1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/Frontend/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/CharUnits.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclTemplate.h" 27 #include "clang/AST/RecordLayout.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/Diagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Basic/ConvertUTF.h" 33 #include "llvm/CallingConv.h" 34 #include "llvm/Module.h" 35 #include "llvm/Intrinsics.h" 36 #include "llvm/LLVMContext.h" 37 #include "llvm/ADT/Triple.h" 38 #include "llvm/Target/TargetData.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 45 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 46 llvm::Module &M, const llvm::TargetData &TD, 47 Diagnostic &diags) 48 : BlockModule(C, M, TD, Types, *this), Context(C), 49 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 50 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 51 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 52 VTables(*this), Runtime(0), ABI(0), 53 CFConstantStringClassRef(0), 54 NSConstantStringClassRef(0), 55 VMContext(M.getContext()) { 56 57 if (!Features.ObjC1) 58 Runtime = 0; 59 else if (!Features.NeXTRuntime) 60 Runtime = CreateGNUObjCRuntime(*this); 61 else if (Features.ObjCNonFragileABI) 62 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 63 else 64 Runtime = CreateMacObjCRuntime(*this); 65 66 if (!Features.CPlusPlus) 67 ABI = 0; 68 else createCXXABI(); 69 70 // If debug info generation is enabled, create the CGDebugInfo object. 71 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 72 } 73 74 CodeGenModule::~CodeGenModule() { 75 delete Runtime; 76 delete ABI; 77 delete DebugInfo; 78 } 79 80 void CodeGenModule::createObjCRuntime() { 81 if (!Features.NeXTRuntime) 82 Runtime = CreateGNUObjCRuntime(*this); 83 else if (Features.ObjCNonFragileABI) 84 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 85 else 86 Runtime = CreateMacObjCRuntime(*this); 87 } 88 89 void CodeGenModule::createCXXABI() { 90 if (Context.Target.getCXXABI() == "microsoft") 91 ABI = CreateMicrosoftCXXABI(*this); 92 else 93 ABI = CreateItaniumCXXABI(*this); 94 } 95 96 void CodeGenModule::Release() { 97 EmitDeferred(); 98 EmitCXXGlobalInitFunc(); 99 EmitCXXGlobalDtorFunc(); 100 if (Runtime) 101 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 102 AddGlobalCtor(ObjCInitFunction); 103 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 104 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 105 EmitAnnotations(); 106 EmitLLVMUsed(); 107 108 if (getCodeGenOpts().EmitDeclMetadata) 109 EmitDeclMetadata(); 110 } 111 112 bool CodeGenModule::isTargetDarwin() const { 113 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 114 } 115 116 /// ErrorUnsupported - Print out an error that codegen doesn't support the 117 /// specified stmt yet. 118 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 119 bool OmitOnError) { 120 if (OmitOnError && getDiags().hasErrorOccurred()) 121 return; 122 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 123 "cannot compile this %0 yet"); 124 std::string Msg = Type; 125 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 126 << Msg << S->getSourceRange(); 127 } 128 129 /// ErrorUnsupported - Print out an error that codegen doesn't support the 130 /// specified decl yet. 131 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 132 bool OmitOnError) { 133 if (OmitOnError && getDiags().hasErrorOccurred()) 134 return; 135 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 136 "cannot compile this %0 yet"); 137 std::string Msg = Type; 138 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 139 } 140 141 LangOptions::VisibilityMode 142 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 143 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 144 if (VD->getStorageClass() == VarDecl::PrivateExtern) 145 return LangOptions::Hidden; 146 147 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 148 switch (attr->getVisibility()) { 149 default: assert(0 && "Unknown visibility!"); 150 case VisibilityAttr::DefaultVisibility: 151 return LangOptions::Default; 152 case VisibilityAttr::HiddenVisibility: 153 return LangOptions::Hidden; 154 case VisibilityAttr::ProtectedVisibility: 155 return LangOptions::Protected; 156 } 157 } 158 159 if (getLangOptions().CPlusPlus) { 160 // Entities subject to an explicit instantiation declaration get default 161 // visibility. 162 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 163 if (Function->getTemplateSpecializationKind() 164 == TSK_ExplicitInstantiationDeclaration) 165 return LangOptions::Default; 166 } else if (const ClassTemplateSpecializationDecl *ClassSpec 167 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 168 if (ClassSpec->getSpecializationKind() 169 == TSK_ExplicitInstantiationDeclaration) 170 return LangOptions::Default; 171 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 172 if (Record->getTemplateSpecializationKind() 173 == TSK_ExplicitInstantiationDeclaration) 174 return LangOptions::Default; 175 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 176 if (Var->isStaticDataMember() && 177 (Var->getTemplateSpecializationKind() 178 == TSK_ExplicitInstantiationDeclaration)) 179 return LangOptions::Default; 180 } 181 182 // If -fvisibility-inlines-hidden was provided, then inline C++ member 183 // functions get "hidden" visibility by default. 184 if (getLangOptions().InlineVisibilityHidden) 185 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 186 if (Method->isInlined()) 187 return LangOptions::Hidden; 188 } 189 190 // This decl should have the same visibility as its parent. 191 if (const DeclContext *DC = D->getDeclContext()) 192 return getDeclVisibilityMode(cast<Decl>(DC)); 193 194 return getLangOptions().getVisibilityMode(); 195 } 196 197 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 198 const Decl *D) const { 199 // Internal definitions always have default visibility. 200 if (GV->hasLocalLinkage()) { 201 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 202 return; 203 } 204 205 switch (getDeclVisibilityMode(D)) { 206 default: assert(0 && "Unknown visibility!"); 207 case LangOptions::Default: 208 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 209 case LangOptions::Hidden: 210 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 211 case LangOptions::Protected: 212 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 213 } 214 } 215 216 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 217 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 218 219 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 220 if (!Str.empty()) 221 return Str; 222 223 if (!getMangleContext().shouldMangleDeclName(ND)) { 224 IdentifierInfo *II = ND->getIdentifier(); 225 assert(II && "Attempt to mangle unnamed decl."); 226 227 Str = II->getName(); 228 return Str; 229 } 230 231 llvm::SmallString<256> Buffer; 232 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 233 getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 234 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 235 getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 236 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 237 getMangleContext().mangleBlock(GD, BD, Buffer); 238 else 239 getMangleContext().mangleName(ND, Buffer); 240 241 // Allocate space for the mangled name. 242 size_t Length = Buffer.size(); 243 char *Name = MangledNamesAllocator.Allocate<char>(Length); 244 std::copy(Buffer.begin(), Buffer.end(), Name); 245 246 Str = llvm::StringRef(Name, Length); 247 248 return Str; 249 } 250 251 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 252 const BlockDecl *BD) { 253 getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 254 } 255 256 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 257 return getModule().getNamedValue(Name); 258 } 259 260 /// AddGlobalCtor - Add a function to the list that will be called before 261 /// main() runs. 262 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 263 // FIXME: Type coercion of void()* types. 264 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 265 } 266 267 /// AddGlobalDtor - Add a function to the list that will be called 268 /// when the module is unloaded. 269 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 270 // FIXME: Type coercion of void()* types. 271 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 272 } 273 274 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 275 // Ctor function type is void()*. 276 llvm::FunctionType* CtorFTy = 277 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 278 std::vector<const llvm::Type*>(), 279 false); 280 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 281 282 // Get the type of a ctor entry, { i32, void ()* }. 283 llvm::StructType* CtorStructTy = 284 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 285 llvm::PointerType::getUnqual(CtorFTy), NULL); 286 287 // Construct the constructor and destructor arrays. 288 std::vector<llvm::Constant*> Ctors; 289 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 290 std::vector<llvm::Constant*> S; 291 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 292 I->second, false)); 293 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 294 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 295 } 296 297 if (!Ctors.empty()) { 298 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 299 new llvm::GlobalVariable(TheModule, AT, false, 300 llvm::GlobalValue::AppendingLinkage, 301 llvm::ConstantArray::get(AT, Ctors), 302 GlobalName); 303 } 304 } 305 306 void CodeGenModule::EmitAnnotations() { 307 if (Annotations.empty()) 308 return; 309 310 // Create a new global variable for the ConstantStruct in the Module. 311 llvm::Constant *Array = 312 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 313 Annotations.size()), 314 Annotations); 315 llvm::GlobalValue *gv = 316 new llvm::GlobalVariable(TheModule, Array->getType(), false, 317 llvm::GlobalValue::AppendingLinkage, Array, 318 "llvm.global.annotations"); 319 gv->setSection("llvm.metadata"); 320 } 321 322 static CodeGenModule::GVALinkage 323 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 324 const LangOptions &Features) { 325 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 326 327 Linkage L = FD->getLinkage(); 328 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 329 FD->getType()->getLinkage() == UniqueExternalLinkage) 330 L = UniqueExternalLinkage; 331 332 switch (L) { 333 case NoLinkage: 334 case InternalLinkage: 335 case UniqueExternalLinkage: 336 return CodeGenModule::GVA_Internal; 337 338 case ExternalLinkage: 339 switch (FD->getTemplateSpecializationKind()) { 340 case TSK_Undeclared: 341 case TSK_ExplicitSpecialization: 342 External = CodeGenModule::GVA_StrongExternal; 343 break; 344 345 case TSK_ExplicitInstantiationDefinition: 346 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 347 348 case TSK_ExplicitInstantiationDeclaration: 349 case TSK_ImplicitInstantiation: 350 External = CodeGenModule::GVA_TemplateInstantiation; 351 break; 352 } 353 } 354 355 if (!FD->isInlined()) 356 return External; 357 358 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 359 // GNU or C99 inline semantics. Determine whether this symbol should be 360 // externally visible. 361 if (FD->isInlineDefinitionExternallyVisible()) 362 return External; 363 364 // C99 inline semantics, where the symbol is not externally visible. 365 return CodeGenModule::GVA_C99Inline; 366 } 367 368 // C++0x [temp.explicit]p9: 369 // [ Note: The intent is that an inline function that is the subject of 370 // an explicit instantiation declaration will still be implicitly 371 // instantiated when used so that the body can be considered for 372 // inlining, but that no out-of-line copy of the inline function would be 373 // generated in the translation unit. -- end note ] 374 if (FD->getTemplateSpecializationKind() 375 == TSK_ExplicitInstantiationDeclaration) 376 return CodeGenModule::GVA_C99Inline; 377 378 return CodeGenModule::GVA_CXXInline; 379 } 380 381 llvm::GlobalValue::LinkageTypes 382 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 383 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 384 385 if (Linkage == GVA_Internal) 386 return llvm::Function::InternalLinkage; 387 388 if (D->hasAttr<DLLExportAttr>()) 389 return llvm::Function::DLLExportLinkage; 390 391 if (D->hasAttr<WeakAttr>()) 392 return llvm::Function::WeakAnyLinkage; 393 394 // In C99 mode, 'inline' functions are guaranteed to have a strong 395 // definition somewhere else, so we can use available_externally linkage. 396 if (Linkage == GVA_C99Inline) 397 return llvm::Function::AvailableExternallyLinkage; 398 399 // In C++, the compiler has to emit a definition in every translation unit 400 // that references the function. We should use linkonce_odr because 401 // a) if all references in this translation unit are optimized away, we 402 // don't need to codegen it. b) if the function persists, it needs to be 403 // merged with other definitions. c) C++ has the ODR, so we know the 404 // definition is dependable. 405 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 406 return llvm::Function::LinkOnceODRLinkage; 407 408 // An explicit instantiation of a template has weak linkage, since 409 // explicit instantiations can occur in multiple translation units 410 // and must all be equivalent. However, we are not allowed to 411 // throw away these explicit instantiations. 412 if (Linkage == GVA_ExplicitTemplateInstantiation) 413 return llvm::Function::WeakODRLinkage; 414 415 // Otherwise, we have strong external linkage. 416 assert(Linkage == GVA_StrongExternal); 417 return llvm::Function::ExternalLinkage; 418 } 419 420 421 /// SetFunctionDefinitionAttributes - Set attributes for a global. 422 /// 423 /// FIXME: This is currently only done for aliases and functions, but not for 424 /// variables (these details are set in EmitGlobalVarDefinition for variables). 425 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 426 llvm::GlobalValue *GV) { 427 SetCommonAttributes(D, GV); 428 } 429 430 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 431 const CGFunctionInfo &Info, 432 llvm::Function *F) { 433 unsigned CallingConv; 434 AttributeListType AttributeList; 435 ConstructAttributeList(Info, D, AttributeList, CallingConv); 436 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 437 AttributeList.size())); 438 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 439 } 440 441 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 442 llvm::Function *F) { 443 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 444 F->addFnAttr(llvm::Attribute::NoUnwind); 445 446 if (D->hasAttr<AlwaysInlineAttr>()) 447 F->addFnAttr(llvm::Attribute::AlwaysInline); 448 449 if (D->hasAttr<NoInlineAttr>()) 450 F->addFnAttr(llvm::Attribute::NoInline); 451 452 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 453 F->addFnAttr(llvm::Attribute::StackProtect); 454 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 455 F->addFnAttr(llvm::Attribute::StackProtectReq); 456 457 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 458 unsigned width = Context.Target.getCharWidth(); 459 F->setAlignment(AA->getAlignment() / width); 460 while ((AA = AA->getNext<AlignedAttr>())) 461 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 462 } 463 // C++ ABI requires 2-byte alignment for member functions. 464 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 465 F->setAlignment(2); 466 } 467 468 void CodeGenModule::SetCommonAttributes(const Decl *D, 469 llvm::GlobalValue *GV) { 470 setGlobalVisibility(GV, D); 471 472 if (D->hasAttr<UsedAttr>()) 473 AddUsedGlobal(GV); 474 475 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 476 GV->setSection(SA->getName()); 477 478 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 479 } 480 481 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 482 llvm::Function *F, 483 const CGFunctionInfo &FI) { 484 SetLLVMFunctionAttributes(D, FI, F); 485 SetLLVMFunctionAttributesForDefinition(D, F); 486 487 F->setLinkage(llvm::Function::InternalLinkage); 488 489 SetCommonAttributes(D, F); 490 } 491 492 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 493 llvm::Function *F, 494 bool IsIncompleteFunction) { 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (!IsIncompleteFunction) 498 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 499 500 // Only a few attributes are set on declarations; these may later be 501 // overridden by a definition. 502 503 if (FD->hasAttr<DLLImportAttr>()) { 504 F->setLinkage(llvm::Function::DLLImportLinkage); 505 } else if (FD->hasAttr<WeakAttr>() || 506 FD->hasAttr<WeakImportAttr>()) { 507 // "extern_weak" is overloaded in LLVM; we probably should have 508 // separate linkage types for this. 509 F->setLinkage(llvm::Function::ExternalWeakLinkage); 510 } else { 511 F->setLinkage(llvm::Function::ExternalLinkage); 512 } 513 514 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 515 F->setSection(SA->getName()); 516 } 517 518 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 519 assert(!GV->isDeclaration() && 520 "Only globals with definition can force usage."); 521 LLVMUsed.push_back(GV); 522 } 523 524 void CodeGenModule::EmitLLVMUsed() { 525 // Don't create llvm.used if there is no need. 526 if (LLVMUsed.empty()) 527 return; 528 529 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 530 531 // Convert LLVMUsed to what ConstantArray needs. 532 std::vector<llvm::Constant*> UsedArray; 533 UsedArray.resize(LLVMUsed.size()); 534 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 535 UsedArray[i] = 536 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 537 i8PTy); 538 } 539 540 if (UsedArray.empty()) 541 return; 542 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 543 544 llvm::GlobalVariable *GV = 545 new llvm::GlobalVariable(getModule(), ATy, false, 546 llvm::GlobalValue::AppendingLinkage, 547 llvm::ConstantArray::get(ATy, UsedArray), 548 "llvm.used"); 549 550 GV->setSection("llvm.metadata"); 551 } 552 553 void CodeGenModule::EmitDeferred() { 554 // Emit code for any potentially referenced deferred decls. Since a 555 // previously unused static decl may become used during the generation of code 556 // for a static function, iterate until no changes are made. 557 558 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 559 if (!DeferredVTables.empty()) { 560 const CXXRecordDecl *RD = DeferredVTables.back(); 561 DeferredVTables.pop_back(); 562 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 563 continue; 564 } 565 566 GlobalDecl D = DeferredDeclsToEmit.back(); 567 DeferredDeclsToEmit.pop_back(); 568 569 // Check to see if we've already emitted this. This is necessary 570 // for a couple of reasons: first, decls can end up in the 571 // deferred-decls queue multiple times, and second, decls can end 572 // up with definitions in unusual ways (e.g. by an extern inline 573 // function acquiring a strong function redefinition). Just 574 // ignore these cases. 575 // 576 // TODO: That said, looking this up multiple times is very wasteful. 577 llvm::StringRef Name = getMangledName(D); 578 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 579 assert(CGRef && "Deferred decl wasn't referenced?"); 580 581 if (!CGRef->isDeclaration()) 582 continue; 583 584 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 585 // purposes an alias counts as a definition. 586 if (isa<llvm::GlobalAlias>(CGRef)) 587 continue; 588 589 // Otherwise, emit the definition and move on to the next one. 590 EmitGlobalDefinition(D); 591 } 592 } 593 594 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 595 /// annotation information for a given GlobalValue. The annotation struct is 596 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 597 /// GlobalValue being annotated. The second field is the constant string 598 /// created from the AnnotateAttr's annotation. The third field is a constant 599 /// string containing the name of the translation unit. The fourth field is 600 /// the line number in the file of the annotated value declaration. 601 /// 602 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 603 /// appears to. 604 /// 605 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 606 const AnnotateAttr *AA, 607 unsigned LineNo) { 608 llvm::Module *M = &getModule(); 609 610 // get [N x i8] constants for the annotation string, and the filename string 611 // which are the 2nd and 3rd elements of the global annotation structure. 612 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 613 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 614 AA->getAnnotation(), true); 615 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 616 M->getModuleIdentifier(), 617 true); 618 619 // Get the two global values corresponding to the ConstantArrays we just 620 // created to hold the bytes of the strings. 621 llvm::GlobalValue *annoGV = 622 new llvm::GlobalVariable(*M, anno->getType(), false, 623 llvm::GlobalValue::PrivateLinkage, anno, 624 GV->getName()); 625 // translation unit name string, emitted into the llvm.metadata section. 626 llvm::GlobalValue *unitGV = 627 new llvm::GlobalVariable(*M, unit->getType(), false, 628 llvm::GlobalValue::PrivateLinkage, unit, 629 ".str"); 630 631 // Create the ConstantStruct for the global annotation. 632 llvm::Constant *Fields[4] = { 633 llvm::ConstantExpr::getBitCast(GV, SBP), 634 llvm::ConstantExpr::getBitCast(annoGV, SBP), 635 llvm::ConstantExpr::getBitCast(unitGV, SBP), 636 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 637 }; 638 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 639 } 640 641 static CodeGenModule::GVALinkage 642 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 643 // If this is a static data member, compute the kind of template 644 // specialization. Otherwise, this variable is not part of a 645 // template. 646 TemplateSpecializationKind TSK = TSK_Undeclared; 647 if (VD->isStaticDataMember()) 648 TSK = VD->getTemplateSpecializationKind(); 649 650 Linkage L = VD->getLinkage(); 651 if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && 652 VD->getType()->getLinkage() == UniqueExternalLinkage) 653 L = UniqueExternalLinkage; 654 655 switch (L) { 656 case NoLinkage: 657 case InternalLinkage: 658 case UniqueExternalLinkage: 659 return CodeGenModule::GVA_Internal; 660 661 case ExternalLinkage: 662 switch (TSK) { 663 case TSK_Undeclared: 664 case TSK_ExplicitSpecialization: 665 return CodeGenModule::GVA_StrongExternal; 666 667 case TSK_ExplicitInstantiationDeclaration: 668 llvm_unreachable("Variable should not be instantiated"); 669 // Fall through to treat this like any other instantiation. 670 671 case TSK_ExplicitInstantiationDefinition: 672 return CodeGenModule::GVA_ExplicitTemplateInstantiation; 673 674 case TSK_ImplicitInstantiation: 675 return CodeGenModule::GVA_TemplateInstantiation; 676 } 677 } 678 679 return CodeGenModule::GVA_StrongExternal; 680 } 681 682 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 683 // Never defer when EmitAllDecls is specified or the decl has 684 // attribute used. 685 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 686 return false; 687 688 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 689 // Constructors and destructors should never be deferred. 690 if (FD->hasAttr<ConstructorAttr>() || 691 FD->hasAttr<DestructorAttr>()) 692 return false; 693 694 // The key function for a class must never be deferred. 695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 696 const CXXRecordDecl *RD = MD->getParent(); 697 if (MD->isOutOfLine() && RD->isDynamicClass()) { 698 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 699 if (KeyFunction && 700 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 701 return false; 702 } 703 } 704 705 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 706 707 // static, static inline, always_inline, and extern inline functions can 708 // always be deferred. Normal inline functions can be deferred in C99/C++. 709 // Implicit template instantiations can also be deferred in C++. 710 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 711 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 712 return true; 713 return false; 714 } 715 716 const VarDecl *VD = cast<VarDecl>(Global); 717 assert(VD->isFileVarDecl() && "Invalid decl"); 718 719 // We never want to defer structs that have non-trivial constructors or 720 // destructors. 721 722 // FIXME: Handle references. 723 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 724 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 725 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 726 return false; 727 } 728 } 729 730 GVALinkage L = GetLinkageForVariable(getContext(), VD); 731 if (L == GVA_Internal || L == GVA_TemplateInstantiation) { 732 if (!(VD->getInit() && VD->getInit()->HasSideEffects(Context))) 733 return true; 734 } 735 736 return false; 737 } 738 739 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 740 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 741 assert(AA && "No alias?"); 742 743 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 744 745 // See if there is already something with the target's name in the module. 746 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 747 748 llvm::Constant *Aliasee; 749 if (isa<llvm::FunctionType>(DeclTy)) 750 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 751 else 752 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 753 llvm::PointerType::getUnqual(DeclTy), 0); 754 if (!Entry) { 755 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 756 F->setLinkage(llvm::Function::ExternalWeakLinkage); 757 WeakRefReferences.insert(F); 758 } 759 760 return Aliasee; 761 } 762 763 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 764 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 765 766 // Weak references don't produce any output by themselves. 767 if (Global->hasAttr<WeakRefAttr>()) 768 return; 769 770 // If this is an alias definition (which otherwise looks like a declaration) 771 // emit it now. 772 if (Global->hasAttr<AliasAttr>()) 773 return EmitAliasDefinition(GD); 774 775 // Ignore declarations, they will be emitted on their first use. 776 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 777 // Forward declarations are emitted lazily on first use. 778 if (!FD->isThisDeclarationADefinition()) 779 return; 780 } else { 781 const VarDecl *VD = cast<VarDecl>(Global); 782 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 783 784 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 785 return; 786 } 787 788 // Defer code generation when possible if this is a static definition, inline 789 // function etc. These we only want to emit if they are used. 790 if (!MayDeferGeneration(Global)) { 791 // Emit the definition if it can't be deferred. 792 EmitGlobalDefinition(GD); 793 return; 794 } 795 796 // If the value has already been used, add it directly to the 797 // DeferredDeclsToEmit list. 798 llvm::StringRef MangledName = getMangledName(GD); 799 if (GetGlobalValue(MangledName)) 800 DeferredDeclsToEmit.push_back(GD); 801 else { 802 // Otherwise, remember that we saw a deferred decl with this name. The 803 // first use of the mangled name will cause it to move into 804 // DeferredDeclsToEmit. 805 DeferredDecls[MangledName] = GD; 806 } 807 } 808 809 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 810 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 811 812 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 813 Context.getSourceManager(), 814 "Generating code for declaration"); 815 816 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 817 if (Method->isVirtual()) 818 getVTables().EmitThunks(GD); 819 820 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 821 // At -O0, don't generate IR for functions with available_externally 822 // linkage. 823 if (CodeGenOpts.OptimizationLevel == 0 && 824 getFunctionLinkage(Function) 825 == llvm::Function::AvailableExternallyLinkage) 826 return; 827 828 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Function)) 829 return EmitCXXConstructor(CD, GD.getCtorType()); 830 831 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Function)) 832 return EmitCXXDestructor(DD, GD.getDtorType()); 833 834 return EmitGlobalFunctionDefinition(GD); 835 } 836 837 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 838 return EmitGlobalVarDefinition(VD); 839 840 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 841 } 842 843 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 844 /// module, create and return an llvm Function with the specified type. If there 845 /// is something in the module with the specified name, return it potentially 846 /// bitcasted to the right type. 847 /// 848 /// If D is non-null, it specifies a decl that correspond to this. This is used 849 /// to set the attributes on the function when it is first created. 850 llvm::Constant * 851 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 852 const llvm::Type *Ty, 853 GlobalDecl D) { 854 // Lookup the entry, lazily creating it if necessary. 855 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 856 if (Entry) { 857 if (WeakRefReferences.count(Entry)) { 858 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 859 if (FD && !FD->hasAttr<WeakAttr>()) 860 Entry->setLinkage(llvm::Function::ExternalLinkage); 861 862 WeakRefReferences.erase(Entry); 863 } 864 865 if (Entry->getType()->getElementType() == Ty) 866 return Entry; 867 868 // Make sure the result is of the correct type. 869 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 870 return llvm::ConstantExpr::getBitCast(Entry, PTy); 871 } 872 873 // This function doesn't have a complete type (for example, the return 874 // type is an incomplete struct). Use a fake type instead, and make 875 // sure not to try to set attributes. 876 bool IsIncompleteFunction = false; 877 878 const llvm::FunctionType *FTy; 879 if (isa<llvm::FunctionType>(Ty)) { 880 FTy = cast<llvm::FunctionType>(Ty); 881 } else { 882 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 883 std::vector<const llvm::Type*>(), false); 884 IsIncompleteFunction = true; 885 } 886 887 llvm::Function *F = llvm::Function::Create(FTy, 888 llvm::Function::ExternalLinkage, 889 MangledName, &getModule()); 890 assert(F->getName() == MangledName && "name was uniqued!"); 891 if (D.getDecl()) 892 SetFunctionAttributes(D, F, IsIncompleteFunction); 893 894 // This is the first use or definition of a mangled name. If there is a 895 // deferred decl with this name, remember that we need to emit it at the end 896 // of the file. 897 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 898 if (DDI != DeferredDecls.end()) { 899 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 900 // list, and remove it from DeferredDecls (since we don't need it anymore). 901 DeferredDeclsToEmit.push_back(DDI->second); 902 DeferredDecls.erase(DDI); 903 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 904 // If this the first reference to a C++ inline function in a class, queue up 905 // the deferred function body for emission. These are not seen as 906 // top-level declarations. 907 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 908 DeferredDeclsToEmit.push_back(D); 909 // A called constructor which has no definition or declaration need be 910 // synthesized. 911 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 912 if (CD->isImplicit()) { 913 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 914 DeferredDeclsToEmit.push_back(D); 915 } 916 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 917 if (DD->isImplicit()) { 918 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 919 DeferredDeclsToEmit.push_back(D); 920 } 921 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 922 if (MD->isCopyAssignment() && MD->isImplicit()) { 923 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 924 DeferredDeclsToEmit.push_back(D); 925 } 926 } 927 } 928 929 // Make sure the result is of the requested type. 930 if (!IsIncompleteFunction) { 931 assert(F->getType()->getElementType() == Ty); 932 return F; 933 } 934 935 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 936 return llvm::ConstantExpr::getBitCast(F, PTy); 937 } 938 939 /// GetAddrOfFunction - Return the address of the given function. If Ty is 940 /// non-null, then this function will use the specified type if it has to 941 /// create it (this occurs when we see a definition of the function). 942 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 943 const llvm::Type *Ty) { 944 // If there was no specific requested type, just convert it now. 945 if (!Ty) 946 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 947 948 llvm::StringRef MangledName = getMangledName(GD); 949 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 950 } 951 952 /// CreateRuntimeFunction - Create a new runtime function with the specified 953 /// type and name. 954 llvm::Constant * 955 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 956 llvm::StringRef Name) { 957 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 958 } 959 960 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 961 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 962 return false; 963 if (Context.getLangOptions().CPlusPlus && 964 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 965 // FIXME: We should do something fancier here! 966 return false; 967 } 968 return true; 969 } 970 971 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 972 /// create and return an llvm GlobalVariable with the specified type. If there 973 /// is something in the module with the specified name, return it potentially 974 /// bitcasted to the right type. 975 /// 976 /// If D is non-null, it specifies a decl that correspond to this. This is used 977 /// to set the attributes on the global when it is first created. 978 llvm::Constant * 979 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 980 const llvm::PointerType *Ty, 981 const VarDecl *D) { 982 // Lookup the entry, lazily creating it if necessary. 983 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 984 if (Entry) { 985 if (WeakRefReferences.count(Entry)) { 986 if (D && !D->hasAttr<WeakAttr>()) 987 Entry->setLinkage(llvm::Function::ExternalLinkage); 988 989 WeakRefReferences.erase(Entry); 990 } 991 992 if (Entry->getType() == Ty) 993 return Entry; 994 995 // Make sure the result is of the correct type. 996 return llvm::ConstantExpr::getBitCast(Entry, Ty); 997 } 998 999 // This is the first use or definition of a mangled name. If there is a 1000 // deferred decl with this name, remember that we need to emit it at the end 1001 // of the file. 1002 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1003 if (DDI != DeferredDecls.end()) { 1004 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1005 // list, and remove it from DeferredDecls (since we don't need it anymore). 1006 DeferredDeclsToEmit.push_back(DDI->second); 1007 DeferredDecls.erase(DDI); 1008 } 1009 1010 llvm::GlobalVariable *GV = 1011 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1012 llvm::GlobalValue::ExternalLinkage, 1013 0, MangledName, 0, 1014 false, Ty->getAddressSpace()); 1015 1016 // Handle things which are present even on external declarations. 1017 if (D) { 1018 // FIXME: This code is overly simple and should be merged with other global 1019 // handling. 1020 GV->setConstant(DeclIsConstantGlobal(Context, D)); 1021 1022 // FIXME: Merge with other attribute handling code. 1023 if (D->getStorageClass() == VarDecl::PrivateExtern) 1024 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 1025 1026 if (D->hasAttr<WeakAttr>() || 1027 D->hasAttr<WeakImportAttr>()) 1028 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1029 1030 GV->setThreadLocal(D->isThreadSpecified()); 1031 } 1032 1033 return GV; 1034 } 1035 1036 1037 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1038 /// given global variable. If Ty is non-null and if the global doesn't exist, 1039 /// then it will be greated with the specified type instead of whatever the 1040 /// normal requested type would be. 1041 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1042 const llvm::Type *Ty) { 1043 assert(D->hasGlobalStorage() && "Not a global variable"); 1044 QualType ASTTy = D->getType(); 1045 if (Ty == 0) 1046 Ty = getTypes().ConvertTypeForMem(ASTTy); 1047 1048 const llvm::PointerType *PTy = 1049 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1050 1051 llvm::StringRef MangledName = getMangledName(D); 1052 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1053 } 1054 1055 /// CreateRuntimeVariable - Create a new runtime global variable with the 1056 /// specified type and name. 1057 llvm::Constant * 1058 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1059 llvm::StringRef Name) { 1060 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1061 } 1062 1063 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1064 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1065 1066 if (MayDeferGeneration(D)) { 1067 // If we have not seen a reference to this variable yet, place it 1068 // into the deferred declarations table to be emitted if needed 1069 // later. 1070 llvm::StringRef MangledName = getMangledName(D); 1071 if (!GetGlobalValue(MangledName)) { 1072 DeferredDecls[MangledName] = D; 1073 return; 1074 } 1075 } 1076 1077 // The tentative definition is the only definition. 1078 EmitGlobalVarDefinition(D); 1079 } 1080 1081 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1082 if (DefinitionRequired) 1083 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1084 } 1085 1086 llvm::GlobalVariable::LinkageTypes 1087 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1088 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1089 return llvm::GlobalVariable::InternalLinkage; 1090 1091 if (const CXXMethodDecl *KeyFunction 1092 = RD->getASTContext().getKeyFunction(RD)) { 1093 // If this class has a key function, use that to determine the linkage of 1094 // the vtable. 1095 const FunctionDecl *Def = 0; 1096 if (KeyFunction->hasBody(Def)) 1097 KeyFunction = cast<CXXMethodDecl>(Def); 1098 1099 switch (KeyFunction->getTemplateSpecializationKind()) { 1100 case TSK_Undeclared: 1101 case TSK_ExplicitSpecialization: 1102 if (KeyFunction->isInlined()) 1103 return llvm::GlobalVariable::WeakODRLinkage; 1104 1105 return llvm::GlobalVariable::ExternalLinkage; 1106 1107 case TSK_ImplicitInstantiation: 1108 case TSK_ExplicitInstantiationDefinition: 1109 return llvm::GlobalVariable::WeakODRLinkage; 1110 1111 case TSK_ExplicitInstantiationDeclaration: 1112 // FIXME: Use available_externally linkage. However, this currently 1113 // breaks LLVM's build due to undefined symbols. 1114 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1115 return llvm::GlobalVariable::WeakODRLinkage; 1116 } 1117 } 1118 1119 switch (RD->getTemplateSpecializationKind()) { 1120 case TSK_Undeclared: 1121 case TSK_ExplicitSpecialization: 1122 case TSK_ImplicitInstantiation: 1123 case TSK_ExplicitInstantiationDefinition: 1124 return llvm::GlobalVariable::WeakODRLinkage; 1125 1126 case TSK_ExplicitInstantiationDeclaration: 1127 // FIXME: Use available_externally linkage. However, this currently 1128 // breaks LLVM's build due to undefined symbols. 1129 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1130 return llvm::GlobalVariable::WeakODRLinkage; 1131 } 1132 1133 // Silence GCC warning. 1134 return llvm::GlobalVariable::WeakODRLinkage; 1135 } 1136 1137 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1138 return CharUnits::fromQuantity( 1139 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1140 } 1141 1142 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1143 llvm::Constant *Init = 0; 1144 QualType ASTTy = D->getType(); 1145 bool NonConstInit = false; 1146 1147 const Expr *InitExpr = D->getAnyInitializer(); 1148 1149 if (!InitExpr) { 1150 // This is a tentative definition; tentative definitions are 1151 // implicitly initialized with { 0 }. 1152 // 1153 // Note that tentative definitions are only emitted at the end of 1154 // a translation unit, so they should never have incomplete 1155 // type. In addition, EmitTentativeDefinition makes sure that we 1156 // never attempt to emit a tentative definition if a real one 1157 // exists. A use may still exists, however, so we still may need 1158 // to do a RAUW. 1159 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1160 Init = EmitNullConstant(D->getType()); 1161 } else { 1162 Init = EmitConstantExpr(InitExpr, D->getType()); 1163 if (!Init) { 1164 QualType T = InitExpr->getType(); 1165 if (D->getType()->isReferenceType()) 1166 T = D->getType(); 1167 1168 if (getLangOptions().CPlusPlus) { 1169 EmitCXXGlobalVarDeclInitFunc(D); 1170 Init = EmitNullConstant(T); 1171 NonConstInit = true; 1172 } else { 1173 ErrorUnsupported(D, "static initializer"); 1174 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1175 } 1176 } 1177 } 1178 1179 const llvm::Type* InitType = Init->getType(); 1180 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1181 1182 // Strip off a bitcast if we got one back. 1183 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1184 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1185 // all zero index gep. 1186 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1187 Entry = CE->getOperand(0); 1188 } 1189 1190 // Entry is now either a Function or GlobalVariable. 1191 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1192 1193 // We have a definition after a declaration with the wrong type. 1194 // We must make a new GlobalVariable* and update everything that used OldGV 1195 // (a declaration or tentative definition) with the new GlobalVariable* 1196 // (which will be a definition). 1197 // 1198 // This happens if there is a prototype for a global (e.g. 1199 // "extern int x[];") and then a definition of a different type (e.g. 1200 // "int x[10];"). This also happens when an initializer has a different type 1201 // from the type of the global (this happens with unions). 1202 if (GV == 0 || 1203 GV->getType()->getElementType() != InitType || 1204 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1205 1206 // Move the old entry aside so that we'll create a new one. 1207 Entry->setName(llvm::StringRef()); 1208 1209 // Make a new global with the correct type, this is now guaranteed to work. 1210 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1211 1212 // Replace all uses of the old global with the new global 1213 llvm::Constant *NewPtrForOldDecl = 1214 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1215 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1216 1217 // Erase the old global, since it is no longer used. 1218 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1219 } 1220 1221 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1222 SourceManager &SM = Context.getSourceManager(); 1223 AddAnnotation(EmitAnnotateAttr(GV, AA, 1224 SM.getInstantiationLineNumber(D->getLocation()))); 1225 } 1226 1227 GV->setInitializer(Init); 1228 1229 // If it is safe to mark the global 'constant', do so now. 1230 GV->setConstant(false); 1231 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1232 GV->setConstant(true); 1233 1234 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1235 1236 // Set the llvm linkage type as appropriate. 1237 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1238 if (Linkage == GVA_Internal) 1239 GV->setLinkage(llvm::Function::InternalLinkage); 1240 else if (D->hasAttr<DLLImportAttr>()) 1241 GV->setLinkage(llvm::Function::DLLImportLinkage); 1242 else if (D->hasAttr<DLLExportAttr>()) 1243 GV->setLinkage(llvm::Function::DLLExportLinkage); 1244 else if (D->hasAttr<WeakAttr>()) { 1245 if (GV->isConstant()) 1246 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1247 else 1248 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1249 } else if (Linkage == GVA_TemplateInstantiation || 1250 Linkage == GVA_ExplicitTemplateInstantiation) 1251 // FIXME: It seems like we can provide more specific linkage here 1252 // (LinkOnceODR, WeakODR). 1253 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1254 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1255 !D->hasExternalStorage() && !D->getInit() && 1256 !D->getAttr<SectionAttr>()) { 1257 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1258 // common vars aren't constant even if declared const. 1259 GV->setConstant(false); 1260 } else 1261 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1262 1263 SetCommonAttributes(D, GV); 1264 1265 // Emit global variable debug information. 1266 if (CGDebugInfo *DI = getDebugInfo()) { 1267 DI->setLocation(D->getLocation()); 1268 DI->EmitGlobalVariable(GV, D); 1269 } 1270 } 1271 1272 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1273 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1274 /// existing call uses of the old function in the module, this adjusts them to 1275 /// call the new function directly. 1276 /// 1277 /// This is not just a cleanup: the always_inline pass requires direct calls to 1278 /// functions to be able to inline them. If there is a bitcast in the way, it 1279 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1280 /// run at -O0. 1281 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1282 llvm::Function *NewFn) { 1283 // If we're redefining a global as a function, don't transform it. 1284 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1285 if (OldFn == 0) return; 1286 1287 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1288 llvm::SmallVector<llvm::Value*, 4> ArgList; 1289 1290 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1291 UI != E; ) { 1292 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1293 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1294 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1295 llvm::CallSite CS(CI); 1296 if (!CI || !CS.isCallee(I)) continue; 1297 1298 // If the return types don't match exactly, and if the call isn't dead, then 1299 // we can't transform this call. 1300 if (CI->getType() != NewRetTy && !CI->use_empty()) 1301 continue; 1302 1303 // If the function was passed too few arguments, don't transform. If extra 1304 // arguments were passed, we silently drop them. If any of the types 1305 // mismatch, we don't transform. 1306 unsigned ArgNo = 0; 1307 bool DontTransform = false; 1308 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1309 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1310 if (CS.arg_size() == ArgNo || 1311 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1312 DontTransform = true; 1313 break; 1314 } 1315 } 1316 if (DontTransform) 1317 continue; 1318 1319 // Okay, we can transform this. Create the new call instruction and copy 1320 // over the required information. 1321 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1322 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1323 ArgList.end(), "", CI); 1324 ArgList.clear(); 1325 if (!NewCall->getType()->isVoidTy()) 1326 NewCall->takeName(CI); 1327 NewCall->setAttributes(CI->getAttributes()); 1328 NewCall->setCallingConv(CI->getCallingConv()); 1329 1330 // Finally, remove the old call, replacing any uses with the new one. 1331 if (!CI->use_empty()) 1332 CI->replaceAllUsesWith(NewCall); 1333 1334 // Copy debug location attached to CI. 1335 if (!CI->getDebugLoc().isUnknown()) 1336 NewCall->setDebugLoc(CI->getDebugLoc()); 1337 CI->eraseFromParent(); 1338 } 1339 } 1340 1341 1342 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1343 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1344 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1345 getMangleContext().mangleInitDiscriminator(); 1346 // Get or create the prototype for the function. 1347 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1348 1349 // Strip off a bitcast if we got one back. 1350 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1351 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1352 Entry = CE->getOperand(0); 1353 } 1354 1355 1356 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1357 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1358 1359 // If the types mismatch then we have to rewrite the definition. 1360 assert(OldFn->isDeclaration() && 1361 "Shouldn't replace non-declaration"); 1362 1363 // F is the Function* for the one with the wrong type, we must make a new 1364 // Function* and update everything that used F (a declaration) with the new 1365 // Function* (which will be a definition). 1366 // 1367 // This happens if there is a prototype for a function 1368 // (e.g. "int f()") and then a definition of a different type 1369 // (e.g. "int f(int x)"). Move the old function aside so that it 1370 // doesn't interfere with GetAddrOfFunction. 1371 OldFn->setName(llvm::StringRef()); 1372 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1373 1374 // If this is an implementation of a function without a prototype, try to 1375 // replace any existing uses of the function (which may be calls) with uses 1376 // of the new function 1377 if (D->getType()->isFunctionNoProtoType()) { 1378 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1379 OldFn->removeDeadConstantUsers(); 1380 } 1381 1382 // Replace uses of F with the Function we will endow with a body. 1383 if (!Entry->use_empty()) { 1384 llvm::Constant *NewPtrForOldDecl = 1385 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1386 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1387 } 1388 1389 // Ok, delete the old function now, which is dead. 1390 OldFn->eraseFromParent(); 1391 1392 Entry = NewFn; 1393 } 1394 1395 llvm::Function *Fn = cast<llvm::Function>(Entry); 1396 setFunctionLinkage(D, Fn); 1397 1398 CodeGenFunction(*this).GenerateCode(D, Fn); 1399 1400 SetFunctionDefinitionAttributes(D, Fn); 1401 SetLLVMFunctionAttributesForDefinition(D, Fn); 1402 1403 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1404 AddGlobalCtor(Fn, CA->getPriority()); 1405 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1406 AddGlobalDtor(Fn, DA->getPriority()); 1407 } 1408 1409 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1410 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1411 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1412 assert(AA && "Not an alias?"); 1413 1414 llvm::StringRef MangledName = getMangledName(GD); 1415 1416 // If there is a definition in the module, then it wins over the alias. 1417 // This is dubious, but allow it to be safe. Just ignore the alias. 1418 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1419 if (Entry && !Entry->isDeclaration()) 1420 return; 1421 1422 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1423 1424 // Create a reference to the named value. This ensures that it is emitted 1425 // if a deferred decl. 1426 llvm::Constant *Aliasee; 1427 if (isa<llvm::FunctionType>(DeclTy)) 1428 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1429 else 1430 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1431 llvm::PointerType::getUnqual(DeclTy), 0); 1432 1433 // Create the new alias itself, but don't set a name yet. 1434 llvm::GlobalValue *GA = 1435 new llvm::GlobalAlias(Aliasee->getType(), 1436 llvm::Function::ExternalLinkage, 1437 "", Aliasee, &getModule()); 1438 1439 if (Entry) { 1440 assert(Entry->isDeclaration()); 1441 1442 // If there is a declaration in the module, then we had an extern followed 1443 // by the alias, as in: 1444 // extern int test6(); 1445 // ... 1446 // int test6() __attribute__((alias("test7"))); 1447 // 1448 // Remove it and replace uses of it with the alias. 1449 GA->takeName(Entry); 1450 1451 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1452 Entry->getType())); 1453 Entry->eraseFromParent(); 1454 } else { 1455 GA->setName(MangledName); 1456 } 1457 1458 // Set attributes which are particular to an alias; this is a 1459 // specialization of the attributes which may be set on a global 1460 // variable/function. 1461 if (D->hasAttr<DLLExportAttr>()) { 1462 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1463 // The dllexport attribute is ignored for undefined symbols. 1464 if (FD->hasBody()) 1465 GA->setLinkage(llvm::Function::DLLExportLinkage); 1466 } else { 1467 GA->setLinkage(llvm::Function::DLLExportLinkage); 1468 } 1469 } else if (D->hasAttr<WeakAttr>() || 1470 D->hasAttr<WeakRefAttr>() || 1471 D->hasAttr<WeakImportAttr>()) { 1472 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1473 } 1474 1475 SetCommonAttributes(D, GA); 1476 } 1477 1478 /// getBuiltinLibFunction - Given a builtin id for a function like 1479 /// "__builtin_fabsf", return a Function* for "fabsf". 1480 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1481 unsigned BuiltinID) { 1482 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1483 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1484 "isn't a lib fn"); 1485 1486 // Get the name, skip over the __builtin_ prefix (if necessary). 1487 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1488 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1489 Name += 10; 1490 1491 const llvm::FunctionType *Ty = 1492 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1493 1494 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1495 } 1496 1497 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1498 unsigned NumTys) { 1499 return llvm::Intrinsic::getDeclaration(&getModule(), 1500 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1501 } 1502 1503 1504 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1505 const llvm::Type *SrcType, 1506 const llvm::Type *SizeType) { 1507 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1508 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1509 } 1510 1511 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1512 const llvm::Type *SrcType, 1513 const llvm::Type *SizeType) { 1514 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1515 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1516 } 1517 1518 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1519 const llvm::Type *SizeType) { 1520 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1521 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1522 } 1523 1524 static llvm::StringMapEntry<llvm::Constant*> & 1525 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1526 const StringLiteral *Literal, 1527 bool TargetIsLSB, 1528 bool &IsUTF16, 1529 unsigned &StringLength) { 1530 unsigned NumBytes = Literal->getByteLength(); 1531 1532 // Check for simple case. 1533 if (!Literal->containsNonAsciiOrNull()) { 1534 StringLength = NumBytes; 1535 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1536 StringLength)); 1537 } 1538 1539 // Otherwise, convert the UTF8 literals into a byte string. 1540 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1541 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1542 UTF16 *ToPtr = &ToBuf[0]; 1543 1544 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1545 &ToPtr, ToPtr + NumBytes, 1546 strictConversion); 1547 1548 // Check for conversion failure. 1549 if (Result != conversionOK) { 1550 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1551 // this duplicate code. 1552 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1553 StringLength = NumBytes; 1554 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1555 StringLength)); 1556 } 1557 1558 // ConvertUTF8toUTF16 returns the length in ToPtr. 1559 StringLength = ToPtr - &ToBuf[0]; 1560 1561 // Render the UTF-16 string into a byte array and convert to the target byte 1562 // order. 1563 // 1564 // FIXME: This isn't something we should need to do here. 1565 llvm::SmallString<128> AsBytes; 1566 AsBytes.reserve(StringLength * 2); 1567 for (unsigned i = 0; i != StringLength; ++i) { 1568 unsigned short Val = ToBuf[i]; 1569 if (TargetIsLSB) { 1570 AsBytes.push_back(Val & 0xFF); 1571 AsBytes.push_back(Val >> 8); 1572 } else { 1573 AsBytes.push_back(Val >> 8); 1574 AsBytes.push_back(Val & 0xFF); 1575 } 1576 } 1577 // Append one extra null character, the second is automatically added by our 1578 // caller. 1579 AsBytes.push_back(0); 1580 1581 IsUTF16 = true; 1582 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1583 } 1584 1585 llvm::Constant * 1586 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1587 unsigned StringLength = 0; 1588 bool isUTF16 = false; 1589 llvm::StringMapEntry<llvm::Constant*> &Entry = 1590 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1591 getTargetData().isLittleEndian(), 1592 isUTF16, StringLength); 1593 1594 if (llvm::Constant *C = Entry.getValue()) 1595 return C; 1596 1597 llvm::Constant *Zero = 1598 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1599 llvm::Constant *Zeros[] = { Zero, Zero }; 1600 1601 // If we don't already have it, get __CFConstantStringClassReference. 1602 if (!CFConstantStringClassRef) { 1603 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1604 Ty = llvm::ArrayType::get(Ty, 0); 1605 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1606 "__CFConstantStringClassReference"); 1607 // Decay array -> ptr 1608 CFConstantStringClassRef = 1609 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1610 } 1611 1612 QualType CFTy = getContext().getCFConstantStringType(); 1613 1614 const llvm::StructType *STy = 1615 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1616 1617 std::vector<llvm::Constant*> Fields(4); 1618 1619 // Class pointer. 1620 Fields[0] = CFConstantStringClassRef; 1621 1622 // Flags. 1623 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1624 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1625 llvm::ConstantInt::get(Ty, 0x07C8); 1626 1627 // String pointer. 1628 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1629 1630 llvm::GlobalValue::LinkageTypes Linkage; 1631 bool isConstant; 1632 if (isUTF16) { 1633 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1634 Linkage = llvm::GlobalValue::InternalLinkage; 1635 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1636 // does make plain ascii ones writable. 1637 isConstant = true; 1638 } else { 1639 Linkage = llvm::GlobalValue::PrivateLinkage; 1640 isConstant = !Features.WritableStrings; 1641 } 1642 1643 llvm::GlobalVariable *GV = 1644 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1645 ".str"); 1646 if (isUTF16) { 1647 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1648 GV->setAlignment(Align.getQuantity()); 1649 } 1650 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1651 1652 // String length. 1653 Ty = getTypes().ConvertType(getContext().LongTy); 1654 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1655 1656 // The struct. 1657 C = llvm::ConstantStruct::get(STy, Fields); 1658 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1659 llvm::GlobalVariable::PrivateLinkage, C, 1660 "_unnamed_cfstring_"); 1661 if (const char *Sect = getContext().Target.getCFStringSection()) 1662 GV->setSection(Sect); 1663 Entry.setValue(GV); 1664 1665 return GV; 1666 } 1667 1668 llvm::Constant * 1669 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1670 unsigned StringLength = 0; 1671 bool isUTF16 = false; 1672 llvm::StringMapEntry<llvm::Constant*> &Entry = 1673 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1674 getTargetData().isLittleEndian(), 1675 isUTF16, StringLength); 1676 1677 if (llvm::Constant *C = Entry.getValue()) 1678 return C; 1679 1680 llvm::Constant *Zero = 1681 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1682 llvm::Constant *Zeros[] = { Zero, Zero }; 1683 1684 // If we don't already have it, get _NSConstantStringClassReference. 1685 if (!NSConstantStringClassRef) { 1686 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1687 Ty = llvm::ArrayType::get(Ty, 0); 1688 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1689 Features.ObjCNonFragileABI ? 1690 "OBJC_CLASS_$_NSConstantString" : 1691 "_NSConstantStringClassReference"); 1692 // Decay array -> ptr 1693 NSConstantStringClassRef = 1694 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1695 } 1696 1697 QualType NSTy = getContext().getNSConstantStringType(); 1698 1699 const llvm::StructType *STy = 1700 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1701 1702 std::vector<llvm::Constant*> Fields(3); 1703 1704 // Class pointer. 1705 Fields[0] = NSConstantStringClassRef; 1706 1707 // String pointer. 1708 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1709 1710 llvm::GlobalValue::LinkageTypes Linkage; 1711 bool isConstant; 1712 if (isUTF16) { 1713 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1714 Linkage = llvm::GlobalValue::InternalLinkage; 1715 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1716 // does make plain ascii ones writable. 1717 isConstant = true; 1718 } else { 1719 Linkage = llvm::GlobalValue::PrivateLinkage; 1720 isConstant = !Features.WritableStrings; 1721 } 1722 1723 llvm::GlobalVariable *GV = 1724 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1725 ".str"); 1726 if (isUTF16) { 1727 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1728 GV->setAlignment(Align.getQuantity()); 1729 } 1730 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1731 1732 // String length. 1733 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1734 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1735 1736 // The struct. 1737 C = llvm::ConstantStruct::get(STy, Fields); 1738 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1739 llvm::GlobalVariable::PrivateLinkage, C, 1740 "_unnamed_nsstring_"); 1741 // FIXME. Fix section. 1742 if (const char *Sect = 1743 Features.ObjCNonFragileABI 1744 ? getContext().Target.getNSStringNonFragileABISection() 1745 : getContext().Target.getNSStringSection()) 1746 GV->setSection(Sect); 1747 Entry.setValue(GV); 1748 1749 return GV; 1750 } 1751 1752 /// GetStringForStringLiteral - Return the appropriate bytes for a 1753 /// string literal, properly padded to match the literal type. 1754 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1755 const char *StrData = E->getStrData(); 1756 unsigned Len = E->getByteLength(); 1757 1758 const ConstantArrayType *CAT = 1759 getContext().getAsConstantArrayType(E->getType()); 1760 assert(CAT && "String isn't pointer or array!"); 1761 1762 // Resize the string to the right size. 1763 std::string Str(StrData, StrData+Len); 1764 uint64_t RealLen = CAT->getSize().getZExtValue(); 1765 1766 if (E->isWide()) 1767 RealLen *= getContext().Target.getWCharWidth()/8; 1768 1769 Str.resize(RealLen, '\0'); 1770 1771 return Str; 1772 } 1773 1774 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1775 /// constant array for the given string literal. 1776 llvm::Constant * 1777 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1778 // FIXME: This can be more efficient. 1779 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1780 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1781 if (S->isWide()) { 1782 llvm::Type *DestTy = 1783 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1784 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1785 } 1786 return C; 1787 } 1788 1789 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1790 /// array for the given ObjCEncodeExpr node. 1791 llvm::Constant * 1792 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1793 std::string Str; 1794 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1795 1796 return GetAddrOfConstantCString(Str); 1797 } 1798 1799 1800 /// GenerateWritableString -- Creates storage for a string literal. 1801 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1802 bool constant, 1803 CodeGenModule &CGM, 1804 const char *GlobalName) { 1805 // Create Constant for this string literal. Don't add a '\0'. 1806 llvm::Constant *C = 1807 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1808 1809 // Create a global variable for this string 1810 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1811 llvm::GlobalValue::PrivateLinkage, 1812 C, GlobalName); 1813 } 1814 1815 /// GetAddrOfConstantString - Returns a pointer to a character array 1816 /// containing the literal. This contents are exactly that of the 1817 /// given string, i.e. it will not be null terminated automatically; 1818 /// see GetAddrOfConstantCString. Note that whether the result is 1819 /// actually a pointer to an LLVM constant depends on 1820 /// Feature.WriteableStrings. 1821 /// 1822 /// The result has pointer to array type. 1823 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1824 const char *GlobalName) { 1825 bool IsConstant = !Features.WritableStrings; 1826 1827 // Get the default prefix if a name wasn't specified. 1828 if (!GlobalName) 1829 GlobalName = ".str"; 1830 1831 // Don't share any string literals if strings aren't constant. 1832 if (!IsConstant) 1833 return GenerateStringLiteral(str, false, *this, GlobalName); 1834 1835 llvm::StringMapEntry<llvm::Constant *> &Entry = 1836 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1837 1838 if (Entry.getValue()) 1839 return Entry.getValue(); 1840 1841 // Create a global variable for this. 1842 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1843 Entry.setValue(C); 1844 return C; 1845 } 1846 1847 /// GetAddrOfConstantCString - Returns a pointer to a character 1848 /// array containing the literal and a terminating '\-' 1849 /// character. The result has pointer to array type. 1850 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1851 const char *GlobalName){ 1852 return GetAddrOfConstantString(str + '\0', GlobalName); 1853 } 1854 1855 /// EmitObjCPropertyImplementations - Emit information for synthesized 1856 /// properties for an implementation. 1857 void CodeGenModule::EmitObjCPropertyImplementations(const 1858 ObjCImplementationDecl *D) { 1859 for (ObjCImplementationDecl::propimpl_iterator 1860 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1861 ObjCPropertyImplDecl *PID = *i; 1862 1863 // Dynamic is just for type-checking. 1864 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1865 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1866 1867 // Determine which methods need to be implemented, some may have 1868 // been overridden. Note that ::isSynthesized is not the method 1869 // we want, that just indicates if the decl came from a 1870 // property. What we want to know is if the method is defined in 1871 // this implementation. 1872 if (!D->getInstanceMethod(PD->getGetterName())) 1873 CodeGenFunction(*this).GenerateObjCGetter( 1874 const_cast<ObjCImplementationDecl *>(D), PID); 1875 if (!PD->isReadOnly() && 1876 !D->getInstanceMethod(PD->getSetterName())) 1877 CodeGenFunction(*this).GenerateObjCSetter( 1878 const_cast<ObjCImplementationDecl *>(D), PID); 1879 } 1880 } 1881 } 1882 1883 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1884 /// for an implementation. 1885 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1886 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1887 return; 1888 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1889 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1890 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1891 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1892 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1893 D->getLocation(), 1894 D->getLocation(), cxxSelector, 1895 getContext().VoidTy, 0, 1896 DC, true, false, true, 1897 ObjCMethodDecl::Required); 1898 D->addInstanceMethod(DTORMethod); 1899 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1900 1901 II = &getContext().Idents.get(".cxx_construct"); 1902 cxxSelector = getContext().Selectors.getSelector(0, &II); 1903 // The constructor returns 'self'. 1904 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1905 D->getLocation(), 1906 D->getLocation(), cxxSelector, 1907 getContext().getObjCIdType(), 0, 1908 DC, true, false, true, 1909 ObjCMethodDecl::Required); 1910 D->addInstanceMethod(CTORMethod); 1911 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1912 1913 1914 } 1915 1916 /// EmitNamespace - Emit all declarations in a namespace. 1917 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1918 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1919 I != E; ++I) 1920 EmitTopLevelDecl(*I); 1921 } 1922 1923 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1924 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1925 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1926 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1927 ErrorUnsupported(LSD, "linkage spec"); 1928 return; 1929 } 1930 1931 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1932 I != E; ++I) 1933 EmitTopLevelDecl(*I); 1934 } 1935 1936 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1937 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1938 // If an error has occurred, stop code generation, but continue 1939 // parsing and semantic analysis (to ensure all warnings and errors 1940 // are emitted). 1941 if (Diags.hasErrorOccurred()) 1942 return; 1943 1944 // Ignore dependent declarations. 1945 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1946 return; 1947 1948 switch (D->getKind()) { 1949 case Decl::CXXConversion: 1950 case Decl::CXXMethod: 1951 case Decl::Function: 1952 // Skip function templates 1953 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1954 return; 1955 1956 EmitGlobal(cast<FunctionDecl>(D)); 1957 break; 1958 1959 case Decl::Var: 1960 EmitGlobal(cast<VarDecl>(D)); 1961 break; 1962 1963 // C++ Decls 1964 case Decl::Namespace: 1965 EmitNamespace(cast<NamespaceDecl>(D)); 1966 break; 1967 // No code generation needed. 1968 case Decl::UsingShadow: 1969 case Decl::Using: 1970 case Decl::UsingDirective: 1971 case Decl::ClassTemplate: 1972 case Decl::FunctionTemplate: 1973 case Decl::NamespaceAlias: 1974 break; 1975 case Decl::CXXConstructor: 1976 // Skip function templates 1977 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1978 return; 1979 1980 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1981 break; 1982 case Decl::CXXDestructor: 1983 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1984 break; 1985 1986 case Decl::StaticAssert: 1987 // Nothing to do. 1988 break; 1989 1990 // Objective-C Decls 1991 1992 // Forward declarations, no (immediate) code generation. 1993 case Decl::ObjCClass: 1994 case Decl::ObjCForwardProtocol: 1995 case Decl::ObjCCategory: 1996 case Decl::ObjCInterface: 1997 break; 1998 1999 case Decl::ObjCProtocol: 2000 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 2001 break; 2002 2003 case Decl::ObjCCategoryImpl: 2004 // Categories have properties but don't support synthesize so we 2005 // can ignore them here. 2006 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2007 break; 2008 2009 case Decl::ObjCImplementation: { 2010 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2011 EmitObjCPropertyImplementations(OMD); 2012 EmitObjCIvarInitializations(OMD); 2013 Runtime->GenerateClass(OMD); 2014 break; 2015 } 2016 case Decl::ObjCMethod: { 2017 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2018 // If this is not a prototype, emit the body. 2019 if (OMD->getBody()) 2020 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2021 break; 2022 } 2023 case Decl::ObjCCompatibleAlias: 2024 // compatibility-alias is a directive and has no code gen. 2025 break; 2026 2027 case Decl::LinkageSpec: 2028 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2029 break; 2030 2031 case Decl::FileScopeAsm: { 2032 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2033 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2034 2035 const std::string &S = getModule().getModuleInlineAsm(); 2036 if (S.empty()) 2037 getModule().setModuleInlineAsm(AsmString); 2038 else 2039 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2040 break; 2041 } 2042 2043 default: 2044 // Make sure we handled everything we should, every other kind is a 2045 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2046 // function. Need to recode Decl::Kind to do that easily. 2047 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2048 } 2049 } 2050 2051 /// Turns the given pointer into a constant. 2052 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2053 const void *Ptr) { 2054 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2055 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2056 return llvm::ConstantInt::get(i64, PtrInt); 2057 } 2058 2059 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2060 llvm::NamedMDNode *&GlobalMetadata, 2061 GlobalDecl D, 2062 llvm::GlobalValue *Addr) { 2063 if (!GlobalMetadata) 2064 GlobalMetadata = 2065 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2066 2067 // TODO: should we report variant information for ctors/dtors? 2068 llvm::Value *Ops[] = { 2069 Addr, 2070 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2071 }; 2072 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2073 } 2074 2075 /// Emits metadata nodes associating all the global values in the 2076 /// current module with the Decls they came from. This is useful for 2077 /// projects using IR gen as a subroutine. 2078 /// 2079 /// Since there's currently no way to associate an MDNode directly 2080 /// with an llvm::GlobalValue, we create a global named metadata 2081 /// with the name 'clang.global.decl.ptrs'. 2082 void CodeGenModule::EmitDeclMetadata() { 2083 llvm::NamedMDNode *GlobalMetadata = 0; 2084 2085 // StaticLocalDeclMap 2086 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2087 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2088 I != E; ++I) { 2089 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2090 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2091 } 2092 } 2093 2094 /// Emits metadata nodes for all the local variables in the current 2095 /// function. 2096 void CodeGenFunction::EmitDeclMetadata() { 2097 if (LocalDeclMap.empty()) return; 2098 2099 llvm::LLVMContext &Context = getLLVMContext(); 2100 2101 // Find the unique metadata ID for this name. 2102 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2103 2104 llvm::NamedMDNode *GlobalMetadata = 0; 2105 2106 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2107 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2108 const Decl *D = I->first; 2109 llvm::Value *Addr = I->second; 2110 2111 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2112 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2113 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2114 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2115 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2116 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2117 } 2118 } 2119 } 2120