xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision dbf74baee576ba200009bcead0117cc641d39071)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TargetOptions.h"
39 #include "clang/Frontend/CodeGenOptions.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/Triple.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/Support/CallSite.h"
48 #include "llvm/Support/ConvertUTF.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Target/Mangler.h"
51 
52 using namespace clang;
53 using namespace CodeGen;
54 
55 static const char AnnotationSection[] = "llvm.metadata";
56 
57 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58   switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
59   case TargetCXXABI::GenericAArch64:
60   case TargetCXXABI::GenericARM:
61   case TargetCXXABI::iOS:
62   case TargetCXXABI::GenericItanium:
63     return *CreateItaniumCXXABI(CGM);
64   case TargetCXXABI::Microsoft:
65     return *CreateMicrosoftCXXABI(CGM);
66   }
67 
68   llvm_unreachable("invalid C++ ABI kind");
69 }
70 
71 
72 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                              const TargetOptions &TO, llvm::Module &M,
74                              const llvm::DataLayout &TD,
75                              DiagnosticsEngine &diags)
76   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO),
77     TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
78     ABI(createCXXABI(*this)),
79     Types(*this),
80     TBAA(0),
81     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
82     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
83     RRData(0), CFConstantStringClassRef(0),
84     ConstantStringClassRef(0), NSConstantStringType(0),
85     VMContext(M.getContext()),
86     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
87     BlockObjectAssign(0), BlockObjectDispose(0),
88     BlockDescriptorType(0), GenericBlockLiteralType(0),
89     LifetimeStartFn(0), LifetimeEndFn(0),
90     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
91     SanOpts(SanitizerBlacklist.isIn(M) ?
92             SanitizerOptions::Disabled : LangOpts.Sanitize) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112 
113   if (LangOpts.ObjC1)
114     createObjCRuntime();
115   if (LangOpts.OpenCL)
116     createOpenCLRuntime();
117   if (LangOpts.CUDA)
118     createCUDARuntime();
119 
120   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
121   if (SanOpts.Thread ||
122       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
123     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
124                            ABI.getMangleContext());
125 
126   // If debug info or coverage generation is enabled, create the CGDebugInfo
127   // object.
128   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
129       CodeGenOpts.EmitGcovArcs ||
130       CodeGenOpts.EmitGcovNotes)
131     DebugInfo = new CGDebugInfo(*this);
132 
133   Block.GlobalUniqueCount = 0;
134 
135   if (C.getLangOpts().ObjCAutoRefCount)
136     ARCData = new ARCEntrypoints();
137   RRData = new RREntrypoints();
138 }
139 
140 CodeGenModule::~CodeGenModule() {
141   delete ObjCRuntime;
142   delete OpenCLRuntime;
143   delete CUDARuntime;
144   delete TheTargetCodeGenInfo;
145   delete &ABI;
146   delete TBAA;
147   delete DebugInfo;
148   delete ARCData;
149   delete RRData;
150 }
151 
152 void CodeGenModule::createObjCRuntime() {
153   // This is just isGNUFamily(), but we want to force implementors of
154   // new ABIs to decide how best to do this.
155   switch (LangOpts.ObjCRuntime.getKind()) {
156   case ObjCRuntime::GNUstep:
157   case ObjCRuntime::GCC:
158   case ObjCRuntime::ObjFW:
159     ObjCRuntime = CreateGNUObjCRuntime(*this);
160     return;
161 
162   case ObjCRuntime::FragileMacOSX:
163   case ObjCRuntime::MacOSX:
164   case ObjCRuntime::iOS:
165     ObjCRuntime = CreateMacObjCRuntime(*this);
166     return;
167   }
168   llvm_unreachable("bad runtime kind");
169 }
170 
171 void CodeGenModule::createOpenCLRuntime() {
172   OpenCLRuntime = new CGOpenCLRuntime(*this);
173 }
174 
175 void CodeGenModule::createCUDARuntime() {
176   CUDARuntime = CreateNVCUDARuntime(*this);
177 }
178 
179 void CodeGenModule::Release() {
180   EmitDeferred();
181   EmitCXXGlobalInitFunc();
182   EmitCXXGlobalDtorFunc();
183   if (ObjCRuntime)
184     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
185       AddGlobalCtor(ObjCInitFunction);
186   EmitCtorList(GlobalCtors, "llvm.global_ctors");
187   EmitCtorList(GlobalDtors, "llvm.global_dtors");
188   EmitGlobalAnnotations();
189   EmitStaticExternCAliases();
190   EmitLLVMUsed();
191 
192   if (CodeGenOpts.ModulesAutolink) {
193     EmitModuleLinkOptions();
194   }
195 
196   SimplifyPersonality();
197 
198   if (getCodeGenOpts().EmitDeclMetadata)
199     EmitDeclMetadata();
200 
201   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
202     EmitCoverageFile();
203 
204   if (DebugInfo)
205     DebugInfo->finalize();
206 }
207 
208 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
209   // Make sure that this type is translated.
210   Types.UpdateCompletedType(TD);
211 }
212 
213 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
214   if (!TBAA)
215     return 0;
216   return TBAA->getTBAAInfo(QTy);
217 }
218 
219 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
220   if (!TBAA)
221     return 0;
222   return TBAA->getTBAAInfoForVTablePtr();
223 }
224 
225 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
226   if (!TBAA)
227     return 0;
228   return TBAA->getTBAAStructInfo(QTy);
229 }
230 
231 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
232   if (!TBAA)
233     return 0;
234   return TBAA->getTBAAStructTypeInfo(QTy);
235 }
236 
237 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
238                                                   llvm::MDNode *AccessN,
239                                                   uint64_t O) {
240   if (!TBAA)
241     return 0;
242   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
243 }
244 
245 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
246 /// is the same as the type. For struct-path aware TBAA, the tag
247 /// is different from the type: base type, access type and offset.
248 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
249 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
250                                         llvm::MDNode *TBAAInfo,
251                                         bool ConvertTypeToTag) {
252   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
253     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
254                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
255   else
256     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
257 }
258 
259 bool CodeGenModule::isTargetDarwin() const {
260   return getContext().getTargetInfo().getTriple().isOSDarwin();
261 }
262 
263 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
264   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
265   getDiags().Report(Context.getFullLoc(loc), diagID);
266 }
267 
268 /// ErrorUnsupported - Print out an error that codegen doesn't support the
269 /// specified stmt yet.
270 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
271                                      bool OmitOnError) {
272   if (OmitOnError && getDiags().hasErrorOccurred())
273     return;
274   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
275                                                "cannot compile this %0 yet");
276   std::string Msg = Type;
277   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
278     << Msg << S->getSourceRange();
279 }
280 
281 /// ErrorUnsupported - Print out an error that codegen doesn't support the
282 /// specified decl yet.
283 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
284                                      bool OmitOnError) {
285   if (OmitOnError && getDiags().hasErrorOccurred())
286     return;
287   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
288                                                "cannot compile this %0 yet");
289   std::string Msg = Type;
290   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
291 }
292 
293 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
294   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
295 }
296 
297 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
298                                         const NamedDecl *D) const {
299   // Internal definitions always have default visibility.
300   if (GV->hasLocalLinkage()) {
301     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
302     return;
303   }
304 
305   // Set visibility for definitions.
306   LinkageInfo LV = D->getLinkageAndVisibility();
307   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
308     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
309 }
310 
311 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
312   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
313       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
314       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
315       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
316       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
317 }
318 
319 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
320     CodeGenOptions::TLSModel M) {
321   switch (M) {
322   case CodeGenOptions::GeneralDynamicTLSModel:
323     return llvm::GlobalVariable::GeneralDynamicTLSModel;
324   case CodeGenOptions::LocalDynamicTLSModel:
325     return llvm::GlobalVariable::LocalDynamicTLSModel;
326   case CodeGenOptions::InitialExecTLSModel:
327     return llvm::GlobalVariable::InitialExecTLSModel;
328   case CodeGenOptions::LocalExecTLSModel:
329     return llvm::GlobalVariable::LocalExecTLSModel;
330   }
331   llvm_unreachable("Invalid TLS model!");
332 }
333 
334 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
335                                const VarDecl &D) const {
336   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
337 
338   llvm::GlobalVariable::ThreadLocalMode TLM;
339   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
340 
341   // Override the TLS model if it is explicitly specified.
342   if (D.hasAttr<TLSModelAttr>()) {
343     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
344     TLM = GetLLVMTLSModel(Attr->getModel());
345   }
346 
347   GV->setThreadLocalMode(TLM);
348 }
349 
350 /// Set the symbol visibility of type information (vtable and RTTI)
351 /// associated with the given type.
352 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
353                                       const CXXRecordDecl *RD,
354                                       TypeVisibilityKind TVK) const {
355   setGlobalVisibility(GV, RD);
356 
357   if (!CodeGenOpts.HiddenWeakVTables)
358     return;
359 
360   // We never want to drop the visibility for RTTI names.
361   if (TVK == TVK_ForRTTIName)
362     return;
363 
364   // We want to drop the visibility to hidden for weak type symbols.
365   // This isn't possible if there might be unresolved references
366   // elsewhere that rely on this symbol being visible.
367 
368   // This should be kept roughly in sync with setThunkVisibility
369   // in CGVTables.cpp.
370 
371   // Preconditions.
372   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
373       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
374     return;
375 
376   // Don't override an explicit visibility attribute.
377   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
378     return;
379 
380   switch (RD->getTemplateSpecializationKind()) {
381   // We have to disable the optimization if this is an EI definition
382   // because there might be EI declarations in other shared objects.
383   case TSK_ExplicitInstantiationDefinition:
384   case TSK_ExplicitInstantiationDeclaration:
385     return;
386 
387   // Every use of a non-template class's type information has to emit it.
388   case TSK_Undeclared:
389     break;
390 
391   // In theory, implicit instantiations can ignore the possibility of
392   // an explicit instantiation declaration because there necessarily
393   // must be an EI definition somewhere with default visibility.  In
394   // practice, it's possible to have an explicit instantiation for
395   // an arbitrary template class, and linkers aren't necessarily able
396   // to deal with mixed-visibility symbols.
397   case TSK_ExplicitSpecialization:
398   case TSK_ImplicitInstantiation:
399     return;
400   }
401 
402   // If there's a key function, there may be translation units
403   // that don't have the key function's definition.  But ignore
404   // this if we're emitting RTTI under -fno-rtti.
405   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
406     // FIXME: what should we do if we "lose" the key function during
407     // the emission of the file?
408     if (Context.getCurrentKeyFunction(RD))
409       return;
410   }
411 
412   // Otherwise, drop the visibility to hidden.
413   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
414   GV->setUnnamedAddr(true);
415 }
416 
417 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
418   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
419 
420   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
421   if (!Str.empty())
422     return Str;
423 
424   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
425     IdentifierInfo *II = ND->getIdentifier();
426     assert(II && "Attempt to mangle unnamed decl.");
427 
428     Str = II->getName();
429     return Str;
430   }
431 
432   SmallString<256> Buffer;
433   llvm::raw_svector_ostream Out(Buffer);
434   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
435     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
436   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
437     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
438   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
439     getCXXABI().getMangleContext().mangleBlock(BD, Out,
440       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
441   else
442     getCXXABI().getMangleContext().mangleName(ND, Out);
443 
444   // Allocate space for the mangled name.
445   Out.flush();
446   size_t Length = Buffer.size();
447   char *Name = MangledNamesAllocator.Allocate<char>(Length);
448   std::copy(Buffer.begin(), Buffer.end(), Name);
449 
450   Str = StringRef(Name, Length);
451 
452   return Str;
453 }
454 
455 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
456                                         const BlockDecl *BD) {
457   MangleContext &MangleCtx = getCXXABI().getMangleContext();
458   const Decl *D = GD.getDecl();
459   llvm::raw_svector_ostream Out(Buffer.getBuffer());
460   if (D == 0)
461     MangleCtx.mangleGlobalBlock(BD,
462       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
463   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
464     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
465   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
466     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
467   else
468     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
469 }
470 
471 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
472   return getModule().getNamedValue(Name);
473 }
474 
475 /// AddGlobalCtor - Add a function to the list that will be called before
476 /// main() runs.
477 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
478   // FIXME: Type coercion of void()* types.
479   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
480 }
481 
482 /// AddGlobalDtor - Add a function to the list that will be called
483 /// when the module is unloaded.
484 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
485   // FIXME: Type coercion of void()* types.
486   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
487 }
488 
489 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
490   // Ctor function type is void()*.
491   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
492   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
493 
494   // Get the type of a ctor entry, { i32, void ()* }.
495   llvm::StructType *CtorStructTy =
496     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
497 
498   // Construct the constructor and destructor arrays.
499   SmallVector<llvm::Constant*, 8> Ctors;
500   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
501     llvm::Constant *S[] = {
502       llvm::ConstantInt::get(Int32Ty, I->second, false),
503       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
504     };
505     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
506   }
507 
508   if (!Ctors.empty()) {
509     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
510     new llvm::GlobalVariable(TheModule, AT, false,
511                              llvm::GlobalValue::AppendingLinkage,
512                              llvm::ConstantArray::get(AT, Ctors),
513                              GlobalName);
514   }
515 }
516 
517 llvm::GlobalValue::LinkageTypes
518 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
519   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
520 
521   if (Linkage == GVA_Internal)
522     return llvm::Function::InternalLinkage;
523 
524   if (D->hasAttr<DLLExportAttr>())
525     return llvm::Function::DLLExportLinkage;
526 
527   if (D->hasAttr<WeakAttr>())
528     return llvm::Function::WeakAnyLinkage;
529 
530   // In C99 mode, 'inline' functions are guaranteed to have a strong
531   // definition somewhere else, so we can use available_externally linkage.
532   if (Linkage == GVA_C99Inline)
533     return llvm::Function::AvailableExternallyLinkage;
534 
535   // Note that Apple's kernel linker doesn't support symbol
536   // coalescing, so we need to avoid linkonce and weak linkages there.
537   // Normally, this means we just map to internal, but for explicit
538   // instantiations we'll map to external.
539 
540   // In C++, the compiler has to emit a definition in every translation unit
541   // that references the function.  We should use linkonce_odr because
542   // a) if all references in this translation unit are optimized away, we
543   // don't need to codegen it.  b) if the function persists, it needs to be
544   // merged with other definitions. c) C++ has the ODR, so we know the
545   // definition is dependable.
546   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
547     return !Context.getLangOpts().AppleKext
548              ? llvm::Function::LinkOnceODRLinkage
549              : llvm::Function::InternalLinkage;
550 
551   // An explicit instantiation of a template has weak linkage, since
552   // explicit instantiations can occur in multiple translation units
553   // and must all be equivalent. However, we are not allowed to
554   // throw away these explicit instantiations.
555   if (Linkage == GVA_ExplicitTemplateInstantiation)
556     return !Context.getLangOpts().AppleKext
557              ? llvm::Function::WeakODRLinkage
558              : llvm::Function::ExternalLinkage;
559 
560   // Otherwise, we have strong external linkage.
561   assert(Linkage == GVA_StrongExternal);
562   return llvm::Function::ExternalLinkage;
563 }
564 
565 
566 /// SetFunctionDefinitionAttributes - Set attributes for a global.
567 ///
568 /// FIXME: This is currently only done for aliases and functions, but not for
569 /// variables (these details are set in EmitGlobalVarDefinition for variables).
570 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
571                                                     llvm::GlobalValue *GV) {
572   SetCommonAttributes(D, GV);
573 }
574 
575 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
576                                               const CGFunctionInfo &Info,
577                                               llvm::Function *F) {
578   unsigned CallingConv;
579   AttributeListType AttributeList;
580   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
581   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
582   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
583 }
584 
585 /// Determines whether the language options require us to model
586 /// unwind exceptions.  We treat -fexceptions as mandating this
587 /// except under the fragile ObjC ABI with only ObjC exceptions
588 /// enabled.  This means, for example, that C with -fexceptions
589 /// enables this.
590 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
591   // If exceptions are completely disabled, obviously this is false.
592   if (!LangOpts.Exceptions) return false;
593 
594   // If C++ exceptions are enabled, this is true.
595   if (LangOpts.CXXExceptions) return true;
596 
597   // If ObjC exceptions are enabled, this depends on the ABI.
598   if (LangOpts.ObjCExceptions) {
599     return LangOpts.ObjCRuntime.hasUnwindExceptions();
600   }
601 
602   return true;
603 }
604 
605 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
606                                                            llvm::Function *F) {
607   if (CodeGenOpts.UnwindTables)
608     F->setHasUWTable();
609 
610   if (!hasUnwindExceptions(LangOpts))
611     F->addFnAttr(llvm::Attribute::NoUnwind);
612 
613   if (D->hasAttr<NakedAttr>()) {
614     // Naked implies noinline: we should not be inlining such functions.
615     F->addFnAttr(llvm::Attribute::Naked);
616     F->addFnAttr(llvm::Attribute::NoInline);
617   }
618 
619   if (D->hasAttr<NoInlineAttr>())
620     F->addFnAttr(llvm::Attribute::NoInline);
621 
622   // (noinline wins over always_inline, and we can't specify both in IR)
623   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
624       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
625                                        llvm::Attribute::NoInline))
626     F->addFnAttr(llvm::Attribute::AlwaysInline);
627 
628   // FIXME: Communicate hot and cold attributes to LLVM more directly.
629   if (D->hasAttr<ColdAttr>())
630     F->addFnAttr(llvm::Attribute::OptimizeForSize);
631 
632   if (D->hasAttr<MinSizeAttr>())
633     F->addFnAttr(llvm::Attribute::MinSize);
634 
635   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
636     F->setUnnamedAddr(true);
637 
638   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
639     if (MD->isVirtual())
640       F->setUnnamedAddr(true);
641 
642   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
643     F->addFnAttr(llvm::Attribute::StackProtect);
644   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
645     F->addFnAttr(llvm::Attribute::StackProtectReq);
646 
647   // Add sanitizer attributes if function is not blacklisted.
648   if (!SanitizerBlacklist.isIn(*F)) {
649     // When AddressSanitizer is enabled, set SanitizeAddress attribute
650     // unless __attribute__((no_sanitize_address)) is used.
651     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
652       F->addFnAttr(llvm::Attribute::SanitizeAddress);
653     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
654     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
655       F->addFnAttr(llvm::Attribute::SanitizeThread);
656     }
657     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
658     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
659       F->addFnAttr(llvm::Attribute::SanitizeMemory);
660   }
661 
662   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
663   if (alignment)
664     F->setAlignment(alignment);
665 
666   // C++ ABI requires 2-byte alignment for member functions.
667   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
668     F->setAlignment(2);
669 }
670 
671 void CodeGenModule::SetCommonAttributes(const Decl *D,
672                                         llvm::GlobalValue *GV) {
673   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
674     setGlobalVisibility(GV, ND);
675   else
676     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
677 
678   if (D->hasAttr<UsedAttr>())
679     AddUsedGlobal(GV);
680 
681   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
682     GV->setSection(SA->getName());
683 
684   // Alias cannot have attributes. Filter them here.
685   if (!isa<llvm::GlobalAlias>(GV))
686     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
687 }
688 
689 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
690                                                   llvm::Function *F,
691                                                   const CGFunctionInfo &FI) {
692   SetLLVMFunctionAttributes(D, FI, F);
693   SetLLVMFunctionAttributesForDefinition(D, F);
694 
695   F->setLinkage(llvm::Function::InternalLinkage);
696 
697   SetCommonAttributes(D, F);
698 }
699 
700 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
701                                           llvm::Function *F,
702                                           bool IsIncompleteFunction) {
703   if (unsigned IID = F->getIntrinsicID()) {
704     // If this is an intrinsic function, set the function's attributes
705     // to the intrinsic's attributes.
706     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
707                                                     (llvm::Intrinsic::ID)IID));
708     return;
709   }
710 
711   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
712 
713   if (!IsIncompleteFunction)
714     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
715 
716   // Only a few attributes are set on declarations; these may later be
717   // overridden by a definition.
718 
719   if (FD->hasAttr<DLLImportAttr>()) {
720     F->setLinkage(llvm::Function::DLLImportLinkage);
721   } else if (FD->hasAttr<WeakAttr>() ||
722              FD->isWeakImported()) {
723     // "extern_weak" is overloaded in LLVM; we probably should have
724     // separate linkage types for this.
725     F->setLinkage(llvm::Function::ExternalWeakLinkage);
726   } else {
727     F->setLinkage(llvm::Function::ExternalLinkage);
728 
729     LinkageInfo LV = FD->getLinkageAndVisibility();
730     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
731       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
732     }
733   }
734 
735   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
736     F->setSection(SA->getName());
737 }
738 
739 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
740   assert(!GV->isDeclaration() &&
741          "Only globals with definition can force usage.");
742   LLVMUsed.push_back(GV);
743 }
744 
745 void CodeGenModule::EmitLLVMUsed() {
746   // Don't create llvm.used if there is no need.
747   if (LLVMUsed.empty())
748     return;
749 
750   // Convert LLVMUsed to what ConstantArray needs.
751   SmallVector<llvm::Constant*, 8> UsedArray;
752   UsedArray.resize(LLVMUsed.size());
753   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
754     UsedArray[i] =
755      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
756                                     Int8PtrTy);
757   }
758 
759   if (UsedArray.empty())
760     return;
761   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
762 
763   llvm::GlobalVariable *GV =
764     new llvm::GlobalVariable(getModule(), ATy, false,
765                              llvm::GlobalValue::AppendingLinkage,
766                              llvm::ConstantArray::get(ATy, UsedArray),
767                              "llvm.used");
768 
769   GV->setSection("llvm.metadata");
770 }
771 
772 /// \brief Add link options implied by the given module, including modules
773 /// it depends on, using a postorder walk.
774 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
775                                     Module *Mod,
776                                     SmallVectorImpl<llvm::Value *> &Metadata,
777                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
778   // Import this module's parent.
779   if (Mod->Parent && Visited.insert(Mod->Parent)) {
780     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
781   }
782 
783   // Import this module's dependencies.
784   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
785     if (Visited.insert(Mod->Imports[I-1]))
786       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
787   }
788 
789   // Add linker options to link against the libraries/frameworks
790   // described by this module.
791   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
792     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
793     // We need to know more about the linker to know how to encode these
794     // options propertly.
795 
796     // Link against a framework.
797     if (Mod->LinkLibraries[I-1].IsFramework) {
798       llvm::Value *Args[2] = {
799         llvm::MDString::get(Context, "-framework"),
800         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
801       };
802 
803       Metadata.push_back(llvm::MDNode::get(Context, Args));
804       continue;
805     }
806 
807     // Link against a library.
808     llvm::Value *OptString
809     = llvm::MDString::get(Context,
810                           "-l" + Mod->LinkLibraries[I-1].Library);
811     Metadata.push_back(llvm::MDNode::get(Context, OptString));
812   }
813 }
814 
815 void CodeGenModule::EmitModuleLinkOptions() {
816   // Collect the set of all of the modules we want to visit to emit link
817   // options, which is essentially the imported modules and all of their
818   // non-explicit child modules.
819   llvm::SetVector<clang::Module *> LinkModules;
820   llvm::SmallPtrSet<clang::Module *, 16> Visited;
821   SmallVector<clang::Module *, 16> Stack;
822 
823   // Seed the stack with imported modules.
824   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
825                                                MEnd = ImportedModules.end();
826        M != MEnd; ++M) {
827     if (Visited.insert(*M))
828       Stack.push_back(*M);
829   }
830 
831   // Find all of the modules to import, making a little effort to prune
832   // non-leaf modules.
833   while (!Stack.empty()) {
834     clang::Module *Mod = Stack.back();
835     Stack.pop_back();
836 
837     bool AnyChildren = false;
838 
839     // Visit the submodules of this module.
840     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
841                                         SubEnd = Mod->submodule_end();
842          Sub != SubEnd; ++Sub) {
843       // Skip explicit children; they need to be explicitly imported to be
844       // linked against.
845       if ((*Sub)->IsExplicit)
846         continue;
847 
848       if (Visited.insert(*Sub)) {
849         Stack.push_back(*Sub);
850         AnyChildren = true;
851       }
852     }
853 
854     // We didn't find any children, so add this module to the list of
855     // modules to link against.
856     if (!AnyChildren) {
857       LinkModules.insert(Mod);
858     }
859   }
860 
861   // Add link options for all of the imported modules in reverse topological
862   // order.
863   SmallVector<llvm::Value *, 16> MetadataArgs;
864   Visited.clear();
865   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
866                                                MEnd = LinkModules.end();
867        M != MEnd; ++M) {
868     if (Visited.insert(*M))
869       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
870   }
871   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
872 
873   // Add the linker options metadata flag.
874   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
875                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
876 }
877 
878 void CodeGenModule::EmitDeferred() {
879   // Emit code for any potentially referenced deferred decls.  Since a
880   // previously unused static decl may become used during the generation of code
881   // for a static function, iterate until no changes are made.
882 
883   while (true) {
884     if (!DeferredVTables.empty()) {
885       EmitDeferredVTables();
886 
887       // Emitting a v-table doesn't directly cause more v-tables to
888       // become deferred, although it can cause functions to be
889       // emitted that then need those v-tables.
890       assert(DeferredVTables.empty());
891     }
892 
893     // Stop if we're out of both deferred v-tables and deferred declarations.
894     if (DeferredDeclsToEmit.empty()) break;
895 
896     GlobalDecl D = DeferredDeclsToEmit.back();
897     DeferredDeclsToEmit.pop_back();
898 
899     // Check to see if we've already emitted this.  This is necessary
900     // for a couple of reasons: first, decls can end up in the
901     // deferred-decls queue multiple times, and second, decls can end
902     // up with definitions in unusual ways (e.g. by an extern inline
903     // function acquiring a strong function redefinition).  Just
904     // ignore these cases.
905     //
906     // TODO: That said, looking this up multiple times is very wasteful.
907     StringRef Name = getMangledName(D);
908     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
909     assert(CGRef && "Deferred decl wasn't referenced?");
910 
911     if (!CGRef->isDeclaration())
912       continue;
913 
914     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
915     // purposes an alias counts as a definition.
916     if (isa<llvm::GlobalAlias>(CGRef))
917       continue;
918 
919     // Otherwise, emit the definition and move on to the next one.
920     EmitGlobalDefinition(D);
921   }
922 }
923 
924 void CodeGenModule::EmitGlobalAnnotations() {
925   if (Annotations.empty())
926     return;
927 
928   // Create a new global variable for the ConstantStruct in the Module.
929   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
930     Annotations[0]->getType(), Annotations.size()), Annotations);
931   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
932     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
933     "llvm.global.annotations");
934   gv->setSection(AnnotationSection);
935 }
936 
937 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
938   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
939   if (i != AnnotationStrings.end())
940     return i->second;
941 
942   // Not found yet, create a new global.
943   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
944   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
945     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
946   gv->setSection(AnnotationSection);
947   gv->setUnnamedAddr(true);
948   AnnotationStrings[Str] = gv;
949   return gv;
950 }
951 
952 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
953   SourceManager &SM = getContext().getSourceManager();
954   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
955   if (PLoc.isValid())
956     return EmitAnnotationString(PLoc.getFilename());
957   return EmitAnnotationString(SM.getBufferName(Loc));
958 }
959 
960 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
961   SourceManager &SM = getContext().getSourceManager();
962   PresumedLoc PLoc = SM.getPresumedLoc(L);
963   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
964     SM.getExpansionLineNumber(L);
965   return llvm::ConstantInt::get(Int32Ty, LineNo);
966 }
967 
968 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
969                                                 const AnnotateAttr *AA,
970                                                 SourceLocation L) {
971   // Get the globals for file name, annotation, and the line number.
972   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
973                  *UnitGV = EmitAnnotationUnit(L),
974                  *LineNoCst = EmitAnnotationLineNo(L);
975 
976   // Create the ConstantStruct for the global annotation.
977   llvm::Constant *Fields[4] = {
978     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
979     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
980     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
981     LineNoCst
982   };
983   return llvm::ConstantStruct::getAnon(Fields);
984 }
985 
986 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
987                                          llvm::GlobalValue *GV) {
988   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
989   // Get the struct elements for these annotations.
990   for (specific_attr_iterator<AnnotateAttr>
991        ai = D->specific_attr_begin<AnnotateAttr>(),
992        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
993     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
994 }
995 
996 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
997   // Never defer when EmitAllDecls is specified.
998   if (LangOpts.EmitAllDecls)
999     return false;
1000 
1001   return !getContext().DeclMustBeEmitted(Global);
1002 }
1003 
1004 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1005     const CXXUuidofExpr* E) {
1006   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1007   // well-formed.
1008   StringRef Uuid;
1009   if (E->isTypeOperand())
1010     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1011   else {
1012     // Special case: __uuidof(0) means an all-zero GUID.
1013     Expr *Op = E->getExprOperand();
1014     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1015       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1016     else
1017       Uuid = "00000000-0000-0000-0000-000000000000";
1018   }
1019   std::string Name = "__uuid_" + Uuid.str();
1020 
1021   // Look for an existing global.
1022   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1023     return GV;
1024 
1025   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1026   assert(Init && "failed to initialize as constant");
1027 
1028   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1029   // first field is declared as "long", which for many targets is 8 bytes.
1030   // Those architectures are not supported. (With the MS abi, long is always 4
1031   // bytes.)
1032   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1033   if (Init->getType() != GuidType) {
1034     DiagnosticsEngine &Diags = getDiags();
1035     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1036         "__uuidof codegen is not supported on this architecture");
1037     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1038     Init = llvm::UndefValue::get(GuidType);
1039   }
1040 
1041   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1042       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1043   GV->setUnnamedAddr(true);
1044   return GV;
1045 }
1046 
1047 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1048   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1049   assert(AA && "No alias?");
1050 
1051   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1052 
1053   // See if there is already something with the target's name in the module.
1054   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1055   if (Entry) {
1056     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1057     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1058   }
1059 
1060   llvm::Constant *Aliasee;
1061   if (isa<llvm::FunctionType>(DeclTy))
1062     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1063                                       GlobalDecl(cast<FunctionDecl>(VD)),
1064                                       /*ForVTable=*/false);
1065   else
1066     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1067                                     llvm::PointerType::getUnqual(DeclTy), 0);
1068 
1069   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1070   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1071   WeakRefReferences.insert(F);
1072 
1073   return Aliasee;
1074 }
1075 
1076 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1077   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1078 
1079   // Weak references don't produce any output by themselves.
1080   if (Global->hasAttr<WeakRefAttr>())
1081     return;
1082 
1083   // If this is an alias definition (which otherwise looks like a declaration)
1084   // emit it now.
1085   if (Global->hasAttr<AliasAttr>())
1086     return EmitAliasDefinition(GD);
1087 
1088   // If this is CUDA, be selective about which declarations we emit.
1089   if (LangOpts.CUDA) {
1090     if (CodeGenOpts.CUDAIsDevice) {
1091       if (!Global->hasAttr<CUDADeviceAttr>() &&
1092           !Global->hasAttr<CUDAGlobalAttr>() &&
1093           !Global->hasAttr<CUDAConstantAttr>() &&
1094           !Global->hasAttr<CUDASharedAttr>())
1095         return;
1096     } else {
1097       if (!Global->hasAttr<CUDAHostAttr>() && (
1098             Global->hasAttr<CUDADeviceAttr>() ||
1099             Global->hasAttr<CUDAConstantAttr>() ||
1100             Global->hasAttr<CUDASharedAttr>()))
1101         return;
1102     }
1103   }
1104 
1105   // Ignore declarations, they will be emitted on their first use.
1106   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1107     // Forward declarations are emitted lazily on first use.
1108     if (!FD->doesThisDeclarationHaveABody()) {
1109       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1110         return;
1111 
1112       const FunctionDecl *InlineDefinition = 0;
1113       FD->getBody(InlineDefinition);
1114 
1115       StringRef MangledName = getMangledName(GD);
1116       DeferredDecls.erase(MangledName);
1117       EmitGlobalDefinition(InlineDefinition);
1118       return;
1119     }
1120   } else {
1121     const VarDecl *VD = cast<VarDecl>(Global);
1122     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1123 
1124     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1125       return;
1126   }
1127 
1128   // Defer code generation when possible if this is a static definition, inline
1129   // function etc.  These we only want to emit if they are used.
1130   if (!MayDeferGeneration(Global)) {
1131     // Emit the definition if it can't be deferred.
1132     EmitGlobalDefinition(GD);
1133     return;
1134   }
1135 
1136   // If we're deferring emission of a C++ variable with an
1137   // initializer, remember the order in which it appeared in the file.
1138   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1139       cast<VarDecl>(Global)->hasInit()) {
1140     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1141     CXXGlobalInits.push_back(0);
1142   }
1143 
1144   // If the value has already been used, add it directly to the
1145   // DeferredDeclsToEmit list.
1146   StringRef MangledName = getMangledName(GD);
1147   if (GetGlobalValue(MangledName))
1148     DeferredDeclsToEmit.push_back(GD);
1149   else {
1150     // Otherwise, remember that we saw a deferred decl with this name.  The
1151     // first use of the mangled name will cause it to move into
1152     // DeferredDeclsToEmit.
1153     DeferredDecls[MangledName] = GD;
1154   }
1155 }
1156 
1157 namespace {
1158   struct FunctionIsDirectlyRecursive :
1159     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1160     const StringRef Name;
1161     const Builtin::Context &BI;
1162     bool Result;
1163     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1164       Name(N), BI(C), Result(false) {
1165     }
1166     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1167 
1168     bool TraverseCallExpr(CallExpr *E) {
1169       const FunctionDecl *FD = E->getDirectCallee();
1170       if (!FD)
1171         return true;
1172       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1173       if (Attr && Name == Attr->getLabel()) {
1174         Result = true;
1175         return false;
1176       }
1177       unsigned BuiltinID = FD->getBuiltinID();
1178       if (!BuiltinID)
1179         return true;
1180       StringRef BuiltinName = BI.GetName(BuiltinID);
1181       if (BuiltinName.startswith("__builtin_") &&
1182           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1183         Result = true;
1184         return false;
1185       }
1186       return true;
1187     }
1188   };
1189 }
1190 
1191 // isTriviallyRecursive - Check if this function calls another
1192 // decl that, because of the asm attribute or the other decl being a builtin,
1193 // ends up pointing to itself.
1194 bool
1195 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1196   StringRef Name;
1197   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1198     // asm labels are a special kind of mangling we have to support.
1199     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1200     if (!Attr)
1201       return false;
1202     Name = Attr->getLabel();
1203   } else {
1204     Name = FD->getName();
1205   }
1206 
1207   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1208   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1209   return Walker.Result;
1210 }
1211 
1212 bool
1213 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1214   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1215     return true;
1216   if (CodeGenOpts.OptimizationLevel == 0 &&
1217       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1218     return false;
1219   // PR9614. Avoid cases where the source code is lying to us. An available
1220   // externally function should have an equivalent function somewhere else,
1221   // but a function that calls itself is clearly not equivalent to the real
1222   // implementation.
1223   // This happens in glibc's btowc and in some configure checks.
1224   return !isTriviallyRecursive(F);
1225 }
1226 
1227 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1228   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1229 
1230   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1231                                  Context.getSourceManager(),
1232                                  "Generating code for declaration");
1233 
1234   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1235     // At -O0, don't generate IR for functions with available_externally
1236     // linkage.
1237     if (!shouldEmitFunction(Function))
1238       return;
1239 
1240     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1241       // Make sure to emit the definition(s) before we emit the thunks.
1242       // This is necessary for the generation of certain thunks.
1243       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1244         EmitCXXConstructor(CD, GD.getCtorType());
1245       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1246         EmitCXXDestructor(DD, GD.getDtorType());
1247       else
1248         EmitGlobalFunctionDefinition(GD);
1249 
1250       if (Method->isVirtual())
1251         getVTables().EmitThunks(GD);
1252 
1253       return;
1254     }
1255 
1256     return EmitGlobalFunctionDefinition(GD);
1257   }
1258 
1259   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1260     return EmitGlobalVarDefinition(VD);
1261 
1262   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1263 }
1264 
1265 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1266 /// module, create and return an llvm Function with the specified type. If there
1267 /// is something in the module with the specified name, return it potentially
1268 /// bitcasted to the right type.
1269 ///
1270 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1271 /// to set the attributes on the function when it is first created.
1272 llvm::Constant *
1273 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1274                                        llvm::Type *Ty,
1275                                        GlobalDecl D, bool ForVTable,
1276                                        llvm::AttributeSet ExtraAttrs) {
1277   // Lookup the entry, lazily creating it if necessary.
1278   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1279   if (Entry) {
1280     if (WeakRefReferences.erase(Entry)) {
1281       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1282       if (FD && !FD->hasAttr<WeakAttr>())
1283         Entry->setLinkage(llvm::Function::ExternalLinkage);
1284     }
1285 
1286     if (Entry->getType()->getElementType() == Ty)
1287       return Entry;
1288 
1289     // Make sure the result is of the correct type.
1290     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1291   }
1292 
1293   // This function doesn't have a complete type (for example, the return
1294   // type is an incomplete struct). Use a fake type instead, and make
1295   // sure not to try to set attributes.
1296   bool IsIncompleteFunction = false;
1297 
1298   llvm::FunctionType *FTy;
1299   if (isa<llvm::FunctionType>(Ty)) {
1300     FTy = cast<llvm::FunctionType>(Ty);
1301   } else {
1302     FTy = llvm::FunctionType::get(VoidTy, false);
1303     IsIncompleteFunction = true;
1304   }
1305 
1306   llvm::Function *F = llvm::Function::Create(FTy,
1307                                              llvm::Function::ExternalLinkage,
1308                                              MangledName, &getModule());
1309   assert(F->getName() == MangledName && "name was uniqued!");
1310   if (D.getDecl())
1311     SetFunctionAttributes(D, F, IsIncompleteFunction);
1312   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1313     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1314     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1315                      llvm::AttributeSet::get(VMContext,
1316                                              llvm::AttributeSet::FunctionIndex,
1317                                              B));
1318   }
1319 
1320   // This is the first use or definition of a mangled name.  If there is a
1321   // deferred decl with this name, remember that we need to emit it at the end
1322   // of the file.
1323   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1324   if (DDI != DeferredDecls.end()) {
1325     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1326     // list, and remove it from DeferredDecls (since we don't need it anymore).
1327     DeferredDeclsToEmit.push_back(DDI->second);
1328     DeferredDecls.erase(DDI);
1329 
1330   // Otherwise, there are cases we have to worry about where we're
1331   // using a declaration for which we must emit a definition but where
1332   // we might not find a top-level definition:
1333   //   - member functions defined inline in their classes
1334   //   - friend functions defined inline in some class
1335   //   - special member functions with implicit definitions
1336   // If we ever change our AST traversal to walk into class methods,
1337   // this will be unnecessary.
1338   //
1339   // We also don't emit a definition for a function if it's going to be an entry
1340   // in a vtable, unless it's already marked as used.
1341   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1342     // Look for a declaration that's lexically in a record.
1343     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1344     FD = FD->getMostRecentDecl();
1345     do {
1346       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1347         if (FD->isImplicit() && !ForVTable) {
1348           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1349           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1350           break;
1351         } else if (FD->doesThisDeclarationHaveABody()) {
1352           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1353           break;
1354         }
1355       }
1356       FD = FD->getPreviousDecl();
1357     } while (FD);
1358   }
1359 
1360   // Make sure the result is of the requested type.
1361   if (!IsIncompleteFunction) {
1362     assert(F->getType()->getElementType() == Ty);
1363     return F;
1364   }
1365 
1366   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1367   return llvm::ConstantExpr::getBitCast(F, PTy);
1368 }
1369 
1370 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1371 /// non-null, then this function will use the specified type if it has to
1372 /// create it (this occurs when we see a definition of the function).
1373 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1374                                                  llvm::Type *Ty,
1375                                                  bool ForVTable) {
1376   // If there was no specific requested type, just convert it now.
1377   if (!Ty)
1378     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1379 
1380   StringRef MangledName = getMangledName(GD);
1381   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1382 }
1383 
1384 /// CreateRuntimeFunction - Create a new runtime function with the specified
1385 /// type and name.
1386 llvm::Constant *
1387 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1388                                      StringRef Name,
1389                                      llvm::AttributeSet ExtraAttrs) {
1390   llvm::Constant *C
1391     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1392                               ExtraAttrs);
1393   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1394     if (F->empty())
1395       F->setCallingConv(getRuntimeCC());
1396   return C;
1397 }
1398 
1399 /// isTypeConstant - Determine whether an object of this type can be emitted
1400 /// as a constant.
1401 ///
1402 /// If ExcludeCtor is true, the duration when the object's constructor runs
1403 /// will not be considered. The caller will need to verify that the object is
1404 /// not written to during its construction.
1405 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1406   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1407     return false;
1408 
1409   if (Context.getLangOpts().CPlusPlus) {
1410     if (const CXXRecordDecl *Record
1411           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1412       return ExcludeCtor && !Record->hasMutableFields() &&
1413              Record->hasTrivialDestructor();
1414   }
1415 
1416   return true;
1417 }
1418 
1419 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1420 /// create and return an llvm GlobalVariable with the specified type.  If there
1421 /// is something in the module with the specified name, return it potentially
1422 /// bitcasted to the right type.
1423 ///
1424 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1425 /// to set the attributes on the global when it is first created.
1426 llvm::Constant *
1427 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1428                                      llvm::PointerType *Ty,
1429                                      const VarDecl *D,
1430                                      bool UnnamedAddr) {
1431   // Lookup the entry, lazily creating it if necessary.
1432   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1433   if (Entry) {
1434     if (WeakRefReferences.erase(Entry)) {
1435       if (D && !D->hasAttr<WeakAttr>())
1436         Entry->setLinkage(llvm::Function::ExternalLinkage);
1437     }
1438 
1439     if (UnnamedAddr)
1440       Entry->setUnnamedAddr(true);
1441 
1442     if (Entry->getType() == Ty)
1443       return Entry;
1444 
1445     // Make sure the result is of the correct type.
1446     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1447   }
1448 
1449   // This is the first use or definition of a mangled name.  If there is a
1450   // deferred decl with this name, remember that we need to emit it at the end
1451   // of the file.
1452   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1453   if (DDI != DeferredDecls.end()) {
1454     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1455     // list, and remove it from DeferredDecls (since we don't need it anymore).
1456     DeferredDeclsToEmit.push_back(DDI->second);
1457     DeferredDecls.erase(DDI);
1458   }
1459 
1460   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1461   llvm::GlobalVariable *GV =
1462     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1463                              llvm::GlobalValue::ExternalLinkage,
1464                              0, MangledName, 0,
1465                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1466 
1467   // Handle things which are present even on external declarations.
1468   if (D) {
1469     // FIXME: This code is overly simple and should be merged with other global
1470     // handling.
1471     GV->setConstant(isTypeConstant(D->getType(), false));
1472 
1473     // Set linkage and visibility in case we never see a definition.
1474     LinkageInfo LV = D->getLinkageAndVisibility();
1475     if (LV.getLinkage() != ExternalLinkage) {
1476       // Don't set internal linkage on declarations.
1477     } else {
1478       if (D->hasAttr<DLLImportAttr>())
1479         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1480       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1481         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1482 
1483       // Set visibility on a declaration only if it's explicit.
1484       if (LV.isVisibilityExplicit())
1485         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1486     }
1487 
1488     if (D->getTLSKind())
1489       setTLSMode(GV, *D);
1490   }
1491 
1492   if (AddrSpace != Ty->getAddressSpace())
1493     return llvm::ConstantExpr::getBitCast(GV, Ty);
1494   else
1495     return GV;
1496 }
1497 
1498 
1499 llvm::GlobalVariable *
1500 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1501                                       llvm::Type *Ty,
1502                                       llvm::GlobalValue::LinkageTypes Linkage) {
1503   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1504   llvm::GlobalVariable *OldGV = 0;
1505 
1506 
1507   if (GV) {
1508     // Check if the variable has the right type.
1509     if (GV->getType()->getElementType() == Ty)
1510       return GV;
1511 
1512     // Because C++ name mangling, the only way we can end up with an already
1513     // existing global with the same name is if it has been declared extern "C".
1514     assert(GV->isDeclaration() && "Declaration has wrong type!");
1515     OldGV = GV;
1516   }
1517 
1518   // Create a new variable.
1519   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1520                                 Linkage, 0, Name);
1521 
1522   if (OldGV) {
1523     // Replace occurrences of the old variable if needed.
1524     GV->takeName(OldGV);
1525 
1526     if (!OldGV->use_empty()) {
1527       llvm::Constant *NewPtrForOldDecl =
1528       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1529       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1530     }
1531 
1532     OldGV->eraseFromParent();
1533   }
1534 
1535   return GV;
1536 }
1537 
1538 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1539 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1540 /// then it will be created with the specified type instead of whatever the
1541 /// normal requested type would be.
1542 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1543                                                   llvm::Type *Ty) {
1544   assert(D->hasGlobalStorage() && "Not a global variable");
1545   QualType ASTTy = D->getType();
1546   if (Ty == 0)
1547     Ty = getTypes().ConvertTypeForMem(ASTTy);
1548 
1549   llvm::PointerType *PTy =
1550     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1551 
1552   StringRef MangledName = getMangledName(D);
1553   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1554 }
1555 
1556 /// CreateRuntimeVariable - Create a new runtime global variable with the
1557 /// specified type and name.
1558 llvm::Constant *
1559 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1560                                      StringRef Name) {
1561   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1562                                true);
1563 }
1564 
1565 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1566   assert(!D->getInit() && "Cannot emit definite definitions here!");
1567 
1568   if (MayDeferGeneration(D)) {
1569     // If we have not seen a reference to this variable yet, place it
1570     // into the deferred declarations table to be emitted if needed
1571     // later.
1572     StringRef MangledName = getMangledName(D);
1573     if (!GetGlobalValue(MangledName)) {
1574       DeferredDecls[MangledName] = D;
1575       return;
1576     }
1577   }
1578 
1579   // The tentative definition is the only definition.
1580   EmitGlobalVarDefinition(D);
1581 }
1582 
1583 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1584     return Context.toCharUnitsFromBits(
1585       TheDataLayout.getTypeStoreSizeInBits(Ty));
1586 }
1587 
1588 llvm::Constant *
1589 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1590                                                        const Expr *rawInit) {
1591   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1592   if (const ExprWithCleanups *withCleanups =
1593           dyn_cast<ExprWithCleanups>(rawInit)) {
1594     cleanups = withCleanups->getObjects();
1595     rawInit = withCleanups->getSubExpr();
1596   }
1597 
1598   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1599   if (!init || !init->initializesStdInitializerList() ||
1600       init->getNumInits() == 0)
1601     return 0;
1602 
1603   ASTContext &ctx = getContext();
1604   unsigned numInits = init->getNumInits();
1605   // FIXME: This check is here because we would otherwise silently miscompile
1606   // nested global std::initializer_lists. Better would be to have a real
1607   // implementation.
1608   for (unsigned i = 0; i < numInits; ++i) {
1609     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1610     if (inner && inner->initializesStdInitializerList()) {
1611       ErrorUnsupported(inner, "nested global std::initializer_list");
1612       return 0;
1613     }
1614   }
1615 
1616   // Synthesize a fake VarDecl for the array and initialize that.
1617   QualType elementType = init->getInit(0)->getType();
1618   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1619   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1620                                                 ArrayType::Normal, 0);
1621 
1622   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1623   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1624                                               arrayType, D->getLocation());
1625   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1626                                                           D->getDeclContext()),
1627                                           D->getLocStart(), D->getLocation(),
1628                                           name, arrayType, sourceInfo,
1629                                           SC_Static);
1630   backingArray->setTLSKind(D->getTLSKind());
1631 
1632   // Now clone the InitListExpr to initialize the array instead.
1633   // Incredible hack: we want to use the existing InitListExpr here, so we need
1634   // to tell it that it no longer initializes a std::initializer_list.
1635   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1636                         init->getNumInits());
1637   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1638                                            init->getRBraceLoc());
1639   arrayInit->setType(arrayType);
1640 
1641   if (!cleanups.empty())
1642     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1643 
1644   backingArray->setInit(arrayInit);
1645 
1646   // Emit the definition of the array.
1647   EmitGlobalVarDefinition(backingArray);
1648 
1649   // Inspect the initializer list to validate it and determine its type.
1650   // FIXME: doing this every time is probably inefficient; caching would be nice
1651   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1652   RecordDecl::field_iterator field = record->field_begin();
1653   if (field == record->field_end()) {
1654     ErrorUnsupported(D, "weird std::initializer_list");
1655     return 0;
1656   }
1657   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1658   // Start pointer.
1659   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1660     ErrorUnsupported(D, "weird std::initializer_list");
1661     return 0;
1662   }
1663   ++field;
1664   if (field == record->field_end()) {
1665     ErrorUnsupported(D, "weird std::initializer_list");
1666     return 0;
1667   }
1668   bool isStartEnd = false;
1669   if (ctx.hasSameType(field->getType(), elementPtr)) {
1670     // End pointer.
1671     isStartEnd = true;
1672   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1673     ErrorUnsupported(D, "weird std::initializer_list");
1674     return 0;
1675   }
1676 
1677   // Now build an APValue representing the std::initializer_list.
1678   APValue initListValue(APValue::UninitStruct(), 0, 2);
1679   APValue &startField = initListValue.getStructField(0);
1680   APValue::LValuePathEntry startOffsetPathEntry;
1681   startOffsetPathEntry.ArrayIndex = 0;
1682   startField = APValue(APValue::LValueBase(backingArray),
1683                        CharUnits::fromQuantity(0),
1684                        llvm::makeArrayRef(startOffsetPathEntry),
1685                        /*IsOnePastTheEnd=*/false, 0);
1686 
1687   if (isStartEnd) {
1688     APValue &endField = initListValue.getStructField(1);
1689     APValue::LValuePathEntry endOffsetPathEntry;
1690     endOffsetPathEntry.ArrayIndex = numInits;
1691     endField = APValue(APValue::LValueBase(backingArray),
1692                        ctx.getTypeSizeInChars(elementType) * numInits,
1693                        llvm::makeArrayRef(endOffsetPathEntry),
1694                        /*IsOnePastTheEnd=*/true, 0);
1695   } else {
1696     APValue &sizeField = initListValue.getStructField(1);
1697     sizeField = APValue(llvm::APSInt(numElements));
1698   }
1699 
1700   // Emit the constant for the initializer_list.
1701   llvm::Constant *llvmInit =
1702       EmitConstantValueForMemory(initListValue, D->getType());
1703   assert(llvmInit && "failed to initialize as constant");
1704   return llvmInit;
1705 }
1706 
1707 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1708                                                  unsigned AddrSpace) {
1709   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1710     if (D->hasAttr<CUDAConstantAttr>())
1711       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1712     else if (D->hasAttr<CUDASharedAttr>())
1713       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1714     else
1715       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1716   }
1717 
1718   return AddrSpace;
1719 }
1720 
1721 template<typename SomeDecl>
1722 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1723                                                llvm::GlobalValue *GV) {
1724   if (!getLangOpts().CPlusPlus)
1725     return;
1726 
1727   // Must have 'used' attribute, or else inline assembly can't rely on
1728   // the name existing.
1729   if (!D->template hasAttr<UsedAttr>())
1730     return;
1731 
1732   // Must have internal linkage and an ordinary name.
1733   if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1734     return;
1735 
1736   // Must be in an extern "C" context. Entities declared directly within
1737   // a record are not extern "C" even if the record is in such a context.
1738   const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1739   if (DC->isRecord() || !DC->isExternCContext())
1740     return;
1741 
1742   // OK, this is an internal linkage entity inside an extern "C" linkage
1743   // specification. Make a note of that so we can give it the "expected"
1744   // mangled name if nothing else is using that name.
1745   std::pair<StaticExternCMap::iterator, bool> R =
1746       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1747 
1748   // If we have multiple internal linkage entities with the same name
1749   // in extern "C" regions, none of them gets that name.
1750   if (!R.second)
1751     R.first->second = 0;
1752 }
1753 
1754 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1755   llvm::Constant *Init = 0;
1756   QualType ASTTy = D->getType();
1757   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1758   bool NeedsGlobalCtor = false;
1759   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1760 
1761   const VarDecl *InitDecl;
1762   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1763 
1764   if (!InitExpr) {
1765     // This is a tentative definition; tentative definitions are
1766     // implicitly initialized with { 0 }.
1767     //
1768     // Note that tentative definitions are only emitted at the end of
1769     // a translation unit, so they should never have incomplete
1770     // type. In addition, EmitTentativeDefinition makes sure that we
1771     // never attempt to emit a tentative definition if a real one
1772     // exists. A use may still exists, however, so we still may need
1773     // to do a RAUW.
1774     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1775     Init = EmitNullConstant(D->getType());
1776   } else {
1777     // If this is a std::initializer_list, emit the special initializer.
1778     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1779     // An empty init list will perform zero-initialization, which happens
1780     // to be exactly what we want.
1781     // FIXME: It does so in a global constructor, which is *not* what we
1782     // want.
1783 
1784     if (!Init) {
1785       initializedGlobalDecl = GlobalDecl(D);
1786       Init = EmitConstantInit(*InitDecl);
1787     }
1788     if (!Init) {
1789       QualType T = InitExpr->getType();
1790       if (D->getType()->isReferenceType())
1791         T = D->getType();
1792 
1793       if (getLangOpts().CPlusPlus) {
1794         Init = EmitNullConstant(T);
1795         NeedsGlobalCtor = true;
1796       } else {
1797         ErrorUnsupported(D, "static initializer");
1798         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1799       }
1800     } else {
1801       // We don't need an initializer, so remove the entry for the delayed
1802       // initializer position (just in case this entry was delayed) if we
1803       // also don't need to register a destructor.
1804       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1805         DelayedCXXInitPosition.erase(D);
1806     }
1807   }
1808 
1809   llvm::Type* InitType = Init->getType();
1810   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1811 
1812   // Strip off a bitcast if we got one back.
1813   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1814     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1815            // all zero index gep.
1816            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1817     Entry = CE->getOperand(0);
1818   }
1819 
1820   // Entry is now either a Function or GlobalVariable.
1821   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1822 
1823   // We have a definition after a declaration with the wrong type.
1824   // We must make a new GlobalVariable* and update everything that used OldGV
1825   // (a declaration or tentative definition) with the new GlobalVariable*
1826   // (which will be a definition).
1827   //
1828   // This happens if there is a prototype for a global (e.g.
1829   // "extern int x[];") and then a definition of a different type (e.g.
1830   // "int x[10];"). This also happens when an initializer has a different type
1831   // from the type of the global (this happens with unions).
1832   if (GV == 0 ||
1833       GV->getType()->getElementType() != InitType ||
1834       GV->getType()->getAddressSpace() !=
1835        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1836 
1837     // Move the old entry aside so that we'll create a new one.
1838     Entry->setName(StringRef());
1839 
1840     // Make a new global with the correct type, this is now guaranteed to work.
1841     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1842 
1843     // Replace all uses of the old global with the new global
1844     llvm::Constant *NewPtrForOldDecl =
1845         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1846     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1847 
1848     // Erase the old global, since it is no longer used.
1849     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1850   }
1851 
1852   MaybeHandleStaticInExternC(D, GV);
1853 
1854   if (D->hasAttr<AnnotateAttr>())
1855     AddGlobalAnnotations(D, GV);
1856 
1857   GV->setInitializer(Init);
1858 
1859   // If it is safe to mark the global 'constant', do so now.
1860   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1861                   isTypeConstant(D->getType(), true));
1862 
1863   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1864 
1865   // Set the llvm linkage type as appropriate.
1866   llvm::GlobalValue::LinkageTypes Linkage =
1867     GetLLVMLinkageVarDefinition(D, GV);
1868   GV->setLinkage(Linkage);
1869   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1870     // common vars aren't constant even if declared const.
1871     GV->setConstant(false);
1872 
1873   SetCommonAttributes(D, GV);
1874 
1875   // Emit the initializer function if necessary.
1876   if (NeedsGlobalCtor || NeedsGlobalDtor)
1877     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1878 
1879   // If we are compiling with ASan, add metadata indicating dynamically
1880   // initialized globals.
1881   if (SanOpts.Address && NeedsGlobalCtor) {
1882     llvm::Module &M = getModule();
1883 
1884     llvm::NamedMDNode *DynamicInitializers =
1885         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1886     llvm::Value *GlobalToAdd[] = { GV };
1887     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1888     DynamicInitializers->addOperand(ThisGlobal);
1889   }
1890 
1891   // Emit global variable debug information.
1892   if (CGDebugInfo *DI = getModuleDebugInfo())
1893     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1894       DI->EmitGlobalVariable(GV, D);
1895 }
1896 
1897 llvm::GlobalValue::LinkageTypes
1898 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1899                                            llvm::GlobalVariable *GV) {
1900   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1901   if (Linkage == GVA_Internal)
1902     return llvm::Function::InternalLinkage;
1903   else if (D->hasAttr<DLLImportAttr>())
1904     return llvm::Function::DLLImportLinkage;
1905   else if (D->hasAttr<DLLExportAttr>())
1906     return llvm::Function::DLLExportLinkage;
1907   else if (D->hasAttr<WeakAttr>()) {
1908     if (GV->isConstant())
1909       return llvm::GlobalVariable::WeakODRLinkage;
1910     else
1911       return llvm::GlobalVariable::WeakAnyLinkage;
1912   } else if (Linkage == GVA_TemplateInstantiation ||
1913              Linkage == GVA_ExplicitTemplateInstantiation)
1914     return llvm::GlobalVariable::WeakODRLinkage;
1915   else if (!getLangOpts().CPlusPlus &&
1916            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1917              D->getAttr<CommonAttr>()) &&
1918            !D->hasExternalStorage() && !D->getInit() &&
1919            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1920            !D->getAttr<WeakImportAttr>()) {
1921     // Thread local vars aren't considered common linkage.
1922     return llvm::GlobalVariable::CommonLinkage;
1923   }
1924   return llvm::GlobalVariable::ExternalLinkage;
1925 }
1926 
1927 /// Replace the uses of a function that was declared with a non-proto type.
1928 /// We want to silently drop extra arguments from call sites
1929 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1930                                           llvm::Function *newFn) {
1931   // Fast path.
1932   if (old->use_empty()) return;
1933 
1934   llvm::Type *newRetTy = newFn->getReturnType();
1935   SmallVector<llvm::Value*, 4> newArgs;
1936 
1937   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1938          ui != ue; ) {
1939     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1940     llvm::User *user = *use;
1941 
1942     // Recognize and replace uses of bitcasts.  Most calls to
1943     // unprototyped functions will use bitcasts.
1944     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1945       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1946         replaceUsesOfNonProtoConstant(bitcast, newFn);
1947       continue;
1948     }
1949 
1950     // Recognize calls to the function.
1951     llvm::CallSite callSite(user);
1952     if (!callSite) continue;
1953     if (!callSite.isCallee(use)) continue;
1954 
1955     // If the return types don't match exactly, then we can't
1956     // transform this call unless it's dead.
1957     if (callSite->getType() != newRetTy && !callSite->use_empty())
1958       continue;
1959 
1960     // Get the call site's attribute list.
1961     SmallVector<llvm::AttributeSet, 8> newAttrs;
1962     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1963 
1964     // Collect any return attributes from the call.
1965     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1966       newAttrs.push_back(
1967         llvm::AttributeSet::get(newFn->getContext(),
1968                                 oldAttrs.getRetAttributes()));
1969 
1970     // If the function was passed too few arguments, don't transform.
1971     unsigned newNumArgs = newFn->arg_size();
1972     if (callSite.arg_size() < newNumArgs) continue;
1973 
1974     // If extra arguments were passed, we silently drop them.
1975     // If any of the types mismatch, we don't transform.
1976     unsigned argNo = 0;
1977     bool dontTransform = false;
1978     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1979            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1980       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1981         dontTransform = true;
1982         break;
1983       }
1984 
1985       // Add any parameter attributes.
1986       if (oldAttrs.hasAttributes(argNo + 1))
1987         newAttrs.
1988           push_back(llvm::
1989                     AttributeSet::get(newFn->getContext(),
1990                                       oldAttrs.getParamAttributes(argNo + 1)));
1991     }
1992     if (dontTransform)
1993       continue;
1994 
1995     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1996       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1997                                                  oldAttrs.getFnAttributes()));
1998 
1999     // Okay, we can transform this.  Create the new call instruction and copy
2000     // over the required information.
2001     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2002 
2003     llvm::CallSite newCall;
2004     if (callSite.isCall()) {
2005       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2006                                        callSite.getInstruction());
2007     } else {
2008       llvm::InvokeInst *oldInvoke =
2009         cast<llvm::InvokeInst>(callSite.getInstruction());
2010       newCall = llvm::InvokeInst::Create(newFn,
2011                                          oldInvoke->getNormalDest(),
2012                                          oldInvoke->getUnwindDest(),
2013                                          newArgs, "",
2014                                          callSite.getInstruction());
2015     }
2016     newArgs.clear(); // for the next iteration
2017 
2018     if (!newCall->getType()->isVoidTy())
2019       newCall->takeName(callSite.getInstruction());
2020     newCall.setAttributes(
2021                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2022     newCall.setCallingConv(callSite.getCallingConv());
2023 
2024     // Finally, remove the old call, replacing any uses with the new one.
2025     if (!callSite->use_empty())
2026       callSite->replaceAllUsesWith(newCall.getInstruction());
2027 
2028     // Copy debug location attached to CI.
2029     if (!callSite->getDebugLoc().isUnknown())
2030       newCall->setDebugLoc(callSite->getDebugLoc());
2031     callSite->eraseFromParent();
2032   }
2033 }
2034 
2035 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2036 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2037 /// existing call uses of the old function in the module, this adjusts them to
2038 /// call the new function directly.
2039 ///
2040 /// This is not just a cleanup: the always_inline pass requires direct calls to
2041 /// functions to be able to inline them.  If there is a bitcast in the way, it
2042 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2043 /// run at -O0.
2044 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2045                                                       llvm::Function *NewFn) {
2046   // If we're redefining a global as a function, don't transform it.
2047   if (!isa<llvm::Function>(Old)) return;
2048 
2049   replaceUsesOfNonProtoConstant(Old, NewFn);
2050 }
2051 
2052 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2053   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2054   // If we have a definition, this might be a deferred decl. If the
2055   // instantiation is explicit, make sure we emit it at the end.
2056   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2057     GetAddrOfGlobalVar(VD);
2058 
2059   EmitTopLevelDecl(VD);
2060 }
2061 
2062 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2063   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2064 
2065   // Compute the function info and LLVM type.
2066   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2067   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2068 
2069   // Get or create the prototype for the function.
2070   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2071 
2072   // Strip off a bitcast if we got one back.
2073   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2074     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2075     Entry = CE->getOperand(0);
2076   }
2077 
2078 
2079   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2080     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2081 
2082     // If the types mismatch then we have to rewrite the definition.
2083     assert(OldFn->isDeclaration() &&
2084            "Shouldn't replace non-declaration");
2085 
2086     // F is the Function* for the one with the wrong type, we must make a new
2087     // Function* and update everything that used F (a declaration) with the new
2088     // Function* (which will be a definition).
2089     //
2090     // This happens if there is a prototype for a function
2091     // (e.g. "int f()") and then a definition of a different type
2092     // (e.g. "int f(int x)").  Move the old function aside so that it
2093     // doesn't interfere with GetAddrOfFunction.
2094     OldFn->setName(StringRef());
2095     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2096 
2097     // This might be an implementation of a function without a
2098     // prototype, in which case, try to do special replacement of
2099     // calls which match the new prototype.  The really key thing here
2100     // is that we also potentially drop arguments from the call site
2101     // so as to make a direct call, which makes the inliner happier
2102     // and suppresses a number of optimizer warnings (!) about
2103     // dropping arguments.
2104     if (!OldFn->use_empty()) {
2105       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2106       OldFn->removeDeadConstantUsers();
2107     }
2108 
2109     // Replace uses of F with the Function we will endow with a body.
2110     if (!Entry->use_empty()) {
2111       llvm::Constant *NewPtrForOldDecl =
2112         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2113       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2114     }
2115 
2116     // Ok, delete the old function now, which is dead.
2117     OldFn->eraseFromParent();
2118 
2119     Entry = NewFn;
2120   }
2121 
2122   // We need to set linkage and visibility on the function before
2123   // generating code for it because various parts of IR generation
2124   // want to propagate this information down (e.g. to local static
2125   // declarations).
2126   llvm::Function *Fn = cast<llvm::Function>(Entry);
2127   setFunctionLinkage(D, Fn);
2128 
2129   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2130   setGlobalVisibility(Fn, D);
2131 
2132   MaybeHandleStaticInExternC(D, Fn);
2133 
2134   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2135 
2136   SetFunctionDefinitionAttributes(D, Fn);
2137   SetLLVMFunctionAttributesForDefinition(D, Fn);
2138 
2139   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2140     AddGlobalCtor(Fn, CA->getPriority());
2141   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2142     AddGlobalDtor(Fn, DA->getPriority());
2143   if (D->hasAttr<AnnotateAttr>())
2144     AddGlobalAnnotations(D, Fn);
2145 }
2146 
2147 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2148   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2149   const AliasAttr *AA = D->getAttr<AliasAttr>();
2150   assert(AA && "Not an alias?");
2151 
2152   StringRef MangledName = getMangledName(GD);
2153 
2154   // If there is a definition in the module, then it wins over the alias.
2155   // This is dubious, but allow it to be safe.  Just ignore the alias.
2156   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2157   if (Entry && !Entry->isDeclaration())
2158     return;
2159 
2160   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2161 
2162   // Create a reference to the named value.  This ensures that it is emitted
2163   // if a deferred decl.
2164   llvm::Constant *Aliasee;
2165   if (isa<llvm::FunctionType>(DeclTy))
2166     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2167                                       /*ForVTable=*/false);
2168   else
2169     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2170                                     llvm::PointerType::getUnqual(DeclTy), 0);
2171 
2172   // Create the new alias itself, but don't set a name yet.
2173   llvm::GlobalValue *GA =
2174     new llvm::GlobalAlias(Aliasee->getType(),
2175                           llvm::Function::ExternalLinkage,
2176                           "", Aliasee, &getModule());
2177 
2178   if (Entry) {
2179     assert(Entry->isDeclaration());
2180 
2181     // If there is a declaration in the module, then we had an extern followed
2182     // by the alias, as in:
2183     //   extern int test6();
2184     //   ...
2185     //   int test6() __attribute__((alias("test7")));
2186     //
2187     // Remove it and replace uses of it with the alias.
2188     GA->takeName(Entry);
2189 
2190     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2191                                                           Entry->getType()));
2192     Entry->eraseFromParent();
2193   } else {
2194     GA->setName(MangledName);
2195   }
2196 
2197   // Set attributes which are particular to an alias; this is a
2198   // specialization of the attributes which may be set on a global
2199   // variable/function.
2200   if (D->hasAttr<DLLExportAttr>()) {
2201     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2202       // The dllexport attribute is ignored for undefined symbols.
2203       if (FD->hasBody())
2204         GA->setLinkage(llvm::Function::DLLExportLinkage);
2205     } else {
2206       GA->setLinkage(llvm::Function::DLLExportLinkage);
2207     }
2208   } else if (D->hasAttr<WeakAttr>() ||
2209              D->hasAttr<WeakRefAttr>() ||
2210              D->isWeakImported()) {
2211     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2212   }
2213 
2214   SetCommonAttributes(D, GA);
2215 }
2216 
2217 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2218                                             ArrayRef<llvm::Type*> Tys) {
2219   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2220                                          Tys);
2221 }
2222 
2223 static llvm::StringMapEntry<llvm::Constant*> &
2224 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2225                          const StringLiteral *Literal,
2226                          bool TargetIsLSB,
2227                          bool &IsUTF16,
2228                          unsigned &StringLength) {
2229   StringRef String = Literal->getString();
2230   unsigned NumBytes = String.size();
2231 
2232   // Check for simple case.
2233   if (!Literal->containsNonAsciiOrNull()) {
2234     StringLength = NumBytes;
2235     return Map.GetOrCreateValue(String);
2236   }
2237 
2238   // Otherwise, convert the UTF8 literals into a string of shorts.
2239   IsUTF16 = true;
2240 
2241   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2242   const UTF8 *FromPtr = (const UTF8 *)String.data();
2243   UTF16 *ToPtr = &ToBuf[0];
2244 
2245   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2246                            &ToPtr, ToPtr + NumBytes,
2247                            strictConversion);
2248 
2249   // ConvertUTF8toUTF16 returns the length in ToPtr.
2250   StringLength = ToPtr - &ToBuf[0];
2251 
2252   // Add an explicit null.
2253   *ToPtr = 0;
2254   return Map.
2255     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2256                                (StringLength + 1) * 2));
2257 }
2258 
2259 static llvm::StringMapEntry<llvm::Constant*> &
2260 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2261                        const StringLiteral *Literal,
2262                        unsigned &StringLength) {
2263   StringRef String = Literal->getString();
2264   StringLength = String.size();
2265   return Map.GetOrCreateValue(String);
2266 }
2267 
2268 llvm::Constant *
2269 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2270   unsigned StringLength = 0;
2271   bool isUTF16 = false;
2272   llvm::StringMapEntry<llvm::Constant*> &Entry =
2273     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2274                              getDataLayout().isLittleEndian(),
2275                              isUTF16, StringLength);
2276 
2277   if (llvm::Constant *C = Entry.getValue())
2278     return C;
2279 
2280   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2281   llvm::Constant *Zeros[] = { Zero, Zero };
2282 
2283   // If we don't already have it, get __CFConstantStringClassReference.
2284   if (!CFConstantStringClassRef) {
2285     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2286     Ty = llvm::ArrayType::get(Ty, 0);
2287     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2288                                            "__CFConstantStringClassReference");
2289     // Decay array -> ptr
2290     CFConstantStringClassRef =
2291       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2292   }
2293 
2294   QualType CFTy = getContext().getCFConstantStringType();
2295 
2296   llvm::StructType *STy =
2297     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2298 
2299   llvm::Constant *Fields[4];
2300 
2301   // Class pointer.
2302   Fields[0] = CFConstantStringClassRef;
2303 
2304   // Flags.
2305   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2306   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2307     llvm::ConstantInt::get(Ty, 0x07C8);
2308 
2309   // String pointer.
2310   llvm::Constant *C = 0;
2311   if (isUTF16) {
2312     ArrayRef<uint16_t> Arr =
2313       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2314                                      const_cast<char *>(Entry.getKey().data())),
2315                                    Entry.getKey().size() / 2);
2316     C = llvm::ConstantDataArray::get(VMContext, Arr);
2317   } else {
2318     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2319   }
2320 
2321   llvm::GlobalValue::LinkageTypes Linkage;
2322   if (isUTF16)
2323     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2324     Linkage = llvm::GlobalValue::InternalLinkage;
2325   else
2326     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2327     // when using private linkage. It is not clear if this is a bug in ld
2328     // or a reasonable new restriction.
2329     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2330 
2331   // Note: -fwritable-strings doesn't make the backing store strings of
2332   // CFStrings writable. (See <rdar://problem/10657500>)
2333   llvm::GlobalVariable *GV =
2334     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2335                              Linkage, C, ".str");
2336   GV->setUnnamedAddr(true);
2337   if (isUTF16) {
2338     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2339     GV->setAlignment(Align.getQuantity());
2340   } else {
2341     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2342     GV->setAlignment(Align.getQuantity());
2343   }
2344 
2345   // String.
2346   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2347 
2348   if (isUTF16)
2349     // Cast the UTF16 string to the correct type.
2350     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2351 
2352   // String length.
2353   Ty = getTypes().ConvertType(getContext().LongTy);
2354   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2355 
2356   // The struct.
2357   C = llvm::ConstantStruct::get(STy, Fields);
2358   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2359                                 llvm::GlobalVariable::PrivateLinkage, C,
2360                                 "_unnamed_cfstring_");
2361   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2362     GV->setSection(Sect);
2363   Entry.setValue(GV);
2364 
2365   return GV;
2366 }
2367 
2368 static RecordDecl *
2369 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2370                  DeclContext *DC, IdentifierInfo *Id) {
2371   SourceLocation Loc;
2372   if (Ctx.getLangOpts().CPlusPlus)
2373     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2374   else
2375     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2376 }
2377 
2378 llvm::Constant *
2379 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2380   unsigned StringLength = 0;
2381   llvm::StringMapEntry<llvm::Constant*> &Entry =
2382     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2383 
2384   if (llvm::Constant *C = Entry.getValue())
2385     return C;
2386 
2387   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2388   llvm::Constant *Zeros[] = { Zero, Zero };
2389 
2390   // If we don't already have it, get _NSConstantStringClassReference.
2391   if (!ConstantStringClassRef) {
2392     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2393     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2394     llvm::Constant *GV;
2395     if (LangOpts.ObjCRuntime.isNonFragile()) {
2396       std::string str =
2397         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2398                             : "OBJC_CLASS_$_" + StringClass;
2399       GV = getObjCRuntime().GetClassGlobal(str);
2400       // Make sure the result is of the correct type.
2401       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2402       ConstantStringClassRef =
2403         llvm::ConstantExpr::getBitCast(GV, PTy);
2404     } else {
2405       std::string str =
2406         StringClass.empty() ? "_NSConstantStringClassReference"
2407                             : "_" + StringClass + "ClassReference";
2408       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2409       GV = CreateRuntimeVariable(PTy, str);
2410       // Decay array -> ptr
2411       ConstantStringClassRef =
2412         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2413     }
2414   }
2415 
2416   if (!NSConstantStringType) {
2417     // Construct the type for a constant NSString.
2418     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2419                                      Context.getTranslationUnitDecl(),
2420                                    &Context.Idents.get("__builtin_NSString"));
2421     D->startDefinition();
2422 
2423     QualType FieldTypes[3];
2424 
2425     // const int *isa;
2426     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2427     // const char *str;
2428     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2429     // unsigned int length;
2430     FieldTypes[2] = Context.UnsignedIntTy;
2431 
2432     // Create fields
2433     for (unsigned i = 0; i < 3; ++i) {
2434       FieldDecl *Field = FieldDecl::Create(Context, D,
2435                                            SourceLocation(),
2436                                            SourceLocation(), 0,
2437                                            FieldTypes[i], /*TInfo=*/0,
2438                                            /*BitWidth=*/0,
2439                                            /*Mutable=*/false,
2440                                            ICIS_NoInit);
2441       Field->setAccess(AS_public);
2442       D->addDecl(Field);
2443     }
2444 
2445     D->completeDefinition();
2446     QualType NSTy = Context.getTagDeclType(D);
2447     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2448   }
2449 
2450   llvm::Constant *Fields[3];
2451 
2452   // Class pointer.
2453   Fields[0] = ConstantStringClassRef;
2454 
2455   // String pointer.
2456   llvm::Constant *C =
2457     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2458 
2459   llvm::GlobalValue::LinkageTypes Linkage;
2460   bool isConstant;
2461   Linkage = llvm::GlobalValue::PrivateLinkage;
2462   isConstant = !LangOpts.WritableStrings;
2463 
2464   llvm::GlobalVariable *GV =
2465   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2466                            ".str");
2467   GV->setUnnamedAddr(true);
2468   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2469   GV->setAlignment(Align.getQuantity());
2470   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2471 
2472   // String length.
2473   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2474   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2475 
2476   // The struct.
2477   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2478   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2479                                 llvm::GlobalVariable::PrivateLinkage, C,
2480                                 "_unnamed_nsstring_");
2481   // FIXME. Fix section.
2482   if (const char *Sect =
2483         LangOpts.ObjCRuntime.isNonFragile()
2484           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2485           : getContext().getTargetInfo().getNSStringSection())
2486     GV->setSection(Sect);
2487   Entry.setValue(GV);
2488 
2489   return GV;
2490 }
2491 
2492 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2493   if (ObjCFastEnumerationStateType.isNull()) {
2494     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2495                                      Context.getTranslationUnitDecl(),
2496                       &Context.Idents.get("__objcFastEnumerationState"));
2497     D->startDefinition();
2498 
2499     QualType FieldTypes[] = {
2500       Context.UnsignedLongTy,
2501       Context.getPointerType(Context.getObjCIdType()),
2502       Context.getPointerType(Context.UnsignedLongTy),
2503       Context.getConstantArrayType(Context.UnsignedLongTy,
2504                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2505     };
2506 
2507     for (size_t i = 0; i < 4; ++i) {
2508       FieldDecl *Field = FieldDecl::Create(Context,
2509                                            D,
2510                                            SourceLocation(),
2511                                            SourceLocation(), 0,
2512                                            FieldTypes[i], /*TInfo=*/0,
2513                                            /*BitWidth=*/0,
2514                                            /*Mutable=*/false,
2515                                            ICIS_NoInit);
2516       Field->setAccess(AS_public);
2517       D->addDecl(Field);
2518     }
2519 
2520     D->completeDefinition();
2521     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2522   }
2523 
2524   return ObjCFastEnumerationStateType;
2525 }
2526 
2527 llvm::Constant *
2528 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2529   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2530 
2531   // Don't emit it as the address of the string, emit the string data itself
2532   // as an inline array.
2533   if (E->getCharByteWidth() == 1) {
2534     SmallString<64> Str(E->getString());
2535 
2536     // Resize the string to the right size, which is indicated by its type.
2537     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2538     Str.resize(CAT->getSize().getZExtValue());
2539     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2540   }
2541 
2542   llvm::ArrayType *AType =
2543     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2544   llvm::Type *ElemTy = AType->getElementType();
2545   unsigned NumElements = AType->getNumElements();
2546 
2547   // Wide strings have either 2-byte or 4-byte elements.
2548   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2549     SmallVector<uint16_t, 32> Elements;
2550     Elements.reserve(NumElements);
2551 
2552     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2553       Elements.push_back(E->getCodeUnit(i));
2554     Elements.resize(NumElements);
2555     return llvm::ConstantDataArray::get(VMContext, Elements);
2556   }
2557 
2558   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2559   SmallVector<uint32_t, 32> Elements;
2560   Elements.reserve(NumElements);
2561 
2562   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2563     Elements.push_back(E->getCodeUnit(i));
2564   Elements.resize(NumElements);
2565   return llvm::ConstantDataArray::get(VMContext, Elements);
2566 }
2567 
2568 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2569 /// constant array for the given string literal.
2570 llvm::Constant *
2571 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2572   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2573   if (S->isAscii() || S->isUTF8()) {
2574     SmallString<64> Str(S->getString());
2575 
2576     // Resize the string to the right size, which is indicated by its type.
2577     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2578     Str.resize(CAT->getSize().getZExtValue());
2579     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2580   }
2581 
2582   // FIXME: the following does not memoize wide strings.
2583   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2584   llvm::GlobalVariable *GV =
2585     new llvm::GlobalVariable(getModule(),C->getType(),
2586                              !LangOpts.WritableStrings,
2587                              llvm::GlobalValue::PrivateLinkage,
2588                              C,".str");
2589 
2590   GV->setAlignment(Align.getQuantity());
2591   GV->setUnnamedAddr(true);
2592   return GV;
2593 }
2594 
2595 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2596 /// array for the given ObjCEncodeExpr node.
2597 llvm::Constant *
2598 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2599   std::string Str;
2600   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2601 
2602   return GetAddrOfConstantCString(Str);
2603 }
2604 
2605 
2606 /// GenerateWritableString -- Creates storage for a string literal.
2607 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2608                                              bool constant,
2609                                              CodeGenModule &CGM,
2610                                              const char *GlobalName,
2611                                              unsigned Alignment) {
2612   // Create Constant for this string literal. Don't add a '\0'.
2613   llvm::Constant *C =
2614       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2615 
2616   // Create a global variable for this string
2617   llvm::GlobalVariable *GV =
2618     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2619                              llvm::GlobalValue::PrivateLinkage,
2620                              C, GlobalName);
2621   GV->setAlignment(Alignment);
2622   GV->setUnnamedAddr(true);
2623   return GV;
2624 }
2625 
2626 /// GetAddrOfConstantString - Returns a pointer to a character array
2627 /// containing the literal. This contents are exactly that of the
2628 /// given string, i.e. it will not be null terminated automatically;
2629 /// see GetAddrOfConstantCString. Note that whether the result is
2630 /// actually a pointer to an LLVM constant depends on
2631 /// Feature.WriteableStrings.
2632 ///
2633 /// The result has pointer to array type.
2634 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2635                                                        const char *GlobalName,
2636                                                        unsigned Alignment) {
2637   // Get the default prefix if a name wasn't specified.
2638   if (!GlobalName)
2639     GlobalName = ".str";
2640 
2641   // Don't share any string literals if strings aren't constant.
2642   if (LangOpts.WritableStrings)
2643     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2644 
2645   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2646     ConstantStringMap.GetOrCreateValue(Str);
2647 
2648   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2649     if (Alignment > GV->getAlignment()) {
2650       GV->setAlignment(Alignment);
2651     }
2652     return GV;
2653   }
2654 
2655   // Create a global variable for this.
2656   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2657                                                    Alignment);
2658   Entry.setValue(GV);
2659   return GV;
2660 }
2661 
2662 /// GetAddrOfConstantCString - Returns a pointer to a character
2663 /// array containing the literal and a terminating '\0'
2664 /// character. The result has pointer to array type.
2665 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2666                                                         const char *GlobalName,
2667                                                         unsigned Alignment) {
2668   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2669   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2670 }
2671 
2672 /// EmitObjCPropertyImplementations - Emit information for synthesized
2673 /// properties for an implementation.
2674 void CodeGenModule::EmitObjCPropertyImplementations(const
2675                                                     ObjCImplementationDecl *D) {
2676   for (ObjCImplementationDecl::propimpl_iterator
2677          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2678     ObjCPropertyImplDecl *PID = *i;
2679 
2680     // Dynamic is just for type-checking.
2681     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2682       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2683 
2684       // Determine which methods need to be implemented, some may have
2685       // been overridden. Note that ::isPropertyAccessor is not the method
2686       // we want, that just indicates if the decl came from a
2687       // property. What we want to know is if the method is defined in
2688       // this implementation.
2689       if (!D->getInstanceMethod(PD->getGetterName()))
2690         CodeGenFunction(*this).GenerateObjCGetter(
2691                                  const_cast<ObjCImplementationDecl *>(D), PID);
2692       if (!PD->isReadOnly() &&
2693           !D->getInstanceMethod(PD->getSetterName()))
2694         CodeGenFunction(*this).GenerateObjCSetter(
2695                                  const_cast<ObjCImplementationDecl *>(D), PID);
2696     }
2697   }
2698 }
2699 
2700 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2701   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2702   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2703        ivar; ivar = ivar->getNextIvar())
2704     if (ivar->getType().isDestructedType())
2705       return true;
2706 
2707   return false;
2708 }
2709 
2710 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2711 /// for an implementation.
2712 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2713   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2714   if (needsDestructMethod(D)) {
2715     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2716     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2717     ObjCMethodDecl *DTORMethod =
2718       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2719                              cxxSelector, getContext().VoidTy, 0, D,
2720                              /*isInstance=*/true, /*isVariadic=*/false,
2721                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2722                              /*isDefined=*/false, ObjCMethodDecl::Required);
2723     D->addInstanceMethod(DTORMethod);
2724     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2725     D->setHasDestructors(true);
2726   }
2727 
2728   // If the implementation doesn't have any ivar initializers, we don't need
2729   // a .cxx_construct.
2730   if (D->getNumIvarInitializers() == 0)
2731     return;
2732 
2733   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2734   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2735   // The constructor returns 'self'.
2736   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2737                                                 D->getLocation(),
2738                                                 D->getLocation(),
2739                                                 cxxSelector,
2740                                                 getContext().getObjCIdType(), 0,
2741                                                 D, /*isInstance=*/true,
2742                                                 /*isVariadic=*/false,
2743                                                 /*isPropertyAccessor=*/true,
2744                                                 /*isImplicitlyDeclared=*/true,
2745                                                 /*isDefined=*/false,
2746                                                 ObjCMethodDecl::Required);
2747   D->addInstanceMethod(CTORMethod);
2748   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2749   D->setHasNonZeroConstructors(true);
2750 }
2751 
2752 /// EmitNamespace - Emit all declarations in a namespace.
2753 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2754   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2755        I != E; ++I)
2756     EmitTopLevelDecl(*I);
2757 }
2758 
2759 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2760 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2761   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2762       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2763     ErrorUnsupported(LSD, "linkage spec");
2764     return;
2765   }
2766 
2767   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2768        I != E; ++I) {
2769     // Meta-data for ObjC class includes references to implemented methods.
2770     // Generate class's method definitions first.
2771     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2772       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2773            MEnd = OID->meth_end();
2774            M != MEnd; ++M)
2775         EmitTopLevelDecl(*M);
2776     }
2777     EmitTopLevelDecl(*I);
2778   }
2779 }
2780 
2781 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2782 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2783   // If an error has occurred, stop code generation, but continue
2784   // parsing and semantic analysis (to ensure all warnings and errors
2785   // are emitted).
2786   if (Diags.hasErrorOccurred())
2787     return;
2788 
2789   // Ignore dependent declarations.
2790   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2791     return;
2792 
2793   switch (D->getKind()) {
2794   case Decl::CXXConversion:
2795   case Decl::CXXMethod:
2796   case Decl::Function:
2797     // Skip function templates
2798     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2799         cast<FunctionDecl>(D)->isLateTemplateParsed())
2800       return;
2801 
2802     EmitGlobal(cast<FunctionDecl>(D));
2803     break;
2804 
2805   case Decl::Var:
2806     EmitGlobal(cast<VarDecl>(D));
2807     break;
2808 
2809   // Indirect fields from global anonymous structs and unions can be
2810   // ignored; only the actual variable requires IR gen support.
2811   case Decl::IndirectField:
2812     break;
2813 
2814   // C++ Decls
2815   case Decl::Namespace:
2816     EmitNamespace(cast<NamespaceDecl>(D));
2817     break;
2818     // No code generation needed.
2819   case Decl::UsingShadow:
2820   case Decl::Using:
2821   case Decl::UsingDirective:
2822   case Decl::ClassTemplate:
2823   case Decl::FunctionTemplate:
2824   case Decl::TypeAliasTemplate:
2825   case Decl::NamespaceAlias:
2826   case Decl::Block:
2827   case Decl::Empty:
2828     break;
2829   case Decl::CXXConstructor:
2830     // Skip function templates
2831     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2832         cast<FunctionDecl>(D)->isLateTemplateParsed())
2833       return;
2834 
2835     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2836     break;
2837   case Decl::CXXDestructor:
2838     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2839       return;
2840     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2841     break;
2842 
2843   case Decl::StaticAssert:
2844     // Nothing to do.
2845     break;
2846 
2847   // Objective-C Decls
2848 
2849   // Forward declarations, no (immediate) code generation.
2850   case Decl::ObjCInterface:
2851   case Decl::ObjCCategory:
2852     break;
2853 
2854   case Decl::ObjCProtocol: {
2855     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2856     if (Proto->isThisDeclarationADefinition())
2857       ObjCRuntime->GenerateProtocol(Proto);
2858     break;
2859   }
2860 
2861   case Decl::ObjCCategoryImpl:
2862     // Categories have properties but don't support synthesize so we
2863     // can ignore them here.
2864     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2865     break;
2866 
2867   case Decl::ObjCImplementation: {
2868     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2869     EmitObjCPropertyImplementations(OMD);
2870     EmitObjCIvarInitializations(OMD);
2871     ObjCRuntime->GenerateClass(OMD);
2872     // Emit global variable debug information.
2873     if (CGDebugInfo *DI = getModuleDebugInfo())
2874       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2875         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2876             OMD->getClassInterface()), OMD->getLocation());
2877     break;
2878   }
2879   case Decl::ObjCMethod: {
2880     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2881     // If this is not a prototype, emit the body.
2882     if (OMD->getBody())
2883       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2884     break;
2885   }
2886   case Decl::ObjCCompatibleAlias:
2887     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2888     break;
2889 
2890   case Decl::LinkageSpec:
2891     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2892     break;
2893 
2894   case Decl::FileScopeAsm: {
2895     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2896     StringRef AsmString = AD->getAsmString()->getString();
2897 
2898     const std::string &S = getModule().getModuleInlineAsm();
2899     if (S.empty())
2900       getModule().setModuleInlineAsm(AsmString);
2901     else if (S.end()[-1] == '\n')
2902       getModule().setModuleInlineAsm(S + AsmString.str());
2903     else
2904       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2905     break;
2906   }
2907 
2908   case Decl::Import: {
2909     ImportDecl *Import = cast<ImportDecl>(D);
2910 
2911     // Ignore import declarations that come from imported modules.
2912     if (clang::Module *Owner = Import->getOwningModule()) {
2913       if (getLangOpts().CurrentModule.empty() ||
2914           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2915         break;
2916     }
2917 
2918     ImportedModules.insert(Import->getImportedModule());
2919     break;
2920  }
2921 
2922   default:
2923     // Make sure we handled everything we should, every other kind is a
2924     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2925     // function. Need to recode Decl::Kind to do that easily.
2926     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2927   }
2928 }
2929 
2930 /// Turns the given pointer into a constant.
2931 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2932                                           const void *Ptr) {
2933   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2934   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2935   return llvm::ConstantInt::get(i64, PtrInt);
2936 }
2937 
2938 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2939                                    llvm::NamedMDNode *&GlobalMetadata,
2940                                    GlobalDecl D,
2941                                    llvm::GlobalValue *Addr) {
2942   if (!GlobalMetadata)
2943     GlobalMetadata =
2944       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2945 
2946   // TODO: should we report variant information for ctors/dtors?
2947   llvm::Value *Ops[] = {
2948     Addr,
2949     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2950   };
2951   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2952 }
2953 
2954 /// For each function which is declared within an extern "C" region and marked
2955 /// as 'used', but has internal linkage, create an alias from the unmangled
2956 /// name to the mangled name if possible. People expect to be able to refer
2957 /// to such functions with an unmangled name from inline assembly within the
2958 /// same translation unit.
2959 void CodeGenModule::EmitStaticExternCAliases() {
2960   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2961                                   E = StaticExternCValues.end();
2962        I != E; ++I) {
2963     IdentifierInfo *Name = I->first;
2964     llvm::GlobalValue *Val = I->second;
2965     if (Val && !getModule().getNamedValue(Name->getName()))
2966       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2967                                           Name->getName(), Val, &getModule()));
2968   }
2969 }
2970 
2971 /// Emits metadata nodes associating all the global values in the
2972 /// current module with the Decls they came from.  This is useful for
2973 /// projects using IR gen as a subroutine.
2974 ///
2975 /// Since there's currently no way to associate an MDNode directly
2976 /// with an llvm::GlobalValue, we create a global named metadata
2977 /// with the name 'clang.global.decl.ptrs'.
2978 void CodeGenModule::EmitDeclMetadata() {
2979   llvm::NamedMDNode *GlobalMetadata = 0;
2980 
2981   // StaticLocalDeclMap
2982   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2983          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2984        I != E; ++I) {
2985     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2986     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2987   }
2988 }
2989 
2990 /// Emits metadata nodes for all the local variables in the current
2991 /// function.
2992 void CodeGenFunction::EmitDeclMetadata() {
2993   if (LocalDeclMap.empty()) return;
2994 
2995   llvm::LLVMContext &Context = getLLVMContext();
2996 
2997   // Find the unique metadata ID for this name.
2998   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2999 
3000   llvm::NamedMDNode *GlobalMetadata = 0;
3001 
3002   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3003          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3004     const Decl *D = I->first;
3005     llvm::Value *Addr = I->second;
3006 
3007     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3008       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3009       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3010     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3011       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3012       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3013     }
3014   }
3015 }
3016 
3017 void CodeGenModule::EmitCoverageFile() {
3018   if (!getCodeGenOpts().CoverageFile.empty()) {
3019     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3020       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3021       llvm::LLVMContext &Ctx = TheModule.getContext();
3022       llvm::MDString *CoverageFile =
3023           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3024       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3025         llvm::MDNode *CU = CUNode->getOperand(i);
3026         llvm::Value *node[] = { CoverageFile, CU };
3027         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3028         GCov->addOperand(N);
3029       }
3030     }
3031   }
3032 }
3033 
3034 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3035                                                      QualType GuidType) {
3036   // Sema has checked that all uuid strings are of the form
3037   // "12345678-1234-1234-1234-1234567890ab".
3038   assert(Uuid.size() == 36);
3039   const char *Uuidstr = Uuid.data();
3040   for (int i = 0; i < 36; ++i) {
3041     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3042     else                                         assert(isHexDigit(Uuidstr[i]));
3043   }
3044 
3045   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3046   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3047   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3048   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3049 
3050   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3051   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3052   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3053   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3054   APValue& Arr = InitStruct.getStructField(3);
3055   Arr = APValue(APValue::UninitArray(), 8, 8);
3056   for (int t = 0; t < 8; ++t)
3057     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3058           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3059 
3060   return EmitConstantValue(InitStruct, GuidType);
3061 }
3062