xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision dcfba7b35b15ec4457ff7b7521507d944069d8f1)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/Frontend/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclTemplate.h"
27 #include "clang/AST/RecordLayout.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/Diagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Basic/ConvertUTF.h"
33 #include "llvm/CallingConv.h"
34 #include "llvm/Module.h"
35 #include "llvm/Intrinsics.h"
36 #include "llvm/LLVMContext.h"
37 #include "llvm/ADT/Triple.h"
38 #include "llvm/Target/TargetData.h"
39 #include "llvm/Support/CallSite.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 
45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
46                              llvm::Module &M, const llvm::TargetData &TD,
47                              Diagnostic &diags)
48   : BlockModule(C, M, TD, Types, *this), Context(C),
49     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
50     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
51     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
52     VTables(*this), Runtime(0), ABI(0),
53     CFConstantStringClassRef(0), NSConstantStringClassRef(0),
54     VMContext(M.getContext()),
55     NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
56     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
57     BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
58     BlockObjectAssign(0), BlockObjectDispose(0){
59 
60   if (!Features.ObjC1)
61     Runtime = 0;
62   else if (!Features.NeXTRuntime)
63     Runtime = CreateGNUObjCRuntime(*this);
64   else if (Features.ObjCNonFragileABI)
65     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
66   else
67     Runtime = CreateMacObjCRuntime(*this);
68 
69   if (!Features.CPlusPlus)
70     ABI = 0;
71   else createCXXABI();
72 
73   // If debug info generation is enabled, create the CGDebugInfo object.
74   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
75 }
76 
77 CodeGenModule::~CodeGenModule() {
78   delete Runtime;
79   delete ABI;
80   delete DebugInfo;
81 }
82 
83 void CodeGenModule::createObjCRuntime() {
84   if (!Features.NeXTRuntime)
85     Runtime = CreateGNUObjCRuntime(*this);
86   else if (Features.ObjCNonFragileABI)
87     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
88   else
89     Runtime = CreateMacObjCRuntime(*this);
90 }
91 
92 void CodeGenModule::createCXXABI() {
93   if (Context.Target.getCXXABI() == "microsoft")
94     ABI = CreateMicrosoftCXXABI(*this);
95   else
96     ABI = CreateItaniumCXXABI(*this);
97 }
98 
99 void CodeGenModule::Release() {
100   EmitDeferred();
101   EmitCXXGlobalInitFunc();
102   EmitCXXGlobalDtorFunc();
103   if (Runtime)
104     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
105       AddGlobalCtor(ObjCInitFunction);
106   EmitCtorList(GlobalCtors, "llvm.global_ctors");
107   EmitCtorList(GlobalDtors, "llvm.global_dtors");
108   EmitAnnotations();
109   EmitLLVMUsed();
110 
111   if (getCodeGenOpts().EmitDeclMetadata)
112     EmitDeclMetadata();
113 }
114 
115 bool CodeGenModule::isTargetDarwin() const {
116   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
117 }
118 
119 /// ErrorUnsupported - Print out an error that codegen doesn't support the
120 /// specified stmt yet.
121 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
122                                      bool OmitOnError) {
123   if (OmitOnError && getDiags().hasErrorOccurred())
124     return;
125   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
126                                                "cannot compile this %0 yet");
127   std::string Msg = Type;
128   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
129     << Msg << S->getSourceRange();
130 }
131 
132 /// ErrorUnsupported - Print out an error that codegen doesn't support the
133 /// specified decl yet.
134 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
135                                      bool OmitOnError) {
136   if (OmitOnError && getDiags().hasErrorOccurred())
137     return;
138   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
139                                                "cannot compile this %0 yet");
140   std::string Msg = Type;
141   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
142 }
143 
144 LangOptions::VisibilityMode
145 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
146   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
147     if (VD->getStorageClass() == VarDecl::PrivateExtern)
148       return LangOptions::Hidden;
149 
150   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
151     switch (attr->getVisibility()) {
152     default: assert(0 && "Unknown visibility!");
153     case VisibilityAttr::Default:
154       return LangOptions::Default;
155     case VisibilityAttr::Hidden:
156       return LangOptions::Hidden;
157     case VisibilityAttr::Protected:
158       return LangOptions::Protected;
159     }
160   }
161 
162   if (getLangOptions().CPlusPlus) {
163     // Entities subject to an explicit instantiation declaration get default
164     // visibility.
165     if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
166       if (Function->getTemplateSpecializationKind()
167                                         == TSK_ExplicitInstantiationDeclaration)
168         return LangOptions::Default;
169     } else if (const ClassTemplateSpecializationDecl *ClassSpec
170                               = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
171       if (ClassSpec->getSpecializationKind()
172                                         == TSK_ExplicitInstantiationDeclaration)
173         return LangOptions::Default;
174     } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
175       if (Record->getTemplateSpecializationKind()
176                                         == TSK_ExplicitInstantiationDeclaration)
177         return LangOptions::Default;
178     } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
179       if (Var->isStaticDataMember() &&
180           (Var->getTemplateSpecializationKind()
181                                       == TSK_ExplicitInstantiationDeclaration))
182         return LangOptions::Default;
183     }
184 
185     // If -fvisibility-inlines-hidden was provided, then inline C++ member
186     // functions get "hidden" visibility by default.
187     if (getLangOptions().InlineVisibilityHidden)
188       if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
189         if (Method->isInlined())
190           return LangOptions::Hidden;
191   }
192 
193   // If this decl is contained in a class, it should have the same visibility
194   // as the parent class.
195   if (const DeclContext *DC = D->getDeclContext())
196     if (DC->isRecord())
197       return getDeclVisibilityMode(cast<Decl>(DC));
198 
199   return getLangOptions().getVisibilityMode();
200 }
201 
202 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
203                                         const Decl *D) const {
204   // Internal definitions always have default visibility.
205   if (GV->hasLocalLinkage()) {
206     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
207     return;
208   }
209 
210   switch (getDeclVisibilityMode(D)) {
211   default: assert(0 && "Unknown visibility!");
212   case LangOptions::Default:
213     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
214   case LangOptions::Hidden:
215     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
216   case LangOptions::Protected:
217     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
218   }
219 }
220 
221 /// Set the symbol visibility of type information (vtable and RTTI)
222 /// associated with the given type.
223 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
224                                       const CXXRecordDecl *RD,
225                                       bool IsForRTTI) const {
226   setGlobalVisibility(GV, RD);
227 
228   if (!CodeGenOpts.HiddenWeakVTables)
229     return;
230 
231   // We want to drop the visibility to hidden for weak type symbols.
232   // This isn't possible if there might be unresolved references
233   // elsewhere that rely on this symbol being visible.
234 
235   // This should be kept roughly in sync with setThunkVisibility
236   // in CGVTables.cpp.
237 
238   // Preconditions.
239   if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
240       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241     return;
242 
243   // Don't override an explicit visibility attribute.
244   if (RD->hasAttr<VisibilityAttr>())
245     return;
246 
247   switch (RD->getTemplateSpecializationKind()) {
248   // We have to disable the optimization if this is an EI definition
249   // because there might be EI declarations in other shared objects.
250   case TSK_ExplicitInstantiationDefinition:
251   case TSK_ExplicitInstantiationDeclaration:
252     return;
253 
254   // Every use of a non-template class's type information has to emit it.
255   case TSK_Undeclared:
256     break;
257 
258   // In theory, implicit instantiations can ignore the possibility of
259   // an explicit instantiation declaration because there necessarily
260   // must be an EI definition somewhere with default visibility.  In
261   // practice, it's possible to have an explicit instantiation for
262   // an arbitrary template class, and linkers aren't necessarily able
263   // to deal with mixed-visibility symbols.
264   case TSK_ExplicitSpecialization:
265   case TSK_ImplicitInstantiation:
266     if (!CodeGenOpts.HiddenWeakTemplateVTables)
267       return;
268     break;
269   }
270 
271   // If there's a key function, there may be translation units
272   // that don't have the key function's definition.  But ignore
273   // this if we're emitting RTTI under -fno-rtti.
274   if (!IsForRTTI || Features.RTTI)
275     if (Context.getKeyFunction(RD))
276       return;
277 
278   // Otherwise, drop the visibility to hidden.
279   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
280 }
281 
282 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
283   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
284 
285   llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
286   if (!Str.empty())
287     return Str;
288 
289   if (!getMangleContext().shouldMangleDeclName(ND)) {
290     IdentifierInfo *II = ND->getIdentifier();
291     assert(II && "Attempt to mangle unnamed decl.");
292 
293     Str = II->getName();
294     return Str;
295   }
296 
297   llvm::SmallString<256> Buffer;
298   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
299     getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
300   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
301     getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
302   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
303     getMangleContext().mangleBlock(GD, BD, Buffer);
304   else
305     getMangleContext().mangleName(ND, Buffer);
306 
307   // Allocate space for the mangled name.
308   size_t Length = Buffer.size();
309   char *Name = MangledNamesAllocator.Allocate<char>(Length);
310   std::copy(Buffer.begin(), Buffer.end(), Name);
311 
312   Str = llvm::StringRef(Name, Length);
313 
314   return Str;
315 }
316 
317 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
318                                    const BlockDecl *BD) {
319   getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
320 }
321 
322 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
323   return getModule().getNamedValue(Name);
324 }
325 
326 /// AddGlobalCtor - Add a function to the list that will be called before
327 /// main() runs.
328 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
329   // FIXME: Type coercion of void()* types.
330   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
331 }
332 
333 /// AddGlobalDtor - Add a function to the list that will be called
334 /// when the module is unloaded.
335 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
336   // FIXME: Type coercion of void()* types.
337   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
338 }
339 
340 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
341   // Ctor function type is void()*.
342   llvm::FunctionType* CtorFTy =
343     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
344                             std::vector<const llvm::Type*>(),
345                             false);
346   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
347 
348   // Get the type of a ctor entry, { i32, void ()* }.
349   llvm::StructType* CtorStructTy =
350     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
351                           llvm::PointerType::getUnqual(CtorFTy), NULL);
352 
353   // Construct the constructor and destructor arrays.
354   std::vector<llvm::Constant*> Ctors;
355   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
356     std::vector<llvm::Constant*> S;
357     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
358                 I->second, false));
359     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
360     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
361   }
362 
363   if (!Ctors.empty()) {
364     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
365     new llvm::GlobalVariable(TheModule, AT, false,
366                              llvm::GlobalValue::AppendingLinkage,
367                              llvm::ConstantArray::get(AT, Ctors),
368                              GlobalName);
369   }
370 }
371 
372 void CodeGenModule::EmitAnnotations() {
373   if (Annotations.empty())
374     return;
375 
376   // Create a new global variable for the ConstantStruct in the Module.
377   llvm::Constant *Array =
378   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
379                                                 Annotations.size()),
380                            Annotations);
381   llvm::GlobalValue *gv =
382   new llvm::GlobalVariable(TheModule, Array->getType(), false,
383                            llvm::GlobalValue::AppendingLinkage, Array,
384                            "llvm.global.annotations");
385   gv->setSection("llvm.metadata");
386 }
387 
388 llvm::GlobalValue::LinkageTypes
389 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
390   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
391 
392   if (Linkage == GVA_Internal)
393     return llvm::Function::InternalLinkage;
394 
395   if (D->hasAttr<DLLExportAttr>())
396     return llvm::Function::DLLExportLinkage;
397 
398   if (D->hasAttr<WeakAttr>())
399     return llvm::Function::WeakAnyLinkage;
400 
401   // In C99 mode, 'inline' functions are guaranteed to have a strong
402   // definition somewhere else, so we can use available_externally linkage.
403   if (Linkage == GVA_C99Inline)
404     return llvm::Function::AvailableExternallyLinkage;
405 
406   // In C++, the compiler has to emit a definition in every translation unit
407   // that references the function.  We should use linkonce_odr because
408   // a) if all references in this translation unit are optimized away, we
409   // don't need to codegen it.  b) if the function persists, it needs to be
410   // merged with other definitions. c) C++ has the ODR, so we know the
411   // definition is dependable.
412   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
413     return llvm::Function::LinkOnceODRLinkage;
414 
415   // An explicit instantiation of a template has weak linkage, since
416   // explicit instantiations can occur in multiple translation units
417   // and must all be equivalent. However, we are not allowed to
418   // throw away these explicit instantiations.
419   if (Linkage == GVA_ExplicitTemplateInstantiation)
420     return llvm::Function::WeakODRLinkage;
421 
422   // Otherwise, we have strong external linkage.
423   assert(Linkage == GVA_StrongExternal);
424   return llvm::Function::ExternalLinkage;
425 }
426 
427 
428 /// SetFunctionDefinitionAttributes - Set attributes for a global.
429 ///
430 /// FIXME: This is currently only done for aliases and functions, but not for
431 /// variables (these details are set in EmitGlobalVarDefinition for variables).
432 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
433                                                     llvm::GlobalValue *GV) {
434   SetCommonAttributes(D, GV);
435 }
436 
437 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
438                                               const CGFunctionInfo &Info,
439                                               llvm::Function *F) {
440   unsigned CallingConv;
441   AttributeListType AttributeList;
442   ConstructAttributeList(Info, D, AttributeList, CallingConv);
443   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
444                                           AttributeList.size()));
445   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
446 }
447 
448 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
449                                                            llvm::Function *F) {
450   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
451     F->addFnAttr(llvm::Attribute::NoUnwind);
452 
453   if (D->hasAttr<AlwaysInlineAttr>())
454     F->addFnAttr(llvm::Attribute::AlwaysInline);
455 
456   if (D->hasAttr<NoInlineAttr>())
457     F->addFnAttr(llvm::Attribute::NoInline);
458 
459   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
460     F->addFnAttr(llvm::Attribute::StackProtect);
461   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
462     F->addFnAttr(llvm::Attribute::StackProtectReq);
463 
464   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
465   if (alignment)
466     F->setAlignment(alignment);
467 
468   // C++ ABI requires 2-byte alignment for member functions.
469   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
470     F->setAlignment(2);
471 }
472 
473 void CodeGenModule::SetCommonAttributes(const Decl *D,
474                                         llvm::GlobalValue *GV) {
475   setGlobalVisibility(GV, D);
476 
477   if (D->hasAttr<UsedAttr>())
478     AddUsedGlobal(GV);
479 
480   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
481     GV->setSection(SA->getName());
482 
483   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
484 }
485 
486 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
487                                                   llvm::Function *F,
488                                                   const CGFunctionInfo &FI) {
489   SetLLVMFunctionAttributes(D, FI, F);
490   SetLLVMFunctionAttributesForDefinition(D, F);
491 
492   F->setLinkage(llvm::Function::InternalLinkage);
493 
494   SetCommonAttributes(D, F);
495 }
496 
497 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
498                                           llvm::Function *F,
499                                           bool IsIncompleteFunction) {
500   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
501 
502   if (!IsIncompleteFunction)
503     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
504 
505   // Only a few attributes are set on declarations; these may later be
506   // overridden by a definition.
507 
508   if (FD->hasAttr<DLLImportAttr>()) {
509     F->setLinkage(llvm::Function::DLLImportLinkage);
510   } else if (FD->hasAttr<WeakAttr>() ||
511              FD->hasAttr<WeakImportAttr>()) {
512     // "extern_weak" is overloaded in LLVM; we probably should have
513     // separate linkage types for this.
514     F->setLinkage(llvm::Function::ExternalWeakLinkage);
515   } else {
516     F->setLinkage(llvm::Function::ExternalLinkage);
517   }
518 
519   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
520     F->setSection(SA->getName());
521 }
522 
523 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
524   assert(!GV->isDeclaration() &&
525          "Only globals with definition can force usage.");
526   LLVMUsed.push_back(GV);
527 }
528 
529 void CodeGenModule::EmitLLVMUsed() {
530   // Don't create llvm.used if there is no need.
531   if (LLVMUsed.empty())
532     return;
533 
534   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
535 
536   // Convert LLVMUsed to what ConstantArray needs.
537   std::vector<llvm::Constant*> UsedArray;
538   UsedArray.resize(LLVMUsed.size());
539   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
540     UsedArray[i] =
541      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
542                                       i8PTy);
543   }
544 
545   if (UsedArray.empty())
546     return;
547   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
548 
549   llvm::GlobalVariable *GV =
550     new llvm::GlobalVariable(getModule(), ATy, false,
551                              llvm::GlobalValue::AppendingLinkage,
552                              llvm::ConstantArray::get(ATy, UsedArray),
553                              "llvm.used");
554 
555   GV->setSection("llvm.metadata");
556 }
557 
558 void CodeGenModule::EmitDeferred() {
559   // Emit code for any potentially referenced deferred decls.  Since a
560   // previously unused static decl may become used during the generation of code
561   // for a static function, iterate until no  changes are made.
562 
563   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
564     if (!DeferredVTables.empty()) {
565       const CXXRecordDecl *RD = DeferredVTables.back();
566       DeferredVTables.pop_back();
567       getVTables().GenerateClassData(getVTableLinkage(RD), RD);
568       continue;
569     }
570 
571     GlobalDecl D = DeferredDeclsToEmit.back();
572     DeferredDeclsToEmit.pop_back();
573 
574     // Check to see if we've already emitted this.  This is necessary
575     // for a couple of reasons: first, decls can end up in the
576     // deferred-decls queue multiple times, and second, decls can end
577     // up with definitions in unusual ways (e.g. by an extern inline
578     // function acquiring a strong function redefinition).  Just
579     // ignore these cases.
580     //
581     // TODO: That said, looking this up multiple times is very wasteful.
582     llvm::StringRef Name = getMangledName(D);
583     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
584     assert(CGRef && "Deferred decl wasn't referenced?");
585 
586     if (!CGRef->isDeclaration())
587       continue;
588 
589     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
590     // purposes an alias counts as a definition.
591     if (isa<llvm::GlobalAlias>(CGRef))
592       continue;
593 
594     // Otherwise, emit the definition and move on to the next one.
595     EmitGlobalDefinition(D);
596   }
597 }
598 
599 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
600 /// annotation information for a given GlobalValue.  The annotation struct is
601 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
602 /// GlobalValue being annotated.  The second field is the constant string
603 /// created from the AnnotateAttr's annotation.  The third field is a constant
604 /// string containing the name of the translation unit.  The fourth field is
605 /// the line number in the file of the annotated value declaration.
606 ///
607 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
608 ///        appears to.
609 ///
610 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
611                                                 const AnnotateAttr *AA,
612                                                 unsigned LineNo) {
613   llvm::Module *M = &getModule();
614 
615   // get [N x i8] constants for the annotation string, and the filename string
616   // which are the 2nd and 3rd elements of the global annotation structure.
617   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
618   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
619                                                   AA->getAnnotation(), true);
620   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
621                                                   M->getModuleIdentifier(),
622                                                   true);
623 
624   // Get the two global values corresponding to the ConstantArrays we just
625   // created to hold the bytes of the strings.
626   llvm::GlobalValue *annoGV =
627     new llvm::GlobalVariable(*M, anno->getType(), false,
628                              llvm::GlobalValue::PrivateLinkage, anno,
629                              GV->getName());
630   // translation unit name string, emitted into the llvm.metadata section.
631   llvm::GlobalValue *unitGV =
632     new llvm::GlobalVariable(*M, unit->getType(), false,
633                              llvm::GlobalValue::PrivateLinkage, unit,
634                              ".str");
635 
636   // Create the ConstantStruct for the global annotation.
637   llvm::Constant *Fields[4] = {
638     llvm::ConstantExpr::getBitCast(GV, SBP),
639     llvm::ConstantExpr::getBitCast(annoGV, SBP),
640     llvm::ConstantExpr::getBitCast(unitGV, SBP),
641     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
642   };
643   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
644 }
645 
646 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
647   // Never defer when EmitAllDecls is specified.
648   if (Features.EmitAllDecls)
649     return false;
650 
651   return !getContext().DeclMustBeEmitted(Global);
652 }
653 
654 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
655   const AliasAttr *AA = VD->getAttr<AliasAttr>();
656   assert(AA && "No alias?");
657 
658   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
659 
660   // See if there is already something with the target's name in the module.
661   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
662 
663   llvm::Constant *Aliasee;
664   if (isa<llvm::FunctionType>(DeclTy))
665     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
666   else
667     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
668                                     llvm::PointerType::getUnqual(DeclTy), 0);
669   if (!Entry) {
670     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
671     F->setLinkage(llvm::Function::ExternalWeakLinkage);
672     WeakRefReferences.insert(F);
673   }
674 
675   return Aliasee;
676 }
677 
678 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
679   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
680 
681   // Weak references don't produce any output by themselves.
682   if (Global->hasAttr<WeakRefAttr>())
683     return;
684 
685   // If this is an alias definition (which otherwise looks like a declaration)
686   // emit it now.
687   if (Global->hasAttr<AliasAttr>())
688     return EmitAliasDefinition(GD);
689 
690   // Ignore declarations, they will be emitted on their first use.
691   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
692     if (FD->getIdentifier()) {
693       llvm::StringRef Name = FD->getName();
694       if (Name == "_Block_object_assign") {
695         BlockObjectAssignDecl = FD;
696       } else if (Name == "_Block_object_dispose") {
697         BlockObjectDisposeDecl = FD;
698       }
699     }
700 
701     // Forward declarations are emitted lazily on first use.
702     if (!FD->isThisDeclarationADefinition())
703       return;
704   } else {
705     const VarDecl *VD = cast<VarDecl>(Global);
706     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
707 
708     if (VD->getIdentifier()) {
709       llvm::StringRef Name = VD->getName();
710       if (Name == "_NSConcreteGlobalBlock") {
711         NSConcreteGlobalBlockDecl = VD;
712       } else if (Name == "_NSConcreteStackBlock") {
713         NSConcreteStackBlockDecl = VD;
714       }
715     }
716 
717 
718     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
719       return;
720   }
721 
722   // Defer code generation when possible if this is a static definition, inline
723   // function etc.  These we only want to emit if they are used.
724   if (!MayDeferGeneration(Global)) {
725     // Emit the definition if it can't be deferred.
726     EmitGlobalDefinition(GD);
727     return;
728   }
729 
730   // If we're deferring emission of a C++ variable with an
731   // initializer, remember the order in which it appeared in the file.
732   if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
733       cast<VarDecl>(Global)->hasInit()) {
734     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
735     CXXGlobalInits.push_back(0);
736   }
737 
738   // If the value has already been used, add it directly to the
739   // DeferredDeclsToEmit list.
740   llvm::StringRef MangledName = getMangledName(GD);
741   if (GetGlobalValue(MangledName))
742     DeferredDeclsToEmit.push_back(GD);
743   else {
744     // Otherwise, remember that we saw a deferred decl with this name.  The
745     // first use of the mangled name will cause it to move into
746     // DeferredDeclsToEmit.
747     DeferredDecls[MangledName] = GD;
748   }
749 }
750 
751 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
752   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
753 
754   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
755                                  Context.getSourceManager(),
756                                  "Generating code for declaration");
757 
758   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
759     // At -O0, don't generate IR for functions with available_externally
760     // linkage.
761     if (CodeGenOpts.OptimizationLevel == 0 &&
762         !Function->hasAttr<AlwaysInlineAttr>() &&
763         getFunctionLinkage(Function)
764                                   == llvm::Function::AvailableExternallyLinkage)
765       return;
766 
767     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
768       if (Method->isVirtual())
769         getVTables().EmitThunks(GD);
770 
771       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
772         return EmitCXXConstructor(CD, GD.getCtorType());
773 
774       if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
775         return EmitCXXDestructor(DD, GD.getDtorType());
776     }
777 
778     return EmitGlobalFunctionDefinition(GD);
779   }
780 
781   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
782     return EmitGlobalVarDefinition(VD);
783 
784   assert(0 && "Invalid argument to EmitGlobalDefinition()");
785 }
786 
787 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
788 /// module, create and return an llvm Function with the specified type. If there
789 /// is something in the module with the specified name, return it potentially
790 /// bitcasted to the right type.
791 ///
792 /// If D is non-null, it specifies a decl that correspond to this.  This is used
793 /// to set the attributes on the function when it is first created.
794 llvm::Constant *
795 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
796                                        const llvm::Type *Ty,
797                                        GlobalDecl D) {
798   // Lookup the entry, lazily creating it if necessary.
799   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
800   if (Entry) {
801     if (WeakRefReferences.count(Entry)) {
802       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
803       if (FD && !FD->hasAttr<WeakAttr>())
804         Entry->setLinkage(llvm::Function::ExternalLinkage);
805 
806       WeakRefReferences.erase(Entry);
807     }
808 
809     if (Entry->getType()->getElementType() == Ty)
810       return Entry;
811 
812     // Make sure the result is of the correct type.
813     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
814     return llvm::ConstantExpr::getBitCast(Entry, PTy);
815   }
816 
817   // This function doesn't have a complete type (for example, the return
818   // type is an incomplete struct). Use a fake type instead, and make
819   // sure not to try to set attributes.
820   bool IsIncompleteFunction = false;
821 
822   const llvm::FunctionType *FTy;
823   if (isa<llvm::FunctionType>(Ty)) {
824     FTy = cast<llvm::FunctionType>(Ty);
825   } else {
826     FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
827                                   std::vector<const llvm::Type*>(), false);
828     IsIncompleteFunction = true;
829   }
830 
831   llvm::Function *F = llvm::Function::Create(FTy,
832                                              llvm::Function::ExternalLinkage,
833                                              MangledName, &getModule());
834   assert(F->getName() == MangledName && "name was uniqued!");
835   if (D.getDecl())
836     SetFunctionAttributes(D, F, IsIncompleteFunction);
837 
838   // This is the first use or definition of a mangled name.  If there is a
839   // deferred decl with this name, remember that we need to emit it at the end
840   // of the file.
841   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
842   if (DDI != DeferredDecls.end()) {
843     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
844     // list, and remove it from DeferredDecls (since we don't need it anymore).
845     DeferredDeclsToEmit.push_back(DDI->second);
846     DeferredDecls.erase(DDI);
847   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
848     // If this the first reference to a C++ inline function in a class, queue up
849     // the deferred function body for emission.  These are not seen as
850     // top-level declarations.
851     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
852       DeferredDeclsToEmit.push_back(D);
853     // A called constructor which has no definition or declaration need be
854     // synthesized.
855     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
856       if (CD->isImplicit()) {
857         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
858         DeferredDeclsToEmit.push_back(D);
859       }
860     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
861       if (DD->isImplicit()) {
862         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
863         DeferredDeclsToEmit.push_back(D);
864       }
865     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
866       if (MD->isCopyAssignment() && MD->isImplicit()) {
867         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
868         DeferredDeclsToEmit.push_back(D);
869       }
870     }
871   }
872 
873   // Make sure the result is of the requested type.
874   if (!IsIncompleteFunction) {
875     assert(F->getType()->getElementType() == Ty);
876     return F;
877   }
878 
879   const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
880   return llvm::ConstantExpr::getBitCast(F, PTy);
881 }
882 
883 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
884 /// non-null, then this function will use the specified type if it has to
885 /// create it (this occurs when we see a definition of the function).
886 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
887                                                  const llvm::Type *Ty) {
888   // If there was no specific requested type, just convert it now.
889   if (!Ty)
890     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
891 
892   llvm::StringRef MangledName = getMangledName(GD);
893   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
894 }
895 
896 /// CreateRuntimeFunction - Create a new runtime function with the specified
897 /// type and name.
898 llvm::Constant *
899 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
900                                      llvm::StringRef Name) {
901   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
902 }
903 
904 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
905   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
906     return false;
907   if (Context.getLangOptions().CPlusPlus &&
908       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
909     // FIXME: We should do something fancier here!
910     return false;
911   }
912   return true;
913 }
914 
915 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
916 /// create and return an llvm GlobalVariable with the specified type.  If there
917 /// is something in the module with the specified name, return it potentially
918 /// bitcasted to the right type.
919 ///
920 /// If D is non-null, it specifies a decl that correspond to this.  This is used
921 /// to set the attributes on the global when it is first created.
922 llvm::Constant *
923 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
924                                      const llvm::PointerType *Ty,
925                                      const VarDecl *D) {
926   // Lookup the entry, lazily creating it if necessary.
927   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
928   if (Entry) {
929     if (WeakRefReferences.count(Entry)) {
930       if (D && !D->hasAttr<WeakAttr>())
931         Entry->setLinkage(llvm::Function::ExternalLinkage);
932 
933       WeakRefReferences.erase(Entry);
934     }
935 
936     if (Entry->getType() == Ty)
937       return Entry;
938 
939     // Make sure the result is of the correct type.
940     return llvm::ConstantExpr::getBitCast(Entry, Ty);
941   }
942 
943   // This is the first use or definition of a mangled name.  If there is a
944   // deferred decl with this name, remember that we need to emit it at the end
945   // of the file.
946   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
947   if (DDI != DeferredDecls.end()) {
948     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
949     // list, and remove it from DeferredDecls (since we don't need it anymore).
950     DeferredDeclsToEmit.push_back(DDI->second);
951     DeferredDecls.erase(DDI);
952   }
953 
954   llvm::GlobalVariable *GV =
955     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
956                              llvm::GlobalValue::ExternalLinkage,
957                              0, MangledName, 0,
958                              false, Ty->getAddressSpace());
959 
960   // Handle things which are present even on external declarations.
961   if (D) {
962     // FIXME: This code is overly simple and should be merged with other global
963     // handling.
964     GV->setConstant(DeclIsConstantGlobal(Context, D));
965 
966     // FIXME: Merge with other attribute handling code.
967     if (D->getStorageClass() == VarDecl::PrivateExtern)
968       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
969 
970     if (D->hasAttr<WeakAttr>() ||
971         D->hasAttr<WeakImportAttr>())
972       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
973 
974     GV->setThreadLocal(D->isThreadSpecified());
975   }
976 
977   return GV;
978 }
979 
980 
981 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
982 /// given global variable.  If Ty is non-null and if the global doesn't exist,
983 /// then it will be greated with the specified type instead of whatever the
984 /// normal requested type would be.
985 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
986                                                   const llvm::Type *Ty) {
987   assert(D->hasGlobalStorage() && "Not a global variable");
988   QualType ASTTy = D->getType();
989   if (Ty == 0)
990     Ty = getTypes().ConvertTypeForMem(ASTTy);
991 
992   const llvm::PointerType *PTy =
993     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
994 
995   llvm::StringRef MangledName = getMangledName(D);
996   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
997 }
998 
999 /// CreateRuntimeVariable - Create a new runtime global variable with the
1000 /// specified type and name.
1001 llvm::Constant *
1002 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1003                                      llvm::StringRef Name) {
1004   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
1005 }
1006 
1007 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1008   assert(!D->getInit() && "Cannot emit definite definitions here!");
1009 
1010   if (MayDeferGeneration(D)) {
1011     // If we have not seen a reference to this variable yet, place it
1012     // into the deferred declarations table to be emitted if needed
1013     // later.
1014     llvm::StringRef MangledName = getMangledName(D);
1015     if (!GetGlobalValue(MangledName)) {
1016       DeferredDecls[MangledName] = D;
1017       return;
1018     }
1019   }
1020 
1021   // The tentative definition is the only definition.
1022   EmitGlobalVarDefinition(D);
1023 }
1024 
1025 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1026   if (DefinitionRequired)
1027     getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1028 }
1029 
1030 llvm::GlobalVariable::LinkageTypes
1031 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1032   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1033     return llvm::GlobalVariable::InternalLinkage;
1034 
1035   if (const CXXMethodDecl *KeyFunction
1036                                     = RD->getASTContext().getKeyFunction(RD)) {
1037     // If this class has a key function, use that to determine the linkage of
1038     // the vtable.
1039     const FunctionDecl *Def = 0;
1040     if (KeyFunction->hasBody(Def))
1041       KeyFunction = cast<CXXMethodDecl>(Def);
1042 
1043     switch (KeyFunction->getTemplateSpecializationKind()) {
1044       case TSK_Undeclared:
1045       case TSK_ExplicitSpecialization:
1046         if (KeyFunction->isInlined())
1047           return llvm::GlobalVariable::WeakODRLinkage;
1048 
1049         return llvm::GlobalVariable::ExternalLinkage;
1050 
1051       case TSK_ImplicitInstantiation:
1052       case TSK_ExplicitInstantiationDefinition:
1053         return llvm::GlobalVariable::WeakODRLinkage;
1054 
1055       case TSK_ExplicitInstantiationDeclaration:
1056         // FIXME: Use available_externally linkage. However, this currently
1057         // breaks LLVM's build due to undefined symbols.
1058         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1059         return llvm::GlobalVariable::WeakODRLinkage;
1060     }
1061   }
1062 
1063   switch (RD->getTemplateSpecializationKind()) {
1064   case TSK_Undeclared:
1065   case TSK_ExplicitSpecialization:
1066   case TSK_ImplicitInstantiation:
1067   case TSK_ExplicitInstantiationDefinition:
1068     return llvm::GlobalVariable::WeakODRLinkage;
1069 
1070   case TSK_ExplicitInstantiationDeclaration:
1071     // FIXME: Use available_externally linkage. However, this currently
1072     // breaks LLVM's build due to undefined symbols.
1073     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1074     return llvm::GlobalVariable::WeakODRLinkage;
1075   }
1076 
1077   // Silence GCC warning.
1078   return llvm::GlobalVariable::WeakODRLinkage;
1079 }
1080 
1081 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1082     return CharUnits::fromQuantity(
1083       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1084 }
1085 
1086 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1087   llvm::Constant *Init = 0;
1088   QualType ASTTy = D->getType();
1089   bool NonConstInit = false;
1090 
1091   const Expr *InitExpr = D->getAnyInitializer();
1092 
1093   if (!InitExpr) {
1094     // This is a tentative definition; tentative definitions are
1095     // implicitly initialized with { 0 }.
1096     //
1097     // Note that tentative definitions are only emitted at the end of
1098     // a translation unit, so they should never have incomplete
1099     // type. In addition, EmitTentativeDefinition makes sure that we
1100     // never attempt to emit a tentative definition if a real one
1101     // exists. A use may still exists, however, so we still may need
1102     // to do a RAUW.
1103     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1104     Init = EmitNullConstant(D->getType());
1105   } else {
1106     Init = EmitConstantExpr(InitExpr, D->getType());
1107     if (!Init) {
1108       QualType T = InitExpr->getType();
1109       if (D->getType()->isReferenceType())
1110         T = D->getType();
1111 
1112       if (getLangOptions().CPlusPlus) {
1113         EmitCXXGlobalVarDeclInitFunc(D);
1114         Init = EmitNullConstant(T);
1115         NonConstInit = true;
1116       } else {
1117         ErrorUnsupported(D, "static initializer");
1118         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1119       }
1120     } else {
1121       // We don't need an initializer, so remove the entry for the delayed
1122       // initializer position (just in case this entry was delayed).
1123       if (getLangOptions().CPlusPlus)
1124         DelayedCXXInitPosition.erase(D);
1125     }
1126   }
1127 
1128   const llvm::Type* InitType = Init->getType();
1129   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1130 
1131   // Strip off a bitcast if we got one back.
1132   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1133     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1134            // all zero index gep.
1135            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1136     Entry = CE->getOperand(0);
1137   }
1138 
1139   // Entry is now either a Function or GlobalVariable.
1140   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1141 
1142   // We have a definition after a declaration with the wrong type.
1143   // We must make a new GlobalVariable* and update everything that used OldGV
1144   // (a declaration or tentative definition) with the new GlobalVariable*
1145   // (which will be a definition).
1146   //
1147   // This happens if there is a prototype for a global (e.g.
1148   // "extern int x[];") and then a definition of a different type (e.g.
1149   // "int x[10];"). This also happens when an initializer has a different type
1150   // from the type of the global (this happens with unions).
1151   if (GV == 0 ||
1152       GV->getType()->getElementType() != InitType ||
1153       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1154 
1155     // Move the old entry aside so that we'll create a new one.
1156     Entry->setName(llvm::StringRef());
1157 
1158     // Make a new global with the correct type, this is now guaranteed to work.
1159     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1160 
1161     // Replace all uses of the old global with the new global
1162     llvm::Constant *NewPtrForOldDecl =
1163         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1164     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1165 
1166     // Erase the old global, since it is no longer used.
1167     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1168   }
1169 
1170   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1171     SourceManager &SM = Context.getSourceManager();
1172     AddAnnotation(EmitAnnotateAttr(GV, AA,
1173                               SM.getInstantiationLineNumber(D->getLocation())));
1174   }
1175 
1176   GV->setInitializer(Init);
1177 
1178   // If it is safe to mark the global 'constant', do so now.
1179   GV->setConstant(false);
1180   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1181     GV->setConstant(true);
1182 
1183   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1184 
1185   // Set the llvm linkage type as appropriate.
1186   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1187   if (Linkage == GVA_Internal)
1188     GV->setLinkage(llvm::Function::InternalLinkage);
1189   else if (D->hasAttr<DLLImportAttr>())
1190     GV->setLinkage(llvm::Function::DLLImportLinkage);
1191   else if (D->hasAttr<DLLExportAttr>())
1192     GV->setLinkage(llvm::Function::DLLExportLinkage);
1193   else if (D->hasAttr<WeakAttr>()) {
1194     if (GV->isConstant())
1195       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1196     else
1197       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1198   } else if (Linkage == GVA_TemplateInstantiation ||
1199              Linkage == GVA_ExplicitTemplateInstantiation)
1200     // FIXME: It seems like we can provide more specific linkage here
1201     // (LinkOnceODR, WeakODR).
1202     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1203   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1204            !D->hasExternalStorage() && !D->getInit() &&
1205            !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1206     // Thread local vars aren't considered common linkage.
1207     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1208     // common vars aren't constant even if declared const.
1209     GV->setConstant(false);
1210   } else
1211     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1212 
1213   SetCommonAttributes(D, GV);
1214 
1215   // Emit global variable debug information.
1216   if (CGDebugInfo *DI = getDebugInfo()) {
1217     DI->setLocation(D->getLocation());
1218     DI->EmitGlobalVariable(GV, D);
1219   }
1220 }
1221 
1222 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1223 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1224 /// existing call uses of the old function in the module, this adjusts them to
1225 /// call the new function directly.
1226 ///
1227 /// This is not just a cleanup: the always_inline pass requires direct calls to
1228 /// functions to be able to inline them.  If there is a bitcast in the way, it
1229 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1230 /// run at -O0.
1231 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1232                                                       llvm::Function *NewFn) {
1233   // If we're redefining a global as a function, don't transform it.
1234   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1235   if (OldFn == 0) return;
1236 
1237   const llvm::Type *NewRetTy = NewFn->getReturnType();
1238   llvm::SmallVector<llvm::Value*, 4> ArgList;
1239 
1240   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1241        UI != E; ) {
1242     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1243     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1244     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1245     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1246     llvm::CallSite CS(CI);
1247     if (!CI || !CS.isCallee(I)) continue;
1248 
1249     // If the return types don't match exactly, and if the call isn't dead, then
1250     // we can't transform this call.
1251     if (CI->getType() != NewRetTy && !CI->use_empty())
1252       continue;
1253 
1254     // If the function was passed too few arguments, don't transform.  If extra
1255     // arguments were passed, we silently drop them.  If any of the types
1256     // mismatch, we don't transform.
1257     unsigned ArgNo = 0;
1258     bool DontTransform = false;
1259     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1260          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1261       if (CS.arg_size() == ArgNo ||
1262           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1263         DontTransform = true;
1264         break;
1265       }
1266     }
1267     if (DontTransform)
1268       continue;
1269 
1270     // Okay, we can transform this.  Create the new call instruction and copy
1271     // over the required information.
1272     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1273     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1274                                                      ArgList.end(), "", CI);
1275     ArgList.clear();
1276     if (!NewCall->getType()->isVoidTy())
1277       NewCall->takeName(CI);
1278     NewCall->setAttributes(CI->getAttributes());
1279     NewCall->setCallingConv(CI->getCallingConv());
1280 
1281     // Finally, remove the old call, replacing any uses with the new one.
1282     if (!CI->use_empty())
1283       CI->replaceAllUsesWith(NewCall);
1284 
1285     // Copy debug location attached to CI.
1286     if (!CI->getDebugLoc().isUnknown())
1287       NewCall->setDebugLoc(CI->getDebugLoc());
1288     CI->eraseFromParent();
1289   }
1290 }
1291 
1292 
1293 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1294   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1295   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1296   getMangleContext().mangleInitDiscriminator();
1297   // Get or create the prototype for the function.
1298   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1299 
1300   // Strip off a bitcast if we got one back.
1301   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1302     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1303     Entry = CE->getOperand(0);
1304   }
1305 
1306 
1307   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1308     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1309 
1310     // If the types mismatch then we have to rewrite the definition.
1311     assert(OldFn->isDeclaration() &&
1312            "Shouldn't replace non-declaration");
1313 
1314     // F is the Function* for the one with the wrong type, we must make a new
1315     // Function* and update everything that used F (a declaration) with the new
1316     // Function* (which will be a definition).
1317     //
1318     // This happens if there is a prototype for a function
1319     // (e.g. "int f()") and then a definition of a different type
1320     // (e.g. "int f(int x)").  Move the old function aside so that it
1321     // doesn't interfere with GetAddrOfFunction.
1322     OldFn->setName(llvm::StringRef());
1323     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1324 
1325     // If this is an implementation of a function without a prototype, try to
1326     // replace any existing uses of the function (which may be calls) with uses
1327     // of the new function
1328     if (D->getType()->isFunctionNoProtoType()) {
1329       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1330       OldFn->removeDeadConstantUsers();
1331     }
1332 
1333     // Replace uses of F with the Function we will endow with a body.
1334     if (!Entry->use_empty()) {
1335       llvm::Constant *NewPtrForOldDecl =
1336         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1337       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1338     }
1339 
1340     // Ok, delete the old function now, which is dead.
1341     OldFn->eraseFromParent();
1342 
1343     Entry = NewFn;
1344   }
1345 
1346   llvm::Function *Fn = cast<llvm::Function>(Entry);
1347   setFunctionLinkage(D, Fn);
1348 
1349   CodeGenFunction(*this).GenerateCode(D, Fn);
1350 
1351   SetFunctionDefinitionAttributes(D, Fn);
1352   SetLLVMFunctionAttributesForDefinition(D, Fn);
1353 
1354   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1355     AddGlobalCtor(Fn, CA->getPriority());
1356   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1357     AddGlobalDtor(Fn, DA->getPriority());
1358 }
1359 
1360 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1361   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1362   const AliasAttr *AA = D->getAttr<AliasAttr>();
1363   assert(AA && "Not an alias?");
1364 
1365   llvm::StringRef MangledName = getMangledName(GD);
1366 
1367   // If there is a definition in the module, then it wins over the alias.
1368   // This is dubious, but allow it to be safe.  Just ignore the alias.
1369   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1370   if (Entry && !Entry->isDeclaration())
1371     return;
1372 
1373   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1374 
1375   // Create a reference to the named value.  This ensures that it is emitted
1376   // if a deferred decl.
1377   llvm::Constant *Aliasee;
1378   if (isa<llvm::FunctionType>(DeclTy))
1379     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1380   else
1381     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1382                                     llvm::PointerType::getUnqual(DeclTy), 0);
1383 
1384   // Create the new alias itself, but don't set a name yet.
1385   llvm::GlobalValue *GA =
1386     new llvm::GlobalAlias(Aliasee->getType(),
1387                           llvm::Function::ExternalLinkage,
1388                           "", Aliasee, &getModule());
1389 
1390   if (Entry) {
1391     assert(Entry->isDeclaration());
1392 
1393     // If there is a declaration in the module, then we had an extern followed
1394     // by the alias, as in:
1395     //   extern int test6();
1396     //   ...
1397     //   int test6() __attribute__((alias("test7")));
1398     //
1399     // Remove it and replace uses of it with the alias.
1400     GA->takeName(Entry);
1401 
1402     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1403                                                           Entry->getType()));
1404     Entry->eraseFromParent();
1405   } else {
1406     GA->setName(MangledName);
1407   }
1408 
1409   // Set attributes which are particular to an alias; this is a
1410   // specialization of the attributes which may be set on a global
1411   // variable/function.
1412   if (D->hasAttr<DLLExportAttr>()) {
1413     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1414       // The dllexport attribute is ignored for undefined symbols.
1415       if (FD->hasBody())
1416         GA->setLinkage(llvm::Function::DLLExportLinkage);
1417     } else {
1418       GA->setLinkage(llvm::Function::DLLExportLinkage);
1419     }
1420   } else if (D->hasAttr<WeakAttr>() ||
1421              D->hasAttr<WeakRefAttr>() ||
1422              D->hasAttr<WeakImportAttr>()) {
1423     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1424   }
1425 
1426   SetCommonAttributes(D, GA);
1427 }
1428 
1429 /// getBuiltinLibFunction - Given a builtin id for a function like
1430 /// "__builtin_fabsf", return a Function* for "fabsf".
1431 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1432                                                   unsigned BuiltinID) {
1433   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1434           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1435          "isn't a lib fn");
1436 
1437   // Get the name, skip over the __builtin_ prefix (if necessary).
1438   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1439   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1440     Name += 10;
1441 
1442   const llvm::FunctionType *Ty =
1443     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1444 
1445   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1446 }
1447 
1448 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1449                                             unsigned NumTys) {
1450   return llvm::Intrinsic::getDeclaration(&getModule(),
1451                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1452 }
1453 
1454 
1455 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1456                                            const llvm::Type *SrcType,
1457                                            const llvm::Type *SizeType) {
1458   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1459   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1460 }
1461 
1462 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1463                                             const llvm::Type *SrcType,
1464                                             const llvm::Type *SizeType) {
1465   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1466   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1467 }
1468 
1469 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1470                                            const llvm::Type *SizeType) {
1471   const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1472   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1473 }
1474 
1475 static llvm::StringMapEntry<llvm::Constant*> &
1476 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1477                          const StringLiteral *Literal,
1478                          bool TargetIsLSB,
1479                          bool &IsUTF16,
1480                          unsigned &StringLength) {
1481   llvm::StringRef String = Literal->getString();
1482   unsigned NumBytes = String.size();
1483 
1484   // Check for simple case.
1485   if (!Literal->containsNonAsciiOrNull()) {
1486     StringLength = NumBytes;
1487     return Map.GetOrCreateValue(String);
1488   }
1489 
1490   // Otherwise, convert the UTF8 literals into a byte string.
1491   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1492   const UTF8 *FromPtr = (UTF8 *)String.data();
1493   UTF16 *ToPtr = &ToBuf[0];
1494 
1495   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1496                                                &ToPtr, ToPtr + NumBytes,
1497                                                strictConversion);
1498 
1499   // Check for conversion failure.
1500   if (Result != conversionOK) {
1501     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1502     // this duplicate code.
1503     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1504     StringLength = NumBytes;
1505     return Map.GetOrCreateValue(String);
1506   }
1507 
1508   // ConvertUTF8toUTF16 returns the length in ToPtr.
1509   StringLength = ToPtr - &ToBuf[0];
1510 
1511   // Render the UTF-16 string into a byte array and convert to the target byte
1512   // order.
1513   //
1514   // FIXME: This isn't something we should need to do here.
1515   llvm::SmallString<128> AsBytes;
1516   AsBytes.reserve(StringLength * 2);
1517   for (unsigned i = 0; i != StringLength; ++i) {
1518     unsigned short Val = ToBuf[i];
1519     if (TargetIsLSB) {
1520       AsBytes.push_back(Val & 0xFF);
1521       AsBytes.push_back(Val >> 8);
1522     } else {
1523       AsBytes.push_back(Val >> 8);
1524       AsBytes.push_back(Val & 0xFF);
1525     }
1526   }
1527   // Append one extra null character, the second is automatically added by our
1528   // caller.
1529   AsBytes.push_back(0);
1530 
1531   IsUTF16 = true;
1532   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1533 }
1534 
1535 llvm::Constant *
1536 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1537   unsigned StringLength = 0;
1538   bool isUTF16 = false;
1539   llvm::StringMapEntry<llvm::Constant*> &Entry =
1540     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1541                              getTargetData().isLittleEndian(),
1542                              isUTF16, StringLength);
1543 
1544   if (llvm::Constant *C = Entry.getValue())
1545     return C;
1546 
1547   llvm::Constant *Zero =
1548       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1549   llvm::Constant *Zeros[] = { Zero, Zero };
1550 
1551   // If we don't already have it, get __CFConstantStringClassReference.
1552   if (!CFConstantStringClassRef) {
1553     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1554     Ty = llvm::ArrayType::get(Ty, 0);
1555     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1556                                            "__CFConstantStringClassReference");
1557     // Decay array -> ptr
1558     CFConstantStringClassRef =
1559       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1560   }
1561 
1562   QualType CFTy = getContext().getCFConstantStringType();
1563 
1564   const llvm::StructType *STy =
1565     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1566 
1567   std::vector<llvm::Constant*> Fields(4);
1568 
1569   // Class pointer.
1570   Fields[0] = CFConstantStringClassRef;
1571 
1572   // Flags.
1573   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1574   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1575     llvm::ConstantInt::get(Ty, 0x07C8);
1576 
1577   // String pointer.
1578   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1579 
1580   llvm::GlobalValue::LinkageTypes Linkage;
1581   bool isConstant;
1582   if (isUTF16) {
1583     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1584     Linkage = llvm::GlobalValue::InternalLinkage;
1585     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1586     // does make plain ascii ones writable.
1587     isConstant = true;
1588   } else {
1589     Linkage = llvm::GlobalValue::PrivateLinkage;
1590     isConstant = !Features.WritableStrings;
1591   }
1592 
1593   llvm::GlobalVariable *GV =
1594     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1595                              ".str");
1596   if (isUTF16) {
1597     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1598     GV->setAlignment(Align.getQuantity());
1599   }
1600   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1601 
1602   // String length.
1603   Ty = getTypes().ConvertType(getContext().LongTy);
1604   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1605 
1606   // The struct.
1607   C = llvm::ConstantStruct::get(STy, Fields);
1608   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1609                                 llvm::GlobalVariable::PrivateLinkage, C,
1610                                 "_unnamed_cfstring_");
1611   if (const char *Sect = getContext().Target.getCFStringSection())
1612     GV->setSection(Sect);
1613   Entry.setValue(GV);
1614 
1615   return GV;
1616 }
1617 
1618 llvm::Constant *
1619 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) {
1620   unsigned StringLength = 0;
1621   bool isUTF16 = false;
1622   llvm::StringMapEntry<llvm::Constant*> &Entry =
1623     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1624                              getTargetData().isLittleEndian(),
1625                              isUTF16, StringLength);
1626 
1627   if (llvm::Constant *C = Entry.getValue())
1628     return C;
1629 
1630   llvm::Constant *Zero =
1631   llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1632   llvm::Constant *Zeros[] = { Zero, Zero };
1633 
1634   // If we don't already have it, get _NSConstantStringClassReference.
1635   if (!NSConstantStringClassRef) {
1636     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1637     Ty = llvm::ArrayType::get(Ty, 0);
1638     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1639                                         Features.ObjCNonFragileABI ?
1640                                         "OBJC_CLASS_$_NSConstantString" :
1641                                         "_NSConstantStringClassReference");
1642     // Decay array -> ptr
1643     NSConstantStringClassRef =
1644       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1645   }
1646 
1647   QualType NSTy = getContext().getNSConstantStringType();
1648 
1649   const llvm::StructType *STy =
1650   cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1651 
1652   std::vector<llvm::Constant*> Fields(3);
1653 
1654   // Class pointer.
1655   Fields[0] = NSConstantStringClassRef;
1656 
1657   // String pointer.
1658   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1659 
1660   llvm::GlobalValue::LinkageTypes Linkage;
1661   bool isConstant;
1662   if (isUTF16) {
1663     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1664     Linkage = llvm::GlobalValue::InternalLinkage;
1665     // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1666     // does make plain ascii ones writable.
1667     isConstant = true;
1668   } else {
1669     Linkage = llvm::GlobalValue::PrivateLinkage;
1670     isConstant = !Features.WritableStrings;
1671   }
1672 
1673   llvm::GlobalVariable *GV =
1674   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1675                            ".str");
1676   if (isUTF16) {
1677     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1678     GV->setAlignment(Align.getQuantity());
1679   }
1680   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1681 
1682   // String length.
1683   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1684   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1685 
1686   // The struct.
1687   C = llvm::ConstantStruct::get(STy, Fields);
1688   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1689                                 llvm::GlobalVariable::PrivateLinkage, C,
1690                                 "_unnamed_nsstring_");
1691   // FIXME. Fix section.
1692   if (const char *Sect =
1693         Features.ObjCNonFragileABI
1694           ? getContext().Target.getNSStringNonFragileABISection()
1695           : getContext().Target.getNSStringSection())
1696     GV->setSection(Sect);
1697   Entry.setValue(GV);
1698 
1699   return GV;
1700 }
1701 
1702 /// GetStringForStringLiteral - Return the appropriate bytes for a
1703 /// string literal, properly padded to match the literal type.
1704 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1705   const ConstantArrayType *CAT =
1706     getContext().getAsConstantArrayType(E->getType());
1707   assert(CAT && "String isn't pointer or array!");
1708 
1709   // Resize the string to the right size.
1710   uint64_t RealLen = CAT->getSize().getZExtValue();
1711 
1712   if (E->isWide())
1713     RealLen *= getContext().Target.getWCharWidth()/8;
1714 
1715   std::string Str = E->getString().str();
1716   Str.resize(RealLen, '\0');
1717 
1718   return Str;
1719 }
1720 
1721 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1722 /// constant array for the given string literal.
1723 llvm::Constant *
1724 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1725   // FIXME: This can be more efficient.
1726   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1727   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1728   if (S->isWide()) {
1729     llvm::Type *DestTy =
1730         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1731     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1732   }
1733   return C;
1734 }
1735 
1736 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1737 /// array for the given ObjCEncodeExpr node.
1738 llvm::Constant *
1739 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1740   std::string Str;
1741   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1742 
1743   return GetAddrOfConstantCString(Str);
1744 }
1745 
1746 
1747 /// GenerateWritableString -- Creates storage for a string literal.
1748 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1749                                              bool constant,
1750                                              CodeGenModule &CGM,
1751                                              const char *GlobalName) {
1752   // Create Constant for this string literal. Don't add a '\0'.
1753   llvm::Constant *C =
1754       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1755 
1756   // Create a global variable for this string
1757   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1758                                   llvm::GlobalValue::PrivateLinkage,
1759                                   C, GlobalName);
1760 }
1761 
1762 /// GetAddrOfConstantString - Returns a pointer to a character array
1763 /// containing the literal. This contents are exactly that of the
1764 /// given string, i.e. it will not be null terminated automatically;
1765 /// see GetAddrOfConstantCString. Note that whether the result is
1766 /// actually a pointer to an LLVM constant depends on
1767 /// Feature.WriteableStrings.
1768 ///
1769 /// The result has pointer to array type.
1770 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1771                                                        const char *GlobalName) {
1772   bool IsConstant = !Features.WritableStrings;
1773 
1774   // Get the default prefix if a name wasn't specified.
1775   if (!GlobalName)
1776     GlobalName = ".str";
1777 
1778   // Don't share any string literals if strings aren't constant.
1779   if (!IsConstant)
1780     return GenerateStringLiteral(str, false, *this, GlobalName);
1781 
1782   llvm::StringMapEntry<llvm::Constant *> &Entry =
1783     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1784 
1785   if (Entry.getValue())
1786     return Entry.getValue();
1787 
1788   // Create a global variable for this.
1789   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1790   Entry.setValue(C);
1791   return C;
1792 }
1793 
1794 /// GetAddrOfConstantCString - Returns a pointer to a character
1795 /// array containing the literal and a terminating '\-'
1796 /// character. The result has pointer to array type.
1797 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1798                                                         const char *GlobalName){
1799   return GetAddrOfConstantString(str + '\0', GlobalName);
1800 }
1801 
1802 /// EmitObjCPropertyImplementations - Emit information for synthesized
1803 /// properties for an implementation.
1804 void CodeGenModule::EmitObjCPropertyImplementations(const
1805                                                     ObjCImplementationDecl *D) {
1806   for (ObjCImplementationDecl::propimpl_iterator
1807          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1808     ObjCPropertyImplDecl *PID = *i;
1809 
1810     // Dynamic is just for type-checking.
1811     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1812       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1813 
1814       // Determine which methods need to be implemented, some may have
1815       // been overridden. Note that ::isSynthesized is not the method
1816       // we want, that just indicates if the decl came from a
1817       // property. What we want to know is if the method is defined in
1818       // this implementation.
1819       if (!D->getInstanceMethod(PD->getGetterName()))
1820         CodeGenFunction(*this).GenerateObjCGetter(
1821                                  const_cast<ObjCImplementationDecl *>(D), PID);
1822       if (!PD->isReadOnly() &&
1823           !D->getInstanceMethod(PD->getSetterName()))
1824         CodeGenFunction(*this).GenerateObjCSetter(
1825                                  const_cast<ObjCImplementationDecl *>(D), PID);
1826     }
1827   }
1828 }
1829 
1830 /// EmitObjCIvarInitializations - Emit information for ivar initialization
1831 /// for an implementation.
1832 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1833   if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1834     return;
1835   DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1836   assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1837   IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1838   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1839   ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1840                                                   D->getLocation(),
1841                                                   D->getLocation(), cxxSelector,
1842                                                   getContext().VoidTy, 0,
1843                                                   DC, true, false, true, false,
1844                                                   ObjCMethodDecl::Required);
1845   D->addInstanceMethod(DTORMethod);
1846   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1847 
1848   II = &getContext().Idents.get(".cxx_construct");
1849   cxxSelector = getContext().Selectors.getSelector(0, &II);
1850   // The constructor returns 'self'.
1851   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1852                                                 D->getLocation(),
1853                                                 D->getLocation(), cxxSelector,
1854                                                 getContext().getObjCIdType(), 0,
1855                                                 DC, true, false, true, false,
1856                                                 ObjCMethodDecl::Required);
1857   D->addInstanceMethod(CTORMethod);
1858   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1859 
1860 
1861 }
1862 
1863 /// EmitNamespace - Emit all declarations in a namespace.
1864 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1865   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1866        I != E; ++I)
1867     EmitTopLevelDecl(*I);
1868 }
1869 
1870 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1871 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1872   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1873       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1874     ErrorUnsupported(LSD, "linkage spec");
1875     return;
1876   }
1877 
1878   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1879        I != E; ++I)
1880     EmitTopLevelDecl(*I);
1881 }
1882 
1883 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1884 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1885   // If an error has occurred, stop code generation, but continue
1886   // parsing and semantic analysis (to ensure all warnings and errors
1887   // are emitted).
1888   if (Diags.hasErrorOccurred())
1889     return;
1890 
1891   // Ignore dependent declarations.
1892   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1893     return;
1894 
1895   switch (D->getKind()) {
1896   case Decl::CXXConversion:
1897   case Decl::CXXMethod:
1898   case Decl::Function:
1899     // Skip function templates
1900     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1901       return;
1902 
1903     EmitGlobal(cast<FunctionDecl>(D));
1904     break;
1905 
1906   case Decl::Var:
1907     EmitGlobal(cast<VarDecl>(D));
1908     break;
1909 
1910   // C++ Decls
1911   case Decl::Namespace:
1912     EmitNamespace(cast<NamespaceDecl>(D));
1913     break;
1914     // No code generation needed.
1915   case Decl::UsingShadow:
1916   case Decl::Using:
1917   case Decl::UsingDirective:
1918   case Decl::ClassTemplate:
1919   case Decl::FunctionTemplate:
1920   case Decl::NamespaceAlias:
1921     break;
1922   case Decl::CXXConstructor:
1923     // Skip function templates
1924     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1925       return;
1926 
1927     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1928     break;
1929   case Decl::CXXDestructor:
1930     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1931     break;
1932 
1933   case Decl::StaticAssert:
1934     // Nothing to do.
1935     break;
1936 
1937   // Objective-C Decls
1938 
1939   // Forward declarations, no (immediate) code generation.
1940   case Decl::ObjCClass:
1941   case Decl::ObjCForwardProtocol:
1942   case Decl::ObjCCategory:
1943   case Decl::ObjCInterface:
1944     break;
1945 
1946   case Decl::ObjCProtocol:
1947     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1948     break;
1949 
1950   case Decl::ObjCCategoryImpl:
1951     // Categories have properties but don't support synthesize so we
1952     // can ignore them here.
1953     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1954     break;
1955 
1956   case Decl::ObjCImplementation: {
1957     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1958     EmitObjCPropertyImplementations(OMD);
1959     EmitObjCIvarInitializations(OMD);
1960     Runtime->GenerateClass(OMD);
1961     break;
1962   }
1963   case Decl::ObjCMethod: {
1964     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1965     // If this is not a prototype, emit the body.
1966     if (OMD->getBody())
1967       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1968     break;
1969   }
1970   case Decl::ObjCCompatibleAlias:
1971     // compatibility-alias is a directive and has no code gen.
1972     break;
1973 
1974   case Decl::LinkageSpec:
1975     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1976     break;
1977 
1978   case Decl::FileScopeAsm: {
1979     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1980     llvm::StringRef AsmString = AD->getAsmString()->getString();
1981 
1982     const std::string &S = getModule().getModuleInlineAsm();
1983     if (S.empty())
1984       getModule().setModuleInlineAsm(AsmString);
1985     else
1986       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1987     break;
1988   }
1989 
1990   default:
1991     // Make sure we handled everything we should, every other kind is a
1992     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1993     // function. Need to recode Decl::Kind to do that easily.
1994     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1995   }
1996 }
1997 
1998 /// Turns the given pointer into a constant.
1999 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2000                                           const void *Ptr) {
2001   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2002   const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2003   return llvm::ConstantInt::get(i64, PtrInt);
2004 }
2005 
2006 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2007                                    llvm::NamedMDNode *&GlobalMetadata,
2008                                    GlobalDecl D,
2009                                    llvm::GlobalValue *Addr) {
2010   if (!GlobalMetadata)
2011     GlobalMetadata =
2012       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2013 
2014   // TODO: should we report variant information for ctors/dtors?
2015   llvm::Value *Ops[] = {
2016     Addr,
2017     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2018   };
2019   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2020 }
2021 
2022 /// Emits metadata nodes associating all the global values in the
2023 /// current module with the Decls they came from.  This is useful for
2024 /// projects using IR gen as a subroutine.
2025 ///
2026 /// Since there's currently no way to associate an MDNode directly
2027 /// with an llvm::GlobalValue, we create a global named metadata
2028 /// with the name 'clang.global.decl.ptrs'.
2029 void CodeGenModule::EmitDeclMetadata() {
2030   llvm::NamedMDNode *GlobalMetadata = 0;
2031 
2032   // StaticLocalDeclMap
2033   for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2034          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2035        I != E; ++I) {
2036     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2037     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2038   }
2039 }
2040 
2041 /// Emits metadata nodes for all the local variables in the current
2042 /// function.
2043 void CodeGenFunction::EmitDeclMetadata() {
2044   if (LocalDeclMap.empty()) return;
2045 
2046   llvm::LLVMContext &Context = getLLVMContext();
2047 
2048   // Find the unique metadata ID for this name.
2049   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2050 
2051   llvm::NamedMDNode *GlobalMetadata = 0;
2052 
2053   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2054          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2055     const Decl *D = I->first;
2056     llvm::Value *Addr = I->second;
2057 
2058     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2059       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2060       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2061     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2062       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2063       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2064     }
2065   }
2066 }
2067 
2068 ///@name Custom Runtime Function Interfaces
2069 ///@{
2070 //
2071 // FIXME: These can be eliminated once we can have clients just get the required
2072 // AST nodes from the builtin tables.
2073 
2074 llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2075   if (BlockObjectDispose)
2076     return BlockObjectDispose;
2077 
2078   // If we saw an explicit decl, use that.
2079   if (BlockObjectDisposeDecl) {
2080     return BlockObjectDispose = GetAddrOfFunction(
2081       BlockObjectDisposeDecl,
2082       getTypes().GetFunctionType(BlockObjectDisposeDecl));
2083   }
2084 
2085   // Otherwise construct the function by hand.
2086   const llvm::FunctionType *FTy;
2087   std::vector<const llvm::Type*> ArgTys;
2088   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2089   ArgTys.push_back(PtrToInt8Ty);
2090   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2091   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2092   return BlockObjectDispose =
2093     CreateRuntimeFunction(FTy, "_Block_object_dispose");
2094 }
2095 
2096 llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2097   if (BlockObjectAssign)
2098     return BlockObjectAssign;
2099 
2100   // If we saw an explicit decl, use that.
2101   if (BlockObjectAssignDecl) {
2102     return BlockObjectAssign = GetAddrOfFunction(
2103       BlockObjectAssignDecl,
2104       getTypes().GetFunctionType(BlockObjectAssignDecl));
2105   }
2106 
2107   // Otherwise construct the function by hand.
2108   const llvm::FunctionType *FTy;
2109   std::vector<const llvm::Type*> ArgTys;
2110   const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2111   ArgTys.push_back(PtrToInt8Ty);
2112   ArgTys.push_back(PtrToInt8Ty);
2113   ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2114   FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2115   return BlockObjectAssign =
2116     CreateRuntimeFunction(FTy, "_Block_object_assign");
2117 }
2118 
2119 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2120   if (NSConcreteGlobalBlock)
2121     return NSConcreteGlobalBlock;
2122 
2123   // If we saw an explicit decl, use that.
2124   if (NSConcreteGlobalBlockDecl) {
2125     return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2126       NSConcreteGlobalBlockDecl,
2127       getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2128   }
2129 
2130   // Otherwise construct the variable by hand.
2131   return NSConcreteGlobalBlock = CreateRuntimeVariable(
2132     PtrToInt8Ty, "_NSConcreteGlobalBlock");
2133 }
2134 
2135 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2136   if (NSConcreteStackBlock)
2137     return NSConcreteStackBlock;
2138 
2139   // If we saw an explicit decl, use that.
2140   if (NSConcreteStackBlockDecl) {
2141     return NSConcreteStackBlock = GetAddrOfGlobalVar(
2142       NSConcreteStackBlockDecl,
2143       getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2144   }
2145 
2146   // Otherwise construct the variable by hand.
2147   return NSConcreteStackBlock = CreateRuntimeVariable(
2148     PtrToInt8Ty, "_NSConcreteStackBlock");
2149 }
2150 
2151 ///@}
2152