1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 emitMultiVersionFunctions(); 399 EmitCXXGlobalInitFunc(); 400 EmitCXXGlobalDtorFunc(); 401 EmitCXXThreadLocalInitFunc(); 402 if (ObjCRuntime) 403 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 404 AddGlobalCtor(ObjCInitFunction); 405 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 406 CUDARuntime) { 407 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 408 AddGlobalCtor(CudaCtorFunction); 409 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 410 AddGlobalDtor(CudaDtorFunction); 411 } 412 if (OpenMPRuntime) 413 if (llvm::Function *OpenMPRegistrationFunction = 414 OpenMPRuntime->emitRegistrationFunction()) { 415 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 416 OpenMPRegistrationFunction : nullptr; 417 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 418 } 419 if (PGOReader) { 420 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 421 if (PGOStats.hasDiagnostics()) 422 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 423 } 424 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 425 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 426 EmitGlobalAnnotations(); 427 EmitStaticExternCAliases(); 428 EmitDeferredUnusedCoverageMappings(); 429 if (CoverageMapping) 430 CoverageMapping->emit(); 431 if (CodeGenOpts.SanitizeCfiCrossDso) { 432 CodeGenFunction(*this).EmitCfiCheckFail(); 433 CodeGenFunction(*this).EmitCfiCheckStub(); 434 } 435 emitAtAvailableLinkGuard(); 436 emitLLVMUsed(); 437 if (SanStats) 438 SanStats->finish(); 439 440 if (CodeGenOpts.Autolink && 441 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 442 EmitModuleLinkOptions(); 443 } 444 445 // Record mregparm value now so it is visible through rest of codegen. 446 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 447 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 448 CodeGenOpts.NumRegisterParameters); 449 450 if (CodeGenOpts.DwarfVersion) { 451 // We actually want the latest version when there are conflicts. 452 // We can change from Warning to Latest if such mode is supported. 453 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 454 CodeGenOpts.DwarfVersion); 455 } 456 if (CodeGenOpts.EmitCodeView) { 457 // Indicate that we want CodeView in the metadata. 458 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 459 } 460 if (CodeGenOpts.ControlFlowGuard) { 461 // We want function ID tables for Control Flow Guard. 462 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 463 } 464 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 465 // We don't support LTO with 2 with different StrictVTablePointers 466 // FIXME: we could support it by stripping all the information introduced 467 // by StrictVTablePointers. 468 469 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 470 471 llvm::Metadata *Ops[2] = { 472 llvm::MDString::get(VMContext, "StrictVTablePointers"), 473 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 474 llvm::Type::getInt32Ty(VMContext), 1))}; 475 476 getModule().addModuleFlag(llvm::Module::Require, 477 "StrictVTablePointersRequirement", 478 llvm::MDNode::get(VMContext, Ops)); 479 } 480 if (DebugInfo) 481 // We support a single version in the linked module. The LLVM 482 // parser will drop debug info with a different version number 483 // (and warn about it, too). 484 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 485 llvm::DEBUG_METADATA_VERSION); 486 487 // We need to record the widths of enums and wchar_t, so that we can generate 488 // the correct build attributes in the ARM backend. wchar_size is also used by 489 // TargetLibraryInfo. 490 uint64_t WCharWidth = 491 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 492 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 493 494 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 495 if ( Arch == llvm::Triple::arm 496 || Arch == llvm::Triple::armeb 497 || Arch == llvm::Triple::thumb 498 || Arch == llvm::Triple::thumbeb) { 499 // The minimum width of an enum in bytes 500 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 501 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 502 } 503 504 if (CodeGenOpts.SanitizeCfiCrossDso) { 505 // Indicate that we want cross-DSO control flow integrity checks. 506 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 507 } 508 509 if (CodeGenOpts.CFProtectionReturn && 510 Target.checkCFProtectionReturnSupported(getDiags())) { 511 // Indicate that we want to instrument return control flow protection. 512 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 513 1); 514 } 515 516 if (CodeGenOpts.CFProtectionBranch && 517 Target.checkCFProtectionBranchSupported(getDiags())) { 518 // Indicate that we want to instrument branch control flow protection. 519 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 520 1); 521 } 522 523 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 524 // Indicate whether __nvvm_reflect should be configured to flush denormal 525 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 526 // property.) 527 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 528 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 529 } 530 531 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 532 if (LangOpts.OpenCL) { 533 EmitOpenCLMetadata(); 534 // Emit SPIR version. 535 if (getTriple().getArch() == llvm::Triple::spir || 536 getTriple().getArch() == llvm::Triple::spir64) { 537 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 538 // opencl.spir.version named metadata. 539 llvm::Metadata *SPIRVerElts[] = { 540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 541 Int32Ty, LangOpts.OpenCLVersion / 100)), 542 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 543 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 544 llvm::NamedMDNode *SPIRVerMD = 545 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 546 llvm::LLVMContext &Ctx = TheModule.getContext(); 547 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 548 } 549 } 550 551 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 552 assert(PLevel < 3 && "Invalid PIC Level"); 553 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 554 if (Context.getLangOpts().PIE) 555 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 556 } 557 558 SimplifyPersonality(); 559 560 if (getCodeGenOpts().EmitDeclMetadata) 561 EmitDeclMetadata(); 562 563 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 564 EmitCoverageFile(); 565 566 if (DebugInfo) 567 DebugInfo->finalize(); 568 569 EmitVersionIdentMetadata(); 570 571 EmitTargetMetadata(); 572 } 573 574 void CodeGenModule::EmitOpenCLMetadata() { 575 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 576 // opencl.ocl.version named metadata node. 577 llvm::Metadata *OCLVerElts[] = { 578 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 579 Int32Ty, LangOpts.OpenCLVersion / 100)), 580 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 581 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 582 llvm::NamedMDNode *OCLVerMD = 583 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 584 llvm::LLVMContext &Ctx = TheModule.getContext(); 585 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 586 } 587 588 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 589 // Make sure that this type is translated. 590 Types.UpdateCompletedType(TD); 591 } 592 593 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 594 // Make sure that this type is translated. 595 Types.RefreshTypeCacheForClass(RD); 596 } 597 598 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 599 if (!TBAA) 600 return nullptr; 601 return TBAA->getTypeInfo(QTy); 602 } 603 604 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 605 // Pointee values may have incomplete types, but they shall never be 606 // dereferenced. 607 if (AccessType->isIncompleteType()) 608 return TBAAAccessInfo::getIncompleteInfo(); 609 610 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 611 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 612 } 613 614 TBAAAccessInfo 615 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 616 if (!TBAA) 617 return TBAAAccessInfo(); 618 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 619 } 620 621 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 622 if (!TBAA) 623 return nullptr; 624 return TBAA->getTBAAStructInfo(QTy); 625 } 626 627 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 628 if (!TBAA) 629 return nullptr; 630 return TBAA->getBaseTypeInfo(QTy); 631 } 632 633 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 634 if (!TBAA) 635 return nullptr; 636 return TBAA->getAccessTagInfo(Info); 637 } 638 639 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 640 TBAAAccessInfo TargetInfo) { 641 if (!TBAA) 642 return TBAAAccessInfo(); 643 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 644 } 645 646 TBAAAccessInfo 647 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 648 TBAAAccessInfo InfoB) { 649 if (!TBAA) 650 return TBAAAccessInfo(); 651 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 652 } 653 654 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 655 TBAAAccessInfo TBAAInfo) { 656 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 657 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 658 } 659 660 void CodeGenModule::DecorateInstructionWithInvariantGroup( 661 llvm::Instruction *I, const CXXRecordDecl *RD) { 662 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 663 llvm::MDNode::get(getLLVMContext(), {})); 664 } 665 666 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 667 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 668 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 669 } 670 671 /// ErrorUnsupported - Print out an error that codegen doesn't support the 672 /// specified stmt yet. 673 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 674 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 675 "cannot compile this %0 yet"); 676 std::string Msg = Type; 677 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 678 << Msg << S->getSourceRange(); 679 } 680 681 /// ErrorUnsupported - Print out an error that codegen doesn't support the 682 /// specified decl yet. 683 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 684 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 685 "cannot compile this %0 yet"); 686 std::string Msg = Type; 687 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 688 } 689 690 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 691 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 692 } 693 694 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 695 const NamedDecl *D, 696 ForDefinition_t IsForDefinition) const { 697 // Internal definitions always have default visibility. 698 if (GV->hasLocalLinkage()) { 699 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 700 return; 701 } 702 703 // Set visibility for definitions. 704 LinkageInfo LV = D->getLinkageAndVisibility(); 705 if (LV.isVisibilityExplicit() || 706 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 707 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 708 } 709 710 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 711 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 712 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 713 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 714 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 715 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 716 } 717 718 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 719 CodeGenOptions::TLSModel M) { 720 switch (M) { 721 case CodeGenOptions::GeneralDynamicTLSModel: 722 return llvm::GlobalVariable::GeneralDynamicTLSModel; 723 case CodeGenOptions::LocalDynamicTLSModel: 724 return llvm::GlobalVariable::LocalDynamicTLSModel; 725 case CodeGenOptions::InitialExecTLSModel: 726 return llvm::GlobalVariable::InitialExecTLSModel; 727 case CodeGenOptions::LocalExecTLSModel: 728 return llvm::GlobalVariable::LocalExecTLSModel; 729 } 730 llvm_unreachable("Invalid TLS model!"); 731 } 732 733 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 734 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 735 736 llvm::GlobalValue::ThreadLocalMode TLM; 737 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 738 739 // Override the TLS model if it is explicitly specified. 740 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 741 TLM = GetLLVMTLSModel(Attr->getModel()); 742 } 743 744 GV->setThreadLocalMode(TLM); 745 } 746 747 static void AppendTargetMangling(const CodeGenModule &CGM, 748 const TargetAttr *Attr, raw_ostream &Out) { 749 if (Attr->isDefaultVersion()) 750 return; 751 752 Out << '.'; 753 const auto &Target = CGM.getTarget(); 754 TargetAttr::ParsedTargetAttr Info = 755 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 756 return Target.multiVersionSortPriority(LHS) > 757 Target.multiVersionSortPriority(RHS); 758 }); 759 760 bool IsFirst = true; 761 762 if (!Info.Architecture.empty()) { 763 IsFirst = false; 764 Out << "arch_" << Info.Architecture; 765 } 766 767 for (StringRef Feat : Info.Features) { 768 if (!IsFirst) 769 Out << '_'; 770 IsFirst = false; 771 Out << Feat.substr(1); 772 } 773 } 774 775 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 776 const NamedDecl *ND, 777 bool OmitTargetMangling = false) { 778 SmallString<256> Buffer; 779 llvm::raw_svector_ostream Out(Buffer); 780 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 781 if (MC.shouldMangleDeclName(ND)) { 782 llvm::raw_svector_ostream Out(Buffer); 783 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 784 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 785 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 786 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 787 else 788 MC.mangleName(ND, Out); 789 } else { 790 IdentifierInfo *II = ND->getIdentifier(); 791 assert(II && "Attempt to mangle unnamed decl."); 792 const auto *FD = dyn_cast<FunctionDecl>(ND); 793 794 if (FD && 795 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 796 llvm::raw_svector_ostream Out(Buffer); 797 Out << "__regcall3__" << II->getName(); 798 } else { 799 Out << II->getName(); 800 } 801 } 802 803 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 804 if (FD->isMultiVersion() && !OmitTargetMangling) 805 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 806 return Out.str(); 807 } 808 809 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 810 const FunctionDecl *FD) { 811 if (!FD->isMultiVersion()) 812 return; 813 814 // Get the name of what this would be without the 'target' attribute. This 815 // allows us to lookup the version that was emitted when this wasn't a 816 // multiversion function. 817 std::string NonTargetName = 818 getMangledNameImpl(*this, GD, FD, /*OmitTargetMangling=*/true); 819 GlobalDecl OtherGD; 820 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 821 assert(OtherGD.getCanonicalDecl() 822 .getDecl() 823 ->getAsFunction() 824 ->isMultiVersion() && 825 "Other GD should now be a multiversioned function"); 826 // OtherFD is the version of this function that was mangled BEFORE 827 // becoming a MultiVersion function. It potentially needs to be updated. 828 const FunctionDecl *OtherFD = 829 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 830 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 831 // This is so that if the initial version was already the 'default' 832 // version, we don't try to update it. 833 if (OtherName != NonTargetName) { 834 // Remove instead of erase, since others may have stored the StringRef 835 // to this. 836 const auto ExistingRecord = Manglings.find(NonTargetName); 837 if (ExistingRecord != std::end(Manglings)) 838 Manglings.remove(&(*ExistingRecord)); 839 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 840 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 841 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 842 Entry->setName(OtherName); 843 } 844 } 845 } 846 847 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 848 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 849 850 // Some ABIs don't have constructor variants. Make sure that base and 851 // complete constructors get mangled the same. 852 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 853 if (!getTarget().getCXXABI().hasConstructorVariants()) { 854 CXXCtorType OrigCtorType = GD.getCtorType(); 855 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 856 if (OrigCtorType == Ctor_Base) 857 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 858 } 859 } 860 861 auto FoundName = MangledDeclNames.find(CanonicalGD); 862 if (FoundName != MangledDeclNames.end()) 863 return FoundName->second; 864 865 866 // Keep the first result in the case of a mangling collision. 867 const auto *ND = cast<NamedDecl>(GD.getDecl()); 868 auto Result = 869 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 870 return MangledDeclNames[CanonicalGD] = Result.first->first(); 871 } 872 873 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 874 const BlockDecl *BD) { 875 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 876 const Decl *D = GD.getDecl(); 877 878 SmallString<256> Buffer; 879 llvm::raw_svector_ostream Out(Buffer); 880 if (!D) 881 MangleCtx.mangleGlobalBlock(BD, 882 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 883 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 884 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 885 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 886 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 887 else 888 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 889 890 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 891 return Result.first->first(); 892 } 893 894 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 895 return getModule().getNamedValue(Name); 896 } 897 898 /// AddGlobalCtor - Add a function to the list that will be called before 899 /// main() runs. 900 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 901 llvm::Constant *AssociatedData) { 902 // FIXME: Type coercion of void()* types. 903 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 904 } 905 906 /// AddGlobalDtor - Add a function to the list that will be called 907 /// when the module is unloaded. 908 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 909 // FIXME: Type coercion of void()* types. 910 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 911 } 912 913 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 914 if (Fns.empty()) return; 915 916 // Ctor function type is void()*. 917 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 918 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 919 920 // Get the type of a ctor entry, { i32, void ()*, i8* }. 921 llvm::StructType *CtorStructTy = llvm::StructType::get( 922 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 923 924 // Construct the constructor and destructor arrays. 925 ConstantInitBuilder builder(*this); 926 auto ctors = builder.beginArray(CtorStructTy); 927 for (const auto &I : Fns) { 928 auto ctor = ctors.beginStruct(CtorStructTy); 929 ctor.addInt(Int32Ty, I.Priority); 930 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 931 if (I.AssociatedData) 932 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 933 else 934 ctor.addNullPointer(VoidPtrTy); 935 ctor.finishAndAddTo(ctors); 936 } 937 938 auto list = 939 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 940 /*constant*/ false, 941 llvm::GlobalValue::AppendingLinkage); 942 943 // The LTO linker doesn't seem to like it when we set an alignment 944 // on appending variables. Take it off as a workaround. 945 list->setAlignment(0); 946 947 Fns.clear(); 948 } 949 950 llvm::GlobalValue::LinkageTypes 951 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 952 const auto *D = cast<FunctionDecl>(GD.getDecl()); 953 954 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 955 956 if (isa<CXXDestructorDecl>(D) && 957 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 958 GD.getDtorType())) { 959 // Destructor variants in the Microsoft C++ ABI are always internal or 960 // linkonce_odr thunks emitted on an as-needed basis. 961 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 962 : llvm::GlobalValue::LinkOnceODRLinkage; 963 } 964 965 if (isa<CXXConstructorDecl>(D) && 966 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 967 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 968 // Our approach to inheriting constructors is fundamentally different from 969 // that used by the MS ABI, so keep our inheriting constructor thunks 970 // internal rather than trying to pick an unambiguous mangling for them. 971 return llvm::GlobalValue::InternalLinkage; 972 } 973 974 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 975 } 976 977 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 978 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 979 980 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 981 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 982 // Don't dllexport/import destructor thunks. 983 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 984 return; 985 } 986 } 987 988 if (FD->hasAttr<DLLImportAttr>()) 989 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 990 else if (FD->hasAttr<DLLExportAttr>()) 991 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 992 else 993 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 994 } 995 996 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 997 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 998 if (!MDS) return nullptr; 999 1000 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1001 } 1002 1003 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 1004 llvm::Function *F) { 1005 setNonAliasAttributes(D, F); 1006 } 1007 1008 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1009 const CGFunctionInfo &Info, 1010 llvm::Function *F) { 1011 unsigned CallingConv; 1012 llvm::AttributeList PAL; 1013 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1014 F->setAttributes(PAL); 1015 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1016 } 1017 1018 /// Determines whether the language options require us to model 1019 /// unwind exceptions. We treat -fexceptions as mandating this 1020 /// except under the fragile ObjC ABI with only ObjC exceptions 1021 /// enabled. This means, for example, that C with -fexceptions 1022 /// enables this. 1023 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1024 // If exceptions are completely disabled, obviously this is false. 1025 if (!LangOpts.Exceptions) return false; 1026 1027 // If C++ exceptions are enabled, this is true. 1028 if (LangOpts.CXXExceptions) return true; 1029 1030 // If ObjC exceptions are enabled, this depends on the ABI. 1031 if (LangOpts.ObjCExceptions) { 1032 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1033 } 1034 1035 return true; 1036 } 1037 1038 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1039 llvm::Function *F) { 1040 llvm::AttrBuilder B; 1041 1042 if (CodeGenOpts.UnwindTables) 1043 B.addAttribute(llvm::Attribute::UWTable); 1044 1045 if (!hasUnwindExceptions(LangOpts)) 1046 B.addAttribute(llvm::Attribute::NoUnwind); 1047 1048 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1049 B.addAttribute(llvm::Attribute::StackProtect); 1050 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1051 B.addAttribute(llvm::Attribute::StackProtectStrong); 1052 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1053 B.addAttribute(llvm::Attribute::StackProtectReq); 1054 1055 if (!D) { 1056 // If we don't have a declaration to control inlining, the function isn't 1057 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1058 // disabled, mark the function as noinline. 1059 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1060 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1061 B.addAttribute(llvm::Attribute::NoInline); 1062 1063 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1064 return; 1065 } 1066 1067 // Track whether we need to add the optnone LLVM attribute, 1068 // starting with the default for this optimization level. 1069 bool ShouldAddOptNone = 1070 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1071 // We can't add optnone in the following cases, it won't pass the verifier. 1072 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1073 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1074 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1075 1076 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1077 B.addAttribute(llvm::Attribute::OptimizeNone); 1078 1079 // OptimizeNone implies noinline; we should not be inlining such functions. 1080 B.addAttribute(llvm::Attribute::NoInline); 1081 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1082 "OptimizeNone and AlwaysInline on same function!"); 1083 1084 // We still need to handle naked functions even though optnone subsumes 1085 // much of their semantics. 1086 if (D->hasAttr<NakedAttr>()) 1087 B.addAttribute(llvm::Attribute::Naked); 1088 1089 // OptimizeNone wins over OptimizeForSize and MinSize. 1090 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1091 F->removeFnAttr(llvm::Attribute::MinSize); 1092 } else if (D->hasAttr<NakedAttr>()) { 1093 // Naked implies noinline: we should not be inlining such functions. 1094 B.addAttribute(llvm::Attribute::Naked); 1095 B.addAttribute(llvm::Attribute::NoInline); 1096 } else if (D->hasAttr<NoDuplicateAttr>()) { 1097 B.addAttribute(llvm::Attribute::NoDuplicate); 1098 } else if (D->hasAttr<NoInlineAttr>()) { 1099 B.addAttribute(llvm::Attribute::NoInline); 1100 } else if (D->hasAttr<AlwaysInlineAttr>() && 1101 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1102 // (noinline wins over always_inline, and we can't specify both in IR) 1103 B.addAttribute(llvm::Attribute::AlwaysInline); 1104 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1105 // If we're not inlining, then force everything that isn't always_inline to 1106 // carry an explicit noinline attribute. 1107 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1108 B.addAttribute(llvm::Attribute::NoInline); 1109 } else { 1110 // Otherwise, propagate the inline hint attribute and potentially use its 1111 // absence to mark things as noinline. 1112 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1113 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1114 return Redecl->isInlineSpecified(); 1115 })) { 1116 B.addAttribute(llvm::Attribute::InlineHint); 1117 } else if (CodeGenOpts.getInlining() == 1118 CodeGenOptions::OnlyHintInlining && 1119 !FD->isInlined() && 1120 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1121 B.addAttribute(llvm::Attribute::NoInline); 1122 } 1123 } 1124 } 1125 1126 // Add other optimization related attributes if we are optimizing this 1127 // function. 1128 if (!D->hasAttr<OptimizeNoneAttr>()) { 1129 if (D->hasAttr<ColdAttr>()) { 1130 if (!ShouldAddOptNone) 1131 B.addAttribute(llvm::Attribute::OptimizeForSize); 1132 B.addAttribute(llvm::Attribute::Cold); 1133 } 1134 1135 if (D->hasAttr<MinSizeAttr>()) 1136 B.addAttribute(llvm::Attribute::MinSize); 1137 } 1138 1139 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1140 1141 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1142 if (alignment) 1143 F->setAlignment(alignment); 1144 1145 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1146 // reserve a bit for differentiating between virtual and non-virtual member 1147 // functions. If the current target's C++ ABI requires this and this is a 1148 // member function, set its alignment accordingly. 1149 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1150 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1151 F->setAlignment(2); 1152 } 1153 1154 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1155 if (CodeGenOpts.SanitizeCfiCrossDso) 1156 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1157 CreateFunctionTypeMetadata(FD, F); 1158 } 1159 1160 void CodeGenModule::SetCommonAttributes(const Decl *D, 1161 llvm::GlobalValue *GV) { 1162 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1163 setGlobalVisibility(GV, ND, ForDefinition); 1164 else 1165 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1166 1167 if (D && D->hasAttr<UsedAttr>()) 1168 addUsedGlobal(GV); 1169 } 1170 1171 void CodeGenModule::setAliasAttributes(const Decl *D, 1172 llvm::GlobalValue *GV) { 1173 SetCommonAttributes(D, GV); 1174 1175 // Process the dllexport attribute based on whether the original definition 1176 // (not necessarily the aliasee) was exported. 1177 if (D->hasAttr<DLLExportAttr>()) 1178 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1179 } 1180 1181 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1182 llvm::GlobalObject *GO) { 1183 SetCommonAttributes(D, GO); 1184 1185 if (D) { 1186 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1187 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1188 GV->addAttribute("bss-section", SA->getName()); 1189 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1190 GV->addAttribute("data-section", SA->getName()); 1191 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1192 GV->addAttribute("rodata-section", SA->getName()); 1193 } 1194 1195 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1196 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1197 if (!D->getAttr<SectionAttr>()) 1198 F->addFnAttr("implicit-section-name", SA->getName()); 1199 } 1200 1201 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1202 GO->setSection(SA->getName()); 1203 } 1204 1205 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1206 } 1207 1208 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1209 llvm::Function *F, 1210 const CGFunctionInfo &FI) { 1211 SetLLVMFunctionAttributes(D, FI, F); 1212 SetLLVMFunctionAttributesForDefinition(D, F); 1213 1214 F->setLinkage(llvm::Function::InternalLinkage); 1215 1216 setNonAliasAttributes(D, F); 1217 } 1218 1219 static void setLinkageForGV(llvm::GlobalValue *GV, 1220 const NamedDecl *ND) { 1221 // Set linkage and visibility in case we never see a definition. 1222 LinkageInfo LV = ND->getLinkageAndVisibility(); 1223 if (!isExternallyVisible(LV.getLinkage())) { 1224 // Don't set internal linkage on declarations. 1225 } else { 1226 if (ND->hasAttr<DLLImportAttr>()) { 1227 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1228 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1229 } else if (ND->hasAttr<DLLExportAttr>()) { 1230 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1231 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1232 // "extern_weak" is overloaded in LLVM; we probably should have 1233 // separate linkage types for this. 1234 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1235 } 1236 } 1237 } 1238 1239 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1240 llvm::Function *F) { 1241 // Only if we are checking indirect calls. 1242 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1243 return; 1244 1245 // Non-static class methods are handled via vtable pointer checks elsewhere. 1246 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1247 return; 1248 1249 // Additionally, if building with cross-DSO support... 1250 if (CodeGenOpts.SanitizeCfiCrossDso) { 1251 // Skip available_externally functions. They won't be codegen'ed in the 1252 // current module anyway. 1253 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1254 return; 1255 } 1256 1257 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1258 F->addTypeMetadata(0, MD); 1259 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1260 1261 // Emit a hash-based bit set entry for cross-DSO calls. 1262 if (CodeGenOpts.SanitizeCfiCrossDso) 1263 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1264 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1265 } 1266 1267 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1268 bool IsIncompleteFunction, 1269 bool IsThunk, 1270 ForDefinition_t IsForDefinition) { 1271 1272 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1273 // If this is an intrinsic function, set the function's attributes 1274 // to the intrinsic's attributes. 1275 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1276 return; 1277 } 1278 1279 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1280 1281 if (!IsIncompleteFunction) { 1282 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1283 // Setup target-specific attributes. 1284 if (!IsForDefinition) 1285 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1286 NotForDefinition); 1287 } 1288 1289 // Add the Returned attribute for "this", except for iOS 5 and earlier 1290 // where substantial code, including the libstdc++ dylib, was compiled with 1291 // GCC and does not actually return "this". 1292 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1293 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1294 assert(!F->arg_empty() && 1295 F->arg_begin()->getType() 1296 ->canLosslesslyBitCastTo(F->getReturnType()) && 1297 "unexpected this return"); 1298 F->addAttribute(1, llvm::Attribute::Returned); 1299 } 1300 1301 // Only a few attributes are set on declarations; these may later be 1302 // overridden by a definition. 1303 1304 setLinkageForGV(F, FD); 1305 setGlobalVisibility(F, FD, NotForDefinition); 1306 1307 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1308 F->addFnAttr("implicit-section-name"); 1309 } 1310 1311 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1312 F->setSection(SA->getName()); 1313 1314 if (FD->isReplaceableGlobalAllocationFunction()) { 1315 // A replaceable global allocation function does not act like a builtin by 1316 // default, only if it is invoked by a new-expression or delete-expression. 1317 F->addAttribute(llvm::AttributeList::FunctionIndex, 1318 llvm::Attribute::NoBuiltin); 1319 1320 // A sane operator new returns a non-aliasing pointer. 1321 // FIXME: Also add NonNull attribute to the return value 1322 // for the non-nothrow forms? 1323 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1324 if (getCodeGenOpts().AssumeSaneOperatorNew && 1325 (Kind == OO_New || Kind == OO_Array_New)) 1326 F->addAttribute(llvm::AttributeList::ReturnIndex, 1327 llvm::Attribute::NoAlias); 1328 } 1329 1330 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1331 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1332 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1333 if (MD->isVirtual()) 1334 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1335 1336 // Don't emit entries for function declarations in the cross-DSO mode. This 1337 // is handled with better precision by the receiving DSO. 1338 if (!CodeGenOpts.SanitizeCfiCrossDso) 1339 CreateFunctionTypeMetadata(FD, F); 1340 1341 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1342 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1343 } 1344 1345 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1346 assert(!GV->isDeclaration() && 1347 "Only globals with definition can force usage."); 1348 LLVMUsed.emplace_back(GV); 1349 } 1350 1351 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1352 assert(!GV->isDeclaration() && 1353 "Only globals with definition can force usage."); 1354 LLVMCompilerUsed.emplace_back(GV); 1355 } 1356 1357 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1358 std::vector<llvm::WeakTrackingVH> &List) { 1359 // Don't create llvm.used if there is no need. 1360 if (List.empty()) 1361 return; 1362 1363 // Convert List to what ConstantArray needs. 1364 SmallVector<llvm::Constant*, 8> UsedArray; 1365 UsedArray.resize(List.size()); 1366 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1367 UsedArray[i] = 1368 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1369 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1370 } 1371 1372 if (UsedArray.empty()) 1373 return; 1374 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1375 1376 auto *GV = new llvm::GlobalVariable( 1377 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1378 llvm::ConstantArray::get(ATy, UsedArray), Name); 1379 1380 GV->setSection("llvm.metadata"); 1381 } 1382 1383 void CodeGenModule::emitLLVMUsed() { 1384 emitUsed(*this, "llvm.used", LLVMUsed); 1385 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1386 } 1387 1388 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1389 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1390 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1391 } 1392 1393 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1394 llvm::SmallString<32> Opt; 1395 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1396 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1397 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1398 } 1399 1400 void CodeGenModule::AddDependentLib(StringRef Lib) { 1401 llvm::SmallString<24> Opt; 1402 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1403 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1404 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1405 } 1406 1407 /// \brief Add link options implied by the given module, including modules 1408 /// it depends on, using a postorder walk. 1409 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1410 SmallVectorImpl<llvm::MDNode *> &Metadata, 1411 llvm::SmallPtrSet<Module *, 16> &Visited) { 1412 // Import this module's parent. 1413 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1414 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1415 } 1416 1417 // Import this module's dependencies. 1418 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1419 if (Visited.insert(Mod->Imports[I - 1]).second) 1420 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1421 } 1422 1423 // Add linker options to link against the libraries/frameworks 1424 // described by this module. 1425 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1426 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1427 // Link against a framework. Frameworks are currently Darwin only, so we 1428 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1429 if (Mod->LinkLibraries[I-1].IsFramework) { 1430 llvm::Metadata *Args[2] = { 1431 llvm::MDString::get(Context, "-framework"), 1432 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1433 1434 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1435 continue; 1436 } 1437 1438 // Link against a library. 1439 llvm::SmallString<24> Opt; 1440 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1441 Mod->LinkLibraries[I-1].Library, Opt); 1442 auto *OptString = llvm::MDString::get(Context, Opt); 1443 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1444 } 1445 } 1446 1447 void CodeGenModule::EmitModuleLinkOptions() { 1448 // Collect the set of all of the modules we want to visit to emit link 1449 // options, which is essentially the imported modules and all of their 1450 // non-explicit child modules. 1451 llvm::SetVector<clang::Module *> LinkModules; 1452 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1453 SmallVector<clang::Module *, 16> Stack; 1454 1455 // Seed the stack with imported modules. 1456 for (Module *M : ImportedModules) { 1457 // Do not add any link flags when an implementation TU of a module imports 1458 // a header of that same module. 1459 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1460 !getLangOpts().isCompilingModule()) 1461 continue; 1462 if (Visited.insert(M).second) 1463 Stack.push_back(M); 1464 } 1465 1466 // Find all of the modules to import, making a little effort to prune 1467 // non-leaf modules. 1468 while (!Stack.empty()) { 1469 clang::Module *Mod = Stack.pop_back_val(); 1470 1471 bool AnyChildren = false; 1472 1473 // Visit the submodules of this module. 1474 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1475 SubEnd = Mod->submodule_end(); 1476 Sub != SubEnd; ++Sub) { 1477 // Skip explicit children; they need to be explicitly imported to be 1478 // linked against. 1479 if ((*Sub)->IsExplicit) 1480 continue; 1481 1482 if (Visited.insert(*Sub).second) { 1483 Stack.push_back(*Sub); 1484 AnyChildren = true; 1485 } 1486 } 1487 1488 // We didn't find any children, so add this module to the list of 1489 // modules to link against. 1490 if (!AnyChildren) { 1491 LinkModules.insert(Mod); 1492 } 1493 } 1494 1495 // Add link options for all of the imported modules in reverse topological 1496 // order. We don't do anything to try to order import link flags with respect 1497 // to linker options inserted by things like #pragma comment(). 1498 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1499 Visited.clear(); 1500 for (Module *M : LinkModules) 1501 if (Visited.insert(M).second) 1502 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1503 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1504 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1505 1506 // Add the linker options metadata flag. 1507 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1508 for (auto *MD : LinkerOptionsMetadata) 1509 NMD->addOperand(MD); 1510 } 1511 1512 void CodeGenModule::EmitDeferred() { 1513 // Emit code for any potentially referenced deferred decls. Since a 1514 // previously unused static decl may become used during the generation of code 1515 // for a static function, iterate until no changes are made. 1516 1517 if (!DeferredVTables.empty()) { 1518 EmitDeferredVTables(); 1519 1520 // Emitting a vtable doesn't directly cause more vtables to 1521 // become deferred, although it can cause functions to be 1522 // emitted that then need those vtables. 1523 assert(DeferredVTables.empty()); 1524 } 1525 1526 // Stop if we're out of both deferred vtables and deferred declarations. 1527 if (DeferredDeclsToEmit.empty()) 1528 return; 1529 1530 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1531 // work, it will not interfere with this. 1532 std::vector<GlobalDecl> CurDeclsToEmit; 1533 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1534 1535 for (GlobalDecl &D : CurDeclsToEmit) { 1536 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1537 // to get GlobalValue with exactly the type we need, not something that 1538 // might had been created for another decl with the same mangled name but 1539 // different type. 1540 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1541 GetAddrOfGlobal(D, ForDefinition)); 1542 1543 // In case of different address spaces, we may still get a cast, even with 1544 // IsForDefinition equal to true. Query mangled names table to get 1545 // GlobalValue. 1546 if (!GV) 1547 GV = GetGlobalValue(getMangledName(D)); 1548 1549 // Make sure GetGlobalValue returned non-null. 1550 assert(GV); 1551 1552 // Check to see if we've already emitted this. This is necessary 1553 // for a couple of reasons: first, decls can end up in the 1554 // deferred-decls queue multiple times, and second, decls can end 1555 // up with definitions in unusual ways (e.g. by an extern inline 1556 // function acquiring a strong function redefinition). Just 1557 // ignore these cases. 1558 if (!GV->isDeclaration()) 1559 continue; 1560 1561 // Otherwise, emit the definition and move on to the next one. 1562 EmitGlobalDefinition(D, GV); 1563 1564 // If we found out that we need to emit more decls, do that recursively. 1565 // This has the advantage that the decls are emitted in a DFS and related 1566 // ones are close together, which is convenient for testing. 1567 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1568 EmitDeferred(); 1569 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1570 } 1571 } 1572 } 1573 1574 void CodeGenModule::EmitVTablesOpportunistically() { 1575 // Try to emit external vtables as available_externally if they have emitted 1576 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1577 // is not allowed to create new references to things that need to be emitted 1578 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1579 1580 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1581 && "Only emit opportunistic vtables with optimizations"); 1582 1583 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1584 assert(getVTables().isVTableExternal(RD) && 1585 "This queue should only contain external vtables"); 1586 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1587 VTables.GenerateClassData(RD); 1588 } 1589 OpportunisticVTables.clear(); 1590 } 1591 1592 void CodeGenModule::EmitGlobalAnnotations() { 1593 if (Annotations.empty()) 1594 return; 1595 1596 // Create a new global variable for the ConstantStruct in the Module. 1597 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1598 Annotations[0]->getType(), Annotations.size()), Annotations); 1599 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1600 llvm::GlobalValue::AppendingLinkage, 1601 Array, "llvm.global.annotations"); 1602 gv->setSection(AnnotationSection); 1603 } 1604 1605 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1606 llvm::Constant *&AStr = AnnotationStrings[Str]; 1607 if (AStr) 1608 return AStr; 1609 1610 // Not found yet, create a new global. 1611 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1612 auto *gv = 1613 new llvm::GlobalVariable(getModule(), s->getType(), true, 1614 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1615 gv->setSection(AnnotationSection); 1616 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1617 AStr = gv; 1618 return gv; 1619 } 1620 1621 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1622 SourceManager &SM = getContext().getSourceManager(); 1623 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1624 if (PLoc.isValid()) 1625 return EmitAnnotationString(PLoc.getFilename()); 1626 return EmitAnnotationString(SM.getBufferName(Loc)); 1627 } 1628 1629 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1630 SourceManager &SM = getContext().getSourceManager(); 1631 PresumedLoc PLoc = SM.getPresumedLoc(L); 1632 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1633 SM.getExpansionLineNumber(L); 1634 return llvm::ConstantInt::get(Int32Ty, LineNo); 1635 } 1636 1637 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1638 const AnnotateAttr *AA, 1639 SourceLocation L) { 1640 // Get the globals for file name, annotation, and the line number. 1641 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1642 *UnitGV = EmitAnnotationUnit(L), 1643 *LineNoCst = EmitAnnotationLineNo(L); 1644 1645 // Create the ConstantStruct for the global annotation. 1646 llvm::Constant *Fields[4] = { 1647 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1648 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1649 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1650 LineNoCst 1651 }; 1652 return llvm::ConstantStruct::getAnon(Fields); 1653 } 1654 1655 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1656 llvm::GlobalValue *GV) { 1657 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1658 // Get the struct elements for these annotations. 1659 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1660 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1661 } 1662 1663 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1664 llvm::Function *Fn, 1665 SourceLocation Loc) const { 1666 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1667 // Blacklist by function name. 1668 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1669 return true; 1670 // Blacklist by location. 1671 if (Loc.isValid()) 1672 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1673 // If location is unknown, this may be a compiler-generated function. Assume 1674 // it's located in the main file. 1675 auto &SM = Context.getSourceManager(); 1676 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1677 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1678 } 1679 return false; 1680 } 1681 1682 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1683 SourceLocation Loc, QualType Ty, 1684 StringRef Category) const { 1685 // For now globals can be blacklisted only in ASan and KASan. 1686 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1687 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1688 if (!EnabledAsanMask) 1689 return false; 1690 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1691 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1692 return true; 1693 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1694 return true; 1695 // Check global type. 1696 if (!Ty.isNull()) { 1697 // Drill down the array types: if global variable of a fixed type is 1698 // blacklisted, we also don't instrument arrays of them. 1699 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1700 Ty = AT->getElementType(); 1701 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1702 // We allow to blacklist only record types (classes, structs etc.) 1703 if (Ty->isRecordType()) { 1704 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1705 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1706 return true; 1707 } 1708 } 1709 return false; 1710 } 1711 1712 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1713 StringRef Category) const { 1714 if (!LangOpts.XRayInstrument) 1715 return false; 1716 const auto &XRayFilter = getContext().getXRayFilter(); 1717 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1718 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1719 if (Loc.isValid()) 1720 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1721 if (Attr == ImbueAttr::NONE) 1722 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1723 switch (Attr) { 1724 case ImbueAttr::NONE: 1725 return false; 1726 case ImbueAttr::ALWAYS: 1727 Fn->addFnAttr("function-instrument", "xray-always"); 1728 break; 1729 case ImbueAttr::ALWAYS_ARG1: 1730 Fn->addFnAttr("function-instrument", "xray-always"); 1731 Fn->addFnAttr("xray-log-args", "1"); 1732 break; 1733 case ImbueAttr::NEVER: 1734 Fn->addFnAttr("function-instrument", "xray-never"); 1735 break; 1736 } 1737 return true; 1738 } 1739 1740 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1741 // Never defer when EmitAllDecls is specified. 1742 if (LangOpts.EmitAllDecls) 1743 return true; 1744 1745 return getContext().DeclMustBeEmitted(Global); 1746 } 1747 1748 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1749 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1750 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1751 // Implicit template instantiations may change linkage if they are later 1752 // explicitly instantiated, so they should not be emitted eagerly. 1753 return false; 1754 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1755 if (Context.getInlineVariableDefinitionKind(VD) == 1756 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1757 // A definition of an inline constexpr static data member may change 1758 // linkage later if it's redeclared outside the class. 1759 return false; 1760 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1761 // codegen for global variables, because they may be marked as threadprivate. 1762 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1763 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1764 return false; 1765 1766 return true; 1767 } 1768 1769 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1770 const CXXUuidofExpr* E) { 1771 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1772 // well-formed. 1773 StringRef Uuid = E->getUuidStr(); 1774 std::string Name = "_GUID_" + Uuid.lower(); 1775 std::replace(Name.begin(), Name.end(), '-', '_'); 1776 1777 // The UUID descriptor should be pointer aligned. 1778 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1779 1780 // Look for an existing global. 1781 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1782 return ConstantAddress(GV, Alignment); 1783 1784 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1785 assert(Init && "failed to initialize as constant"); 1786 1787 auto *GV = new llvm::GlobalVariable( 1788 getModule(), Init->getType(), 1789 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1790 if (supportsCOMDAT()) 1791 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1792 return ConstantAddress(GV, Alignment); 1793 } 1794 1795 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1796 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1797 assert(AA && "No alias?"); 1798 1799 CharUnits Alignment = getContext().getDeclAlign(VD); 1800 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1801 1802 // See if there is already something with the target's name in the module. 1803 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1804 if (Entry) { 1805 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1806 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1807 return ConstantAddress(Ptr, Alignment); 1808 } 1809 1810 llvm::Constant *Aliasee; 1811 if (isa<llvm::FunctionType>(DeclTy)) 1812 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1813 GlobalDecl(cast<FunctionDecl>(VD)), 1814 /*ForVTable=*/false); 1815 else 1816 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1817 llvm::PointerType::getUnqual(DeclTy), 1818 nullptr); 1819 1820 auto *F = cast<llvm::GlobalValue>(Aliasee); 1821 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1822 WeakRefReferences.insert(F); 1823 1824 return ConstantAddress(Aliasee, Alignment); 1825 } 1826 1827 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1828 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1829 1830 // Weak references don't produce any output by themselves. 1831 if (Global->hasAttr<WeakRefAttr>()) 1832 return; 1833 1834 // If this is an alias definition (which otherwise looks like a declaration) 1835 // emit it now. 1836 if (Global->hasAttr<AliasAttr>()) 1837 return EmitAliasDefinition(GD); 1838 1839 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1840 if (Global->hasAttr<IFuncAttr>()) 1841 return emitIFuncDefinition(GD); 1842 1843 // If this is CUDA, be selective about which declarations we emit. 1844 if (LangOpts.CUDA) { 1845 if (LangOpts.CUDAIsDevice) { 1846 if (!Global->hasAttr<CUDADeviceAttr>() && 1847 !Global->hasAttr<CUDAGlobalAttr>() && 1848 !Global->hasAttr<CUDAConstantAttr>() && 1849 !Global->hasAttr<CUDASharedAttr>()) 1850 return; 1851 } else { 1852 // We need to emit host-side 'shadows' for all global 1853 // device-side variables because the CUDA runtime needs their 1854 // size and host-side address in order to provide access to 1855 // their device-side incarnations. 1856 1857 // So device-only functions are the only things we skip. 1858 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1859 Global->hasAttr<CUDADeviceAttr>()) 1860 return; 1861 1862 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1863 "Expected Variable or Function"); 1864 } 1865 } 1866 1867 if (LangOpts.OpenMP) { 1868 // If this is OpenMP device, check if it is legal to emit this global 1869 // normally. 1870 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1871 return; 1872 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1873 if (MustBeEmitted(Global)) 1874 EmitOMPDeclareReduction(DRD); 1875 return; 1876 } 1877 } 1878 1879 // Ignore declarations, they will be emitted on their first use. 1880 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1881 // Forward declarations are emitted lazily on first use. 1882 if (!FD->doesThisDeclarationHaveABody()) { 1883 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1884 return; 1885 1886 StringRef MangledName = getMangledName(GD); 1887 1888 // Compute the function info and LLVM type. 1889 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1890 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1891 1892 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1893 /*DontDefer=*/false); 1894 return; 1895 } 1896 } else { 1897 const auto *VD = cast<VarDecl>(Global); 1898 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1899 // We need to emit device-side global CUDA variables even if a 1900 // variable does not have a definition -- we still need to define 1901 // host-side shadow for it. 1902 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1903 !VD->hasDefinition() && 1904 (VD->hasAttr<CUDAConstantAttr>() || 1905 VD->hasAttr<CUDADeviceAttr>()); 1906 if (!MustEmitForCuda && 1907 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1908 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1909 // If this declaration may have caused an inline variable definition to 1910 // change linkage, make sure that it's emitted. 1911 if (Context.getInlineVariableDefinitionKind(VD) == 1912 ASTContext::InlineVariableDefinitionKind::Strong) 1913 GetAddrOfGlobalVar(VD); 1914 return; 1915 } 1916 } 1917 1918 // Defer code generation to first use when possible, e.g. if this is an inline 1919 // function. If the global must always be emitted, do it eagerly if possible 1920 // to benefit from cache locality. 1921 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1922 // Emit the definition if it can't be deferred. 1923 EmitGlobalDefinition(GD); 1924 return; 1925 } 1926 1927 // If we're deferring emission of a C++ variable with an 1928 // initializer, remember the order in which it appeared in the file. 1929 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1930 cast<VarDecl>(Global)->hasInit()) { 1931 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1932 CXXGlobalInits.push_back(nullptr); 1933 } 1934 1935 StringRef MangledName = getMangledName(GD); 1936 if (GetGlobalValue(MangledName) != nullptr) { 1937 // The value has already been used and should therefore be emitted. 1938 addDeferredDeclToEmit(GD); 1939 } else if (MustBeEmitted(Global)) { 1940 // The value must be emitted, but cannot be emitted eagerly. 1941 assert(!MayBeEmittedEagerly(Global)); 1942 addDeferredDeclToEmit(GD); 1943 } else { 1944 // Otherwise, remember that we saw a deferred decl with this name. The 1945 // first use of the mangled name will cause it to move into 1946 // DeferredDeclsToEmit. 1947 DeferredDecls[MangledName] = GD; 1948 } 1949 } 1950 1951 // Check if T is a class type with a destructor that's not dllimport. 1952 static bool HasNonDllImportDtor(QualType T) { 1953 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1954 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1955 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1956 return true; 1957 1958 return false; 1959 } 1960 1961 namespace { 1962 struct FunctionIsDirectlyRecursive : 1963 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1964 const StringRef Name; 1965 const Builtin::Context &BI; 1966 bool Result; 1967 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1968 Name(N), BI(C), Result(false) { 1969 } 1970 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1971 1972 bool TraverseCallExpr(CallExpr *E) { 1973 const FunctionDecl *FD = E->getDirectCallee(); 1974 if (!FD) 1975 return true; 1976 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1977 if (Attr && Name == Attr->getLabel()) { 1978 Result = true; 1979 return false; 1980 } 1981 unsigned BuiltinID = FD->getBuiltinID(); 1982 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1983 return true; 1984 StringRef BuiltinName = BI.getName(BuiltinID); 1985 if (BuiltinName.startswith("__builtin_") && 1986 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1987 Result = true; 1988 return false; 1989 } 1990 return true; 1991 } 1992 }; 1993 1994 // Make sure we're not referencing non-imported vars or functions. 1995 struct DLLImportFunctionVisitor 1996 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1997 bool SafeToInline = true; 1998 1999 bool shouldVisitImplicitCode() const { return true; } 2000 2001 bool VisitVarDecl(VarDecl *VD) { 2002 if (VD->getTLSKind()) { 2003 // A thread-local variable cannot be imported. 2004 SafeToInline = false; 2005 return SafeToInline; 2006 } 2007 2008 // A variable definition might imply a destructor call. 2009 if (VD->isThisDeclarationADefinition()) 2010 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2011 2012 return SafeToInline; 2013 } 2014 2015 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2016 if (const auto *D = E->getTemporary()->getDestructor()) 2017 SafeToInline = D->hasAttr<DLLImportAttr>(); 2018 return SafeToInline; 2019 } 2020 2021 bool VisitDeclRefExpr(DeclRefExpr *E) { 2022 ValueDecl *VD = E->getDecl(); 2023 if (isa<FunctionDecl>(VD)) 2024 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2025 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2026 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2027 return SafeToInline; 2028 } 2029 2030 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2031 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2032 return SafeToInline; 2033 } 2034 2035 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2036 CXXMethodDecl *M = E->getMethodDecl(); 2037 if (!M) { 2038 // Call through a pointer to member function. This is safe to inline. 2039 SafeToInline = true; 2040 } else { 2041 SafeToInline = M->hasAttr<DLLImportAttr>(); 2042 } 2043 return SafeToInline; 2044 } 2045 2046 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2047 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2048 return SafeToInline; 2049 } 2050 2051 bool VisitCXXNewExpr(CXXNewExpr *E) { 2052 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2053 return SafeToInline; 2054 } 2055 }; 2056 } 2057 2058 // isTriviallyRecursive - Check if this function calls another 2059 // decl that, because of the asm attribute or the other decl being a builtin, 2060 // ends up pointing to itself. 2061 bool 2062 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2063 StringRef Name; 2064 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2065 // asm labels are a special kind of mangling we have to support. 2066 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2067 if (!Attr) 2068 return false; 2069 Name = Attr->getLabel(); 2070 } else { 2071 Name = FD->getName(); 2072 } 2073 2074 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2075 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2076 return Walker.Result; 2077 } 2078 2079 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2080 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2081 return true; 2082 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2083 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2084 return false; 2085 2086 if (F->hasAttr<DLLImportAttr>()) { 2087 // Check whether it would be safe to inline this dllimport function. 2088 DLLImportFunctionVisitor Visitor; 2089 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2090 if (!Visitor.SafeToInline) 2091 return false; 2092 2093 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2094 // Implicit destructor invocations aren't captured in the AST, so the 2095 // check above can't see them. Check for them manually here. 2096 for (const Decl *Member : Dtor->getParent()->decls()) 2097 if (isa<FieldDecl>(Member)) 2098 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2099 return false; 2100 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2101 if (HasNonDllImportDtor(B.getType())) 2102 return false; 2103 } 2104 } 2105 2106 // PR9614. Avoid cases where the source code is lying to us. An available 2107 // externally function should have an equivalent function somewhere else, 2108 // but a function that calls itself is clearly not equivalent to the real 2109 // implementation. 2110 // This happens in glibc's btowc and in some configure checks. 2111 return !isTriviallyRecursive(F); 2112 } 2113 2114 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2115 return CodeGenOpts.OptimizationLevel > 0; 2116 } 2117 2118 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2119 const auto *D = cast<ValueDecl>(GD.getDecl()); 2120 2121 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2122 Context.getSourceManager(), 2123 "Generating code for declaration"); 2124 2125 if (isa<FunctionDecl>(D)) { 2126 // At -O0, don't generate IR for functions with available_externally 2127 // linkage. 2128 if (!shouldEmitFunction(GD)) 2129 return; 2130 2131 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2132 // Make sure to emit the definition(s) before we emit the thunks. 2133 // This is necessary for the generation of certain thunks. 2134 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2135 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2136 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2137 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2138 else 2139 EmitGlobalFunctionDefinition(GD, GV); 2140 2141 if (Method->isVirtual()) 2142 getVTables().EmitThunks(GD); 2143 2144 return; 2145 } 2146 2147 return EmitGlobalFunctionDefinition(GD, GV); 2148 } 2149 2150 if (const auto *VD = dyn_cast<VarDecl>(D)) 2151 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2152 2153 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2154 } 2155 2156 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2157 llvm::Function *NewFn); 2158 2159 void CodeGenModule::emitMultiVersionFunctions() { 2160 for (GlobalDecl GD : MultiVersionFuncs) { 2161 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2162 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2163 getContext().forEachMultiversionedFunctionVersion( 2164 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2165 GlobalDecl CurGD{ 2166 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2167 StringRef MangledName = getMangledName(CurGD); 2168 llvm::Constant *Func = GetGlobalValue(MangledName); 2169 if (!Func) { 2170 if (CurFD->isDefined()) { 2171 EmitGlobalFunctionDefinition(CurGD, nullptr); 2172 Func = GetGlobalValue(MangledName); 2173 } else { 2174 const CGFunctionInfo &FI = 2175 getTypes().arrangeGlobalDeclaration(GD); 2176 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2177 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2178 /*DontDefer=*/false, ForDefinition); 2179 } 2180 assert(Func && "This should have just been created"); 2181 } 2182 Options.emplace_back(getTarget(), cast<llvm::Function>(Func), 2183 CurFD->getAttr<TargetAttr>()->parse()); 2184 }); 2185 2186 llvm::Function *ResolverFunc = cast<llvm::Function>( 2187 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2188 std::stable_sort( 2189 Options.begin(), Options.end(), 2190 std::greater<CodeGenFunction::MultiVersionResolverOption>()); 2191 CodeGenFunction CGF(*this); 2192 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2193 } 2194 } 2195 2196 /// If an ifunc for the specified mangled name is not in the module, create and 2197 /// return an llvm IFunc Function with the specified type. 2198 llvm::Constant * 2199 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2200 StringRef MangledName, 2201 const FunctionDecl *FD) { 2202 std::string IFuncName = (MangledName + ".ifunc").str(); 2203 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2204 return IFuncGV; 2205 2206 // Since this is the first time we've created this IFunc, make sure 2207 // that we put this multiversioned function into the list to be 2208 // replaced later. 2209 MultiVersionFuncs.push_back(GD); 2210 2211 std::string ResolverName = (MangledName + ".resolver").str(); 2212 llvm::Type *ResolverType = llvm::FunctionType::get( 2213 llvm::PointerType::get(DeclTy, 2214 Context.getTargetAddressSpace(FD->getType())), 2215 false); 2216 llvm::Constant *Resolver = 2217 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2218 /*ForVTable=*/false); 2219 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2220 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2221 GIF->setName(IFuncName); 2222 SetCommonAttributes(FD, GIF); 2223 2224 return GIF; 2225 } 2226 2227 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2228 /// module, create and return an llvm Function with the specified type. If there 2229 /// is something in the module with the specified name, return it potentially 2230 /// bitcasted to the right type. 2231 /// 2232 /// If D is non-null, it specifies a decl that correspond to this. This is used 2233 /// to set the attributes on the function when it is first created. 2234 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2235 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2236 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2237 ForDefinition_t IsForDefinition) { 2238 const Decl *D = GD.getDecl(); 2239 2240 // Any attempts to use a MultiVersion function should result in retrieving 2241 // the iFunc instead. Name Mangling will handle the rest of the changes. 2242 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2243 if (FD->isMultiVersion() && FD->getAttr<TargetAttr>()->isDefaultVersion()) { 2244 UpdateMultiVersionNames(GD, FD); 2245 if (!IsForDefinition) 2246 return GetOrCreateMultiVersionIFunc(GD, Ty, MangledName, FD); 2247 } 2248 } 2249 2250 // Lookup the entry, lazily creating it if necessary. 2251 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2252 if (Entry) { 2253 if (WeakRefReferences.erase(Entry)) { 2254 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2255 if (FD && !FD->hasAttr<WeakAttr>()) 2256 Entry->setLinkage(llvm::Function::ExternalLinkage); 2257 } 2258 2259 // Handle dropped DLL attributes. 2260 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2261 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2262 2263 // If there are two attempts to define the same mangled name, issue an 2264 // error. 2265 if (IsForDefinition && !Entry->isDeclaration()) { 2266 GlobalDecl OtherGD; 2267 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2268 // to make sure that we issue an error only once. 2269 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2270 (GD.getCanonicalDecl().getDecl() != 2271 OtherGD.getCanonicalDecl().getDecl()) && 2272 DiagnosedConflictingDefinitions.insert(GD).second) { 2273 getDiags().Report(D->getLocation(), 2274 diag::err_duplicate_mangled_name); 2275 getDiags().Report(OtherGD.getDecl()->getLocation(), 2276 diag::note_previous_definition); 2277 } 2278 } 2279 2280 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2281 (Entry->getType()->getElementType() == Ty)) { 2282 return Entry; 2283 } 2284 2285 // Make sure the result is of the correct type. 2286 // (If function is requested for a definition, we always need to create a new 2287 // function, not just return a bitcast.) 2288 if (!IsForDefinition) 2289 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2290 } 2291 2292 // This function doesn't have a complete type (for example, the return 2293 // type is an incomplete struct). Use a fake type instead, and make 2294 // sure not to try to set attributes. 2295 bool IsIncompleteFunction = false; 2296 2297 llvm::FunctionType *FTy; 2298 if (isa<llvm::FunctionType>(Ty)) { 2299 FTy = cast<llvm::FunctionType>(Ty); 2300 } else { 2301 FTy = llvm::FunctionType::get(VoidTy, false); 2302 IsIncompleteFunction = true; 2303 } 2304 2305 llvm::Function *F = 2306 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2307 Entry ? StringRef() : MangledName, &getModule()); 2308 2309 // If we already created a function with the same mangled name (but different 2310 // type) before, take its name and add it to the list of functions to be 2311 // replaced with F at the end of CodeGen. 2312 // 2313 // This happens if there is a prototype for a function (e.g. "int f()") and 2314 // then a definition of a different type (e.g. "int f(int x)"). 2315 if (Entry) { 2316 F->takeName(Entry); 2317 2318 // This might be an implementation of a function without a prototype, in 2319 // which case, try to do special replacement of calls which match the new 2320 // prototype. The really key thing here is that we also potentially drop 2321 // arguments from the call site so as to make a direct call, which makes the 2322 // inliner happier and suppresses a number of optimizer warnings (!) about 2323 // dropping arguments. 2324 if (!Entry->use_empty()) { 2325 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2326 Entry->removeDeadConstantUsers(); 2327 } 2328 2329 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2330 F, Entry->getType()->getElementType()->getPointerTo()); 2331 addGlobalValReplacement(Entry, BC); 2332 } 2333 2334 assert(F->getName() == MangledName && "name was uniqued!"); 2335 if (D) 2336 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2337 IsForDefinition); 2338 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2339 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2340 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2341 } 2342 2343 if (!DontDefer) { 2344 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2345 // each other bottoming out with the base dtor. Therefore we emit non-base 2346 // dtors on usage, even if there is no dtor definition in the TU. 2347 if (D && isa<CXXDestructorDecl>(D) && 2348 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2349 GD.getDtorType())) 2350 addDeferredDeclToEmit(GD); 2351 2352 // This is the first use or definition of a mangled name. If there is a 2353 // deferred decl with this name, remember that we need to emit it at the end 2354 // of the file. 2355 auto DDI = DeferredDecls.find(MangledName); 2356 if (DDI != DeferredDecls.end()) { 2357 // Move the potentially referenced deferred decl to the 2358 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2359 // don't need it anymore). 2360 addDeferredDeclToEmit(DDI->second); 2361 DeferredDecls.erase(DDI); 2362 2363 // Otherwise, there are cases we have to worry about where we're 2364 // using a declaration for which we must emit a definition but where 2365 // we might not find a top-level definition: 2366 // - member functions defined inline in their classes 2367 // - friend functions defined inline in some class 2368 // - special member functions with implicit definitions 2369 // If we ever change our AST traversal to walk into class methods, 2370 // this will be unnecessary. 2371 // 2372 // We also don't emit a definition for a function if it's going to be an 2373 // entry in a vtable, unless it's already marked as used. 2374 } else if (getLangOpts().CPlusPlus && D) { 2375 // Look for a declaration that's lexically in a record. 2376 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2377 FD = FD->getPreviousDecl()) { 2378 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2379 if (FD->doesThisDeclarationHaveABody()) { 2380 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2381 break; 2382 } 2383 } 2384 } 2385 } 2386 } 2387 2388 // Make sure the result is of the requested type. 2389 if (!IsIncompleteFunction) { 2390 assert(F->getType()->getElementType() == Ty); 2391 return F; 2392 } 2393 2394 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2395 return llvm::ConstantExpr::getBitCast(F, PTy); 2396 } 2397 2398 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2399 /// non-null, then this function will use the specified type if it has to 2400 /// create it (this occurs when we see a definition of the function). 2401 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2402 llvm::Type *Ty, 2403 bool ForVTable, 2404 bool DontDefer, 2405 ForDefinition_t IsForDefinition) { 2406 // If there was no specific requested type, just convert it now. 2407 if (!Ty) { 2408 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2409 auto CanonTy = Context.getCanonicalType(FD->getType()); 2410 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2411 } 2412 2413 StringRef MangledName = getMangledName(GD); 2414 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2415 /*IsThunk=*/false, llvm::AttributeList(), 2416 IsForDefinition); 2417 } 2418 2419 static const FunctionDecl * 2420 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2421 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2422 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2423 2424 IdentifierInfo &CII = C.Idents.get(Name); 2425 for (const auto &Result : DC->lookup(&CII)) 2426 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2427 return FD; 2428 2429 if (!C.getLangOpts().CPlusPlus) 2430 return nullptr; 2431 2432 // Demangle the premangled name from getTerminateFn() 2433 IdentifierInfo &CXXII = 2434 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2435 ? C.Idents.get("terminate") 2436 : C.Idents.get(Name); 2437 2438 for (const auto &N : {"__cxxabiv1", "std"}) { 2439 IdentifierInfo &NS = C.Idents.get(N); 2440 for (const auto &Result : DC->lookup(&NS)) { 2441 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2442 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2443 for (const auto &Result : LSD->lookup(&NS)) 2444 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2445 break; 2446 2447 if (ND) 2448 for (const auto &Result : ND->lookup(&CXXII)) 2449 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2450 return FD; 2451 } 2452 } 2453 2454 return nullptr; 2455 } 2456 2457 /// CreateRuntimeFunction - Create a new runtime function with the specified 2458 /// type and name. 2459 llvm::Constant * 2460 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2461 llvm::AttributeList ExtraAttrs, 2462 bool Local) { 2463 llvm::Constant *C = 2464 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2465 /*DontDefer=*/false, /*IsThunk=*/false, 2466 ExtraAttrs); 2467 2468 if (auto *F = dyn_cast<llvm::Function>(C)) { 2469 if (F->empty()) { 2470 F->setCallingConv(getRuntimeCC()); 2471 2472 if (!Local && getTriple().isOSBinFormatCOFF() && 2473 !getCodeGenOpts().LTOVisibilityPublicStd && 2474 !getTriple().isWindowsGNUEnvironment()) { 2475 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2476 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2477 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2478 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2479 } 2480 } 2481 } 2482 } 2483 2484 return C; 2485 } 2486 2487 /// CreateBuiltinFunction - Create a new builtin function with the specified 2488 /// type and name. 2489 llvm::Constant * 2490 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2491 llvm::AttributeList ExtraAttrs) { 2492 llvm::Constant *C = 2493 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2494 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2495 if (auto *F = dyn_cast<llvm::Function>(C)) 2496 if (F->empty()) 2497 F->setCallingConv(getBuiltinCC()); 2498 return C; 2499 } 2500 2501 /// isTypeConstant - Determine whether an object of this type can be emitted 2502 /// as a constant. 2503 /// 2504 /// If ExcludeCtor is true, the duration when the object's constructor runs 2505 /// will not be considered. The caller will need to verify that the object is 2506 /// not written to during its construction. 2507 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2508 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2509 return false; 2510 2511 if (Context.getLangOpts().CPlusPlus) { 2512 if (const CXXRecordDecl *Record 2513 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2514 return ExcludeCtor && !Record->hasMutableFields() && 2515 Record->hasTrivialDestructor(); 2516 } 2517 2518 return true; 2519 } 2520 2521 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2522 /// create and return an llvm GlobalVariable with the specified type. If there 2523 /// is something in the module with the specified name, return it potentially 2524 /// bitcasted to the right type. 2525 /// 2526 /// If D is non-null, it specifies a decl that correspond to this. This is used 2527 /// to set the attributes on the global when it is first created. 2528 /// 2529 /// If IsForDefinition is true, it is guranteed that an actual global with 2530 /// type Ty will be returned, not conversion of a variable with the same 2531 /// mangled name but some other type. 2532 llvm::Constant * 2533 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2534 llvm::PointerType *Ty, 2535 const VarDecl *D, 2536 ForDefinition_t IsForDefinition) { 2537 // Lookup the entry, lazily creating it if necessary. 2538 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2539 if (Entry) { 2540 if (WeakRefReferences.erase(Entry)) { 2541 if (D && !D->hasAttr<WeakAttr>()) 2542 Entry->setLinkage(llvm::Function::ExternalLinkage); 2543 } 2544 2545 // Handle dropped DLL attributes. 2546 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2547 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2548 2549 if (Entry->getType() == Ty) 2550 return Entry; 2551 2552 // If there are two attempts to define the same mangled name, issue an 2553 // error. 2554 if (IsForDefinition && !Entry->isDeclaration()) { 2555 GlobalDecl OtherGD; 2556 const VarDecl *OtherD; 2557 2558 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2559 // to make sure that we issue an error only once. 2560 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2561 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2562 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2563 OtherD->hasInit() && 2564 DiagnosedConflictingDefinitions.insert(D).second) { 2565 getDiags().Report(D->getLocation(), 2566 diag::err_duplicate_mangled_name); 2567 getDiags().Report(OtherGD.getDecl()->getLocation(), 2568 diag::note_previous_definition); 2569 } 2570 } 2571 2572 // Make sure the result is of the correct type. 2573 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2574 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2575 2576 // (If global is requested for a definition, we always need to create a new 2577 // global, not just return a bitcast.) 2578 if (!IsForDefinition) 2579 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2580 } 2581 2582 auto AddrSpace = GetGlobalVarAddressSpace(D); 2583 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2584 2585 auto *GV = new llvm::GlobalVariable( 2586 getModule(), Ty->getElementType(), false, 2587 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2588 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2589 2590 // If we already created a global with the same mangled name (but different 2591 // type) before, take its name and remove it from its parent. 2592 if (Entry) { 2593 GV->takeName(Entry); 2594 2595 if (!Entry->use_empty()) { 2596 llvm::Constant *NewPtrForOldDecl = 2597 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2598 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2599 } 2600 2601 Entry->eraseFromParent(); 2602 } 2603 2604 // This is the first use or definition of a mangled name. If there is a 2605 // deferred decl with this name, remember that we need to emit it at the end 2606 // of the file. 2607 auto DDI = DeferredDecls.find(MangledName); 2608 if (DDI != DeferredDecls.end()) { 2609 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2610 // list, and remove it from DeferredDecls (since we don't need it anymore). 2611 addDeferredDeclToEmit(DDI->second); 2612 DeferredDecls.erase(DDI); 2613 } 2614 2615 // Handle things which are present even on external declarations. 2616 if (D) { 2617 // FIXME: This code is overly simple and should be merged with other global 2618 // handling. 2619 GV->setConstant(isTypeConstant(D->getType(), false)); 2620 2621 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2622 2623 setLinkageForGV(GV, D); 2624 setGlobalVisibility(GV, D, NotForDefinition); 2625 2626 if (D->getTLSKind()) { 2627 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2628 CXXThreadLocals.push_back(D); 2629 setTLSMode(GV, *D); 2630 } 2631 2632 // If required by the ABI, treat declarations of static data members with 2633 // inline initializers as definitions. 2634 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2635 EmitGlobalVarDefinition(D); 2636 } 2637 2638 // Emit section information for extern variables. 2639 if (D->hasExternalStorage()) { 2640 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2641 GV->setSection(SA->getName()); 2642 } 2643 2644 // Handle XCore specific ABI requirements. 2645 if (getTriple().getArch() == llvm::Triple::xcore && 2646 D->getLanguageLinkage() == CLanguageLinkage && 2647 D->getType().isConstant(Context) && 2648 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2649 GV->setSection(".cp.rodata"); 2650 2651 // Check if we a have a const declaration with an initializer, we may be 2652 // able to emit it as available_externally to expose it's value to the 2653 // optimizer. 2654 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2655 D->getType().isConstQualified() && !GV->hasInitializer() && 2656 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2657 const auto *Record = 2658 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2659 bool HasMutableFields = Record && Record->hasMutableFields(); 2660 if (!HasMutableFields) { 2661 const VarDecl *InitDecl; 2662 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2663 if (InitExpr) { 2664 ConstantEmitter emitter(*this); 2665 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2666 if (Init) { 2667 auto *InitType = Init->getType(); 2668 if (GV->getType()->getElementType() != InitType) { 2669 // The type of the initializer does not match the definition. 2670 // This happens when an initializer has a different type from 2671 // the type of the global (because of padding at the end of a 2672 // structure for instance). 2673 GV->setName(StringRef()); 2674 // Make a new global with the correct type, this is now guaranteed 2675 // to work. 2676 auto *NewGV = cast<llvm::GlobalVariable>( 2677 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2678 2679 // Erase the old global, since it is no longer used. 2680 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2681 GV = NewGV; 2682 } else { 2683 GV->setInitializer(Init); 2684 GV->setConstant(true); 2685 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2686 } 2687 emitter.finalize(GV); 2688 } 2689 } 2690 } 2691 } 2692 } 2693 2694 LangAS ExpectedAS = 2695 D ? D->getType().getAddressSpace() 2696 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2697 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2698 Ty->getPointerAddressSpace()); 2699 if (AddrSpace != ExpectedAS) 2700 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2701 ExpectedAS, Ty); 2702 2703 return GV; 2704 } 2705 2706 llvm::Constant * 2707 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2708 ForDefinition_t IsForDefinition) { 2709 const Decl *D = GD.getDecl(); 2710 if (isa<CXXConstructorDecl>(D)) 2711 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2712 getFromCtorType(GD.getCtorType()), 2713 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2714 /*DontDefer=*/false, IsForDefinition); 2715 else if (isa<CXXDestructorDecl>(D)) 2716 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2717 getFromDtorType(GD.getDtorType()), 2718 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2719 /*DontDefer=*/false, IsForDefinition); 2720 else if (isa<CXXMethodDecl>(D)) { 2721 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2722 cast<CXXMethodDecl>(D)); 2723 auto Ty = getTypes().GetFunctionType(*FInfo); 2724 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2725 IsForDefinition); 2726 } else if (isa<FunctionDecl>(D)) { 2727 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2728 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2729 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2730 IsForDefinition); 2731 } else 2732 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2733 IsForDefinition); 2734 } 2735 2736 llvm::GlobalVariable * 2737 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2738 llvm::Type *Ty, 2739 llvm::GlobalValue::LinkageTypes Linkage) { 2740 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2741 llvm::GlobalVariable *OldGV = nullptr; 2742 2743 if (GV) { 2744 // Check if the variable has the right type. 2745 if (GV->getType()->getElementType() == Ty) 2746 return GV; 2747 2748 // Because C++ name mangling, the only way we can end up with an already 2749 // existing global with the same name is if it has been declared extern "C". 2750 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2751 OldGV = GV; 2752 } 2753 2754 // Create a new variable. 2755 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2756 Linkage, nullptr, Name); 2757 2758 if (OldGV) { 2759 // Replace occurrences of the old variable if needed. 2760 GV->takeName(OldGV); 2761 2762 if (!OldGV->use_empty()) { 2763 llvm::Constant *NewPtrForOldDecl = 2764 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2765 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2766 } 2767 2768 OldGV->eraseFromParent(); 2769 } 2770 2771 if (supportsCOMDAT() && GV->isWeakForLinker() && 2772 !GV->hasAvailableExternallyLinkage()) 2773 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2774 2775 return GV; 2776 } 2777 2778 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2779 /// given global variable. If Ty is non-null and if the global doesn't exist, 2780 /// then it will be created with the specified type instead of whatever the 2781 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2782 /// that an actual global with type Ty will be returned, not conversion of a 2783 /// variable with the same mangled name but some other type. 2784 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2785 llvm::Type *Ty, 2786 ForDefinition_t IsForDefinition) { 2787 assert(D->hasGlobalStorage() && "Not a global variable"); 2788 QualType ASTTy = D->getType(); 2789 if (!Ty) 2790 Ty = getTypes().ConvertTypeForMem(ASTTy); 2791 2792 llvm::PointerType *PTy = 2793 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2794 2795 StringRef MangledName = getMangledName(D); 2796 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2797 } 2798 2799 /// CreateRuntimeVariable - Create a new runtime global variable with the 2800 /// specified type and name. 2801 llvm::Constant * 2802 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2803 StringRef Name) { 2804 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2805 } 2806 2807 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2808 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2809 2810 StringRef MangledName = getMangledName(D); 2811 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2812 2813 // We already have a definition, not declaration, with the same mangled name. 2814 // Emitting of declaration is not required (and actually overwrites emitted 2815 // definition). 2816 if (GV && !GV->isDeclaration()) 2817 return; 2818 2819 // If we have not seen a reference to this variable yet, place it into the 2820 // deferred declarations table to be emitted if needed later. 2821 if (!MustBeEmitted(D) && !GV) { 2822 DeferredDecls[MangledName] = D; 2823 return; 2824 } 2825 2826 // The tentative definition is the only definition. 2827 EmitGlobalVarDefinition(D); 2828 } 2829 2830 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2831 return Context.toCharUnitsFromBits( 2832 getDataLayout().getTypeStoreSizeInBits(Ty)); 2833 } 2834 2835 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2836 LangAS AddrSpace = LangAS::Default; 2837 if (LangOpts.OpenCL) { 2838 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2839 assert(AddrSpace == LangAS::opencl_global || 2840 AddrSpace == LangAS::opencl_constant || 2841 AddrSpace == LangAS::opencl_local || 2842 AddrSpace >= LangAS::FirstTargetAddressSpace); 2843 return AddrSpace; 2844 } 2845 2846 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2847 if (D && D->hasAttr<CUDAConstantAttr>()) 2848 return LangAS::cuda_constant; 2849 else if (D && D->hasAttr<CUDASharedAttr>()) 2850 return LangAS::cuda_shared; 2851 else 2852 return LangAS::cuda_device; 2853 } 2854 2855 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2856 } 2857 2858 template<typename SomeDecl> 2859 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2860 llvm::GlobalValue *GV) { 2861 if (!getLangOpts().CPlusPlus) 2862 return; 2863 2864 // Must have 'used' attribute, or else inline assembly can't rely on 2865 // the name existing. 2866 if (!D->template hasAttr<UsedAttr>()) 2867 return; 2868 2869 // Must have internal linkage and an ordinary name. 2870 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2871 return; 2872 2873 // Must be in an extern "C" context. Entities declared directly within 2874 // a record are not extern "C" even if the record is in such a context. 2875 const SomeDecl *First = D->getFirstDecl(); 2876 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2877 return; 2878 2879 // OK, this is an internal linkage entity inside an extern "C" linkage 2880 // specification. Make a note of that so we can give it the "expected" 2881 // mangled name if nothing else is using that name. 2882 std::pair<StaticExternCMap::iterator, bool> R = 2883 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2884 2885 // If we have multiple internal linkage entities with the same name 2886 // in extern "C" regions, none of them gets that name. 2887 if (!R.second) 2888 R.first->second = nullptr; 2889 } 2890 2891 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2892 if (!CGM.supportsCOMDAT()) 2893 return false; 2894 2895 if (D.hasAttr<SelectAnyAttr>()) 2896 return true; 2897 2898 GVALinkage Linkage; 2899 if (auto *VD = dyn_cast<VarDecl>(&D)) 2900 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2901 else 2902 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2903 2904 switch (Linkage) { 2905 case GVA_Internal: 2906 case GVA_AvailableExternally: 2907 case GVA_StrongExternal: 2908 return false; 2909 case GVA_DiscardableODR: 2910 case GVA_StrongODR: 2911 return true; 2912 } 2913 llvm_unreachable("No such linkage"); 2914 } 2915 2916 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2917 llvm::GlobalObject &GO) { 2918 if (!shouldBeInCOMDAT(*this, D)) 2919 return; 2920 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2921 } 2922 2923 /// Pass IsTentative as true if you want to create a tentative definition. 2924 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2925 bool IsTentative) { 2926 // OpenCL global variables of sampler type are translated to function calls, 2927 // therefore no need to be translated. 2928 QualType ASTTy = D->getType(); 2929 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2930 return; 2931 2932 llvm::Constant *Init = nullptr; 2933 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2934 bool NeedsGlobalCtor = false; 2935 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2936 2937 const VarDecl *InitDecl; 2938 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2939 2940 Optional<ConstantEmitter> emitter; 2941 2942 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2943 // as part of their declaration." Sema has already checked for 2944 // error cases, so we just need to set Init to UndefValue. 2945 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2946 D->hasAttr<CUDASharedAttr>()) 2947 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2948 else if (!InitExpr) { 2949 // This is a tentative definition; tentative definitions are 2950 // implicitly initialized with { 0 }. 2951 // 2952 // Note that tentative definitions are only emitted at the end of 2953 // a translation unit, so they should never have incomplete 2954 // type. In addition, EmitTentativeDefinition makes sure that we 2955 // never attempt to emit a tentative definition if a real one 2956 // exists. A use may still exists, however, so we still may need 2957 // to do a RAUW. 2958 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2959 Init = EmitNullConstant(D->getType()); 2960 } else { 2961 initializedGlobalDecl = GlobalDecl(D); 2962 emitter.emplace(*this); 2963 Init = emitter->tryEmitForInitializer(*InitDecl); 2964 2965 if (!Init) { 2966 QualType T = InitExpr->getType(); 2967 if (D->getType()->isReferenceType()) 2968 T = D->getType(); 2969 2970 if (getLangOpts().CPlusPlus) { 2971 Init = EmitNullConstant(T); 2972 NeedsGlobalCtor = true; 2973 } else { 2974 ErrorUnsupported(D, "static initializer"); 2975 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2976 } 2977 } else { 2978 // We don't need an initializer, so remove the entry for the delayed 2979 // initializer position (just in case this entry was delayed) if we 2980 // also don't need to register a destructor. 2981 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2982 DelayedCXXInitPosition.erase(D); 2983 } 2984 } 2985 2986 llvm::Type* InitType = Init->getType(); 2987 llvm::Constant *Entry = 2988 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2989 2990 // Strip off a bitcast if we got one back. 2991 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2992 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2993 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2994 // All zero index gep. 2995 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2996 Entry = CE->getOperand(0); 2997 } 2998 2999 // Entry is now either a Function or GlobalVariable. 3000 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3001 3002 // We have a definition after a declaration with the wrong type. 3003 // We must make a new GlobalVariable* and update everything that used OldGV 3004 // (a declaration or tentative definition) with the new GlobalVariable* 3005 // (which will be a definition). 3006 // 3007 // This happens if there is a prototype for a global (e.g. 3008 // "extern int x[];") and then a definition of a different type (e.g. 3009 // "int x[10];"). This also happens when an initializer has a different type 3010 // from the type of the global (this happens with unions). 3011 if (!GV || GV->getType()->getElementType() != InitType || 3012 GV->getType()->getAddressSpace() != 3013 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3014 3015 // Move the old entry aside so that we'll create a new one. 3016 Entry->setName(StringRef()); 3017 3018 // Make a new global with the correct type, this is now guaranteed to work. 3019 GV = cast<llvm::GlobalVariable>( 3020 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3021 3022 // Replace all uses of the old global with the new global 3023 llvm::Constant *NewPtrForOldDecl = 3024 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3025 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3026 3027 // Erase the old global, since it is no longer used. 3028 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3029 } 3030 3031 MaybeHandleStaticInExternC(D, GV); 3032 3033 if (D->hasAttr<AnnotateAttr>()) 3034 AddGlobalAnnotations(D, GV); 3035 3036 // Set the llvm linkage type as appropriate. 3037 llvm::GlobalValue::LinkageTypes Linkage = 3038 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3039 3040 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3041 // the device. [...]" 3042 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3043 // __device__, declares a variable that: [...] 3044 // Is accessible from all the threads within the grid and from the host 3045 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3046 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3047 if (GV && LangOpts.CUDA) { 3048 if (LangOpts.CUDAIsDevice) { 3049 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3050 GV->setExternallyInitialized(true); 3051 } else { 3052 // Host-side shadows of external declarations of device-side 3053 // global variables become internal definitions. These have to 3054 // be internal in order to prevent name conflicts with global 3055 // host variables with the same name in a different TUs. 3056 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3057 Linkage = llvm::GlobalValue::InternalLinkage; 3058 3059 // Shadow variables and their properties must be registered 3060 // with CUDA runtime. 3061 unsigned Flags = 0; 3062 if (!D->hasDefinition()) 3063 Flags |= CGCUDARuntime::ExternDeviceVar; 3064 if (D->hasAttr<CUDAConstantAttr>()) 3065 Flags |= CGCUDARuntime::ConstantDeviceVar; 3066 getCUDARuntime().registerDeviceVar(*GV, Flags); 3067 } else if (D->hasAttr<CUDASharedAttr>()) 3068 // __shared__ variables are odd. Shadows do get created, but 3069 // they are not registered with the CUDA runtime, so they 3070 // can't really be used to access their device-side 3071 // counterparts. It's not clear yet whether it's nvcc's bug or 3072 // a feature, but we've got to do the same for compatibility. 3073 Linkage = llvm::GlobalValue::InternalLinkage; 3074 } 3075 } 3076 3077 GV->setInitializer(Init); 3078 if (emitter) emitter->finalize(GV); 3079 3080 // If it is safe to mark the global 'constant', do so now. 3081 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3082 isTypeConstant(D->getType(), true)); 3083 3084 // If it is in a read-only section, mark it 'constant'. 3085 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3086 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3087 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3088 GV->setConstant(true); 3089 } 3090 3091 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3092 3093 3094 // On Darwin, if the normal linkage of a C++ thread_local variable is 3095 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3096 // copies within a linkage unit; otherwise, the backing variable has 3097 // internal linkage and all accesses should just be calls to the 3098 // Itanium-specified entry point, which has the normal linkage of the 3099 // variable. This is to preserve the ability to change the implementation 3100 // behind the scenes. 3101 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3102 Context.getTargetInfo().getTriple().isOSDarwin() && 3103 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3104 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3105 Linkage = llvm::GlobalValue::InternalLinkage; 3106 3107 GV->setLinkage(Linkage); 3108 if (D->hasAttr<DLLImportAttr>()) 3109 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3110 else if (D->hasAttr<DLLExportAttr>()) 3111 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3112 else 3113 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3114 3115 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3116 // common vars aren't constant even if declared const. 3117 GV->setConstant(false); 3118 // Tentative definition of global variables may be initialized with 3119 // non-zero null pointers. In this case they should have weak linkage 3120 // since common linkage must have zero initializer and must not have 3121 // explicit section therefore cannot have non-zero initial value. 3122 if (!GV->getInitializer()->isNullValue()) 3123 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3124 } 3125 3126 setNonAliasAttributes(D, GV); 3127 3128 if (D->getTLSKind() && !GV->isThreadLocal()) { 3129 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3130 CXXThreadLocals.push_back(D); 3131 setTLSMode(GV, *D); 3132 } 3133 3134 maybeSetTrivialComdat(*D, *GV); 3135 3136 // Emit the initializer function if necessary. 3137 if (NeedsGlobalCtor || NeedsGlobalDtor) 3138 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3139 3140 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3141 3142 // Emit global variable debug information. 3143 if (CGDebugInfo *DI = getModuleDebugInfo()) 3144 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3145 DI->EmitGlobalVariable(GV, D); 3146 } 3147 3148 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3149 CodeGenModule &CGM, const VarDecl *D, 3150 bool NoCommon) { 3151 // Don't give variables common linkage if -fno-common was specified unless it 3152 // was overridden by a NoCommon attribute. 3153 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3154 return true; 3155 3156 // C11 6.9.2/2: 3157 // A declaration of an identifier for an object that has file scope without 3158 // an initializer, and without a storage-class specifier or with the 3159 // storage-class specifier static, constitutes a tentative definition. 3160 if (D->getInit() || D->hasExternalStorage()) 3161 return true; 3162 3163 // A variable cannot be both common and exist in a section. 3164 if (D->hasAttr<SectionAttr>()) 3165 return true; 3166 3167 // A variable cannot be both common and exist in a section. 3168 // We dont try to determine which is the right section in the front-end. 3169 // If no specialized section name is applicable, it will resort to default. 3170 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3171 D->hasAttr<PragmaClangDataSectionAttr>() || 3172 D->hasAttr<PragmaClangRodataSectionAttr>()) 3173 return true; 3174 3175 // Thread local vars aren't considered common linkage. 3176 if (D->getTLSKind()) 3177 return true; 3178 3179 // Tentative definitions marked with WeakImportAttr are true definitions. 3180 if (D->hasAttr<WeakImportAttr>()) 3181 return true; 3182 3183 // A variable cannot be both common and exist in a comdat. 3184 if (shouldBeInCOMDAT(CGM, *D)) 3185 return true; 3186 3187 // Declarations with a required alignment do not have common linkage in MSVC 3188 // mode. 3189 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3190 if (D->hasAttr<AlignedAttr>()) 3191 return true; 3192 QualType VarType = D->getType(); 3193 if (Context.isAlignmentRequired(VarType)) 3194 return true; 3195 3196 if (const auto *RT = VarType->getAs<RecordType>()) { 3197 const RecordDecl *RD = RT->getDecl(); 3198 for (const FieldDecl *FD : RD->fields()) { 3199 if (FD->isBitField()) 3200 continue; 3201 if (FD->hasAttr<AlignedAttr>()) 3202 return true; 3203 if (Context.isAlignmentRequired(FD->getType())) 3204 return true; 3205 } 3206 } 3207 } 3208 3209 return false; 3210 } 3211 3212 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3213 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3214 if (Linkage == GVA_Internal) 3215 return llvm::Function::InternalLinkage; 3216 3217 if (D->hasAttr<WeakAttr>()) { 3218 if (IsConstantVariable) 3219 return llvm::GlobalVariable::WeakODRLinkage; 3220 else 3221 return llvm::GlobalVariable::WeakAnyLinkage; 3222 } 3223 3224 // We are guaranteed to have a strong definition somewhere else, 3225 // so we can use available_externally linkage. 3226 if (Linkage == GVA_AvailableExternally) 3227 return llvm::GlobalValue::AvailableExternallyLinkage; 3228 3229 // Note that Apple's kernel linker doesn't support symbol 3230 // coalescing, so we need to avoid linkonce and weak linkages there. 3231 // Normally, this means we just map to internal, but for explicit 3232 // instantiations we'll map to external. 3233 3234 // In C++, the compiler has to emit a definition in every translation unit 3235 // that references the function. We should use linkonce_odr because 3236 // a) if all references in this translation unit are optimized away, we 3237 // don't need to codegen it. b) if the function persists, it needs to be 3238 // merged with other definitions. c) C++ has the ODR, so we know the 3239 // definition is dependable. 3240 if (Linkage == GVA_DiscardableODR) 3241 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3242 : llvm::Function::InternalLinkage; 3243 3244 // An explicit instantiation of a template has weak linkage, since 3245 // explicit instantiations can occur in multiple translation units 3246 // and must all be equivalent. However, we are not allowed to 3247 // throw away these explicit instantiations. 3248 // 3249 // We don't currently support CUDA device code spread out across multiple TUs, 3250 // so say that CUDA templates are either external (for kernels) or internal. 3251 // This lets llvm perform aggressive inter-procedural optimizations. 3252 if (Linkage == GVA_StrongODR) { 3253 if (Context.getLangOpts().AppleKext) 3254 return llvm::Function::ExternalLinkage; 3255 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3256 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3257 : llvm::Function::InternalLinkage; 3258 return llvm::Function::WeakODRLinkage; 3259 } 3260 3261 // C++ doesn't have tentative definitions and thus cannot have common 3262 // linkage. 3263 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3264 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3265 CodeGenOpts.NoCommon)) 3266 return llvm::GlobalVariable::CommonLinkage; 3267 3268 // selectany symbols are externally visible, so use weak instead of 3269 // linkonce. MSVC optimizes away references to const selectany globals, so 3270 // all definitions should be the same and ODR linkage should be used. 3271 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3272 if (D->hasAttr<SelectAnyAttr>()) 3273 return llvm::GlobalVariable::WeakODRLinkage; 3274 3275 // Otherwise, we have strong external linkage. 3276 assert(Linkage == GVA_StrongExternal); 3277 return llvm::GlobalVariable::ExternalLinkage; 3278 } 3279 3280 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3281 const VarDecl *VD, bool IsConstant) { 3282 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3283 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3284 } 3285 3286 /// Replace the uses of a function that was declared with a non-proto type. 3287 /// We want to silently drop extra arguments from call sites 3288 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3289 llvm::Function *newFn) { 3290 // Fast path. 3291 if (old->use_empty()) return; 3292 3293 llvm::Type *newRetTy = newFn->getReturnType(); 3294 SmallVector<llvm::Value*, 4> newArgs; 3295 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3296 3297 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3298 ui != ue; ) { 3299 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3300 llvm::User *user = use->getUser(); 3301 3302 // Recognize and replace uses of bitcasts. Most calls to 3303 // unprototyped functions will use bitcasts. 3304 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3305 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3306 replaceUsesOfNonProtoConstant(bitcast, newFn); 3307 continue; 3308 } 3309 3310 // Recognize calls to the function. 3311 llvm::CallSite callSite(user); 3312 if (!callSite) continue; 3313 if (!callSite.isCallee(&*use)) continue; 3314 3315 // If the return types don't match exactly, then we can't 3316 // transform this call unless it's dead. 3317 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3318 continue; 3319 3320 // Get the call site's attribute list. 3321 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3322 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3323 3324 // If the function was passed too few arguments, don't transform. 3325 unsigned newNumArgs = newFn->arg_size(); 3326 if (callSite.arg_size() < newNumArgs) continue; 3327 3328 // If extra arguments were passed, we silently drop them. 3329 // If any of the types mismatch, we don't transform. 3330 unsigned argNo = 0; 3331 bool dontTransform = false; 3332 for (llvm::Argument &A : newFn->args()) { 3333 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3334 dontTransform = true; 3335 break; 3336 } 3337 3338 // Add any parameter attributes. 3339 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3340 argNo++; 3341 } 3342 if (dontTransform) 3343 continue; 3344 3345 // Okay, we can transform this. Create the new call instruction and copy 3346 // over the required information. 3347 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3348 3349 // Copy over any operand bundles. 3350 callSite.getOperandBundlesAsDefs(newBundles); 3351 3352 llvm::CallSite newCall; 3353 if (callSite.isCall()) { 3354 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3355 callSite.getInstruction()); 3356 } else { 3357 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3358 newCall = llvm::InvokeInst::Create(newFn, 3359 oldInvoke->getNormalDest(), 3360 oldInvoke->getUnwindDest(), 3361 newArgs, newBundles, "", 3362 callSite.getInstruction()); 3363 } 3364 newArgs.clear(); // for the next iteration 3365 3366 if (!newCall->getType()->isVoidTy()) 3367 newCall->takeName(callSite.getInstruction()); 3368 newCall.setAttributes(llvm::AttributeList::get( 3369 newFn->getContext(), oldAttrs.getFnAttributes(), 3370 oldAttrs.getRetAttributes(), newArgAttrs)); 3371 newCall.setCallingConv(callSite.getCallingConv()); 3372 3373 // Finally, remove the old call, replacing any uses with the new one. 3374 if (!callSite->use_empty()) 3375 callSite->replaceAllUsesWith(newCall.getInstruction()); 3376 3377 // Copy debug location attached to CI. 3378 if (callSite->getDebugLoc()) 3379 newCall->setDebugLoc(callSite->getDebugLoc()); 3380 3381 callSite->eraseFromParent(); 3382 } 3383 } 3384 3385 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3386 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3387 /// existing call uses of the old function in the module, this adjusts them to 3388 /// call the new function directly. 3389 /// 3390 /// This is not just a cleanup: the always_inline pass requires direct calls to 3391 /// functions to be able to inline them. If there is a bitcast in the way, it 3392 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3393 /// run at -O0. 3394 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3395 llvm::Function *NewFn) { 3396 // If we're redefining a global as a function, don't transform it. 3397 if (!isa<llvm::Function>(Old)) return; 3398 3399 replaceUsesOfNonProtoConstant(Old, NewFn); 3400 } 3401 3402 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3403 auto DK = VD->isThisDeclarationADefinition(); 3404 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3405 return; 3406 3407 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3408 // If we have a definition, this might be a deferred decl. If the 3409 // instantiation is explicit, make sure we emit it at the end. 3410 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3411 GetAddrOfGlobalVar(VD); 3412 3413 EmitTopLevelDecl(VD); 3414 } 3415 3416 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3417 llvm::GlobalValue *GV) { 3418 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3419 3420 // Compute the function info and LLVM type. 3421 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3422 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3423 3424 // Get or create the prototype for the function. 3425 if (!GV || (GV->getType()->getElementType() != Ty)) 3426 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3427 /*DontDefer=*/true, 3428 ForDefinition)); 3429 3430 // Already emitted. 3431 if (!GV->isDeclaration()) 3432 return; 3433 3434 // We need to set linkage and visibility on the function before 3435 // generating code for it because various parts of IR generation 3436 // want to propagate this information down (e.g. to local static 3437 // declarations). 3438 auto *Fn = cast<llvm::Function>(GV); 3439 setFunctionLinkage(GD, Fn); 3440 setFunctionDLLStorageClass(GD, Fn); 3441 3442 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3443 setGlobalVisibility(Fn, D, ForDefinition); 3444 3445 MaybeHandleStaticInExternC(D, Fn); 3446 3447 maybeSetTrivialComdat(*D, *Fn); 3448 3449 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3450 3451 setFunctionDefinitionAttributes(D, Fn); 3452 SetLLVMFunctionAttributesForDefinition(D, Fn); 3453 3454 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3455 AddGlobalCtor(Fn, CA->getPriority()); 3456 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3457 AddGlobalDtor(Fn, DA->getPriority()); 3458 if (D->hasAttr<AnnotateAttr>()) 3459 AddGlobalAnnotations(D, Fn); 3460 } 3461 3462 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3463 const auto *D = cast<ValueDecl>(GD.getDecl()); 3464 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3465 assert(AA && "Not an alias?"); 3466 3467 StringRef MangledName = getMangledName(GD); 3468 3469 if (AA->getAliasee() == MangledName) { 3470 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3471 return; 3472 } 3473 3474 // If there is a definition in the module, then it wins over the alias. 3475 // This is dubious, but allow it to be safe. Just ignore the alias. 3476 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3477 if (Entry && !Entry->isDeclaration()) 3478 return; 3479 3480 Aliases.push_back(GD); 3481 3482 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3483 3484 // Create a reference to the named value. This ensures that it is emitted 3485 // if a deferred decl. 3486 llvm::Constant *Aliasee; 3487 if (isa<llvm::FunctionType>(DeclTy)) 3488 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3489 /*ForVTable=*/false); 3490 else 3491 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3492 llvm::PointerType::getUnqual(DeclTy), 3493 /*D=*/nullptr); 3494 3495 // Create the new alias itself, but don't set a name yet. 3496 auto *GA = llvm::GlobalAlias::create( 3497 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3498 3499 if (Entry) { 3500 if (GA->getAliasee() == Entry) { 3501 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3502 return; 3503 } 3504 3505 assert(Entry->isDeclaration()); 3506 3507 // If there is a declaration in the module, then we had an extern followed 3508 // by the alias, as in: 3509 // extern int test6(); 3510 // ... 3511 // int test6() __attribute__((alias("test7"))); 3512 // 3513 // Remove it and replace uses of it with the alias. 3514 GA->takeName(Entry); 3515 3516 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3517 Entry->getType())); 3518 Entry->eraseFromParent(); 3519 } else { 3520 GA->setName(MangledName); 3521 } 3522 3523 // Set attributes which are particular to an alias; this is a 3524 // specialization of the attributes which may be set on a global 3525 // variable/function. 3526 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3527 D->isWeakImported()) { 3528 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3529 } 3530 3531 if (const auto *VD = dyn_cast<VarDecl>(D)) 3532 if (VD->getTLSKind()) 3533 setTLSMode(GA, *VD); 3534 3535 setAliasAttributes(D, GA); 3536 } 3537 3538 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3539 const auto *D = cast<ValueDecl>(GD.getDecl()); 3540 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3541 assert(IFA && "Not an ifunc?"); 3542 3543 StringRef MangledName = getMangledName(GD); 3544 3545 if (IFA->getResolver() == MangledName) { 3546 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3547 return; 3548 } 3549 3550 // Report an error if some definition overrides ifunc. 3551 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3552 if (Entry && !Entry->isDeclaration()) { 3553 GlobalDecl OtherGD; 3554 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3555 DiagnosedConflictingDefinitions.insert(GD).second) { 3556 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3557 Diags.Report(OtherGD.getDecl()->getLocation(), 3558 diag::note_previous_definition); 3559 } 3560 return; 3561 } 3562 3563 Aliases.push_back(GD); 3564 3565 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3566 llvm::Constant *Resolver = 3567 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3568 /*ForVTable=*/false); 3569 llvm::GlobalIFunc *GIF = 3570 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3571 "", Resolver, &getModule()); 3572 if (Entry) { 3573 if (GIF->getResolver() == Entry) { 3574 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3575 return; 3576 } 3577 assert(Entry->isDeclaration()); 3578 3579 // If there is a declaration in the module, then we had an extern followed 3580 // by the ifunc, as in: 3581 // extern int test(); 3582 // ... 3583 // int test() __attribute__((ifunc("resolver"))); 3584 // 3585 // Remove it and replace uses of it with the ifunc. 3586 GIF->takeName(Entry); 3587 3588 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3589 Entry->getType())); 3590 Entry->eraseFromParent(); 3591 } else 3592 GIF->setName(MangledName); 3593 3594 SetCommonAttributes(D, GIF); 3595 } 3596 3597 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3598 ArrayRef<llvm::Type*> Tys) { 3599 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3600 Tys); 3601 } 3602 3603 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3604 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3605 const StringLiteral *Literal, bool TargetIsLSB, 3606 bool &IsUTF16, unsigned &StringLength) { 3607 StringRef String = Literal->getString(); 3608 unsigned NumBytes = String.size(); 3609 3610 // Check for simple case. 3611 if (!Literal->containsNonAsciiOrNull()) { 3612 StringLength = NumBytes; 3613 return *Map.insert(std::make_pair(String, nullptr)).first; 3614 } 3615 3616 // Otherwise, convert the UTF8 literals into a string of shorts. 3617 IsUTF16 = true; 3618 3619 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3620 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3621 llvm::UTF16 *ToPtr = &ToBuf[0]; 3622 3623 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3624 ToPtr + NumBytes, llvm::strictConversion); 3625 3626 // ConvertUTF8toUTF16 returns the length in ToPtr. 3627 StringLength = ToPtr - &ToBuf[0]; 3628 3629 // Add an explicit null. 3630 *ToPtr = 0; 3631 return *Map.insert(std::make_pair( 3632 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3633 (StringLength + 1) * 2), 3634 nullptr)).first; 3635 } 3636 3637 ConstantAddress 3638 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3639 unsigned StringLength = 0; 3640 bool isUTF16 = false; 3641 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3642 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3643 getDataLayout().isLittleEndian(), isUTF16, 3644 StringLength); 3645 3646 if (auto *C = Entry.second) 3647 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3648 3649 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3650 llvm::Constant *Zeros[] = { Zero, Zero }; 3651 3652 // If we don't already have it, get __CFConstantStringClassReference. 3653 if (!CFConstantStringClassRef) { 3654 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3655 Ty = llvm::ArrayType::get(Ty, 0); 3656 llvm::Constant *GV = 3657 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3658 3659 if (getTriple().isOSBinFormatCOFF()) { 3660 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3661 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3662 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3663 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3664 3665 const VarDecl *VD = nullptr; 3666 for (const auto &Result : DC->lookup(&II)) 3667 if ((VD = dyn_cast<VarDecl>(Result))) 3668 break; 3669 3670 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3671 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3672 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3673 } else { 3674 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3675 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3676 } 3677 } 3678 3679 // Decay array -> ptr 3680 CFConstantStringClassRef = 3681 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3682 } 3683 3684 QualType CFTy = getContext().getCFConstantStringType(); 3685 3686 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3687 3688 ConstantInitBuilder Builder(*this); 3689 auto Fields = Builder.beginStruct(STy); 3690 3691 // Class pointer. 3692 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3693 3694 // Flags. 3695 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3696 3697 // String pointer. 3698 llvm::Constant *C = nullptr; 3699 if (isUTF16) { 3700 auto Arr = llvm::makeArrayRef( 3701 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3702 Entry.first().size() / 2); 3703 C = llvm::ConstantDataArray::get(VMContext, Arr); 3704 } else { 3705 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3706 } 3707 3708 // Note: -fwritable-strings doesn't make the backing store strings of 3709 // CFStrings writable. (See <rdar://problem/10657500>) 3710 auto *GV = 3711 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3712 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3713 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3714 // Don't enforce the target's minimum global alignment, since the only use 3715 // of the string is via this class initializer. 3716 CharUnits Align = isUTF16 3717 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3718 : getContext().getTypeAlignInChars(getContext().CharTy); 3719 GV->setAlignment(Align.getQuantity()); 3720 3721 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3722 // Without it LLVM can merge the string with a non unnamed_addr one during 3723 // LTO. Doing that changes the section it ends in, which surprises ld64. 3724 if (getTriple().isOSBinFormatMachO()) 3725 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3726 : "__TEXT,__cstring,cstring_literals"); 3727 3728 // String. 3729 llvm::Constant *Str = 3730 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3731 3732 if (isUTF16) 3733 // Cast the UTF16 string to the correct type. 3734 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3735 Fields.add(Str); 3736 3737 // String length. 3738 auto Ty = getTypes().ConvertType(getContext().LongTy); 3739 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3740 3741 CharUnits Alignment = getPointerAlign(); 3742 3743 // The struct. 3744 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3745 /*isConstant=*/false, 3746 llvm::GlobalVariable::PrivateLinkage); 3747 switch (getTriple().getObjectFormat()) { 3748 case llvm::Triple::UnknownObjectFormat: 3749 llvm_unreachable("unknown file format"); 3750 case llvm::Triple::COFF: 3751 case llvm::Triple::ELF: 3752 case llvm::Triple::Wasm: 3753 GV->setSection("cfstring"); 3754 break; 3755 case llvm::Triple::MachO: 3756 GV->setSection("__DATA,__cfstring"); 3757 break; 3758 } 3759 Entry.second = GV; 3760 3761 return ConstantAddress(GV, Alignment); 3762 } 3763 3764 bool CodeGenModule::getExpressionLocationsEnabled() const { 3765 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3766 } 3767 3768 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3769 if (ObjCFastEnumerationStateType.isNull()) { 3770 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3771 D->startDefinition(); 3772 3773 QualType FieldTypes[] = { 3774 Context.UnsignedLongTy, 3775 Context.getPointerType(Context.getObjCIdType()), 3776 Context.getPointerType(Context.UnsignedLongTy), 3777 Context.getConstantArrayType(Context.UnsignedLongTy, 3778 llvm::APInt(32, 5), ArrayType::Normal, 0) 3779 }; 3780 3781 for (size_t i = 0; i < 4; ++i) { 3782 FieldDecl *Field = FieldDecl::Create(Context, 3783 D, 3784 SourceLocation(), 3785 SourceLocation(), nullptr, 3786 FieldTypes[i], /*TInfo=*/nullptr, 3787 /*BitWidth=*/nullptr, 3788 /*Mutable=*/false, 3789 ICIS_NoInit); 3790 Field->setAccess(AS_public); 3791 D->addDecl(Field); 3792 } 3793 3794 D->completeDefinition(); 3795 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3796 } 3797 3798 return ObjCFastEnumerationStateType; 3799 } 3800 3801 llvm::Constant * 3802 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3803 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3804 3805 // Don't emit it as the address of the string, emit the string data itself 3806 // as an inline array. 3807 if (E->getCharByteWidth() == 1) { 3808 SmallString<64> Str(E->getString()); 3809 3810 // Resize the string to the right size, which is indicated by its type. 3811 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3812 Str.resize(CAT->getSize().getZExtValue()); 3813 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3814 } 3815 3816 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3817 llvm::Type *ElemTy = AType->getElementType(); 3818 unsigned NumElements = AType->getNumElements(); 3819 3820 // Wide strings have either 2-byte or 4-byte elements. 3821 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3822 SmallVector<uint16_t, 32> Elements; 3823 Elements.reserve(NumElements); 3824 3825 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3826 Elements.push_back(E->getCodeUnit(i)); 3827 Elements.resize(NumElements); 3828 return llvm::ConstantDataArray::get(VMContext, Elements); 3829 } 3830 3831 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3832 SmallVector<uint32_t, 32> Elements; 3833 Elements.reserve(NumElements); 3834 3835 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3836 Elements.push_back(E->getCodeUnit(i)); 3837 Elements.resize(NumElements); 3838 return llvm::ConstantDataArray::get(VMContext, Elements); 3839 } 3840 3841 static llvm::GlobalVariable * 3842 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3843 CodeGenModule &CGM, StringRef GlobalName, 3844 CharUnits Alignment) { 3845 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3846 unsigned AddrSpace = 0; 3847 if (CGM.getLangOpts().OpenCL) 3848 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3849 3850 llvm::Module &M = CGM.getModule(); 3851 // Create a global variable for this string 3852 auto *GV = new llvm::GlobalVariable( 3853 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3854 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3855 GV->setAlignment(Alignment.getQuantity()); 3856 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3857 if (GV->isWeakForLinker()) { 3858 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3859 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3860 } 3861 3862 return GV; 3863 } 3864 3865 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3866 /// constant array for the given string literal. 3867 ConstantAddress 3868 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3869 StringRef Name) { 3870 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3871 3872 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3873 llvm::GlobalVariable **Entry = nullptr; 3874 if (!LangOpts.WritableStrings) { 3875 Entry = &ConstantStringMap[C]; 3876 if (auto GV = *Entry) { 3877 if (Alignment.getQuantity() > GV->getAlignment()) 3878 GV->setAlignment(Alignment.getQuantity()); 3879 return ConstantAddress(GV, Alignment); 3880 } 3881 } 3882 3883 SmallString<256> MangledNameBuffer; 3884 StringRef GlobalVariableName; 3885 llvm::GlobalValue::LinkageTypes LT; 3886 3887 // Mangle the string literal if the ABI allows for it. However, we cannot 3888 // do this if we are compiling with ASan or -fwritable-strings because they 3889 // rely on strings having normal linkage. 3890 if (!LangOpts.WritableStrings && 3891 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3892 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3893 llvm::raw_svector_ostream Out(MangledNameBuffer); 3894 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3895 3896 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3897 GlobalVariableName = MangledNameBuffer; 3898 } else { 3899 LT = llvm::GlobalValue::PrivateLinkage; 3900 GlobalVariableName = Name; 3901 } 3902 3903 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3904 if (Entry) 3905 *Entry = GV; 3906 3907 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3908 QualType()); 3909 return ConstantAddress(GV, Alignment); 3910 } 3911 3912 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3913 /// array for the given ObjCEncodeExpr node. 3914 ConstantAddress 3915 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3916 std::string Str; 3917 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3918 3919 return GetAddrOfConstantCString(Str); 3920 } 3921 3922 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3923 /// the literal and a terminating '\0' character. 3924 /// The result has pointer to array type. 3925 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3926 const std::string &Str, const char *GlobalName) { 3927 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3928 CharUnits Alignment = 3929 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3930 3931 llvm::Constant *C = 3932 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3933 3934 // Don't share any string literals if strings aren't constant. 3935 llvm::GlobalVariable **Entry = nullptr; 3936 if (!LangOpts.WritableStrings) { 3937 Entry = &ConstantStringMap[C]; 3938 if (auto GV = *Entry) { 3939 if (Alignment.getQuantity() > GV->getAlignment()) 3940 GV->setAlignment(Alignment.getQuantity()); 3941 return ConstantAddress(GV, Alignment); 3942 } 3943 } 3944 3945 // Get the default prefix if a name wasn't specified. 3946 if (!GlobalName) 3947 GlobalName = ".str"; 3948 // Create a global variable for this. 3949 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3950 GlobalName, Alignment); 3951 if (Entry) 3952 *Entry = GV; 3953 return ConstantAddress(GV, Alignment); 3954 } 3955 3956 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3957 const MaterializeTemporaryExpr *E, const Expr *Init) { 3958 assert((E->getStorageDuration() == SD_Static || 3959 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3960 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3961 3962 // If we're not materializing a subobject of the temporary, keep the 3963 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3964 QualType MaterializedType = Init->getType(); 3965 if (Init == E->GetTemporaryExpr()) 3966 MaterializedType = E->getType(); 3967 3968 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3969 3970 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3971 return ConstantAddress(Slot, Align); 3972 3973 // FIXME: If an externally-visible declaration extends multiple temporaries, 3974 // we need to give each temporary the same name in every translation unit (and 3975 // we also need to make the temporaries externally-visible). 3976 SmallString<256> Name; 3977 llvm::raw_svector_ostream Out(Name); 3978 getCXXABI().getMangleContext().mangleReferenceTemporary( 3979 VD, E->getManglingNumber(), Out); 3980 3981 APValue *Value = nullptr; 3982 if (E->getStorageDuration() == SD_Static) { 3983 // We might have a cached constant initializer for this temporary. Note 3984 // that this might have a different value from the value computed by 3985 // evaluating the initializer if the surrounding constant expression 3986 // modifies the temporary. 3987 Value = getContext().getMaterializedTemporaryValue(E, false); 3988 if (Value && Value->isUninit()) 3989 Value = nullptr; 3990 } 3991 3992 // Try evaluating it now, it might have a constant initializer. 3993 Expr::EvalResult EvalResult; 3994 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3995 !EvalResult.hasSideEffects()) 3996 Value = &EvalResult.Val; 3997 3998 LangAS AddrSpace = 3999 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4000 4001 Optional<ConstantEmitter> emitter; 4002 llvm::Constant *InitialValue = nullptr; 4003 bool Constant = false; 4004 llvm::Type *Type; 4005 if (Value) { 4006 // The temporary has a constant initializer, use it. 4007 emitter.emplace(*this); 4008 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4009 MaterializedType); 4010 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4011 Type = InitialValue->getType(); 4012 } else { 4013 // No initializer, the initialization will be provided when we 4014 // initialize the declaration which performed lifetime extension. 4015 Type = getTypes().ConvertTypeForMem(MaterializedType); 4016 } 4017 4018 // Create a global variable for this lifetime-extended temporary. 4019 llvm::GlobalValue::LinkageTypes Linkage = 4020 getLLVMLinkageVarDefinition(VD, Constant); 4021 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4022 const VarDecl *InitVD; 4023 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4024 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4025 // Temporaries defined inside a class get linkonce_odr linkage because the 4026 // class can be defined in multipe translation units. 4027 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4028 } else { 4029 // There is no need for this temporary to have external linkage if the 4030 // VarDecl has external linkage. 4031 Linkage = llvm::GlobalVariable::InternalLinkage; 4032 } 4033 } 4034 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4035 auto *GV = new llvm::GlobalVariable( 4036 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4037 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4038 if (emitter) emitter->finalize(GV); 4039 setGlobalVisibility(GV, VD, ForDefinition); 4040 GV->setAlignment(Align.getQuantity()); 4041 if (supportsCOMDAT() && GV->isWeakForLinker()) 4042 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4043 if (VD->getTLSKind()) 4044 setTLSMode(GV, *VD); 4045 llvm::Constant *CV = GV; 4046 if (AddrSpace != LangAS::Default) 4047 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4048 *this, GV, AddrSpace, LangAS::Default, 4049 Type->getPointerTo( 4050 getContext().getTargetAddressSpace(LangAS::Default))); 4051 MaterializedGlobalTemporaryMap[E] = CV; 4052 return ConstantAddress(CV, Align); 4053 } 4054 4055 /// EmitObjCPropertyImplementations - Emit information for synthesized 4056 /// properties for an implementation. 4057 void CodeGenModule::EmitObjCPropertyImplementations(const 4058 ObjCImplementationDecl *D) { 4059 for (const auto *PID : D->property_impls()) { 4060 // Dynamic is just for type-checking. 4061 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4062 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4063 4064 // Determine which methods need to be implemented, some may have 4065 // been overridden. Note that ::isPropertyAccessor is not the method 4066 // we want, that just indicates if the decl came from a 4067 // property. What we want to know is if the method is defined in 4068 // this implementation. 4069 if (!D->getInstanceMethod(PD->getGetterName())) 4070 CodeGenFunction(*this).GenerateObjCGetter( 4071 const_cast<ObjCImplementationDecl *>(D), PID); 4072 if (!PD->isReadOnly() && 4073 !D->getInstanceMethod(PD->getSetterName())) 4074 CodeGenFunction(*this).GenerateObjCSetter( 4075 const_cast<ObjCImplementationDecl *>(D), PID); 4076 } 4077 } 4078 } 4079 4080 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4081 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4082 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4083 ivar; ivar = ivar->getNextIvar()) 4084 if (ivar->getType().isDestructedType()) 4085 return true; 4086 4087 return false; 4088 } 4089 4090 static bool AllTrivialInitializers(CodeGenModule &CGM, 4091 ObjCImplementationDecl *D) { 4092 CodeGenFunction CGF(CGM); 4093 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4094 E = D->init_end(); B != E; ++B) { 4095 CXXCtorInitializer *CtorInitExp = *B; 4096 Expr *Init = CtorInitExp->getInit(); 4097 if (!CGF.isTrivialInitializer(Init)) 4098 return false; 4099 } 4100 return true; 4101 } 4102 4103 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4104 /// for an implementation. 4105 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4106 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4107 if (needsDestructMethod(D)) { 4108 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4109 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4110 ObjCMethodDecl *DTORMethod = 4111 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4112 cxxSelector, getContext().VoidTy, nullptr, D, 4113 /*isInstance=*/true, /*isVariadic=*/false, 4114 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4115 /*isDefined=*/false, ObjCMethodDecl::Required); 4116 D->addInstanceMethod(DTORMethod); 4117 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4118 D->setHasDestructors(true); 4119 } 4120 4121 // If the implementation doesn't have any ivar initializers, we don't need 4122 // a .cxx_construct. 4123 if (D->getNumIvarInitializers() == 0 || 4124 AllTrivialInitializers(*this, D)) 4125 return; 4126 4127 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4128 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4129 // The constructor returns 'self'. 4130 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4131 D->getLocation(), 4132 D->getLocation(), 4133 cxxSelector, 4134 getContext().getObjCIdType(), 4135 nullptr, D, /*isInstance=*/true, 4136 /*isVariadic=*/false, 4137 /*isPropertyAccessor=*/true, 4138 /*isImplicitlyDeclared=*/true, 4139 /*isDefined=*/false, 4140 ObjCMethodDecl::Required); 4141 D->addInstanceMethod(CTORMethod); 4142 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4143 D->setHasNonZeroConstructors(true); 4144 } 4145 4146 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4147 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4148 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4149 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4150 ErrorUnsupported(LSD, "linkage spec"); 4151 return; 4152 } 4153 4154 EmitDeclContext(LSD); 4155 } 4156 4157 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4158 for (auto *I : DC->decls()) { 4159 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4160 // are themselves considered "top-level", so EmitTopLevelDecl on an 4161 // ObjCImplDecl does not recursively visit them. We need to do that in 4162 // case they're nested inside another construct (LinkageSpecDecl / 4163 // ExportDecl) that does stop them from being considered "top-level". 4164 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4165 for (auto *M : OID->methods()) 4166 EmitTopLevelDecl(M); 4167 } 4168 4169 EmitTopLevelDecl(I); 4170 } 4171 } 4172 4173 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4174 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4175 // Ignore dependent declarations. 4176 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4177 return; 4178 4179 switch (D->getKind()) { 4180 case Decl::CXXConversion: 4181 case Decl::CXXMethod: 4182 case Decl::Function: 4183 // Skip function templates 4184 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4185 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4186 return; 4187 4188 EmitGlobal(cast<FunctionDecl>(D)); 4189 // Always provide some coverage mapping 4190 // even for the functions that aren't emitted. 4191 AddDeferredUnusedCoverageMapping(D); 4192 break; 4193 4194 case Decl::CXXDeductionGuide: 4195 // Function-like, but does not result in code emission. 4196 break; 4197 4198 case Decl::Var: 4199 case Decl::Decomposition: 4200 // Skip variable templates 4201 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4202 return; 4203 LLVM_FALLTHROUGH; 4204 case Decl::VarTemplateSpecialization: 4205 EmitGlobal(cast<VarDecl>(D)); 4206 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4207 for (auto *B : DD->bindings()) 4208 if (auto *HD = B->getHoldingVar()) 4209 EmitGlobal(HD); 4210 break; 4211 4212 // Indirect fields from global anonymous structs and unions can be 4213 // ignored; only the actual variable requires IR gen support. 4214 case Decl::IndirectField: 4215 break; 4216 4217 // C++ Decls 4218 case Decl::Namespace: 4219 EmitDeclContext(cast<NamespaceDecl>(D)); 4220 break; 4221 case Decl::ClassTemplateSpecialization: { 4222 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4223 if (DebugInfo && 4224 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4225 Spec->hasDefinition()) 4226 DebugInfo->completeTemplateDefinition(*Spec); 4227 } LLVM_FALLTHROUGH; 4228 case Decl::CXXRecord: 4229 if (DebugInfo) { 4230 if (auto *ES = D->getASTContext().getExternalSource()) 4231 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4232 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4233 } 4234 // Emit any static data members, they may be definitions. 4235 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4236 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4237 EmitTopLevelDecl(I); 4238 break; 4239 // No code generation needed. 4240 case Decl::UsingShadow: 4241 case Decl::ClassTemplate: 4242 case Decl::VarTemplate: 4243 case Decl::VarTemplatePartialSpecialization: 4244 case Decl::FunctionTemplate: 4245 case Decl::TypeAliasTemplate: 4246 case Decl::Block: 4247 case Decl::Empty: 4248 break; 4249 case Decl::Using: // using X; [C++] 4250 if (CGDebugInfo *DI = getModuleDebugInfo()) 4251 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4252 return; 4253 case Decl::NamespaceAlias: 4254 if (CGDebugInfo *DI = getModuleDebugInfo()) 4255 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4256 return; 4257 case Decl::UsingDirective: // using namespace X; [C++] 4258 if (CGDebugInfo *DI = getModuleDebugInfo()) 4259 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4260 return; 4261 case Decl::CXXConstructor: 4262 // Skip function templates 4263 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4264 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4265 return; 4266 4267 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4268 break; 4269 case Decl::CXXDestructor: 4270 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4271 return; 4272 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4273 break; 4274 4275 case Decl::StaticAssert: 4276 // Nothing to do. 4277 break; 4278 4279 // Objective-C Decls 4280 4281 // Forward declarations, no (immediate) code generation. 4282 case Decl::ObjCInterface: 4283 case Decl::ObjCCategory: 4284 break; 4285 4286 case Decl::ObjCProtocol: { 4287 auto *Proto = cast<ObjCProtocolDecl>(D); 4288 if (Proto->isThisDeclarationADefinition()) 4289 ObjCRuntime->GenerateProtocol(Proto); 4290 break; 4291 } 4292 4293 case Decl::ObjCCategoryImpl: 4294 // Categories have properties but don't support synthesize so we 4295 // can ignore them here. 4296 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4297 break; 4298 4299 case Decl::ObjCImplementation: { 4300 auto *OMD = cast<ObjCImplementationDecl>(D); 4301 EmitObjCPropertyImplementations(OMD); 4302 EmitObjCIvarInitializations(OMD); 4303 ObjCRuntime->GenerateClass(OMD); 4304 // Emit global variable debug information. 4305 if (CGDebugInfo *DI = getModuleDebugInfo()) 4306 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4307 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4308 OMD->getClassInterface()), OMD->getLocation()); 4309 break; 4310 } 4311 case Decl::ObjCMethod: { 4312 auto *OMD = cast<ObjCMethodDecl>(D); 4313 // If this is not a prototype, emit the body. 4314 if (OMD->getBody()) 4315 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4316 break; 4317 } 4318 case Decl::ObjCCompatibleAlias: 4319 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4320 break; 4321 4322 case Decl::PragmaComment: { 4323 const auto *PCD = cast<PragmaCommentDecl>(D); 4324 switch (PCD->getCommentKind()) { 4325 case PCK_Unknown: 4326 llvm_unreachable("unexpected pragma comment kind"); 4327 case PCK_Linker: 4328 AppendLinkerOptions(PCD->getArg()); 4329 break; 4330 case PCK_Lib: 4331 AddDependentLib(PCD->getArg()); 4332 break; 4333 case PCK_Compiler: 4334 case PCK_ExeStr: 4335 case PCK_User: 4336 break; // We ignore all of these. 4337 } 4338 break; 4339 } 4340 4341 case Decl::PragmaDetectMismatch: { 4342 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4343 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4344 break; 4345 } 4346 4347 case Decl::LinkageSpec: 4348 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4349 break; 4350 4351 case Decl::FileScopeAsm: { 4352 // File-scope asm is ignored during device-side CUDA compilation. 4353 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4354 break; 4355 // File-scope asm is ignored during device-side OpenMP compilation. 4356 if (LangOpts.OpenMPIsDevice) 4357 break; 4358 auto *AD = cast<FileScopeAsmDecl>(D); 4359 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4360 break; 4361 } 4362 4363 case Decl::Import: { 4364 auto *Import = cast<ImportDecl>(D); 4365 4366 // If we've already imported this module, we're done. 4367 if (!ImportedModules.insert(Import->getImportedModule())) 4368 break; 4369 4370 // Emit debug information for direct imports. 4371 if (!Import->getImportedOwningModule()) { 4372 if (CGDebugInfo *DI = getModuleDebugInfo()) 4373 DI->EmitImportDecl(*Import); 4374 } 4375 4376 // Find all of the submodules and emit the module initializers. 4377 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4378 SmallVector<clang::Module *, 16> Stack; 4379 Visited.insert(Import->getImportedModule()); 4380 Stack.push_back(Import->getImportedModule()); 4381 4382 while (!Stack.empty()) { 4383 clang::Module *Mod = Stack.pop_back_val(); 4384 if (!EmittedModuleInitializers.insert(Mod).second) 4385 continue; 4386 4387 for (auto *D : Context.getModuleInitializers(Mod)) 4388 EmitTopLevelDecl(D); 4389 4390 // Visit the submodules of this module. 4391 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4392 SubEnd = Mod->submodule_end(); 4393 Sub != SubEnd; ++Sub) { 4394 // Skip explicit children; they need to be explicitly imported to emit 4395 // the initializers. 4396 if ((*Sub)->IsExplicit) 4397 continue; 4398 4399 if (Visited.insert(*Sub).second) 4400 Stack.push_back(*Sub); 4401 } 4402 } 4403 break; 4404 } 4405 4406 case Decl::Export: 4407 EmitDeclContext(cast<ExportDecl>(D)); 4408 break; 4409 4410 case Decl::OMPThreadPrivate: 4411 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4412 break; 4413 4414 case Decl::OMPDeclareReduction: 4415 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4416 break; 4417 4418 default: 4419 // Make sure we handled everything we should, every other kind is a 4420 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4421 // function. Need to recode Decl::Kind to do that easily. 4422 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4423 break; 4424 } 4425 } 4426 4427 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4428 // Do we need to generate coverage mapping? 4429 if (!CodeGenOpts.CoverageMapping) 4430 return; 4431 switch (D->getKind()) { 4432 case Decl::CXXConversion: 4433 case Decl::CXXMethod: 4434 case Decl::Function: 4435 case Decl::ObjCMethod: 4436 case Decl::CXXConstructor: 4437 case Decl::CXXDestructor: { 4438 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4439 return; 4440 SourceManager &SM = getContext().getSourceManager(); 4441 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4442 return; 4443 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4444 if (I == DeferredEmptyCoverageMappingDecls.end()) 4445 DeferredEmptyCoverageMappingDecls[D] = true; 4446 break; 4447 } 4448 default: 4449 break; 4450 }; 4451 } 4452 4453 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4454 // Do we need to generate coverage mapping? 4455 if (!CodeGenOpts.CoverageMapping) 4456 return; 4457 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4458 if (Fn->isTemplateInstantiation()) 4459 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4460 } 4461 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4462 if (I == DeferredEmptyCoverageMappingDecls.end()) 4463 DeferredEmptyCoverageMappingDecls[D] = false; 4464 else 4465 I->second = false; 4466 } 4467 4468 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4469 // We call takeVector() here to avoid use-after-free. 4470 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4471 // we deserialize function bodies to emit coverage info for them, and that 4472 // deserializes more declarations. How should we handle that case? 4473 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4474 if (!Entry.second) 4475 continue; 4476 const Decl *D = Entry.first; 4477 switch (D->getKind()) { 4478 case Decl::CXXConversion: 4479 case Decl::CXXMethod: 4480 case Decl::Function: 4481 case Decl::ObjCMethod: { 4482 CodeGenPGO PGO(*this); 4483 GlobalDecl GD(cast<FunctionDecl>(D)); 4484 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4485 getFunctionLinkage(GD)); 4486 break; 4487 } 4488 case Decl::CXXConstructor: { 4489 CodeGenPGO PGO(*this); 4490 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4491 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4492 getFunctionLinkage(GD)); 4493 break; 4494 } 4495 case Decl::CXXDestructor: { 4496 CodeGenPGO PGO(*this); 4497 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4498 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4499 getFunctionLinkage(GD)); 4500 break; 4501 } 4502 default: 4503 break; 4504 }; 4505 } 4506 } 4507 4508 /// Turns the given pointer into a constant. 4509 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4510 const void *Ptr) { 4511 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4512 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4513 return llvm::ConstantInt::get(i64, PtrInt); 4514 } 4515 4516 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4517 llvm::NamedMDNode *&GlobalMetadata, 4518 GlobalDecl D, 4519 llvm::GlobalValue *Addr) { 4520 if (!GlobalMetadata) 4521 GlobalMetadata = 4522 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4523 4524 // TODO: should we report variant information for ctors/dtors? 4525 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4526 llvm::ConstantAsMetadata::get(GetPointerConstant( 4527 CGM.getLLVMContext(), D.getDecl()))}; 4528 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4529 } 4530 4531 /// For each function which is declared within an extern "C" region and marked 4532 /// as 'used', but has internal linkage, create an alias from the unmangled 4533 /// name to the mangled name if possible. People expect to be able to refer 4534 /// to such functions with an unmangled name from inline assembly within the 4535 /// same translation unit. 4536 void CodeGenModule::EmitStaticExternCAliases() { 4537 // Don't do anything if we're generating CUDA device code -- the NVPTX 4538 // assembly target doesn't support aliases. 4539 if (Context.getTargetInfo().getTriple().isNVPTX()) 4540 return; 4541 for (auto &I : StaticExternCValues) { 4542 IdentifierInfo *Name = I.first; 4543 llvm::GlobalValue *Val = I.second; 4544 if (Val && !getModule().getNamedValue(Name->getName())) 4545 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4546 } 4547 } 4548 4549 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4550 GlobalDecl &Result) const { 4551 auto Res = Manglings.find(MangledName); 4552 if (Res == Manglings.end()) 4553 return false; 4554 Result = Res->getValue(); 4555 return true; 4556 } 4557 4558 /// Emits metadata nodes associating all the global values in the 4559 /// current module with the Decls they came from. This is useful for 4560 /// projects using IR gen as a subroutine. 4561 /// 4562 /// Since there's currently no way to associate an MDNode directly 4563 /// with an llvm::GlobalValue, we create a global named metadata 4564 /// with the name 'clang.global.decl.ptrs'. 4565 void CodeGenModule::EmitDeclMetadata() { 4566 llvm::NamedMDNode *GlobalMetadata = nullptr; 4567 4568 for (auto &I : MangledDeclNames) { 4569 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4570 // Some mangled names don't necessarily have an associated GlobalValue 4571 // in this module, e.g. if we mangled it for DebugInfo. 4572 if (Addr) 4573 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4574 } 4575 } 4576 4577 /// Emits metadata nodes for all the local variables in the current 4578 /// function. 4579 void CodeGenFunction::EmitDeclMetadata() { 4580 if (LocalDeclMap.empty()) return; 4581 4582 llvm::LLVMContext &Context = getLLVMContext(); 4583 4584 // Find the unique metadata ID for this name. 4585 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4586 4587 llvm::NamedMDNode *GlobalMetadata = nullptr; 4588 4589 for (auto &I : LocalDeclMap) { 4590 const Decl *D = I.first; 4591 llvm::Value *Addr = I.second.getPointer(); 4592 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4593 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4594 Alloca->setMetadata( 4595 DeclPtrKind, llvm::MDNode::get( 4596 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4597 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4598 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4599 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4600 } 4601 } 4602 } 4603 4604 void CodeGenModule::EmitVersionIdentMetadata() { 4605 llvm::NamedMDNode *IdentMetadata = 4606 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4607 std::string Version = getClangFullVersion(); 4608 llvm::LLVMContext &Ctx = TheModule.getContext(); 4609 4610 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4611 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4612 } 4613 4614 void CodeGenModule::EmitTargetMetadata() { 4615 // Warning, new MangledDeclNames may be appended within this loop. 4616 // We rely on MapVector insertions adding new elements to the end 4617 // of the container. 4618 // FIXME: Move this loop into the one target that needs it, and only 4619 // loop over those declarations for which we couldn't emit the target 4620 // metadata when we emitted the declaration. 4621 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4622 auto Val = *(MangledDeclNames.begin() + I); 4623 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4624 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4625 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4626 } 4627 } 4628 4629 void CodeGenModule::EmitCoverageFile() { 4630 if (getCodeGenOpts().CoverageDataFile.empty() && 4631 getCodeGenOpts().CoverageNotesFile.empty()) 4632 return; 4633 4634 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4635 if (!CUNode) 4636 return; 4637 4638 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4639 llvm::LLVMContext &Ctx = TheModule.getContext(); 4640 auto *CoverageDataFile = 4641 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4642 auto *CoverageNotesFile = 4643 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4644 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4645 llvm::MDNode *CU = CUNode->getOperand(i); 4646 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4647 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4648 } 4649 } 4650 4651 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4652 // Sema has checked that all uuid strings are of the form 4653 // "12345678-1234-1234-1234-1234567890ab". 4654 assert(Uuid.size() == 36); 4655 for (unsigned i = 0; i < 36; ++i) { 4656 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4657 else assert(isHexDigit(Uuid[i])); 4658 } 4659 4660 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4661 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4662 4663 llvm::Constant *Field3[8]; 4664 for (unsigned Idx = 0; Idx < 8; ++Idx) 4665 Field3[Idx] = llvm::ConstantInt::get( 4666 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4667 4668 llvm::Constant *Fields[4] = { 4669 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4670 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4671 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4672 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4673 }; 4674 4675 return llvm::ConstantStruct::getAnon(Fields); 4676 } 4677 4678 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4679 bool ForEH) { 4680 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4681 // FIXME: should we even be calling this method if RTTI is disabled 4682 // and it's not for EH? 4683 if (!ForEH && !getLangOpts().RTTI) 4684 return llvm::Constant::getNullValue(Int8PtrTy); 4685 4686 if (ForEH && Ty->isObjCObjectPointerType() && 4687 LangOpts.ObjCRuntime.isGNUFamily()) 4688 return ObjCRuntime->GetEHType(Ty); 4689 4690 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4691 } 4692 4693 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4694 // Do not emit threadprivates in simd-only mode. 4695 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4696 return; 4697 for (auto RefExpr : D->varlists()) { 4698 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4699 bool PerformInit = 4700 VD->getAnyInitializer() && 4701 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4702 /*ForRef=*/false); 4703 4704 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4705 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4706 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4707 CXXGlobalInits.push_back(InitFunction); 4708 } 4709 } 4710 4711 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4712 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4713 if (InternalId) 4714 return InternalId; 4715 4716 if (isExternallyVisible(T->getLinkage())) { 4717 std::string OutName; 4718 llvm::raw_string_ostream Out(OutName); 4719 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4720 4721 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4722 } else { 4723 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4724 llvm::ArrayRef<llvm::Metadata *>()); 4725 } 4726 4727 return InternalId; 4728 } 4729 4730 // Generalize pointer types to a void pointer with the qualifiers of the 4731 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4732 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4733 // 'void *'. 4734 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4735 if (!Ty->isPointerType()) 4736 return Ty; 4737 4738 return Ctx.getPointerType( 4739 QualType(Ctx.VoidTy).withCVRQualifiers( 4740 Ty->getPointeeType().getCVRQualifiers())); 4741 } 4742 4743 // Apply type generalization to a FunctionType's return and argument types 4744 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4745 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4746 SmallVector<QualType, 8> GeneralizedParams; 4747 for (auto &Param : FnType->param_types()) 4748 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4749 4750 return Ctx.getFunctionType( 4751 GeneralizeType(Ctx, FnType->getReturnType()), 4752 GeneralizedParams, FnType->getExtProtoInfo()); 4753 } 4754 4755 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4756 return Ctx.getFunctionNoProtoType( 4757 GeneralizeType(Ctx, FnType->getReturnType())); 4758 4759 llvm_unreachable("Encountered unknown FunctionType"); 4760 } 4761 4762 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4763 T = GeneralizeFunctionType(getContext(), T); 4764 4765 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4766 if (InternalId) 4767 return InternalId; 4768 4769 if (isExternallyVisible(T->getLinkage())) { 4770 std::string OutName; 4771 llvm::raw_string_ostream Out(OutName); 4772 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4773 Out << ".generalized"; 4774 4775 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4776 } else { 4777 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4778 llvm::ArrayRef<llvm::Metadata *>()); 4779 } 4780 4781 return InternalId; 4782 } 4783 4784 /// Returns whether this module needs the "all-vtables" type identifier. 4785 bool CodeGenModule::NeedAllVtablesTypeId() const { 4786 // Returns true if at least one of vtable-based CFI checkers is enabled and 4787 // is not in the trapping mode. 4788 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4789 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4790 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4791 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4792 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4793 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4794 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4795 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4796 } 4797 4798 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4799 CharUnits Offset, 4800 const CXXRecordDecl *RD) { 4801 llvm::Metadata *MD = 4802 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4803 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4804 4805 if (CodeGenOpts.SanitizeCfiCrossDso) 4806 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4807 VTable->addTypeMetadata(Offset.getQuantity(), 4808 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4809 4810 if (NeedAllVtablesTypeId()) { 4811 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4812 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4813 } 4814 } 4815 4816 // Fills in the supplied string map with the set of target features for the 4817 // passed in function. 4818 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4819 const FunctionDecl *FD) { 4820 StringRef TargetCPU = Target.getTargetOpts().CPU; 4821 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4822 // If we have a TargetAttr build up the feature map based on that. 4823 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4824 4825 ParsedAttr.Features.erase( 4826 llvm::remove_if(ParsedAttr.Features, 4827 [&](const std::string &Feat) { 4828 return !Target.isValidFeatureName( 4829 StringRef{Feat}.substr(1)); 4830 }), 4831 ParsedAttr.Features.end()); 4832 4833 // Make a copy of the features as passed on the command line into the 4834 // beginning of the additional features from the function to override. 4835 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4836 Target.getTargetOpts().FeaturesAsWritten.begin(), 4837 Target.getTargetOpts().FeaturesAsWritten.end()); 4838 4839 if (ParsedAttr.Architecture != "" && 4840 Target.isValidCPUName(ParsedAttr.Architecture)) 4841 TargetCPU = ParsedAttr.Architecture; 4842 4843 // Now populate the feature map, first with the TargetCPU which is either 4844 // the default or a new one from the target attribute string. Then we'll use 4845 // the passed in features (FeaturesAsWritten) along with the new ones from 4846 // the attribute. 4847 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4848 ParsedAttr.Features); 4849 } else { 4850 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4851 Target.getTargetOpts().Features); 4852 } 4853 } 4854 4855 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4856 if (!SanStats) 4857 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4858 4859 return *SanStats; 4860 } 4861 llvm::Value * 4862 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4863 CodeGenFunction &CGF) { 4864 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4865 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4866 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4867 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4868 "__translate_sampler_initializer"), 4869 {C}); 4870 } 4871