1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CodeGenFunction.h" 22 #include "CodeGenPGO.h" 23 #include "CodeGenTBAA.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclObjC.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/CharInfo.h" 35 #include "clang/Basic/Diagnostic.h" 36 #include "clang/Basic/Module.h" 37 #include "clang/Basic/SourceManager.h" 38 #include "clang/Basic/TargetInfo.h" 39 #include "clang/Basic/Version.h" 40 #include "clang/Frontend/CodeGenOptions.h" 41 #include "clang/Sema/SemaDiagnostic.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/CallingConv.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/Module.h" 50 #include "llvm/ProfileData/InstrProfReader.h" 51 #include "llvm/Support/ConvertUTF.h" 52 #include "llvm/Support/ErrorHandling.h" 53 54 using namespace clang; 55 using namespace CodeGen; 56 57 static const char AnnotationSection[] = "llvm.metadata"; 58 59 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 60 switch (CGM.getTarget().getCXXABI().getKind()) { 61 case TargetCXXABI::GenericAArch64: 62 case TargetCXXABI::GenericARM: 63 case TargetCXXABI::iOS: 64 case TargetCXXABI::iOS64: 65 case TargetCXXABI::GenericItanium: 66 return CreateItaniumCXXABI(CGM); 67 case TargetCXXABI::Microsoft: 68 return CreateMicrosoftCXXABI(CGM); 69 } 70 71 llvm_unreachable("invalid C++ ABI kind"); 72 } 73 74 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 75 llvm::Module &M, const llvm::DataLayout &TD, 76 DiagnosticsEngine &diags) 77 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 78 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 79 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0), 80 TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0), 81 OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0), 82 NoObjCARCExceptionsMetadata(0), RRData(0), PGOReader(nullptr), 83 CFConstantStringClassRef(0), 84 ConstantStringClassRef(0), NSConstantStringType(0), 85 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0), 86 BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0), 87 LifetimeStartFn(0), LifetimeEndFn(0), 88 SanitizerBlacklist( 89 llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)), 90 SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled 91 : LangOpts.Sanitize) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.CUDA) 117 createCUDARuntime(); 118 119 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 120 if (SanOpts.Thread || 121 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 122 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 123 getCXXABI().getMangleContext()); 124 125 // If debug info or coverage generation is enabled, create the CGDebugInfo 126 // object. 127 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 128 CodeGenOpts.EmitGcovArcs || 129 CodeGenOpts.EmitGcovNotes) 130 DebugInfo = new CGDebugInfo(*this); 131 132 Block.GlobalUniqueCount = 0; 133 134 if (C.getLangOpts().ObjCAutoRefCount) 135 ARCData = new ARCEntrypoints(); 136 RRData = new RREntrypoints(); 137 138 if (!CodeGenOpts.InstrProfileInput.empty()) { 139 if (llvm::error_code EC = llvm::IndexedInstrProfReader::create( 140 CodeGenOpts.InstrProfileInput, PGOReader)) { 141 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 142 "Could not read profile: %0"); 143 getDiags().Report(DiagID) << EC.message(); 144 } 145 } 146 } 147 148 CodeGenModule::~CodeGenModule() { 149 delete ObjCRuntime; 150 delete OpenCLRuntime; 151 delete CUDARuntime; 152 delete TheTargetCodeGenInfo; 153 delete TBAA; 154 delete DebugInfo; 155 delete ARCData; 156 delete RRData; 157 } 158 159 void CodeGenModule::createObjCRuntime() { 160 // This is just isGNUFamily(), but we want to force implementors of 161 // new ABIs to decide how best to do this. 162 switch (LangOpts.ObjCRuntime.getKind()) { 163 case ObjCRuntime::GNUstep: 164 case ObjCRuntime::GCC: 165 case ObjCRuntime::ObjFW: 166 ObjCRuntime = CreateGNUObjCRuntime(*this); 167 return; 168 169 case ObjCRuntime::FragileMacOSX: 170 case ObjCRuntime::MacOSX: 171 case ObjCRuntime::iOS: 172 ObjCRuntime = CreateMacObjCRuntime(*this); 173 return; 174 } 175 llvm_unreachable("bad runtime kind"); 176 } 177 178 void CodeGenModule::createOpenCLRuntime() { 179 OpenCLRuntime = new CGOpenCLRuntime(*this); 180 } 181 182 void CodeGenModule::createCUDARuntime() { 183 CUDARuntime = CreateNVCUDARuntime(*this); 184 } 185 186 void CodeGenModule::applyReplacements() { 187 for (ReplacementsTy::iterator I = Replacements.begin(), 188 E = Replacements.end(); 189 I != E; ++I) { 190 StringRef MangledName = I->first(); 191 llvm::Constant *Replacement = I->second; 192 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 193 if (!Entry) 194 continue; 195 llvm::Function *OldF = cast<llvm::Function>(Entry); 196 llvm::Function *NewF = dyn_cast<llvm::Function>(Replacement); 197 if (!NewF) { 198 if (llvm::GlobalAlias *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 199 NewF = dyn_cast<llvm::Function>(Alias->getAliasedGlobal()); 200 } else { 201 llvm::ConstantExpr *CE = cast<llvm::ConstantExpr>(Replacement); 202 assert(CE->getOpcode() == llvm::Instruction::BitCast || 203 CE->getOpcode() == llvm::Instruction::GetElementPtr); 204 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 205 } 206 } 207 208 // Replace old with new, but keep the old order. 209 OldF->replaceAllUsesWith(Replacement); 210 if (NewF) { 211 NewF->removeFromParent(); 212 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 213 } 214 OldF->eraseFromParent(); 215 } 216 } 217 218 void CodeGenModule::checkAliases() { 219 // Check if the constructed aliases are well formed. It is really unfortunate 220 // that we have to do this in CodeGen, but we only construct mangled names 221 // and aliases during codegen. 222 bool Error = false; 223 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 224 E = Aliases.end(); I != E; ++I) { 225 const GlobalDecl &GD = *I; 226 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 227 const AliasAttr *AA = D->getAttr<AliasAttr>(); 228 StringRef MangledName = getMangledName(GD); 229 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 230 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 231 llvm::GlobalValue *GV = Alias->getAliasedGlobal(); 232 if (!GV) { 233 Error = true; 234 getDiags().Report(AA->getLocation(), diag::err_cyclic_alias); 235 } else if (GV->isDeclaration()) { 236 Error = true; 237 getDiags().Report(AA->getLocation(), diag::err_alias_to_undefined); 238 } 239 240 // We have to handle alias to weak aliases in here. LLVM itself disallows 241 // this since the object semantics would not match the IL one. For 242 // compatibility with gcc we implement it by just pointing the alias 243 // to its aliasee's aliasee. We also warn, since the user is probably 244 // expecting the link to be weak. 245 llvm::Constant *Aliasee = Alias->getAliasee(); 246 llvm::GlobalValue *AliaseeGV; 247 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) { 248 assert((CE->getOpcode() == llvm::Instruction::BitCast || 249 CE->getOpcode() == llvm::Instruction::AddrSpaceCast) && 250 "Unsupported aliasee"); 251 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 252 } else { 253 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 254 } 255 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 256 if (GA->mayBeOverridden()) { 257 getDiags().Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 258 << GA->getAliasedGlobal()->getName() << GA->getName(); 259 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 260 GA->getAliasee(), Alias->getType()); 261 Alias->setAliasee(Aliasee); 262 } 263 } 264 } 265 if (!Error) 266 return; 267 268 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 269 E = Aliases.end(); I != E; ++I) { 270 const GlobalDecl &GD = *I; 271 StringRef MangledName = getMangledName(GD); 272 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 273 llvm::GlobalAlias *Alias = cast<llvm::GlobalAlias>(Entry); 274 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 275 Alias->eraseFromParent(); 276 } 277 } 278 279 void CodeGenModule::clear() { 280 DeferredDeclsToEmit.clear(); 281 } 282 283 void CodeGenModule::Release() { 284 EmitDeferred(); 285 applyReplacements(); 286 checkAliases(); 287 EmitCXXGlobalInitFunc(); 288 EmitCXXGlobalDtorFunc(); 289 EmitCXXThreadLocalInitFunc(); 290 if (ObjCRuntime) 291 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 292 AddGlobalCtor(ObjCInitFunction); 293 if (getCodeGenOpts().ProfileInstrGenerate) 294 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 295 AddGlobalCtor(PGOInit, 0); 296 if (PGOReader && PGOStats.isOutOfDate()) 297 getDiags().Report(diag::warn_profile_data_out_of_date) 298 << PGOStats.Visited << PGOStats.Missing << PGOStats.Mismatched; 299 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 300 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 301 EmitGlobalAnnotations(); 302 EmitStaticExternCAliases(); 303 emitLLVMUsed(); 304 305 if (CodeGenOpts.Autolink && 306 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 307 EmitModuleLinkOptions(); 308 } 309 if (CodeGenOpts.DwarfVersion) 310 // We actually want the latest version when there are conflicts. 311 // We can change from Warning to Latest if such mode is supported. 312 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 313 CodeGenOpts.DwarfVersion); 314 if (DebugInfo) 315 // We support a single version in the linked module: error out when 316 // modules do not have the same version. We are going to implement dropping 317 // debug info when the version number is not up-to-date. Once that is 318 // done, the bitcode linker is not going to see modules with different 319 // version numbers. 320 getModule().addModuleFlag(llvm::Module::Error, "Debug Info Version", 321 llvm::DEBUG_METADATA_VERSION); 322 323 SimplifyPersonality(); 324 325 if (getCodeGenOpts().EmitDeclMetadata) 326 EmitDeclMetadata(); 327 328 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 329 EmitCoverageFile(); 330 331 if (DebugInfo) 332 DebugInfo->finalize(); 333 334 EmitVersionIdentMetadata(); 335 } 336 337 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 338 // Make sure that this type is translated. 339 Types.UpdateCompletedType(TD); 340 } 341 342 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 343 if (!TBAA) 344 return 0; 345 return TBAA->getTBAAInfo(QTy); 346 } 347 348 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 349 if (!TBAA) 350 return 0; 351 return TBAA->getTBAAInfoForVTablePtr(); 352 } 353 354 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 355 if (!TBAA) 356 return 0; 357 return TBAA->getTBAAStructInfo(QTy); 358 } 359 360 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 361 if (!TBAA) 362 return 0; 363 return TBAA->getTBAAStructTypeInfo(QTy); 364 } 365 366 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 367 llvm::MDNode *AccessN, 368 uint64_t O) { 369 if (!TBAA) 370 return 0; 371 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 372 } 373 374 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 375 /// and struct-path aware TBAA, the tag has the same format: 376 /// base type, access type and offset. 377 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 378 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 379 llvm::MDNode *TBAAInfo, 380 bool ConvertTypeToTag) { 381 if (ConvertTypeToTag && TBAA) 382 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 383 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 384 else 385 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 386 } 387 388 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 389 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 390 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 391 } 392 393 /// ErrorUnsupported - Print out an error that codegen doesn't support the 394 /// specified stmt yet. 395 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 396 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 397 "cannot compile this %0 yet"); 398 std::string Msg = Type; 399 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 400 << Msg << S->getSourceRange(); 401 } 402 403 /// ErrorUnsupported - Print out an error that codegen doesn't support the 404 /// specified decl yet. 405 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 406 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 407 "cannot compile this %0 yet"); 408 std::string Msg = Type; 409 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 410 } 411 412 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 413 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 414 } 415 416 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 417 const NamedDecl *D) const { 418 // Internal definitions always have default visibility. 419 if (GV->hasLocalLinkage()) { 420 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 421 return; 422 } 423 424 // Set visibility for definitions. 425 LinkageInfo LV = D->getLinkageAndVisibility(); 426 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 427 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 428 } 429 430 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 431 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 432 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 433 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 434 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 435 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 436 } 437 438 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 439 CodeGenOptions::TLSModel M) { 440 switch (M) { 441 case CodeGenOptions::GeneralDynamicTLSModel: 442 return llvm::GlobalVariable::GeneralDynamicTLSModel; 443 case CodeGenOptions::LocalDynamicTLSModel: 444 return llvm::GlobalVariable::LocalDynamicTLSModel; 445 case CodeGenOptions::InitialExecTLSModel: 446 return llvm::GlobalVariable::InitialExecTLSModel; 447 case CodeGenOptions::LocalExecTLSModel: 448 return llvm::GlobalVariable::LocalExecTLSModel; 449 } 450 llvm_unreachable("Invalid TLS model!"); 451 } 452 453 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 454 const VarDecl &D) const { 455 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 456 457 llvm::GlobalVariable::ThreadLocalMode TLM; 458 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 459 460 // Override the TLS model if it is explicitly specified. 461 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 462 TLM = GetLLVMTLSModel(Attr->getModel()); 463 } 464 465 GV->setThreadLocalMode(TLM); 466 } 467 468 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 469 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 470 471 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 472 if (!Str.empty()) 473 return Str; 474 475 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 476 IdentifierInfo *II = ND->getIdentifier(); 477 assert(II && "Attempt to mangle unnamed decl."); 478 479 Str = II->getName(); 480 return Str; 481 } 482 483 SmallString<256> Buffer; 484 llvm::raw_svector_ostream Out(Buffer); 485 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 486 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 487 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 488 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 489 else 490 getCXXABI().getMangleContext().mangleName(ND, Out); 491 492 // Allocate space for the mangled name. 493 Out.flush(); 494 size_t Length = Buffer.size(); 495 char *Name = MangledNamesAllocator.Allocate<char>(Length); 496 std::copy(Buffer.begin(), Buffer.end(), Name); 497 498 Str = StringRef(Name, Length); 499 500 return Str; 501 } 502 503 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 504 const BlockDecl *BD) { 505 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 506 const Decl *D = GD.getDecl(); 507 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 508 if (D == 0) 509 MangleCtx.mangleGlobalBlock(BD, 510 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 511 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 512 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 513 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 514 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 515 else 516 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 517 } 518 519 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 520 return getModule().getNamedValue(Name); 521 } 522 523 /// AddGlobalCtor - Add a function to the list that will be called before 524 /// main() runs. 525 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 526 // FIXME: Type coercion of void()* types. 527 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 528 } 529 530 /// AddGlobalDtor - Add a function to the list that will be called 531 /// when the module is unloaded. 532 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 533 // FIXME: Type coercion of void()* types. 534 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 535 } 536 537 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 538 // Ctor function type is void()*. 539 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 540 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 541 542 // Get the type of a ctor entry, { i32, void ()* }. 543 llvm::StructType *CtorStructTy = 544 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 545 546 // Construct the constructor and destructor arrays. 547 SmallVector<llvm::Constant*, 8> Ctors; 548 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 549 llvm::Constant *S[] = { 550 llvm::ConstantInt::get(Int32Ty, I->second, false), 551 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 552 }; 553 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 554 } 555 556 if (!Ctors.empty()) { 557 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 558 new llvm::GlobalVariable(TheModule, AT, false, 559 llvm::GlobalValue::AppendingLinkage, 560 llvm::ConstantArray::get(AT, Ctors), 561 GlobalName); 562 } 563 } 564 565 llvm::GlobalValue::LinkageTypes 566 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 567 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 568 569 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 570 571 bool UseThunkForDtorVariant = 572 isa<CXXDestructorDecl>(D) && 573 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 574 GD.getDtorType()); 575 576 return getLLVMLinkageforDeclarator(D, Linkage, /*isConstantVariable=*/false, 577 UseThunkForDtorVariant); 578 } 579 580 581 /// SetFunctionDefinitionAttributes - Set attributes for a global. 582 /// 583 /// FIXME: This is currently only done for aliases and functions, but not for 584 /// variables (these details are set in EmitGlobalVarDefinition for variables). 585 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 586 llvm::GlobalValue *GV) { 587 SetCommonAttributes(D, GV); 588 } 589 590 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 591 const CGFunctionInfo &Info, 592 llvm::Function *F) { 593 unsigned CallingConv; 594 AttributeListType AttributeList; 595 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 596 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 597 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 598 } 599 600 /// Determines whether the language options require us to model 601 /// unwind exceptions. We treat -fexceptions as mandating this 602 /// except under the fragile ObjC ABI with only ObjC exceptions 603 /// enabled. This means, for example, that C with -fexceptions 604 /// enables this. 605 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 606 // If exceptions are completely disabled, obviously this is false. 607 if (!LangOpts.Exceptions) return false; 608 609 // If C++ exceptions are enabled, this is true. 610 if (LangOpts.CXXExceptions) return true; 611 612 // If ObjC exceptions are enabled, this depends on the ABI. 613 if (LangOpts.ObjCExceptions) { 614 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 615 } 616 617 return true; 618 } 619 620 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 621 llvm::Function *F) { 622 llvm::AttrBuilder B; 623 624 if (CodeGenOpts.UnwindTables) 625 B.addAttribute(llvm::Attribute::UWTable); 626 627 if (!hasUnwindExceptions(LangOpts)) 628 B.addAttribute(llvm::Attribute::NoUnwind); 629 630 if (D->hasAttr<NakedAttr>()) { 631 // Naked implies noinline: we should not be inlining such functions. 632 B.addAttribute(llvm::Attribute::Naked); 633 B.addAttribute(llvm::Attribute::NoInline); 634 } else if (D->hasAttr<OptimizeNoneAttr>()) { 635 // OptimizeNone implies noinline; we should not be inlining such functions. 636 B.addAttribute(llvm::Attribute::OptimizeNone); 637 B.addAttribute(llvm::Attribute::NoInline); 638 } else if (D->hasAttr<NoDuplicateAttr>()) { 639 B.addAttribute(llvm::Attribute::NoDuplicate); 640 } else if (D->hasAttr<NoInlineAttr>()) { 641 B.addAttribute(llvm::Attribute::NoInline); 642 } else if (D->hasAttr<AlwaysInlineAttr>() && 643 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 644 llvm::Attribute::NoInline)) { 645 // (noinline wins over always_inline, and we can't specify both in IR) 646 B.addAttribute(llvm::Attribute::AlwaysInline); 647 } 648 649 if (D->hasAttr<ColdAttr>()) { 650 B.addAttribute(llvm::Attribute::OptimizeForSize); 651 B.addAttribute(llvm::Attribute::Cold); 652 } 653 654 if (D->hasAttr<MinSizeAttr>()) 655 B.addAttribute(llvm::Attribute::MinSize); 656 657 if (D->hasAttr<OptimizeNoneAttr>()) { 658 // OptimizeNone wins over OptimizeForSize and MinSize. 659 B.removeAttribute(llvm::Attribute::OptimizeForSize); 660 B.removeAttribute(llvm::Attribute::MinSize); 661 } 662 663 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 664 B.addAttribute(llvm::Attribute::StackProtect); 665 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 666 B.addAttribute(llvm::Attribute::StackProtectStrong); 667 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 668 B.addAttribute(llvm::Attribute::StackProtectReq); 669 670 // Add sanitizer attributes if function is not blacklisted. 671 if (!SanitizerBlacklist->isIn(*F)) { 672 // When AddressSanitizer is enabled, set SanitizeAddress attribute 673 // unless __attribute__((no_sanitize_address)) is used. 674 if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 675 B.addAttribute(llvm::Attribute::SanitizeAddress); 676 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 677 if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) { 678 B.addAttribute(llvm::Attribute::SanitizeThread); 679 } 680 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 681 if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 682 B.addAttribute(llvm::Attribute::SanitizeMemory); 683 } 684 685 F->addAttributes(llvm::AttributeSet::FunctionIndex, 686 llvm::AttributeSet::get( 687 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 688 689 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 690 F->setUnnamedAddr(true); 691 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 692 if (MD->isVirtual()) 693 F->setUnnamedAddr(true); 694 695 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 696 if (alignment) 697 F->setAlignment(alignment); 698 699 // C++ ABI requires 2-byte alignment for member functions. 700 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 701 F->setAlignment(2); 702 } 703 704 void CodeGenModule::SetCommonAttributes(const Decl *D, 705 llvm::GlobalValue *GV) { 706 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 707 setGlobalVisibility(GV, ND); 708 else 709 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 710 711 if (D->hasAttr<UsedAttr>()) 712 addUsedGlobal(GV); 713 714 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 715 GV->setSection(SA->getName()); 716 717 // Alias cannot have attributes. Filter them here. 718 if (!isa<llvm::GlobalAlias>(GV)) 719 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 720 } 721 722 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 723 llvm::Function *F, 724 const CGFunctionInfo &FI) { 725 SetLLVMFunctionAttributes(D, FI, F); 726 SetLLVMFunctionAttributesForDefinition(D, F); 727 728 F->setLinkage(llvm::Function::InternalLinkage); 729 730 SetCommonAttributes(D, F); 731 } 732 733 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 734 const NamedDecl *ND) { 735 // Set linkage and visibility in case we never see a definition. 736 LinkageInfo LV = ND->getLinkageAndVisibility(); 737 if (LV.getLinkage() != ExternalLinkage) { 738 // Don't set internal linkage on declarations. 739 } else { 740 if (ND->hasAttr<DLLImportAttr>()) { 741 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 742 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 743 } else if (ND->hasAttr<DLLExportAttr>()) { 744 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 745 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 746 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 747 // "extern_weak" is overloaded in LLVM; we probably should have 748 // separate linkage types for this. 749 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 750 } 751 752 // Set visibility on a declaration only if it's explicit. 753 if (LV.isVisibilityExplicit()) 754 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 755 } 756 } 757 758 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 759 llvm::Function *F, 760 bool IsIncompleteFunction) { 761 if (unsigned IID = F->getIntrinsicID()) { 762 // If this is an intrinsic function, set the function's attributes 763 // to the intrinsic's attributes. 764 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 765 (llvm::Intrinsic::ID)IID)); 766 return; 767 } 768 769 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 770 771 if (!IsIncompleteFunction) 772 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 773 774 // Add the Returned attribute for "this", except for iOS 5 and earlier 775 // where substantial code, including the libstdc++ dylib, was compiled with 776 // GCC and does not actually return "this". 777 if (getCXXABI().HasThisReturn(GD) && 778 !(getTarget().getTriple().isiOS() && 779 getTarget().getTriple().isOSVersionLT(6))) { 780 assert(!F->arg_empty() && 781 F->arg_begin()->getType() 782 ->canLosslesslyBitCastTo(F->getReturnType()) && 783 "unexpected this return"); 784 F->addAttribute(1, llvm::Attribute::Returned); 785 } 786 787 // Only a few attributes are set on declarations; these may later be 788 // overridden by a definition. 789 790 setLinkageAndVisibilityForGV(F, FD); 791 792 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 793 F->setSection(SA->getName()); 794 795 // A replaceable global allocation function does not act like a builtin by 796 // default, only if it is invoked by a new-expression or delete-expression. 797 if (FD->isReplaceableGlobalAllocationFunction()) 798 F->addAttribute(llvm::AttributeSet::FunctionIndex, 799 llvm::Attribute::NoBuiltin); 800 } 801 802 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 803 assert(!GV->isDeclaration() && 804 "Only globals with definition can force usage."); 805 LLVMUsed.push_back(GV); 806 } 807 808 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 809 assert(!GV->isDeclaration() && 810 "Only globals with definition can force usage."); 811 LLVMCompilerUsed.push_back(GV); 812 } 813 814 static void emitUsed(CodeGenModule &CGM, StringRef Name, 815 std::vector<llvm::WeakVH> &List) { 816 // Don't create llvm.used if there is no need. 817 if (List.empty()) 818 return; 819 820 // Convert List to what ConstantArray needs. 821 SmallVector<llvm::Constant*, 8> UsedArray; 822 UsedArray.resize(List.size()); 823 for (unsigned i = 0, e = List.size(); i != e; ++i) { 824 UsedArray[i] = 825 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 826 CGM.Int8PtrTy); 827 } 828 829 if (UsedArray.empty()) 830 return; 831 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 832 833 llvm::GlobalVariable *GV = 834 new llvm::GlobalVariable(CGM.getModule(), ATy, false, 835 llvm::GlobalValue::AppendingLinkage, 836 llvm::ConstantArray::get(ATy, UsedArray), 837 Name); 838 839 GV->setSection("llvm.metadata"); 840 } 841 842 void CodeGenModule::emitLLVMUsed() { 843 emitUsed(*this, "llvm.used", LLVMUsed); 844 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 845 } 846 847 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 848 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 849 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 850 } 851 852 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 853 llvm::SmallString<32> Opt; 854 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 855 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 856 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 857 } 858 859 void CodeGenModule::AddDependentLib(StringRef Lib) { 860 llvm::SmallString<24> Opt; 861 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 862 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 863 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 864 } 865 866 /// \brief Add link options implied by the given module, including modules 867 /// it depends on, using a postorder walk. 868 static void addLinkOptionsPostorder(CodeGenModule &CGM, 869 Module *Mod, 870 SmallVectorImpl<llvm::Value *> &Metadata, 871 llvm::SmallPtrSet<Module *, 16> &Visited) { 872 // Import this module's parent. 873 if (Mod->Parent && Visited.insert(Mod->Parent)) { 874 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 875 } 876 877 // Import this module's dependencies. 878 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 879 if (Visited.insert(Mod->Imports[I-1])) 880 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 881 } 882 883 // Add linker options to link against the libraries/frameworks 884 // described by this module. 885 llvm::LLVMContext &Context = CGM.getLLVMContext(); 886 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 887 // Link against a framework. Frameworks are currently Darwin only, so we 888 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 889 if (Mod->LinkLibraries[I-1].IsFramework) { 890 llvm::Value *Args[2] = { 891 llvm::MDString::get(Context, "-framework"), 892 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 893 }; 894 895 Metadata.push_back(llvm::MDNode::get(Context, Args)); 896 continue; 897 } 898 899 // Link against a library. 900 llvm::SmallString<24> Opt; 901 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 902 Mod->LinkLibraries[I-1].Library, Opt); 903 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 904 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 905 } 906 } 907 908 void CodeGenModule::EmitModuleLinkOptions() { 909 // Collect the set of all of the modules we want to visit to emit link 910 // options, which is essentially the imported modules and all of their 911 // non-explicit child modules. 912 llvm::SetVector<clang::Module *> LinkModules; 913 llvm::SmallPtrSet<clang::Module *, 16> Visited; 914 SmallVector<clang::Module *, 16> Stack; 915 916 // Seed the stack with imported modules. 917 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 918 MEnd = ImportedModules.end(); 919 M != MEnd; ++M) { 920 if (Visited.insert(*M)) 921 Stack.push_back(*M); 922 } 923 924 // Find all of the modules to import, making a little effort to prune 925 // non-leaf modules. 926 while (!Stack.empty()) { 927 clang::Module *Mod = Stack.pop_back_val(); 928 929 bool AnyChildren = false; 930 931 // Visit the submodules of this module. 932 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 933 SubEnd = Mod->submodule_end(); 934 Sub != SubEnd; ++Sub) { 935 // Skip explicit children; they need to be explicitly imported to be 936 // linked against. 937 if ((*Sub)->IsExplicit) 938 continue; 939 940 if (Visited.insert(*Sub)) { 941 Stack.push_back(*Sub); 942 AnyChildren = true; 943 } 944 } 945 946 // We didn't find any children, so add this module to the list of 947 // modules to link against. 948 if (!AnyChildren) { 949 LinkModules.insert(Mod); 950 } 951 } 952 953 // Add link options for all of the imported modules in reverse topological 954 // order. We don't do anything to try to order import link flags with respect 955 // to linker options inserted by things like #pragma comment(). 956 SmallVector<llvm::Value *, 16> MetadataArgs; 957 Visited.clear(); 958 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 959 MEnd = LinkModules.end(); 960 M != MEnd; ++M) { 961 if (Visited.insert(*M)) 962 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 963 } 964 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 965 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 966 967 // Add the linker options metadata flag. 968 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 969 llvm::MDNode::get(getLLVMContext(), 970 LinkerOptionsMetadata)); 971 } 972 973 void CodeGenModule::EmitDeferred() { 974 // Emit code for any potentially referenced deferred decls. Since a 975 // previously unused static decl may become used during the generation of code 976 // for a static function, iterate until no changes are made. 977 978 while (true) { 979 if (!DeferredVTables.empty()) { 980 EmitDeferredVTables(); 981 982 // Emitting a v-table doesn't directly cause more v-tables to 983 // become deferred, although it can cause functions to be 984 // emitted that then need those v-tables. 985 assert(DeferredVTables.empty()); 986 } 987 988 // Stop if we're out of both deferred v-tables and deferred declarations. 989 if (DeferredDeclsToEmit.empty()) break; 990 991 DeferredGlobal &G = DeferredDeclsToEmit.back(); 992 GlobalDecl D = G.GD; 993 llvm::GlobalValue *GV = G.GV; 994 DeferredDeclsToEmit.pop_back(); 995 996 assert(GV == GetGlobalValue(getMangledName(D))); 997 // Check to see if we've already emitted this. This is necessary 998 // for a couple of reasons: first, decls can end up in the 999 // deferred-decls queue multiple times, and second, decls can end 1000 // up with definitions in unusual ways (e.g. by an extern inline 1001 // function acquiring a strong function redefinition). Just 1002 // ignore these cases. 1003 if(!GV->isDeclaration()) 1004 continue; 1005 1006 // Otherwise, emit the definition and move on to the next one. 1007 EmitGlobalDefinition(D, GV); 1008 } 1009 } 1010 1011 void CodeGenModule::EmitGlobalAnnotations() { 1012 if (Annotations.empty()) 1013 return; 1014 1015 // Create a new global variable for the ConstantStruct in the Module. 1016 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1017 Annotations[0]->getType(), Annotations.size()), Annotations); 1018 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 1019 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 1020 "llvm.global.annotations"); 1021 gv->setSection(AnnotationSection); 1022 } 1023 1024 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1025 llvm::Constant *&AStr = AnnotationStrings[Str]; 1026 if (AStr) 1027 return AStr; 1028 1029 // Not found yet, create a new global. 1030 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1031 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 1032 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 1033 gv->setSection(AnnotationSection); 1034 gv->setUnnamedAddr(true); 1035 AStr = gv; 1036 return gv; 1037 } 1038 1039 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1040 SourceManager &SM = getContext().getSourceManager(); 1041 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1042 if (PLoc.isValid()) 1043 return EmitAnnotationString(PLoc.getFilename()); 1044 return EmitAnnotationString(SM.getBufferName(Loc)); 1045 } 1046 1047 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1048 SourceManager &SM = getContext().getSourceManager(); 1049 PresumedLoc PLoc = SM.getPresumedLoc(L); 1050 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1051 SM.getExpansionLineNumber(L); 1052 return llvm::ConstantInt::get(Int32Ty, LineNo); 1053 } 1054 1055 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1056 const AnnotateAttr *AA, 1057 SourceLocation L) { 1058 // Get the globals for file name, annotation, and the line number. 1059 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1060 *UnitGV = EmitAnnotationUnit(L), 1061 *LineNoCst = EmitAnnotationLineNo(L); 1062 1063 // Create the ConstantStruct for the global annotation. 1064 llvm::Constant *Fields[4] = { 1065 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1066 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1067 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1068 LineNoCst 1069 }; 1070 return llvm::ConstantStruct::getAnon(Fields); 1071 } 1072 1073 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1074 llvm::GlobalValue *GV) { 1075 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1076 // Get the struct elements for these annotations. 1077 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1078 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1079 } 1080 1081 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1082 // Never defer when EmitAllDecls is specified. 1083 if (LangOpts.EmitAllDecls) 1084 return false; 1085 1086 return !getContext().DeclMustBeEmitted(Global); 1087 } 1088 1089 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1090 const CXXUuidofExpr* E) { 1091 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1092 // well-formed. 1093 StringRef Uuid = E->getUuidAsStringRef(Context); 1094 std::string Name = "_GUID_" + Uuid.lower(); 1095 std::replace(Name.begin(), Name.end(), '-', '_'); 1096 1097 // Look for an existing global. 1098 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1099 return GV; 1100 1101 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1102 assert(Init && "failed to initialize as constant"); 1103 1104 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1105 getModule(), Init->getType(), 1106 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1107 return GV; 1108 } 1109 1110 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1111 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1112 assert(AA && "No alias?"); 1113 1114 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1115 1116 // See if there is already something with the target's name in the module. 1117 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1118 if (Entry) { 1119 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1120 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1121 } 1122 1123 llvm::Constant *Aliasee; 1124 if (isa<llvm::FunctionType>(DeclTy)) 1125 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1126 GlobalDecl(cast<FunctionDecl>(VD)), 1127 /*ForVTable=*/false); 1128 else 1129 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1130 llvm::PointerType::getUnqual(DeclTy), 0); 1131 1132 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 1133 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1134 WeakRefReferences.insert(F); 1135 1136 return Aliasee; 1137 } 1138 1139 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1140 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 1141 1142 // Weak references don't produce any output by themselves. 1143 if (Global->hasAttr<WeakRefAttr>()) 1144 return; 1145 1146 // If this is an alias definition (which otherwise looks like a declaration) 1147 // emit it now. 1148 if (Global->hasAttr<AliasAttr>()) 1149 return EmitAliasDefinition(GD); 1150 1151 // If this is CUDA, be selective about which declarations we emit. 1152 if (LangOpts.CUDA) { 1153 if (CodeGenOpts.CUDAIsDevice) { 1154 if (!Global->hasAttr<CUDADeviceAttr>() && 1155 !Global->hasAttr<CUDAGlobalAttr>() && 1156 !Global->hasAttr<CUDAConstantAttr>() && 1157 !Global->hasAttr<CUDASharedAttr>()) 1158 return; 1159 } else { 1160 if (!Global->hasAttr<CUDAHostAttr>() && ( 1161 Global->hasAttr<CUDADeviceAttr>() || 1162 Global->hasAttr<CUDAConstantAttr>() || 1163 Global->hasAttr<CUDASharedAttr>())) 1164 return; 1165 } 1166 } 1167 1168 // Ignore declarations, they will be emitted on their first use. 1169 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 1170 // Forward declarations are emitted lazily on first use. 1171 if (!FD->doesThisDeclarationHaveABody()) { 1172 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1173 return; 1174 1175 StringRef MangledName = getMangledName(GD); 1176 1177 // Compute the function info and LLVM type. 1178 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1179 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1180 1181 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1182 /*DontDefer=*/false); 1183 return; 1184 } 1185 } else { 1186 const VarDecl *VD = cast<VarDecl>(Global); 1187 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1188 1189 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 1190 return; 1191 } 1192 1193 // Defer code generation when possible if this is a static definition, inline 1194 // function etc. These we only want to emit if they are used. 1195 if (!MayDeferGeneration(Global)) { 1196 // Emit the definition if it can't be deferred. 1197 EmitGlobalDefinition(GD); 1198 return; 1199 } 1200 1201 // If we're deferring emission of a C++ variable with an 1202 // initializer, remember the order in which it appeared in the file. 1203 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1204 cast<VarDecl>(Global)->hasInit()) { 1205 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1206 CXXGlobalInits.push_back(0); 1207 } 1208 1209 // If the value has already been used, add it directly to the 1210 // DeferredDeclsToEmit list. 1211 StringRef MangledName = getMangledName(GD); 1212 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1213 addDeferredDeclToEmit(GV, GD); 1214 else { 1215 // Otherwise, remember that we saw a deferred decl with this name. The 1216 // first use of the mangled name will cause it to move into 1217 // DeferredDeclsToEmit. 1218 DeferredDecls[MangledName] = GD; 1219 } 1220 } 1221 1222 namespace { 1223 struct FunctionIsDirectlyRecursive : 1224 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1225 const StringRef Name; 1226 const Builtin::Context &BI; 1227 bool Result; 1228 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1229 Name(N), BI(C), Result(false) { 1230 } 1231 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1232 1233 bool TraverseCallExpr(CallExpr *E) { 1234 const FunctionDecl *FD = E->getDirectCallee(); 1235 if (!FD) 1236 return true; 1237 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1238 if (Attr && Name == Attr->getLabel()) { 1239 Result = true; 1240 return false; 1241 } 1242 unsigned BuiltinID = FD->getBuiltinID(); 1243 if (!BuiltinID) 1244 return true; 1245 StringRef BuiltinName = BI.GetName(BuiltinID); 1246 if (BuiltinName.startswith("__builtin_") && 1247 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1248 Result = true; 1249 return false; 1250 } 1251 return true; 1252 } 1253 }; 1254 } 1255 1256 // isTriviallyRecursive - Check if this function calls another 1257 // decl that, because of the asm attribute or the other decl being a builtin, 1258 // ends up pointing to itself. 1259 bool 1260 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1261 StringRef Name; 1262 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1263 // asm labels are a special kind of mangling we have to support. 1264 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1265 if (!Attr) 1266 return false; 1267 Name = Attr->getLabel(); 1268 } else { 1269 Name = FD->getName(); 1270 } 1271 1272 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1273 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1274 return Walker.Result; 1275 } 1276 1277 bool 1278 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1279 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1280 return true; 1281 const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl()); 1282 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1283 return false; 1284 // PR9614. Avoid cases where the source code is lying to us. An available 1285 // externally function should have an equivalent function somewhere else, 1286 // but a function that calls itself is clearly not equivalent to the real 1287 // implementation. 1288 // This happens in glibc's btowc and in some configure checks. 1289 return !isTriviallyRecursive(F); 1290 } 1291 1292 /// If the type for the method's class was generated by 1293 /// CGDebugInfo::createContextChain(), the cache contains only a 1294 /// limited DIType without any declarations. Since EmitFunctionStart() 1295 /// needs to find the canonical declaration for each method, we need 1296 /// to construct the complete type prior to emitting the method. 1297 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1298 if (!D->isInstance()) 1299 return; 1300 1301 if (CGDebugInfo *DI = getModuleDebugInfo()) 1302 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1303 const PointerType *ThisPtr = 1304 cast<PointerType>(D->getThisType(getContext())); 1305 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1306 } 1307 } 1308 1309 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1310 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1311 1312 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1313 Context.getSourceManager(), 1314 "Generating code for declaration"); 1315 1316 if (isa<FunctionDecl>(D)) { 1317 // At -O0, don't generate IR for functions with available_externally 1318 // linkage. 1319 if (!shouldEmitFunction(GD)) 1320 return; 1321 1322 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1323 CompleteDIClassType(Method); 1324 // Make sure to emit the definition(s) before we emit the thunks. 1325 // This is necessary for the generation of certain thunks. 1326 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1327 EmitCXXConstructor(CD, GD.getCtorType()); 1328 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1329 EmitCXXDestructor(DD, GD.getDtorType()); 1330 else 1331 EmitGlobalFunctionDefinition(GD, GV); 1332 1333 if (Method->isVirtual()) 1334 getVTables().EmitThunks(GD); 1335 1336 return; 1337 } 1338 1339 return EmitGlobalFunctionDefinition(GD, GV); 1340 } 1341 1342 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1343 return EmitGlobalVarDefinition(VD); 1344 1345 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1346 } 1347 1348 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1349 /// module, create and return an llvm Function with the specified type. If there 1350 /// is something in the module with the specified name, return it potentially 1351 /// bitcasted to the right type. 1352 /// 1353 /// If D is non-null, it specifies a decl that correspond to this. This is used 1354 /// to set the attributes on the function when it is first created. 1355 llvm::Constant * 1356 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1357 llvm::Type *Ty, 1358 GlobalDecl GD, bool ForVTable, 1359 bool DontDefer, 1360 llvm::AttributeSet ExtraAttrs) { 1361 const Decl *D = GD.getDecl(); 1362 1363 // Lookup the entry, lazily creating it if necessary. 1364 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1365 if (Entry) { 1366 if (WeakRefReferences.erase(Entry)) { 1367 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1368 if (FD && !FD->hasAttr<WeakAttr>()) 1369 Entry->setLinkage(llvm::Function::ExternalLinkage); 1370 } 1371 1372 if (Entry->getType()->getElementType() == Ty) 1373 return Entry; 1374 1375 // Make sure the result is of the correct type. 1376 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1377 } 1378 1379 // This function doesn't have a complete type (for example, the return 1380 // type is an incomplete struct). Use a fake type instead, and make 1381 // sure not to try to set attributes. 1382 bool IsIncompleteFunction = false; 1383 1384 llvm::FunctionType *FTy; 1385 if (isa<llvm::FunctionType>(Ty)) { 1386 FTy = cast<llvm::FunctionType>(Ty); 1387 } else { 1388 FTy = llvm::FunctionType::get(VoidTy, false); 1389 IsIncompleteFunction = true; 1390 } 1391 1392 llvm::Function *F = llvm::Function::Create(FTy, 1393 llvm::Function::ExternalLinkage, 1394 MangledName, &getModule()); 1395 assert(F->getName() == MangledName && "name was uniqued!"); 1396 if (D) 1397 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1398 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1399 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1400 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1401 llvm::AttributeSet::get(VMContext, 1402 llvm::AttributeSet::FunctionIndex, 1403 B)); 1404 } 1405 1406 if (!DontDefer) { 1407 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1408 // each other bottoming out with the base dtor. Therefore we emit non-base 1409 // dtors on usage, even if there is no dtor definition in the TU. 1410 if (D && isa<CXXDestructorDecl>(D) && 1411 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1412 GD.getDtorType())) 1413 addDeferredDeclToEmit(F, GD); 1414 1415 // This is the first use or definition of a mangled name. If there is a 1416 // deferred decl with this name, remember that we need to emit it at the end 1417 // of the file. 1418 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1419 if (DDI != DeferredDecls.end()) { 1420 // Move the potentially referenced deferred decl to the 1421 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1422 // don't need it anymore). 1423 addDeferredDeclToEmit(F, DDI->second); 1424 DeferredDecls.erase(DDI); 1425 1426 // Otherwise, if this is a sized deallocation function, emit a weak 1427 // definition 1428 // for it at the end of the translation unit. 1429 } else if (D && cast<FunctionDecl>(D) 1430 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1431 addDeferredDeclToEmit(F, GD); 1432 1433 // Otherwise, there are cases we have to worry about where we're 1434 // using a declaration for which we must emit a definition but where 1435 // we might not find a top-level definition: 1436 // - member functions defined inline in their classes 1437 // - friend functions defined inline in some class 1438 // - special member functions with implicit definitions 1439 // If we ever change our AST traversal to walk into class methods, 1440 // this will be unnecessary. 1441 // 1442 // We also don't emit a definition for a function if it's going to be an 1443 // entry 1444 // in a vtable, unless it's already marked as used. 1445 } else if (getLangOpts().CPlusPlus && D) { 1446 // Look for a declaration that's lexically in a record. 1447 const FunctionDecl *FD = cast<FunctionDecl>(D); 1448 FD = FD->getMostRecentDecl(); 1449 do { 1450 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1451 if (FD->isImplicit() && !ForVTable) { 1452 assert(FD->isUsed() && 1453 "Sema didn't mark implicit function as used!"); 1454 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1455 break; 1456 } else if (FD->doesThisDeclarationHaveABody()) { 1457 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1458 break; 1459 } 1460 } 1461 FD = FD->getPreviousDecl(); 1462 } while (FD); 1463 } 1464 } 1465 1466 // Make sure the result is of the requested type. 1467 if (!IsIncompleteFunction) { 1468 assert(F->getType()->getElementType() == Ty); 1469 return F; 1470 } 1471 1472 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1473 return llvm::ConstantExpr::getBitCast(F, PTy); 1474 } 1475 1476 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1477 /// non-null, then this function will use the specified type if it has to 1478 /// create it (this occurs when we see a definition of the function). 1479 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1480 llvm::Type *Ty, 1481 bool ForVTable, 1482 bool DontDefer) { 1483 // If there was no specific requested type, just convert it now. 1484 if (!Ty) 1485 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1486 1487 StringRef MangledName = getMangledName(GD); 1488 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1489 } 1490 1491 /// CreateRuntimeFunction - Create a new runtime function with the specified 1492 /// type and name. 1493 llvm::Constant * 1494 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1495 StringRef Name, 1496 llvm::AttributeSet ExtraAttrs) { 1497 llvm::Constant *C = 1498 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1499 /*DontDefer=*/false, ExtraAttrs); 1500 if (llvm::Function *F = dyn_cast<llvm::Function>(C)) 1501 if (F->empty()) 1502 F->setCallingConv(getRuntimeCC()); 1503 return C; 1504 } 1505 1506 /// isTypeConstant - Determine whether an object of this type can be emitted 1507 /// as a constant. 1508 /// 1509 /// If ExcludeCtor is true, the duration when the object's constructor runs 1510 /// will not be considered. The caller will need to verify that the object is 1511 /// not written to during its construction. 1512 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1513 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1514 return false; 1515 1516 if (Context.getLangOpts().CPlusPlus) { 1517 if (const CXXRecordDecl *Record 1518 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1519 return ExcludeCtor && !Record->hasMutableFields() && 1520 Record->hasTrivialDestructor(); 1521 } 1522 1523 return true; 1524 } 1525 1526 static bool isVarDeclInlineInitializedStaticDataMember(const VarDecl *VD) { 1527 if (!VD->isStaticDataMember()) 1528 return false; 1529 const VarDecl *InitDecl; 1530 const Expr *InitExpr = VD->getAnyInitializer(InitDecl); 1531 if (!InitExpr) 1532 return false; 1533 if (InitDecl->isThisDeclarationADefinition()) 1534 return false; 1535 return true; 1536 } 1537 1538 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1539 /// create and return an llvm GlobalVariable with the specified type. If there 1540 /// is something in the module with the specified name, return it potentially 1541 /// bitcasted to the right type. 1542 /// 1543 /// If D is non-null, it specifies a decl that correspond to this. This is used 1544 /// to set the attributes on the global when it is first created. 1545 llvm::Constant * 1546 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1547 llvm::PointerType *Ty, 1548 const VarDecl *D, 1549 bool UnnamedAddr) { 1550 // Lookup the entry, lazily creating it if necessary. 1551 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1552 if (Entry) { 1553 if (WeakRefReferences.erase(Entry)) { 1554 if (D && !D->hasAttr<WeakAttr>()) 1555 Entry->setLinkage(llvm::Function::ExternalLinkage); 1556 } 1557 1558 if (UnnamedAddr) 1559 Entry->setUnnamedAddr(true); 1560 1561 if (Entry->getType() == Ty) 1562 return Entry; 1563 1564 // Make sure the result is of the correct type. 1565 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1566 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1567 1568 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1569 } 1570 1571 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1572 llvm::GlobalVariable *GV = 1573 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1574 llvm::GlobalValue::ExternalLinkage, 1575 0, MangledName, 0, 1576 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1577 1578 // This is the first use or definition of a mangled name. If there is a 1579 // deferred decl with this name, remember that we need to emit it at the end 1580 // of the file. 1581 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1582 if (DDI != DeferredDecls.end()) { 1583 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1584 // list, and remove it from DeferredDecls (since we don't need it anymore). 1585 addDeferredDeclToEmit(GV, DDI->second); 1586 DeferredDecls.erase(DDI); 1587 } 1588 1589 // Handle things which are present even on external declarations. 1590 if (D) { 1591 // FIXME: This code is overly simple and should be merged with other global 1592 // handling. 1593 GV->setConstant(isTypeConstant(D->getType(), false)); 1594 1595 setLinkageAndVisibilityForGV(GV, D); 1596 1597 if (D->getTLSKind()) { 1598 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1599 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1600 setTLSMode(GV, *D); 1601 } 1602 1603 // If required by the ABI, treat declarations of static data members with 1604 // inline initializers as definitions. 1605 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1606 isVarDeclInlineInitializedStaticDataMember(D)) 1607 EmitGlobalVarDefinition(D); 1608 } 1609 1610 if (AddrSpace != Ty->getAddressSpace()) 1611 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1612 1613 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1614 D->getLanguageLinkage() == CLanguageLinkage && 1615 D->getType().isConstant(Context) && 1616 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1617 GV->setSection(".cp.rodata"); 1618 1619 return GV; 1620 } 1621 1622 1623 llvm::GlobalVariable * 1624 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1625 llvm::Type *Ty, 1626 llvm::GlobalValue::LinkageTypes Linkage) { 1627 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1628 llvm::GlobalVariable *OldGV = 0; 1629 1630 1631 if (GV) { 1632 // Check if the variable has the right type. 1633 if (GV->getType()->getElementType() == Ty) 1634 return GV; 1635 1636 // Because C++ name mangling, the only way we can end up with an already 1637 // existing global with the same name is if it has been declared extern "C". 1638 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1639 OldGV = GV; 1640 } 1641 1642 // Create a new variable. 1643 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1644 Linkage, 0, Name); 1645 1646 if (OldGV) { 1647 // Replace occurrences of the old variable if needed. 1648 GV->takeName(OldGV); 1649 1650 if (!OldGV->use_empty()) { 1651 llvm::Constant *NewPtrForOldDecl = 1652 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1653 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1654 } 1655 1656 OldGV->eraseFromParent(); 1657 } 1658 1659 return GV; 1660 } 1661 1662 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1663 /// given global variable. If Ty is non-null and if the global doesn't exist, 1664 /// then it will be created with the specified type instead of whatever the 1665 /// normal requested type would be. 1666 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1667 llvm::Type *Ty) { 1668 assert(D->hasGlobalStorage() && "Not a global variable"); 1669 QualType ASTTy = D->getType(); 1670 if (Ty == 0) 1671 Ty = getTypes().ConvertTypeForMem(ASTTy); 1672 1673 llvm::PointerType *PTy = 1674 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1675 1676 StringRef MangledName = getMangledName(D); 1677 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1678 } 1679 1680 /// CreateRuntimeVariable - Create a new runtime global variable with the 1681 /// specified type and name. 1682 llvm::Constant * 1683 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1684 StringRef Name) { 1685 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1686 true); 1687 } 1688 1689 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1690 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1691 1692 if (MayDeferGeneration(D)) { 1693 // If we have not seen a reference to this variable yet, place it 1694 // into the deferred declarations table to be emitted if needed 1695 // later. 1696 StringRef MangledName = getMangledName(D); 1697 if (!GetGlobalValue(MangledName)) { 1698 DeferredDecls[MangledName] = D; 1699 return; 1700 } 1701 } 1702 1703 // The tentative definition is the only definition. 1704 EmitGlobalVarDefinition(D); 1705 } 1706 1707 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1708 return Context.toCharUnitsFromBits( 1709 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1710 } 1711 1712 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1713 unsigned AddrSpace) { 1714 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1715 if (D->hasAttr<CUDAConstantAttr>()) 1716 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1717 else if (D->hasAttr<CUDASharedAttr>()) 1718 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1719 else 1720 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1721 } 1722 1723 return AddrSpace; 1724 } 1725 1726 template<typename SomeDecl> 1727 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1728 llvm::GlobalValue *GV) { 1729 if (!getLangOpts().CPlusPlus) 1730 return; 1731 1732 // Must have 'used' attribute, or else inline assembly can't rely on 1733 // the name existing. 1734 if (!D->template hasAttr<UsedAttr>()) 1735 return; 1736 1737 // Must have internal linkage and an ordinary name. 1738 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1739 return; 1740 1741 // Must be in an extern "C" context. Entities declared directly within 1742 // a record are not extern "C" even if the record is in such a context. 1743 const SomeDecl *First = D->getFirstDecl(); 1744 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1745 return; 1746 1747 // OK, this is an internal linkage entity inside an extern "C" linkage 1748 // specification. Make a note of that so we can give it the "expected" 1749 // mangled name if nothing else is using that name. 1750 std::pair<StaticExternCMap::iterator, bool> R = 1751 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1752 1753 // If we have multiple internal linkage entities with the same name 1754 // in extern "C" regions, none of them gets that name. 1755 if (!R.second) 1756 R.first->second = 0; 1757 } 1758 1759 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1760 llvm::Constant *Init = 0; 1761 QualType ASTTy = D->getType(); 1762 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1763 bool NeedsGlobalCtor = false; 1764 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1765 1766 const VarDecl *InitDecl; 1767 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1768 1769 if (!InitExpr) { 1770 // This is a tentative definition; tentative definitions are 1771 // implicitly initialized with { 0 }. 1772 // 1773 // Note that tentative definitions are only emitted at the end of 1774 // a translation unit, so they should never have incomplete 1775 // type. In addition, EmitTentativeDefinition makes sure that we 1776 // never attempt to emit a tentative definition if a real one 1777 // exists. A use may still exists, however, so we still may need 1778 // to do a RAUW. 1779 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1780 Init = EmitNullConstant(D->getType()); 1781 } else { 1782 initializedGlobalDecl = GlobalDecl(D); 1783 Init = EmitConstantInit(*InitDecl); 1784 1785 if (!Init) { 1786 QualType T = InitExpr->getType(); 1787 if (D->getType()->isReferenceType()) 1788 T = D->getType(); 1789 1790 if (getLangOpts().CPlusPlus) { 1791 Init = EmitNullConstant(T); 1792 NeedsGlobalCtor = true; 1793 } else { 1794 ErrorUnsupported(D, "static initializer"); 1795 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1796 } 1797 } else { 1798 // We don't need an initializer, so remove the entry for the delayed 1799 // initializer position (just in case this entry was delayed) if we 1800 // also don't need to register a destructor. 1801 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1802 DelayedCXXInitPosition.erase(D); 1803 } 1804 } 1805 1806 llvm::Type* InitType = Init->getType(); 1807 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1808 1809 // Strip off a bitcast if we got one back. 1810 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1811 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1812 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1813 // All zero index gep. 1814 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1815 Entry = CE->getOperand(0); 1816 } 1817 1818 // Entry is now either a Function or GlobalVariable. 1819 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1820 1821 // We have a definition after a declaration with the wrong type. 1822 // We must make a new GlobalVariable* and update everything that used OldGV 1823 // (a declaration or tentative definition) with the new GlobalVariable* 1824 // (which will be a definition). 1825 // 1826 // This happens if there is a prototype for a global (e.g. 1827 // "extern int x[];") and then a definition of a different type (e.g. 1828 // "int x[10];"). This also happens when an initializer has a different type 1829 // from the type of the global (this happens with unions). 1830 if (GV == 0 || 1831 GV->getType()->getElementType() != InitType || 1832 GV->getType()->getAddressSpace() != 1833 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1834 1835 // Move the old entry aside so that we'll create a new one. 1836 Entry->setName(StringRef()); 1837 1838 // Make a new global with the correct type, this is now guaranteed to work. 1839 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1840 1841 // Replace all uses of the old global with the new global 1842 llvm::Constant *NewPtrForOldDecl = 1843 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1844 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1845 1846 // Erase the old global, since it is no longer used. 1847 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1848 } 1849 1850 MaybeHandleStaticInExternC(D, GV); 1851 1852 if (D->hasAttr<AnnotateAttr>()) 1853 AddGlobalAnnotations(D, GV); 1854 1855 GV->setInitializer(Init); 1856 1857 // If it is safe to mark the global 'constant', do so now. 1858 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1859 isTypeConstant(D->getType(), true)); 1860 1861 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1862 1863 // Set the llvm linkage type as appropriate. 1864 llvm::GlobalValue::LinkageTypes Linkage = 1865 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1866 GV->setLinkage(Linkage); 1867 if (D->hasAttr<DLLImportAttr>()) 1868 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1869 else if (D->hasAttr<DLLExportAttr>()) 1870 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1871 1872 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1873 // common vars aren't constant even if declared const. 1874 GV->setConstant(false); 1875 1876 SetCommonAttributes(D, GV); 1877 1878 // Emit the initializer function if necessary. 1879 if (NeedsGlobalCtor || NeedsGlobalDtor) 1880 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1881 1882 // If we are compiling with ASan, add metadata indicating dynamically 1883 // initialized globals. 1884 if (SanOpts.Address && NeedsGlobalCtor) { 1885 llvm::Module &M = getModule(); 1886 1887 llvm::NamedMDNode *DynamicInitializers = 1888 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1889 llvm::Value *GlobalToAdd[] = { GV }; 1890 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1891 DynamicInitializers->addOperand(ThisGlobal); 1892 } 1893 1894 // Emit global variable debug information. 1895 if (CGDebugInfo *DI = getModuleDebugInfo()) 1896 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1897 DI->EmitGlobalVariable(GV, D); 1898 } 1899 1900 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 1901 // Don't give variables common linkage if -fno-common was specified unless it 1902 // was overridden by a NoCommon attribute. 1903 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 1904 return true; 1905 1906 // C11 6.9.2/2: 1907 // A declaration of an identifier for an object that has file scope without 1908 // an initializer, and without a storage-class specifier or with the 1909 // storage-class specifier static, constitutes a tentative definition. 1910 if (D->getInit() || D->hasExternalStorage()) 1911 return true; 1912 1913 // A variable cannot be both common and exist in a section. 1914 if (D->hasAttr<SectionAttr>()) 1915 return true; 1916 1917 // Thread local vars aren't considered common linkage. 1918 if (D->getTLSKind()) 1919 return true; 1920 1921 // Tentative definitions marked with WeakImportAttr are true definitions. 1922 if (D->hasAttr<WeakImportAttr>()) 1923 return true; 1924 1925 return false; 1926 } 1927 1928 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageforDeclarator( 1929 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable, 1930 bool UseThunkForDtorVariant) { 1931 if (Linkage == GVA_Internal) 1932 return llvm::Function::InternalLinkage; 1933 1934 if (D->hasAttr<WeakAttr>()) { 1935 if (IsConstantVariable) 1936 return llvm::GlobalVariable::WeakODRLinkage; 1937 else 1938 return llvm::GlobalVariable::WeakAnyLinkage; 1939 } 1940 1941 // We are guaranteed to have a strong definition somewhere else, 1942 // so we can use available_externally linkage. 1943 if (Linkage == GVA_AvailableExternally) 1944 return llvm::Function::AvailableExternallyLinkage; 1945 1946 // LinkOnceODRLinkage is insufficient if the symbol is required to exist in 1947 // the symbol table. Promote the linkage to WeakODRLinkage to preserve the 1948 // semantics of LinkOnceODRLinkage while providing visibility in the symbol 1949 // table. 1950 llvm::GlobalValue::LinkageTypes OnceLinkage = 1951 llvm::GlobalValue::LinkOnceODRLinkage; 1952 if (D->hasAttr<DLLExportAttr>() || D->hasAttr<DLLImportAttr>()) 1953 OnceLinkage = llvm::GlobalVariable::WeakODRLinkage; 1954 1955 // Note that Apple's kernel linker doesn't support symbol 1956 // coalescing, so we need to avoid linkonce and weak linkages there. 1957 // Normally, this means we just map to internal, but for explicit 1958 // instantiations we'll map to external. 1959 1960 // In C++, the compiler has to emit a definition in every translation unit 1961 // that references the function. We should use linkonce_odr because 1962 // a) if all references in this translation unit are optimized away, we 1963 // don't need to codegen it. b) if the function persists, it needs to be 1964 // merged with other definitions. c) C++ has the ODR, so we know the 1965 // definition is dependable. 1966 if (Linkage == GVA_DiscardableODR) 1967 return !Context.getLangOpts().AppleKext ? OnceLinkage 1968 : llvm::Function::InternalLinkage; 1969 1970 // An explicit instantiation of a template has weak linkage, since 1971 // explicit instantiations can occur in multiple translation units 1972 // and must all be equivalent. However, we are not allowed to 1973 // throw away these explicit instantiations. 1974 if (Linkage == GVA_StrongODR) 1975 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 1976 : llvm::Function::ExternalLinkage; 1977 1978 // Destructor variants in the Microsoft C++ ABI are always linkonce_odr thunks 1979 // emitted on an as-needed basis. 1980 if (UseThunkForDtorVariant) 1981 return OnceLinkage; 1982 1983 // If required by the ABI, give definitions of static data members with inline 1984 // initializers at least linkonce_odr linkage. 1985 if (getCXXABI().isInlineInitializedStaticDataMemberLinkOnce() && 1986 isa<VarDecl>(D) && 1987 isVarDeclInlineInitializedStaticDataMember(cast<VarDecl>(D))) 1988 return OnceLinkage; 1989 1990 // C++ doesn't have tentative definitions and thus cannot have common 1991 // linkage. 1992 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 1993 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 1994 return llvm::GlobalVariable::CommonLinkage; 1995 1996 // selectany symbols are externally visible, so use weak instead of 1997 // linkonce. MSVC optimizes away references to const selectany globals, so 1998 // all definitions should be the same and ODR linkage should be used. 1999 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2000 if (D->hasAttr<SelectAnyAttr>()) 2001 return llvm::GlobalVariable::WeakODRLinkage; 2002 2003 // Otherwise, we have strong external linkage. 2004 assert(Linkage == GVA_StrongExternal); 2005 return llvm::GlobalVariable::ExternalLinkage; 2006 } 2007 2008 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2009 const VarDecl *VD, bool IsConstant) { 2010 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2011 return getLLVMLinkageforDeclarator(VD, Linkage, IsConstant, 2012 /*UseThunkForDtorVariant=*/false); 2013 } 2014 2015 /// Replace the uses of a function that was declared with a non-proto type. 2016 /// We want to silently drop extra arguments from call sites 2017 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2018 llvm::Function *newFn) { 2019 // Fast path. 2020 if (old->use_empty()) return; 2021 2022 llvm::Type *newRetTy = newFn->getReturnType(); 2023 SmallVector<llvm::Value*, 4> newArgs; 2024 2025 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2026 ui != ue; ) { 2027 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2028 llvm::User *user = use->getUser(); 2029 2030 // Recognize and replace uses of bitcasts. Most calls to 2031 // unprototyped functions will use bitcasts. 2032 if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2033 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2034 replaceUsesOfNonProtoConstant(bitcast, newFn); 2035 continue; 2036 } 2037 2038 // Recognize calls to the function. 2039 llvm::CallSite callSite(user); 2040 if (!callSite) continue; 2041 if (!callSite.isCallee(&*use)) continue; 2042 2043 // If the return types don't match exactly, then we can't 2044 // transform this call unless it's dead. 2045 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2046 continue; 2047 2048 // Get the call site's attribute list. 2049 SmallVector<llvm::AttributeSet, 8> newAttrs; 2050 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2051 2052 // Collect any return attributes from the call. 2053 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2054 newAttrs.push_back( 2055 llvm::AttributeSet::get(newFn->getContext(), 2056 oldAttrs.getRetAttributes())); 2057 2058 // If the function was passed too few arguments, don't transform. 2059 unsigned newNumArgs = newFn->arg_size(); 2060 if (callSite.arg_size() < newNumArgs) continue; 2061 2062 // If extra arguments were passed, we silently drop them. 2063 // If any of the types mismatch, we don't transform. 2064 unsigned argNo = 0; 2065 bool dontTransform = false; 2066 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2067 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2068 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2069 dontTransform = true; 2070 break; 2071 } 2072 2073 // Add any parameter attributes. 2074 if (oldAttrs.hasAttributes(argNo + 1)) 2075 newAttrs. 2076 push_back(llvm:: 2077 AttributeSet::get(newFn->getContext(), 2078 oldAttrs.getParamAttributes(argNo + 1))); 2079 } 2080 if (dontTransform) 2081 continue; 2082 2083 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2084 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2085 oldAttrs.getFnAttributes())); 2086 2087 // Okay, we can transform this. Create the new call instruction and copy 2088 // over the required information. 2089 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2090 2091 llvm::CallSite newCall; 2092 if (callSite.isCall()) { 2093 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2094 callSite.getInstruction()); 2095 } else { 2096 llvm::InvokeInst *oldInvoke = 2097 cast<llvm::InvokeInst>(callSite.getInstruction()); 2098 newCall = llvm::InvokeInst::Create(newFn, 2099 oldInvoke->getNormalDest(), 2100 oldInvoke->getUnwindDest(), 2101 newArgs, "", 2102 callSite.getInstruction()); 2103 } 2104 newArgs.clear(); // for the next iteration 2105 2106 if (!newCall->getType()->isVoidTy()) 2107 newCall->takeName(callSite.getInstruction()); 2108 newCall.setAttributes( 2109 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2110 newCall.setCallingConv(callSite.getCallingConv()); 2111 2112 // Finally, remove the old call, replacing any uses with the new one. 2113 if (!callSite->use_empty()) 2114 callSite->replaceAllUsesWith(newCall.getInstruction()); 2115 2116 // Copy debug location attached to CI. 2117 if (!callSite->getDebugLoc().isUnknown()) 2118 newCall->setDebugLoc(callSite->getDebugLoc()); 2119 callSite->eraseFromParent(); 2120 } 2121 } 2122 2123 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2124 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2125 /// existing call uses of the old function in the module, this adjusts them to 2126 /// call the new function directly. 2127 /// 2128 /// This is not just a cleanup: the always_inline pass requires direct calls to 2129 /// functions to be able to inline them. If there is a bitcast in the way, it 2130 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2131 /// run at -O0. 2132 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2133 llvm::Function *NewFn) { 2134 // If we're redefining a global as a function, don't transform it. 2135 if (!isa<llvm::Function>(Old)) return; 2136 2137 replaceUsesOfNonProtoConstant(Old, NewFn); 2138 } 2139 2140 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2141 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2142 // If we have a definition, this might be a deferred decl. If the 2143 // instantiation is explicit, make sure we emit it at the end. 2144 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2145 GetAddrOfGlobalVar(VD); 2146 2147 EmitTopLevelDecl(VD); 2148 } 2149 2150 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2151 llvm::GlobalValue *GV) { 2152 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 2153 2154 // Compute the function info and LLVM type. 2155 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2156 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2157 2158 // Get or create the prototype for the function. 2159 llvm::Constant *Entry = 2160 GV ? GV 2161 : GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2162 2163 // Strip off a bitcast if we got one back. 2164 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2165 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2166 Entry = CE->getOperand(0); 2167 } 2168 2169 if (!cast<llvm::GlobalValue>(Entry)->isDeclaration()) { 2170 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2171 return; 2172 } 2173 2174 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 2175 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 2176 2177 // If the types mismatch then we have to rewrite the definition. 2178 assert(OldFn->isDeclaration() && 2179 "Shouldn't replace non-declaration"); 2180 2181 // F is the Function* for the one with the wrong type, we must make a new 2182 // Function* and update everything that used F (a declaration) with the new 2183 // Function* (which will be a definition). 2184 // 2185 // This happens if there is a prototype for a function 2186 // (e.g. "int f()") and then a definition of a different type 2187 // (e.g. "int f(int x)"). Move the old function aside so that it 2188 // doesn't interfere with GetAddrOfFunction. 2189 OldFn->setName(StringRef()); 2190 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2191 2192 // This might be an implementation of a function without a 2193 // prototype, in which case, try to do special replacement of 2194 // calls which match the new prototype. The really key thing here 2195 // is that we also potentially drop arguments from the call site 2196 // so as to make a direct call, which makes the inliner happier 2197 // and suppresses a number of optimizer warnings (!) about 2198 // dropping arguments. 2199 if (!OldFn->use_empty()) { 2200 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 2201 OldFn->removeDeadConstantUsers(); 2202 } 2203 2204 // Replace uses of F with the Function we will endow with a body. 2205 if (!Entry->use_empty()) { 2206 llvm::Constant *NewPtrForOldDecl = 2207 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 2208 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2209 } 2210 2211 // Ok, delete the old function now, which is dead. 2212 OldFn->eraseFromParent(); 2213 2214 Entry = NewFn; 2215 } 2216 2217 // We need to set linkage and visibility on the function before 2218 // generating code for it because various parts of IR generation 2219 // want to propagate this information down (e.g. to local static 2220 // declarations). 2221 llvm::Function *Fn = cast<llvm::Function>(Entry); 2222 setFunctionLinkage(GD, Fn); 2223 2224 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 2225 setGlobalVisibility(Fn, D); 2226 2227 MaybeHandleStaticInExternC(D, Fn); 2228 2229 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2230 2231 SetFunctionDefinitionAttributes(D, Fn); 2232 SetLLVMFunctionAttributesForDefinition(D, Fn); 2233 2234 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2235 AddGlobalCtor(Fn, CA->getPriority()); 2236 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2237 AddGlobalDtor(Fn, DA->getPriority()); 2238 if (D->hasAttr<AnnotateAttr>()) 2239 AddGlobalAnnotations(D, Fn); 2240 } 2241 2242 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2243 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 2244 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2245 assert(AA && "Not an alias?"); 2246 2247 StringRef MangledName = getMangledName(GD); 2248 2249 // If there is a definition in the module, then it wins over the alias. 2250 // This is dubious, but allow it to be safe. Just ignore the alias. 2251 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2252 if (Entry && !Entry->isDeclaration()) 2253 return; 2254 2255 Aliases.push_back(GD); 2256 2257 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2258 2259 // Create a reference to the named value. This ensures that it is emitted 2260 // if a deferred decl. 2261 llvm::Constant *Aliasee; 2262 if (isa<llvm::FunctionType>(DeclTy)) 2263 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2264 /*ForVTable=*/false); 2265 else 2266 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2267 llvm::PointerType::getUnqual(DeclTy), 0); 2268 2269 // Create the new alias itself, but don't set a name yet. 2270 llvm::GlobalValue *GA = 2271 new llvm::GlobalAlias(Aliasee->getType(), 2272 llvm::Function::ExternalLinkage, 2273 "", Aliasee, &getModule()); 2274 2275 if (Entry) { 2276 assert(Entry->isDeclaration()); 2277 2278 // If there is a declaration in the module, then we had an extern followed 2279 // by the alias, as in: 2280 // extern int test6(); 2281 // ... 2282 // int test6() __attribute__((alias("test7"))); 2283 // 2284 // Remove it and replace uses of it with the alias. 2285 GA->takeName(Entry); 2286 2287 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2288 Entry->getType())); 2289 Entry->eraseFromParent(); 2290 } else { 2291 GA->setName(MangledName); 2292 } 2293 2294 // Set attributes which are particular to an alias; this is a 2295 // specialization of the attributes which may be set on a global 2296 // variable/function. 2297 if (D->hasAttr<DLLExportAttr>()) { 2298 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2299 // The dllexport attribute is ignored for undefined symbols. 2300 if (FD->hasBody()) 2301 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2302 } else { 2303 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2304 } 2305 } else if (D->hasAttr<WeakAttr>() || 2306 D->hasAttr<WeakRefAttr>() || 2307 D->isWeakImported()) { 2308 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2309 } 2310 2311 SetCommonAttributes(D, GA); 2312 } 2313 2314 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2315 ArrayRef<llvm::Type*> Tys) { 2316 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2317 Tys); 2318 } 2319 2320 static llvm::StringMapEntry<llvm::Constant*> & 2321 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2322 const StringLiteral *Literal, 2323 bool TargetIsLSB, 2324 bool &IsUTF16, 2325 unsigned &StringLength) { 2326 StringRef String = Literal->getString(); 2327 unsigned NumBytes = String.size(); 2328 2329 // Check for simple case. 2330 if (!Literal->containsNonAsciiOrNull()) { 2331 StringLength = NumBytes; 2332 return Map.GetOrCreateValue(String); 2333 } 2334 2335 // Otherwise, convert the UTF8 literals into a string of shorts. 2336 IsUTF16 = true; 2337 2338 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2339 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2340 UTF16 *ToPtr = &ToBuf[0]; 2341 2342 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2343 &ToPtr, ToPtr + NumBytes, 2344 strictConversion); 2345 2346 // ConvertUTF8toUTF16 returns the length in ToPtr. 2347 StringLength = ToPtr - &ToBuf[0]; 2348 2349 // Add an explicit null. 2350 *ToPtr = 0; 2351 return Map. 2352 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2353 (StringLength + 1) * 2)); 2354 } 2355 2356 static llvm::StringMapEntry<llvm::Constant*> & 2357 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2358 const StringLiteral *Literal, 2359 unsigned &StringLength) { 2360 StringRef String = Literal->getString(); 2361 StringLength = String.size(); 2362 return Map.GetOrCreateValue(String); 2363 } 2364 2365 llvm::Constant * 2366 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2367 unsigned StringLength = 0; 2368 bool isUTF16 = false; 2369 llvm::StringMapEntry<llvm::Constant*> &Entry = 2370 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2371 getDataLayout().isLittleEndian(), 2372 isUTF16, StringLength); 2373 2374 if (llvm::Constant *C = Entry.getValue()) 2375 return C; 2376 2377 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2378 llvm::Constant *Zeros[] = { Zero, Zero }; 2379 llvm::Value *V; 2380 2381 // If we don't already have it, get __CFConstantStringClassReference. 2382 if (!CFConstantStringClassRef) { 2383 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2384 Ty = llvm::ArrayType::get(Ty, 0); 2385 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2386 "__CFConstantStringClassReference"); 2387 // Decay array -> ptr 2388 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2389 CFConstantStringClassRef = V; 2390 } 2391 else 2392 V = CFConstantStringClassRef; 2393 2394 QualType CFTy = getContext().getCFConstantStringType(); 2395 2396 llvm::StructType *STy = 2397 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2398 2399 llvm::Constant *Fields[4]; 2400 2401 // Class pointer. 2402 Fields[0] = cast<llvm::ConstantExpr>(V); 2403 2404 // Flags. 2405 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2406 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2407 llvm::ConstantInt::get(Ty, 0x07C8); 2408 2409 // String pointer. 2410 llvm::Constant *C = 0; 2411 if (isUTF16) { 2412 ArrayRef<uint16_t> Arr = 2413 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2414 const_cast<char *>(Entry.getKey().data())), 2415 Entry.getKey().size() / 2); 2416 C = llvm::ConstantDataArray::get(VMContext, Arr); 2417 } else { 2418 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2419 } 2420 2421 // Note: -fwritable-strings doesn't make the backing store strings of 2422 // CFStrings writable. (See <rdar://problem/10657500>) 2423 llvm::GlobalVariable *GV = 2424 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2425 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2426 GV->setUnnamedAddr(true); 2427 // Don't enforce the target's minimum global alignment, since the only use 2428 // of the string is via this class initializer. 2429 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2430 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2431 // that changes the section it ends in, which surprises ld64. 2432 if (isUTF16) { 2433 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2434 GV->setAlignment(Align.getQuantity()); 2435 GV->setSection("__TEXT,__ustring"); 2436 } else { 2437 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2438 GV->setAlignment(Align.getQuantity()); 2439 GV->setSection("__TEXT,__cstring,cstring_literals"); 2440 } 2441 2442 // String. 2443 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2444 2445 if (isUTF16) 2446 // Cast the UTF16 string to the correct type. 2447 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2448 2449 // String length. 2450 Ty = getTypes().ConvertType(getContext().LongTy); 2451 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2452 2453 // The struct. 2454 C = llvm::ConstantStruct::get(STy, Fields); 2455 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2456 llvm::GlobalVariable::PrivateLinkage, C, 2457 "_unnamed_cfstring_"); 2458 GV->setSection("__DATA,__cfstring"); 2459 Entry.setValue(GV); 2460 2461 return GV; 2462 } 2463 2464 llvm::Constant * 2465 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2466 unsigned StringLength = 0; 2467 llvm::StringMapEntry<llvm::Constant*> &Entry = 2468 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2469 2470 if (llvm::Constant *C = Entry.getValue()) 2471 return C; 2472 2473 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2474 llvm::Constant *Zeros[] = { Zero, Zero }; 2475 llvm::Value *V; 2476 // If we don't already have it, get _NSConstantStringClassReference. 2477 if (!ConstantStringClassRef) { 2478 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2479 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2480 llvm::Constant *GV; 2481 if (LangOpts.ObjCRuntime.isNonFragile()) { 2482 std::string str = 2483 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2484 : "OBJC_CLASS_$_" + StringClass; 2485 GV = getObjCRuntime().GetClassGlobal(str); 2486 // Make sure the result is of the correct type. 2487 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2488 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2489 ConstantStringClassRef = V; 2490 } else { 2491 std::string str = 2492 StringClass.empty() ? "_NSConstantStringClassReference" 2493 : "_" + StringClass + "ClassReference"; 2494 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2495 GV = CreateRuntimeVariable(PTy, str); 2496 // Decay array -> ptr 2497 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2498 ConstantStringClassRef = V; 2499 } 2500 } 2501 else 2502 V = ConstantStringClassRef; 2503 2504 if (!NSConstantStringType) { 2505 // Construct the type for a constant NSString. 2506 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2507 D->startDefinition(); 2508 2509 QualType FieldTypes[3]; 2510 2511 // const int *isa; 2512 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2513 // const char *str; 2514 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2515 // unsigned int length; 2516 FieldTypes[2] = Context.UnsignedIntTy; 2517 2518 // Create fields 2519 for (unsigned i = 0; i < 3; ++i) { 2520 FieldDecl *Field = FieldDecl::Create(Context, D, 2521 SourceLocation(), 2522 SourceLocation(), 0, 2523 FieldTypes[i], /*TInfo=*/0, 2524 /*BitWidth=*/0, 2525 /*Mutable=*/false, 2526 ICIS_NoInit); 2527 Field->setAccess(AS_public); 2528 D->addDecl(Field); 2529 } 2530 2531 D->completeDefinition(); 2532 QualType NSTy = Context.getTagDeclType(D); 2533 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2534 } 2535 2536 llvm::Constant *Fields[3]; 2537 2538 // Class pointer. 2539 Fields[0] = cast<llvm::ConstantExpr>(V); 2540 2541 // String pointer. 2542 llvm::Constant *C = 2543 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2544 2545 llvm::GlobalValue::LinkageTypes Linkage; 2546 bool isConstant; 2547 Linkage = llvm::GlobalValue::PrivateLinkage; 2548 isConstant = !LangOpts.WritableStrings; 2549 2550 llvm::GlobalVariable *GV = 2551 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2552 ".str"); 2553 GV->setUnnamedAddr(true); 2554 // Don't enforce the target's minimum global alignment, since the only use 2555 // of the string is via this class initializer. 2556 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2557 GV->setAlignment(Align.getQuantity()); 2558 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2559 2560 // String length. 2561 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2562 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2563 2564 // The struct. 2565 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2566 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2567 llvm::GlobalVariable::PrivateLinkage, C, 2568 "_unnamed_nsstring_"); 2569 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2570 const char *NSStringNonFragileABISection = 2571 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2572 // FIXME. Fix section. 2573 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2574 ? NSStringNonFragileABISection 2575 : NSStringSection); 2576 Entry.setValue(GV); 2577 2578 return GV; 2579 } 2580 2581 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2582 if (ObjCFastEnumerationStateType.isNull()) { 2583 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2584 D->startDefinition(); 2585 2586 QualType FieldTypes[] = { 2587 Context.UnsignedLongTy, 2588 Context.getPointerType(Context.getObjCIdType()), 2589 Context.getPointerType(Context.UnsignedLongTy), 2590 Context.getConstantArrayType(Context.UnsignedLongTy, 2591 llvm::APInt(32, 5), ArrayType::Normal, 0) 2592 }; 2593 2594 for (size_t i = 0; i < 4; ++i) { 2595 FieldDecl *Field = FieldDecl::Create(Context, 2596 D, 2597 SourceLocation(), 2598 SourceLocation(), 0, 2599 FieldTypes[i], /*TInfo=*/0, 2600 /*BitWidth=*/0, 2601 /*Mutable=*/false, 2602 ICIS_NoInit); 2603 Field->setAccess(AS_public); 2604 D->addDecl(Field); 2605 } 2606 2607 D->completeDefinition(); 2608 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2609 } 2610 2611 return ObjCFastEnumerationStateType; 2612 } 2613 2614 llvm::Constant * 2615 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2616 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2617 2618 // Don't emit it as the address of the string, emit the string data itself 2619 // as an inline array. 2620 if (E->getCharByteWidth() == 1) { 2621 SmallString<64> Str(E->getString()); 2622 2623 // Resize the string to the right size, which is indicated by its type. 2624 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2625 Str.resize(CAT->getSize().getZExtValue()); 2626 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2627 } 2628 2629 llvm::ArrayType *AType = 2630 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2631 llvm::Type *ElemTy = AType->getElementType(); 2632 unsigned NumElements = AType->getNumElements(); 2633 2634 // Wide strings have either 2-byte or 4-byte elements. 2635 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2636 SmallVector<uint16_t, 32> Elements; 2637 Elements.reserve(NumElements); 2638 2639 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2640 Elements.push_back(E->getCodeUnit(i)); 2641 Elements.resize(NumElements); 2642 return llvm::ConstantDataArray::get(VMContext, Elements); 2643 } 2644 2645 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2646 SmallVector<uint32_t, 32> Elements; 2647 Elements.reserve(NumElements); 2648 2649 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2650 Elements.push_back(E->getCodeUnit(i)); 2651 Elements.resize(NumElements); 2652 return llvm::ConstantDataArray::get(VMContext, Elements); 2653 } 2654 2655 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2656 /// constant array for the given string literal. 2657 llvm::Constant * 2658 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2659 CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType()); 2660 2661 llvm::StringMapEntry<llvm::GlobalVariable *> *Entry = nullptr; 2662 llvm::GlobalVariable *GV = nullptr; 2663 if (!LangOpts.WritableStrings) { 2664 llvm::StringMap<llvm::GlobalVariable *> *ConstantStringMap = nullptr; 2665 switch (S->getCharByteWidth()) { 2666 case 1: 2667 ConstantStringMap = &Constant1ByteStringMap; 2668 break; 2669 case 2: 2670 ConstantStringMap = &Constant2ByteStringMap; 2671 break; 2672 case 4: 2673 ConstantStringMap = &Constant4ByteStringMap; 2674 break; 2675 default: 2676 llvm_unreachable("unhandled byte width!"); 2677 } 2678 Entry = &ConstantStringMap->GetOrCreateValue(S->getBytes()); 2679 GV = Entry->getValue(); 2680 } 2681 2682 if (!GV) { 2683 SmallString<256> MangledNameBuffer; 2684 StringRef GlobalVariableName; 2685 llvm::GlobalValue::LinkageTypes LT; 2686 2687 // Mangle the string literal if the ABI allows for it. However, we cannot 2688 // do this if we are compiling with ASan or -fwritable-strings because they 2689 // rely on strings having normal linkage. 2690 if (!LangOpts.WritableStrings && !SanOpts.Address && 2691 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2692 llvm::raw_svector_ostream Out(MangledNameBuffer); 2693 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2694 Out.flush(); 2695 2696 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2697 GlobalVariableName = MangledNameBuffer; 2698 } else { 2699 LT = llvm::GlobalValue::PrivateLinkage; 2700 GlobalVariableName = ".str"; 2701 } 2702 2703 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2704 unsigned AddrSpace = 0; 2705 if (getLangOpts().OpenCL) 2706 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant); 2707 2708 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2709 GV = new llvm::GlobalVariable( 2710 getModule(), C->getType(), !LangOpts.WritableStrings, LT, C, 2711 GlobalVariableName, /*InsertBefore=*/nullptr, 2712 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2713 GV->setUnnamedAddr(true); 2714 if (Entry) 2715 Entry->setValue(GV); 2716 } 2717 2718 if (Align.getQuantity() > GV->getAlignment()) 2719 GV->setAlignment(Align.getQuantity()); 2720 2721 return GV; 2722 } 2723 2724 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2725 /// array for the given ObjCEncodeExpr node. 2726 llvm::Constant * 2727 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2728 std::string Str; 2729 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2730 2731 return GetAddrOfConstantCString(Str); 2732 } 2733 2734 2735 /// GenerateWritableString -- Creates storage for a string literal. 2736 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2737 bool constant, 2738 CodeGenModule &CGM, 2739 const char *GlobalName, 2740 unsigned Alignment) { 2741 // Create Constant for this string literal. Don't add a '\0'. 2742 llvm::Constant *C = 2743 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2744 2745 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2746 unsigned AddrSpace = 0; 2747 if (CGM.getLangOpts().OpenCL) 2748 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2749 2750 // Create a global variable for this string 2751 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2752 CGM.getModule(), C->getType(), constant, 2753 llvm::GlobalValue::PrivateLinkage, C, GlobalName, 0, 2754 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2755 GV->setAlignment(Alignment); 2756 GV->setUnnamedAddr(true); 2757 return GV; 2758 } 2759 2760 /// GetAddrOfConstantString - Returns a pointer to a character array 2761 /// containing the literal. This contents are exactly that of the 2762 /// given string, i.e. it will not be null terminated automatically; 2763 /// see GetAddrOfConstantCString. Note that whether the result is 2764 /// actually a pointer to an LLVM constant depends on 2765 /// Feature.WriteableStrings. 2766 /// 2767 /// The result has pointer to array type. 2768 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2769 const char *GlobalName, 2770 unsigned Alignment) { 2771 // Get the default prefix if a name wasn't specified. 2772 if (!GlobalName) 2773 GlobalName = ".str"; 2774 2775 if (Alignment == 0) 2776 Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy) 2777 .getQuantity(); 2778 2779 // Don't share any string literals if strings aren't constant. 2780 if (LangOpts.WritableStrings) 2781 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2782 2783 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2784 Constant1ByteStringMap.GetOrCreateValue(Str); 2785 2786 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2787 if (Alignment > GV->getAlignment()) { 2788 GV->setAlignment(Alignment); 2789 } 2790 return GV; 2791 } 2792 2793 // Create a global variable for this. 2794 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2795 Alignment); 2796 Entry.setValue(GV); 2797 return GV; 2798 } 2799 2800 /// GetAddrOfConstantCString - Returns a pointer to a character 2801 /// array containing the literal and a terminating '\0' 2802 /// character. The result has pointer to array type. 2803 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2804 const char *GlobalName, 2805 unsigned Alignment) { 2806 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2807 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2808 } 2809 2810 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2811 const MaterializeTemporaryExpr *E, const Expr *Init) { 2812 assert((E->getStorageDuration() == SD_Static || 2813 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2814 const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl()); 2815 2816 // If we're not materializing a subobject of the temporary, keep the 2817 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2818 QualType MaterializedType = Init->getType(); 2819 if (Init == E->GetTemporaryExpr()) 2820 MaterializedType = E->getType(); 2821 2822 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2823 if (Slot) 2824 return Slot; 2825 2826 // FIXME: If an externally-visible declaration extends multiple temporaries, 2827 // we need to give each temporary the same name in every translation unit (and 2828 // we also need to make the temporaries externally-visible). 2829 SmallString<256> Name; 2830 llvm::raw_svector_ostream Out(Name); 2831 getCXXABI().getMangleContext().mangleReferenceTemporary( 2832 VD, E->getManglingNumber(), Out); 2833 Out.flush(); 2834 2835 APValue *Value = 0; 2836 if (E->getStorageDuration() == SD_Static) { 2837 // We might have a cached constant initializer for this temporary. Note 2838 // that this might have a different value from the value computed by 2839 // evaluating the initializer if the surrounding constant expression 2840 // modifies the temporary. 2841 Value = getContext().getMaterializedTemporaryValue(E, false); 2842 if (Value && Value->isUninit()) 2843 Value = 0; 2844 } 2845 2846 // Try evaluating it now, it might have a constant initializer. 2847 Expr::EvalResult EvalResult; 2848 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2849 !EvalResult.hasSideEffects()) 2850 Value = &EvalResult.Val; 2851 2852 llvm::Constant *InitialValue = 0; 2853 bool Constant = false; 2854 llvm::Type *Type; 2855 if (Value) { 2856 // The temporary has a constant initializer, use it. 2857 InitialValue = EmitConstantValue(*Value, MaterializedType, 0); 2858 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2859 Type = InitialValue->getType(); 2860 } else { 2861 // No initializer, the initialization will be provided when we 2862 // initialize the declaration which performed lifetime extension. 2863 Type = getTypes().ConvertTypeForMem(MaterializedType); 2864 } 2865 2866 // Create a global variable for this lifetime-extended temporary. 2867 llvm::GlobalValue::LinkageTypes Linkage = 2868 getLLVMLinkageVarDefinition(VD, Constant); 2869 // There is no need for this temporary to have global linkage if the global 2870 // variable has external linkage. 2871 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2872 Linkage = llvm::GlobalVariable::PrivateLinkage; 2873 unsigned AddrSpace = GetGlobalVarAddressSpace( 2874 VD, getContext().getTargetAddressSpace(MaterializedType)); 2875 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 2876 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2877 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2878 AddrSpace); 2879 setGlobalVisibility(GV, VD); 2880 GV->setAlignment( 2881 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2882 if (VD->getTLSKind()) 2883 setTLSMode(GV, *VD); 2884 Slot = GV; 2885 return GV; 2886 } 2887 2888 /// EmitObjCPropertyImplementations - Emit information for synthesized 2889 /// properties for an implementation. 2890 void CodeGenModule::EmitObjCPropertyImplementations(const 2891 ObjCImplementationDecl *D) { 2892 for (const auto *PID : D->property_impls()) { 2893 // Dynamic is just for type-checking. 2894 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2895 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2896 2897 // Determine which methods need to be implemented, some may have 2898 // been overridden. Note that ::isPropertyAccessor is not the method 2899 // we want, that just indicates if the decl came from a 2900 // property. What we want to know is if the method is defined in 2901 // this implementation. 2902 if (!D->getInstanceMethod(PD->getGetterName())) 2903 CodeGenFunction(*this).GenerateObjCGetter( 2904 const_cast<ObjCImplementationDecl *>(D), PID); 2905 if (!PD->isReadOnly() && 2906 !D->getInstanceMethod(PD->getSetterName())) 2907 CodeGenFunction(*this).GenerateObjCSetter( 2908 const_cast<ObjCImplementationDecl *>(D), PID); 2909 } 2910 } 2911 } 2912 2913 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2914 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2915 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2916 ivar; ivar = ivar->getNextIvar()) 2917 if (ivar->getType().isDestructedType()) 2918 return true; 2919 2920 return false; 2921 } 2922 2923 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2924 /// for an implementation. 2925 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2926 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2927 if (needsDestructMethod(D)) { 2928 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2929 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2930 ObjCMethodDecl *DTORMethod = 2931 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2932 cxxSelector, getContext().VoidTy, 0, D, 2933 /*isInstance=*/true, /*isVariadic=*/false, 2934 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2935 /*isDefined=*/false, ObjCMethodDecl::Required); 2936 D->addInstanceMethod(DTORMethod); 2937 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2938 D->setHasDestructors(true); 2939 } 2940 2941 // If the implementation doesn't have any ivar initializers, we don't need 2942 // a .cxx_construct. 2943 if (D->getNumIvarInitializers() == 0) 2944 return; 2945 2946 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2947 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2948 // The constructor returns 'self'. 2949 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2950 D->getLocation(), 2951 D->getLocation(), 2952 cxxSelector, 2953 getContext().getObjCIdType(), 0, 2954 D, /*isInstance=*/true, 2955 /*isVariadic=*/false, 2956 /*isPropertyAccessor=*/true, 2957 /*isImplicitlyDeclared=*/true, 2958 /*isDefined=*/false, 2959 ObjCMethodDecl::Required); 2960 D->addInstanceMethod(CTORMethod); 2961 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2962 D->setHasNonZeroConstructors(true); 2963 } 2964 2965 /// EmitNamespace - Emit all declarations in a namespace. 2966 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2967 for (auto *I : ND->decls()) { 2968 if (const auto *VD = dyn_cast<VarDecl>(I)) 2969 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 2970 VD->getTemplateSpecializationKind() != TSK_Undeclared) 2971 continue; 2972 EmitTopLevelDecl(I); 2973 } 2974 } 2975 2976 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2977 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2978 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2979 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2980 ErrorUnsupported(LSD, "linkage spec"); 2981 return; 2982 } 2983 2984 for (auto *I : LSD->decls()) { 2985 // Meta-data for ObjC class includes references to implemented methods. 2986 // Generate class's method definitions first. 2987 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 2988 for (auto *M : OID->methods()) 2989 EmitTopLevelDecl(M); 2990 } 2991 EmitTopLevelDecl(I); 2992 } 2993 } 2994 2995 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2996 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2997 // Ignore dependent declarations. 2998 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2999 return; 3000 3001 switch (D->getKind()) { 3002 case Decl::CXXConversion: 3003 case Decl::CXXMethod: 3004 case Decl::Function: 3005 // Skip function templates 3006 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3007 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3008 return; 3009 3010 EmitGlobal(cast<FunctionDecl>(D)); 3011 break; 3012 3013 case Decl::Var: 3014 // Skip variable templates 3015 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3016 return; 3017 case Decl::VarTemplateSpecialization: 3018 EmitGlobal(cast<VarDecl>(D)); 3019 break; 3020 3021 // Indirect fields from global anonymous structs and unions can be 3022 // ignored; only the actual variable requires IR gen support. 3023 case Decl::IndirectField: 3024 break; 3025 3026 // C++ Decls 3027 case Decl::Namespace: 3028 EmitNamespace(cast<NamespaceDecl>(D)); 3029 break; 3030 // No code generation needed. 3031 case Decl::UsingShadow: 3032 case Decl::ClassTemplate: 3033 case Decl::VarTemplate: 3034 case Decl::VarTemplatePartialSpecialization: 3035 case Decl::FunctionTemplate: 3036 case Decl::TypeAliasTemplate: 3037 case Decl::Block: 3038 case Decl::Empty: 3039 break; 3040 case Decl::Using: // using X; [C++] 3041 if (CGDebugInfo *DI = getModuleDebugInfo()) 3042 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3043 return; 3044 case Decl::NamespaceAlias: 3045 if (CGDebugInfo *DI = getModuleDebugInfo()) 3046 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3047 return; 3048 case Decl::UsingDirective: // using namespace X; [C++] 3049 if (CGDebugInfo *DI = getModuleDebugInfo()) 3050 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3051 return; 3052 case Decl::CXXConstructor: 3053 // Skip function templates 3054 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3055 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3056 return; 3057 3058 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3059 break; 3060 case Decl::CXXDestructor: 3061 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3062 return; 3063 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3064 break; 3065 3066 case Decl::StaticAssert: 3067 // Nothing to do. 3068 break; 3069 3070 // Objective-C Decls 3071 3072 // Forward declarations, no (immediate) code generation. 3073 case Decl::ObjCInterface: 3074 case Decl::ObjCCategory: 3075 break; 3076 3077 case Decl::ObjCProtocol: { 3078 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 3079 if (Proto->isThisDeclarationADefinition()) 3080 ObjCRuntime->GenerateProtocol(Proto); 3081 break; 3082 } 3083 3084 case Decl::ObjCCategoryImpl: 3085 // Categories have properties but don't support synthesize so we 3086 // can ignore them here. 3087 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3088 break; 3089 3090 case Decl::ObjCImplementation: { 3091 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 3092 EmitObjCPropertyImplementations(OMD); 3093 EmitObjCIvarInitializations(OMD); 3094 ObjCRuntime->GenerateClass(OMD); 3095 // Emit global variable debug information. 3096 if (CGDebugInfo *DI = getModuleDebugInfo()) 3097 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3098 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3099 OMD->getClassInterface()), OMD->getLocation()); 3100 break; 3101 } 3102 case Decl::ObjCMethod: { 3103 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 3104 // If this is not a prototype, emit the body. 3105 if (OMD->getBody()) 3106 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3107 break; 3108 } 3109 case Decl::ObjCCompatibleAlias: 3110 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3111 break; 3112 3113 case Decl::LinkageSpec: 3114 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3115 break; 3116 3117 case Decl::FileScopeAsm: { 3118 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 3119 StringRef AsmString = AD->getAsmString()->getString(); 3120 3121 const std::string &S = getModule().getModuleInlineAsm(); 3122 if (S.empty()) 3123 getModule().setModuleInlineAsm(AsmString); 3124 else if (S.end()[-1] == '\n') 3125 getModule().setModuleInlineAsm(S + AsmString.str()); 3126 else 3127 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3128 break; 3129 } 3130 3131 case Decl::Import: { 3132 ImportDecl *Import = cast<ImportDecl>(D); 3133 3134 // Ignore import declarations that come from imported modules. 3135 if (clang::Module *Owner = Import->getOwningModule()) { 3136 if (getLangOpts().CurrentModule.empty() || 3137 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3138 break; 3139 } 3140 3141 ImportedModules.insert(Import->getImportedModule()); 3142 break; 3143 } 3144 3145 case Decl::ClassTemplateSpecialization: { 3146 const ClassTemplateSpecializationDecl *Spec = 3147 cast<ClassTemplateSpecializationDecl>(D); 3148 if (DebugInfo && 3149 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3150 DebugInfo->completeTemplateDefinition(*Spec); 3151 } 3152 3153 default: 3154 // Make sure we handled everything we should, every other kind is a 3155 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3156 // function. Need to recode Decl::Kind to do that easily. 3157 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3158 } 3159 } 3160 3161 /// Turns the given pointer into a constant. 3162 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3163 const void *Ptr) { 3164 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3165 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3166 return llvm::ConstantInt::get(i64, PtrInt); 3167 } 3168 3169 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3170 llvm::NamedMDNode *&GlobalMetadata, 3171 GlobalDecl D, 3172 llvm::GlobalValue *Addr) { 3173 if (!GlobalMetadata) 3174 GlobalMetadata = 3175 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3176 3177 // TODO: should we report variant information for ctors/dtors? 3178 llvm::Value *Ops[] = { 3179 Addr, 3180 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3181 }; 3182 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3183 } 3184 3185 /// For each function which is declared within an extern "C" region and marked 3186 /// as 'used', but has internal linkage, create an alias from the unmangled 3187 /// name to the mangled name if possible. People expect to be able to refer 3188 /// to such functions with an unmangled name from inline assembly within the 3189 /// same translation unit. 3190 void CodeGenModule::EmitStaticExternCAliases() { 3191 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3192 E = StaticExternCValues.end(); 3193 I != E; ++I) { 3194 IdentifierInfo *Name = I->first; 3195 llvm::GlobalValue *Val = I->second; 3196 if (Val && !getModule().getNamedValue(Name->getName())) 3197 addUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(), 3198 Name->getName(), Val, &getModule())); 3199 } 3200 } 3201 3202 /// Emits metadata nodes associating all the global values in the 3203 /// current module with the Decls they came from. This is useful for 3204 /// projects using IR gen as a subroutine. 3205 /// 3206 /// Since there's currently no way to associate an MDNode directly 3207 /// with an llvm::GlobalValue, we create a global named metadata 3208 /// with the name 'clang.global.decl.ptrs'. 3209 void CodeGenModule::EmitDeclMetadata() { 3210 llvm::NamedMDNode *GlobalMetadata = 0; 3211 3212 // StaticLocalDeclMap 3213 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 3214 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 3215 I != E; ++I) { 3216 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 3217 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 3218 } 3219 } 3220 3221 /// Emits metadata nodes for all the local variables in the current 3222 /// function. 3223 void CodeGenFunction::EmitDeclMetadata() { 3224 if (LocalDeclMap.empty()) return; 3225 3226 llvm::LLVMContext &Context = getLLVMContext(); 3227 3228 // Find the unique metadata ID for this name. 3229 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3230 3231 llvm::NamedMDNode *GlobalMetadata = 0; 3232 3233 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 3234 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 3235 const Decl *D = I->first; 3236 llvm::Value *Addr = I->second; 3237 3238 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3239 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3240 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3241 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3242 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3243 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3244 } 3245 } 3246 } 3247 3248 void CodeGenModule::EmitVersionIdentMetadata() { 3249 llvm::NamedMDNode *IdentMetadata = 3250 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3251 std::string Version = getClangFullVersion(); 3252 llvm::LLVMContext &Ctx = TheModule.getContext(); 3253 3254 llvm::Value *IdentNode[] = { 3255 llvm::MDString::get(Ctx, Version) 3256 }; 3257 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3258 } 3259 3260 void CodeGenModule::EmitCoverageFile() { 3261 if (!getCodeGenOpts().CoverageFile.empty()) { 3262 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3263 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3264 llvm::LLVMContext &Ctx = TheModule.getContext(); 3265 llvm::MDString *CoverageFile = 3266 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3267 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3268 llvm::MDNode *CU = CUNode->getOperand(i); 3269 llvm::Value *node[] = { CoverageFile, CU }; 3270 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3271 GCov->addOperand(N); 3272 } 3273 } 3274 } 3275 } 3276 3277 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3278 QualType GuidType) { 3279 // Sema has checked that all uuid strings are of the form 3280 // "12345678-1234-1234-1234-1234567890ab". 3281 assert(Uuid.size() == 36); 3282 for (unsigned i = 0; i < 36; ++i) { 3283 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3284 else assert(isHexDigit(Uuid[i])); 3285 } 3286 3287 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3288 3289 llvm::Constant *Field3[8]; 3290 for (unsigned Idx = 0; Idx < 8; ++Idx) 3291 Field3[Idx] = llvm::ConstantInt::get( 3292 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3293 3294 llvm::Constant *Fields[4] = { 3295 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3296 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3297 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3298 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3299 }; 3300 3301 return llvm::ConstantStruct::getAnon(Fields); 3302 } 3303