xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision dc152659b4527cc2e5f75cc33f36df67c7d5db26)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "CGBlocks.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CGOpenMPRuntimeGPU.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "ConstantEmitter.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/AST/StmtVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/FileManager.h"
42 #include "clang/Basic/Module.h"
43 #include "clang/Basic/SourceManager.h"
44 #include "clang/Basic/TargetInfo.h"
45 #include "clang/Basic/Version.h"
46 #include "clang/CodeGen/ConstantInitBuilder.h"
47 #include "clang/Frontend/FrontendDiagnostic.h"
48 #include "llvm/ADT/StringSwitch.h"
49 #include "llvm/ADT/Triple.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ProfileSummary.h"
58 #include "llvm/ProfileData/InstrProfReader.h"
59 #include "llvm/Support/CodeGen.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/ConvertUTF.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MD5.h"
64 #include "llvm/Support/TimeProfiler.h"
65 #include "llvm/Support/X86TargetParser.h"
66 
67 using namespace clang;
68 using namespace CodeGen;
69 
70 static llvm::cl::opt<bool> LimitedCoverage(
71     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
72     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
73     llvm::cl::init(false));
74 
75 static const char AnnotationSection[] = "llvm.metadata";
76 
77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
78   switch (CGM.getContext().getCXXABIKind()) {
79   case TargetCXXABI::AppleARM64:
80   case TargetCXXABI::Fuchsia:
81   case TargetCXXABI::GenericAArch64:
82   case TargetCXXABI::GenericARM:
83   case TargetCXXABI::iOS:
84   case TargetCXXABI::WatchOS:
85   case TargetCXXABI::GenericMIPS:
86   case TargetCXXABI::GenericItanium:
87   case TargetCXXABI::WebAssembly:
88   case TargetCXXABI::XL:
89     return CreateItaniumCXXABI(CGM);
90   case TargetCXXABI::Microsoft:
91     return CreateMicrosoftCXXABI(CGM);
92   }
93 
94   llvm_unreachable("invalid C++ ABI kind");
95 }
96 
97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
98                              const PreprocessorOptions &PPO,
99                              const CodeGenOptions &CGO, llvm::Module &M,
100                              DiagnosticsEngine &diags,
101                              CoverageSourceInfo *CoverageInfo)
102     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
103       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
104       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
105       VMContext(M.getContext()), Types(*this), VTables(*this),
106       SanitizerMD(new SanitizerMetadata(*this)) {
107 
108   // Initialize the type cache.
109   llvm::LLVMContext &LLVMContext = M.getContext();
110   VoidTy = llvm::Type::getVoidTy(LLVMContext);
111   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
112   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
113   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
114   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
115   HalfTy = llvm::Type::getHalfTy(LLVMContext);
116   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
117   FloatTy = llvm::Type::getFloatTy(LLVMContext);
118   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
119   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
120   PointerAlignInBytes =
121     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
122   SizeSizeInBytes =
123     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
124   IntAlignInBytes =
125     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
126   CharTy =
127     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
128   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
129   IntPtrTy = llvm::IntegerType::get(LLVMContext,
130     C.getTargetInfo().getMaxPointerWidth());
131   Int8PtrTy = Int8Ty->getPointerTo(0);
132   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
133   const llvm::DataLayout &DL = M.getDataLayout();
134   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
135   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
136   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
137 
138   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
139 
140   if (LangOpts.ObjC)
141     createObjCRuntime();
142   if (LangOpts.OpenCL)
143     createOpenCLRuntime();
144   if (LangOpts.OpenMP)
145     createOpenMPRuntime();
146   if (LangOpts.CUDA)
147     createCUDARuntime();
148 
149   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
150   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
151       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
152     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
153                                getCXXABI().getMangleContext()));
154 
155   // If debug info or coverage generation is enabled, create the CGDebugInfo
156   // object.
157   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
158       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
159     DebugInfo.reset(new CGDebugInfo(*this));
160 
161   Block.GlobalUniqueCount = 0;
162 
163   if (C.getLangOpts().ObjC)
164     ObjCData.reset(new ObjCEntrypoints());
165 
166   if (CodeGenOpts.hasProfileClangUse()) {
167     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
168         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
169     if (auto E = ReaderOrErr.takeError()) {
170       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
171                                               "Could not read profile %0: %1");
172       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
173         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
174                                   << EI.message();
175       });
176     } else
177       PGOReader = std::move(ReaderOrErr.get());
178   }
179 
180   // If coverage mapping generation is enabled, create the
181   // CoverageMappingModuleGen object.
182   if (CodeGenOpts.CoverageMapping)
183     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
184 
185   // Generate the module name hash here if needed.
186   if (CodeGenOpts.UniqueInternalLinkageNames &&
187       !getModule().getSourceFileName().empty()) {
188     std::string Path = getModule().getSourceFileName();
189     // Check if a path substitution is needed from the MacroPrefixMap.
190     for (const auto &Entry : LangOpts.MacroPrefixMap)
191       if (Path.rfind(Entry.first, 0) != std::string::npos) {
192         Path = Entry.second + Path.substr(Entry.first.size());
193         break;
194       }
195     llvm::MD5 Md5;
196     Md5.update(Path);
197     llvm::MD5::MD5Result R;
198     Md5.final(R);
199     SmallString<32> Str;
200     llvm::MD5::stringifyResult(R, Str);
201     // Convert MD5hash to Decimal. Demangler suffixes can either contain
202     // numbers or characters but not both.
203     llvm::APInt IntHash(128, Str.str(), 16);
204     // Prepend "__uniq" before the hash for tools like profilers to understand
205     // that this symbol is of internal linkage type.  The "__uniq" is the
206     // pre-determined prefix that is used to tell tools that this symbol was
207     // created with -funique-internal-linakge-symbols and the tools can strip or
208     // keep the prefix as needed.
209     ModuleNameHash = (Twine(".__uniq.") +
210         Twine(toString(IntHash, /* Radix = */ 10, /* Signed = */false))).str();
211   }
212 }
213 
214 CodeGenModule::~CodeGenModule() {}
215 
216 void CodeGenModule::createObjCRuntime() {
217   // This is just isGNUFamily(), but we want to force implementors of
218   // new ABIs to decide how best to do this.
219   switch (LangOpts.ObjCRuntime.getKind()) {
220   case ObjCRuntime::GNUstep:
221   case ObjCRuntime::GCC:
222   case ObjCRuntime::ObjFW:
223     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
224     return;
225 
226   case ObjCRuntime::FragileMacOSX:
227   case ObjCRuntime::MacOSX:
228   case ObjCRuntime::iOS:
229   case ObjCRuntime::WatchOS:
230     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
231     return;
232   }
233   llvm_unreachable("bad runtime kind");
234 }
235 
236 void CodeGenModule::createOpenCLRuntime() {
237   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
238 }
239 
240 void CodeGenModule::createOpenMPRuntime() {
241   // Select a specialized code generation class based on the target, if any.
242   // If it does not exist use the default implementation.
243   switch (getTriple().getArch()) {
244   case llvm::Triple::nvptx:
245   case llvm::Triple::nvptx64:
246   case llvm::Triple::amdgcn:
247     assert(getLangOpts().OpenMPIsDevice &&
248            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
249     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
250     break;
251   default:
252     if (LangOpts.OpenMPSimd)
253       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
254     else
255       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
256     break;
257   }
258 }
259 
260 void CodeGenModule::createCUDARuntime() {
261   CUDARuntime.reset(CreateNVCUDARuntime(*this));
262 }
263 
264 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
265   Replacements[Name] = C;
266 }
267 
268 void CodeGenModule::applyReplacements() {
269   for (auto &I : Replacements) {
270     StringRef MangledName = I.first();
271     llvm::Constant *Replacement = I.second;
272     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
273     if (!Entry)
274       continue;
275     auto *OldF = cast<llvm::Function>(Entry);
276     auto *NewF = dyn_cast<llvm::Function>(Replacement);
277     if (!NewF) {
278       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
279         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
280       } else {
281         auto *CE = cast<llvm::ConstantExpr>(Replacement);
282         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
283                CE->getOpcode() == llvm::Instruction::GetElementPtr);
284         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
285       }
286     }
287 
288     // Replace old with new, but keep the old order.
289     OldF->replaceAllUsesWith(Replacement);
290     if (NewF) {
291       NewF->removeFromParent();
292       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
293                                                        NewF);
294     }
295     OldF->eraseFromParent();
296   }
297 }
298 
299 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
300   GlobalValReplacements.push_back(std::make_pair(GV, C));
301 }
302 
303 void CodeGenModule::applyGlobalValReplacements() {
304   for (auto &I : GlobalValReplacements) {
305     llvm::GlobalValue *GV = I.first;
306     llvm::Constant *C = I.second;
307 
308     GV->replaceAllUsesWith(C);
309     GV->eraseFromParent();
310   }
311 }
312 
313 // This is only used in aliases that we created and we know they have a
314 // linear structure.
315 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
316   const llvm::Constant *C;
317   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
318     C = GA->getAliasee();
319   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
320     C = GI->getResolver();
321   else
322     return GV;
323 
324   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
325   if (!AliaseeGV)
326     return nullptr;
327 
328   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
329   if (FinalGV == GV)
330     return nullptr;
331 
332   return FinalGV;
333 }
334 
335 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
336                                SourceLocation Location, bool IsIFunc,
337                                const llvm::GlobalValue *Alias,
338                                const llvm::GlobalValue *&GV) {
339   GV = getAliasedGlobal(Alias);
340   if (!GV) {
341     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
342     return false;
343   }
344 
345   if (GV->isDeclaration()) {
346     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
347     return false;
348   }
349 
350   if (IsIFunc) {
351     // Check resolver function type.
352     const auto *F = dyn_cast<llvm::Function>(GV);
353     if (!F) {
354       Diags.Report(Location, diag::err_alias_to_undefined)
355           << IsIFunc << IsIFunc;
356       return false;
357     }
358 
359     llvm::FunctionType *FTy = F->getFunctionType();
360     if (!FTy->getReturnType()->isPointerTy()) {
361       Diags.Report(Location, diag::err_ifunc_resolver_return);
362       return false;
363     }
364   }
365 
366   return true;
367 }
368 
369 void CodeGenModule::checkAliases() {
370   // Check if the constructed aliases are well formed. It is really unfortunate
371   // that we have to do this in CodeGen, but we only construct mangled names
372   // and aliases during codegen.
373   bool Error = false;
374   DiagnosticsEngine &Diags = getDiags();
375   for (const GlobalDecl &GD : Aliases) {
376     const auto *D = cast<ValueDecl>(GD.getDecl());
377     SourceLocation Location;
378     bool IsIFunc = D->hasAttr<IFuncAttr>();
379     if (const Attr *A = D->getDefiningAttr())
380       Location = A->getLocation();
381     else
382       llvm_unreachable("Not an alias or ifunc?");
383 
384     StringRef MangledName = getMangledName(GD);
385     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
386     const llvm::GlobalValue *GV = nullptr;
387     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
388       Error = true;
389       continue;
390     }
391 
392     llvm::Constant *Aliasee =
393         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
394                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
395 
396     llvm::GlobalValue *AliaseeGV;
397     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
398       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
399     else
400       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
401 
402     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
403       StringRef AliasSection = SA->getName();
404       if (AliasSection != AliaseeGV->getSection())
405         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
406             << AliasSection << IsIFunc << IsIFunc;
407     }
408 
409     // We have to handle alias to weak aliases in here. LLVM itself disallows
410     // this since the object semantics would not match the IL one. For
411     // compatibility with gcc we implement it by just pointing the alias
412     // to its aliasee's aliasee. We also warn, since the user is probably
413     // expecting the link to be weak.
414     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
415       if (GA->isInterposable()) {
416         Diags.Report(Location, diag::warn_alias_to_weak_alias)
417             << GV->getName() << GA->getName() << IsIFunc;
418         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
419             GA->getAliasee(), Alias->getType());
420 
421         if (IsIFunc)
422           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
423         else
424           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
425       }
426     }
427   }
428   if (!Error)
429     return;
430 
431   for (const GlobalDecl &GD : Aliases) {
432     StringRef MangledName = getMangledName(GD);
433     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
434     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
435     Alias->eraseFromParent();
436   }
437 }
438 
439 void CodeGenModule::clear() {
440   DeferredDeclsToEmit.clear();
441   if (OpenMPRuntime)
442     OpenMPRuntime->clear();
443 }
444 
445 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
446                                        StringRef MainFile) {
447   if (!hasDiagnostics())
448     return;
449   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
450     if (MainFile.empty())
451       MainFile = "<stdin>";
452     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
453   } else {
454     if (Mismatched > 0)
455       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
456 
457     if (Missing > 0)
458       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
459   }
460 }
461 
462 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
463                                              llvm::Module &M) {
464   if (!LO.VisibilityFromDLLStorageClass)
465     return;
466 
467   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
468       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
469   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
470       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
471   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
472       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
473   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
474       CodeGenModule::GetLLVMVisibility(
475           LO.getExternDeclNoDLLStorageClassVisibility());
476 
477   for (llvm::GlobalValue &GV : M.global_values()) {
478     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
479       continue;
480 
481     // Reset DSO locality before setting the visibility. This removes
482     // any effects that visibility options and annotations may have
483     // had on the DSO locality. Setting the visibility will implicitly set
484     // appropriate globals to DSO Local; however, this will be pessimistic
485     // w.r.t. to the normal compiler IRGen.
486     GV.setDSOLocal(false);
487 
488     if (GV.isDeclarationForLinker()) {
489       GV.setVisibility(GV.getDLLStorageClass() ==
490                                llvm::GlobalValue::DLLImportStorageClass
491                            ? ExternDeclDLLImportVisibility
492                            : ExternDeclNoDLLStorageClassVisibility);
493     } else {
494       GV.setVisibility(GV.getDLLStorageClass() ==
495                                llvm::GlobalValue::DLLExportStorageClass
496                            ? DLLExportVisibility
497                            : NoDLLStorageClassVisibility);
498     }
499 
500     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
501   }
502 }
503 
504 void CodeGenModule::Release() {
505   EmitDeferred();
506   EmitVTablesOpportunistically();
507   applyGlobalValReplacements();
508   applyReplacements();
509   checkAliases();
510   emitMultiVersionFunctions();
511   EmitCXXGlobalInitFunc();
512   EmitCXXGlobalCleanUpFunc();
513   registerGlobalDtorsWithAtExit();
514   EmitCXXThreadLocalInitFunc();
515   if (ObjCRuntime)
516     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
517       AddGlobalCtor(ObjCInitFunction);
518   if (Context.getLangOpts().CUDA && CUDARuntime) {
519     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
520       AddGlobalCtor(CudaCtorFunction);
521   }
522   if (OpenMPRuntime) {
523     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
524             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
525       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
526     }
527     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
528     OpenMPRuntime->clear();
529   }
530   if (PGOReader) {
531     getModule().setProfileSummary(
532         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
533         llvm::ProfileSummary::PSK_Instr);
534     if (PGOStats.hasDiagnostics())
535       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
536   }
537   EmitCtorList(GlobalCtors, "llvm.global_ctors");
538   EmitCtorList(GlobalDtors, "llvm.global_dtors");
539   EmitGlobalAnnotations();
540   EmitStaticExternCAliases();
541   EmitDeferredUnusedCoverageMappings();
542   CodeGenPGO(*this).setValueProfilingFlag(getModule());
543   if (CoverageMapping)
544     CoverageMapping->emit();
545   if (CodeGenOpts.SanitizeCfiCrossDso) {
546     CodeGenFunction(*this).EmitCfiCheckFail();
547     CodeGenFunction(*this).EmitCfiCheckStub();
548   }
549   emitAtAvailableLinkGuard();
550   if (Context.getTargetInfo().getTriple().isWasm() &&
551       !Context.getTargetInfo().getTriple().isOSEmscripten()) {
552     EmitMainVoidAlias();
553   }
554 
555   if (getTriple().isAMDGPU()) {
556     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
557     // preserve ASAN functions in bitcode libraries.
558     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
559       auto *FT = llvm::FunctionType::get(VoidTy, {});
560       auto *F = llvm::Function::Create(
561           FT, llvm::GlobalValue::ExternalLinkage,
562           "__amdgpu_device_library_preserve_asan_functions", &getModule());
563       auto *Var = new llvm::GlobalVariable(
564           getModule(), FT->getPointerTo(),
565           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
566           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
567           llvm::GlobalVariable::NotThreadLocal);
568       addCompilerUsedGlobal(Var);
569     }
570     // Emit amdgpu_code_object_version module flag, which is code object version
571     // times 100.
572     // ToDo: Enable module flag for all code object version when ROCm device
573     // library is ready.
574     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
575       getModule().addModuleFlag(llvm::Module::Error,
576                                 "amdgpu_code_object_version",
577                                 getTarget().getTargetOpts().CodeObjectVersion);
578     }
579   }
580 
581   emitLLVMUsed();
582   if (SanStats)
583     SanStats->finish();
584 
585   if (CodeGenOpts.Autolink &&
586       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
587     EmitModuleLinkOptions();
588   }
589 
590   // On ELF we pass the dependent library specifiers directly to the linker
591   // without manipulating them. This is in contrast to other platforms where
592   // they are mapped to a specific linker option by the compiler. This
593   // difference is a result of the greater variety of ELF linkers and the fact
594   // that ELF linkers tend to handle libraries in a more complicated fashion
595   // than on other platforms. This forces us to defer handling the dependent
596   // libs to the linker.
597   //
598   // CUDA/HIP device and host libraries are different. Currently there is no
599   // way to differentiate dependent libraries for host or device. Existing
600   // usage of #pragma comment(lib, *) is intended for host libraries on
601   // Windows. Therefore emit llvm.dependent-libraries only for host.
602   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
603     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
604     for (auto *MD : ELFDependentLibraries)
605       NMD->addOperand(MD);
606   }
607 
608   // Record mregparm value now so it is visible through rest of codegen.
609   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
610     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
611                               CodeGenOpts.NumRegisterParameters);
612 
613   if (CodeGenOpts.DwarfVersion) {
614     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
615                               CodeGenOpts.DwarfVersion);
616   }
617 
618   if (CodeGenOpts.Dwarf64)
619     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
620 
621   if (Context.getLangOpts().SemanticInterposition)
622     // Require various optimization to respect semantic interposition.
623     getModule().setSemanticInterposition(true);
624 
625   if (CodeGenOpts.EmitCodeView) {
626     // Indicate that we want CodeView in the metadata.
627     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
628   }
629   if (CodeGenOpts.CodeViewGHash) {
630     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
631   }
632   if (CodeGenOpts.ControlFlowGuard) {
633     // Function ID tables and checks for Control Flow Guard (cfguard=2).
634     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
635   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
636     // Function ID tables for Control Flow Guard (cfguard=1).
637     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
638   }
639   if (CodeGenOpts.EHContGuard) {
640     // Function ID tables for EH Continuation Guard.
641     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
642   }
643   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
644     // We don't support LTO with 2 with different StrictVTablePointers
645     // FIXME: we could support it by stripping all the information introduced
646     // by StrictVTablePointers.
647 
648     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
649 
650     llvm::Metadata *Ops[2] = {
651               llvm::MDString::get(VMContext, "StrictVTablePointers"),
652               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
653                   llvm::Type::getInt32Ty(VMContext), 1))};
654 
655     getModule().addModuleFlag(llvm::Module::Require,
656                               "StrictVTablePointersRequirement",
657                               llvm::MDNode::get(VMContext, Ops));
658   }
659   if (getModuleDebugInfo())
660     // We support a single version in the linked module. The LLVM
661     // parser will drop debug info with a different version number
662     // (and warn about it, too).
663     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
664                               llvm::DEBUG_METADATA_VERSION);
665 
666   // We need to record the widths of enums and wchar_t, so that we can generate
667   // the correct build attributes in the ARM backend. wchar_size is also used by
668   // TargetLibraryInfo.
669   uint64_t WCharWidth =
670       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
671   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
672 
673   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
674   if (   Arch == llvm::Triple::arm
675       || Arch == llvm::Triple::armeb
676       || Arch == llvm::Triple::thumb
677       || Arch == llvm::Triple::thumbeb) {
678     // The minimum width of an enum in bytes
679     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
680     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
681   }
682 
683   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
684     StringRef ABIStr = Target.getABI();
685     llvm::LLVMContext &Ctx = TheModule.getContext();
686     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
687                               llvm::MDString::get(Ctx, ABIStr));
688   }
689 
690   if (CodeGenOpts.SanitizeCfiCrossDso) {
691     // Indicate that we want cross-DSO control flow integrity checks.
692     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
693   }
694 
695   if (CodeGenOpts.WholeProgramVTables) {
696     // Indicate whether VFE was enabled for this module, so that the
697     // vcall_visibility metadata added under whole program vtables is handled
698     // appropriately in the optimizer.
699     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
700                               CodeGenOpts.VirtualFunctionElimination);
701   }
702 
703   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
704     getModule().addModuleFlag(llvm::Module::Override,
705                               "CFI Canonical Jump Tables",
706                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
707   }
708 
709   if (CodeGenOpts.CFProtectionReturn &&
710       Target.checkCFProtectionReturnSupported(getDiags())) {
711     // Indicate that we want to instrument return control flow protection.
712     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
713                               1);
714   }
715 
716   if (CodeGenOpts.CFProtectionBranch &&
717       Target.checkCFProtectionBranchSupported(getDiags())) {
718     // Indicate that we want to instrument branch control flow protection.
719     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
720                               1);
721   }
722 
723   if (CodeGenOpts.IBTSeal)
724     getModule().addModuleFlag(llvm::Module::Override, "ibt-seal", 1);
725 
726   // Add module metadata for return address signing (ignoring
727   // non-leaf/all) and stack tagging. These are actually turned on by function
728   // attributes, but we use module metadata to emit build attributes. This is
729   // needed for LTO, where the function attributes are inside bitcode
730   // serialised into a global variable by the time build attributes are
731   // emitted, so we can't access them.
732   if (Context.getTargetInfo().hasFeature("ptrauth") &&
733       LangOpts.getSignReturnAddressScope() !=
734           LangOptions::SignReturnAddressScopeKind::None)
735     getModule().addModuleFlag(llvm::Module::Override,
736                               "sign-return-address-buildattr", 1);
737   if (LangOpts.Sanitize.has(SanitizerKind::MemTag))
738     getModule().addModuleFlag(llvm::Module::Override,
739                               "tag-stack-memory-buildattr", 1);
740 
741   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
742       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
743       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
744       Arch == llvm::Triple::aarch64_be) {
745     getModule().addModuleFlag(llvm::Module::Error, "branch-target-enforcement",
746                               LangOpts.BranchTargetEnforcement);
747 
748     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address",
749                               LangOpts.hasSignReturnAddress());
750 
751     getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all",
752                               LangOpts.isSignReturnAddressScopeAll());
753 
754     getModule().addModuleFlag(llvm::Module::Error,
755                               "sign-return-address-with-bkey",
756                               !LangOpts.isSignReturnAddressWithAKey());
757   }
758 
759   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
760     llvm::LLVMContext &Ctx = TheModule.getContext();
761     getModule().addModuleFlag(
762         llvm::Module::Error, "MemProfProfileFilename",
763         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
764   }
765 
766   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
767     // Indicate whether __nvvm_reflect should be configured to flush denormal
768     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
769     // property.)
770     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
771                               CodeGenOpts.FP32DenormalMode.Output !=
772                                   llvm::DenormalMode::IEEE);
773   }
774 
775   if (LangOpts.EHAsynch)
776     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
777 
778   // Indicate whether this Module was compiled with -fopenmp
779   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
780     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
781   if (getLangOpts().OpenMPIsDevice)
782     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
783                               LangOpts.OpenMP);
784 
785   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
786   if (LangOpts.OpenCL) {
787     EmitOpenCLMetadata();
788     // Emit SPIR version.
789     if (getTriple().isSPIR()) {
790       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
791       // opencl.spir.version named metadata.
792       // C++ for OpenCL has a distinct mapping for version compatibility with
793       // OpenCL.
794       auto Version = LangOpts.getOpenCLCompatibleVersion();
795       llvm::Metadata *SPIRVerElts[] = {
796           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
797               Int32Ty, Version / 100)),
798           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
799               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
800       llvm::NamedMDNode *SPIRVerMD =
801           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
802       llvm::LLVMContext &Ctx = TheModule.getContext();
803       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
804     }
805   }
806 
807   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
808     assert(PLevel < 3 && "Invalid PIC Level");
809     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
810     if (Context.getLangOpts().PIE)
811       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
812   }
813 
814   if (getCodeGenOpts().CodeModel.size() > 0) {
815     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
816                   .Case("tiny", llvm::CodeModel::Tiny)
817                   .Case("small", llvm::CodeModel::Small)
818                   .Case("kernel", llvm::CodeModel::Kernel)
819                   .Case("medium", llvm::CodeModel::Medium)
820                   .Case("large", llvm::CodeModel::Large)
821                   .Default(~0u);
822     if (CM != ~0u) {
823       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
824       getModule().setCodeModel(codeModel);
825     }
826   }
827 
828   if (CodeGenOpts.NoPLT)
829     getModule().setRtLibUseGOT();
830   if (CodeGenOpts.UnwindTables)
831     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
832 
833   switch (CodeGenOpts.getFramePointer()) {
834   case CodeGenOptions::FramePointerKind::None:
835     // 0 ("none") is the default.
836     break;
837   case CodeGenOptions::FramePointerKind::NonLeaf:
838     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
839     break;
840   case CodeGenOptions::FramePointerKind::All:
841     getModule().setFramePointer(llvm::FramePointerKind::All);
842     break;
843   }
844 
845   SimplifyPersonality();
846 
847   if (getCodeGenOpts().EmitDeclMetadata)
848     EmitDeclMetadata();
849 
850   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
851     EmitCoverageFile();
852 
853   if (CGDebugInfo *DI = getModuleDebugInfo())
854     DI->finalize();
855 
856   if (getCodeGenOpts().EmitVersionIdentMetadata)
857     EmitVersionIdentMetadata();
858 
859   if (!getCodeGenOpts().RecordCommandLine.empty())
860     EmitCommandLineMetadata();
861 
862   if (!getCodeGenOpts().StackProtectorGuard.empty())
863     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
864   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
865     getModule().setStackProtectorGuardReg(
866         getCodeGenOpts().StackProtectorGuardReg);
867   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
868     getModule().setStackProtectorGuardOffset(
869         getCodeGenOpts().StackProtectorGuardOffset);
870   if (getCodeGenOpts().StackAlignment)
871     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
872   if (getCodeGenOpts().SkipRaxSetup)
873     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
874 
875   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
876 
877   EmitBackendOptionsMetadata(getCodeGenOpts());
878 
879   // Set visibility from DLL storage class
880   // We do this at the end of LLVM IR generation; after any operation
881   // that might affect the DLL storage class or the visibility, and
882   // before anything that might act on these.
883   setVisibilityFromDLLStorageClass(LangOpts, getModule());
884 }
885 
886 void CodeGenModule::EmitOpenCLMetadata() {
887   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
888   // opencl.ocl.version named metadata node.
889   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
890   auto Version = LangOpts.getOpenCLCompatibleVersion();
891   llvm::Metadata *OCLVerElts[] = {
892       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
893           Int32Ty, Version / 100)),
894       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
895           Int32Ty, (Version % 100) / 10))};
896   llvm::NamedMDNode *OCLVerMD =
897       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
898   llvm::LLVMContext &Ctx = TheModule.getContext();
899   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
900 }
901 
902 void CodeGenModule::EmitBackendOptionsMetadata(
903     const CodeGenOptions CodeGenOpts) {
904   switch (getTriple().getArch()) {
905   default:
906     break;
907   case llvm::Triple::riscv32:
908   case llvm::Triple::riscv64:
909     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
910                               CodeGenOpts.SmallDataLimit);
911     break;
912   }
913 }
914 
915 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
916   // Make sure that this type is translated.
917   Types.UpdateCompletedType(TD);
918 }
919 
920 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
921   // Make sure that this type is translated.
922   Types.RefreshTypeCacheForClass(RD);
923 }
924 
925 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
926   if (!TBAA)
927     return nullptr;
928   return TBAA->getTypeInfo(QTy);
929 }
930 
931 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
932   if (!TBAA)
933     return TBAAAccessInfo();
934   if (getLangOpts().CUDAIsDevice) {
935     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
936     // access info.
937     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
938       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
939           nullptr)
940         return TBAAAccessInfo();
941     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
942       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
943           nullptr)
944         return TBAAAccessInfo();
945     }
946   }
947   return TBAA->getAccessInfo(AccessType);
948 }
949 
950 TBAAAccessInfo
951 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
952   if (!TBAA)
953     return TBAAAccessInfo();
954   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
955 }
956 
957 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
958   if (!TBAA)
959     return nullptr;
960   return TBAA->getTBAAStructInfo(QTy);
961 }
962 
963 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
964   if (!TBAA)
965     return nullptr;
966   return TBAA->getBaseTypeInfo(QTy);
967 }
968 
969 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
970   if (!TBAA)
971     return nullptr;
972   return TBAA->getAccessTagInfo(Info);
973 }
974 
975 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
976                                                    TBAAAccessInfo TargetInfo) {
977   if (!TBAA)
978     return TBAAAccessInfo();
979   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
980 }
981 
982 TBAAAccessInfo
983 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
984                                                    TBAAAccessInfo InfoB) {
985   if (!TBAA)
986     return TBAAAccessInfo();
987   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
988 }
989 
990 TBAAAccessInfo
991 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
992                                               TBAAAccessInfo SrcInfo) {
993   if (!TBAA)
994     return TBAAAccessInfo();
995   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
996 }
997 
998 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
999                                                 TBAAAccessInfo TBAAInfo) {
1000   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1001     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1002 }
1003 
1004 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1005     llvm::Instruction *I, const CXXRecordDecl *RD) {
1006   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1007                  llvm::MDNode::get(getLLVMContext(), {}));
1008 }
1009 
1010 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1011   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1012   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1013 }
1014 
1015 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1016 /// specified stmt yet.
1017 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1018   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1019                                                "cannot compile this %0 yet");
1020   std::string Msg = Type;
1021   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1022       << Msg << S->getSourceRange();
1023 }
1024 
1025 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1026 /// specified decl yet.
1027 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1028   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1029                                                "cannot compile this %0 yet");
1030   std::string Msg = Type;
1031   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1032 }
1033 
1034 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1035   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1036 }
1037 
1038 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1039                                         const NamedDecl *D) const {
1040   if (GV->hasDLLImportStorageClass())
1041     return;
1042   // Internal definitions always have default visibility.
1043   if (GV->hasLocalLinkage()) {
1044     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1045     return;
1046   }
1047   if (!D)
1048     return;
1049   // Set visibility for definitions, and for declarations if requested globally
1050   // or set explicitly.
1051   LinkageInfo LV = D->getLinkageAndVisibility();
1052   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1053       !GV->isDeclarationForLinker())
1054     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1055 }
1056 
1057 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1058                                  llvm::GlobalValue *GV) {
1059   if (GV->hasLocalLinkage())
1060     return true;
1061 
1062   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1063     return true;
1064 
1065   // DLLImport explicitly marks the GV as external.
1066   if (GV->hasDLLImportStorageClass())
1067     return false;
1068 
1069   const llvm::Triple &TT = CGM.getTriple();
1070   if (TT.isWindowsGNUEnvironment()) {
1071     // In MinGW, variables without DLLImport can still be automatically
1072     // imported from a DLL by the linker; don't mark variables that
1073     // potentially could come from another DLL as DSO local.
1074 
1075     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1076     // (and this actually happens in the public interface of libstdc++), so
1077     // such variables can't be marked as DSO local. (Native TLS variables
1078     // can't be dllimported at all, though.)
1079     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1080         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1081       return false;
1082   }
1083 
1084   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1085   // remain unresolved in the link, they can be resolved to zero, which is
1086   // outside the current DSO.
1087   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1088     return false;
1089 
1090   // Every other GV is local on COFF.
1091   // Make an exception for windows OS in the triple: Some firmware builds use
1092   // *-win32-macho triples. This (accidentally?) produced windows relocations
1093   // without GOT tables in older clang versions; Keep this behaviour.
1094   // FIXME: even thread local variables?
1095   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1096     return true;
1097 
1098   // Only handle COFF and ELF for now.
1099   if (!TT.isOSBinFormatELF())
1100     return false;
1101 
1102   // If this is not an executable, don't assume anything is local.
1103   const auto &CGOpts = CGM.getCodeGenOpts();
1104   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1105   const auto &LOpts = CGM.getLangOpts();
1106   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1107     // On ELF, if -fno-semantic-interposition is specified and the target
1108     // supports local aliases, there will be neither CC1
1109     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1110     // dso_local on the function if using a local alias is preferable (can avoid
1111     // PLT indirection).
1112     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1113       return false;
1114     return !(CGM.getLangOpts().SemanticInterposition ||
1115              CGM.getLangOpts().HalfNoSemanticInterposition);
1116   }
1117 
1118   // A definition cannot be preempted from an executable.
1119   if (!GV->isDeclarationForLinker())
1120     return true;
1121 
1122   // Most PIC code sequences that assume that a symbol is local cannot produce a
1123   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1124   // depended, it seems worth it to handle it here.
1125   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1126     return false;
1127 
1128   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1129   if (TT.isPPC64())
1130     return false;
1131 
1132   if (CGOpts.DirectAccessExternalData) {
1133     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1134     // for non-thread-local variables. If the symbol is not defined in the
1135     // executable, a copy relocation will be needed at link time. dso_local is
1136     // excluded for thread-local variables because they generally don't support
1137     // copy relocations.
1138     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1139       if (!Var->isThreadLocal())
1140         return true;
1141 
1142     // -fno-pic sets dso_local on a function declaration to allow direct
1143     // accesses when taking its address (similar to a data symbol). If the
1144     // function is not defined in the executable, a canonical PLT entry will be
1145     // needed at link time. -fno-direct-access-external-data can avoid the
1146     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1147     // it could just cause trouble without providing perceptible benefits.
1148     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1149       return true;
1150   }
1151 
1152   // If we can use copy relocations we can assume it is local.
1153 
1154   // Otherwise don't assume it is local.
1155   return false;
1156 }
1157 
1158 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1159   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1160 }
1161 
1162 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1163                                           GlobalDecl GD) const {
1164   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1165   // C++ destructors have a few C++ ABI specific special cases.
1166   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1167     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1168     return;
1169   }
1170   setDLLImportDLLExport(GV, D);
1171 }
1172 
1173 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1174                                           const NamedDecl *D) const {
1175   if (D && D->isExternallyVisible()) {
1176     if (D->hasAttr<DLLImportAttr>())
1177       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1178     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
1179       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1180   }
1181 }
1182 
1183 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1184                                     GlobalDecl GD) const {
1185   setDLLImportDLLExport(GV, GD);
1186   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1187 }
1188 
1189 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1190                                     const NamedDecl *D) const {
1191   setDLLImportDLLExport(GV, D);
1192   setGVPropertiesAux(GV, D);
1193 }
1194 
1195 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1196                                        const NamedDecl *D) const {
1197   setGlobalVisibility(GV, D);
1198   setDSOLocal(GV);
1199   GV->setPartition(CodeGenOpts.SymbolPartition);
1200 }
1201 
1202 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1203   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1204       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1205       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1206       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1207       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1208 }
1209 
1210 llvm::GlobalVariable::ThreadLocalMode
1211 CodeGenModule::GetDefaultLLVMTLSModel() const {
1212   switch (CodeGenOpts.getDefaultTLSModel()) {
1213   case CodeGenOptions::GeneralDynamicTLSModel:
1214     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1215   case CodeGenOptions::LocalDynamicTLSModel:
1216     return llvm::GlobalVariable::LocalDynamicTLSModel;
1217   case CodeGenOptions::InitialExecTLSModel:
1218     return llvm::GlobalVariable::InitialExecTLSModel;
1219   case CodeGenOptions::LocalExecTLSModel:
1220     return llvm::GlobalVariable::LocalExecTLSModel;
1221   }
1222   llvm_unreachable("Invalid TLS model!");
1223 }
1224 
1225 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1226   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1227 
1228   llvm::GlobalValue::ThreadLocalMode TLM;
1229   TLM = GetDefaultLLVMTLSModel();
1230 
1231   // Override the TLS model if it is explicitly specified.
1232   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1233     TLM = GetLLVMTLSModel(Attr->getModel());
1234   }
1235 
1236   GV->setThreadLocalMode(TLM);
1237 }
1238 
1239 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1240                                           StringRef Name) {
1241   const TargetInfo &Target = CGM.getTarget();
1242   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1243 }
1244 
1245 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1246                                                  const CPUSpecificAttr *Attr,
1247                                                  unsigned CPUIndex,
1248                                                  raw_ostream &Out) {
1249   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1250   // supported.
1251   if (Attr)
1252     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1253   else if (CGM.getTarget().supportsIFunc())
1254     Out << ".resolver";
1255 }
1256 
1257 static void AppendTargetMangling(const CodeGenModule &CGM,
1258                                  const TargetAttr *Attr, raw_ostream &Out) {
1259   if (Attr->isDefaultVersion())
1260     return;
1261 
1262   Out << '.';
1263   const TargetInfo &Target = CGM.getTarget();
1264   ParsedTargetAttr Info =
1265       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1266         // Multiversioning doesn't allow "no-${feature}", so we can
1267         // only have "+" prefixes here.
1268         assert(LHS.startswith("+") && RHS.startswith("+") &&
1269                "Features should always have a prefix.");
1270         return Target.multiVersionSortPriority(LHS.substr(1)) >
1271                Target.multiVersionSortPriority(RHS.substr(1));
1272       });
1273 
1274   bool IsFirst = true;
1275 
1276   if (!Info.Architecture.empty()) {
1277     IsFirst = false;
1278     Out << "arch_" << Info.Architecture;
1279   }
1280 
1281   for (StringRef Feat : Info.Features) {
1282     if (!IsFirst)
1283       Out << '_';
1284     IsFirst = false;
1285     Out << Feat.substr(1);
1286   }
1287 }
1288 
1289 // Returns true if GD is a function decl with internal linkage and
1290 // needs a unique suffix after the mangled name.
1291 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1292                                         CodeGenModule &CGM) {
1293   const Decl *D = GD.getDecl();
1294   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1295          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1296 }
1297 
1298 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1299                                        const TargetClonesAttr *Attr,
1300                                        unsigned VersionIndex,
1301                                        raw_ostream &Out) {
1302   Out << '.';
1303   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1304   if (FeatureStr.startswith("arch="))
1305     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1306   else
1307     Out << FeatureStr;
1308 
1309   Out << '.' << Attr->getMangledIndex(VersionIndex);
1310 }
1311 
1312 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1313                                       const NamedDecl *ND,
1314                                       bool OmitMultiVersionMangling = false) {
1315   SmallString<256> Buffer;
1316   llvm::raw_svector_ostream Out(Buffer);
1317   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1318   if (!CGM.getModuleNameHash().empty())
1319     MC.needsUniqueInternalLinkageNames();
1320   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1321   if (ShouldMangle)
1322     MC.mangleName(GD.getWithDecl(ND), Out);
1323   else {
1324     IdentifierInfo *II = ND->getIdentifier();
1325     assert(II && "Attempt to mangle unnamed decl.");
1326     const auto *FD = dyn_cast<FunctionDecl>(ND);
1327 
1328     if (FD &&
1329         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1330       Out << "__regcall3__" << II->getName();
1331     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1332                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1333       Out << "__device_stub__" << II->getName();
1334     } else {
1335       Out << II->getName();
1336     }
1337   }
1338 
1339   // Check if the module name hash should be appended for internal linkage
1340   // symbols.   This should come before multi-version target suffixes are
1341   // appended. This is to keep the name and module hash suffix of the
1342   // internal linkage function together.  The unique suffix should only be
1343   // added when name mangling is done to make sure that the final name can
1344   // be properly demangled.  For example, for C functions without prototypes,
1345   // name mangling is not done and the unique suffix should not be appeneded
1346   // then.
1347   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1348     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1349            "Hash computed when not explicitly requested");
1350     Out << CGM.getModuleNameHash();
1351   }
1352 
1353   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1354     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1355       switch (FD->getMultiVersionKind()) {
1356       case MultiVersionKind::CPUDispatch:
1357       case MultiVersionKind::CPUSpecific:
1358         AppendCPUSpecificCPUDispatchMangling(CGM,
1359                                              FD->getAttr<CPUSpecificAttr>(),
1360                                              GD.getMultiVersionIndex(), Out);
1361         break;
1362       case MultiVersionKind::Target:
1363         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1364         break;
1365       case MultiVersionKind::TargetClones:
1366         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1367                                    GD.getMultiVersionIndex(), Out);
1368         break;
1369       case MultiVersionKind::None:
1370         llvm_unreachable("None multiversion type isn't valid here");
1371       }
1372     }
1373 
1374   // Make unique name for device side static file-scope variable for HIP.
1375   if (CGM.getContext().shouldExternalizeStaticVar(ND) &&
1376       CGM.getLangOpts().GPURelocatableDeviceCode &&
1377       CGM.getLangOpts().CUDAIsDevice && !CGM.getLangOpts().CUID.empty())
1378     CGM.printPostfixForExternalizedStaticVar(Out);
1379   return std::string(Out.str());
1380 }
1381 
1382 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1383                                             const FunctionDecl *FD,
1384                                             StringRef &CurName) {
1385   if (!FD->isMultiVersion())
1386     return;
1387 
1388   // Get the name of what this would be without the 'target' attribute.  This
1389   // allows us to lookup the version that was emitted when this wasn't a
1390   // multiversion function.
1391   std::string NonTargetName =
1392       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1393   GlobalDecl OtherGD;
1394   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1395     assert(OtherGD.getCanonicalDecl()
1396                .getDecl()
1397                ->getAsFunction()
1398                ->isMultiVersion() &&
1399            "Other GD should now be a multiversioned function");
1400     // OtherFD is the version of this function that was mangled BEFORE
1401     // becoming a MultiVersion function.  It potentially needs to be updated.
1402     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1403                                       .getDecl()
1404                                       ->getAsFunction()
1405                                       ->getMostRecentDecl();
1406     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1407     // This is so that if the initial version was already the 'default'
1408     // version, we don't try to update it.
1409     if (OtherName != NonTargetName) {
1410       // Remove instead of erase, since others may have stored the StringRef
1411       // to this.
1412       const auto ExistingRecord = Manglings.find(NonTargetName);
1413       if (ExistingRecord != std::end(Manglings))
1414         Manglings.remove(&(*ExistingRecord));
1415       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1416       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1417           Result.first->first();
1418       // If this is the current decl is being created, make sure we update the name.
1419       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1420         CurName = OtherNameRef;
1421       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1422         Entry->setName(OtherName);
1423     }
1424   }
1425 }
1426 
1427 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1428   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1429 
1430   // Some ABIs don't have constructor variants.  Make sure that base and
1431   // complete constructors get mangled the same.
1432   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1433     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1434       CXXCtorType OrigCtorType = GD.getCtorType();
1435       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1436       if (OrigCtorType == Ctor_Base)
1437         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1438     }
1439   }
1440 
1441   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1442   // static device variable depends on whether the variable is referenced by
1443   // a host or device host function. Therefore the mangled name cannot be
1444   // cached.
1445   if (!LangOpts.CUDAIsDevice ||
1446       !getContext().mayExternalizeStaticVar(GD.getDecl())) {
1447     auto FoundName = MangledDeclNames.find(CanonicalGD);
1448     if (FoundName != MangledDeclNames.end())
1449       return FoundName->second;
1450   }
1451 
1452   // Keep the first result in the case of a mangling collision.
1453   const auto *ND = cast<NamedDecl>(GD.getDecl());
1454   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1455 
1456   // Ensure either we have different ABIs between host and device compilations,
1457   // says host compilation following MSVC ABI but device compilation follows
1458   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1459   // mangling should be the same after name stubbing. The later checking is
1460   // very important as the device kernel name being mangled in host-compilation
1461   // is used to resolve the device binaries to be executed. Inconsistent naming
1462   // result in undefined behavior. Even though we cannot check that naming
1463   // directly between host- and device-compilations, the host- and
1464   // device-mangling in host compilation could help catching certain ones.
1465   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1466          getLangOpts().CUDAIsDevice ||
1467          (getContext().getAuxTargetInfo() &&
1468           (getContext().getAuxTargetInfo()->getCXXABI() !=
1469            getContext().getTargetInfo().getCXXABI())) ||
1470          getCUDARuntime().getDeviceSideName(ND) ==
1471              getMangledNameImpl(
1472                  *this,
1473                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1474                  ND));
1475 
1476   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1477   return MangledDeclNames[CanonicalGD] = Result.first->first();
1478 }
1479 
1480 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1481                                              const BlockDecl *BD) {
1482   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1483   const Decl *D = GD.getDecl();
1484 
1485   SmallString<256> Buffer;
1486   llvm::raw_svector_ostream Out(Buffer);
1487   if (!D)
1488     MangleCtx.mangleGlobalBlock(BD,
1489       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1490   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1491     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1492   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1493     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1494   else
1495     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1496 
1497   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1498   return Result.first->first();
1499 }
1500 
1501 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1502   return getModule().getNamedValue(Name);
1503 }
1504 
1505 /// AddGlobalCtor - Add a function to the list that will be called before
1506 /// main() runs.
1507 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1508                                   llvm::Constant *AssociatedData) {
1509   // FIXME: Type coercion of void()* types.
1510   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1511 }
1512 
1513 /// AddGlobalDtor - Add a function to the list that will be called
1514 /// when the module is unloaded.
1515 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1516                                   bool IsDtorAttrFunc) {
1517   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1518       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1519     DtorsUsingAtExit[Priority].push_back(Dtor);
1520     return;
1521   }
1522 
1523   // FIXME: Type coercion of void()* types.
1524   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1525 }
1526 
1527 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1528   if (Fns.empty()) return;
1529 
1530   // Ctor function type is void()*.
1531   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1532   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1533       TheModule.getDataLayout().getProgramAddressSpace());
1534 
1535   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1536   llvm::StructType *CtorStructTy = llvm::StructType::get(
1537       Int32Ty, CtorPFTy, VoidPtrTy);
1538 
1539   // Construct the constructor and destructor arrays.
1540   ConstantInitBuilder builder(*this);
1541   auto ctors = builder.beginArray(CtorStructTy);
1542   for (const auto &I : Fns) {
1543     auto ctor = ctors.beginStruct(CtorStructTy);
1544     ctor.addInt(Int32Ty, I.Priority);
1545     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1546     if (I.AssociatedData)
1547       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1548     else
1549       ctor.addNullPointer(VoidPtrTy);
1550     ctor.finishAndAddTo(ctors);
1551   }
1552 
1553   auto list =
1554     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1555                                 /*constant*/ false,
1556                                 llvm::GlobalValue::AppendingLinkage);
1557 
1558   // The LTO linker doesn't seem to like it when we set an alignment
1559   // on appending variables.  Take it off as a workaround.
1560   list->setAlignment(llvm::None);
1561 
1562   Fns.clear();
1563 }
1564 
1565 llvm::GlobalValue::LinkageTypes
1566 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1567   const auto *D = cast<FunctionDecl>(GD.getDecl());
1568 
1569   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1570 
1571   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1572     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1573 
1574   if (isa<CXXConstructorDecl>(D) &&
1575       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1576       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1577     // Our approach to inheriting constructors is fundamentally different from
1578     // that used by the MS ABI, so keep our inheriting constructor thunks
1579     // internal rather than trying to pick an unambiguous mangling for them.
1580     return llvm::GlobalValue::InternalLinkage;
1581   }
1582 
1583   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1584 }
1585 
1586 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1587   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1588   if (!MDS) return nullptr;
1589 
1590   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1591 }
1592 
1593 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1594                                               const CGFunctionInfo &Info,
1595                                               llvm::Function *F, bool IsThunk) {
1596   unsigned CallingConv;
1597   llvm::AttributeList PAL;
1598   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1599                          /*AttrOnCallSite=*/false, IsThunk);
1600   F->setAttributes(PAL);
1601   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1602 }
1603 
1604 static void removeImageAccessQualifier(std::string& TyName) {
1605   std::string ReadOnlyQual("__read_only");
1606   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1607   if (ReadOnlyPos != std::string::npos)
1608     // "+ 1" for the space after access qualifier.
1609     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1610   else {
1611     std::string WriteOnlyQual("__write_only");
1612     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1613     if (WriteOnlyPos != std::string::npos)
1614       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1615     else {
1616       std::string ReadWriteQual("__read_write");
1617       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1618       if (ReadWritePos != std::string::npos)
1619         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1620     }
1621   }
1622 }
1623 
1624 // Returns the address space id that should be produced to the
1625 // kernel_arg_addr_space metadata. This is always fixed to the ids
1626 // as specified in the SPIR 2.0 specification in order to differentiate
1627 // for example in clGetKernelArgInfo() implementation between the address
1628 // spaces with targets without unique mapping to the OpenCL address spaces
1629 // (basically all single AS CPUs).
1630 static unsigned ArgInfoAddressSpace(LangAS AS) {
1631   switch (AS) {
1632   case LangAS::opencl_global:
1633     return 1;
1634   case LangAS::opencl_constant:
1635     return 2;
1636   case LangAS::opencl_local:
1637     return 3;
1638   case LangAS::opencl_generic:
1639     return 4; // Not in SPIR 2.0 specs.
1640   case LangAS::opencl_global_device:
1641     return 5;
1642   case LangAS::opencl_global_host:
1643     return 6;
1644   default:
1645     return 0; // Assume private.
1646   }
1647 }
1648 
1649 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn,
1650                                          const FunctionDecl *FD,
1651                                          CodeGenFunction *CGF) {
1652   assert(((FD && CGF) || (!FD && !CGF)) &&
1653          "Incorrect use - FD and CGF should either be both null or not!");
1654   // Create MDNodes that represent the kernel arg metadata.
1655   // Each MDNode is a list in the form of "key", N number of values which is
1656   // the same number of values as their are kernel arguments.
1657 
1658   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1659 
1660   // MDNode for the kernel argument address space qualifiers.
1661   SmallVector<llvm::Metadata *, 8> addressQuals;
1662 
1663   // MDNode for the kernel argument access qualifiers (images only).
1664   SmallVector<llvm::Metadata *, 8> accessQuals;
1665 
1666   // MDNode for the kernel argument type names.
1667   SmallVector<llvm::Metadata *, 8> argTypeNames;
1668 
1669   // MDNode for the kernel argument base type names.
1670   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1671 
1672   // MDNode for the kernel argument type qualifiers.
1673   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1674 
1675   // MDNode for the kernel argument names.
1676   SmallVector<llvm::Metadata *, 8> argNames;
1677 
1678   if (FD && CGF)
1679     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1680       const ParmVarDecl *parm = FD->getParamDecl(i);
1681       QualType ty = parm->getType();
1682       std::string typeQuals;
1683 
1684       // Get image and pipe access qualifier:
1685       if (ty->isImageType() || ty->isPipeType()) {
1686         const Decl *PDecl = parm;
1687         if (auto *TD = dyn_cast<TypedefType>(ty))
1688           PDecl = TD->getDecl();
1689         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1690         if (A && A->isWriteOnly())
1691           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1692         else if (A && A->isReadWrite())
1693           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1694         else
1695           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1696       } else
1697         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1698 
1699       // Get argument name.
1700       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1701 
1702       auto getTypeSpelling = [&](QualType Ty) {
1703         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1704 
1705         if (Ty.isCanonical()) {
1706           StringRef typeNameRef = typeName;
1707           // Turn "unsigned type" to "utype"
1708           if (typeNameRef.consume_front("unsigned "))
1709             return std::string("u") + typeNameRef.str();
1710           if (typeNameRef.consume_front("signed "))
1711             return typeNameRef.str();
1712         }
1713 
1714         return typeName;
1715       };
1716 
1717       if (ty->isPointerType()) {
1718         QualType pointeeTy = ty->getPointeeType();
1719 
1720         // Get address qualifier.
1721         addressQuals.push_back(
1722             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1723                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1724 
1725         // Get argument type name.
1726         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1727         std::string baseTypeName =
1728             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1729         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1730         argBaseTypeNames.push_back(
1731             llvm::MDString::get(VMContext, baseTypeName));
1732 
1733         // Get argument type qualifiers:
1734         if (ty.isRestrictQualified())
1735           typeQuals = "restrict";
1736         if (pointeeTy.isConstQualified() ||
1737             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1738           typeQuals += typeQuals.empty() ? "const" : " const";
1739         if (pointeeTy.isVolatileQualified())
1740           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1741       } else {
1742         uint32_t AddrSpc = 0;
1743         bool isPipe = ty->isPipeType();
1744         if (ty->isImageType() || isPipe)
1745           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1746 
1747         addressQuals.push_back(
1748             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1749 
1750         // Get argument type name.
1751         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1752         std::string typeName = getTypeSpelling(ty);
1753         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1754 
1755         // Remove access qualifiers on images
1756         // (as they are inseparable from type in clang implementation,
1757         // but OpenCL spec provides a special query to get access qualifier
1758         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1759         if (ty->isImageType()) {
1760           removeImageAccessQualifier(typeName);
1761           removeImageAccessQualifier(baseTypeName);
1762         }
1763 
1764         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1765         argBaseTypeNames.push_back(
1766             llvm::MDString::get(VMContext, baseTypeName));
1767 
1768         if (isPipe)
1769           typeQuals = "pipe";
1770       }
1771       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1772     }
1773 
1774   Fn->setMetadata("kernel_arg_addr_space",
1775                   llvm::MDNode::get(VMContext, addressQuals));
1776   Fn->setMetadata("kernel_arg_access_qual",
1777                   llvm::MDNode::get(VMContext, accessQuals));
1778   Fn->setMetadata("kernel_arg_type",
1779                   llvm::MDNode::get(VMContext, argTypeNames));
1780   Fn->setMetadata("kernel_arg_base_type",
1781                   llvm::MDNode::get(VMContext, argBaseTypeNames));
1782   Fn->setMetadata("kernel_arg_type_qual",
1783                   llvm::MDNode::get(VMContext, argTypeQuals));
1784   if (getCodeGenOpts().EmitOpenCLArgMetadata)
1785     Fn->setMetadata("kernel_arg_name",
1786                     llvm::MDNode::get(VMContext, argNames));
1787 }
1788 
1789 /// Determines whether the language options require us to model
1790 /// unwind exceptions.  We treat -fexceptions as mandating this
1791 /// except under the fragile ObjC ABI with only ObjC exceptions
1792 /// enabled.  This means, for example, that C with -fexceptions
1793 /// enables this.
1794 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1795   // If exceptions are completely disabled, obviously this is false.
1796   if (!LangOpts.Exceptions) return false;
1797 
1798   // If C++ exceptions are enabled, this is true.
1799   if (LangOpts.CXXExceptions) return true;
1800 
1801   // If ObjC exceptions are enabled, this depends on the ABI.
1802   if (LangOpts.ObjCExceptions) {
1803     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1804   }
1805 
1806   return true;
1807 }
1808 
1809 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1810                                                       const CXXMethodDecl *MD) {
1811   // Check that the type metadata can ever actually be used by a call.
1812   if (!CGM.getCodeGenOpts().LTOUnit ||
1813       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1814     return false;
1815 
1816   // Only functions whose address can be taken with a member function pointer
1817   // need this sort of type metadata.
1818   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1819          !isa<CXXDestructorDecl>(MD);
1820 }
1821 
1822 std::vector<const CXXRecordDecl *>
1823 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1824   llvm::SetVector<const CXXRecordDecl *> MostBases;
1825 
1826   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1827   CollectMostBases = [&](const CXXRecordDecl *RD) {
1828     if (RD->getNumBases() == 0)
1829       MostBases.insert(RD);
1830     for (const CXXBaseSpecifier &B : RD->bases())
1831       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1832   };
1833   CollectMostBases(RD);
1834   return MostBases.takeVector();
1835 }
1836 
1837 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1838                                                            llvm::Function *F) {
1839   llvm::AttrBuilder B(F->getContext());
1840 
1841   if (CodeGenOpts.UnwindTables)
1842     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1843 
1844   if (CodeGenOpts.StackClashProtector)
1845     B.addAttribute("probe-stack", "inline-asm");
1846 
1847   if (!hasUnwindExceptions(LangOpts))
1848     B.addAttribute(llvm::Attribute::NoUnwind);
1849 
1850   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1851     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1852       B.addAttribute(llvm::Attribute::StackProtect);
1853     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1854       B.addAttribute(llvm::Attribute::StackProtectStrong);
1855     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1856       B.addAttribute(llvm::Attribute::StackProtectReq);
1857   }
1858 
1859   if (!D) {
1860     // If we don't have a declaration to control inlining, the function isn't
1861     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1862     // disabled, mark the function as noinline.
1863     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1864         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1865       B.addAttribute(llvm::Attribute::NoInline);
1866 
1867     F->addFnAttrs(B);
1868     return;
1869   }
1870 
1871   // Track whether we need to add the optnone LLVM attribute,
1872   // starting with the default for this optimization level.
1873   bool ShouldAddOptNone =
1874       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1875   // We can't add optnone in the following cases, it won't pass the verifier.
1876   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1877   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1878 
1879   // Add optnone, but do so only if the function isn't always_inline.
1880   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
1881       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1882     B.addAttribute(llvm::Attribute::OptimizeNone);
1883 
1884     // OptimizeNone implies noinline; we should not be inlining such functions.
1885     B.addAttribute(llvm::Attribute::NoInline);
1886 
1887     // We still need to handle naked functions even though optnone subsumes
1888     // much of their semantics.
1889     if (D->hasAttr<NakedAttr>())
1890       B.addAttribute(llvm::Attribute::Naked);
1891 
1892     // OptimizeNone wins over OptimizeForSize and MinSize.
1893     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1894     F->removeFnAttr(llvm::Attribute::MinSize);
1895   } else if (D->hasAttr<NakedAttr>()) {
1896     // Naked implies noinline: we should not be inlining such functions.
1897     B.addAttribute(llvm::Attribute::Naked);
1898     B.addAttribute(llvm::Attribute::NoInline);
1899   } else if (D->hasAttr<NoDuplicateAttr>()) {
1900     B.addAttribute(llvm::Attribute::NoDuplicate);
1901   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1902     // Add noinline if the function isn't always_inline.
1903     B.addAttribute(llvm::Attribute::NoInline);
1904   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1905              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1906     // (noinline wins over always_inline, and we can't specify both in IR)
1907     B.addAttribute(llvm::Attribute::AlwaysInline);
1908   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1909     // If we're not inlining, then force everything that isn't always_inline to
1910     // carry an explicit noinline attribute.
1911     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1912       B.addAttribute(llvm::Attribute::NoInline);
1913   } else {
1914     // Otherwise, propagate the inline hint attribute and potentially use its
1915     // absence to mark things as noinline.
1916     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1917       // Search function and template pattern redeclarations for inline.
1918       auto CheckForInline = [](const FunctionDecl *FD) {
1919         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1920           return Redecl->isInlineSpecified();
1921         };
1922         if (any_of(FD->redecls(), CheckRedeclForInline))
1923           return true;
1924         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1925         if (!Pattern)
1926           return false;
1927         return any_of(Pattern->redecls(), CheckRedeclForInline);
1928       };
1929       if (CheckForInline(FD)) {
1930         B.addAttribute(llvm::Attribute::InlineHint);
1931       } else if (CodeGenOpts.getInlining() ==
1932                      CodeGenOptions::OnlyHintInlining &&
1933                  !FD->isInlined() &&
1934                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1935         B.addAttribute(llvm::Attribute::NoInline);
1936       }
1937     }
1938   }
1939 
1940   // Add other optimization related attributes if we are optimizing this
1941   // function.
1942   if (!D->hasAttr<OptimizeNoneAttr>()) {
1943     if (D->hasAttr<ColdAttr>()) {
1944       if (!ShouldAddOptNone)
1945         B.addAttribute(llvm::Attribute::OptimizeForSize);
1946       B.addAttribute(llvm::Attribute::Cold);
1947     }
1948     if (D->hasAttr<HotAttr>())
1949       B.addAttribute(llvm::Attribute::Hot);
1950     if (D->hasAttr<MinSizeAttr>())
1951       B.addAttribute(llvm::Attribute::MinSize);
1952   }
1953 
1954   F->addFnAttrs(B);
1955 
1956   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1957   if (alignment)
1958     F->setAlignment(llvm::Align(alignment));
1959 
1960   if (!D->hasAttr<AlignedAttr>())
1961     if (LangOpts.FunctionAlignment)
1962       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
1963 
1964   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1965   // reserve a bit for differentiating between virtual and non-virtual member
1966   // functions. If the current target's C++ ABI requires this and this is a
1967   // member function, set its alignment accordingly.
1968   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1969     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1970       F->setAlignment(llvm::Align(2));
1971   }
1972 
1973   // In the cross-dso CFI mode with canonical jump tables, we want !type
1974   // attributes on definitions only.
1975   if (CodeGenOpts.SanitizeCfiCrossDso &&
1976       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
1977     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1978       // Skip available_externally functions. They won't be codegen'ed in the
1979       // current module anyway.
1980       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
1981         CreateFunctionTypeMetadataForIcall(FD, F);
1982     }
1983   }
1984 
1985   // Emit type metadata on member functions for member function pointer checks.
1986   // These are only ever necessary on definitions; we're guaranteed that the
1987   // definition will be present in the LTO unit as a result of LTO visibility.
1988   auto *MD = dyn_cast<CXXMethodDecl>(D);
1989   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1990     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1991       llvm::Metadata *Id =
1992           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1993               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1994       F->addTypeMetadata(0, Id);
1995     }
1996   }
1997 }
1998 
1999 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2000                                                   llvm::Function *F) {
2001   if (D->hasAttr<StrictFPAttr>()) {
2002     llvm::AttrBuilder FuncAttrs(F->getContext());
2003     FuncAttrs.addAttribute("strictfp");
2004     F->addFnAttrs(FuncAttrs);
2005   }
2006 }
2007 
2008 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2009   const Decl *D = GD.getDecl();
2010   if (isa_and_nonnull<NamedDecl>(D))
2011     setGVProperties(GV, GD);
2012   else
2013     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2014 
2015   if (D && D->hasAttr<UsedAttr>())
2016     addUsedOrCompilerUsedGlobal(GV);
2017 
2018   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2019     const auto *VD = cast<VarDecl>(D);
2020     if (VD->getType().isConstQualified() &&
2021         VD->getStorageDuration() == SD_Static)
2022       addUsedOrCompilerUsedGlobal(GV);
2023   }
2024 }
2025 
2026 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2027                                                 llvm::AttrBuilder &Attrs) {
2028   // Add target-cpu and target-features attributes to functions. If
2029   // we have a decl for the function and it has a target attribute then
2030   // parse that and add it to the feature set.
2031   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2032   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2033   std::vector<std::string> Features;
2034   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2035   FD = FD ? FD->getMostRecentDecl() : FD;
2036   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2037   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2038   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2039   bool AddedAttr = false;
2040   if (TD || SD || TC) {
2041     llvm::StringMap<bool> FeatureMap;
2042     getContext().getFunctionFeatureMap(FeatureMap, GD);
2043 
2044     // Produce the canonical string for this set of features.
2045     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2046       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2047 
2048     // Now add the target-cpu and target-features to the function.
2049     // While we populated the feature map above, we still need to
2050     // get and parse the target attribute so we can get the cpu for
2051     // the function.
2052     if (TD) {
2053       ParsedTargetAttr ParsedAttr = TD->parse();
2054       if (!ParsedAttr.Architecture.empty() &&
2055           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2056         TargetCPU = ParsedAttr.Architecture;
2057         TuneCPU = ""; // Clear the tune CPU.
2058       }
2059       if (!ParsedAttr.Tune.empty() &&
2060           getTarget().isValidCPUName(ParsedAttr.Tune))
2061         TuneCPU = ParsedAttr.Tune;
2062     }
2063 
2064     if (SD) {
2065       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2066       // favor this processor.
2067       TuneCPU = getTarget().getCPUSpecificTuneName(
2068           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2069     }
2070   } else {
2071     // Otherwise just add the existing target cpu and target features to the
2072     // function.
2073     Features = getTarget().getTargetOpts().Features;
2074   }
2075 
2076   if (!TargetCPU.empty()) {
2077     Attrs.addAttribute("target-cpu", TargetCPU);
2078     AddedAttr = true;
2079   }
2080   if (!TuneCPU.empty()) {
2081     Attrs.addAttribute("tune-cpu", TuneCPU);
2082     AddedAttr = true;
2083   }
2084   if (!Features.empty()) {
2085     llvm::sort(Features);
2086     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2087     AddedAttr = true;
2088   }
2089 
2090   return AddedAttr;
2091 }
2092 
2093 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2094                                           llvm::GlobalObject *GO) {
2095   const Decl *D = GD.getDecl();
2096   SetCommonAttributes(GD, GO);
2097 
2098   if (D) {
2099     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2100       if (D->hasAttr<RetainAttr>())
2101         addUsedGlobal(GV);
2102       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2103         GV->addAttribute("bss-section", SA->getName());
2104       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2105         GV->addAttribute("data-section", SA->getName());
2106       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2107         GV->addAttribute("rodata-section", SA->getName());
2108       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2109         GV->addAttribute("relro-section", SA->getName());
2110     }
2111 
2112     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2113       if (D->hasAttr<RetainAttr>())
2114         addUsedGlobal(F);
2115       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2116         if (!D->getAttr<SectionAttr>())
2117           F->addFnAttr("implicit-section-name", SA->getName());
2118 
2119       llvm::AttrBuilder Attrs(F->getContext());
2120       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2121         // We know that GetCPUAndFeaturesAttributes will always have the
2122         // newest set, since it has the newest possible FunctionDecl, so the
2123         // new ones should replace the old.
2124         llvm::AttributeMask RemoveAttrs;
2125         RemoveAttrs.addAttribute("target-cpu");
2126         RemoveAttrs.addAttribute("target-features");
2127         RemoveAttrs.addAttribute("tune-cpu");
2128         F->removeFnAttrs(RemoveAttrs);
2129         F->addFnAttrs(Attrs);
2130       }
2131     }
2132 
2133     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2134       GO->setSection(CSA->getName());
2135     else if (const auto *SA = D->getAttr<SectionAttr>())
2136       GO->setSection(SA->getName());
2137   }
2138 
2139   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2140 }
2141 
2142 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2143                                                   llvm::Function *F,
2144                                                   const CGFunctionInfo &FI) {
2145   const Decl *D = GD.getDecl();
2146   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2147   SetLLVMFunctionAttributesForDefinition(D, F);
2148 
2149   F->setLinkage(llvm::Function::InternalLinkage);
2150 
2151   setNonAliasAttributes(GD, F);
2152 }
2153 
2154 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2155   // Set linkage and visibility in case we never see a definition.
2156   LinkageInfo LV = ND->getLinkageAndVisibility();
2157   // Don't set internal linkage on declarations.
2158   // "extern_weak" is overloaded in LLVM; we probably should have
2159   // separate linkage types for this.
2160   if (isExternallyVisible(LV.getLinkage()) &&
2161       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2162     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2163 }
2164 
2165 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2166                                                        llvm::Function *F) {
2167   // Only if we are checking indirect calls.
2168   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2169     return;
2170 
2171   // Non-static class methods are handled via vtable or member function pointer
2172   // checks elsewhere.
2173   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2174     return;
2175 
2176   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2177   F->addTypeMetadata(0, MD);
2178   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2179 
2180   // Emit a hash-based bit set entry for cross-DSO calls.
2181   if (CodeGenOpts.SanitizeCfiCrossDso)
2182     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2183       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2184 }
2185 
2186 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2187                                           bool IsIncompleteFunction,
2188                                           bool IsThunk) {
2189 
2190   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2191     // If this is an intrinsic function, set the function's attributes
2192     // to the intrinsic's attributes.
2193     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2194     return;
2195   }
2196 
2197   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2198 
2199   if (!IsIncompleteFunction)
2200     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2201                               IsThunk);
2202 
2203   // Add the Returned attribute for "this", except for iOS 5 and earlier
2204   // where substantial code, including the libstdc++ dylib, was compiled with
2205   // GCC and does not actually return "this".
2206   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2207       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2208     assert(!F->arg_empty() &&
2209            F->arg_begin()->getType()
2210              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2211            "unexpected this return");
2212     F->addParamAttr(0, llvm::Attribute::Returned);
2213   }
2214 
2215   // Only a few attributes are set on declarations; these may later be
2216   // overridden by a definition.
2217 
2218   setLinkageForGV(F, FD);
2219   setGVProperties(F, FD);
2220 
2221   // Setup target-specific attributes.
2222   if (!IsIncompleteFunction && F->isDeclaration())
2223     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2224 
2225   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2226     F->setSection(CSA->getName());
2227   else if (const auto *SA = FD->getAttr<SectionAttr>())
2228      F->setSection(SA->getName());
2229 
2230   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2231     if (EA->isError())
2232       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2233     else if (EA->isWarning())
2234       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2235   }
2236 
2237   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2238   if (FD->isInlineBuiltinDeclaration()) {
2239     const FunctionDecl *FDBody;
2240     bool HasBody = FD->hasBody(FDBody);
2241     (void)HasBody;
2242     assert(HasBody && "Inline builtin declarations should always have an "
2243                       "available body!");
2244     if (shouldEmitFunction(FDBody))
2245       F->addFnAttr(llvm::Attribute::NoBuiltin);
2246   }
2247 
2248   if (FD->isReplaceableGlobalAllocationFunction()) {
2249     // A replaceable global allocation function does not act like a builtin by
2250     // default, only if it is invoked by a new-expression or delete-expression.
2251     F->addFnAttr(llvm::Attribute::NoBuiltin);
2252   }
2253 
2254   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2255     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2256   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2257     if (MD->isVirtual())
2258       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2259 
2260   // Don't emit entries for function declarations in the cross-DSO mode. This
2261   // is handled with better precision by the receiving DSO. But if jump tables
2262   // are non-canonical then we need type metadata in order to produce the local
2263   // jump table.
2264   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2265       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2266     CreateFunctionTypeMetadataForIcall(FD, F);
2267 
2268   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2269     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2270 
2271   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2272     // Annotate the callback behavior as metadata:
2273     //  - The callback callee (as argument number).
2274     //  - The callback payloads (as argument numbers).
2275     llvm::LLVMContext &Ctx = F->getContext();
2276     llvm::MDBuilder MDB(Ctx);
2277 
2278     // The payload indices are all but the first one in the encoding. The first
2279     // identifies the callback callee.
2280     int CalleeIdx = *CB->encoding_begin();
2281     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2282     F->addMetadata(llvm::LLVMContext::MD_callback,
2283                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2284                                                CalleeIdx, PayloadIndices,
2285                                                /* VarArgsArePassed */ false)}));
2286   }
2287 }
2288 
2289 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2290   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2291          "Only globals with definition can force usage.");
2292   LLVMUsed.emplace_back(GV);
2293 }
2294 
2295 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2296   assert(!GV->isDeclaration() &&
2297          "Only globals with definition can force usage.");
2298   LLVMCompilerUsed.emplace_back(GV);
2299 }
2300 
2301 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2302   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2303          "Only globals with definition can force usage.");
2304   if (getTriple().isOSBinFormatELF())
2305     LLVMCompilerUsed.emplace_back(GV);
2306   else
2307     LLVMUsed.emplace_back(GV);
2308 }
2309 
2310 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2311                      std::vector<llvm::WeakTrackingVH> &List) {
2312   // Don't create llvm.used if there is no need.
2313   if (List.empty())
2314     return;
2315 
2316   // Convert List to what ConstantArray needs.
2317   SmallVector<llvm::Constant*, 8> UsedArray;
2318   UsedArray.resize(List.size());
2319   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2320     UsedArray[i] =
2321         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2322             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2323   }
2324 
2325   if (UsedArray.empty())
2326     return;
2327   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2328 
2329   auto *GV = new llvm::GlobalVariable(
2330       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2331       llvm::ConstantArray::get(ATy, UsedArray), Name);
2332 
2333   GV->setSection("llvm.metadata");
2334 }
2335 
2336 void CodeGenModule::emitLLVMUsed() {
2337   emitUsed(*this, "llvm.used", LLVMUsed);
2338   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2339 }
2340 
2341 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2342   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2343   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2344 }
2345 
2346 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2347   llvm::SmallString<32> Opt;
2348   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2349   if (Opt.empty())
2350     return;
2351   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2352   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2353 }
2354 
2355 void CodeGenModule::AddDependentLib(StringRef Lib) {
2356   auto &C = getLLVMContext();
2357   if (getTarget().getTriple().isOSBinFormatELF()) {
2358       ELFDependentLibraries.push_back(
2359         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2360     return;
2361   }
2362 
2363   llvm::SmallString<24> Opt;
2364   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2365   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2366   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2367 }
2368 
2369 /// Add link options implied by the given module, including modules
2370 /// it depends on, using a postorder walk.
2371 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2372                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2373                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2374   // Import this module's parent.
2375   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2376     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2377   }
2378 
2379   // Import this module's dependencies.
2380   for (Module *Import : llvm::reverse(Mod->Imports)) {
2381     if (Visited.insert(Import).second)
2382       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2383   }
2384 
2385   // Add linker options to link against the libraries/frameworks
2386   // described by this module.
2387   llvm::LLVMContext &Context = CGM.getLLVMContext();
2388   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2389 
2390   // For modules that use export_as for linking, use that module
2391   // name instead.
2392   if (Mod->UseExportAsModuleLinkName)
2393     return;
2394 
2395   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2396     // Link against a framework.  Frameworks are currently Darwin only, so we
2397     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2398     if (LL.IsFramework) {
2399       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2400                                  llvm::MDString::get(Context, LL.Library)};
2401 
2402       Metadata.push_back(llvm::MDNode::get(Context, Args));
2403       continue;
2404     }
2405 
2406     // Link against a library.
2407     if (IsELF) {
2408       llvm::Metadata *Args[2] = {
2409           llvm::MDString::get(Context, "lib"),
2410           llvm::MDString::get(Context, LL.Library),
2411       };
2412       Metadata.push_back(llvm::MDNode::get(Context, Args));
2413     } else {
2414       llvm::SmallString<24> Opt;
2415       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2416       auto *OptString = llvm::MDString::get(Context, Opt);
2417       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2418     }
2419   }
2420 }
2421 
2422 void CodeGenModule::EmitModuleLinkOptions() {
2423   // Collect the set of all of the modules we want to visit to emit link
2424   // options, which is essentially the imported modules and all of their
2425   // non-explicit child modules.
2426   llvm::SetVector<clang::Module *> LinkModules;
2427   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2428   SmallVector<clang::Module *, 16> Stack;
2429 
2430   // Seed the stack with imported modules.
2431   for (Module *M : ImportedModules) {
2432     // Do not add any link flags when an implementation TU of a module imports
2433     // a header of that same module.
2434     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2435         !getLangOpts().isCompilingModule())
2436       continue;
2437     if (Visited.insert(M).second)
2438       Stack.push_back(M);
2439   }
2440 
2441   // Find all of the modules to import, making a little effort to prune
2442   // non-leaf modules.
2443   while (!Stack.empty()) {
2444     clang::Module *Mod = Stack.pop_back_val();
2445 
2446     bool AnyChildren = false;
2447 
2448     // Visit the submodules of this module.
2449     for (const auto &SM : Mod->submodules()) {
2450       // Skip explicit children; they need to be explicitly imported to be
2451       // linked against.
2452       if (SM->IsExplicit)
2453         continue;
2454 
2455       if (Visited.insert(SM).second) {
2456         Stack.push_back(SM);
2457         AnyChildren = true;
2458       }
2459     }
2460 
2461     // We didn't find any children, so add this module to the list of
2462     // modules to link against.
2463     if (!AnyChildren) {
2464       LinkModules.insert(Mod);
2465     }
2466   }
2467 
2468   // Add link options for all of the imported modules in reverse topological
2469   // order.  We don't do anything to try to order import link flags with respect
2470   // to linker options inserted by things like #pragma comment().
2471   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2472   Visited.clear();
2473   for (Module *M : LinkModules)
2474     if (Visited.insert(M).second)
2475       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2476   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2477   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2478 
2479   // Add the linker options metadata flag.
2480   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2481   for (auto *MD : LinkerOptionsMetadata)
2482     NMD->addOperand(MD);
2483 }
2484 
2485 void CodeGenModule::EmitDeferred() {
2486   // Emit deferred declare target declarations.
2487   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2488     getOpenMPRuntime().emitDeferredTargetDecls();
2489 
2490   // Emit code for any potentially referenced deferred decls.  Since a
2491   // previously unused static decl may become used during the generation of code
2492   // for a static function, iterate until no changes are made.
2493 
2494   if (!DeferredVTables.empty()) {
2495     EmitDeferredVTables();
2496 
2497     // Emitting a vtable doesn't directly cause more vtables to
2498     // become deferred, although it can cause functions to be
2499     // emitted that then need those vtables.
2500     assert(DeferredVTables.empty());
2501   }
2502 
2503   // Emit CUDA/HIP static device variables referenced by host code only.
2504   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2505   // needed for further handling.
2506   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2507     for (const auto *V : getContext().CUDADeviceVarODRUsedByHost)
2508       DeferredDeclsToEmit.push_back(V);
2509 
2510   // Stop if we're out of both deferred vtables and deferred declarations.
2511   if (DeferredDeclsToEmit.empty())
2512     return;
2513 
2514   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2515   // work, it will not interfere with this.
2516   std::vector<GlobalDecl> CurDeclsToEmit;
2517   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2518 
2519   for (GlobalDecl &D : CurDeclsToEmit) {
2520     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2521     // to get GlobalValue with exactly the type we need, not something that
2522     // might had been created for another decl with the same mangled name but
2523     // different type.
2524     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2525         GetAddrOfGlobal(D, ForDefinition));
2526 
2527     // In case of different address spaces, we may still get a cast, even with
2528     // IsForDefinition equal to true. Query mangled names table to get
2529     // GlobalValue.
2530     if (!GV)
2531       GV = GetGlobalValue(getMangledName(D));
2532 
2533     // Make sure GetGlobalValue returned non-null.
2534     assert(GV);
2535 
2536     // Check to see if we've already emitted this.  This is necessary
2537     // for a couple of reasons: first, decls can end up in the
2538     // deferred-decls queue multiple times, and second, decls can end
2539     // up with definitions in unusual ways (e.g. by an extern inline
2540     // function acquiring a strong function redefinition).  Just
2541     // ignore these cases.
2542     if (!GV->isDeclaration())
2543       continue;
2544 
2545     // If this is OpenMP, check if it is legal to emit this global normally.
2546     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2547       continue;
2548 
2549     // Otherwise, emit the definition and move on to the next one.
2550     EmitGlobalDefinition(D, GV);
2551 
2552     // If we found out that we need to emit more decls, do that recursively.
2553     // This has the advantage that the decls are emitted in a DFS and related
2554     // ones are close together, which is convenient for testing.
2555     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2556       EmitDeferred();
2557       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2558     }
2559   }
2560 }
2561 
2562 void CodeGenModule::EmitVTablesOpportunistically() {
2563   // Try to emit external vtables as available_externally if they have emitted
2564   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2565   // is not allowed to create new references to things that need to be emitted
2566   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2567 
2568   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2569          && "Only emit opportunistic vtables with optimizations");
2570 
2571   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2572     assert(getVTables().isVTableExternal(RD) &&
2573            "This queue should only contain external vtables");
2574     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2575       VTables.GenerateClassData(RD);
2576   }
2577   OpportunisticVTables.clear();
2578 }
2579 
2580 void CodeGenModule::EmitGlobalAnnotations() {
2581   if (Annotations.empty())
2582     return;
2583 
2584   // Create a new global variable for the ConstantStruct in the Module.
2585   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2586     Annotations[0]->getType(), Annotations.size()), Annotations);
2587   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2588                                       llvm::GlobalValue::AppendingLinkage,
2589                                       Array, "llvm.global.annotations");
2590   gv->setSection(AnnotationSection);
2591 }
2592 
2593 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2594   llvm::Constant *&AStr = AnnotationStrings[Str];
2595   if (AStr)
2596     return AStr;
2597 
2598   // Not found yet, create a new global.
2599   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2600   auto *gv =
2601       new llvm::GlobalVariable(getModule(), s->getType(), true,
2602                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2603   gv->setSection(AnnotationSection);
2604   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2605   AStr = gv;
2606   return gv;
2607 }
2608 
2609 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2610   SourceManager &SM = getContext().getSourceManager();
2611   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2612   if (PLoc.isValid())
2613     return EmitAnnotationString(PLoc.getFilename());
2614   return EmitAnnotationString(SM.getBufferName(Loc));
2615 }
2616 
2617 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2618   SourceManager &SM = getContext().getSourceManager();
2619   PresumedLoc PLoc = SM.getPresumedLoc(L);
2620   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2621     SM.getExpansionLineNumber(L);
2622   return llvm::ConstantInt::get(Int32Ty, LineNo);
2623 }
2624 
2625 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2626   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2627   if (Exprs.empty())
2628     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2629 
2630   llvm::FoldingSetNodeID ID;
2631   for (Expr *E : Exprs) {
2632     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2633   }
2634   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2635   if (Lookup)
2636     return Lookup;
2637 
2638   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2639   LLVMArgs.reserve(Exprs.size());
2640   ConstantEmitter ConstEmiter(*this);
2641   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2642     const auto *CE = cast<clang::ConstantExpr>(E);
2643     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2644                                     CE->getType());
2645   });
2646   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2647   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2648                                       llvm::GlobalValue::PrivateLinkage, Struct,
2649                                       ".args");
2650   GV->setSection(AnnotationSection);
2651   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2652   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2653 
2654   Lookup = Bitcasted;
2655   return Bitcasted;
2656 }
2657 
2658 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2659                                                 const AnnotateAttr *AA,
2660                                                 SourceLocation L) {
2661   // Get the globals for file name, annotation, and the line number.
2662   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2663                  *UnitGV = EmitAnnotationUnit(L),
2664                  *LineNoCst = EmitAnnotationLineNo(L),
2665                  *Args = EmitAnnotationArgs(AA);
2666 
2667   llvm::Constant *GVInGlobalsAS = GV;
2668   if (GV->getAddressSpace() !=
2669       getDataLayout().getDefaultGlobalsAddressSpace()) {
2670     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2671         GV, GV->getValueType()->getPointerTo(
2672                 getDataLayout().getDefaultGlobalsAddressSpace()));
2673   }
2674 
2675   // Create the ConstantStruct for the global annotation.
2676   llvm::Constant *Fields[] = {
2677       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2678       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2679       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2680       LineNoCst,
2681       Args,
2682   };
2683   return llvm::ConstantStruct::getAnon(Fields);
2684 }
2685 
2686 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2687                                          llvm::GlobalValue *GV) {
2688   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2689   // Get the struct elements for these annotations.
2690   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2691     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2692 }
2693 
2694 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2695                                        SourceLocation Loc) const {
2696   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2697   // NoSanitize by function name.
2698   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2699     return true;
2700   // NoSanitize by location.
2701   if (Loc.isValid())
2702     return NoSanitizeL.containsLocation(Kind, Loc);
2703   // If location is unknown, this may be a compiler-generated function. Assume
2704   // it's located in the main file.
2705   auto &SM = Context.getSourceManager();
2706   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2707     return NoSanitizeL.containsFile(Kind, MainFile->getName());
2708   }
2709   return false;
2710 }
2711 
2712 bool CodeGenModule::isInNoSanitizeList(llvm::GlobalVariable *GV,
2713                                        SourceLocation Loc, QualType Ty,
2714                                        StringRef Category) const {
2715   // For now globals can be ignored only in ASan and KASan.
2716   const SanitizerMask EnabledAsanMask =
2717       LangOpts.Sanitize.Mask &
2718       (SanitizerKind::Address | SanitizerKind::KernelAddress |
2719        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress |
2720        SanitizerKind::MemTag);
2721   if (!EnabledAsanMask)
2722     return false;
2723   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2724   if (NoSanitizeL.containsGlobal(EnabledAsanMask, GV->getName(), Category))
2725     return true;
2726   if (NoSanitizeL.containsLocation(EnabledAsanMask, Loc, Category))
2727     return true;
2728   // Check global type.
2729   if (!Ty.isNull()) {
2730     // Drill down the array types: if global variable of a fixed type is
2731     // not sanitized, we also don't instrument arrays of them.
2732     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2733       Ty = AT->getElementType();
2734     Ty = Ty.getCanonicalType().getUnqualifiedType();
2735     // Only record types (classes, structs etc.) are ignored.
2736     if (Ty->isRecordType()) {
2737       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2738       if (NoSanitizeL.containsType(EnabledAsanMask, TypeStr, Category))
2739         return true;
2740     }
2741   }
2742   return false;
2743 }
2744 
2745 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2746                                    StringRef Category) const {
2747   const auto &XRayFilter = getContext().getXRayFilter();
2748   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2749   auto Attr = ImbueAttr::NONE;
2750   if (Loc.isValid())
2751     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2752   if (Attr == ImbueAttr::NONE)
2753     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2754   switch (Attr) {
2755   case ImbueAttr::NONE:
2756     return false;
2757   case ImbueAttr::ALWAYS:
2758     Fn->addFnAttr("function-instrument", "xray-always");
2759     break;
2760   case ImbueAttr::ALWAYS_ARG1:
2761     Fn->addFnAttr("function-instrument", "xray-always");
2762     Fn->addFnAttr("xray-log-args", "1");
2763     break;
2764   case ImbueAttr::NEVER:
2765     Fn->addFnAttr("function-instrument", "xray-never");
2766     break;
2767   }
2768   return true;
2769 }
2770 
2771 bool CodeGenModule::isProfileInstrExcluded(llvm::Function *Fn,
2772                                            SourceLocation Loc) const {
2773   const auto &ProfileList = getContext().getProfileList();
2774   // If the profile list is empty, then instrument everything.
2775   if (ProfileList.isEmpty())
2776     return false;
2777   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2778   // First, check the function name.
2779   Optional<bool> V = ProfileList.isFunctionExcluded(Fn->getName(), Kind);
2780   if (V.hasValue())
2781     return *V;
2782   // Next, check the source location.
2783   if (Loc.isValid()) {
2784     Optional<bool> V = ProfileList.isLocationExcluded(Loc, Kind);
2785     if (V.hasValue())
2786       return *V;
2787   }
2788   // If location is unknown, this may be a compiler-generated function. Assume
2789   // it's located in the main file.
2790   auto &SM = Context.getSourceManager();
2791   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
2792     Optional<bool> V = ProfileList.isFileExcluded(MainFile->getName(), Kind);
2793     if (V.hasValue())
2794       return *V;
2795   }
2796   return ProfileList.getDefault();
2797 }
2798 
2799 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2800   // Never defer when EmitAllDecls is specified.
2801   if (LangOpts.EmitAllDecls)
2802     return true;
2803 
2804   if (CodeGenOpts.KeepStaticConsts) {
2805     const auto *VD = dyn_cast<VarDecl>(Global);
2806     if (VD && VD->getType().isConstQualified() &&
2807         VD->getStorageDuration() == SD_Static)
2808       return true;
2809   }
2810 
2811   return getContext().DeclMustBeEmitted(Global);
2812 }
2813 
2814 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2815   // In OpenMP 5.0 variables and function may be marked as
2816   // device_type(host/nohost) and we should not emit them eagerly unless we sure
2817   // that they must be emitted on the host/device. To be sure we need to have
2818   // seen a declare target with an explicit mentioning of the function, we know
2819   // we have if the level of the declare target attribute is -1. Note that we
2820   // check somewhere else if we should emit this at all.
2821   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
2822     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
2823         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
2824     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
2825       return false;
2826   }
2827 
2828   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2829     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2830       // Implicit template instantiations may change linkage if they are later
2831       // explicitly instantiated, so they should not be emitted eagerly.
2832       return false;
2833   }
2834   if (const auto *VD = dyn_cast<VarDecl>(Global))
2835     if (Context.getInlineVariableDefinitionKind(VD) ==
2836         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2837       // A definition of an inline constexpr static data member may change
2838       // linkage later if it's redeclared outside the class.
2839       return false;
2840   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2841   // codegen for global variables, because they may be marked as threadprivate.
2842   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2843       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2844       !isTypeConstant(Global->getType(), false) &&
2845       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2846     return false;
2847 
2848   return true;
2849 }
2850 
2851 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
2852   StringRef Name = getMangledName(GD);
2853 
2854   // The UUID descriptor should be pointer aligned.
2855   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2856 
2857   // Look for an existing global.
2858   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2859     return ConstantAddress(GV, GV->getValueType(), Alignment);
2860 
2861   ConstantEmitter Emitter(*this);
2862   llvm::Constant *Init;
2863 
2864   APValue &V = GD->getAsAPValue();
2865   if (!V.isAbsent()) {
2866     // If possible, emit the APValue version of the initializer. In particular,
2867     // this gets the type of the constant right.
2868     Init = Emitter.emitForInitializer(
2869         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
2870   } else {
2871     // As a fallback, directly construct the constant.
2872     // FIXME: This may get padding wrong under esoteric struct layout rules.
2873     // MSVC appears to create a complete type 'struct __s_GUID' that it
2874     // presumably uses to represent these constants.
2875     MSGuidDecl::Parts Parts = GD->getParts();
2876     llvm::Constant *Fields[4] = {
2877         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
2878         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
2879         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
2880         llvm::ConstantDataArray::getRaw(
2881             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
2882             Int8Ty)};
2883     Init = llvm::ConstantStruct::getAnon(Fields);
2884   }
2885 
2886   auto *GV = new llvm::GlobalVariable(
2887       getModule(), Init->getType(),
2888       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2889   if (supportsCOMDAT())
2890     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2891   setDSOLocal(GV);
2892 
2893   if (!V.isAbsent()) {
2894     Emitter.finalize(GV);
2895     return ConstantAddress(GV, GV->getValueType(), Alignment);
2896   }
2897 
2898   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
2899   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
2900       GV, Ty->getPointerTo(GV->getAddressSpace()));
2901   return ConstantAddress(Addr, Ty, Alignment);
2902 }
2903 
2904 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
2905     const TemplateParamObjectDecl *TPO) {
2906   StringRef Name = getMangledName(TPO);
2907   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
2908 
2909   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2910     return ConstantAddress(GV, GV->getValueType(), Alignment);
2911 
2912   ConstantEmitter Emitter(*this);
2913   llvm::Constant *Init = Emitter.emitForInitializer(
2914         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
2915 
2916   if (!Init) {
2917     ErrorUnsupported(TPO, "template parameter object");
2918     return ConstantAddress::invalid();
2919   }
2920 
2921   auto *GV = new llvm::GlobalVariable(
2922       getModule(), Init->getType(),
2923       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2924   if (supportsCOMDAT())
2925     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2926   Emitter.finalize(GV);
2927 
2928   return ConstantAddress(GV, GV->getValueType(), Alignment);
2929 }
2930 
2931 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2932   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2933   assert(AA && "No alias?");
2934 
2935   CharUnits Alignment = getContext().getDeclAlign(VD);
2936   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2937 
2938   // See if there is already something with the target's name in the module.
2939   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2940   if (Entry) {
2941     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2942     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2943     return ConstantAddress(Ptr, DeclTy, Alignment);
2944   }
2945 
2946   llvm::Constant *Aliasee;
2947   if (isa<llvm::FunctionType>(DeclTy))
2948     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2949                                       GlobalDecl(cast<FunctionDecl>(VD)),
2950                                       /*ForVTable=*/false);
2951   else
2952     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
2953                                     nullptr);
2954 
2955   auto *F = cast<llvm::GlobalValue>(Aliasee);
2956   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2957   WeakRefReferences.insert(F);
2958 
2959   return ConstantAddress(Aliasee, DeclTy, Alignment);
2960 }
2961 
2962 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2963   const auto *Global = cast<ValueDecl>(GD.getDecl());
2964 
2965   // Weak references don't produce any output by themselves.
2966   if (Global->hasAttr<WeakRefAttr>())
2967     return;
2968 
2969   // If this is an alias definition (which otherwise looks like a declaration)
2970   // emit it now.
2971   if (Global->hasAttr<AliasAttr>())
2972     return EmitAliasDefinition(GD);
2973 
2974   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2975   if (Global->hasAttr<IFuncAttr>())
2976     return emitIFuncDefinition(GD);
2977 
2978   // If this is a cpu_dispatch multiversion function, emit the resolver.
2979   if (Global->hasAttr<CPUDispatchAttr>())
2980     return emitCPUDispatchDefinition(GD);
2981 
2982   // If this is CUDA, be selective about which declarations we emit.
2983   if (LangOpts.CUDA) {
2984     if (LangOpts.CUDAIsDevice) {
2985       if (!Global->hasAttr<CUDADeviceAttr>() &&
2986           !Global->hasAttr<CUDAGlobalAttr>() &&
2987           !Global->hasAttr<CUDAConstantAttr>() &&
2988           !Global->hasAttr<CUDASharedAttr>() &&
2989           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
2990           !Global->getType()->isCUDADeviceBuiltinTextureType())
2991         return;
2992     } else {
2993       // We need to emit host-side 'shadows' for all global
2994       // device-side variables because the CUDA runtime needs their
2995       // size and host-side address in order to provide access to
2996       // their device-side incarnations.
2997 
2998       // So device-only functions are the only things we skip.
2999       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3000           Global->hasAttr<CUDADeviceAttr>())
3001         return;
3002 
3003       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3004              "Expected Variable or Function");
3005     }
3006   }
3007 
3008   if (LangOpts.OpenMP) {
3009     // If this is OpenMP, check if it is legal to emit this global normally.
3010     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3011       return;
3012     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3013       if (MustBeEmitted(Global))
3014         EmitOMPDeclareReduction(DRD);
3015       return;
3016     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3017       if (MustBeEmitted(Global))
3018         EmitOMPDeclareMapper(DMD);
3019       return;
3020     }
3021   }
3022 
3023   // Ignore declarations, they will be emitted on their first use.
3024   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3025     // Forward declarations are emitted lazily on first use.
3026     if (!FD->doesThisDeclarationHaveABody()) {
3027       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3028         return;
3029 
3030       StringRef MangledName = getMangledName(GD);
3031 
3032       // Compute the function info and LLVM type.
3033       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3034       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3035 
3036       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3037                               /*DontDefer=*/false);
3038       return;
3039     }
3040   } else {
3041     const auto *VD = cast<VarDecl>(Global);
3042     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3043     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3044         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3045       if (LangOpts.OpenMP) {
3046         // Emit declaration of the must-be-emitted declare target variable.
3047         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3048                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3049           bool UnifiedMemoryEnabled =
3050               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3051           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3052               !UnifiedMemoryEnabled) {
3053             (void)GetAddrOfGlobalVar(VD);
3054           } else {
3055             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3056                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3057                      UnifiedMemoryEnabled)) &&
3058                    "Link clause or to clause with unified memory expected.");
3059             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3060           }
3061 
3062           return;
3063         }
3064       }
3065       // If this declaration may have caused an inline variable definition to
3066       // change linkage, make sure that it's emitted.
3067       if (Context.getInlineVariableDefinitionKind(VD) ==
3068           ASTContext::InlineVariableDefinitionKind::Strong)
3069         GetAddrOfGlobalVar(VD);
3070       return;
3071     }
3072   }
3073 
3074   // Defer code generation to first use when possible, e.g. if this is an inline
3075   // function. If the global must always be emitted, do it eagerly if possible
3076   // to benefit from cache locality.
3077   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3078     // Emit the definition if it can't be deferred.
3079     EmitGlobalDefinition(GD);
3080     return;
3081   }
3082 
3083   // If we're deferring emission of a C++ variable with an
3084   // initializer, remember the order in which it appeared in the file.
3085   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3086       cast<VarDecl>(Global)->hasInit()) {
3087     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3088     CXXGlobalInits.push_back(nullptr);
3089   }
3090 
3091   StringRef MangledName = getMangledName(GD);
3092   if (GetGlobalValue(MangledName) != nullptr) {
3093     // The value has already been used and should therefore be emitted.
3094     addDeferredDeclToEmit(GD);
3095   } else if (MustBeEmitted(Global)) {
3096     // The value must be emitted, but cannot be emitted eagerly.
3097     assert(!MayBeEmittedEagerly(Global));
3098     addDeferredDeclToEmit(GD);
3099   } else {
3100     // Otherwise, remember that we saw a deferred decl with this name.  The
3101     // first use of the mangled name will cause it to move into
3102     // DeferredDeclsToEmit.
3103     DeferredDecls[MangledName] = GD;
3104   }
3105 }
3106 
3107 // Check if T is a class type with a destructor that's not dllimport.
3108 static bool HasNonDllImportDtor(QualType T) {
3109   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3110     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3111       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3112         return true;
3113 
3114   return false;
3115 }
3116 
3117 namespace {
3118   struct FunctionIsDirectlyRecursive
3119       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3120     const StringRef Name;
3121     const Builtin::Context &BI;
3122     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3123         : Name(N), BI(C) {}
3124 
3125     bool VisitCallExpr(const CallExpr *E) {
3126       const FunctionDecl *FD = E->getDirectCallee();
3127       if (!FD)
3128         return false;
3129       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3130       if (Attr && Name == Attr->getLabel())
3131         return true;
3132       unsigned BuiltinID = FD->getBuiltinID();
3133       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3134         return false;
3135       StringRef BuiltinName = BI.getName(BuiltinID);
3136       if (BuiltinName.startswith("__builtin_") &&
3137           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3138         return true;
3139       }
3140       return false;
3141     }
3142 
3143     bool VisitStmt(const Stmt *S) {
3144       for (const Stmt *Child : S->children())
3145         if (Child && this->Visit(Child))
3146           return true;
3147       return false;
3148     }
3149   };
3150 
3151   // Make sure we're not referencing non-imported vars or functions.
3152   struct DLLImportFunctionVisitor
3153       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3154     bool SafeToInline = true;
3155 
3156     bool shouldVisitImplicitCode() const { return true; }
3157 
3158     bool VisitVarDecl(VarDecl *VD) {
3159       if (VD->getTLSKind()) {
3160         // A thread-local variable cannot be imported.
3161         SafeToInline = false;
3162         return SafeToInline;
3163       }
3164 
3165       // A variable definition might imply a destructor call.
3166       if (VD->isThisDeclarationADefinition())
3167         SafeToInline = !HasNonDllImportDtor(VD->getType());
3168 
3169       return SafeToInline;
3170     }
3171 
3172     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3173       if (const auto *D = E->getTemporary()->getDestructor())
3174         SafeToInline = D->hasAttr<DLLImportAttr>();
3175       return SafeToInline;
3176     }
3177 
3178     bool VisitDeclRefExpr(DeclRefExpr *E) {
3179       ValueDecl *VD = E->getDecl();
3180       if (isa<FunctionDecl>(VD))
3181         SafeToInline = VD->hasAttr<DLLImportAttr>();
3182       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3183         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3184       return SafeToInline;
3185     }
3186 
3187     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3188       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3189       return SafeToInline;
3190     }
3191 
3192     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3193       CXXMethodDecl *M = E->getMethodDecl();
3194       if (!M) {
3195         // Call through a pointer to member function. This is safe to inline.
3196         SafeToInline = true;
3197       } else {
3198         SafeToInline = M->hasAttr<DLLImportAttr>();
3199       }
3200       return SafeToInline;
3201     }
3202 
3203     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3204       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3205       return SafeToInline;
3206     }
3207 
3208     bool VisitCXXNewExpr(CXXNewExpr *E) {
3209       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3210       return SafeToInline;
3211     }
3212   };
3213 }
3214 
3215 // isTriviallyRecursive - Check if this function calls another
3216 // decl that, because of the asm attribute or the other decl being a builtin,
3217 // ends up pointing to itself.
3218 bool
3219 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3220   StringRef Name;
3221   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3222     // asm labels are a special kind of mangling we have to support.
3223     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3224     if (!Attr)
3225       return false;
3226     Name = Attr->getLabel();
3227   } else {
3228     Name = FD->getName();
3229   }
3230 
3231   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3232   const Stmt *Body = FD->getBody();
3233   return Body ? Walker.Visit(Body) : false;
3234 }
3235 
3236 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3237   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3238     return true;
3239   const auto *F = cast<FunctionDecl>(GD.getDecl());
3240   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3241     return false;
3242 
3243   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3244     // Check whether it would be safe to inline this dllimport function.
3245     DLLImportFunctionVisitor Visitor;
3246     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3247     if (!Visitor.SafeToInline)
3248       return false;
3249 
3250     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3251       // Implicit destructor invocations aren't captured in the AST, so the
3252       // check above can't see them. Check for them manually here.
3253       for (const Decl *Member : Dtor->getParent()->decls())
3254         if (isa<FieldDecl>(Member))
3255           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3256             return false;
3257       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3258         if (HasNonDllImportDtor(B.getType()))
3259           return false;
3260     }
3261   }
3262 
3263   // Inline builtins declaration must be emitted. They often are fortified
3264   // functions.
3265   if (F->isInlineBuiltinDeclaration())
3266     return true;
3267 
3268   // PR9614. Avoid cases where the source code is lying to us. An available
3269   // externally function should have an equivalent function somewhere else,
3270   // but a function that calls itself through asm label/`__builtin_` trickery is
3271   // clearly not equivalent to the real implementation.
3272   // This happens in glibc's btowc and in some configure checks.
3273   return !isTriviallyRecursive(F);
3274 }
3275 
3276 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3277   return CodeGenOpts.OptimizationLevel > 0;
3278 }
3279 
3280 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3281                                                        llvm::GlobalValue *GV) {
3282   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3283 
3284   if (FD->isCPUSpecificMultiVersion()) {
3285     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3286     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3287       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3288     // Requires multiple emits.
3289   } else if (FD->isTargetClonesMultiVersion()) {
3290     auto *Clone = FD->getAttr<TargetClonesAttr>();
3291     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3292       if (Clone->isFirstOfVersion(I))
3293         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3294     EmitTargetClonesResolver(GD);
3295   } else
3296     EmitGlobalFunctionDefinition(GD, GV);
3297 }
3298 
3299 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3300   const auto *D = cast<ValueDecl>(GD.getDecl());
3301 
3302   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3303                                  Context.getSourceManager(),
3304                                  "Generating code for declaration");
3305 
3306   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3307     // At -O0, don't generate IR for functions with available_externally
3308     // linkage.
3309     if (!shouldEmitFunction(GD))
3310       return;
3311 
3312     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3313       std::string Name;
3314       llvm::raw_string_ostream OS(Name);
3315       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3316                                /*Qualified=*/true);
3317       return Name;
3318     });
3319 
3320     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3321       // Make sure to emit the definition(s) before we emit the thunks.
3322       // This is necessary for the generation of certain thunks.
3323       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3324         ABI->emitCXXStructor(GD);
3325       else if (FD->isMultiVersion())
3326         EmitMultiVersionFunctionDefinition(GD, GV);
3327       else
3328         EmitGlobalFunctionDefinition(GD, GV);
3329 
3330       if (Method->isVirtual())
3331         getVTables().EmitThunks(GD);
3332 
3333       return;
3334     }
3335 
3336     if (FD->isMultiVersion())
3337       return EmitMultiVersionFunctionDefinition(GD, GV);
3338     return EmitGlobalFunctionDefinition(GD, GV);
3339   }
3340 
3341   if (const auto *VD = dyn_cast<VarDecl>(D))
3342     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3343 
3344   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3345 }
3346 
3347 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3348                                                       llvm::Function *NewFn);
3349 
3350 static unsigned
3351 TargetMVPriority(const TargetInfo &TI,
3352                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3353   unsigned Priority = 0;
3354   for (StringRef Feat : RO.Conditions.Features)
3355     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3356 
3357   if (!RO.Conditions.Architecture.empty())
3358     Priority = std::max(
3359         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3360   return Priority;
3361 }
3362 
3363 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3364 // TU can forward declare the function without causing problems.  Particularly
3365 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3366 // work with internal linkage functions, so that the same function name can be
3367 // used with internal linkage in multiple TUs.
3368 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3369                                                        GlobalDecl GD) {
3370   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3371   if (FD->getFormalLinkage() == InternalLinkage)
3372     return llvm::GlobalValue::InternalLinkage;
3373   return llvm::GlobalValue::WeakODRLinkage;
3374 }
3375 
3376 void CodeGenModule::EmitTargetClonesResolver(GlobalDecl GD) {
3377   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3378   assert(FD && "Not a FunctionDecl?");
3379   const auto *TC = FD->getAttr<TargetClonesAttr>();
3380   assert(TC && "Not a target_clones Function?");
3381 
3382   QualType CanonTy = Context.getCanonicalType(FD->getType());
3383   llvm::Type *DeclTy = getTypes().ConvertType(CanonTy);
3384 
3385   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3386     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3387     DeclTy = getTypes().GetFunctionType(FInfo);
3388   }
3389 
3390   llvm::Function *ResolverFunc;
3391   if (getTarget().supportsIFunc()) {
3392     auto *IFunc = cast<llvm::GlobalIFunc>(
3393         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3394     ResolverFunc = cast<llvm::Function>(IFunc->getResolver());
3395   } else
3396     ResolverFunc =
3397         cast<llvm::Function>(GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3398 
3399   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3400   for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3401        ++VersionIndex) {
3402     if (!TC->isFirstOfVersion(VersionIndex))
3403       continue;
3404     StringRef Version = TC->getFeatureStr(VersionIndex);
3405     StringRef MangledName =
3406         getMangledName(GD.getWithMultiVersionIndex(VersionIndex));
3407     llvm::Constant *Func = GetGlobalValue(MangledName);
3408     assert(Func &&
3409            "Should have already been created before calling resolver emit");
3410 
3411     StringRef Architecture;
3412     llvm::SmallVector<StringRef, 1> Feature;
3413 
3414     if (Version.startswith("arch="))
3415       Architecture = Version.drop_front(sizeof("arch=") - 1);
3416     else if (Version != "default")
3417       Feature.push_back(Version);
3418 
3419     Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3420   }
3421 
3422   const TargetInfo &TI = getTarget();
3423   std::stable_sort(
3424       Options.begin(), Options.end(),
3425       [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3426             const CodeGenFunction::MultiVersionResolverOption &RHS) {
3427         return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3428       });
3429   CodeGenFunction CGF(*this);
3430   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3431 }
3432 
3433 void CodeGenModule::emitMultiVersionFunctions() {
3434   std::vector<GlobalDecl> MVFuncsToEmit;
3435   MultiVersionFuncs.swap(MVFuncsToEmit);
3436   for (GlobalDecl GD : MVFuncsToEmit) {
3437     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3438     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3439     getContext().forEachMultiversionedFunctionVersion(
3440         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3441           GlobalDecl CurGD{
3442               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3443           StringRef MangledName = getMangledName(CurGD);
3444           llvm::Constant *Func = GetGlobalValue(MangledName);
3445           if (!Func) {
3446             if (CurFD->isDefined()) {
3447               EmitGlobalFunctionDefinition(CurGD, nullptr);
3448               Func = GetGlobalValue(MangledName);
3449             } else {
3450               const CGFunctionInfo &FI =
3451                   getTypes().arrangeGlobalDeclaration(GD);
3452               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3453               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3454                                        /*DontDefer=*/false, ForDefinition);
3455             }
3456             assert(Func && "This should have just been created");
3457           }
3458 
3459           const auto *TA = CurFD->getAttr<TargetAttr>();
3460           llvm::SmallVector<StringRef, 8> Feats;
3461           TA->getAddedFeatures(Feats);
3462 
3463           Options.emplace_back(cast<llvm::Function>(Func),
3464                                TA->getArchitecture(), Feats);
3465         });
3466 
3467     llvm::Function *ResolverFunc;
3468     const TargetInfo &TI = getTarget();
3469 
3470     if (TI.supportsIFunc() || FD->isTargetMultiVersion()) {
3471       ResolverFunc = cast<llvm::Function>(
3472           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
3473       ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3474     } else {
3475       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
3476     }
3477 
3478     if (supportsCOMDAT())
3479       ResolverFunc->setComdat(
3480           getModule().getOrInsertComdat(ResolverFunc->getName()));
3481 
3482     llvm::stable_sort(
3483         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3484                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3485           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3486         });
3487     CodeGenFunction CGF(*this);
3488     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3489   }
3490 
3491   // Ensure that any additions to the deferred decls list caused by emitting a
3492   // variant are emitted.  This can happen when the variant itself is inline and
3493   // calls a function without linkage.
3494   if (!MVFuncsToEmit.empty())
3495     EmitDeferred();
3496 
3497   // Ensure that any additions to the multiversion funcs list from either the
3498   // deferred decls or the multiversion functions themselves are emitted.
3499   if (!MultiVersionFuncs.empty())
3500     emitMultiVersionFunctions();
3501 }
3502 
3503 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3504   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3505   assert(FD && "Not a FunctionDecl?");
3506   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3507   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3508   assert(DD && "Not a cpu_dispatch Function?");
3509   llvm::Type *DeclTy = getTypes().ConvertType(FD->getType());
3510 
3511   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
3512     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
3513     DeclTy = getTypes().GetFunctionType(FInfo);
3514   }
3515 
3516   StringRef ResolverName = getMangledName(GD);
3517   UpdateMultiVersionNames(GD, FD, ResolverName);
3518 
3519   llvm::Type *ResolverType;
3520   GlobalDecl ResolverGD;
3521   if (getTarget().supportsIFunc()) {
3522     ResolverType = llvm::FunctionType::get(
3523         llvm::PointerType::get(DeclTy,
3524                                Context.getTargetAddressSpace(FD->getType())),
3525         false);
3526   }
3527   else {
3528     ResolverType = DeclTy;
3529     ResolverGD = GD;
3530   }
3531 
3532   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3533       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3534   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3535   if (supportsCOMDAT())
3536     ResolverFunc->setComdat(
3537         getModule().getOrInsertComdat(ResolverFunc->getName()));
3538 
3539   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3540   const TargetInfo &Target = getTarget();
3541   unsigned Index = 0;
3542   for (const IdentifierInfo *II : DD->cpus()) {
3543     // Get the name of the target function so we can look it up/create it.
3544     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3545                               getCPUSpecificMangling(*this, II->getName());
3546 
3547     llvm::Constant *Func = GetGlobalValue(MangledName);
3548 
3549     if (!Func) {
3550       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3551       if (ExistingDecl.getDecl() &&
3552           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3553         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3554         Func = GetGlobalValue(MangledName);
3555       } else {
3556         if (!ExistingDecl.getDecl())
3557           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3558 
3559       Func = GetOrCreateLLVMFunction(
3560           MangledName, DeclTy, ExistingDecl,
3561           /*ForVTable=*/false, /*DontDefer=*/true,
3562           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3563       }
3564     }
3565 
3566     llvm::SmallVector<StringRef, 32> Features;
3567     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3568     llvm::transform(Features, Features.begin(),
3569                     [](StringRef Str) { return Str.substr(1); });
3570     llvm::erase_if(Features, [&Target](StringRef Feat) {
3571       return !Target.validateCpuSupports(Feat);
3572     });
3573     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3574     ++Index;
3575   }
3576 
3577   llvm::stable_sort(
3578       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3579                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3580         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3581                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3582       });
3583 
3584   // If the list contains multiple 'default' versions, such as when it contains
3585   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3586   // always run on at least a 'pentium'). We do this by deleting the 'least
3587   // advanced' (read, lowest mangling letter).
3588   while (Options.size() > 1 &&
3589          llvm::X86::getCpuSupportsMask(
3590              (Options.end() - 2)->Conditions.Features) == 0) {
3591     StringRef LHSName = (Options.end() - 2)->Function->getName();
3592     StringRef RHSName = (Options.end() - 1)->Function->getName();
3593     if (LHSName.compare(RHSName) < 0)
3594       Options.erase(Options.end() - 2);
3595     else
3596       Options.erase(Options.end() - 1);
3597   }
3598 
3599   CodeGenFunction CGF(*this);
3600   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3601 
3602   if (getTarget().supportsIFunc()) {
3603     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3604     auto *IFunc = cast<llvm::GlobalValue>(
3605         GetOrCreateMultiVersionResolver(GD, DeclTy, FD));
3606 
3607     // Fix up function declarations that were created for cpu_specific before
3608     // cpu_dispatch was known
3609     if (!dyn_cast<llvm::GlobalIFunc>(IFunc)) {
3610       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3611       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3612                                            &getModule());
3613       GI->takeName(IFunc);
3614       IFunc->replaceAllUsesWith(GI);
3615       IFunc->eraseFromParent();
3616       IFunc = GI;
3617     }
3618 
3619     std::string AliasName = getMangledNameImpl(
3620         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3621     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3622     if (!AliasFunc) {
3623       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3624                                            &getModule());
3625       SetCommonAttributes(GD, GA);
3626     }
3627   }
3628 }
3629 
3630 /// If a dispatcher for the specified mangled name is not in the module, create
3631 /// and return an llvm Function with the specified type.
3632 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
3633     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
3634   std::string MangledName =
3635       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3636 
3637   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3638   // a separate resolver).
3639   std::string ResolverName = MangledName;
3640   if (getTarget().supportsIFunc())
3641     ResolverName += ".ifunc";
3642   else if (FD->isTargetMultiVersion())
3643     ResolverName += ".resolver";
3644 
3645   // If this already exists, just return that one.
3646   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3647     return ResolverGV;
3648 
3649   // Since this is the first time we've created this IFunc, make sure
3650   // that we put this multiversioned function into the list to be
3651   // replaced later if necessary (target multiversioning only).
3652   if (FD->isTargetMultiVersion())
3653     MultiVersionFuncs.push_back(GD);
3654   else if (FD->isTargetClonesMultiVersion()) {
3655     // In target_clones multiversioning, make sure we emit this if used.
3656     auto DDI =
3657         DeferredDecls.find(getMangledName(GD.getWithMultiVersionIndex(0)));
3658     if (DDI != DeferredDecls.end()) {
3659       addDeferredDeclToEmit(GD);
3660       DeferredDecls.erase(DDI);
3661     } else {
3662       // Emit the symbol of the 1st variant, so that the deferred decls know we
3663       // need it, otherwise the only global value will be the resolver/ifunc,
3664       // which end up getting broken if we search for them with GetGlobalValue'.
3665       GetOrCreateLLVMFunction(
3666           getMangledName(GD.getWithMultiVersionIndex(0)), DeclTy, FD,
3667           /*ForVTable=*/false, /*DontDefer=*/true,
3668           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3669     }
3670   }
3671 
3672   // For cpu_specific, don't create an ifunc yet because we don't know if the
3673   // cpu_dispatch will be emitted in this translation unit.
3674   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3675     llvm::Type *ResolverType = llvm::FunctionType::get(
3676         llvm::PointerType::get(
3677             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3678         false);
3679     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3680         MangledName + ".resolver", ResolverType, GlobalDecl{},
3681         /*ForVTable=*/false);
3682     llvm::GlobalIFunc *GIF =
3683         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3684                                   "", Resolver, &getModule());
3685     GIF->setName(ResolverName);
3686     SetCommonAttributes(FD, GIF);
3687 
3688     return GIF;
3689   }
3690 
3691   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3692       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3693   assert(isa<llvm::GlobalValue>(Resolver) &&
3694          "Resolver should be created for the first time");
3695   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3696   return Resolver;
3697 }
3698 
3699 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3700 /// module, create and return an llvm Function with the specified type. If there
3701 /// is something in the module with the specified name, return it potentially
3702 /// bitcasted to the right type.
3703 ///
3704 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3705 /// to set the attributes on the function when it is first created.
3706 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3707     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3708     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3709     ForDefinition_t IsForDefinition) {
3710   const Decl *D = GD.getDecl();
3711 
3712   // Any attempts to use a MultiVersion function should result in retrieving
3713   // the iFunc instead. Name Mangling will handle the rest of the changes.
3714   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3715     // For the device mark the function as one that should be emitted.
3716     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3717         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3718         !DontDefer && !IsForDefinition) {
3719       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3720         GlobalDecl GDDef;
3721         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3722           GDDef = GlobalDecl(CD, GD.getCtorType());
3723         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3724           GDDef = GlobalDecl(DD, GD.getDtorType());
3725         else
3726           GDDef = GlobalDecl(FDDef);
3727         EmitGlobal(GDDef);
3728       }
3729     }
3730 
3731     if (FD->isMultiVersion()) {
3732         UpdateMultiVersionNames(GD, FD, MangledName);
3733       if (!IsForDefinition)
3734         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
3735     }
3736   }
3737 
3738   // Lookup the entry, lazily creating it if necessary.
3739   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3740   if (Entry) {
3741     if (WeakRefReferences.erase(Entry)) {
3742       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3743       if (FD && !FD->hasAttr<WeakAttr>())
3744         Entry->setLinkage(llvm::Function::ExternalLinkage);
3745     }
3746 
3747     // Handle dropped DLL attributes.
3748     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
3749       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3750       setDSOLocal(Entry);
3751     }
3752 
3753     // If there are two attempts to define the same mangled name, issue an
3754     // error.
3755     if (IsForDefinition && !Entry->isDeclaration()) {
3756       GlobalDecl OtherGD;
3757       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3758       // to make sure that we issue an error only once.
3759       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3760           (GD.getCanonicalDecl().getDecl() !=
3761            OtherGD.getCanonicalDecl().getDecl()) &&
3762           DiagnosedConflictingDefinitions.insert(GD).second) {
3763         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3764             << MangledName;
3765         getDiags().Report(OtherGD.getDecl()->getLocation(),
3766                           diag::note_previous_definition);
3767       }
3768     }
3769 
3770     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3771         (Entry->getValueType() == Ty)) {
3772       return Entry;
3773     }
3774 
3775     // Make sure the result is of the correct type.
3776     // (If function is requested for a definition, we always need to create a new
3777     // function, not just return a bitcast.)
3778     if (!IsForDefinition)
3779       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
3780   }
3781 
3782   // This function doesn't have a complete type (for example, the return
3783   // type is an incomplete struct). Use a fake type instead, and make
3784   // sure not to try to set attributes.
3785   bool IsIncompleteFunction = false;
3786 
3787   llvm::FunctionType *FTy;
3788   if (isa<llvm::FunctionType>(Ty)) {
3789     FTy = cast<llvm::FunctionType>(Ty);
3790   } else {
3791     FTy = llvm::FunctionType::get(VoidTy, false);
3792     IsIncompleteFunction = true;
3793   }
3794 
3795   llvm::Function *F =
3796       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
3797                              Entry ? StringRef() : MangledName, &getModule());
3798 
3799   // If we already created a function with the same mangled name (but different
3800   // type) before, take its name and add it to the list of functions to be
3801   // replaced with F at the end of CodeGen.
3802   //
3803   // This happens if there is a prototype for a function (e.g. "int f()") and
3804   // then a definition of a different type (e.g. "int f(int x)").
3805   if (Entry) {
3806     F->takeName(Entry);
3807 
3808     // This might be an implementation of a function without a prototype, in
3809     // which case, try to do special replacement of calls which match the new
3810     // prototype.  The really key thing here is that we also potentially drop
3811     // arguments from the call site so as to make a direct call, which makes the
3812     // inliner happier and suppresses a number of optimizer warnings (!) about
3813     // dropping arguments.
3814     if (!Entry->use_empty()) {
3815       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
3816       Entry->removeDeadConstantUsers();
3817     }
3818 
3819     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
3820         F, Entry->getValueType()->getPointerTo());
3821     addGlobalValReplacement(Entry, BC);
3822   }
3823 
3824   assert(F->getName() == MangledName && "name was uniqued!");
3825   if (D)
3826     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
3827   if (ExtraAttrs.hasFnAttrs()) {
3828     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
3829     F->addFnAttrs(B);
3830   }
3831 
3832   if (!DontDefer) {
3833     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
3834     // each other bottoming out with the base dtor.  Therefore we emit non-base
3835     // dtors on usage, even if there is no dtor definition in the TU.
3836     if (D && isa<CXXDestructorDecl>(D) &&
3837         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
3838                                            GD.getDtorType()))
3839       addDeferredDeclToEmit(GD);
3840 
3841     // This is the first use or definition of a mangled name.  If there is a
3842     // deferred decl with this name, remember that we need to emit it at the end
3843     // of the file.
3844     auto DDI = DeferredDecls.find(MangledName);
3845     if (DDI != DeferredDecls.end()) {
3846       // Move the potentially referenced deferred decl to the
3847       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
3848       // don't need it anymore).
3849       addDeferredDeclToEmit(DDI->second);
3850       DeferredDecls.erase(DDI);
3851 
3852       // Otherwise, there are cases we have to worry about where we're
3853       // using a declaration for which we must emit a definition but where
3854       // we might not find a top-level definition:
3855       //   - member functions defined inline in their classes
3856       //   - friend functions defined inline in some class
3857       //   - special member functions with implicit definitions
3858       // If we ever change our AST traversal to walk into class methods,
3859       // this will be unnecessary.
3860       //
3861       // We also don't emit a definition for a function if it's going to be an
3862       // entry in a vtable, unless it's already marked as used.
3863     } else if (getLangOpts().CPlusPlus && D) {
3864       // Look for a declaration that's lexically in a record.
3865       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
3866            FD = FD->getPreviousDecl()) {
3867         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
3868           if (FD->doesThisDeclarationHaveABody()) {
3869             addDeferredDeclToEmit(GD.getWithDecl(FD));
3870             break;
3871           }
3872         }
3873       }
3874     }
3875   }
3876 
3877   // Make sure the result is of the requested type.
3878   if (!IsIncompleteFunction) {
3879     assert(F->getFunctionType() == Ty);
3880     return F;
3881   }
3882 
3883   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3884   return llvm::ConstantExpr::getBitCast(F, PTy);
3885 }
3886 
3887 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
3888 /// non-null, then this function will use the specified type if it has to
3889 /// create it (this occurs when we see a definition of the function).
3890 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
3891                                                  llvm::Type *Ty,
3892                                                  bool ForVTable,
3893                                                  bool DontDefer,
3894                                               ForDefinition_t IsForDefinition) {
3895   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
3896          "consteval function should never be emitted");
3897   // If there was no specific requested type, just convert it now.
3898   if (!Ty) {
3899     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3900     Ty = getTypes().ConvertType(FD->getType());
3901   }
3902 
3903   // Devirtualized destructor calls may come through here instead of via
3904   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
3905   // of the complete destructor when necessary.
3906   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
3907     if (getTarget().getCXXABI().isMicrosoft() &&
3908         GD.getDtorType() == Dtor_Complete &&
3909         DD->getParent()->getNumVBases() == 0)
3910       GD = GlobalDecl(DD, Dtor_Base);
3911   }
3912 
3913   StringRef MangledName = getMangledName(GD);
3914   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
3915                                     /*IsThunk=*/false, llvm::AttributeList(),
3916                                     IsForDefinition);
3917   // Returns kernel handle for HIP kernel stub function.
3918   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
3919       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
3920     auto *Handle = getCUDARuntime().getKernelHandle(
3921         cast<llvm::Function>(F->stripPointerCasts()), GD);
3922     if (IsForDefinition)
3923       return F;
3924     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
3925   }
3926   return F;
3927 }
3928 
3929 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
3930   llvm::GlobalValue *F =
3931       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
3932 
3933   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
3934                                         llvm::Type::getInt8PtrTy(VMContext));
3935 }
3936 
3937 static const FunctionDecl *
3938 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
3939   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
3940   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
3941 
3942   IdentifierInfo &CII = C.Idents.get(Name);
3943   for (const auto *Result : DC->lookup(&CII))
3944     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3945       return FD;
3946 
3947   if (!C.getLangOpts().CPlusPlus)
3948     return nullptr;
3949 
3950   // Demangle the premangled name from getTerminateFn()
3951   IdentifierInfo &CXXII =
3952       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
3953           ? C.Idents.get("terminate")
3954           : C.Idents.get(Name);
3955 
3956   for (const auto &N : {"__cxxabiv1", "std"}) {
3957     IdentifierInfo &NS = C.Idents.get(N);
3958     for (const auto *Result : DC->lookup(&NS)) {
3959       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
3960       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
3961         for (const auto *Result : LSD->lookup(&NS))
3962           if ((ND = dyn_cast<NamespaceDecl>(Result)))
3963             break;
3964 
3965       if (ND)
3966         for (const auto *Result : ND->lookup(&CXXII))
3967           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
3968             return FD;
3969     }
3970   }
3971 
3972   return nullptr;
3973 }
3974 
3975 /// CreateRuntimeFunction - Create a new runtime function with the specified
3976 /// type and name.
3977 llvm::FunctionCallee
3978 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
3979                                      llvm::AttributeList ExtraAttrs, bool Local,
3980                                      bool AssumeConvergent) {
3981   if (AssumeConvergent) {
3982     ExtraAttrs =
3983         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
3984   }
3985 
3986   llvm::Constant *C =
3987       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
3988                               /*DontDefer=*/false, /*IsThunk=*/false,
3989                               ExtraAttrs);
3990 
3991   if (auto *F = dyn_cast<llvm::Function>(C)) {
3992     if (F->empty()) {
3993       F->setCallingConv(getRuntimeCC());
3994 
3995       // In Windows Itanium environments, try to mark runtime functions
3996       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
3997       // will link their standard library statically or dynamically. Marking
3998       // functions imported when they are not imported can cause linker errors
3999       // and warnings.
4000       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4001           !getCodeGenOpts().LTOVisibilityPublicStd) {
4002         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4003         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4004           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4005           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4006         }
4007       }
4008       setDSOLocal(F);
4009     }
4010   }
4011 
4012   return {FTy, C};
4013 }
4014 
4015 /// isTypeConstant - Determine whether an object of this type can be emitted
4016 /// as a constant.
4017 ///
4018 /// If ExcludeCtor is true, the duration when the object's constructor runs
4019 /// will not be considered. The caller will need to verify that the object is
4020 /// not written to during its construction.
4021 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4022   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4023     return false;
4024 
4025   if (Context.getLangOpts().CPlusPlus) {
4026     if (const CXXRecordDecl *Record
4027           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4028       return ExcludeCtor && !Record->hasMutableFields() &&
4029              Record->hasTrivialDestructor();
4030   }
4031 
4032   return true;
4033 }
4034 
4035 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4036 /// create and return an llvm GlobalVariable with the specified type and address
4037 /// space. If there is something in the module with the specified name, return
4038 /// it potentially bitcasted to the right type.
4039 ///
4040 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4041 /// to set the attributes on the global when it is first created.
4042 ///
4043 /// If IsForDefinition is true, it is guaranteed that an actual global with
4044 /// type Ty will be returned, not conversion of a variable with the same
4045 /// mangled name but some other type.
4046 llvm::Constant *
4047 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4048                                      LangAS AddrSpace, const VarDecl *D,
4049                                      ForDefinition_t IsForDefinition) {
4050   // Lookup the entry, lazily creating it if necessary.
4051   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4052   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4053   if (Entry) {
4054     if (WeakRefReferences.erase(Entry)) {
4055       if (D && !D->hasAttr<WeakAttr>())
4056         Entry->setLinkage(llvm::Function::ExternalLinkage);
4057     }
4058 
4059     // Handle dropped DLL attributes.
4060     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
4061       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4062 
4063     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4064       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4065 
4066     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4067       return Entry;
4068 
4069     // If there are two attempts to define the same mangled name, issue an
4070     // error.
4071     if (IsForDefinition && !Entry->isDeclaration()) {
4072       GlobalDecl OtherGD;
4073       const VarDecl *OtherD;
4074 
4075       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4076       // to make sure that we issue an error only once.
4077       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4078           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4079           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4080           OtherD->hasInit() &&
4081           DiagnosedConflictingDefinitions.insert(D).second) {
4082         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4083             << MangledName;
4084         getDiags().Report(OtherGD.getDecl()->getLocation(),
4085                           diag::note_previous_definition);
4086       }
4087     }
4088 
4089     // Make sure the result is of the correct type.
4090     if (Entry->getType()->getAddressSpace() != TargetAS) {
4091       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4092                                                   Ty->getPointerTo(TargetAS));
4093     }
4094 
4095     // (If global is requested for a definition, we always need to create a new
4096     // global, not just return a bitcast.)
4097     if (!IsForDefinition)
4098       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4099   }
4100 
4101   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4102 
4103   auto *GV = new llvm::GlobalVariable(
4104       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4105       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4106       getContext().getTargetAddressSpace(DAddrSpace));
4107 
4108   // If we already created a global with the same mangled name (but different
4109   // type) before, take its name and remove it from its parent.
4110   if (Entry) {
4111     GV->takeName(Entry);
4112 
4113     if (!Entry->use_empty()) {
4114       llvm::Constant *NewPtrForOldDecl =
4115           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4116       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4117     }
4118 
4119     Entry->eraseFromParent();
4120   }
4121 
4122   // This is the first use or definition of a mangled name.  If there is a
4123   // deferred decl with this name, remember that we need to emit it at the end
4124   // of the file.
4125   auto DDI = DeferredDecls.find(MangledName);
4126   if (DDI != DeferredDecls.end()) {
4127     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4128     // list, and remove it from DeferredDecls (since we don't need it anymore).
4129     addDeferredDeclToEmit(DDI->second);
4130     DeferredDecls.erase(DDI);
4131   }
4132 
4133   // Handle things which are present even on external declarations.
4134   if (D) {
4135     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4136       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4137 
4138     // FIXME: This code is overly simple and should be merged with other global
4139     // handling.
4140     GV->setConstant(isTypeConstant(D->getType(), false));
4141 
4142     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4143 
4144     setLinkageForGV(GV, D);
4145 
4146     if (D->getTLSKind()) {
4147       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4148         CXXThreadLocals.push_back(D);
4149       setTLSMode(GV, *D);
4150     }
4151 
4152     setGVProperties(GV, D);
4153 
4154     // If required by the ABI, treat declarations of static data members with
4155     // inline initializers as definitions.
4156     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4157       EmitGlobalVarDefinition(D);
4158     }
4159 
4160     // Emit section information for extern variables.
4161     if (D->hasExternalStorage()) {
4162       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4163         GV->setSection(SA->getName());
4164     }
4165 
4166     // Handle XCore specific ABI requirements.
4167     if (getTriple().getArch() == llvm::Triple::xcore &&
4168         D->getLanguageLinkage() == CLanguageLinkage &&
4169         D->getType().isConstant(Context) &&
4170         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4171       GV->setSection(".cp.rodata");
4172 
4173     // Check if we a have a const declaration with an initializer, we may be
4174     // able to emit it as available_externally to expose it's value to the
4175     // optimizer.
4176     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4177         D->getType().isConstQualified() && !GV->hasInitializer() &&
4178         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4179       const auto *Record =
4180           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4181       bool HasMutableFields = Record && Record->hasMutableFields();
4182       if (!HasMutableFields) {
4183         const VarDecl *InitDecl;
4184         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4185         if (InitExpr) {
4186           ConstantEmitter emitter(*this);
4187           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4188           if (Init) {
4189             auto *InitType = Init->getType();
4190             if (GV->getValueType() != InitType) {
4191               // The type of the initializer does not match the definition.
4192               // This happens when an initializer has a different type from
4193               // the type of the global (because of padding at the end of a
4194               // structure for instance).
4195               GV->setName(StringRef());
4196               // Make a new global with the correct type, this is now guaranteed
4197               // to work.
4198               auto *NewGV = cast<llvm::GlobalVariable>(
4199                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4200                       ->stripPointerCasts());
4201 
4202               // Erase the old global, since it is no longer used.
4203               GV->eraseFromParent();
4204               GV = NewGV;
4205             } else {
4206               GV->setInitializer(Init);
4207               GV->setConstant(true);
4208               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4209             }
4210             emitter.finalize(GV);
4211           }
4212         }
4213       }
4214     }
4215   }
4216 
4217   if (GV->isDeclaration()) {
4218     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4219     // External HIP managed variables needed to be recorded for transformation
4220     // in both device and host compilations.
4221     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4222         D->hasExternalStorage())
4223       getCUDARuntime().handleVarRegistration(D, *GV);
4224   }
4225 
4226   LangAS ExpectedAS =
4227       D ? D->getType().getAddressSpace()
4228         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4229   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4230   if (DAddrSpace != ExpectedAS) {
4231     return getTargetCodeGenInfo().performAddrSpaceCast(
4232         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4233   }
4234 
4235   return GV;
4236 }
4237 
4238 llvm::Constant *
4239 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4240   const Decl *D = GD.getDecl();
4241 
4242   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4243     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4244                                 /*DontDefer=*/false, IsForDefinition);
4245 
4246   if (isa<CXXMethodDecl>(D)) {
4247     auto FInfo =
4248         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4249     auto Ty = getTypes().GetFunctionType(*FInfo);
4250     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4251                              IsForDefinition);
4252   }
4253 
4254   if (isa<FunctionDecl>(D)) {
4255     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4256     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4257     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4258                              IsForDefinition);
4259   }
4260 
4261   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4262 }
4263 
4264 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4265     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4266     unsigned Alignment) {
4267   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4268   llvm::GlobalVariable *OldGV = nullptr;
4269 
4270   if (GV) {
4271     // Check if the variable has the right type.
4272     if (GV->getValueType() == Ty)
4273       return GV;
4274 
4275     // Because C++ name mangling, the only way we can end up with an already
4276     // existing global with the same name is if it has been declared extern "C".
4277     assert(GV->isDeclaration() && "Declaration has wrong type!");
4278     OldGV = GV;
4279   }
4280 
4281   // Create a new variable.
4282   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4283                                 Linkage, nullptr, Name);
4284 
4285   if (OldGV) {
4286     // Replace occurrences of the old variable if needed.
4287     GV->takeName(OldGV);
4288 
4289     if (!OldGV->use_empty()) {
4290       llvm::Constant *NewPtrForOldDecl =
4291       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4292       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4293     }
4294 
4295     OldGV->eraseFromParent();
4296   }
4297 
4298   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4299       !GV->hasAvailableExternallyLinkage())
4300     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4301 
4302   GV->setAlignment(llvm::MaybeAlign(Alignment));
4303 
4304   return GV;
4305 }
4306 
4307 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4308 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4309 /// then it will be created with the specified type instead of whatever the
4310 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4311 /// that an actual global with type Ty will be returned, not conversion of a
4312 /// variable with the same mangled name but some other type.
4313 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4314                                                   llvm::Type *Ty,
4315                                            ForDefinition_t IsForDefinition) {
4316   assert(D->hasGlobalStorage() && "Not a global variable");
4317   QualType ASTTy = D->getType();
4318   if (!Ty)
4319     Ty = getTypes().ConvertTypeForMem(ASTTy);
4320 
4321   StringRef MangledName = getMangledName(D);
4322   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4323                                IsForDefinition);
4324 }
4325 
4326 /// CreateRuntimeVariable - Create a new runtime global variable with the
4327 /// specified type and name.
4328 llvm::Constant *
4329 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4330                                      StringRef Name) {
4331   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4332                                                        : LangAS::Default;
4333   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4334   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4335   return Ret;
4336 }
4337 
4338 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4339   assert(!D->getInit() && "Cannot emit definite definitions here!");
4340 
4341   StringRef MangledName = getMangledName(D);
4342   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4343 
4344   // We already have a definition, not declaration, with the same mangled name.
4345   // Emitting of declaration is not required (and actually overwrites emitted
4346   // definition).
4347   if (GV && !GV->isDeclaration())
4348     return;
4349 
4350   // If we have not seen a reference to this variable yet, place it into the
4351   // deferred declarations table to be emitted if needed later.
4352   if (!MustBeEmitted(D) && !GV) {
4353       DeferredDecls[MangledName] = D;
4354       return;
4355   }
4356 
4357   // The tentative definition is the only definition.
4358   EmitGlobalVarDefinition(D);
4359 }
4360 
4361 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4362   EmitExternalVarDeclaration(D);
4363 }
4364 
4365 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4366   return Context.toCharUnitsFromBits(
4367       getDataLayout().getTypeStoreSizeInBits(Ty));
4368 }
4369 
4370 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4371   if (LangOpts.OpenCL) {
4372     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4373     assert(AS == LangAS::opencl_global ||
4374            AS == LangAS::opencl_global_device ||
4375            AS == LangAS::opencl_global_host ||
4376            AS == LangAS::opencl_constant ||
4377            AS == LangAS::opencl_local ||
4378            AS >= LangAS::FirstTargetAddressSpace);
4379     return AS;
4380   }
4381 
4382   if (LangOpts.SYCLIsDevice &&
4383       (!D || D->getType().getAddressSpace() == LangAS::Default))
4384     return LangAS::sycl_global;
4385 
4386   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4387     if (D && D->hasAttr<CUDAConstantAttr>())
4388       return LangAS::cuda_constant;
4389     else if (D && D->hasAttr<CUDASharedAttr>())
4390       return LangAS::cuda_shared;
4391     else if (D && D->hasAttr<CUDADeviceAttr>())
4392       return LangAS::cuda_device;
4393     else if (D && D->getType().isConstQualified())
4394       return LangAS::cuda_constant;
4395     else
4396       return LangAS::cuda_device;
4397   }
4398 
4399   if (LangOpts.OpenMP) {
4400     LangAS AS;
4401     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4402       return AS;
4403   }
4404   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4405 }
4406 
4407 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4408   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4409   if (LangOpts.OpenCL)
4410     return LangAS::opencl_constant;
4411   if (LangOpts.SYCLIsDevice)
4412     return LangAS::sycl_global;
4413   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4414     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4415     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4416     // with OpVariable instructions with Generic storage class which is not
4417     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4418     // UniformConstant storage class is not viable as pointers to it may not be
4419     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4420     return LangAS::cuda_device;
4421   if (auto AS = getTarget().getConstantAddressSpace())
4422     return AS.getValue();
4423   return LangAS::Default;
4424 }
4425 
4426 // In address space agnostic languages, string literals are in default address
4427 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4428 // emitted in constant address space in LLVM IR. To be consistent with other
4429 // parts of AST, string literal global variables in constant address space
4430 // need to be casted to default address space before being put into address
4431 // map and referenced by other part of CodeGen.
4432 // In OpenCL, string literals are in constant address space in AST, therefore
4433 // they should not be casted to default address space.
4434 static llvm::Constant *
4435 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4436                                        llvm::GlobalVariable *GV) {
4437   llvm::Constant *Cast = GV;
4438   if (!CGM.getLangOpts().OpenCL) {
4439     auto AS = CGM.GetGlobalConstantAddressSpace();
4440     if (AS != LangAS::Default)
4441       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4442           CGM, GV, AS, LangAS::Default,
4443           GV->getValueType()->getPointerTo(
4444               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4445   }
4446   return Cast;
4447 }
4448 
4449 template<typename SomeDecl>
4450 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4451                                                llvm::GlobalValue *GV) {
4452   if (!getLangOpts().CPlusPlus)
4453     return;
4454 
4455   // Must have 'used' attribute, or else inline assembly can't rely on
4456   // the name existing.
4457   if (!D->template hasAttr<UsedAttr>())
4458     return;
4459 
4460   // Must have internal linkage and an ordinary name.
4461   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4462     return;
4463 
4464   // Must be in an extern "C" context. Entities declared directly within
4465   // a record are not extern "C" even if the record is in such a context.
4466   const SomeDecl *First = D->getFirstDecl();
4467   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4468     return;
4469 
4470   // OK, this is an internal linkage entity inside an extern "C" linkage
4471   // specification. Make a note of that so we can give it the "expected"
4472   // mangled name if nothing else is using that name.
4473   std::pair<StaticExternCMap::iterator, bool> R =
4474       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4475 
4476   // If we have multiple internal linkage entities with the same name
4477   // in extern "C" regions, none of them gets that name.
4478   if (!R.second)
4479     R.first->second = nullptr;
4480 }
4481 
4482 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4483   if (!CGM.supportsCOMDAT())
4484     return false;
4485 
4486   if (D.hasAttr<SelectAnyAttr>())
4487     return true;
4488 
4489   GVALinkage Linkage;
4490   if (auto *VD = dyn_cast<VarDecl>(&D))
4491     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4492   else
4493     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4494 
4495   switch (Linkage) {
4496   case GVA_Internal:
4497   case GVA_AvailableExternally:
4498   case GVA_StrongExternal:
4499     return false;
4500   case GVA_DiscardableODR:
4501   case GVA_StrongODR:
4502     return true;
4503   }
4504   llvm_unreachable("No such linkage");
4505 }
4506 
4507 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4508                                           llvm::GlobalObject &GO) {
4509   if (!shouldBeInCOMDAT(*this, D))
4510     return;
4511   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4512 }
4513 
4514 /// Pass IsTentative as true if you want to create a tentative definition.
4515 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4516                                             bool IsTentative) {
4517   // OpenCL global variables of sampler type are translated to function calls,
4518   // therefore no need to be translated.
4519   QualType ASTTy = D->getType();
4520   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4521     return;
4522 
4523   // If this is OpenMP device, check if it is legal to emit this global
4524   // normally.
4525   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4526       OpenMPRuntime->emitTargetGlobalVariable(D))
4527     return;
4528 
4529   llvm::TrackingVH<llvm::Constant> Init;
4530   bool NeedsGlobalCtor = false;
4531   bool NeedsGlobalDtor =
4532       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4533 
4534   const VarDecl *InitDecl;
4535   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4536 
4537   Optional<ConstantEmitter> emitter;
4538 
4539   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4540   // as part of their declaration."  Sema has already checked for
4541   // error cases, so we just need to set Init to UndefValue.
4542   bool IsCUDASharedVar =
4543       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4544   // Shadows of initialized device-side global variables are also left
4545   // undefined.
4546   // Managed Variables should be initialized on both host side and device side.
4547   bool IsCUDAShadowVar =
4548       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4549       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4550        D->hasAttr<CUDASharedAttr>());
4551   bool IsCUDADeviceShadowVar =
4552       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4553       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4554        D->getType()->isCUDADeviceBuiltinTextureType());
4555   if (getLangOpts().CUDA &&
4556       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4557     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4558   else if (D->hasAttr<LoaderUninitializedAttr>())
4559     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4560   else if (!InitExpr) {
4561     // This is a tentative definition; tentative definitions are
4562     // implicitly initialized with { 0 }.
4563     //
4564     // Note that tentative definitions are only emitted at the end of
4565     // a translation unit, so they should never have incomplete
4566     // type. In addition, EmitTentativeDefinition makes sure that we
4567     // never attempt to emit a tentative definition if a real one
4568     // exists. A use may still exists, however, so we still may need
4569     // to do a RAUW.
4570     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4571     Init = EmitNullConstant(D->getType());
4572   } else {
4573     initializedGlobalDecl = GlobalDecl(D);
4574     emitter.emplace(*this);
4575     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4576     if (!Initializer) {
4577       QualType T = InitExpr->getType();
4578       if (D->getType()->isReferenceType())
4579         T = D->getType();
4580 
4581       if (getLangOpts().CPlusPlus) {
4582         Init = EmitNullConstant(T);
4583         NeedsGlobalCtor = true;
4584       } else {
4585         ErrorUnsupported(D, "static initializer");
4586         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4587       }
4588     } else {
4589       Init = Initializer;
4590       // We don't need an initializer, so remove the entry for the delayed
4591       // initializer position (just in case this entry was delayed) if we
4592       // also don't need to register a destructor.
4593       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4594         DelayedCXXInitPosition.erase(D);
4595     }
4596   }
4597 
4598   llvm::Type* InitType = Init->getType();
4599   llvm::Constant *Entry =
4600       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4601 
4602   // Strip off pointer casts if we got them.
4603   Entry = Entry->stripPointerCasts();
4604 
4605   // Entry is now either a Function or GlobalVariable.
4606   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4607 
4608   // We have a definition after a declaration with the wrong type.
4609   // We must make a new GlobalVariable* and update everything that used OldGV
4610   // (a declaration or tentative definition) with the new GlobalVariable*
4611   // (which will be a definition).
4612   //
4613   // This happens if there is a prototype for a global (e.g.
4614   // "extern int x[];") and then a definition of a different type (e.g.
4615   // "int x[10];"). This also happens when an initializer has a different type
4616   // from the type of the global (this happens with unions).
4617   if (!GV || GV->getValueType() != InitType ||
4618       GV->getType()->getAddressSpace() !=
4619           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4620 
4621     // Move the old entry aside so that we'll create a new one.
4622     Entry->setName(StringRef());
4623 
4624     // Make a new global with the correct type, this is now guaranteed to work.
4625     GV = cast<llvm::GlobalVariable>(
4626         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4627             ->stripPointerCasts());
4628 
4629     // Replace all uses of the old global with the new global
4630     llvm::Constant *NewPtrForOldDecl =
4631         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4632                                                              Entry->getType());
4633     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4634 
4635     // Erase the old global, since it is no longer used.
4636     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4637   }
4638 
4639   MaybeHandleStaticInExternC(D, GV);
4640 
4641   if (D->hasAttr<AnnotateAttr>())
4642     AddGlobalAnnotations(D, GV);
4643 
4644   // Set the llvm linkage type as appropriate.
4645   llvm::GlobalValue::LinkageTypes Linkage =
4646       getLLVMLinkageVarDefinition(D, GV->isConstant());
4647 
4648   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4649   // the device. [...]"
4650   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4651   // __device__, declares a variable that: [...]
4652   // Is accessible from all the threads within the grid and from the host
4653   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4654   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4655   if (GV && LangOpts.CUDA) {
4656     if (LangOpts.CUDAIsDevice) {
4657       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4658           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4659            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4660            D->getType()->isCUDADeviceBuiltinTextureType()))
4661         GV->setExternallyInitialized(true);
4662     } else {
4663       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4664     }
4665     getCUDARuntime().handleVarRegistration(D, *GV);
4666   }
4667 
4668   GV->setInitializer(Init);
4669   if (emitter)
4670     emitter->finalize(GV);
4671 
4672   // If it is safe to mark the global 'constant', do so now.
4673   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4674                   isTypeConstant(D->getType(), true));
4675 
4676   // If it is in a read-only section, mark it 'constant'.
4677   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4678     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4679     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4680       GV->setConstant(true);
4681   }
4682 
4683   GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4684 
4685   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4686   // function is only defined alongside the variable, not also alongside
4687   // callers. Normally, all accesses to a thread_local go through the
4688   // thread-wrapper in order to ensure initialization has occurred, underlying
4689   // variable will never be used other than the thread-wrapper, so it can be
4690   // converted to internal linkage.
4691   //
4692   // However, if the variable has the 'constinit' attribute, it _can_ be
4693   // referenced directly, without calling the thread-wrapper, so the linkage
4694   // must not be changed.
4695   //
4696   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4697   // weak or linkonce, the de-duplication semantics are important to preserve,
4698   // so we don't change the linkage.
4699   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4700       Linkage == llvm::GlobalValue::ExternalLinkage &&
4701       Context.getTargetInfo().getTriple().isOSDarwin() &&
4702       !D->hasAttr<ConstInitAttr>())
4703     Linkage = llvm::GlobalValue::InternalLinkage;
4704 
4705   GV->setLinkage(Linkage);
4706   if (D->hasAttr<DLLImportAttr>())
4707     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4708   else if (D->hasAttr<DLLExportAttr>())
4709     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4710   else
4711     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4712 
4713   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4714     // common vars aren't constant even if declared const.
4715     GV->setConstant(false);
4716     // Tentative definition of global variables may be initialized with
4717     // non-zero null pointers. In this case they should have weak linkage
4718     // since common linkage must have zero initializer and must not have
4719     // explicit section therefore cannot have non-zero initial value.
4720     if (!GV->getInitializer()->isNullValue())
4721       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4722   }
4723 
4724   setNonAliasAttributes(D, GV);
4725 
4726   if (D->getTLSKind() && !GV->isThreadLocal()) {
4727     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4728       CXXThreadLocals.push_back(D);
4729     setTLSMode(GV, *D);
4730   }
4731 
4732   maybeSetTrivialComdat(*D, *GV);
4733 
4734   // Emit the initializer function if necessary.
4735   if (NeedsGlobalCtor || NeedsGlobalDtor)
4736     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4737 
4738   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
4739 
4740   // Emit global variable debug information.
4741   if (CGDebugInfo *DI = getModuleDebugInfo())
4742     if (getCodeGenOpts().hasReducedDebugInfo())
4743       DI->EmitGlobalVariable(GV, D);
4744 }
4745 
4746 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4747   if (CGDebugInfo *DI = getModuleDebugInfo())
4748     if (getCodeGenOpts().hasReducedDebugInfo()) {
4749       QualType ASTTy = D->getType();
4750       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4751       llvm::Constant *GV =
4752           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4753       DI->EmitExternalVariable(
4754           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
4755     }
4756 }
4757 
4758 static bool isVarDeclStrongDefinition(const ASTContext &Context,
4759                                       CodeGenModule &CGM, const VarDecl *D,
4760                                       bool NoCommon) {
4761   // Don't give variables common linkage if -fno-common was specified unless it
4762   // was overridden by a NoCommon attribute.
4763   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
4764     return true;
4765 
4766   // C11 6.9.2/2:
4767   //   A declaration of an identifier for an object that has file scope without
4768   //   an initializer, and without a storage-class specifier or with the
4769   //   storage-class specifier static, constitutes a tentative definition.
4770   if (D->getInit() || D->hasExternalStorage())
4771     return true;
4772 
4773   // A variable cannot be both common and exist in a section.
4774   if (D->hasAttr<SectionAttr>())
4775     return true;
4776 
4777   // A variable cannot be both common and exist in a section.
4778   // We don't try to determine which is the right section in the front-end.
4779   // If no specialized section name is applicable, it will resort to default.
4780   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
4781       D->hasAttr<PragmaClangDataSectionAttr>() ||
4782       D->hasAttr<PragmaClangRelroSectionAttr>() ||
4783       D->hasAttr<PragmaClangRodataSectionAttr>())
4784     return true;
4785 
4786   // Thread local vars aren't considered common linkage.
4787   if (D->getTLSKind())
4788     return true;
4789 
4790   // Tentative definitions marked with WeakImportAttr are true definitions.
4791   if (D->hasAttr<WeakImportAttr>())
4792     return true;
4793 
4794   // A variable cannot be both common and exist in a comdat.
4795   if (shouldBeInCOMDAT(CGM, *D))
4796     return true;
4797 
4798   // Declarations with a required alignment do not have common linkage in MSVC
4799   // mode.
4800   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4801     if (D->hasAttr<AlignedAttr>())
4802       return true;
4803     QualType VarType = D->getType();
4804     if (Context.isAlignmentRequired(VarType))
4805       return true;
4806 
4807     if (const auto *RT = VarType->getAs<RecordType>()) {
4808       const RecordDecl *RD = RT->getDecl();
4809       for (const FieldDecl *FD : RD->fields()) {
4810         if (FD->isBitField())
4811           continue;
4812         if (FD->hasAttr<AlignedAttr>())
4813           return true;
4814         if (Context.isAlignmentRequired(FD->getType()))
4815           return true;
4816       }
4817     }
4818   }
4819 
4820   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
4821   // common symbols, so symbols with greater alignment requirements cannot be
4822   // common.
4823   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
4824   // alignments for common symbols via the aligncomm directive, so this
4825   // restriction only applies to MSVC environments.
4826   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
4827       Context.getTypeAlignIfKnown(D->getType()) >
4828           Context.toBits(CharUnits::fromQuantity(32)))
4829     return true;
4830 
4831   return false;
4832 }
4833 
4834 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
4835     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
4836   if (Linkage == GVA_Internal)
4837     return llvm::Function::InternalLinkage;
4838 
4839   if (D->hasAttr<WeakAttr>()) {
4840     if (IsConstantVariable)
4841       return llvm::GlobalVariable::WeakODRLinkage;
4842     else
4843       return llvm::GlobalVariable::WeakAnyLinkage;
4844   }
4845 
4846   if (const auto *FD = D->getAsFunction())
4847     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
4848       return llvm::GlobalVariable::LinkOnceAnyLinkage;
4849 
4850   // We are guaranteed to have a strong definition somewhere else,
4851   // so we can use available_externally linkage.
4852   if (Linkage == GVA_AvailableExternally)
4853     return llvm::GlobalValue::AvailableExternallyLinkage;
4854 
4855   // Note that Apple's kernel linker doesn't support symbol
4856   // coalescing, so we need to avoid linkonce and weak linkages there.
4857   // Normally, this means we just map to internal, but for explicit
4858   // instantiations we'll map to external.
4859 
4860   // In C++, the compiler has to emit a definition in every translation unit
4861   // that references the function.  We should use linkonce_odr because
4862   // a) if all references in this translation unit are optimized away, we
4863   // don't need to codegen it.  b) if the function persists, it needs to be
4864   // merged with other definitions. c) C++ has the ODR, so we know the
4865   // definition is dependable.
4866   if (Linkage == GVA_DiscardableODR)
4867     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
4868                                             : llvm::Function::InternalLinkage;
4869 
4870   // An explicit instantiation of a template has weak linkage, since
4871   // explicit instantiations can occur in multiple translation units
4872   // and must all be equivalent. However, we are not allowed to
4873   // throw away these explicit instantiations.
4874   //
4875   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
4876   // so say that CUDA templates are either external (for kernels) or internal.
4877   // This lets llvm perform aggressive inter-procedural optimizations. For
4878   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
4879   // therefore we need to follow the normal linkage paradigm.
4880   if (Linkage == GVA_StrongODR) {
4881     if (getLangOpts().AppleKext)
4882       return llvm::Function::ExternalLinkage;
4883     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
4884         !getLangOpts().GPURelocatableDeviceCode)
4885       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
4886                                           : llvm::Function::InternalLinkage;
4887     return llvm::Function::WeakODRLinkage;
4888   }
4889 
4890   // C++ doesn't have tentative definitions and thus cannot have common
4891   // linkage.
4892   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
4893       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
4894                                  CodeGenOpts.NoCommon))
4895     return llvm::GlobalVariable::CommonLinkage;
4896 
4897   // selectany symbols are externally visible, so use weak instead of
4898   // linkonce.  MSVC optimizes away references to const selectany globals, so
4899   // all definitions should be the same and ODR linkage should be used.
4900   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
4901   if (D->hasAttr<SelectAnyAttr>())
4902     return llvm::GlobalVariable::WeakODRLinkage;
4903 
4904   // Otherwise, we have strong external linkage.
4905   assert(Linkage == GVA_StrongExternal);
4906   return llvm::GlobalVariable::ExternalLinkage;
4907 }
4908 
4909 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
4910     const VarDecl *VD, bool IsConstant) {
4911   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
4912   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
4913 }
4914 
4915 /// Replace the uses of a function that was declared with a non-proto type.
4916 /// We want to silently drop extra arguments from call sites
4917 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
4918                                           llvm::Function *newFn) {
4919   // Fast path.
4920   if (old->use_empty()) return;
4921 
4922   llvm::Type *newRetTy = newFn->getReturnType();
4923   SmallVector<llvm::Value*, 4> newArgs;
4924 
4925   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
4926          ui != ue; ) {
4927     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
4928     llvm::User *user = use->getUser();
4929 
4930     // Recognize and replace uses of bitcasts.  Most calls to
4931     // unprototyped functions will use bitcasts.
4932     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
4933       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
4934         replaceUsesOfNonProtoConstant(bitcast, newFn);
4935       continue;
4936     }
4937 
4938     // Recognize calls to the function.
4939     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
4940     if (!callSite) continue;
4941     if (!callSite->isCallee(&*use))
4942       continue;
4943 
4944     // If the return types don't match exactly, then we can't
4945     // transform this call unless it's dead.
4946     if (callSite->getType() != newRetTy && !callSite->use_empty())
4947       continue;
4948 
4949     // Get the call site's attribute list.
4950     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
4951     llvm::AttributeList oldAttrs = callSite->getAttributes();
4952 
4953     // If the function was passed too few arguments, don't transform.
4954     unsigned newNumArgs = newFn->arg_size();
4955     if (callSite->arg_size() < newNumArgs)
4956       continue;
4957 
4958     // If extra arguments were passed, we silently drop them.
4959     // If any of the types mismatch, we don't transform.
4960     unsigned argNo = 0;
4961     bool dontTransform = false;
4962     for (llvm::Argument &A : newFn->args()) {
4963       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
4964         dontTransform = true;
4965         break;
4966       }
4967 
4968       // Add any parameter attributes.
4969       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
4970       argNo++;
4971     }
4972     if (dontTransform)
4973       continue;
4974 
4975     // Okay, we can transform this.  Create the new call instruction and copy
4976     // over the required information.
4977     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
4978 
4979     // Copy over any operand bundles.
4980     SmallVector<llvm::OperandBundleDef, 1> newBundles;
4981     callSite->getOperandBundlesAsDefs(newBundles);
4982 
4983     llvm::CallBase *newCall;
4984     if (isa<llvm::CallInst>(callSite)) {
4985       newCall =
4986           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
4987     } else {
4988       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
4989       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
4990                                          oldInvoke->getUnwindDest(), newArgs,
4991                                          newBundles, "", callSite);
4992     }
4993     newArgs.clear(); // for the next iteration
4994 
4995     if (!newCall->getType()->isVoidTy())
4996       newCall->takeName(callSite);
4997     newCall->setAttributes(
4998         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
4999                                  oldAttrs.getRetAttrs(), newArgAttrs));
5000     newCall->setCallingConv(callSite->getCallingConv());
5001 
5002     // Finally, remove the old call, replacing any uses with the new one.
5003     if (!callSite->use_empty())
5004       callSite->replaceAllUsesWith(newCall);
5005 
5006     // Copy debug location attached to CI.
5007     if (callSite->getDebugLoc())
5008       newCall->setDebugLoc(callSite->getDebugLoc());
5009 
5010     callSite->eraseFromParent();
5011   }
5012 }
5013 
5014 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5015 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5016 /// existing call uses of the old function in the module, this adjusts them to
5017 /// call the new function directly.
5018 ///
5019 /// This is not just a cleanup: the always_inline pass requires direct calls to
5020 /// functions to be able to inline them.  If there is a bitcast in the way, it
5021 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5022 /// run at -O0.
5023 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5024                                                       llvm::Function *NewFn) {
5025   // If we're redefining a global as a function, don't transform it.
5026   if (!isa<llvm::Function>(Old)) return;
5027 
5028   replaceUsesOfNonProtoConstant(Old, NewFn);
5029 }
5030 
5031 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5032   auto DK = VD->isThisDeclarationADefinition();
5033   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5034     return;
5035 
5036   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5037   // If we have a definition, this might be a deferred decl. If the
5038   // instantiation is explicit, make sure we emit it at the end.
5039   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5040     GetAddrOfGlobalVar(VD);
5041 
5042   EmitTopLevelDecl(VD);
5043 }
5044 
5045 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5046                                                  llvm::GlobalValue *GV) {
5047   const auto *D = cast<FunctionDecl>(GD.getDecl());
5048 
5049   // Compute the function info and LLVM type.
5050   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5051   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5052 
5053   // Get or create the prototype for the function.
5054   if (!GV || (GV->getValueType() != Ty))
5055     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5056                                                    /*DontDefer=*/true,
5057                                                    ForDefinition));
5058 
5059   // Already emitted.
5060   if (!GV->isDeclaration())
5061     return;
5062 
5063   // We need to set linkage and visibility on the function before
5064   // generating code for it because various parts of IR generation
5065   // want to propagate this information down (e.g. to local static
5066   // declarations).
5067   auto *Fn = cast<llvm::Function>(GV);
5068   setFunctionLinkage(GD, Fn);
5069 
5070   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5071   setGVProperties(Fn, GD);
5072 
5073   MaybeHandleStaticInExternC(D, Fn);
5074 
5075   maybeSetTrivialComdat(*D, *Fn);
5076 
5077   // Set CodeGen attributes that represent floating point environment.
5078   setLLVMFunctionFEnvAttributes(D, Fn);
5079 
5080   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5081 
5082   setNonAliasAttributes(GD, Fn);
5083   SetLLVMFunctionAttributesForDefinition(D, Fn);
5084 
5085   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5086     AddGlobalCtor(Fn, CA->getPriority());
5087   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5088     AddGlobalDtor(Fn, DA->getPriority(), true);
5089   if (D->hasAttr<AnnotateAttr>())
5090     AddGlobalAnnotations(D, Fn);
5091 }
5092 
5093 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5094   const auto *D = cast<ValueDecl>(GD.getDecl());
5095   const AliasAttr *AA = D->getAttr<AliasAttr>();
5096   assert(AA && "Not an alias?");
5097 
5098   StringRef MangledName = getMangledName(GD);
5099 
5100   if (AA->getAliasee() == MangledName) {
5101     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5102     return;
5103   }
5104 
5105   // If there is a definition in the module, then it wins over the alias.
5106   // This is dubious, but allow it to be safe.  Just ignore the alias.
5107   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5108   if (Entry && !Entry->isDeclaration())
5109     return;
5110 
5111   Aliases.push_back(GD);
5112 
5113   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5114 
5115   // Create a reference to the named value.  This ensures that it is emitted
5116   // if a deferred decl.
5117   llvm::Constant *Aliasee;
5118   llvm::GlobalValue::LinkageTypes LT;
5119   if (isa<llvm::FunctionType>(DeclTy)) {
5120     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5121                                       /*ForVTable=*/false);
5122     LT = getFunctionLinkage(GD);
5123   } else {
5124     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5125                                     /*D=*/nullptr);
5126     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5127       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5128     else
5129       LT = getFunctionLinkage(GD);
5130   }
5131 
5132   // Create the new alias itself, but don't set a name yet.
5133   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5134   auto *GA =
5135       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5136 
5137   if (Entry) {
5138     if (GA->getAliasee() == Entry) {
5139       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5140       return;
5141     }
5142 
5143     assert(Entry->isDeclaration());
5144 
5145     // If there is a declaration in the module, then we had an extern followed
5146     // by the alias, as in:
5147     //   extern int test6();
5148     //   ...
5149     //   int test6() __attribute__((alias("test7")));
5150     //
5151     // Remove it and replace uses of it with the alias.
5152     GA->takeName(Entry);
5153 
5154     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5155                                                           Entry->getType()));
5156     Entry->eraseFromParent();
5157   } else {
5158     GA->setName(MangledName);
5159   }
5160 
5161   // Set attributes which are particular to an alias; this is a
5162   // specialization of the attributes which may be set on a global
5163   // variable/function.
5164   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5165       D->isWeakImported()) {
5166     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5167   }
5168 
5169   if (const auto *VD = dyn_cast<VarDecl>(D))
5170     if (VD->getTLSKind())
5171       setTLSMode(GA, *VD);
5172 
5173   SetCommonAttributes(GD, GA);
5174 }
5175 
5176 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5177   const auto *D = cast<ValueDecl>(GD.getDecl());
5178   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5179   assert(IFA && "Not an ifunc?");
5180 
5181   StringRef MangledName = getMangledName(GD);
5182 
5183   if (IFA->getResolver() == MangledName) {
5184     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5185     return;
5186   }
5187 
5188   // Report an error if some definition overrides ifunc.
5189   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5190   if (Entry && !Entry->isDeclaration()) {
5191     GlobalDecl OtherGD;
5192     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5193         DiagnosedConflictingDefinitions.insert(GD).second) {
5194       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5195           << MangledName;
5196       Diags.Report(OtherGD.getDecl()->getLocation(),
5197                    diag::note_previous_definition);
5198     }
5199     return;
5200   }
5201 
5202   Aliases.push_back(GD);
5203 
5204   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5205   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5206   llvm::Constant *Resolver =
5207       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5208                               /*ForVTable=*/false);
5209   llvm::GlobalIFunc *GIF =
5210       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5211                                 "", Resolver, &getModule());
5212   if (Entry) {
5213     if (GIF->getResolver() == Entry) {
5214       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5215       return;
5216     }
5217     assert(Entry->isDeclaration());
5218 
5219     // If there is a declaration in the module, then we had an extern followed
5220     // by the ifunc, as in:
5221     //   extern int test();
5222     //   ...
5223     //   int test() __attribute__((ifunc("resolver")));
5224     //
5225     // Remove it and replace uses of it with the ifunc.
5226     GIF->takeName(Entry);
5227 
5228     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5229                                                           Entry->getType()));
5230     Entry->eraseFromParent();
5231   } else
5232     GIF->setName(MangledName);
5233 
5234   SetCommonAttributes(GD, GIF);
5235 }
5236 
5237 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5238                                             ArrayRef<llvm::Type*> Tys) {
5239   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5240                                          Tys);
5241 }
5242 
5243 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5244 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5245                          const StringLiteral *Literal, bool TargetIsLSB,
5246                          bool &IsUTF16, unsigned &StringLength) {
5247   StringRef String = Literal->getString();
5248   unsigned NumBytes = String.size();
5249 
5250   // Check for simple case.
5251   if (!Literal->containsNonAsciiOrNull()) {
5252     StringLength = NumBytes;
5253     return *Map.insert(std::make_pair(String, nullptr)).first;
5254   }
5255 
5256   // Otherwise, convert the UTF8 literals into a string of shorts.
5257   IsUTF16 = true;
5258 
5259   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5260   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5261   llvm::UTF16 *ToPtr = &ToBuf[0];
5262 
5263   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5264                                  ToPtr + NumBytes, llvm::strictConversion);
5265 
5266   // ConvertUTF8toUTF16 returns the length in ToPtr.
5267   StringLength = ToPtr - &ToBuf[0];
5268 
5269   // Add an explicit null.
5270   *ToPtr = 0;
5271   return *Map.insert(std::make_pair(
5272                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5273                                    (StringLength + 1) * 2),
5274                          nullptr)).first;
5275 }
5276 
5277 ConstantAddress
5278 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5279   unsigned StringLength = 0;
5280   bool isUTF16 = false;
5281   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5282       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5283                                getDataLayout().isLittleEndian(), isUTF16,
5284                                StringLength);
5285 
5286   if (auto *C = Entry.second)
5287     return ConstantAddress(
5288         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5289 
5290   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5291   llvm::Constant *Zeros[] = { Zero, Zero };
5292 
5293   const ASTContext &Context = getContext();
5294   const llvm::Triple &Triple = getTriple();
5295 
5296   const auto CFRuntime = getLangOpts().CFRuntime;
5297   const bool IsSwiftABI =
5298       static_cast<unsigned>(CFRuntime) >=
5299       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5300   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5301 
5302   // If we don't already have it, get __CFConstantStringClassReference.
5303   if (!CFConstantStringClassRef) {
5304     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5305     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5306     Ty = llvm::ArrayType::get(Ty, 0);
5307 
5308     switch (CFRuntime) {
5309     default: break;
5310     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
5311     case LangOptions::CoreFoundationABI::Swift5_0:
5312       CFConstantStringClassName =
5313           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5314                               : "$s10Foundation19_NSCFConstantStringCN";
5315       Ty = IntPtrTy;
5316       break;
5317     case LangOptions::CoreFoundationABI::Swift4_2:
5318       CFConstantStringClassName =
5319           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5320                               : "$S10Foundation19_NSCFConstantStringCN";
5321       Ty = IntPtrTy;
5322       break;
5323     case LangOptions::CoreFoundationABI::Swift4_1:
5324       CFConstantStringClassName =
5325           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5326                               : "__T010Foundation19_NSCFConstantStringCN";
5327       Ty = IntPtrTy;
5328       break;
5329     }
5330 
5331     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5332 
5333     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5334       llvm::GlobalValue *GV = nullptr;
5335 
5336       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5337         IdentifierInfo &II = Context.Idents.get(GV->getName());
5338         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5339         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5340 
5341         const VarDecl *VD = nullptr;
5342         for (const auto *Result : DC->lookup(&II))
5343           if ((VD = dyn_cast<VarDecl>(Result)))
5344             break;
5345 
5346         if (Triple.isOSBinFormatELF()) {
5347           if (!VD)
5348             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5349         } else {
5350           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5351           if (!VD || !VD->hasAttr<DLLExportAttr>())
5352             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5353           else
5354             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5355         }
5356 
5357         setDSOLocal(GV);
5358       }
5359     }
5360 
5361     // Decay array -> ptr
5362     CFConstantStringClassRef =
5363         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5364                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5365   }
5366 
5367   QualType CFTy = Context.getCFConstantStringType();
5368 
5369   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5370 
5371   ConstantInitBuilder Builder(*this);
5372   auto Fields = Builder.beginStruct(STy);
5373 
5374   // Class pointer.
5375   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
5376 
5377   // Flags.
5378   if (IsSwiftABI) {
5379     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5380     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5381   } else {
5382     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5383   }
5384 
5385   // String pointer.
5386   llvm::Constant *C = nullptr;
5387   if (isUTF16) {
5388     auto Arr = llvm::makeArrayRef(
5389         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5390         Entry.first().size() / 2);
5391     C = llvm::ConstantDataArray::get(VMContext, Arr);
5392   } else {
5393     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5394   }
5395 
5396   // Note: -fwritable-strings doesn't make the backing store strings of
5397   // CFStrings writable. (See <rdar://problem/10657500>)
5398   auto *GV =
5399       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5400                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5401   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5402   // Don't enforce the target's minimum global alignment, since the only use
5403   // of the string is via this class initializer.
5404   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5405                             : Context.getTypeAlignInChars(Context.CharTy);
5406   GV->setAlignment(Align.getAsAlign());
5407 
5408   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5409   // Without it LLVM can merge the string with a non unnamed_addr one during
5410   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5411   if (Triple.isOSBinFormatMachO())
5412     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5413                            : "__TEXT,__cstring,cstring_literals");
5414   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5415   // the static linker to adjust permissions to read-only later on.
5416   else if (Triple.isOSBinFormatELF())
5417     GV->setSection(".rodata");
5418 
5419   // String.
5420   llvm::Constant *Str =
5421       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5422 
5423   if (isUTF16)
5424     // Cast the UTF16 string to the correct type.
5425     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5426   Fields.add(Str);
5427 
5428   // String length.
5429   llvm::IntegerType *LengthTy =
5430       llvm::IntegerType::get(getModule().getContext(),
5431                              Context.getTargetInfo().getLongWidth());
5432   if (IsSwiftABI) {
5433     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5434         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5435       LengthTy = Int32Ty;
5436     else
5437       LengthTy = IntPtrTy;
5438   }
5439   Fields.addInt(LengthTy, StringLength);
5440 
5441   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5442   // properly aligned on 32-bit platforms.
5443   CharUnits Alignment =
5444       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5445 
5446   // The struct.
5447   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5448                                     /*isConstant=*/false,
5449                                     llvm::GlobalVariable::PrivateLinkage);
5450   GV->addAttribute("objc_arc_inert");
5451   switch (Triple.getObjectFormat()) {
5452   case llvm::Triple::UnknownObjectFormat:
5453     llvm_unreachable("unknown file format");
5454   case llvm::Triple::GOFF:
5455     llvm_unreachable("GOFF is not yet implemented");
5456   case llvm::Triple::XCOFF:
5457     llvm_unreachable("XCOFF is not yet implemented");
5458   case llvm::Triple::COFF:
5459   case llvm::Triple::ELF:
5460   case llvm::Triple::Wasm:
5461     GV->setSection("cfstring");
5462     break;
5463   case llvm::Triple::MachO:
5464     GV->setSection("__DATA,__cfstring");
5465     break;
5466   }
5467   Entry.second = GV;
5468 
5469   return ConstantAddress(GV, GV->getValueType(), Alignment);
5470 }
5471 
5472 bool CodeGenModule::getExpressionLocationsEnabled() const {
5473   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5474 }
5475 
5476 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5477   if (ObjCFastEnumerationStateType.isNull()) {
5478     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5479     D->startDefinition();
5480 
5481     QualType FieldTypes[] = {
5482       Context.UnsignedLongTy,
5483       Context.getPointerType(Context.getObjCIdType()),
5484       Context.getPointerType(Context.UnsignedLongTy),
5485       Context.getConstantArrayType(Context.UnsignedLongTy,
5486                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5487     };
5488 
5489     for (size_t i = 0; i < 4; ++i) {
5490       FieldDecl *Field = FieldDecl::Create(Context,
5491                                            D,
5492                                            SourceLocation(),
5493                                            SourceLocation(), nullptr,
5494                                            FieldTypes[i], /*TInfo=*/nullptr,
5495                                            /*BitWidth=*/nullptr,
5496                                            /*Mutable=*/false,
5497                                            ICIS_NoInit);
5498       Field->setAccess(AS_public);
5499       D->addDecl(Field);
5500     }
5501 
5502     D->completeDefinition();
5503     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5504   }
5505 
5506   return ObjCFastEnumerationStateType;
5507 }
5508 
5509 llvm::Constant *
5510 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5511   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5512 
5513   // Don't emit it as the address of the string, emit the string data itself
5514   // as an inline array.
5515   if (E->getCharByteWidth() == 1) {
5516     SmallString<64> Str(E->getString());
5517 
5518     // Resize the string to the right size, which is indicated by its type.
5519     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5520     Str.resize(CAT->getSize().getZExtValue());
5521     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5522   }
5523 
5524   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5525   llvm::Type *ElemTy = AType->getElementType();
5526   unsigned NumElements = AType->getNumElements();
5527 
5528   // Wide strings have either 2-byte or 4-byte elements.
5529   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5530     SmallVector<uint16_t, 32> Elements;
5531     Elements.reserve(NumElements);
5532 
5533     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5534       Elements.push_back(E->getCodeUnit(i));
5535     Elements.resize(NumElements);
5536     return llvm::ConstantDataArray::get(VMContext, Elements);
5537   }
5538 
5539   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5540   SmallVector<uint32_t, 32> Elements;
5541   Elements.reserve(NumElements);
5542 
5543   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5544     Elements.push_back(E->getCodeUnit(i));
5545   Elements.resize(NumElements);
5546   return llvm::ConstantDataArray::get(VMContext, Elements);
5547 }
5548 
5549 static llvm::GlobalVariable *
5550 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5551                       CodeGenModule &CGM, StringRef GlobalName,
5552                       CharUnits Alignment) {
5553   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5554       CGM.GetGlobalConstantAddressSpace());
5555 
5556   llvm::Module &M = CGM.getModule();
5557   // Create a global variable for this string
5558   auto *GV = new llvm::GlobalVariable(
5559       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5560       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5561   GV->setAlignment(Alignment.getAsAlign());
5562   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5563   if (GV->isWeakForLinker()) {
5564     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5565     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5566   }
5567   CGM.setDSOLocal(GV);
5568 
5569   return GV;
5570 }
5571 
5572 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5573 /// constant array for the given string literal.
5574 ConstantAddress
5575 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5576                                                   StringRef Name) {
5577   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5578 
5579   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5580   llvm::GlobalVariable **Entry = nullptr;
5581   if (!LangOpts.WritableStrings) {
5582     Entry = &ConstantStringMap[C];
5583     if (auto GV = *Entry) {
5584       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5585         GV->setAlignment(Alignment.getAsAlign());
5586       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5587                              GV->getValueType(), Alignment);
5588     }
5589   }
5590 
5591   SmallString<256> MangledNameBuffer;
5592   StringRef GlobalVariableName;
5593   llvm::GlobalValue::LinkageTypes LT;
5594 
5595   // Mangle the string literal if that's how the ABI merges duplicate strings.
5596   // Don't do it if they are writable, since we don't want writes in one TU to
5597   // affect strings in another.
5598   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5599       !LangOpts.WritableStrings) {
5600     llvm::raw_svector_ostream Out(MangledNameBuffer);
5601     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5602     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5603     GlobalVariableName = MangledNameBuffer;
5604   } else {
5605     LT = llvm::GlobalValue::PrivateLinkage;
5606     GlobalVariableName = Name;
5607   }
5608 
5609   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5610   if (Entry)
5611     *Entry = GV;
5612 
5613   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
5614                                   QualType());
5615 
5616   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5617                          GV->getValueType(), Alignment);
5618 }
5619 
5620 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5621 /// array for the given ObjCEncodeExpr node.
5622 ConstantAddress
5623 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5624   std::string Str;
5625   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5626 
5627   return GetAddrOfConstantCString(Str);
5628 }
5629 
5630 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5631 /// the literal and a terminating '\0' character.
5632 /// The result has pointer to array type.
5633 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5634     const std::string &Str, const char *GlobalName) {
5635   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5636   CharUnits Alignment =
5637     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5638 
5639   llvm::Constant *C =
5640       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5641 
5642   // Don't share any string literals if strings aren't constant.
5643   llvm::GlobalVariable **Entry = nullptr;
5644   if (!LangOpts.WritableStrings) {
5645     Entry = &ConstantStringMap[C];
5646     if (auto GV = *Entry) {
5647       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5648         GV->setAlignment(Alignment.getAsAlign());
5649       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5650                              GV->getValueType(), Alignment);
5651     }
5652   }
5653 
5654   // Get the default prefix if a name wasn't specified.
5655   if (!GlobalName)
5656     GlobalName = ".str";
5657   // Create a global variable for this.
5658   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5659                                   GlobalName, Alignment);
5660   if (Entry)
5661     *Entry = GV;
5662 
5663   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5664                          GV->getValueType(), Alignment);
5665 }
5666 
5667 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5668     const MaterializeTemporaryExpr *E, const Expr *Init) {
5669   assert((E->getStorageDuration() == SD_Static ||
5670           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5671   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5672 
5673   // If we're not materializing a subobject of the temporary, keep the
5674   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5675   QualType MaterializedType = Init->getType();
5676   if (Init == E->getSubExpr())
5677     MaterializedType = E->getType();
5678 
5679   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5680 
5681   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5682   if (!InsertResult.second) {
5683     // We've seen this before: either we already created it or we're in the
5684     // process of doing so.
5685     if (!InsertResult.first->second) {
5686       // We recursively re-entered this function, probably during emission of
5687       // the initializer. Create a placeholder. We'll clean this up in the
5688       // outer call, at the end of this function.
5689       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5690       InsertResult.first->second = new llvm::GlobalVariable(
5691           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5692           nullptr);
5693     }
5694     return ConstantAddress(InsertResult.first->second,
5695                            llvm::cast<llvm::GlobalVariable>(
5696                                InsertResult.first->second->stripPointerCasts())
5697                                ->getValueType(),
5698                            Align);
5699   }
5700 
5701   // FIXME: If an externally-visible declaration extends multiple temporaries,
5702   // we need to give each temporary the same name in every translation unit (and
5703   // we also need to make the temporaries externally-visible).
5704   SmallString<256> Name;
5705   llvm::raw_svector_ostream Out(Name);
5706   getCXXABI().getMangleContext().mangleReferenceTemporary(
5707       VD, E->getManglingNumber(), Out);
5708 
5709   APValue *Value = nullptr;
5710   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5711     // If the initializer of the extending declaration is a constant
5712     // initializer, we should have a cached constant initializer for this
5713     // temporary. Note that this might have a different value from the value
5714     // computed by evaluating the initializer if the surrounding constant
5715     // expression modifies the temporary.
5716     Value = E->getOrCreateValue(false);
5717   }
5718 
5719   // Try evaluating it now, it might have a constant initializer.
5720   Expr::EvalResult EvalResult;
5721   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5722       !EvalResult.hasSideEffects())
5723     Value = &EvalResult.Val;
5724 
5725   LangAS AddrSpace =
5726       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5727 
5728   Optional<ConstantEmitter> emitter;
5729   llvm::Constant *InitialValue = nullptr;
5730   bool Constant = false;
5731   llvm::Type *Type;
5732   if (Value) {
5733     // The temporary has a constant initializer, use it.
5734     emitter.emplace(*this);
5735     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5736                                                MaterializedType);
5737     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5738     Type = InitialValue->getType();
5739   } else {
5740     // No initializer, the initialization will be provided when we
5741     // initialize the declaration which performed lifetime extension.
5742     Type = getTypes().ConvertTypeForMem(MaterializedType);
5743   }
5744 
5745   // Create a global variable for this lifetime-extended temporary.
5746   llvm::GlobalValue::LinkageTypes Linkage =
5747       getLLVMLinkageVarDefinition(VD, Constant);
5748   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
5749     const VarDecl *InitVD;
5750     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
5751         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
5752       // Temporaries defined inside a class get linkonce_odr linkage because the
5753       // class can be defined in multiple translation units.
5754       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
5755     } else {
5756       // There is no need for this temporary to have external linkage if the
5757       // VarDecl has external linkage.
5758       Linkage = llvm::GlobalVariable::InternalLinkage;
5759     }
5760   }
5761   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5762   auto *GV = new llvm::GlobalVariable(
5763       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
5764       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
5765   if (emitter) emitter->finalize(GV);
5766   setGVProperties(GV, VD);
5767   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
5768     // The reference temporary should never be dllexport.
5769     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5770   GV->setAlignment(Align.getAsAlign());
5771   if (supportsCOMDAT() && GV->isWeakForLinker())
5772     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5773   if (VD->getTLSKind())
5774     setTLSMode(GV, *VD);
5775   llvm::Constant *CV = GV;
5776   if (AddrSpace != LangAS::Default)
5777     CV = getTargetCodeGenInfo().performAddrSpaceCast(
5778         *this, GV, AddrSpace, LangAS::Default,
5779         Type->getPointerTo(
5780             getContext().getTargetAddressSpace(LangAS::Default)));
5781 
5782   // Update the map with the new temporary. If we created a placeholder above,
5783   // replace it with the new global now.
5784   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
5785   if (Entry) {
5786     Entry->replaceAllUsesWith(
5787         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
5788     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
5789   }
5790   Entry = CV;
5791 
5792   return ConstantAddress(CV, Type, Align);
5793 }
5794 
5795 /// EmitObjCPropertyImplementations - Emit information for synthesized
5796 /// properties for an implementation.
5797 void CodeGenModule::EmitObjCPropertyImplementations(const
5798                                                     ObjCImplementationDecl *D) {
5799   for (const auto *PID : D->property_impls()) {
5800     // Dynamic is just for type-checking.
5801     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
5802       ObjCPropertyDecl *PD = PID->getPropertyDecl();
5803 
5804       // Determine which methods need to be implemented, some may have
5805       // been overridden. Note that ::isPropertyAccessor is not the method
5806       // we want, that just indicates if the decl came from a
5807       // property. What we want to know is if the method is defined in
5808       // this implementation.
5809       auto *Getter = PID->getGetterMethodDecl();
5810       if (!Getter || Getter->isSynthesizedAccessorStub())
5811         CodeGenFunction(*this).GenerateObjCGetter(
5812             const_cast<ObjCImplementationDecl *>(D), PID);
5813       auto *Setter = PID->getSetterMethodDecl();
5814       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
5815         CodeGenFunction(*this).GenerateObjCSetter(
5816                                  const_cast<ObjCImplementationDecl *>(D), PID);
5817     }
5818   }
5819 }
5820 
5821 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
5822   const ObjCInterfaceDecl *iface = impl->getClassInterface();
5823   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
5824        ivar; ivar = ivar->getNextIvar())
5825     if (ivar->getType().isDestructedType())
5826       return true;
5827 
5828   return false;
5829 }
5830 
5831 static bool AllTrivialInitializers(CodeGenModule &CGM,
5832                                    ObjCImplementationDecl *D) {
5833   CodeGenFunction CGF(CGM);
5834   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
5835        E = D->init_end(); B != E; ++B) {
5836     CXXCtorInitializer *CtorInitExp = *B;
5837     Expr *Init = CtorInitExp->getInit();
5838     if (!CGF.isTrivialInitializer(Init))
5839       return false;
5840   }
5841   return true;
5842 }
5843 
5844 /// EmitObjCIvarInitializations - Emit information for ivar initialization
5845 /// for an implementation.
5846 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
5847   // We might need a .cxx_destruct even if we don't have any ivar initializers.
5848   if (needsDestructMethod(D)) {
5849     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
5850     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5851     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
5852         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5853         getContext().VoidTy, nullptr, D,
5854         /*isInstance=*/true, /*isVariadic=*/false,
5855         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5856         /*isImplicitlyDeclared=*/true,
5857         /*isDefined=*/false, ObjCMethodDecl::Required);
5858     D->addInstanceMethod(DTORMethod);
5859     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
5860     D->setHasDestructors(true);
5861   }
5862 
5863   // If the implementation doesn't have any ivar initializers, we don't need
5864   // a .cxx_construct.
5865   if (D->getNumIvarInitializers() == 0 ||
5866       AllTrivialInitializers(*this, D))
5867     return;
5868 
5869   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
5870   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
5871   // The constructor returns 'self'.
5872   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
5873       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
5874       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
5875       /*isVariadic=*/false,
5876       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
5877       /*isImplicitlyDeclared=*/true,
5878       /*isDefined=*/false, ObjCMethodDecl::Required);
5879   D->addInstanceMethod(CTORMethod);
5880   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
5881   D->setHasNonZeroConstructors(true);
5882 }
5883 
5884 // EmitLinkageSpec - Emit all declarations in a linkage spec.
5885 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
5886   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
5887       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
5888     ErrorUnsupported(LSD, "linkage spec");
5889     return;
5890   }
5891 
5892   EmitDeclContext(LSD);
5893 }
5894 
5895 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
5896   for (auto *I : DC->decls()) {
5897     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
5898     // are themselves considered "top-level", so EmitTopLevelDecl on an
5899     // ObjCImplDecl does not recursively visit them. We need to do that in
5900     // case they're nested inside another construct (LinkageSpecDecl /
5901     // ExportDecl) that does stop them from being considered "top-level".
5902     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
5903       for (auto *M : OID->methods())
5904         EmitTopLevelDecl(M);
5905     }
5906 
5907     EmitTopLevelDecl(I);
5908   }
5909 }
5910 
5911 /// EmitTopLevelDecl - Emit code for a single top level declaration.
5912 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
5913   // Ignore dependent declarations.
5914   if (D->isTemplated())
5915     return;
5916 
5917   // Consteval function shouldn't be emitted.
5918   if (auto *FD = dyn_cast<FunctionDecl>(D))
5919     if (FD->isConsteval())
5920       return;
5921 
5922   switch (D->getKind()) {
5923   case Decl::CXXConversion:
5924   case Decl::CXXMethod:
5925   case Decl::Function:
5926     EmitGlobal(cast<FunctionDecl>(D));
5927     // Always provide some coverage mapping
5928     // even for the functions that aren't emitted.
5929     AddDeferredUnusedCoverageMapping(D);
5930     break;
5931 
5932   case Decl::CXXDeductionGuide:
5933     // Function-like, but does not result in code emission.
5934     break;
5935 
5936   case Decl::Var:
5937   case Decl::Decomposition:
5938   case Decl::VarTemplateSpecialization:
5939     EmitGlobal(cast<VarDecl>(D));
5940     if (auto *DD = dyn_cast<DecompositionDecl>(D))
5941       for (auto *B : DD->bindings())
5942         if (auto *HD = B->getHoldingVar())
5943           EmitGlobal(HD);
5944     break;
5945 
5946   // Indirect fields from global anonymous structs and unions can be
5947   // ignored; only the actual variable requires IR gen support.
5948   case Decl::IndirectField:
5949     break;
5950 
5951   // C++ Decls
5952   case Decl::Namespace:
5953     EmitDeclContext(cast<NamespaceDecl>(D));
5954     break;
5955   case Decl::ClassTemplateSpecialization: {
5956     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
5957     if (CGDebugInfo *DI = getModuleDebugInfo())
5958       if (Spec->getSpecializationKind() ==
5959               TSK_ExplicitInstantiationDefinition &&
5960           Spec->hasDefinition())
5961         DI->completeTemplateDefinition(*Spec);
5962   } LLVM_FALLTHROUGH;
5963   case Decl::CXXRecord: {
5964     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
5965     if (CGDebugInfo *DI = getModuleDebugInfo()) {
5966       if (CRD->hasDefinition())
5967         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
5968       if (auto *ES = D->getASTContext().getExternalSource())
5969         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
5970           DI->completeUnusedClass(*CRD);
5971     }
5972     // Emit any static data members, they may be definitions.
5973     for (auto *I : CRD->decls())
5974       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
5975         EmitTopLevelDecl(I);
5976     break;
5977   }
5978     // No code generation needed.
5979   case Decl::UsingShadow:
5980   case Decl::ClassTemplate:
5981   case Decl::VarTemplate:
5982   case Decl::Concept:
5983   case Decl::VarTemplatePartialSpecialization:
5984   case Decl::FunctionTemplate:
5985   case Decl::TypeAliasTemplate:
5986   case Decl::Block:
5987   case Decl::Empty:
5988   case Decl::Binding:
5989     break;
5990   case Decl::Using:          // using X; [C++]
5991     if (CGDebugInfo *DI = getModuleDebugInfo())
5992         DI->EmitUsingDecl(cast<UsingDecl>(*D));
5993     break;
5994   case Decl::UsingEnum: // using enum X; [C++]
5995     if (CGDebugInfo *DI = getModuleDebugInfo())
5996       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
5997     break;
5998   case Decl::NamespaceAlias:
5999     if (CGDebugInfo *DI = getModuleDebugInfo())
6000         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6001     break;
6002   case Decl::UsingDirective: // using namespace X; [C++]
6003     if (CGDebugInfo *DI = getModuleDebugInfo())
6004       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6005     break;
6006   case Decl::CXXConstructor:
6007     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6008     break;
6009   case Decl::CXXDestructor:
6010     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6011     break;
6012 
6013   case Decl::StaticAssert:
6014     // Nothing to do.
6015     break;
6016 
6017   // Objective-C Decls
6018 
6019   // Forward declarations, no (immediate) code generation.
6020   case Decl::ObjCInterface:
6021   case Decl::ObjCCategory:
6022     break;
6023 
6024   case Decl::ObjCProtocol: {
6025     auto *Proto = cast<ObjCProtocolDecl>(D);
6026     if (Proto->isThisDeclarationADefinition())
6027       ObjCRuntime->GenerateProtocol(Proto);
6028     break;
6029   }
6030 
6031   case Decl::ObjCCategoryImpl:
6032     // Categories have properties but don't support synthesize so we
6033     // can ignore them here.
6034     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6035     break;
6036 
6037   case Decl::ObjCImplementation: {
6038     auto *OMD = cast<ObjCImplementationDecl>(D);
6039     EmitObjCPropertyImplementations(OMD);
6040     EmitObjCIvarInitializations(OMD);
6041     ObjCRuntime->GenerateClass(OMD);
6042     // Emit global variable debug information.
6043     if (CGDebugInfo *DI = getModuleDebugInfo())
6044       if (getCodeGenOpts().hasReducedDebugInfo())
6045         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6046             OMD->getClassInterface()), OMD->getLocation());
6047     break;
6048   }
6049   case Decl::ObjCMethod: {
6050     auto *OMD = cast<ObjCMethodDecl>(D);
6051     // If this is not a prototype, emit the body.
6052     if (OMD->getBody())
6053       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6054     break;
6055   }
6056   case Decl::ObjCCompatibleAlias:
6057     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6058     break;
6059 
6060   case Decl::PragmaComment: {
6061     const auto *PCD = cast<PragmaCommentDecl>(D);
6062     switch (PCD->getCommentKind()) {
6063     case PCK_Unknown:
6064       llvm_unreachable("unexpected pragma comment kind");
6065     case PCK_Linker:
6066       AppendLinkerOptions(PCD->getArg());
6067       break;
6068     case PCK_Lib:
6069         AddDependentLib(PCD->getArg());
6070       break;
6071     case PCK_Compiler:
6072     case PCK_ExeStr:
6073     case PCK_User:
6074       break; // We ignore all of these.
6075     }
6076     break;
6077   }
6078 
6079   case Decl::PragmaDetectMismatch: {
6080     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6081     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6082     break;
6083   }
6084 
6085   case Decl::LinkageSpec:
6086     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6087     break;
6088 
6089   case Decl::FileScopeAsm: {
6090     // File-scope asm is ignored during device-side CUDA compilation.
6091     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6092       break;
6093     // File-scope asm is ignored during device-side OpenMP compilation.
6094     if (LangOpts.OpenMPIsDevice)
6095       break;
6096     // File-scope asm is ignored during device-side SYCL compilation.
6097     if (LangOpts.SYCLIsDevice)
6098       break;
6099     auto *AD = cast<FileScopeAsmDecl>(D);
6100     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6101     break;
6102   }
6103 
6104   case Decl::Import: {
6105     auto *Import = cast<ImportDecl>(D);
6106 
6107     // If we've already imported this module, we're done.
6108     if (!ImportedModules.insert(Import->getImportedModule()))
6109       break;
6110 
6111     // Emit debug information for direct imports.
6112     if (!Import->getImportedOwningModule()) {
6113       if (CGDebugInfo *DI = getModuleDebugInfo())
6114         DI->EmitImportDecl(*Import);
6115     }
6116 
6117     // Find all of the submodules and emit the module initializers.
6118     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6119     SmallVector<clang::Module *, 16> Stack;
6120     Visited.insert(Import->getImportedModule());
6121     Stack.push_back(Import->getImportedModule());
6122 
6123     while (!Stack.empty()) {
6124       clang::Module *Mod = Stack.pop_back_val();
6125       if (!EmittedModuleInitializers.insert(Mod).second)
6126         continue;
6127 
6128       for (auto *D : Context.getModuleInitializers(Mod))
6129         EmitTopLevelDecl(D);
6130 
6131       // Visit the submodules of this module.
6132       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6133                                              SubEnd = Mod->submodule_end();
6134            Sub != SubEnd; ++Sub) {
6135         // Skip explicit children; they need to be explicitly imported to emit
6136         // the initializers.
6137         if ((*Sub)->IsExplicit)
6138           continue;
6139 
6140         if (Visited.insert(*Sub).second)
6141           Stack.push_back(*Sub);
6142       }
6143     }
6144     break;
6145   }
6146 
6147   case Decl::Export:
6148     EmitDeclContext(cast<ExportDecl>(D));
6149     break;
6150 
6151   case Decl::OMPThreadPrivate:
6152     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6153     break;
6154 
6155   case Decl::OMPAllocate:
6156     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6157     break;
6158 
6159   case Decl::OMPDeclareReduction:
6160     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6161     break;
6162 
6163   case Decl::OMPDeclareMapper:
6164     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6165     break;
6166 
6167   case Decl::OMPRequires:
6168     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6169     break;
6170 
6171   case Decl::Typedef:
6172   case Decl::TypeAlias: // using foo = bar; [C++11]
6173     if (CGDebugInfo *DI = getModuleDebugInfo())
6174       DI->EmitAndRetainType(
6175           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6176     break;
6177 
6178   case Decl::Record:
6179     if (CGDebugInfo *DI = getModuleDebugInfo())
6180       if (cast<RecordDecl>(D)->getDefinition())
6181         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6182     break;
6183 
6184   case Decl::Enum:
6185     if (CGDebugInfo *DI = getModuleDebugInfo())
6186       if (cast<EnumDecl>(D)->getDefinition())
6187         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6188     break;
6189 
6190   default:
6191     // Make sure we handled everything we should, every other kind is a
6192     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6193     // function. Need to recode Decl::Kind to do that easily.
6194     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6195     break;
6196   }
6197 }
6198 
6199 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6200   // Do we need to generate coverage mapping?
6201   if (!CodeGenOpts.CoverageMapping)
6202     return;
6203   switch (D->getKind()) {
6204   case Decl::CXXConversion:
6205   case Decl::CXXMethod:
6206   case Decl::Function:
6207   case Decl::ObjCMethod:
6208   case Decl::CXXConstructor:
6209   case Decl::CXXDestructor: {
6210     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6211       break;
6212     SourceManager &SM = getContext().getSourceManager();
6213     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6214       break;
6215     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6216     if (I == DeferredEmptyCoverageMappingDecls.end())
6217       DeferredEmptyCoverageMappingDecls[D] = true;
6218     break;
6219   }
6220   default:
6221     break;
6222   };
6223 }
6224 
6225 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6226   // Do we need to generate coverage mapping?
6227   if (!CodeGenOpts.CoverageMapping)
6228     return;
6229   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6230     if (Fn->isTemplateInstantiation())
6231       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6232   }
6233   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6234   if (I == DeferredEmptyCoverageMappingDecls.end())
6235     DeferredEmptyCoverageMappingDecls[D] = false;
6236   else
6237     I->second = false;
6238 }
6239 
6240 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6241   // We call takeVector() here to avoid use-after-free.
6242   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6243   // we deserialize function bodies to emit coverage info for them, and that
6244   // deserializes more declarations. How should we handle that case?
6245   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6246     if (!Entry.second)
6247       continue;
6248     const Decl *D = Entry.first;
6249     switch (D->getKind()) {
6250     case Decl::CXXConversion:
6251     case Decl::CXXMethod:
6252     case Decl::Function:
6253     case Decl::ObjCMethod: {
6254       CodeGenPGO PGO(*this);
6255       GlobalDecl GD(cast<FunctionDecl>(D));
6256       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6257                                   getFunctionLinkage(GD));
6258       break;
6259     }
6260     case Decl::CXXConstructor: {
6261       CodeGenPGO PGO(*this);
6262       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6263       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6264                                   getFunctionLinkage(GD));
6265       break;
6266     }
6267     case Decl::CXXDestructor: {
6268       CodeGenPGO PGO(*this);
6269       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6270       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6271                                   getFunctionLinkage(GD));
6272       break;
6273     }
6274     default:
6275       break;
6276     };
6277   }
6278 }
6279 
6280 void CodeGenModule::EmitMainVoidAlias() {
6281   // In order to transition away from "__original_main" gracefully, emit an
6282   // alias for "main" in the no-argument case so that libc can detect when
6283   // new-style no-argument main is in used.
6284   if (llvm::Function *F = getModule().getFunction("main")) {
6285     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6286         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth()))
6287       addUsedGlobal(llvm::GlobalAlias::create("__main_void", F));
6288   }
6289 }
6290 
6291 /// Turns the given pointer into a constant.
6292 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6293                                           const void *Ptr) {
6294   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6295   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6296   return llvm::ConstantInt::get(i64, PtrInt);
6297 }
6298 
6299 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6300                                    llvm::NamedMDNode *&GlobalMetadata,
6301                                    GlobalDecl D,
6302                                    llvm::GlobalValue *Addr) {
6303   if (!GlobalMetadata)
6304     GlobalMetadata =
6305       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6306 
6307   // TODO: should we report variant information for ctors/dtors?
6308   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6309                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6310                                CGM.getLLVMContext(), D.getDecl()))};
6311   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6312 }
6313 
6314 /// For each function which is declared within an extern "C" region and marked
6315 /// as 'used', but has internal linkage, create an alias from the unmangled
6316 /// name to the mangled name if possible. People expect to be able to refer
6317 /// to such functions with an unmangled name from inline assembly within the
6318 /// same translation unit.
6319 void CodeGenModule::EmitStaticExternCAliases() {
6320   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6321     return;
6322   for (auto &I : StaticExternCValues) {
6323     IdentifierInfo *Name = I.first;
6324     llvm::GlobalValue *Val = I.second;
6325     if (Val && !getModule().getNamedValue(Name->getName()))
6326       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6327   }
6328 }
6329 
6330 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6331                                              GlobalDecl &Result) const {
6332   auto Res = Manglings.find(MangledName);
6333   if (Res == Manglings.end())
6334     return false;
6335   Result = Res->getValue();
6336   return true;
6337 }
6338 
6339 /// Emits metadata nodes associating all the global values in the
6340 /// current module with the Decls they came from.  This is useful for
6341 /// projects using IR gen as a subroutine.
6342 ///
6343 /// Since there's currently no way to associate an MDNode directly
6344 /// with an llvm::GlobalValue, we create a global named metadata
6345 /// with the name 'clang.global.decl.ptrs'.
6346 void CodeGenModule::EmitDeclMetadata() {
6347   llvm::NamedMDNode *GlobalMetadata = nullptr;
6348 
6349   for (auto &I : MangledDeclNames) {
6350     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6351     // Some mangled names don't necessarily have an associated GlobalValue
6352     // in this module, e.g. if we mangled it for DebugInfo.
6353     if (Addr)
6354       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6355   }
6356 }
6357 
6358 /// Emits metadata nodes for all the local variables in the current
6359 /// function.
6360 void CodeGenFunction::EmitDeclMetadata() {
6361   if (LocalDeclMap.empty()) return;
6362 
6363   llvm::LLVMContext &Context = getLLVMContext();
6364 
6365   // Find the unique metadata ID for this name.
6366   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6367 
6368   llvm::NamedMDNode *GlobalMetadata = nullptr;
6369 
6370   for (auto &I : LocalDeclMap) {
6371     const Decl *D = I.first;
6372     llvm::Value *Addr = I.second.getPointer();
6373     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6374       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6375       Alloca->setMetadata(
6376           DeclPtrKind, llvm::MDNode::get(
6377                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6378     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6379       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6380       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6381     }
6382   }
6383 }
6384 
6385 void CodeGenModule::EmitVersionIdentMetadata() {
6386   llvm::NamedMDNode *IdentMetadata =
6387     TheModule.getOrInsertNamedMetadata("llvm.ident");
6388   std::string Version = getClangFullVersion();
6389   llvm::LLVMContext &Ctx = TheModule.getContext();
6390 
6391   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6392   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6393 }
6394 
6395 void CodeGenModule::EmitCommandLineMetadata() {
6396   llvm::NamedMDNode *CommandLineMetadata =
6397     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6398   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6399   llvm::LLVMContext &Ctx = TheModule.getContext();
6400 
6401   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6402   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6403 }
6404 
6405 void CodeGenModule::EmitCoverageFile() {
6406   if (getCodeGenOpts().CoverageDataFile.empty() &&
6407       getCodeGenOpts().CoverageNotesFile.empty())
6408     return;
6409 
6410   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6411   if (!CUNode)
6412     return;
6413 
6414   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6415   llvm::LLVMContext &Ctx = TheModule.getContext();
6416   auto *CoverageDataFile =
6417       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6418   auto *CoverageNotesFile =
6419       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6420   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6421     llvm::MDNode *CU = CUNode->getOperand(i);
6422     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6423     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6424   }
6425 }
6426 
6427 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6428                                                        bool ForEH) {
6429   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6430   // FIXME: should we even be calling this method if RTTI is disabled
6431   // and it's not for EH?
6432   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6433       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6434        getTriple().isNVPTX()))
6435     return llvm::Constant::getNullValue(Int8PtrTy);
6436 
6437   if (ForEH && Ty->isObjCObjectPointerType() &&
6438       LangOpts.ObjCRuntime.isGNUFamily())
6439     return ObjCRuntime->GetEHType(Ty);
6440 
6441   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6442 }
6443 
6444 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6445   // Do not emit threadprivates in simd-only mode.
6446   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6447     return;
6448   for (auto RefExpr : D->varlists()) {
6449     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6450     bool PerformInit =
6451         VD->getAnyInitializer() &&
6452         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6453                                                         /*ForRef=*/false);
6454 
6455     Address Addr = Address::deprecated(GetAddrOfGlobalVar(VD),
6456                                        getContext().getDeclAlign(VD));
6457     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6458             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6459       CXXGlobalInits.push_back(InitFunction);
6460   }
6461 }
6462 
6463 llvm::Metadata *
6464 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6465                                             StringRef Suffix) {
6466   if (auto *FnType = T->getAs<FunctionProtoType>())
6467     T = getContext().getFunctionType(
6468         FnType->getReturnType(), FnType->getParamTypes(),
6469         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6470 
6471   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6472   if (InternalId)
6473     return InternalId;
6474 
6475   if (isExternallyVisible(T->getLinkage())) {
6476     std::string OutName;
6477     llvm::raw_string_ostream Out(OutName);
6478     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6479     Out << Suffix;
6480 
6481     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6482   } else {
6483     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6484                                            llvm::ArrayRef<llvm::Metadata *>());
6485   }
6486 
6487   return InternalId;
6488 }
6489 
6490 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6491   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6492 }
6493 
6494 llvm::Metadata *
6495 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6496   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6497 }
6498 
6499 // Generalize pointer types to a void pointer with the qualifiers of the
6500 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6501 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6502 // 'void *'.
6503 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6504   if (!Ty->isPointerType())
6505     return Ty;
6506 
6507   return Ctx.getPointerType(
6508       QualType(Ctx.VoidTy).withCVRQualifiers(
6509           Ty->getPointeeType().getCVRQualifiers()));
6510 }
6511 
6512 // Apply type generalization to a FunctionType's return and argument types
6513 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6514   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6515     SmallVector<QualType, 8> GeneralizedParams;
6516     for (auto &Param : FnType->param_types())
6517       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6518 
6519     return Ctx.getFunctionType(
6520         GeneralizeType(Ctx, FnType->getReturnType()),
6521         GeneralizedParams, FnType->getExtProtoInfo());
6522   }
6523 
6524   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6525     return Ctx.getFunctionNoProtoType(
6526         GeneralizeType(Ctx, FnType->getReturnType()));
6527 
6528   llvm_unreachable("Encountered unknown FunctionType");
6529 }
6530 
6531 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6532   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6533                                       GeneralizedMetadataIdMap, ".generalized");
6534 }
6535 
6536 /// Returns whether this module needs the "all-vtables" type identifier.
6537 bool CodeGenModule::NeedAllVtablesTypeId() const {
6538   // Returns true if at least one of vtable-based CFI checkers is enabled and
6539   // is not in the trapping mode.
6540   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6541            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6542           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6543            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6544           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6545            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6546           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6547            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6548 }
6549 
6550 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6551                                           CharUnits Offset,
6552                                           const CXXRecordDecl *RD) {
6553   llvm::Metadata *MD =
6554       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6555   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6556 
6557   if (CodeGenOpts.SanitizeCfiCrossDso)
6558     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6559       VTable->addTypeMetadata(Offset.getQuantity(),
6560                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6561 
6562   if (NeedAllVtablesTypeId()) {
6563     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6564     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6565   }
6566 }
6567 
6568 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6569   if (!SanStats)
6570     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6571 
6572   return *SanStats;
6573 }
6574 
6575 llvm::Value *
6576 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6577                                                   CodeGenFunction &CGF) {
6578   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6579   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6580   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6581   auto *Call = CGF.EmitRuntimeCall(
6582       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6583   return Call;
6584 }
6585 
6586 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6587     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6588   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6589                                  /* forPointeeType= */ true);
6590 }
6591 
6592 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6593                                                  LValueBaseInfo *BaseInfo,
6594                                                  TBAAAccessInfo *TBAAInfo,
6595                                                  bool forPointeeType) {
6596   if (TBAAInfo)
6597     *TBAAInfo = getTBAAAccessInfo(T);
6598 
6599   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6600   // that doesn't return the information we need to compute BaseInfo.
6601 
6602   // Honor alignment typedef attributes even on incomplete types.
6603   // We also honor them straight for C++ class types, even as pointees;
6604   // there's an expressivity gap here.
6605   if (auto TT = T->getAs<TypedefType>()) {
6606     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6607       if (BaseInfo)
6608         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6609       return getContext().toCharUnitsFromBits(Align);
6610     }
6611   }
6612 
6613   bool AlignForArray = T->isArrayType();
6614 
6615   // Analyze the base element type, so we don't get confused by incomplete
6616   // array types.
6617   T = getContext().getBaseElementType(T);
6618 
6619   if (T->isIncompleteType()) {
6620     // We could try to replicate the logic from
6621     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6622     // type is incomplete, so it's impossible to test. We could try to reuse
6623     // getTypeAlignIfKnown, but that doesn't return the information we need
6624     // to set BaseInfo.  So just ignore the possibility that the alignment is
6625     // greater than one.
6626     if (BaseInfo)
6627       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6628     return CharUnits::One();
6629   }
6630 
6631   if (BaseInfo)
6632     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6633 
6634   CharUnits Alignment;
6635   const CXXRecordDecl *RD;
6636   if (T.getQualifiers().hasUnaligned()) {
6637     Alignment = CharUnits::One();
6638   } else if (forPointeeType && !AlignForArray &&
6639              (RD = T->getAsCXXRecordDecl())) {
6640     // For C++ class pointees, we don't know whether we're pointing at a
6641     // base or a complete object, so we generally need to use the
6642     // non-virtual alignment.
6643     Alignment = getClassPointerAlignment(RD);
6644   } else {
6645     Alignment = getContext().getTypeAlignInChars(T);
6646   }
6647 
6648   // Cap to the global maximum type alignment unless the alignment
6649   // was somehow explicit on the type.
6650   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6651     if (Alignment.getQuantity() > MaxAlign &&
6652         !getContext().isAlignmentRequired(T))
6653       Alignment = CharUnits::fromQuantity(MaxAlign);
6654   }
6655   return Alignment;
6656 }
6657 
6658 bool CodeGenModule::stopAutoInit() {
6659   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
6660   if (StopAfter) {
6661     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
6662     // used
6663     if (NumAutoVarInit >= StopAfter) {
6664       return true;
6665     }
6666     if (!NumAutoVarInit) {
6667       unsigned DiagID = getDiags().getCustomDiagID(
6668           DiagnosticsEngine::Warning,
6669           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
6670           "number of times ftrivial-auto-var-init=%1 gets applied.");
6671       getDiags().Report(DiagID)
6672           << StopAfter
6673           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
6674                       LangOptions::TrivialAutoVarInitKind::Zero
6675                   ? "zero"
6676                   : "pattern");
6677     }
6678     ++NumAutoVarInit;
6679   }
6680   return false;
6681 }
6682 
6683 void CodeGenModule::printPostfixForExternalizedStaticVar(
6684     llvm::raw_ostream &OS) const {
6685   OS << "__static__" << getContext().getCUIDHash();
6686 }
6687