInstantiationDeclaration:
1423     return llvm::GlobalVariable::LinkOnceODRLinkage;
1424 
1425   case TSK_ExplicitInstantiationDefinition:
1426       return llvm::GlobalVariable::WeakODRLinkage;
1427   }
1428 
1429   llvm_unreachable("Invalid TemplateSpecializationKind!");
1430 }
1431 
1432 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1433     return Context.toCharUnitsFromBits(
1434       TheDataLayout.getTypeStoreSizeInBits(Ty));
1435 }
1436 
1437 llvm::Constant *
1438 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1439                                                        const Expr *rawInit) {
1440   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1441   if (const ExprWithCleanups *withCleanups =
1442           dyn_cast<ExprWithCleanups>(rawInit)) {
1443     cleanups = withCleanups->getObjects();
1444     rawInit = withCleanups->getSubExpr();
1445   }
1446 
1447   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1448   if (!init || !init->initializesStdInitializerList() ||
1449       init->getNumInits() == 0)
1450     return 0;
1451 
1452   ASTContext &ctx = getContext();
1453   unsigned numInits = init->getNumInits();
1454   // FIXME: This check is here because we would otherwise silently miscompile
1455   // nested global std::initializer_lists. Better would be to have a real
1456   // implementation.
1457   for (unsigned i = 0; i < numInits; ++i) {
1458     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1459     if (inner && inner->initializesStdInitializerList()) {
1460       ErrorUnsupported(inner, "nested global std::initializer_list");
1461       return 0;
1462     }
1463   }
1464 
1465   // Synthesize a fake VarDecl for the array and initialize that.
1466   QualType elementType = init->getInit(0)->getType();
1467   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1468   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1469                                                 ArrayType::Normal, 0);
1470 
1471   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1472   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1473                                               arrayType, D->getLocation());
1474   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1475                                                           D->getDeclContext()),
1476                                           D->getLocStart(), D->getLocation(),
1477                                           name, arrayType, sourceInfo,
1478                                           SC_Static, SC_Static);
1479 
1480   // Now clone the InitListExpr to initialize the array instead.
1481   // Incredible hack: we want to use the existing InitListExpr here, so we need
1482   // to tell it that it no longer initializes a std::initializer_list.
1483   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1484                         init->getNumInits());
1485   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1486                                            init->getRBraceLoc());
1487   arrayInit->setType(arrayType);
1488 
1489   if (!cleanups.empty())
1490     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1491 
1492   backingArray->setInit(arrayInit);
1493 
1494   // Emit the definition of the array.
1495   EmitGlobalVarDefinition(backingArray);
1496 
1497   // Inspect the initializer list to validate it and determine its type.
1498   // FIXME: doing this every time is probably inefficient; caching would be nice
1499   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1500   RecordDecl::field_iterator field = record->field_begin();
1501   if (field == record->field_end()) {
1502     ErrorUnsupported(D, "weird std::initializer_list");
1503     return 0;
1504   }
1505   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1506   // Start pointer.
1507   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1508     ErrorUnsupported(D, "weird std::initializer_list");
1509     return 0;
1510   }
1511   ++field;
1512   if (field == record->field_end()) {
1513     ErrorUnsupported(D, "weird std::initializer_list");
1514     return 0;
1515   }
1516   bool isStartEnd = false;
1517   if (ctx.hasSameType(field->getType(), elementPtr)) {
1518     // End pointer.
1519     isStartEnd = true;
1520   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1521     ErrorUnsupported(D, "weird std::initializer_list");
1522     return 0;
1523   }
1524 
1525   // Now build an APValue representing the std::initializer_list.
1526   APValue initListValue(APValue::UninitStruct(), 0, 2);
1527   APValue &startField = initListValue.getStructField(0);
1528   APValue::LValuePathEntry startOffsetPathEntry;
1529   startOffsetPathEntry.ArrayIndex = 0;
1530   startField = APValue(APValue::LValueBase(backingArray),
1531                        CharUnits::fromQuantity(0),
1532                        llvm::makeArrayRef(startOffsetPathEntry),
1533                        /*IsOnePastTheEnd=*/false, 0);
1534 
1535   if (isStartEnd) {
1536     APValue &endField = initListValue.getStructField(1);
1537     APValue::LValuePathEntry endOffsetPathEntry;
1538     endOffsetPathEntry.ArrayIndex = numInits;
1539     endField = APValue(APValue::LValueBase(backingArray),
1540                        ctx.getTypeSizeInChars(elementType) * numInits,
1541                        llvm::makeArrayRef(endOffsetPathEntry),
1542                        /*IsOnePastTheEnd=*/true, 0);
1543   } else {
1544     APValue &sizeField = initListValue.getStructField(1);
1545     sizeField = APValue(llvm::APSInt(numElements));
1546   }
1547 
1548   // Emit the constant for the initializer_list.
1549   llvm::Constant *llvmInit =
1550       EmitConstantValueForMemory(initListValue, D->getType());
1551   assert(llvmInit && "failed to initialize as constant");
1552   return llvmInit;
1553 }
1554 
1555 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1556                                                  unsigned AddrSpace) {
1557   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1558     if (D->hasAttr<CUDAConstantAttr>())
1559       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1560     else if (D->hasAttr<CUDASharedAttr>())
1561       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1562     else
1563       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1564   }
1565 
1566   return AddrSpace;
1567 }
1568 
1569 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1570   llvm::Constant *Init = 0;
1571   QualType ASTTy = D->getType();
1572   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1573   bool NeedsGlobalCtor = false;
1574   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1575 
1576   const VarDecl *InitDecl;
1577   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1578 
1579   if (!InitExpr) {
1580     // This is a tentative definition; tentative definitions are
1581     // implicitly initialized with { 0 }.
1582     //
1583     // Note that tentative definitions are only emitted at the end of
1584     // a translation unit, so they should never have incomplete
1585     // type. In addition, EmitTentativeDefinition makes sure that we
1586     // never attempt to emit a tentative definition if a real one
1587     // exists. A use may still exists, however, so we still may need
1588     // to do a RAUW.
1589     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1590     Init = EmitNullConstant(D->getType());
1591   } else {
1592     // If this is a std::initializer_list, emit the special initializer.
1593     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1594     // An empty init list will perform zero-initialization, which happens
1595     // to be exactly what we want.
1596     // FIXME: It does so in a global constructor, which is *not* what we
1597     // want.
1598 
1599     if (!Init) {
1600       initializedGlobalDecl = GlobalDecl(D);
1601       Init = EmitConstantInit(*InitDecl);
1602     }
1603     if (!Init) {
1604       QualType T = InitExpr->getType();
1605       if (D->getType()->isReferenceType())
1606         T = D->getType();
1607 
1608       if (getLangOpts().CPlusPlus) {
1609         Init = EmitNullConstant(T);
1610         NeedsGlobalCtor = true;
1611       } else {
1612         ErrorUnsupported(D, "static initializer");
1613         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1614       }
1615     } else {
1616       // We don't need an initializer, so remove the entry for the delayed
1617       // initializer position (just in case this entry was delayed) if we
1618       // also don't need to register a destructor.
1619       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1620         DelayedCXXInitPosition.erase(D);
1621     }
1622   }
1623 
1624   llvm::Type* InitType = Init->getType();
1625   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1626 
1627   // Strip off a bitcast if we got one back.
1628   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1629     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1630            // all zero index gep.
1631            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1632     Entry = CE->getOperand(0);
1633   }
1634 
1635   // Entry is now either a Function or GlobalVariable.
1636   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1637 
1638   // We have a definition after a declaration with the wrong type.
1639   // We must make a new GlobalVariable* and update everything that used OldGV
1640   // (a declaration or tentative definition) with the new GlobalVariable*
1641   // (which will be a definition).
1642   //
1643   // This happens if there is a prototype for a global (e.g.
1644   // "extern int x[];") and then a definition of a different type (e.g.
1645   // "int x[10];"). This also happens when an initializer has a different type
1646   // from the type of the global (this happens with unions).
1647   if (GV == 0 ||
1648       GV->getType()->getElementType() != InitType ||
1649       GV->getType()->getAddressSpace() !=
1650        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1651 
1652     // Move the old entry aside so that we'll create a new one.
1653     Entry->setName(StringRef());
1654 
1655     // Make a new global with the correct type, this is now guaranteed to work.
1656     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1657 
1658     // Replace all uses of the old global with the new global
1659     llvm::Constant *NewPtrForOldDecl =
1660         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1661     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1662 
1663     // Erase the old global, since it is no longer used.
1664     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1665   }
1666 
1667   if (D->hasAttr<AnnotateAttr>())
1668     AddGlobalAnnotations(D, GV);
1669 
1670   GV->setInitializer(Init);
1671 
1672   // If it is safe to mark the global 'constant', do so now.
1673   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1674                   isTypeConstant(D->getType(), true));
1675 
1676   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1677 
1678   // Set the llvm linkage type as appropriate.
1679   llvm::GlobalValue::LinkageTypes Linkage =
1680     GetLLVMLinkageVarDefinition(D, GV);
1681   GV->setLinkage(Linkage);
1682   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1683     // common vars aren't constant even if declared const.
1684     GV->setConstant(false);
1685 
1686   SetCommonAttributes(D, GV);
1687 
1688   // Emit the initializer function if necessary.
1689   if (NeedsGlobalCtor || NeedsGlobalDtor)
1690     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1691 
1692   // If we are compiling with ASan, add metadata indicating dynamically
1693   // initialized globals.
1694   if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1695     llvm::Module &M = getModule();
1696 
1697     llvm::NamedMDNode *DynamicInitializers =
1698         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1699     llvm::Value *GlobalToAdd[] = { GV };
1700     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1701     DynamicInitializers->addOperand(ThisGlobal);
1702   }
1703 
1704   // Emit global variable debug information.
1705   if (CGDebugInfo *DI = getModuleDebugInfo())
1706     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1707       DI->EmitGlobalVariable(GV, D);
1708 }
1709 
1710 llvm::GlobalValue::LinkageTypes
1711 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1712                                            llvm::GlobalVariable *GV) {
1713   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1714   if (Linkage == GVA_Internal)
1715     return llvm::Function::InternalLinkage;
1716   else if (D->hasAttr<DLLImportAttr>())
1717     return llvm::Function::DLLImportLinkage;
1718   else if (D->hasAttr<DLLExportAttr>())
1719     return llvm::Function::DLLExportLinkage;
1720   else if (D->hasAttr<WeakAttr>()) {
1721     if (GV->isConstant())
1722       return llvm::GlobalVariable::WeakODRLinkage;
1723     else
1724       return llvm::GlobalVariable::WeakAnyLinkage;
1725   } else if (Linkage == GVA_TemplateInstantiation ||
1726              Linkage == GVA_ExplicitTemplateInstantiation)
1727     return llvm::GlobalVariable::WeakODRLinkage;
1728   else if (!getLangOpts().CPlusPlus &&
1729            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1730              D->getAttr<CommonAttr>()) &&
1731            !D->hasExternalStorage() && !D->getInit() &&
1732            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1733            !D->getAttr<WeakImportAttr>()) {
1734     // Thread local vars aren't considered common linkage.
1735     return llvm::GlobalVariable::CommonLinkage;
1736   }
1737   return llvm::GlobalVariable::ExternalLinkage;
1738 }
1739 
1740 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1741 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1742 /// existing call uses of the old function in the module, this adjusts them to
1743 /// call the new function directly.
1744 ///
1745 /// This is not just a cleanup: the always_inline pass requires direct calls to
1746 /// functions to be able to inline them.  If there is a bitcast in the way, it
1747 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1748 /// run at -O0.
1749 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1750                                                       llvm::Function *NewFn) {
1751   // If we're redefining a global as a function, don't transform it.
1752   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1753   if (OldFn == 0) return;
1754 
1755   llvm::Type *NewRetTy = NewFn->getReturnType();
1756   SmallVector<llvm::Value*, 4> ArgList;
1757 
1758   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1759        UI != E; ) {
1760     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1761     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1762     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1763     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1764     llvm::CallSite CS(CI);
1765     if (!CI || !CS.isCallee(I)) continue;
1766 
1767     // If the return types don't match exactly, and if the call isn't dead, then
1768     // we can't transform this call.
1769     if (CI->getType() != NewRetTy && !CI->use_empty())
1770       continue;
1771 
1772     // Get the attribute list.
1773     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1774     llvm::AttrListPtr AttrList = CI->getAttributes();
1775 
1776     // Get any return attributes.
1777     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1778 
1779     // Add the return attributes.
1780     if (RAttrs)
1781       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1782 
1783     // If the function was passed too few arguments, don't transform.  If extra
1784     // arguments were passed, we silently drop them.  If any of the types
1785     // mismatch, we don't transform.
1786     unsigned ArgNo = 0;
1787     bool DontTransform = false;
1788     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1789          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1790       if (CS.arg_size() == ArgNo ||
1791           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1792         DontTransform = true;
1793         break;
1794       }
1795 
1796       // Add any parameter attributes.
1797       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1798         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1799     }
1800     if (DontTransform)
1801       continue;
1802 
1803     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1804       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1805 
1806     // Okay, we can transform this.  Create the new call instruction and copy
1807     // over the required information.
1808     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1809     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1810     ArgList.clear();
1811     if (!NewCall->getType()->isVoidTy())
1812       NewCall->takeName(CI);
1813     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1814     NewCall->setCallingConv(CI->getCallingConv());
1815 
1816     // Finally, remove the old call, replacing any uses with the new one.
1817     if (!CI->use_empty())
1818       CI->replaceAllUsesWith(NewCall);
1819 
1820     // Copy debug location attached to CI.
1821     if (!CI->getDebugLoc().isUnknown())
1822       NewCall->setDebugLoc(CI->getDebugLoc());
1823     CI->eraseFromParent();
1824   }
1825 }
1826 
1827 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1828   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1829   // If we have a definition, this might be a deferred decl. If the
1830   // instantiation is explicit, make sure we emit it at the end.
1831   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1832     GetAddrOfGlobalVar(VD);
1833 }
1834 
1835 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1836   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1837 
1838   // Compute the function info and LLVM type.
1839   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1840   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1841 
1842   // Get or create the prototype for the function.
1843   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1844 
1845   // Strip off a bitcast if we got one back.
1846   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1847     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1848     Entry = CE->getOperand(0);
1849   }
1850 
1851 
1852   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1853     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1854 
1855     // If the types mismatch then we have to rewrite the definition.
1856     assert(OldFn->isDeclaration() &&
1857            "Shouldn't replace non-declaration");
1858 
1859     // F is the Function* for the one with the wrong type, we must make a new
1860     // Function* and update everything that used F (a declaration) with the new
1861     // Function* (which will be a definition).
1862     //
1863     // This happens if there is a prototype for a function
1864     // (e.g. "int f()") and then a definition of a different type
1865     // (e.g. "int f(int x)").  Move the old function aside so that it
1866     // doesn't interfere with GetAddrOfFunction.
1867     OldFn->setName(StringRef());
1868     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1869 
1870     // If this is an implementation of a function without a prototype, try to
1871     // replace any existing uses of the function (which may be calls) with uses
1872     // of the new function
1873     if (D->getType()->isFunctionNoProtoType()) {
1874       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1875       OldFn->removeDeadConstantUsers();
1876     }
1877 
1878     // Replace uses of F with the Function we will endow with a body.
1879     if (!Entry->use_empty()) {
1880       llvm::Constant *NewPtrForOldDecl =
1881         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1882       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1883     }
1884 
1885     // Ok, delete the old function now, which is dead.
1886     OldFn->eraseFromParent();
1887 
1888     Entry = NewFn;
1889   }
1890 
1891   // We need to set linkage and visibility on the function before
1892   // generating code for it because various parts of IR generation
1893   // want to propagate this information down (e.g. to local static
1894   // declarations).
1895   llvm::Function *Fn = cast<llvm::Function>(Entry);
1896   setFunctionLinkage(D, Fn);
1897 
1898   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1899   setGlobalVisibility(Fn, D);
1900 
1901   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1902 
1903   SetFunctionDefinitionAttributes(D, Fn);
1904   SetLLVMFunctionAttributesForDefinition(D, Fn);
1905 
1906   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1907     AddGlobalCtor(Fn, CA->getPriority());
1908   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1909     AddGlobalDtor(Fn, DA->getPriority());
1910   if (D->hasAttr<AnnotateAttr>())
1911     AddGlobalAnnotations(D, Fn);
1912 }
1913 
1914 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1915   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1916   const AliasAttr *AA = D->getAttr<AliasAttr>();
1917   assert(AA && "Not an alias?");
1918 
1919   StringRef MangledName = getMangledName(GD);
1920 
1921   // If there is a definition in the module, then it wins over the alias.
1922   // This is dubious, but allow it to be safe.  Just ignore the alias.
1923   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1924   if (Entry && !Entry->isDeclaration())
1925     return;
1926 
1927   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1928 
1929   // Create a reference to the named value.  This ensures that it is emitted
1930   // if a deferred decl.
1931   llvm::Constant *Aliasee;
1932   if (isa<llvm::FunctionType>(DeclTy))
1933     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1934                                       /*ForVTable=*/false);
1935   else
1936     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1937                                     llvm::PointerType::getUnqual(DeclTy), 0);
1938 
1939   // Create the new alias itself, but don't set a name yet.
1940   llvm::GlobalValue *GA =
1941     new llvm::GlobalAlias(Aliasee->getType(),
1942                           llvm::Function::ExternalLinkage,
1943                           "", Aliasee, &getModule());
1944 
1945   if (Entry) {
1946     assert(Entry->isDeclaration());
1947 
1948     // If there is a declaration in the module, then we had an extern followed
1949     // by the alias, as in:
1950     //   extern int test6();
1951     //   ...
1952     //   int test6() __attribute__((alias("test7")));
1953     //
1954     // Remove it and replace uses of it with the alias.
1955     GA->takeName(Entry);
1956 
1957     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1958                                                           Entry->getType()));
1959     Entry->eraseFromParent();
1960   } else {
1961     GA->setName(MangledName);
1962   }
1963 
1964   // Set attributes which are particular to an alias; this is a
1965   // specialization of the attributes which may be set on a global
1966   // variable/function.
1967   if (D->hasAttr<DLLExportAttr>()) {
1968     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1969       // The dllexport attribute is ignored for undefined symbols.
1970       if (FD->hasBody())
1971         GA->setLinkage(llvm::Function::DLLExportLinkage);
1972     } else {
1973       GA->setLinkage(llvm::Function::DLLExportLinkage);
1974     }
1975   } else if (D->hasAttr<WeakAttr>() ||
1976              D->hasAttr<WeakRefAttr>() ||
1977              D->isWeakImported()) {
1978     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1979   }
1980 
1981   SetCommonAttributes(D, GA);
1982 }
1983 
1984 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1985                                             ArrayRef<llvm::Type*> Tys) {
1986   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1987                                          Tys);
1988 }
1989 
1990 static llvm::StringMapEntry<llvm::Constant*> &
1991 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1992                          const StringLiteral *Literal,
1993                          bool TargetIsLSB,
1994                          bool &IsUTF16,
1995                          unsigned &StringLength) {
1996   StringRef String = Literal->getString();
1997   unsigned NumBytes = String.size();
1998 
1999   // Check for simple case.
2000   if (!Literal->containsNonAsciiOrNull()) {
2001     StringLength = NumBytes;
2002     return Map.GetOrCreateValue(String);
2003   }
2004 
2005   // Otherwise, convert the UTF8 literals into a string of shorts.
2006   IsUTF16 = true;
2007 
2008   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2009   const UTF8 *FromPtr = (const UTF8 *)String.data();
2010   UTF16 *ToPtr = &ToBuf[0];
2011 
2012   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2013                            &ToPtr, ToPtr + NumBytes,
2014                            strictConversion);
2015 
2016   // ConvertUTF8toUTF16 returns the length in ToPtr.
2017   StringLength = ToPtr - &ToBuf[0];
2018 
2019   // Add an explicit null.
2020   *ToPtr = 0;
2021   return Map.
2022     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2023                                (StringLength + 1) * 2));
2024 }
2025 
2026 static llvm::StringMapEntry<llvm::Constant*> &
2027 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2028                        const StringLiteral *Literal,
2029                        unsigned &StringLength) {
2030   StringRef String = Literal->getString();
2031   StringLength = String.size();
2032   return Map.GetOrCreateValue(String);
2033 }
2034 
2035 llvm::Constant *
2036 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2037   unsigned StringLength = 0;
2038   bool isUTF16 = false;
2039   llvm::StringMapEntry<llvm::Constant*> &Entry =
2040     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2041                              getDataLayout().isLittleEndian(),
2042                              isUTF16, StringLength);
2043 
2044   if (llvm::Constant *C = Entry.getValue())
2045     return C;
2046 
2047   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2048   llvm::Constant *Zeros[] = { Zero, Zero };
2049 
2050   // If we don't already have it, get __CFConstantStringClassReference.
2051   if (!CFConstantStringClassRef) {
2052     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2053     Ty = llvm::ArrayType::get(Ty, 0);
2054     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2055                                            "__CFConstantStringClassReference");
2056     // Decay array -> ptr
2057     CFConstantStringClassRef =
2058       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2059   }
2060 
2061   QualType CFTy = getContext().getCFConstantStringType();
2062 
2063   llvm::StructType *STy =
2064     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2065 
2066   llvm::Constant *Fields[4];
2067 
2068   // Class pointer.
2069   Fields[0] = CFConstantStringClassRef;
2070 
2071   // Flags.
2072   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2073   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2074     llvm::ConstantInt::get(Ty, 0x07C8);
2075 
2076   // String pointer.
2077   llvm::Constant *C = 0;
2078   if (isUTF16) {
2079     ArrayRef<uint16_t> Arr =
2080       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2081                                    Entry.getKey().size() / 2);
2082     C = llvm::ConstantDataArray::get(VMContext, Arr);
2083   } else {
2084     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2085   }
2086 
2087   llvm::GlobalValue::LinkageTypes Linkage;
2088   if (isUTF16)
2089     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2090     Linkage = llvm::GlobalValue::InternalLinkage;
2091   else
2092     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2093     // when using private linkage. It is not clear if this is a bug in ld
2094     // or a reasonable new restriction.
2095     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2096 
2097   // Note: -fwritable-strings doesn't make the backing store strings of
2098   // CFStrings writable. (See <rdar://problem/10657500>)
2099   llvm::GlobalVariable *GV =
2100     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2101                              Linkage, C, ".str");
2102   GV->setUnnamedAddr(true);
2103   if (isUTF16) {
2104     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2105     GV->setAlignment(Align.getQuantity());
2106   } else {
2107     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2108     GV->setAlignment(Align.getQuantity());
2109   }
2110 
2111   // String.
2112   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2113 
2114   if (isUTF16)
2115     // Cast the UTF16 string to the correct type.
2116     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2117 
2118   // String length.
2119   Ty = getTypes().ConvertType(getContext().LongTy);
2120   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2121 
2122   // The struct.
2123   C = llvm::ConstantStruct::get(STy, Fields);
2124   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2125                                 llvm::GlobalVariable::PrivateLinkage, C,
2126                                 "_unnamed_cfstring_");
2127   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2128     GV->setSection(Sect);
2129   Entry.setValue(GV);
2130 
2131   return GV;
2132 }
2133 
2134 static RecordDecl *
2135 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2136                  DeclContext *DC, IdentifierInfo *Id) {
2137   SourceLocation Loc;
2138   if (Ctx.getLangOpts().CPlusPlus)
2139     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2140   else
2141     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2142 }
2143 
2144 llvm::Constant *
2145 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2146   unsigned StringLength = 0;
2147   llvm::StringMapEntry<llvm::Constant*> &Entry =
2148     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2149 
2150   if (llvm::Constant *C = Entry.getValue())
2151     return C;
2152 
2153   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2154   llvm::Constant *Zeros[] = { Zero, Zero };
2155 
2156   // If we don't already have it, get _NSConstantStringClassReference.
2157   if (!ConstantStringClassRef) {
2158     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2159     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2160     llvm::Constant *GV;
2161     if (LangOpts.ObjCRuntime.isNonFragile()) {
2162       std::string str =
2163         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2164                             : "OBJC_CLASS_$_" + StringClass;
2165       GV = getObjCRuntime().GetClassGlobal(str);
2166       // Make sure the result is of the correct type.
2167       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2168       ConstantStringClassRef =
2169         llvm::ConstantExpr::getBitCast(GV, PTy);
2170     } else {
2171       std::string str =
2172         StringClass.empty() ? "_NSConstantStringClassReference"
2173                             : "_" + StringClass + "ClassReference";
2174       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2175       GV = CreateRuntimeVariable(PTy, str);
2176       // Decay array -> ptr
2177       ConstantStringClassRef =
2178         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2179     }
2180   }
2181 
2182   if (!NSConstantStringType) {
2183     // Construct the type for a constant NSString.
2184     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2185                                      Context.getTranslationUnitDecl(),
2186                                    &Context.Idents.get("__builtin_NSString"));
2187     D->startDefinition();
2188 
2189     QualType FieldTypes[3];
2190 
2191     // const int *isa;
2192     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2193     // const char *str;
2194     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2195     // unsigned int length;
2196     FieldTypes[2] = Context.UnsignedIntTy;
2197 
2198     // Create fields
2199     for (unsigned i = 0; i < 3; ++i) {
2200       FieldDecl *Field = FieldDecl::Create(Context, D,
2201                                            SourceLocation(),
2202                                            SourceLocation(), 0,
2203                                            FieldTypes[i], /*TInfo=*/0,
2204                                            /*BitWidth=*/0,
2205                                            /*Mutable=*/false,
2206                                            ICIS_NoInit);
2207       Field->setAccess(AS_public);
2208       D->addDecl(Field);
2209     }
2210 
2211     D->completeDefinition();
2212     QualType NSTy = Context.getTagDeclType(D);
2213     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2214   }
2215 
2216   llvm::Constant *Fields[3];
2217 
2218   // Class pointer.
2219   Fields[0] = ConstantStringClassRef;
2220 
2221   // String pointer.
2222   llvm::Constant *C =
2223     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2224 
2225   llvm::GlobalValue::LinkageTypes Linkage;
2226   bool isConstant;
2227   Linkage = llvm::GlobalValue::PrivateLinkage;
2228   isConstant = !LangOpts.WritableStrings;
2229 
2230   llvm::GlobalVariable *GV =
2231   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2232                            ".str");
2233   GV->setUnnamedAddr(true);
2234   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2235   GV->setAlignment(Align.getQuantity());
2236   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2237 
2238   // String length.
2239   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2240   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2241 
2242   // The struct.
2243   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2244   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2245                                 llvm::GlobalVariable::PrivateLinkage, C,
2246                                 "_unnamed_nsstring_");
2247   // FIXME. Fix section.
2248   if (const char *Sect =
2249         LangOpts.ObjCRuntime.isNonFragile()
2250           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2251           : getContext().getTargetInfo().getNSStringSection())
2252     GV->setSection(Sect);
2253   Entry.setValue(GV);
2254 
2255   return GV;
2256 }
2257 
2258 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2259   if (ObjCFastEnumerationStateType.isNull()) {
2260     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2261                                      Context.getTranslationUnitDecl(),
2262                       &Context.Idents.get("__objcFastEnumerationState"));
2263     D->startDefinition();
2264 
2265     QualType FieldTypes[] = {
2266       Context.UnsignedLongTy,
2267       Context.getPointerType(Context.getObjCIdType()),
2268       Context.getPointerType(Context.UnsignedLongTy),
2269       Context.getConstantArrayType(Context.UnsignedLongTy,
2270                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2271     };
2272 
2273     for (size_t i = 0; i < 4; ++i) {
2274       FieldDecl *Field = FieldDecl::Create(Context,
2275                                            D,
2276                                            SourceLocation(),
2277                                            SourceLocation(), 0,
2278                                            FieldTypes[i], /*TInfo=*/0,
2279                                            /*BitWidth=*/0,
2280                                            /*Mutable=*/false,
2281                                            ICIS_NoInit);
2282       Field->setAccess(AS_public);
2283       D->addDecl(Field);
2284     }
2285 
2286     D->completeDefinition();
2287     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2288   }
2289 
2290   return ObjCFastEnumerationStateType;
2291 }
2292 
2293 llvm::Constant *
2294 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2295   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2296 
2297   // Don't emit it as the address of the string, emit the string data itself
2298   // as an inline array.
2299   if (E->getCharByteWidth() == 1) {
2300     SmallString<64> Str(E->getString());
2301 
2302     // Resize the string to the right size, which is indicated by its type.
2303     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2304     Str.resize(CAT->getSize().getZExtValue());
2305     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2306   }
2307 
2308   llvm::ArrayType *AType =
2309     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2310   llvm::Type *ElemTy = AType->getElementType();
2311   unsigned NumElements = AType->getNumElements();
2312 
2313   // Wide strings have either 2-byte or 4-byte elements.
2314   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2315     SmallVector<uint16_t, 32> Elements;
2316     Elements.reserve(NumElements);
2317 
2318     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2319       Elements.push_back(E->getCodeUnit(i));
2320     Elements.resize(NumElements);
2321     return llvm::ConstantDataArray::get(VMContext, Elements);
2322   }
2323 
2324   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2325   SmallVector<uint32_t, 32> Elements;
2326   Elements.reserve(NumElements);
2327 
2328   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2329     Elements.push_back(E->getCodeUnit(i));
2330   Elements.resize(NumElements);
2331   return llvm::ConstantDataArray::get(VMContext, Elements);
2332 }
2333 
2334 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2335 /// constant array for the given string literal.
2336 llvm::Constant *
2337 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2338   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2339   if (S->isAscii() || S->isUTF8()) {
2340     SmallString<64> Str(S->getString());
2341 
2342     // Resize the string to the right size, which is indicated by its type.
2343     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2344     Str.resize(CAT->getSize().getZExtValue());
2345     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2346   }
2347 
2348   // FIXME: the following does not memoize wide strings.
2349   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2350   llvm::GlobalVariable *GV =
2351     new llvm::GlobalVariable(getModule(),C->getType(),
2352                              !LangOpts.WritableStrings,
2353                              llvm::GlobalValue::PrivateLinkage,
2354                              C,".str");
2355 
2356   GV->setAlignment(Align.getQuantity());
2357   GV->setUnnamedAddr(true);
2358   return GV;
2359 }
2360 
2361 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2362 /// array for the given ObjCEncodeExpr node.
2363 llvm::Constant *
2364 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2365   std::string Str;
2366   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2367 
2368   return GetAddrOfConstantCString(Str);
2369 }
2370 
2371 
2372 /// GenerateWritableString -- Creates storage for a string literal.
2373 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2374                                              bool constant,
2375                                              CodeGenModule &CGM,
2376                                              const char *GlobalName,
2377                                              unsigned Alignment) {
2378   // Create Constant for this string literal. Don't add a '\0'.
2379   llvm::Constant *C =
2380       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2381 
2382   // Create a global variable for this string
2383   llvm::GlobalVariable *GV =
2384     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2385                              llvm::GlobalValue::PrivateLinkage,
2386                              C, GlobalName);
2387   GV->setAlignment(Alignment);
2388   GV->setUnnamedAddr(true);
2389   return GV;
2390 }
2391 
2392 /// GetAddrOfConstantString - Returns a pointer to a character array
2393 /// containing the literal. This contents are exactly that of the
2394 /// given string, i.e. it will not be null terminated automatically;
2395 /// see GetAddrOfConstantCString. Note that whether the result is
2396 /// actually a pointer to an LLVM constant depends on
2397 /// Feature.WriteableStrings.
2398 ///
2399 /// The result has pointer to array type.
2400 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2401                                                        const char *GlobalName,
2402                                                        unsigned Alignment) {
2403   // Get the default prefix if a name wasn't specified.
2404   if (!GlobalName)
2405     GlobalName = ".str";
2406 
2407   // Don't share any string literals if strings aren't constant.
2408   if (LangOpts.WritableStrings)
2409     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2410 
2411   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2412     ConstantStringMap.GetOrCreateValue(Str);
2413 
2414   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2415     if (Alignment > GV->getAlignment()) {
2416       GV->setAlignment(Alignment);
2417     }
2418     return GV;
2419   }
2420 
2421   // Create a global variable for this.
2422   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2423                                                    Alignment);
2424   Entry.setValue(GV);
2425   return GV;
2426 }
2427 
2428 /// GetAddrOfConstantCString - Returns a pointer to a character
2429 /// array containing the literal and a terminating '\0'
2430 /// character. The result has pointer to array type.
2431 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2432                                                         const char *GlobalName,
2433                                                         unsigned Alignment) {
2434   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2435   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2436 }
2437 
2438 /// EmitObjCPropertyImplementations - Emit information for synthesized
2439 /// properties for an implementation.
2440 void CodeGenModule::EmitObjCPropertyImplementations(const
2441                                                     ObjCImplementationDecl *D) {
2442   for (ObjCImplementationDecl::propimpl_iterator
2443          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2444     ObjCPropertyImplDecl *PID = *i;
2445 
2446     // Dynamic is just for type-checking.
2447     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2448       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2449 
2450       // Determine which methods need to be implemented, some may have
2451       // been overridden. Note that ::isSynthesized is not the method
2452       // we want, that just indicates if the decl came from a
2453       // property. What we want to know is if the method is defined in
2454       // this implementation.
2455       if (!D->getInstanceMethod(PD->getGetterName()))
2456         CodeGenFunction(*this).GenerateObjCGetter(
2457                                  const_cast<ObjCImplementationDecl *>(D), PID);
2458       if (!PD->isReadOnly() &&
2459           !D->getInstanceMethod(PD->getSetterName()))
2460         CodeGenFunction(*this).GenerateObjCSetter(
2461                                  const_cast<ObjCImplementationDecl *>(D), PID);
2462     }
2463   }
2464 }
2465 
2466 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2467   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2468   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2469        ivar; ivar = ivar->getNextIvar())
2470     if (ivar->getType().isDestructedType())
2471       return true;
2472 
2473   return false;
2474 }
2475 
2476 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2477 /// for an implementation.
2478 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2479   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2480   if (needsDestructMethod(D)) {
2481     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2482     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2483     ObjCMethodDecl *DTORMethod =
2484       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2485                              cxxSelector, getContext().VoidTy, 0, D,
2486                              /*isInstance=*/true, /*isVariadic=*/false,
2487                           /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2488                              /*isDefined=*/false, ObjCMethodDecl::Required);
2489     D->addInstanceMethod(DTORMethod);
2490     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2491     D->setHasCXXStructors(true);
2492   }
2493 
2494   // If the implementation doesn't have any ivar initializers, we don't need
2495   // a .cxx_construct.
2496   if (D->getNumIvarInitializers() == 0)
2497     return;
2498 
2499   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2500   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2501   // The constructor returns 'self'.
2502   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2503                                                 D->getLocation(),
2504                                                 D->getLocation(),
2505                                                 cxxSelector,
2506                                                 getContext().getObjCIdType(), 0,
2507                                                 D, /*isInstance=*/true,
2508                                                 /*isVariadic=*/false,
2509                                                 /*isSynthesized=*/true,
2510                                                 /*isImplicitlyDeclared=*/true,
2511                                                 /*isDefined=*/false,
2512                                                 ObjCMethodDecl::Required);
2513   D->addInstanceMethod(CTORMethod);
2514   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2515   D->setHasCXXStructors(true);
2516 }
2517 
2518 /// EmitNamespace - Emit all declarations in a namespace.
2519 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2520   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2521        I != E; ++I)
2522     EmitTopLevelDecl(*I);
2523 }
2524 
2525 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2526 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2527   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2528       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2529     ErrorUnsupported(LSD, "linkage spec");
2530     return;
2531   }
2532 
2533   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2534        I != E; ++I)
2535     EmitTopLevelDecl(*I);
2536 }
2537 
2538 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2539 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2540   // If an error has occurred, stop code generation, but continue
2541   // parsing and semantic analysis (to ensure all warnings and errors
2542   // are emitted).
2543   if (Diags.hasErrorOccurred())
2544     return;
2545 
2546   // Ignore dependent declarations.
2547   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2548     return;
2549 
2550   switch (D->getKind()) {
2551   case Decl::CXXConversion:
2552   case Decl::CXXMethod:
2553   case Decl::Function:
2554     // Skip function templates
2555     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2556         cast<FunctionDecl>(D)->isLateTemplateParsed())
2557       return;
2558 
2559     EmitGlobal(cast<FunctionDecl>(D));
2560     break;
2561 
2562   case Decl::Var:
2563     EmitGlobal(cast<VarDecl>(D));
2564     break;
2565 
2566   // Indirect fields from global anonymous structs and unions can be
2567   // ignored; only the actual variable requires IR gen support.
2568   case Decl::IndirectField:
2569     break;
2570 
2571   // C++ Decls
2572   case Decl::Namespace:
2573     EmitNamespace(cast<NamespaceDecl>(D));
2574     break;
2575     // No code generation needed.
2576   case Decl::UsingShadow:
2577   case Decl::Using:
2578   case Decl::UsingDirective:
2579   case Decl::ClassTemplate:
2580   case Decl::FunctionTemplate:
2581   case Decl::TypeAliasTemplate:
2582   case Decl::NamespaceAlias:
2583   case Decl::Block:
2584   case Decl::Import:
2585     break;
2586   case Decl::CXXConstructor:
2587     // Skip function templates
2588     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2589         cast<FunctionDecl>(D)->isLateTemplateParsed())
2590       return;
2591 
2592     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2593     break;
2594   case Decl::CXXDestructor:
2595     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2596       return;
2597     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2598     break;
2599 
2600   case Decl::StaticAssert:
2601     // Nothing to do.
2602     break;
2603 
2604   // Objective-C Decls
2605 
2606   // Forward declarations, no (immediate) code generation.
2607   case Decl::ObjCInterface:
2608   case Decl::ObjCCategory:
2609     break;
2610 
2611   case Decl::ObjCProtocol: {
2612     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2613     if (Proto->isThisDeclarationADefinition())
2614       ObjCRuntime->GenerateProtocol(Proto);
2615     break;
2616   }
2617 
2618   case Decl::ObjCCategoryImpl:
2619     // Categories have properties but don't support synthesize so we
2620     // can ignore them here.
2621     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2622     break;
2623 
2624   case Decl::ObjCImplementation: {
2625     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2626     EmitObjCPropertyImplementations(OMD);
2627     EmitObjCIvarInitializations(OMD);
2628     ObjCRuntime->GenerateClass(OMD);
2629     // Emit global variable debug information.
2630     if (CGDebugInfo *DI = getModuleDebugInfo())
2631       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2632 				   OMD->getLocation());
2633 
2634     break;
2635   }
2636   case Decl::ObjCMethod: {
2637     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2638     // If this is not a prototype, emit the body.
2639     if (OMD->getBody())
2640       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2641     break;
2642   }
2643   case Decl::ObjCCompatibleAlias:
2644     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2645     break;
2646 
2647   case Decl::LinkageSpec:
2648     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2649     break;
2650 
2651   case Decl::FileScopeAsm: {
2652     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2653     StringRef AsmString = AD->getAsmString()->getString();
2654 
2655     const std::string &S = getModule().getModuleInlineAsm();
2656     if (S.empty())
2657       getModule().setModuleInlineAsm(AsmString);
2658     else if (S.end()[-1] == '\n')
2659       getModule().setModuleInlineAsm(S + AsmString.str());
2660     else
2661       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2662     break;
2663   }
2664 
2665   default:
2666     // Make sure we handled everything we should, every other kind is a
2667     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2668     // function. Need to recode Decl::Kind to do that easily.
2669     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2670   }
2671 }
2672 
2673 /// Turns the given pointer into a constant.
2674 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2675                                           const void *Ptr) {
2676   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2677   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2678   return llvm::ConstantInt::get(i64, PtrInt);
2679 }
2680 
2681 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2682                                    llvm::NamedMDNode *&GlobalMetadata,
2683                                    GlobalDecl D,
2684                                    llvm::GlobalValue *Addr) {
2685   if (!GlobalMetadata)
2686     GlobalMetadata =
2687       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2688 
2689   // TODO: should we report variant information for ctors/dtors?
2690   llvm::Value *Ops[] = {
2691     Addr,
2692     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2693   };
2694   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2695 }
2696 
2697 /// Emits metadata nodes associating all the global values in the
2698 /// current module with the Decls they came from.  This is useful for
2699 /// projects using IR gen as a subroutine.
2700 ///
2701 /// Since there's currently no way to associate an MDNode directly
2702 /// with an llvm::GlobalValue, we create a global named metadata
2703 /// with the name 'clang.global.decl.ptrs'.
2704 void CodeGenModule::EmitDeclMetadata() {
2705   llvm::NamedMDNode *GlobalMetadata = 0;
2706 
2707   // StaticLocalDeclMap
2708   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2709          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2710        I != E; ++I) {
2711     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2712     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2713   }
2714 }
2715 
2716 /// Emits metadata nodes for all the local variables in the current
2717 /// function.
2718 void CodeGenFunction::EmitDeclMetadata() {
2719   if (LocalDeclMap.empty()) return;
2720 
2721   llvm::LLVMContext &Context = getLLVMContext();
2722 
2723   // Find the unique metadata ID for this name.
2724   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2725 
2726   llvm::NamedMDNode *GlobalMetadata = 0;
2727 
2728   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2729          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2730     const Decl *D = I->first;
2731     llvm::Value *Addr = I->second;
2732 
2733     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2734       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2735       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2736     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2737       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2738       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2739     }
2740   }
2741 }
2742 
2743 void CodeGenModule::EmitCoverageFile() {
2744   if (!getCodeGenOpts().CoverageFile.empty()) {
2745     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2746       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2747       llvm::LLVMContext &Ctx = TheModule.getContext();
2748       llvm::MDString *CoverageFile =
2749           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2750       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2751         llvm::MDNode *CU = CUNode->getOperand(i);
2752         llvm::Value *node[] = { CoverageFile, CU };
2753         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2754         GCov->addOperand(N);
2755       }
2756     }
2757   }
2758 }
2759