xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision da32d7f1479d3b8016af0da55a15c13cd1369d94)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CGOpenMPRuntimeNVPTX.h"
24 #include "CodeGenFunction.h"
25 #include "CodeGenPGO.h"
26 #include "ConstantEmitter.h"
27 #include "CoverageMappingGen.h"
28 #include "TargetInfo.h"
29 #include "clang/AST/ASTContext.h"
30 #include "clang/AST/CharUnits.h"
31 #include "clang/AST/DeclCXX.h"
32 #include "clang/AST/DeclObjC.h"
33 #include "clang/AST/DeclTemplate.h"
34 #include "clang/AST/Mangle.h"
35 #include "clang/AST/RecordLayout.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/Basic/Builtins.h"
38 #include "clang/Basic/CharInfo.h"
39 #include "clang/Basic/CodeGenOptions.h"
40 #include "clang/Basic/Diagnostic.h"
41 #include "clang/Basic/Module.h"
42 #include "clang/Basic/SourceManager.h"
43 #include "clang/Basic/TargetInfo.h"
44 #include "clang/Basic/Version.h"
45 #include "clang/CodeGen/ConstantInitBuilder.h"
46 #include "clang/Frontend/FrontendDiagnostic.h"
47 #include "llvm/ADT/StringSwitch.h"
48 #include "llvm/ADT/Triple.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/IR/CallSite.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/ProfileData/InstrProfReader.h"
57 #include "llvm/Support/CodeGen.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MD5.h"
61 
62 using namespace clang;
63 using namespace CodeGen;
64 
65 static llvm::cl::opt<bool> LimitedCoverage(
66     "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden,
67     llvm::cl::desc("Emit limited coverage mapping information (experimental)"),
68     llvm::cl::init(false));
69 
70 static const char AnnotationSection[] = "llvm.metadata";
71 
72 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
73   switch (CGM.getTarget().getCXXABI().getKind()) {
74   case TargetCXXABI::GenericAArch64:
75   case TargetCXXABI::GenericARM:
76   case TargetCXXABI::iOS:
77   case TargetCXXABI::iOS64:
78   case TargetCXXABI::WatchOS:
79   case TargetCXXABI::GenericMIPS:
80   case TargetCXXABI::GenericItanium:
81   case TargetCXXABI::WebAssembly:
82     return CreateItaniumCXXABI(CGM);
83   case TargetCXXABI::Microsoft:
84     return CreateMicrosoftCXXABI(CGM);
85   }
86 
87   llvm_unreachable("invalid C++ ABI kind");
88 }
89 
90 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
91                              const PreprocessorOptions &PPO,
92                              const CodeGenOptions &CGO, llvm::Module &M,
93                              DiagnosticsEngine &diags,
94                              CoverageSourceInfo *CoverageInfo)
95     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
96       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
97       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
98       VMContext(M.getContext()), Types(*this), VTables(*this),
99       SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   HalfTy = llvm::Type::getHalfTy(LLVMContext);
109   FloatTy = llvm::Type::getFloatTy(LLVMContext);
110   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
111   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
112   PointerAlignInBytes =
113     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
114   SizeSizeInBytes =
115     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
116   IntAlignInBytes =
117     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
118   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
119   IntPtrTy = llvm::IntegerType::get(LLVMContext,
120     C.getTargetInfo().getMaxPointerWidth());
121   Int8PtrTy = Int8Ty->getPointerTo(0);
122   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
123   AllocaInt8PtrTy = Int8Ty->getPointerTo(
124       M.getDataLayout().getAllocaAddrSpace());
125   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
126 
127   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
128 
129   if (LangOpts.ObjC)
130     createObjCRuntime();
131   if (LangOpts.OpenCL)
132     createOpenCLRuntime();
133   if (LangOpts.OpenMP)
134     createOpenMPRuntime();
135   if (LangOpts.CUDA)
136     createCUDARuntime();
137 
138   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
139   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
140       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
141     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
142                                getCXXABI().getMangleContext()));
143 
144   // If debug info or coverage generation is enabled, create the CGDebugInfo
145   // object.
146   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
147       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
148     DebugInfo.reset(new CGDebugInfo(*this));
149 
150   Block.GlobalUniqueCount = 0;
151 
152   if (C.getLangOpts().ObjC)
153     ObjCData.reset(new ObjCEntrypoints());
154 
155   if (CodeGenOpts.hasProfileClangUse()) {
156     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
157         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
158     if (auto E = ReaderOrErr.takeError()) {
159       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
160                                               "Could not read profile %0: %1");
161       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
162         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
163                                   << EI.message();
164       });
165     } else
166       PGOReader = std::move(ReaderOrErr.get());
167   }
168 
169   // If coverage mapping generation is enabled, create the
170   // CoverageMappingModuleGen object.
171   if (CodeGenOpts.CoverageMapping)
172     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
173 }
174 
175 CodeGenModule::~CodeGenModule() {}
176 
177 void CodeGenModule::createObjCRuntime() {
178   // This is just isGNUFamily(), but we want to force implementors of
179   // new ABIs to decide how best to do this.
180   switch (LangOpts.ObjCRuntime.getKind()) {
181   case ObjCRuntime::GNUstep:
182   case ObjCRuntime::GCC:
183   case ObjCRuntime::ObjFW:
184     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
185     return;
186 
187   case ObjCRuntime::FragileMacOSX:
188   case ObjCRuntime::MacOSX:
189   case ObjCRuntime::iOS:
190   case ObjCRuntime::WatchOS:
191     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
192     return;
193   }
194   llvm_unreachable("bad runtime kind");
195 }
196 
197 void CodeGenModule::createOpenCLRuntime() {
198   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
199 }
200 
201 void CodeGenModule::createOpenMPRuntime() {
202   // Select a specialized code generation class based on the target, if any.
203   // If it does not exist use the default implementation.
204   switch (getTriple().getArch()) {
205   case llvm::Triple::nvptx:
206   case llvm::Triple::nvptx64:
207     assert(getLangOpts().OpenMPIsDevice &&
208            "OpenMP NVPTX is only prepared to deal with device code.");
209     OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this));
210     break;
211   default:
212     if (LangOpts.OpenMPSimd)
213       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
214     else
215       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
216     break;
217   }
218 }
219 
220 void CodeGenModule::createCUDARuntime() {
221   CUDARuntime.reset(CreateNVCUDARuntime(*this));
222 }
223 
224 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
225   Replacements[Name] = C;
226 }
227 
228 void CodeGenModule::applyReplacements() {
229   for (auto &I : Replacements) {
230     StringRef MangledName = I.first();
231     llvm::Constant *Replacement = I.second;
232     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
233     if (!Entry)
234       continue;
235     auto *OldF = cast<llvm::Function>(Entry);
236     auto *NewF = dyn_cast<llvm::Function>(Replacement);
237     if (!NewF) {
238       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
239         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
240       } else {
241         auto *CE = cast<llvm::ConstantExpr>(Replacement);
242         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
243                CE->getOpcode() == llvm::Instruction::GetElementPtr);
244         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
245       }
246     }
247 
248     // Replace old with new, but keep the old order.
249     OldF->replaceAllUsesWith(Replacement);
250     if (NewF) {
251       NewF->removeFromParent();
252       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
253                                                        NewF);
254     }
255     OldF->eraseFromParent();
256   }
257 }
258 
259 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
260   GlobalValReplacements.push_back(std::make_pair(GV, C));
261 }
262 
263 void CodeGenModule::applyGlobalValReplacements() {
264   for (auto &I : GlobalValReplacements) {
265     llvm::GlobalValue *GV = I.first;
266     llvm::Constant *C = I.second;
267 
268     GV->replaceAllUsesWith(C);
269     GV->eraseFromParent();
270   }
271 }
272 
273 // This is only used in aliases that we created and we know they have a
274 // linear structure.
275 static const llvm::GlobalObject *getAliasedGlobal(
276     const llvm::GlobalIndirectSymbol &GIS) {
277   llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited;
278   const llvm::Constant *C = &GIS;
279   for (;;) {
280     C = C->stripPointerCasts();
281     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
282       return GO;
283     // stripPointerCasts will not walk over weak aliases.
284     auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C);
285     if (!GIS2)
286       return nullptr;
287     if (!Visited.insert(GIS2).second)
288       return nullptr;
289     C = GIS2->getIndirectSymbol();
290   }
291 }
292 
293 void CodeGenModule::checkAliases() {
294   // Check if the constructed aliases are well formed. It is really unfortunate
295   // that we have to do this in CodeGen, but we only construct mangled names
296   // and aliases during codegen.
297   bool Error = false;
298   DiagnosticsEngine &Diags = getDiags();
299   for (const GlobalDecl &GD : Aliases) {
300     const auto *D = cast<ValueDecl>(GD.getDecl());
301     SourceLocation Location;
302     bool IsIFunc = D->hasAttr<IFuncAttr>();
303     if (const Attr *A = D->getDefiningAttr())
304       Location = A->getLocation();
305     else
306       llvm_unreachable("Not an alias or ifunc?");
307     StringRef MangledName = getMangledName(GD);
308     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
309     auto *Alias  = cast<llvm::GlobalIndirectSymbol>(Entry);
310     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
311     if (!GV) {
312       Error = true;
313       Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
314     } else if (GV->isDeclaration()) {
315       Error = true;
316       Diags.Report(Location, diag::err_alias_to_undefined)
317           << IsIFunc << IsIFunc;
318     } else if (IsIFunc) {
319       // Check resolver function type.
320       llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>(
321           GV->getType()->getPointerElementType());
322       assert(FTy);
323       if (!FTy->getReturnType()->isPointerTy())
324         Diags.Report(Location, diag::err_ifunc_resolver_return);
325     }
326 
327     llvm::Constant *Aliasee = Alias->getIndirectSymbol();
328     llvm::GlobalValue *AliaseeGV;
329     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
330       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
331     else
332       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
333 
334     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
335       StringRef AliasSection = SA->getName();
336       if (AliasSection != AliaseeGV->getSection())
337         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
338             << AliasSection << IsIFunc << IsIFunc;
339     }
340 
341     // We have to handle alias to weak aliases in here. LLVM itself disallows
342     // this since the object semantics would not match the IL one. For
343     // compatibility with gcc we implement it by just pointing the alias
344     // to its aliasee's aliasee. We also warn, since the user is probably
345     // expecting the link to be weak.
346     if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) {
347       if (GA->isInterposable()) {
348         Diags.Report(Location, diag::warn_alias_to_weak_alias)
349             << GV->getName() << GA->getName() << IsIFunc;
350         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
351             GA->getIndirectSymbol(), Alias->getType());
352         Alias->setIndirectSymbol(Aliasee);
353       }
354     }
355   }
356   if (!Error)
357     return;
358 
359   for (const GlobalDecl &GD : Aliases) {
360     StringRef MangledName = getMangledName(GD);
361     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
362     auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry);
363     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
364     Alias->eraseFromParent();
365   }
366 }
367 
368 void CodeGenModule::clear() {
369   DeferredDeclsToEmit.clear();
370   if (OpenMPRuntime)
371     OpenMPRuntime->clear();
372 }
373 
374 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
375                                        StringRef MainFile) {
376   if (!hasDiagnostics())
377     return;
378   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
379     if (MainFile.empty())
380       MainFile = "<stdin>";
381     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
382   } else {
383     if (Mismatched > 0)
384       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
385 
386     if (Missing > 0)
387       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
388   }
389 }
390 
391 void CodeGenModule::Release() {
392   EmitDeferred();
393   EmitVTablesOpportunistically();
394   applyGlobalValReplacements();
395   applyReplacements();
396   checkAliases();
397   emitMultiVersionFunctions();
398   EmitCXXGlobalInitFunc();
399   EmitCXXGlobalDtorFunc();
400   registerGlobalDtorsWithAtExit();
401   EmitCXXThreadLocalInitFunc();
402   if (ObjCRuntime)
403     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
404       AddGlobalCtor(ObjCInitFunction);
405   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
406       CUDARuntime) {
407     if (llvm::Function *CudaCtorFunction =
408             CUDARuntime->makeModuleCtorFunction())
409       AddGlobalCtor(CudaCtorFunction);
410   }
411   if (OpenMPRuntime) {
412     if (llvm::Function *OpenMPRegistrationFunction =
413             OpenMPRuntime->emitRegistrationFunction()) {
414       auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ?
415         OpenMPRegistrationFunction : nullptr;
416       AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey);
417     }
418     OpenMPRuntime->clear();
419   }
420   if (PGOReader) {
421     getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext));
422     if (PGOStats.hasDiagnostics())
423       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
424   }
425   EmitCtorList(GlobalCtors, "llvm.global_ctors");
426   EmitCtorList(GlobalDtors, "llvm.global_dtors");
427   EmitGlobalAnnotations();
428   EmitStaticExternCAliases();
429   EmitDeferredUnusedCoverageMappings();
430   if (CoverageMapping)
431     CoverageMapping->emit();
432   if (CodeGenOpts.SanitizeCfiCrossDso) {
433     CodeGenFunction(*this).EmitCfiCheckFail();
434     CodeGenFunction(*this).EmitCfiCheckStub();
435   }
436   emitAtAvailableLinkGuard();
437   emitLLVMUsed();
438   if (SanStats)
439     SanStats->finish();
440 
441   if (CodeGenOpts.Autolink &&
442       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
443     EmitModuleLinkOptions();
444   }
445 
446   // Record mregparm value now so it is visible through rest of codegen.
447   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
448     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
449                               CodeGenOpts.NumRegisterParameters);
450 
451   if (CodeGenOpts.DwarfVersion) {
452     // We actually want the latest version when there are conflicts.
453     // We can change from Warning to Latest if such mode is supported.
454     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
455                               CodeGenOpts.DwarfVersion);
456   }
457   if (CodeGenOpts.EmitCodeView) {
458     // Indicate that we want CodeView in the metadata.
459     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
460   }
461   if (CodeGenOpts.CodeViewGHash) {
462     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
463   }
464   if (CodeGenOpts.ControlFlowGuard) {
465     // We want function ID tables for Control Flow Guard.
466     getModule().addModuleFlag(llvm::Module::Warning, "cfguardtable", 1);
467   }
468   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
469     // We don't support LTO with 2 with different StrictVTablePointers
470     // FIXME: we could support it by stripping all the information introduced
471     // by StrictVTablePointers.
472 
473     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
474 
475     llvm::Metadata *Ops[2] = {
476               llvm::MDString::get(VMContext, "StrictVTablePointers"),
477               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
478                   llvm::Type::getInt32Ty(VMContext), 1))};
479 
480     getModule().addModuleFlag(llvm::Module::Require,
481                               "StrictVTablePointersRequirement",
482                               llvm::MDNode::get(VMContext, Ops));
483   }
484   if (DebugInfo)
485     // We support a single version in the linked module. The LLVM
486     // parser will drop debug info with a different version number
487     // (and warn about it, too).
488     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
489                               llvm::DEBUG_METADATA_VERSION);
490 
491   // We need to record the widths of enums and wchar_t, so that we can generate
492   // the correct build attributes in the ARM backend. wchar_size is also used by
493   // TargetLibraryInfo.
494   uint64_t WCharWidth =
495       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
496   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
497 
498   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
499   if (   Arch == llvm::Triple::arm
500       || Arch == llvm::Triple::armeb
501       || Arch == llvm::Triple::thumb
502       || Arch == llvm::Triple::thumbeb) {
503     // The minimum width of an enum in bytes
504     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
505     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
506   }
507 
508   if (CodeGenOpts.SanitizeCfiCrossDso) {
509     // Indicate that we want cross-DSO control flow integrity checks.
510     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
511   }
512 
513   if (CodeGenOpts.CFProtectionReturn &&
514       Target.checkCFProtectionReturnSupported(getDiags())) {
515     // Indicate that we want to instrument return control flow protection.
516     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return",
517                               1);
518   }
519 
520   if (CodeGenOpts.CFProtectionBranch &&
521       Target.checkCFProtectionBranchSupported(getDiags())) {
522     // Indicate that we want to instrument branch control flow protection.
523     getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch",
524                               1);
525   }
526 
527   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
528     // Indicate whether __nvvm_reflect should be configured to flush denormal
529     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
530     // property.)
531     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
532                               CodeGenOpts.FlushDenorm ? 1 : 0);
533   }
534 
535   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
536   if (LangOpts.OpenCL) {
537     EmitOpenCLMetadata();
538     // Emit SPIR version.
539     if (getTriple().getArch() == llvm::Triple::spir ||
540         getTriple().getArch() == llvm::Triple::spir64) {
541       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
542       // opencl.spir.version named metadata.
543       llvm::Metadata *SPIRVerElts[] = {
544           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
545               Int32Ty, LangOpts.OpenCLVersion / 100)),
546           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
547               Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))};
548       llvm::NamedMDNode *SPIRVerMD =
549           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
550       llvm::LLVMContext &Ctx = TheModule.getContext();
551       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
552     }
553   }
554 
555   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
556     assert(PLevel < 3 && "Invalid PIC Level");
557     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
558     if (Context.getLangOpts().PIE)
559       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
560   }
561 
562   if (getCodeGenOpts().CodeModel.size() > 0) {
563     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
564                   .Case("tiny", llvm::CodeModel::Tiny)
565                   .Case("small", llvm::CodeModel::Small)
566                   .Case("kernel", llvm::CodeModel::Kernel)
567                   .Case("medium", llvm::CodeModel::Medium)
568                   .Case("large", llvm::CodeModel::Large)
569                   .Default(~0u);
570     if (CM != ~0u) {
571       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
572       getModule().setCodeModel(codeModel);
573     }
574   }
575 
576   if (CodeGenOpts.NoPLT)
577     getModule().setRtLibUseGOT();
578 
579   SimplifyPersonality();
580 
581   if (getCodeGenOpts().EmitDeclMetadata)
582     EmitDeclMetadata();
583 
584   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
585     EmitCoverageFile();
586 
587   if (DebugInfo)
588     DebugInfo->finalize();
589 
590   if (getCodeGenOpts().EmitVersionIdentMetadata)
591     EmitVersionIdentMetadata();
592 
593   if (!getCodeGenOpts().RecordCommandLine.empty())
594     EmitCommandLineMetadata();
595 
596   EmitTargetMetadata();
597 }
598 
599 void CodeGenModule::EmitOpenCLMetadata() {
600   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
601   // opencl.ocl.version named metadata node.
602   llvm::Metadata *OCLVerElts[] = {
603       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
604           Int32Ty, LangOpts.OpenCLVersion / 100)),
605       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
606           Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))};
607   llvm::NamedMDNode *OCLVerMD =
608       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
609   llvm::LLVMContext &Ctx = TheModule.getContext();
610   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
611 }
612 
613 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
614   // Make sure that this type is translated.
615   Types.UpdateCompletedType(TD);
616 }
617 
618 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
619   // Make sure that this type is translated.
620   Types.RefreshTypeCacheForClass(RD);
621 }
622 
623 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
624   if (!TBAA)
625     return nullptr;
626   return TBAA->getTypeInfo(QTy);
627 }
628 
629 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
630   if (!TBAA)
631     return TBAAAccessInfo();
632   return TBAA->getAccessInfo(AccessType);
633 }
634 
635 TBAAAccessInfo
636 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
637   if (!TBAA)
638     return TBAAAccessInfo();
639   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
640 }
641 
642 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
643   if (!TBAA)
644     return nullptr;
645   return TBAA->getTBAAStructInfo(QTy);
646 }
647 
648 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
649   if (!TBAA)
650     return nullptr;
651   return TBAA->getBaseTypeInfo(QTy);
652 }
653 
654 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
655   if (!TBAA)
656     return nullptr;
657   return TBAA->getAccessTagInfo(Info);
658 }
659 
660 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
661                                                    TBAAAccessInfo TargetInfo) {
662   if (!TBAA)
663     return TBAAAccessInfo();
664   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
665 }
666 
667 TBAAAccessInfo
668 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
669                                                    TBAAAccessInfo InfoB) {
670   if (!TBAA)
671     return TBAAAccessInfo();
672   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
673 }
674 
675 TBAAAccessInfo
676 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
677                                               TBAAAccessInfo SrcInfo) {
678   if (!TBAA)
679     return TBAAAccessInfo();
680   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
681 }
682 
683 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
684                                                 TBAAAccessInfo TBAAInfo) {
685   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
686     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
687 }
688 
689 void CodeGenModule::DecorateInstructionWithInvariantGroup(
690     llvm::Instruction *I, const CXXRecordDecl *RD) {
691   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
692                  llvm::MDNode::get(getLLVMContext(), {}));
693 }
694 
695 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
696   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
697   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
698 }
699 
700 /// ErrorUnsupported - Print out an error that codegen doesn't support the
701 /// specified stmt yet.
702 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
703   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
704                                                "cannot compile this %0 yet");
705   std::string Msg = Type;
706   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
707       << Msg << S->getSourceRange();
708 }
709 
710 /// ErrorUnsupported - Print out an error that codegen doesn't support the
711 /// specified decl yet.
712 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
713   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
714                                                "cannot compile this %0 yet");
715   std::string Msg = Type;
716   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
717 }
718 
719 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
720   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
721 }
722 
723 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
724                                         const NamedDecl *D) const {
725   if (GV->hasDLLImportStorageClass())
726     return;
727   // Internal definitions always have default visibility.
728   if (GV->hasLocalLinkage()) {
729     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
730     return;
731   }
732   if (!D)
733     return;
734   // Set visibility for definitions.
735   LinkageInfo LV = D->getLinkageAndVisibility();
736   if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker())
737     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
738 }
739 
740 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
741                                  llvm::GlobalValue *GV) {
742   if (GV->hasLocalLinkage())
743     return true;
744 
745   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
746     return true;
747 
748   // DLLImport explicitly marks the GV as external.
749   if (GV->hasDLLImportStorageClass())
750     return false;
751 
752   const llvm::Triple &TT = CGM.getTriple();
753   if (TT.isWindowsGNUEnvironment()) {
754     // In MinGW, variables without DLLImport can still be automatically
755     // imported from a DLL by the linker; don't mark variables that
756     // potentially could come from another DLL as DSO local.
757     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
758         !GV->isThreadLocal())
759       return false;
760   }
761   // Every other GV is local on COFF.
762   // Make an exception for windows OS in the triple: Some firmware builds use
763   // *-win32-macho triples. This (accidentally?) produced windows relocations
764   // without GOT tables in older clang versions; Keep this behaviour.
765   // FIXME: even thread local variables?
766   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
767     return true;
768 
769   // Only handle COFF and ELF for now.
770   if (!TT.isOSBinFormatELF())
771     return false;
772 
773   // If this is not an executable, don't assume anything is local.
774   const auto &CGOpts = CGM.getCodeGenOpts();
775   llvm::Reloc::Model RM = CGOpts.RelocationModel;
776   const auto &LOpts = CGM.getLangOpts();
777   if (RM != llvm::Reloc::Static && !LOpts.PIE)
778     return false;
779 
780   // A definition cannot be preempted from an executable.
781   if (!GV->isDeclarationForLinker())
782     return true;
783 
784   // Most PIC code sequences that assume that a symbol is local cannot produce a
785   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
786   // depended, it seems worth it to handle it here.
787   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
788     return false;
789 
790   // PPC has no copy relocations and cannot use a plt entry as a symbol address.
791   llvm::Triple::ArchType Arch = TT.getArch();
792   if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 ||
793       Arch == llvm::Triple::ppc64le)
794     return false;
795 
796   // If we can use copy relocations we can assume it is local.
797   if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
798     if (!Var->isThreadLocal() &&
799         (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations))
800       return true;
801 
802   // If we can use a plt entry as the symbol address we can assume it
803   // is local.
804   // FIXME: This should work for PIE, but the gold linker doesn't support it.
805   if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
806     return true;
807 
808   // Otherwise don't assue it is local.
809   return false;
810 }
811 
812 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
813   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
814 }
815 
816 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
817                                           GlobalDecl GD) const {
818   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
819   // C++ destructors have a few C++ ABI specific special cases.
820   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
821     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
822     return;
823   }
824   setDLLImportDLLExport(GV, D);
825 }
826 
827 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
828                                           const NamedDecl *D) const {
829   if (D && D->isExternallyVisible()) {
830     if (D->hasAttr<DLLImportAttr>())
831       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
832     else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker())
833       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
834   }
835 }
836 
837 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
838                                     GlobalDecl GD) const {
839   setDLLImportDLLExport(GV, GD);
840   setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl()));
841 }
842 
843 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
844                                     const NamedDecl *D) const {
845   setDLLImportDLLExport(GV, D);
846   setGlobalVisibilityAndLocal(GV, D);
847 }
848 
849 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV,
850                                                 const NamedDecl *D) const {
851   setGlobalVisibility(GV, D);
852   setDSOLocal(GV);
853 }
854 
855 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
856   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
857       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
858       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
859       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
860       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
861 }
862 
863 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
864     CodeGenOptions::TLSModel M) {
865   switch (M) {
866   case CodeGenOptions::GeneralDynamicTLSModel:
867     return llvm::GlobalVariable::GeneralDynamicTLSModel;
868   case CodeGenOptions::LocalDynamicTLSModel:
869     return llvm::GlobalVariable::LocalDynamicTLSModel;
870   case CodeGenOptions::InitialExecTLSModel:
871     return llvm::GlobalVariable::InitialExecTLSModel;
872   case CodeGenOptions::LocalExecTLSModel:
873     return llvm::GlobalVariable::LocalExecTLSModel;
874   }
875   llvm_unreachable("Invalid TLS model!");
876 }
877 
878 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
879   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
880 
881   llvm::GlobalValue::ThreadLocalMode TLM;
882   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
883 
884   // Override the TLS model if it is explicitly specified.
885   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
886     TLM = GetLLVMTLSModel(Attr->getModel());
887   }
888 
889   GV->setThreadLocalMode(TLM);
890 }
891 
892 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
893                                           StringRef Name) {
894   const TargetInfo &Target = CGM.getTarget();
895   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
896 }
897 
898 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
899                                                  const CPUSpecificAttr *Attr,
900                                                  unsigned CPUIndex,
901                                                  raw_ostream &Out) {
902   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
903   // supported.
904   if (Attr)
905     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
906   else if (CGM.getTarget().supportsIFunc())
907     Out << ".resolver";
908 }
909 
910 static void AppendTargetMangling(const CodeGenModule &CGM,
911                                  const TargetAttr *Attr, raw_ostream &Out) {
912   if (Attr->isDefaultVersion())
913     return;
914 
915   Out << '.';
916   const TargetInfo &Target = CGM.getTarget();
917   TargetAttr::ParsedTargetAttr Info =
918       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
919         // Multiversioning doesn't allow "no-${feature}", so we can
920         // only have "+" prefixes here.
921         assert(LHS.startswith("+") && RHS.startswith("+") &&
922                "Features should always have a prefix.");
923         return Target.multiVersionSortPriority(LHS.substr(1)) >
924                Target.multiVersionSortPriority(RHS.substr(1));
925       });
926 
927   bool IsFirst = true;
928 
929   if (!Info.Architecture.empty()) {
930     IsFirst = false;
931     Out << "arch_" << Info.Architecture;
932   }
933 
934   for (StringRef Feat : Info.Features) {
935     if (!IsFirst)
936       Out << '_';
937     IsFirst = false;
938     Out << Feat.substr(1);
939   }
940 }
941 
942 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD,
943                                       const NamedDecl *ND,
944                                       bool OmitMultiVersionMangling = false) {
945   SmallString<256> Buffer;
946   llvm::raw_svector_ostream Out(Buffer);
947   MangleContext &MC = CGM.getCXXABI().getMangleContext();
948   if (MC.shouldMangleDeclName(ND)) {
949     llvm::raw_svector_ostream Out(Buffer);
950     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
951       MC.mangleCXXCtor(D, GD.getCtorType(), Out);
952     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
953       MC.mangleCXXDtor(D, GD.getDtorType(), Out);
954     else
955       MC.mangleName(ND, Out);
956   } else {
957     IdentifierInfo *II = ND->getIdentifier();
958     assert(II && "Attempt to mangle unnamed decl.");
959     const auto *FD = dyn_cast<FunctionDecl>(ND);
960 
961     if (FD &&
962         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
963       llvm::raw_svector_ostream Out(Buffer);
964       Out << "__regcall3__" << II->getName();
965     } else {
966       Out << II->getName();
967     }
968   }
969 
970   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
971     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
972       switch (FD->getMultiVersionKind()) {
973       case MultiVersionKind::CPUDispatch:
974       case MultiVersionKind::CPUSpecific:
975         AppendCPUSpecificCPUDispatchMangling(CGM,
976                                              FD->getAttr<CPUSpecificAttr>(),
977                                              GD.getMultiVersionIndex(), Out);
978         break;
979       case MultiVersionKind::Target:
980         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
981         break;
982       case MultiVersionKind::None:
983         llvm_unreachable("None multiversion type isn't valid here");
984       }
985     }
986 
987   return Out.str();
988 }
989 
990 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
991                                             const FunctionDecl *FD) {
992   if (!FD->isMultiVersion())
993     return;
994 
995   // Get the name of what this would be without the 'target' attribute.  This
996   // allows us to lookup the version that was emitted when this wasn't a
997   // multiversion function.
998   std::string NonTargetName =
999       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1000   GlobalDecl OtherGD;
1001   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1002     assert(OtherGD.getCanonicalDecl()
1003                .getDecl()
1004                ->getAsFunction()
1005                ->isMultiVersion() &&
1006            "Other GD should now be a multiversioned function");
1007     // OtherFD is the version of this function that was mangled BEFORE
1008     // becoming a MultiVersion function.  It potentially needs to be updated.
1009     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1010                                       .getDecl()
1011                                       ->getAsFunction()
1012                                       ->getMostRecentDecl();
1013     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1014     // This is so that if the initial version was already the 'default'
1015     // version, we don't try to update it.
1016     if (OtherName != NonTargetName) {
1017       // Remove instead of erase, since others may have stored the StringRef
1018       // to this.
1019       const auto ExistingRecord = Manglings.find(NonTargetName);
1020       if (ExistingRecord != std::end(Manglings))
1021         Manglings.remove(&(*ExistingRecord));
1022       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1023       MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first();
1024       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1025         Entry->setName(OtherName);
1026     }
1027   }
1028 }
1029 
1030 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1031   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1032 
1033   // Some ABIs don't have constructor variants.  Make sure that base and
1034   // complete constructors get mangled the same.
1035   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1036     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1037       CXXCtorType OrigCtorType = GD.getCtorType();
1038       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1039       if (OrigCtorType == Ctor_Base)
1040         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1041     }
1042   }
1043 
1044   auto FoundName = MangledDeclNames.find(CanonicalGD);
1045   if (FoundName != MangledDeclNames.end())
1046     return FoundName->second;
1047 
1048   // Keep the first result in the case of a mangling collision.
1049   const auto *ND = cast<NamedDecl>(GD.getDecl());
1050   auto Result =
1051       Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD));
1052   return MangledDeclNames[CanonicalGD] = Result.first->first();
1053 }
1054 
1055 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1056                                              const BlockDecl *BD) {
1057   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1058   const Decl *D = GD.getDecl();
1059 
1060   SmallString<256> Buffer;
1061   llvm::raw_svector_ostream Out(Buffer);
1062   if (!D)
1063     MangleCtx.mangleGlobalBlock(BD,
1064       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1065   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1066     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1067   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1068     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1069   else
1070     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1071 
1072   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1073   return Result.first->first();
1074 }
1075 
1076 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1077   return getModule().getNamedValue(Name);
1078 }
1079 
1080 /// AddGlobalCtor - Add a function to the list that will be called before
1081 /// main() runs.
1082 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1083                                   llvm::Constant *AssociatedData) {
1084   // FIXME: Type coercion of void()* types.
1085   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
1086 }
1087 
1088 /// AddGlobalDtor - Add a function to the list that will be called
1089 /// when the module is unloaded.
1090 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
1091   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) {
1092     DtorsUsingAtExit[Priority].push_back(Dtor);
1093     return;
1094   }
1095 
1096   // FIXME: Type coercion of void()* types.
1097   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
1098 }
1099 
1100 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1101   if (Fns.empty()) return;
1102 
1103   // Ctor function type is void()*.
1104   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1105   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1106       TheModule.getDataLayout().getProgramAddressSpace());
1107 
1108   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1109   llvm::StructType *CtorStructTy = llvm::StructType::get(
1110       Int32Ty, CtorPFTy, VoidPtrTy);
1111 
1112   // Construct the constructor and destructor arrays.
1113   ConstantInitBuilder builder(*this);
1114   auto ctors = builder.beginArray(CtorStructTy);
1115   for (const auto &I : Fns) {
1116     auto ctor = ctors.beginStruct(CtorStructTy);
1117     ctor.addInt(Int32Ty, I.Priority);
1118     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1119     if (I.AssociatedData)
1120       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1121     else
1122       ctor.addNullPointer(VoidPtrTy);
1123     ctor.finishAndAddTo(ctors);
1124   }
1125 
1126   auto list =
1127     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1128                                 /*constant*/ false,
1129                                 llvm::GlobalValue::AppendingLinkage);
1130 
1131   // The LTO linker doesn't seem to like it when we set an alignment
1132   // on appending variables.  Take it off as a workaround.
1133   list->setAlignment(0);
1134 
1135   Fns.clear();
1136 }
1137 
1138 llvm::GlobalValue::LinkageTypes
1139 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1140   const auto *D = cast<FunctionDecl>(GD.getDecl());
1141 
1142   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1143 
1144   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1145     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1146 
1147   if (isa<CXXConstructorDecl>(D) &&
1148       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1149       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1150     // Our approach to inheriting constructors is fundamentally different from
1151     // that used by the MS ABI, so keep our inheriting constructor thunks
1152     // internal rather than trying to pick an unambiguous mangling for them.
1153     return llvm::GlobalValue::InternalLinkage;
1154   }
1155 
1156   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
1157 }
1158 
1159 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1160   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1161   if (!MDS) return nullptr;
1162 
1163   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1164 }
1165 
1166 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1167                                               const CGFunctionInfo &Info,
1168                                               llvm::Function *F) {
1169   unsigned CallingConv;
1170   llvm::AttributeList PAL;
1171   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false);
1172   F->setAttributes(PAL);
1173   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1174 }
1175 
1176 /// Determines whether the language options require us to model
1177 /// unwind exceptions.  We treat -fexceptions as mandating this
1178 /// except under the fragile ObjC ABI with only ObjC exceptions
1179 /// enabled.  This means, for example, that C with -fexceptions
1180 /// enables this.
1181 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1182   // If exceptions are completely disabled, obviously this is false.
1183   if (!LangOpts.Exceptions) return false;
1184 
1185   // If C++ exceptions are enabled, this is true.
1186   if (LangOpts.CXXExceptions) return true;
1187 
1188   // If ObjC exceptions are enabled, this depends on the ABI.
1189   if (LangOpts.ObjCExceptions) {
1190     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1191   }
1192 
1193   return true;
1194 }
1195 
1196 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1197                                                       const CXXMethodDecl *MD) {
1198   // Check that the type metadata can ever actually be used by a call.
1199   if (!CGM.getCodeGenOpts().LTOUnit ||
1200       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1201     return false;
1202 
1203   // Only functions whose address can be taken with a member function pointer
1204   // need this sort of type metadata.
1205   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1206          !isa<CXXDestructorDecl>(MD);
1207 }
1208 
1209 std::vector<const CXXRecordDecl *>
1210 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1211   llvm::SetVector<const CXXRecordDecl *> MostBases;
1212 
1213   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1214   CollectMostBases = [&](const CXXRecordDecl *RD) {
1215     if (RD->getNumBases() == 0)
1216       MostBases.insert(RD);
1217     for (const CXXBaseSpecifier &B : RD->bases())
1218       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1219   };
1220   CollectMostBases(RD);
1221   return MostBases.takeVector();
1222 }
1223 
1224 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1225                                                            llvm::Function *F) {
1226   llvm::AttrBuilder B;
1227 
1228   if (CodeGenOpts.UnwindTables)
1229     B.addAttribute(llvm::Attribute::UWTable);
1230 
1231   if (!hasUnwindExceptions(LangOpts))
1232     B.addAttribute(llvm::Attribute::NoUnwind);
1233 
1234   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1235     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1236       B.addAttribute(llvm::Attribute::StackProtect);
1237     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1238       B.addAttribute(llvm::Attribute::StackProtectStrong);
1239     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1240       B.addAttribute(llvm::Attribute::StackProtectReq);
1241   }
1242 
1243   if (!D) {
1244     // If we don't have a declaration to control inlining, the function isn't
1245     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1246     // disabled, mark the function as noinline.
1247     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1248         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1249       B.addAttribute(llvm::Attribute::NoInline);
1250 
1251     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1252     return;
1253   }
1254 
1255   // Track whether we need to add the optnone LLVM attribute,
1256   // starting with the default for this optimization level.
1257   bool ShouldAddOptNone =
1258       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1259   // We can't add optnone in the following cases, it won't pass the verifier.
1260   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
1261   ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline);
1262   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
1263 
1264   if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) {
1265     B.addAttribute(llvm::Attribute::OptimizeNone);
1266 
1267     // OptimizeNone implies noinline; we should not be inlining such functions.
1268     B.addAttribute(llvm::Attribute::NoInline);
1269     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1270            "OptimizeNone and AlwaysInline on same function!");
1271 
1272     // We still need to handle naked functions even though optnone subsumes
1273     // much of their semantics.
1274     if (D->hasAttr<NakedAttr>())
1275       B.addAttribute(llvm::Attribute::Naked);
1276 
1277     // OptimizeNone wins over OptimizeForSize and MinSize.
1278     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
1279     F->removeFnAttr(llvm::Attribute::MinSize);
1280   } else if (D->hasAttr<NakedAttr>()) {
1281     // Naked implies noinline: we should not be inlining such functions.
1282     B.addAttribute(llvm::Attribute::Naked);
1283     B.addAttribute(llvm::Attribute::NoInline);
1284   } else if (D->hasAttr<NoDuplicateAttr>()) {
1285     B.addAttribute(llvm::Attribute::NoDuplicate);
1286   } else if (D->hasAttr<NoInlineAttr>()) {
1287     B.addAttribute(llvm::Attribute::NoInline);
1288   } else if (D->hasAttr<AlwaysInlineAttr>() &&
1289              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
1290     // (noinline wins over always_inline, and we can't specify both in IR)
1291     B.addAttribute(llvm::Attribute::AlwaysInline);
1292   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
1293     // If we're not inlining, then force everything that isn't always_inline to
1294     // carry an explicit noinline attribute.
1295     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
1296       B.addAttribute(llvm::Attribute::NoInline);
1297   } else {
1298     // Otherwise, propagate the inline hint attribute and potentially use its
1299     // absence to mark things as noinline.
1300     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
1301       // Search function and template pattern redeclarations for inline.
1302       auto CheckForInline = [](const FunctionDecl *FD) {
1303         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
1304           return Redecl->isInlineSpecified();
1305         };
1306         if (any_of(FD->redecls(), CheckRedeclForInline))
1307           return true;
1308         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
1309         if (!Pattern)
1310           return false;
1311         return any_of(Pattern->redecls(), CheckRedeclForInline);
1312       };
1313       if (CheckForInline(FD)) {
1314         B.addAttribute(llvm::Attribute::InlineHint);
1315       } else if (CodeGenOpts.getInlining() ==
1316                      CodeGenOptions::OnlyHintInlining &&
1317                  !FD->isInlined() &&
1318                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
1319         B.addAttribute(llvm::Attribute::NoInline);
1320       }
1321     }
1322   }
1323 
1324   // Add other optimization related attributes if we are optimizing this
1325   // function.
1326   if (!D->hasAttr<OptimizeNoneAttr>()) {
1327     if (D->hasAttr<ColdAttr>()) {
1328       if (!ShouldAddOptNone)
1329         B.addAttribute(llvm::Attribute::OptimizeForSize);
1330       B.addAttribute(llvm::Attribute::Cold);
1331     }
1332 
1333     if (D->hasAttr<MinSizeAttr>())
1334       B.addAttribute(llvm::Attribute::MinSize);
1335   }
1336 
1337   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
1338 
1339   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
1340   if (alignment)
1341     F->setAlignment(alignment);
1342 
1343   if (!D->hasAttr<AlignedAttr>())
1344     if (LangOpts.FunctionAlignment)
1345       F->setAlignment(1 << LangOpts.FunctionAlignment);
1346 
1347   // Some C++ ABIs require 2-byte alignment for member functions, in order to
1348   // reserve a bit for differentiating between virtual and non-virtual member
1349   // functions. If the current target's C++ ABI requires this and this is a
1350   // member function, set its alignment accordingly.
1351   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
1352     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
1353       F->setAlignment(2);
1354   }
1355 
1356   // In the cross-dso CFI mode, we want !type attributes on definitions only.
1357   if (CodeGenOpts.SanitizeCfiCrossDso)
1358     if (auto *FD = dyn_cast<FunctionDecl>(D))
1359       CreateFunctionTypeMetadataForIcall(FD, F);
1360 
1361   // Emit type metadata on member functions for member function pointer checks.
1362   // These are only ever necessary on definitions; we're guaranteed that the
1363   // definition will be present in the LTO unit as a result of LTO visibility.
1364   auto *MD = dyn_cast<CXXMethodDecl>(D);
1365   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
1366     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
1367       llvm::Metadata *Id =
1368           CreateMetadataIdentifierForType(Context.getMemberPointerType(
1369               MD->getType(), Context.getRecordType(Base).getTypePtr()));
1370       F->addTypeMetadata(0, Id);
1371     }
1372   }
1373 }
1374 
1375 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
1376   const Decl *D = GD.getDecl();
1377   if (dyn_cast_or_null<NamedDecl>(D))
1378     setGVProperties(GV, GD);
1379   else
1380     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1381 
1382   if (D && D->hasAttr<UsedAttr>())
1383     addUsedGlobal(GV);
1384 
1385   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
1386     const auto *VD = cast<VarDecl>(D);
1387     if (VD->getType().isConstQualified() &&
1388         VD->getStorageDuration() == SD_Static)
1389       addUsedGlobal(GV);
1390   }
1391 }
1392 
1393 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
1394                                                 llvm::AttrBuilder &Attrs) {
1395   // Add target-cpu and target-features attributes to functions. If
1396   // we have a decl for the function and it has a target attribute then
1397   // parse that and add it to the feature set.
1398   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1399   std::vector<std::string> Features;
1400   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
1401   FD = FD ? FD->getMostRecentDecl() : FD;
1402   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
1403   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
1404   bool AddedAttr = false;
1405   if (TD || SD) {
1406     llvm::StringMap<bool> FeatureMap;
1407     getFunctionFeatureMap(FeatureMap, GD);
1408 
1409     // Produce the canonical string for this set of features.
1410     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
1411       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
1412 
1413     // Now add the target-cpu and target-features to the function.
1414     // While we populated the feature map above, we still need to
1415     // get and parse the target attribute so we can get the cpu for
1416     // the function.
1417     if (TD) {
1418       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1419       if (ParsedAttr.Architecture != "" &&
1420           getTarget().isValidCPUName(ParsedAttr.Architecture))
1421         TargetCPU = ParsedAttr.Architecture;
1422     }
1423   } else {
1424     // Otherwise just add the existing target cpu and target features to the
1425     // function.
1426     Features = getTarget().getTargetOpts().Features;
1427   }
1428 
1429   if (TargetCPU != "") {
1430     Attrs.addAttribute("target-cpu", TargetCPU);
1431     AddedAttr = true;
1432   }
1433   if (!Features.empty()) {
1434     llvm::sort(Features);
1435     Attrs.addAttribute("target-features", llvm::join(Features, ","));
1436     AddedAttr = true;
1437   }
1438 
1439   return AddedAttr;
1440 }
1441 
1442 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
1443                                           llvm::GlobalObject *GO) {
1444   const Decl *D = GD.getDecl();
1445   SetCommonAttributes(GD, GO);
1446 
1447   if (D) {
1448     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
1449       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
1450         GV->addAttribute("bss-section", SA->getName());
1451       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
1452         GV->addAttribute("data-section", SA->getName());
1453       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
1454         GV->addAttribute("rodata-section", SA->getName());
1455     }
1456 
1457     if (auto *F = dyn_cast<llvm::Function>(GO)) {
1458       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
1459         if (!D->getAttr<SectionAttr>())
1460           F->addFnAttr("implicit-section-name", SA->getName());
1461 
1462       llvm::AttrBuilder Attrs;
1463       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
1464         // We know that GetCPUAndFeaturesAttributes will always have the
1465         // newest set, since it has the newest possible FunctionDecl, so the
1466         // new ones should replace the old.
1467         F->removeFnAttr("target-cpu");
1468         F->removeFnAttr("target-features");
1469         F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs);
1470       }
1471     }
1472 
1473     if (const auto *CSA = D->getAttr<CodeSegAttr>())
1474       GO->setSection(CSA->getName());
1475     else if (const auto *SA = D->getAttr<SectionAttr>())
1476       GO->setSection(SA->getName());
1477   }
1478 
1479   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
1480 }
1481 
1482 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
1483                                                   llvm::Function *F,
1484                                                   const CGFunctionInfo &FI) {
1485   const Decl *D = GD.getDecl();
1486   SetLLVMFunctionAttributes(GD, FI, F);
1487   SetLLVMFunctionAttributesForDefinition(D, F);
1488 
1489   F->setLinkage(llvm::Function::InternalLinkage);
1490 
1491   setNonAliasAttributes(GD, F);
1492 }
1493 
1494 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
1495   // Set linkage and visibility in case we never see a definition.
1496   LinkageInfo LV = ND->getLinkageAndVisibility();
1497   // Don't set internal linkage on declarations.
1498   // "extern_weak" is overloaded in LLVM; we probably should have
1499   // separate linkage types for this.
1500   if (isExternallyVisible(LV.getLinkage()) &&
1501       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
1502     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1503 }
1504 
1505 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
1506                                                        llvm::Function *F) {
1507   // Only if we are checking indirect calls.
1508   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
1509     return;
1510 
1511   // Non-static class methods are handled via vtable or member function pointer
1512   // checks elsewhere.
1513   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
1514     return;
1515 
1516   // Additionally, if building with cross-DSO support...
1517   if (CodeGenOpts.SanitizeCfiCrossDso) {
1518     // Skip available_externally functions. They won't be codegen'ed in the
1519     // current module anyway.
1520     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
1521       return;
1522   }
1523 
1524   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1525   F->addTypeMetadata(0, MD);
1526   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
1527 
1528   // Emit a hash-based bit set entry for cross-DSO calls.
1529   if (CodeGenOpts.SanitizeCfiCrossDso)
1530     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
1531       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
1532 }
1533 
1534 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1535                                           bool IsIncompleteFunction,
1536                                           bool IsThunk) {
1537 
1538   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1539     // If this is an intrinsic function, set the function's attributes
1540     // to the intrinsic's attributes.
1541     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1542     return;
1543   }
1544 
1545   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1546 
1547   if (!IsIncompleteFunction) {
1548     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F);
1549     // Setup target-specific attributes.
1550     if (F->isDeclaration())
1551       getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
1552   }
1553 
1554   // Add the Returned attribute for "this", except for iOS 5 and earlier
1555   // where substantial code, including the libstdc++ dylib, was compiled with
1556   // GCC and does not actually return "this".
1557   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1558       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
1559     assert(!F->arg_empty() &&
1560            F->arg_begin()->getType()
1561              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1562            "unexpected this return");
1563     F->addAttribute(1, llvm::Attribute::Returned);
1564   }
1565 
1566   // Only a few attributes are set on declarations; these may later be
1567   // overridden by a definition.
1568 
1569   setLinkageForGV(F, FD);
1570   setGVProperties(F, FD);
1571 
1572   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
1573     F->setSection(CSA->getName());
1574   else if (const auto *SA = FD->getAttr<SectionAttr>())
1575      F->setSection(SA->getName());
1576 
1577   if (FD->isReplaceableGlobalAllocationFunction()) {
1578     // A replaceable global allocation function does not act like a builtin by
1579     // default, only if it is invoked by a new-expression or delete-expression.
1580     F->addAttribute(llvm::AttributeList::FunctionIndex,
1581                     llvm::Attribute::NoBuiltin);
1582 
1583     // A sane operator new returns a non-aliasing pointer.
1584     // FIXME: Also add NonNull attribute to the return value
1585     // for the non-nothrow forms?
1586     auto Kind = FD->getDeclName().getCXXOverloadedOperator();
1587     if (getCodeGenOpts().AssumeSaneOperatorNew &&
1588         (Kind == OO_New || Kind == OO_Array_New))
1589       F->addAttribute(llvm::AttributeList::ReturnIndex,
1590                       llvm::Attribute::NoAlias);
1591   }
1592 
1593   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
1594     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1595   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1596     if (MD->isVirtual())
1597       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1598 
1599   // Don't emit entries for function declarations in the cross-DSO mode. This
1600   // is handled with better precision by the receiving DSO.
1601   if (!CodeGenOpts.SanitizeCfiCrossDso)
1602     CreateFunctionTypeMetadataForIcall(FD, F);
1603 
1604   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
1605     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
1606 }
1607 
1608 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1609   assert(!GV->isDeclaration() &&
1610          "Only globals with definition can force usage.");
1611   LLVMUsed.emplace_back(GV);
1612 }
1613 
1614 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1615   assert(!GV->isDeclaration() &&
1616          "Only globals with definition can force usage.");
1617   LLVMCompilerUsed.emplace_back(GV);
1618 }
1619 
1620 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1621                      std::vector<llvm::WeakTrackingVH> &List) {
1622   // Don't create llvm.used if there is no need.
1623   if (List.empty())
1624     return;
1625 
1626   // Convert List to what ConstantArray needs.
1627   SmallVector<llvm::Constant*, 8> UsedArray;
1628   UsedArray.resize(List.size());
1629   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1630     UsedArray[i] =
1631         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1632             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1633   }
1634 
1635   if (UsedArray.empty())
1636     return;
1637   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1638 
1639   auto *GV = new llvm::GlobalVariable(
1640       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1641       llvm::ConstantArray::get(ATy, UsedArray), Name);
1642 
1643   GV->setSection("llvm.metadata");
1644 }
1645 
1646 void CodeGenModule::emitLLVMUsed() {
1647   emitUsed(*this, "llvm.used", LLVMUsed);
1648   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1649 }
1650 
1651 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1652   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1653   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1654 }
1655 
1656 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1657   llvm::SmallString<32> Opt;
1658   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1659   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1660   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1661 }
1662 
1663 void CodeGenModule::AddELFLibDirective(StringRef Lib) {
1664   auto &C = getLLVMContext();
1665   LinkerOptionsMetadata.push_back(llvm::MDNode::get(
1666       C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)}));
1667 }
1668 
1669 void CodeGenModule::AddDependentLib(StringRef Lib) {
1670   llvm::SmallString<24> Opt;
1671   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1672   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1673   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1674 }
1675 
1676 /// Add link options implied by the given module, including modules
1677 /// it depends on, using a postorder walk.
1678 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1679                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
1680                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1681   // Import this module's parent.
1682   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1683     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1684   }
1685 
1686   // Import this module's dependencies.
1687   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1688     if (Visited.insert(Mod->Imports[I - 1]).second)
1689       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1690   }
1691 
1692   // Add linker options to link against the libraries/frameworks
1693   // described by this module.
1694   llvm::LLVMContext &Context = CGM.getLLVMContext();
1695 
1696   // For modules that use export_as for linking, use that module
1697   // name instead.
1698   if (Mod->UseExportAsModuleLinkName)
1699     return;
1700 
1701   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1702     // Link against a framework.  Frameworks are currently Darwin only, so we
1703     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1704     if (Mod->LinkLibraries[I-1].IsFramework) {
1705       llvm::Metadata *Args[2] = {
1706           llvm::MDString::get(Context, "-framework"),
1707           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1708 
1709       Metadata.push_back(llvm::MDNode::get(Context, Args));
1710       continue;
1711     }
1712 
1713     // Link against a library.
1714     llvm::SmallString<24> Opt;
1715     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1716       Mod->LinkLibraries[I-1].Library, Opt);
1717     auto *OptString = llvm::MDString::get(Context, Opt);
1718     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1719   }
1720 }
1721 
1722 void CodeGenModule::EmitModuleLinkOptions() {
1723   // Collect the set of all of the modules we want to visit to emit link
1724   // options, which is essentially the imported modules and all of their
1725   // non-explicit child modules.
1726   llvm::SetVector<clang::Module *> LinkModules;
1727   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1728   SmallVector<clang::Module *, 16> Stack;
1729 
1730   // Seed the stack with imported modules.
1731   for (Module *M : ImportedModules) {
1732     // Do not add any link flags when an implementation TU of a module imports
1733     // a header of that same module.
1734     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
1735         !getLangOpts().isCompilingModule())
1736       continue;
1737     if (Visited.insert(M).second)
1738       Stack.push_back(M);
1739   }
1740 
1741   // Find all of the modules to import, making a little effort to prune
1742   // non-leaf modules.
1743   while (!Stack.empty()) {
1744     clang::Module *Mod = Stack.pop_back_val();
1745 
1746     bool AnyChildren = false;
1747 
1748     // Visit the submodules of this module.
1749     for (const auto &SM : Mod->submodules()) {
1750       // Skip explicit children; they need to be explicitly imported to be
1751       // linked against.
1752       if (SM->IsExplicit)
1753         continue;
1754 
1755       if (Visited.insert(SM).second) {
1756         Stack.push_back(SM);
1757         AnyChildren = true;
1758       }
1759     }
1760 
1761     // We didn't find any children, so add this module to the list of
1762     // modules to link against.
1763     if (!AnyChildren) {
1764       LinkModules.insert(Mod);
1765     }
1766   }
1767 
1768   // Add link options for all of the imported modules in reverse topological
1769   // order.  We don't do anything to try to order import link flags with respect
1770   // to linker options inserted by things like #pragma comment().
1771   SmallVector<llvm::MDNode *, 16> MetadataArgs;
1772   Visited.clear();
1773   for (Module *M : LinkModules)
1774     if (Visited.insert(M).second)
1775       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1776   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1777   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1778 
1779   // Add the linker options metadata flag.
1780   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
1781   for (auto *MD : LinkerOptionsMetadata)
1782     NMD->addOperand(MD);
1783 }
1784 
1785 void CodeGenModule::EmitDeferred() {
1786   // Emit deferred declare target declarations.
1787   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1788     getOpenMPRuntime().emitDeferredTargetDecls();
1789 
1790   // Emit code for any potentially referenced deferred decls.  Since a
1791   // previously unused static decl may become used during the generation of code
1792   // for a static function, iterate until no changes are made.
1793 
1794   if (!DeferredVTables.empty()) {
1795     EmitDeferredVTables();
1796 
1797     // Emitting a vtable doesn't directly cause more vtables to
1798     // become deferred, although it can cause functions to be
1799     // emitted that then need those vtables.
1800     assert(DeferredVTables.empty());
1801   }
1802 
1803   // Stop if we're out of both deferred vtables and deferred declarations.
1804   if (DeferredDeclsToEmit.empty())
1805     return;
1806 
1807   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1808   // work, it will not interfere with this.
1809   std::vector<GlobalDecl> CurDeclsToEmit;
1810   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1811 
1812   for (GlobalDecl &D : CurDeclsToEmit) {
1813     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1814     // to get GlobalValue with exactly the type we need, not something that
1815     // might had been created for another decl with the same mangled name but
1816     // different type.
1817     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1818         GetAddrOfGlobal(D, ForDefinition));
1819 
1820     // In case of different address spaces, we may still get a cast, even with
1821     // IsForDefinition equal to true. Query mangled names table to get
1822     // GlobalValue.
1823     if (!GV)
1824       GV = GetGlobalValue(getMangledName(D));
1825 
1826     // Make sure GetGlobalValue returned non-null.
1827     assert(GV);
1828 
1829     // Check to see if we've already emitted this.  This is necessary
1830     // for a couple of reasons: first, decls can end up in the
1831     // deferred-decls queue multiple times, and second, decls can end
1832     // up with definitions in unusual ways (e.g. by an extern inline
1833     // function acquiring a strong function redefinition).  Just
1834     // ignore these cases.
1835     if (!GV->isDeclaration())
1836       continue;
1837 
1838     // Otherwise, emit the definition and move on to the next one.
1839     EmitGlobalDefinition(D, GV);
1840 
1841     // If we found out that we need to emit more decls, do that recursively.
1842     // This has the advantage that the decls are emitted in a DFS and related
1843     // ones are close together, which is convenient for testing.
1844     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1845       EmitDeferred();
1846       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1847     }
1848   }
1849 }
1850 
1851 void CodeGenModule::EmitVTablesOpportunistically() {
1852   // Try to emit external vtables as available_externally if they have emitted
1853   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
1854   // is not allowed to create new references to things that need to be emitted
1855   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
1856 
1857   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
1858          && "Only emit opportunistic vtables with optimizations");
1859 
1860   for (const CXXRecordDecl *RD : OpportunisticVTables) {
1861     assert(getVTables().isVTableExternal(RD) &&
1862            "This queue should only contain external vtables");
1863     if (getCXXABI().canSpeculativelyEmitVTable(RD))
1864       VTables.GenerateClassData(RD);
1865   }
1866   OpportunisticVTables.clear();
1867 }
1868 
1869 void CodeGenModule::EmitGlobalAnnotations() {
1870   if (Annotations.empty())
1871     return;
1872 
1873   // Create a new global variable for the ConstantStruct in the Module.
1874   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1875     Annotations[0]->getType(), Annotations.size()), Annotations);
1876   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1877                                       llvm::GlobalValue::AppendingLinkage,
1878                                       Array, "llvm.global.annotations");
1879   gv->setSection(AnnotationSection);
1880 }
1881 
1882 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1883   llvm::Constant *&AStr = AnnotationStrings[Str];
1884   if (AStr)
1885     return AStr;
1886 
1887   // Not found yet, create a new global.
1888   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1889   auto *gv =
1890       new llvm::GlobalVariable(getModule(), s->getType(), true,
1891                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1892   gv->setSection(AnnotationSection);
1893   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1894   AStr = gv;
1895   return gv;
1896 }
1897 
1898 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1899   SourceManager &SM = getContext().getSourceManager();
1900   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1901   if (PLoc.isValid())
1902     return EmitAnnotationString(PLoc.getFilename());
1903   return EmitAnnotationString(SM.getBufferName(Loc));
1904 }
1905 
1906 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1907   SourceManager &SM = getContext().getSourceManager();
1908   PresumedLoc PLoc = SM.getPresumedLoc(L);
1909   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1910     SM.getExpansionLineNumber(L);
1911   return llvm::ConstantInt::get(Int32Ty, LineNo);
1912 }
1913 
1914 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1915                                                 const AnnotateAttr *AA,
1916                                                 SourceLocation L) {
1917   // Get the globals for file name, annotation, and the line number.
1918   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1919                  *UnitGV = EmitAnnotationUnit(L),
1920                  *LineNoCst = EmitAnnotationLineNo(L);
1921 
1922   // Create the ConstantStruct for the global annotation.
1923   llvm::Constant *Fields[4] = {
1924     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1925     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1926     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1927     LineNoCst
1928   };
1929   return llvm::ConstantStruct::getAnon(Fields);
1930 }
1931 
1932 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1933                                          llvm::GlobalValue *GV) {
1934   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1935   // Get the struct elements for these annotations.
1936   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1937     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1938 }
1939 
1940 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind,
1941                                            llvm::Function *Fn,
1942                                            SourceLocation Loc) const {
1943   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1944   // Blacklist by function name.
1945   if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName()))
1946     return true;
1947   // Blacklist by location.
1948   if (Loc.isValid())
1949     return SanitizerBL.isBlacklistedLocation(Kind, Loc);
1950   // If location is unknown, this may be a compiler-generated function. Assume
1951   // it's located in the main file.
1952   auto &SM = Context.getSourceManager();
1953   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1954     return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName());
1955   }
1956   return false;
1957 }
1958 
1959 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1960                                            SourceLocation Loc, QualType Ty,
1961                                            StringRef Category) const {
1962   // For now globals can be blacklisted only in ASan and KASan.
1963   const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask &
1964       (SanitizerKind::Address | SanitizerKind::KernelAddress |
1965        SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress);
1966   if (!EnabledAsanMask)
1967     return false;
1968   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1969   if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category))
1970     return true;
1971   if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category))
1972     return true;
1973   // Check global type.
1974   if (!Ty.isNull()) {
1975     // Drill down the array types: if global variable of a fixed type is
1976     // blacklisted, we also don't instrument arrays of them.
1977     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1978       Ty = AT->getElementType();
1979     Ty = Ty.getCanonicalType().getUnqualifiedType();
1980     // We allow to blacklist only record types (classes, structs etc.)
1981     if (Ty->isRecordType()) {
1982       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1983       if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category))
1984         return true;
1985     }
1986   }
1987   return false;
1988 }
1989 
1990 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
1991                                    StringRef Category) const {
1992   const auto &XRayFilter = getContext().getXRayFilter();
1993   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
1994   auto Attr = ImbueAttr::NONE;
1995   if (Loc.isValid())
1996     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
1997   if (Attr == ImbueAttr::NONE)
1998     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
1999   switch (Attr) {
2000   case ImbueAttr::NONE:
2001     return false;
2002   case ImbueAttr::ALWAYS:
2003     Fn->addFnAttr("function-instrument", "xray-always");
2004     break;
2005   case ImbueAttr::ALWAYS_ARG1:
2006     Fn->addFnAttr("function-instrument", "xray-always");
2007     Fn->addFnAttr("xray-log-args", "1");
2008     break;
2009   case ImbueAttr::NEVER:
2010     Fn->addFnAttr("function-instrument", "xray-never");
2011     break;
2012   }
2013   return true;
2014 }
2015 
2016 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
2017   // Never defer when EmitAllDecls is specified.
2018   if (LangOpts.EmitAllDecls)
2019     return true;
2020 
2021   if (CodeGenOpts.KeepStaticConsts) {
2022     const auto *VD = dyn_cast<VarDecl>(Global);
2023     if (VD && VD->getType().isConstQualified() &&
2024         VD->getStorageDuration() == SD_Static)
2025       return true;
2026   }
2027 
2028   return getContext().DeclMustBeEmitted(Global);
2029 }
2030 
2031 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
2032   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
2033     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
2034       // Implicit template instantiations may change linkage if they are later
2035       // explicitly instantiated, so they should not be emitted eagerly.
2036       return false;
2037   if (const auto *VD = dyn_cast<VarDecl>(Global))
2038     if (Context.getInlineVariableDefinitionKind(VD) ==
2039         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
2040       // A definition of an inline constexpr static data member may change
2041       // linkage later if it's redeclared outside the class.
2042       return false;
2043   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
2044   // codegen for global variables, because they may be marked as threadprivate.
2045   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
2046       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
2047       !isTypeConstant(Global->getType(), false) &&
2048       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
2049     return false;
2050 
2051   return true;
2052 }
2053 
2054 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
2055     const CXXUuidofExpr* E) {
2056   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
2057   // well-formed.
2058   StringRef Uuid = E->getUuidStr();
2059   std::string Name = "_GUID_" + Uuid.lower();
2060   std::replace(Name.begin(), Name.end(), '-', '_');
2061 
2062   // The UUID descriptor should be pointer aligned.
2063   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
2064 
2065   // Look for an existing global.
2066   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
2067     return ConstantAddress(GV, Alignment);
2068 
2069   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
2070   assert(Init && "failed to initialize as constant");
2071 
2072   auto *GV = new llvm::GlobalVariable(
2073       getModule(), Init->getType(),
2074       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
2075   if (supportsCOMDAT())
2076     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2077   setDSOLocal(GV);
2078   return ConstantAddress(GV, Alignment);
2079 }
2080 
2081 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
2082   const AliasAttr *AA = VD->getAttr<AliasAttr>();
2083   assert(AA && "No alias?");
2084 
2085   CharUnits Alignment = getContext().getDeclAlign(VD);
2086   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
2087 
2088   // See if there is already something with the target's name in the module.
2089   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
2090   if (Entry) {
2091     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
2092     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
2093     return ConstantAddress(Ptr, Alignment);
2094   }
2095 
2096   llvm::Constant *Aliasee;
2097   if (isa<llvm::FunctionType>(DeclTy))
2098     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
2099                                       GlobalDecl(cast<FunctionDecl>(VD)),
2100                                       /*ForVTable=*/false);
2101   else
2102     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2103                                     llvm::PointerType::getUnqual(DeclTy),
2104                                     nullptr);
2105 
2106   auto *F = cast<llvm::GlobalValue>(Aliasee);
2107   F->setLinkage(llvm::Function::ExternalWeakLinkage);
2108   WeakRefReferences.insert(F);
2109 
2110   return ConstantAddress(Aliasee, Alignment);
2111 }
2112 
2113 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
2114   const auto *Global = cast<ValueDecl>(GD.getDecl());
2115 
2116   // Weak references don't produce any output by themselves.
2117   if (Global->hasAttr<WeakRefAttr>())
2118     return;
2119 
2120   // If this is an alias definition (which otherwise looks like a declaration)
2121   // emit it now.
2122   if (Global->hasAttr<AliasAttr>())
2123     return EmitAliasDefinition(GD);
2124 
2125   // IFunc like an alias whose value is resolved at runtime by calling resolver.
2126   if (Global->hasAttr<IFuncAttr>())
2127     return emitIFuncDefinition(GD);
2128 
2129   // If this is a cpu_dispatch multiversion function, emit the resolver.
2130   if (Global->hasAttr<CPUDispatchAttr>())
2131     return emitCPUDispatchDefinition(GD);
2132 
2133   // If this is CUDA, be selective about which declarations we emit.
2134   if (LangOpts.CUDA) {
2135     if (LangOpts.CUDAIsDevice) {
2136       if (!Global->hasAttr<CUDADeviceAttr>() &&
2137           !Global->hasAttr<CUDAGlobalAttr>() &&
2138           !Global->hasAttr<CUDAConstantAttr>() &&
2139           !Global->hasAttr<CUDASharedAttr>())
2140         return;
2141     } else {
2142       // We need to emit host-side 'shadows' for all global
2143       // device-side variables because the CUDA runtime needs their
2144       // size and host-side address in order to provide access to
2145       // their device-side incarnations.
2146 
2147       // So device-only functions are the only things we skip.
2148       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
2149           Global->hasAttr<CUDADeviceAttr>())
2150         return;
2151 
2152       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
2153              "Expected Variable or Function");
2154     }
2155   }
2156 
2157   if (LangOpts.OpenMP) {
2158     // If this is OpenMP device, check if it is legal to emit this global
2159     // normally.
2160     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
2161       return;
2162     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
2163       if (MustBeEmitted(Global))
2164         EmitOMPDeclareReduction(DRD);
2165       return;
2166     }
2167   }
2168 
2169   // Ignore declarations, they will be emitted on their first use.
2170   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
2171     // Forward declarations are emitted lazily on first use.
2172     if (!FD->doesThisDeclarationHaveABody()) {
2173       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
2174         return;
2175 
2176       StringRef MangledName = getMangledName(GD);
2177 
2178       // Compute the function info and LLVM type.
2179       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2180       llvm::Type *Ty = getTypes().GetFunctionType(FI);
2181 
2182       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
2183                               /*DontDefer=*/false);
2184       return;
2185     }
2186   } else {
2187     const auto *VD = cast<VarDecl>(Global);
2188     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
2189     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
2190         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
2191       if (LangOpts.OpenMP) {
2192         // Emit declaration of the must-be-emitted declare target variable.
2193         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2194                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
2195           if (*Res == OMPDeclareTargetDeclAttr::MT_To) {
2196             (void)GetAddrOfGlobalVar(VD);
2197           } else {
2198             assert(*Res == OMPDeclareTargetDeclAttr::MT_Link &&
2199                    "link claue expected.");
2200             (void)getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
2201           }
2202           return;
2203         }
2204       }
2205       // If this declaration may have caused an inline variable definition to
2206       // change linkage, make sure that it's emitted.
2207       if (Context.getInlineVariableDefinitionKind(VD) ==
2208           ASTContext::InlineVariableDefinitionKind::Strong)
2209         GetAddrOfGlobalVar(VD);
2210       return;
2211     }
2212   }
2213 
2214   // Defer code generation to first use when possible, e.g. if this is an inline
2215   // function. If the global must always be emitted, do it eagerly if possible
2216   // to benefit from cache locality.
2217   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
2218     // Emit the definition if it can't be deferred.
2219     EmitGlobalDefinition(GD);
2220     return;
2221   }
2222 
2223   // If we're deferring emission of a C++ variable with an
2224   // initializer, remember the order in which it appeared in the file.
2225   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
2226       cast<VarDecl>(Global)->hasInit()) {
2227     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
2228     CXXGlobalInits.push_back(nullptr);
2229   }
2230 
2231   StringRef MangledName = getMangledName(GD);
2232   if (GetGlobalValue(MangledName) != nullptr) {
2233     // The value has already been used and should therefore be emitted.
2234     addDeferredDeclToEmit(GD);
2235   } else if (MustBeEmitted(Global)) {
2236     // The value must be emitted, but cannot be emitted eagerly.
2237     assert(!MayBeEmittedEagerly(Global));
2238     addDeferredDeclToEmit(GD);
2239   } else {
2240     // Otherwise, remember that we saw a deferred decl with this name.  The
2241     // first use of the mangled name will cause it to move into
2242     // DeferredDeclsToEmit.
2243     DeferredDecls[MangledName] = GD;
2244   }
2245 }
2246 
2247 // Check if T is a class type with a destructor that's not dllimport.
2248 static bool HasNonDllImportDtor(QualType T) {
2249   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
2250     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2251       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
2252         return true;
2253 
2254   return false;
2255 }
2256 
2257 namespace {
2258   struct FunctionIsDirectlyRecursive :
2259     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
2260     const StringRef Name;
2261     const Builtin::Context &BI;
2262     bool Result;
2263     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
2264       Name(N), BI(C), Result(false) {
2265     }
2266     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
2267 
2268     bool TraverseCallExpr(CallExpr *E) {
2269       const FunctionDecl *FD = E->getDirectCallee();
2270       if (!FD)
2271         return true;
2272       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2273       if (Attr && Name == Attr->getLabel()) {
2274         Result = true;
2275         return false;
2276       }
2277       unsigned BuiltinID = FD->getBuiltinID();
2278       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
2279         return true;
2280       StringRef BuiltinName = BI.getName(BuiltinID);
2281       if (BuiltinName.startswith("__builtin_") &&
2282           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
2283         Result = true;
2284         return false;
2285       }
2286       return true;
2287     }
2288   };
2289 
2290   // Make sure we're not referencing non-imported vars or functions.
2291   struct DLLImportFunctionVisitor
2292       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
2293     bool SafeToInline = true;
2294 
2295     bool shouldVisitImplicitCode() const { return true; }
2296 
2297     bool VisitVarDecl(VarDecl *VD) {
2298       if (VD->getTLSKind()) {
2299         // A thread-local variable cannot be imported.
2300         SafeToInline = false;
2301         return SafeToInline;
2302       }
2303 
2304       // A variable definition might imply a destructor call.
2305       if (VD->isThisDeclarationADefinition())
2306         SafeToInline = !HasNonDllImportDtor(VD->getType());
2307 
2308       return SafeToInline;
2309     }
2310 
2311     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2312       if (const auto *D = E->getTemporary()->getDestructor())
2313         SafeToInline = D->hasAttr<DLLImportAttr>();
2314       return SafeToInline;
2315     }
2316 
2317     bool VisitDeclRefExpr(DeclRefExpr *E) {
2318       ValueDecl *VD = E->getDecl();
2319       if (isa<FunctionDecl>(VD))
2320         SafeToInline = VD->hasAttr<DLLImportAttr>();
2321       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
2322         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
2323       return SafeToInline;
2324     }
2325 
2326     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2327       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
2328       return SafeToInline;
2329     }
2330 
2331     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2332       CXXMethodDecl *M = E->getMethodDecl();
2333       if (!M) {
2334         // Call through a pointer to member function. This is safe to inline.
2335         SafeToInline = true;
2336       } else {
2337         SafeToInline = M->hasAttr<DLLImportAttr>();
2338       }
2339       return SafeToInline;
2340     }
2341 
2342     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
2343       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
2344       return SafeToInline;
2345     }
2346 
2347     bool VisitCXXNewExpr(CXXNewExpr *E) {
2348       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
2349       return SafeToInline;
2350     }
2351   };
2352 }
2353 
2354 // isTriviallyRecursive - Check if this function calls another
2355 // decl that, because of the asm attribute or the other decl being a builtin,
2356 // ends up pointing to itself.
2357 bool
2358 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
2359   StringRef Name;
2360   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
2361     // asm labels are a special kind of mangling we have to support.
2362     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
2363     if (!Attr)
2364       return false;
2365     Name = Attr->getLabel();
2366   } else {
2367     Name = FD->getName();
2368   }
2369 
2370   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
2371   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
2372   return Walker.Result;
2373 }
2374 
2375 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
2376   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
2377     return true;
2378   const auto *F = cast<FunctionDecl>(GD.getDecl());
2379   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
2380     return false;
2381 
2382   if (F->hasAttr<DLLImportAttr>()) {
2383     // Check whether it would be safe to inline this dllimport function.
2384     DLLImportFunctionVisitor Visitor;
2385     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
2386     if (!Visitor.SafeToInline)
2387       return false;
2388 
2389     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
2390       // Implicit destructor invocations aren't captured in the AST, so the
2391       // check above can't see them. Check for them manually here.
2392       for (const Decl *Member : Dtor->getParent()->decls())
2393         if (isa<FieldDecl>(Member))
2394           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
2395             return false;
2396       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
2397         if (HasNonDllImportDtor(B.getType()))
2398           return false;
2399     }
2400   }
2401 
2402   // PR9614. Avoid cases where the source code is lying to us. An available
2403   // externally function should have an equivalent function somewhere else,
2404   // but a function that calls itself is clearly not equivalent to the real
2405   // implementation.
2406   // This happens in glibc's btowc and in some configure checks.
2407   return !isTriviallyRecursive(F);
2408 }
2409 
2410 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
2411   return CodeGenOpts.OptimizationLevel > 0;
2412 }
2413 
2414 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
2415                                                        llvm::GlobalValue *GV) {
2416   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2417 
2418   if (FD->isCPUSpecificMultiVersion()) {
2419     auto *Spec = FD->getAttr<CPUSpecificAttr>();
2420     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
2421       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
2422     // Requires multiple emits.
2423   } else
2424     EmitGlobalFunctionDefinition(GD, GV);
2425 }
2426 
2427 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
2428   const auto *D = cast<ValueDecl>(GD.getDecl());
2429 
2430   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
2431                                  Context.getSourceManager(),
2432                                  "Generating code for declaration");
2433 
2434   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2435     // At -O0, don't generate IR for functions with available_externally
2436     // linkage.
2437     if (!shouldEmitFunction(GD))
2438       return;
2439 
2440     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
2441       // Make sure to emit the definition(s) before we emit the thunks.
2442       // This is necessary for the generation of certain thunks.
2443       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
2444         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
2445       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
2446         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
2447       else if (FD->isMultiVersion())
2448         EmitMultiVersionFunctionDefinition(GD, GV);
2449       else
2450         EmitGlobalFunctionDefinition(GD, GV);
2451 
2452       if (Method->isVirtual())
2453         getVTables().EmitThunks(GD);
2454 
2455       return;
2456     }
2457 
2458     if (FD->isMultiVersion())
2459       return EmitMultiVersionFunctionDefinition(GD, GV);
2460     return EmitGlobalFunctionDefinition(GD, GV);
2461   }
2462 
2463   if (const auto *VD = dyn_cast<VarDecl>(D))
2464     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
2465 
2466   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
2467 }
2468 
2469 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2470                                                       llvm::Function *NewFn);
2471 
2472 static unsigned
2473 TargetMVPriority(const TargetInfo &TI,
2474                  const CodeGenFunction::MultiVersionResolverOption &RO) {
2475   unsigned Priority = 0;
2476   for (StringRef Feat : RO.Conditions.Features)
2477     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
2478 
2479   if (!RO.Conditions.Architecture.empty())
2480     Priority = std::max(
2481         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
2482   return Priority;
2483 }
2484 
2485 void CodeGenModule::emitMultiVersionFunctions() {
2486   for (GlobalDecl GD : MultiVersionFuncs) {
2487     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2488     const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2489     getContext().forEachMultiversionedFunctionVersion(
2490         FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
2491           GlobalDecl CurGD{
2492               (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
2493           StringRef MangledName = getMangledName(CurGD);
2494           llvm::Constant *Func = GetGlobalValue(MangledName);
2495           if (!Func) {
2496             if (CurFD->isDefined()) {
2497               EmitGlobalFunctionDefinition(CurGD, nullptr);
2498               Func = GetGlobalValue(MangledName);
2499             } else {
2500               const CGFunctionInfo &FI =
2501                   getTypes().arrangeGlobalDeclaration(GD);
2502               llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2503               Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
2504                                        /*DontDefer=*/false, ForDefinition);
2505             }
2506             assert(Func && "This should have just been created");
2507           }
2508 
2509           const auto *TA = CurFD->getAttr<TargetAttr>();
2510           llvm::SmallVector<StringRef, 8> Feats;
2511           TA->getAddedFeatures(Feats);
2512 
2513           Options.emplace_back(cast<llvm::Function>(Func),
2514                                TA->getArchitecture(), Feats);
2515         });
2516 
2517     llvm::Function *ResolverFunc;
2518     const TargetInfo &TI = getTarget();
2519 
2520     if (TI.supportsIFunc() || FD->isTargetMultiVersion())
2521       ResolverFunc = cast<llvm::Function>(
2522           GetGlobalValue((getMangledName(GD) + ".resolver").str()));
2523     else
2524       ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD)));
2525 
2526     if (supportsCOMDAT())
2527       ResolverFunc->setComdat(
2528           getModule().getOrInsertComdat(ResolverFunc->getName()));
2529 
2530     std::stable_sort(
2531         Options.begin(), Options.end(),
2532         [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
2533               const CodeGenFunction::MultiVersionResolverOption &RHS) {
2534           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
2535         });
2536     CodeGenFunction CGF(*this);
2537     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2538   }
2539 }
2540 
2541 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
2542   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2543   assert(FD && "Not a FunctionDecl?");
2544   const auto *DD = FD->getAttr<CPUDispatchAttr>();
2545   assert(DD && "Not a cpu_dispatch Function?");
2546   QualType CanonTy = Context.getCanonicalType(FD->getType());
2547   llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD);
2548 
2549   if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) {
2550     const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD);
2551     DeclTy = getTypes().GetFunctionType(FInfo);
2552   }
2553 
2554   StringRef ResolverName = getMangledName(GD);
2555 
2556   llvm::Type *ResolverType;
2557   GlobalDecl ResolverGD;
2558   if (getTarget().supportsIFunc())
2559     ResolverType = llvm::FunctionType::get(
2560         llvm::PointerType::get(DeclTy,
2561                                Context.getTargetAddressSpace(FD->getType())),
2562         false);
2563   else {
2564     ResolverType = DeclTy;
2565     ResolverGD = GD;
2566   }
2567 
2568   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
2569       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
2570 
2571   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
2572   const TargetInfo &Target = getTarget();
2573   unsigned Index = 0;
2574   for (const IdentifierInfo *II : DD->cpus()) {
2575     // Get the name of the target function so we can look it up/create it.
2576     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
2577                               getCPUSpecificMangling(*this, II->getName());
2578 
2579     llvm::Constant *Func = GetGlobalValue(MangledName);
2580 
2581     if (!Func) {
2582       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
2583       if (ExistingDecl.getDecl() &&
2584           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
2585         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
2586         Func = GetGlobalValue(MangledName);
2587       } else {
2588         if (!ExistingDecl.getDecl())
2589           ExistingDecl = GD.getWithMultiVersionIndex(Index);
2590 
2591       Func = GetOrCreateLLVMFunction(
2592           MangledName, DeclTy, ExistingDecl,
2593           /*ForVTable=*/false, /*DontDefer=*/true,
2594           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
2595       }
2596     }
2597 
2598     llvm::SmallVector<StringRef, 32> Features;
2599     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
2600     llvm::transform(Features, Features.begin(),
2601                     [](StringRef Str) { return Str.substr(1); });
2602     Features.erase(std::remove_if(
2603         Features.begin(), Features.end(), [&Target](StringRef Feat) {
2604           return !Target.validateCpuSupports(Feat);
2605         }), Features.end());
2606     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
2607     ++Index;
2608   }
2609 
2610   llvm::sort(
2611       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
2612                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
2613         return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) >
2614                CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features);
2615       });
2616 
2617   // If the list contains multiple 'default' versions, such as when it contains
2618   // 'pentium' and 'generic', don't emit the call to the generic one (since we
2619   // always run on at least a 'pentium'). We do this by deleting the 'least
2620   // advanced' (read, lowest mangling letter).
2621   while (Options.size() > 1 &&
2622          CodeGenFunction::GetX86CpuSupportsMask(
2623              (Options.end() - 2)->Conditions.Features) == 0) {
2624     StringRef LHSName = (Options.end() - 2)->Function->getName();
2625     StringRef RHSName = (Options.end() - 1)->Function->getName();
2626     if (LHSName.compare(RHSName) < 0)
2627       Options.erase(Options.end() - 2);
2628     else
2629       Options.erase(Options.end() - 1);
2630   }
2631 
2632   CodeGenFunction CGF(*this);
2633   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
2634 }
2635 
2636 /// If a dispatcher for the specified mangled name is not in the module, create
2637 /// and return an llvm Function with the specified type.
2638 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(
2639     GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) {
2640   std::string MangledName =
2641       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
2642 
2643   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
2644   // a separate resolver).
2645   std::string ResolverName = MangledName;
2646   if (getTarget().supportsIFunc())
2647     ResolverName += ".ifunc";
2648   else if (FD->isTargetMultiVersion())
2649     ResolverName += ".resolver";
2650 
2651   // If this already exists, just return that one.
2652   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
2653     return ResolverGV;
2654 
2655   // Since this is the first time we've created this IFunc, make sure
2656   // that we put this multiversioned function into the list to be
2657   // replaced later if necessary (target multiversioning only).
2658   if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion())
2659     MultiVersionFuncs.push_back(GD);
2660 
2661   if (getTarget().supportsIFunc()) {
2662     llvm::Type *ResolverType = llvm::FunctionType::get(
2663         llvm::PointerType::get(
2664             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
2665         false);
2666     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2667         MangledName + ".resolver", ResolverType, GlobalDecl{},
2668         /*ForVTable=*/false);
2669     llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
2670         DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
2671     GIF->setName(ResolverName);
2672     SetCommonAttributes(FD, GIF);
2673 
2674     return GIF;
2675   }
2676 
2677   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
2678       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
2679   assert(isa<llvm::GlobalValue>(Resolver) &&
2680          "Resolver should be created for the first time");
2681   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
2682   return Resolver;
2683 }
2684 
2685 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
2686 /// module, create and return an llvm Function with the specified type. If there
2687 /// is something in the module with the specified name, return it potentially
2688 /// bitcasted to the right type.
2689 ///
2690 /// If D is non-null, it specifies a decl that correspond to this.  This is used
2691 /// to set the attributes on the function when it is first created.
2692 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
2693     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
2694     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
2695     ForDefinition_t IsForDefinition) {
2696   const Decl *D = GD.getDecl();
2697 
2698   // Any attempts to use a MultiVersion function should result in retrieving
2699   // the iFunc instead. Name Mangling will handle the rest of the changes.
2700   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
2701     // For the device mark the function as one that should be emitted.
2702     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
2703         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
2704         !DontDefer && !IsForDefinition) {
2705       if (const FunctionDecl *FDDef = FD->getDefinition()) {
2706         GlobalDecl GDDef;
2707         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
2708           GDDef = GlobalDecl(CD, GD.getCtorType());
2709         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
2710           GDDef = GlobalDecl(DD, GD.getDtorType());
2711         else
2712           GDDef = GlobalDecl(FDDef);
2713         EmitGlobal(GDDef);
2714       }
2715     }
2716 
2717     if (FD->isMultiVersion()) {
2718       const auto *TA = FD->getAttr<TargetAttr>();
2719       if (TA && TA->isDefaultVersion())
2720         UpdateMultiVersionNames(GD, FD);
2721       if (!IsForDefinition)
2722         return GetOrCreateMultiVersionResolver(GD, Ty, FD);
2723     }
2724   }
2725 
2726   // Lookup the entry, lazily creating it if necessary.
2727   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2728   if (Entry) {
2729     if (WeakRefReferences.erase(Entry)) {
2730       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
2731       if (FD && !FD->hasAttr<WeakAttr>())
2732         Entry->setLinkage(llvm::Function::ExternalLinkage);
2733     }
2734 
2735     // Handle dropped DLL attributes.
2736     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
2737       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2738       setDSOLocal(Entry);
2739     }
2740 
2741     // If there are two attempts to define the same mangled name, issue an
2742     // error.
2743     if (IsForDefinition && !Entry->isDeclaration()) {
2744       GlobalDecl OtherGD;
2745       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
2746       // to make sure that we issue an error only once.
2747       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2748           (GD.getCanonicalDecl().getDecl() !=
2749            OtherGD.getCanonicalDecl().getDecl()) &&
2750           DiagnosedConflictingDefinitions.insert(GD).second) {
2751         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
2752             << MangledName;
2753         getDiags().Report(OtherGD.getDecl()->getLocation(),
2754                           diag::note_previous_definition);
2755       }
2756     }
2757 
2758     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
2759         (Entry->getType()->getElementType() == Ty)) {
2760       return Entry;
2761     }
2762 
2763     // Make sure the result is of the correct type.
2764     // (If function is requested for a definition, we always need to create a new
2765     // function, not just return a bitcast.)
2766     if (!IsForDefinition)
2767       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
2768   }
2769 
2770   // This function doesn't have a complete type (for example, the return
2771   // type is an incomplete struct). Use a fake type instead, and make
2772   // sure not to try to set attributes.
2773   bool IsIncompleteFunction = false;
2774 
2775   llvm::FunctionType *FTy;
2776   if (isa<llvm::FunctionType>(Ty)) {
2777     FTy = cast<llvm::FunctionType>(Ty);
2778   } else {
2779     FTy = llvm::FunctionType::get(VoidTy, false);
2780     IsIncompleteFunction = true;
2781   }
2782 
2783   llvm::Function *F =
2784       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
2785                              Entry ? StringRef() : MangledName, &getModule());
2786 
2787   // If we already created a function with the same mangled name (but different
2788   // type) before, take its name and add it to the list of functions to be
2789   // replaced with F at the end of CodeGen.
2790   //
2791   // This happens if there is a prototype for a function (e.g. "int f()") and
2792   // then a definition of a different type (e.g. "int f(int x)").
2793   if (Entry) {
2794     F->takeName(Entry);
2795 
2796     // This might be an implementation of a function without a prototype, in
2797     // which case, try to do special replacement of calls which match the new
2798     // prototype.  The really key thing here is that we also potentially drop
2799     // arguments from the call site so as to make a direct call, which makes the
2800     // inliner happier and suppresses a number of optimizer warnings (!) about
2801     // dropping arguments.
2802     if (!Entry->use_empty()) {
2803       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
2804       Entry->removeDeadConstantUsers();
2805     }
2806 
2807     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
2808         F, Entry->getType()->getElementType()->getPointerTo());
2809     addGlobalValReplacement(Entry, BC);
2810   }
2811 
2812   assert(F->getName() == MangledName && "name was uniqued!");
2813   if (D)
2814     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
2815   if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) {
2816     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex);
2817     F->addAttributes(llvm::AttributeList::FunctionIndex, B);
2818   }
2819 
2820   if (!DontDefer) {
2821     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
2822     // each other bottoming out with the base dtor.  Therefore we emit non-base
2823     // dtors on usage, even if there is no dtor definition in the TU.
2824     if (D && isa<CXXDestructorDecl>(D) &&
2825         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
2826                                            GD.getDtorType()))
2827       addDeferredDeclToEmit(GD);
2828 
2829     // This is the first use or definition of a mangled name.  If there is a
2830     // deferred decl with this name, remember that we need to emit it at the end
2831     // of the file.
2832     auto DDI = DeferredDecls.find(MangledName);
2833     if (DDI != DeferredDecls.end()) {
2834       // Move the potentially referenced deferred decl to the
2835       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
2836       // don't need it anymore).
2837       addDeferredDeclToEmit(DDI->second);
2838       DeferredDecls.erase(DDI);
2839 
2840       // Otherwise, there are cases we have to worry about where we're
2841       // using a declaration for which we must emit a definition but where
2842       // we might not find a top-level definition:
2843       //   - member functions defined inline in their classes
2844       //   - friend functions defined inline in some class
2845       //   - special member functions with implicit definitions
2846       // If we ever change our AST traversal to walk into class methods,
2847       // this will be unnecessary.
2848       //
2849       // We also don't emit a definition for a function if it's going to be an
2850       // entry in a vtable, unless it's already marked as used.
2851     } else if (getLangOpts().CPlusPlus && D) {
2852       // Look for a declaration that's lexically in a record.
2853       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
2854            FD = FD->getPreviousDecl()) {
2855         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
2856           if (FD->doesThisDeclarationHaveABody()) {
2857             addDeferredDeclToEmit(GD.getWithDecl(FD));
2858             break;
2859           }
2860         }
2861       }
2862     }
2863   }
2864 
2865   // Make sure the result is of the requested type.
2866   if (!IsIncompleteFunction) {
2867     assert(F->getType()->getElementType() == Ty);
2868     return F;
2869   }
2870 
2871   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2872   return llvm::ConstantExpr::getBitCast(F, PTy);
2873 }
2874 
2875 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
2876 /// non-null, then this function will use the specified type if it has to
2877 /// create it (this occurs when we see a definition of the function).
2878 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
2879                                                  llvm::Type *Ty,
2880                                                  bool ForVTable,
2881                                                  bool DontDefer,
2882                                               ForDefinition_t IsForDefinition) {
2883   // If there was no specific requested type, just convert it now.
2884   if (!Ty) {
2885     const auto *FD = cast<FunctionDecl>(GD.getDecl());
2886     auto CanonTy = Context.getCanonicalType(FD->getType());
2887     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
2888   }
2889 
2890   // Devirtualized destructor calls may come through here instead of via
2891   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
2892   // of the complete destructor when necessary.
2893   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
2894     if (getTarget().getCXXABI().isMicrosoft() &&
2895         GD.getDtorType() == Dtor_Complete &&
2896         DD->getParent()->getNumVBases() == 0)
2897       GD = GlobalDecl(DD, Dtor_Base);
2898   }
2899 
2900   StringRef MangledName = getMangledName(GD);
2901   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
2902                                  /*IsThunk=*/false, llvm::AttributeList(),
2903                                  IsForDefinition);
2904 }
2905 
2906 static const FunctionDecl *
2907 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
2908   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
2909   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2910 
2911   IdentifierInfo &CII = C.Idents.get(Name);
2912   for (const auto &Result : DC->lookup(&CII))
2913     if (const auto FD = dyn_cast<FunctionDecl>(Result))
2914       return FD;
2915 
2916   if (!C.getLangOpts().CPlusPlus)
2917     return nullptr;
2918 
2919   // Demangle the premangled name from getTerminateFn()
2920   IdentifierInfo &CXXII =
2921       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
2922           ? C.Idents.get("terminate")
2923           : C.Idents.get(Name);
2924 
2925   for (const auto &N : {"__cxxabiv1", "std"}) {
2926     IdentifierInfo &NS = C.Idents.get(N);
2927     for (const auto &Result : DC->lookup(&NS)) {
2928       NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
2929       if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))
2930         for (const auto &Result : LSD->lookup(&NS))
2931           if ((ND = dyn_cast<NamespaceDecl>(Result)))
2932             break;
2933 
2934       if (ND)
2935         for (const auto &Result : ND->lookup(&CXXII))
2936           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
2937             return FD;
2938     }
2939   }
2940 
2941   return nullptr;
2942 }
2943 
2944 /// CreateRuntimeFunction - Create a new runtime function with the specified
2945 /// type and name.
2946 llvm::Constant *
2947 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
2948                                      llvm::AttributeList ExtraAttrs,
2949                                      bool Local) {
2950   llvm::Constant *C =
2951       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
2952                               /*DontDefer=*/false, /*IsThunk=*/false,
2953                               ExtraAttrs);
2954 
2955   if (auto *F = dyn_cast<llvm::Function>(C)) {
2956     if (F->empty()) {
2957       F->setCallingConv(getRuntimeCC());
2958 
2959       if (!Local && getTriple().isOSBinFormatCOFF() &&
2960           !getCodeGenOpts().LTOVisibilityPublicStd &&
2961           !getTriple().isWindowsGNUEnvironment()) {
2962         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
2963         if (!FD || FD->hasAttr<DLLImportAttr>()) {
2964           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2965           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
2966         }
2967       }
2968       setDSOLocal(F);
2969     }
2970   }
2971 
2972   return C;
2973 }
2974 
2975 /// CreateBuiltinFunction - Create a new builtin function with the specified
2976 /// type and name.
2977 llvm::Constant *
2978 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name,
2979                                      llvm::AttributeList ExtraAttrs) {
2980   return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true);
2981 }
2982 
2983 /// isTypeConstant - Determine whether an object of this type can be emitted
2984 /// as a constant.
2985 ///
2986 /// If ExcludeCtor is true, the duration when the object's constructor runs
2987 /// will not be considered. The caller will need to verify that the object is
2988 /// not written to during its construction.
2989 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
2990   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
2991     return false;
2992 
2993   if (Context.getLangOpts().CPlusPlus) {
2994     if (const CXXRecordDecl *Record
2995           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
2996       return ExcludeCtor && !Record->hasMutableFields() &&
2997              Record->hasTrivialDestructor();
2998   }
2999 
3000   return true;
3001 }
3002 
3003 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
3004 /// create and return an llvm GlobalVariable with the specified type.  If there
3005 /// is something in the module with the specified name, return it potentially
3006 /// bitcasted to the right type.
3007 ///
3008 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3009 /// to set the attributes on the global when it is first created.
3010 ///
3011 /// If IsForDefinition is true, it is guaranteed that an actual global with
3012 /// type Ty will be returned, not conversion of a variable with the same
3013 /// mangled name but some other type.
3014 llvm::Constant *
3015 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
3016                                      llvm::PointerType *Ty,
3017                                      const VarDecl *D,
3018                                      ForDefinition_t IsForDefinition) {
3019   // Lookup the entry, lazily creating it if necessary.
3020   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3021   if (Entry) {
3022     if (WeakRefReferences.erase(Entry)) {
3023       if (D && !D->hasAttr<WeakAttr>())
3024         Entry->setLinkage(llvm::Function::ExternalLinkage);
3025     }
3026 
3027     // Handle dropped DLL attributes.
3028     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
3029       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3030 
3031     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
3032       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
3033 
3034     if (Entry->getType() == Ty)
3035       return Entry;
3036 
3037     // If there are two attempts to define the same mangled name, issue an
3038     // error.
3039     if (IsForDefinition && !Entry->isDeclaration()) {
3040       GlobalDecl OtherGD;
3041       const VarDecl *OtherD;
3042 
3043       // Check that D is not yet in DiagnosedConflictingDefinitions is required
3044       // to make sure that we issue an error only once.
3045       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
3046           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
3047           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
3048           OtherD->hasInit() &&
3049           DiagnosedConflictingDefinitions.insert(D).second) {
3050         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3051             << MangledName;
3052         getDiags().Report(OtherGD.getDecl()->getLocation(),
3053                           diag::note_previous_definition);
3054       }
3055     }
3056 
3057     // Make sure the result is of the correct type.
3058     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
3059       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
3060 
3061     // (If global is requested for a definition, we always need to create a new
3062     // global, not just return a bitcast.)
3063     if (!IsForDefinition)
3064       return llvm::ConstantExpr::getBitCast(Entry, Ty);
3065   }
3066 
3067   auto AddrSpace = GetGlobalVarAddressSpace(D);
3068   auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace);
3069 
3070   auto *GV = new llvm::GlobalVariable(
3071       getModule(), Ty->getElementType(), false,
3072       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
3073       llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace);
3074 
3075   // If we already created a global with the same mangled name (but different
3076   // type) before, take its name and remove it from its parent.
3077   if (Entry) {
3078     GV->takeName(Entry);
3079 
3080     if (!Entry->use_empty()) {
3081       llvm::Constant *NewPtrForOldDecl =
3082           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3083       Entry->replaceAllUsesWith(NewPtrForOldDecl);
3084     }
3085 
3086     Entry->eraseFromParent();
3087   }
3088 
3089   // This is the first use or definition of a mangled name.  If there is a
3090   // deferred decl with this name, remember that we need to emit it at the end
3091   // of the file.
3092   auto DDI = DeferredDecls.find(MangledName);
3093   if (DDI != DeferredDecls.end()) {
3094     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
3095     // list, and remove it from DeferredDecls (since we don't need it anymore).
3096     addDeferredDeclToEmit(DDI->second);
3097     DeferredDecls.erase(DDI);
3098   }
3099 
3100   // Handle things which are present even on external declarations.
3101   if (D) {
3102     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
3103       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
3104 
3105     // FIXME: This code is overly simple and should be merged with other global
3106     // handling.
3107     GV->setConstant(isTypeConstant(D->getType(), false));
3108 
3109     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3110 
3111     setLinkageForGV(GV, D);
3112 
3113     if (D->getTLSKind()) {
3114       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3115         CXXThreadLocals.push_back(D);
3116       setTLSMode(GV, *D);
3117     }
3118 
3119     setGVProperties(GV, D);
3120 
3121     // If required by the ABI, treat declarations of static data members with
3122     // inline initializers as definitions.
3123     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
3124       EmitGlobalVarDefinition(D);
3125     }
3126 
3127     // Emit section information for extern variables.
3128     if (D->hasExternalStorage()) {
3129       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
3130         GV->setSection(SA->getName());
3131     }
3132 
3133     // Handle XCore specific ABI requirements.
3134     if (getTriple().getArch() == llvm::Triple::xcore &&
3135         D->getLanguageLinkage() == CLanguageLinkage &&
3136         D->getType().isConstant(Context) &&
3137         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
3138       GV->setSection(".cp.rodata");
3139 
3140     // Check if we a have a const declaration with an initializer, we may be
3141     // able to emit it as available_externally to expose it's value to the
3142     // optimizer.
3143     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
3144         D->getType().isConstQualified() && !GV->hasInitializer() &&
3145         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
3146       const auto *Record =
3147           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
3148       bool HasMutableFields = Record && Record->hasMutableFields();
3149       if (!HasMutableFields) {
3150         const VarDecl *InitDecl;
3151         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3152         if (InitExpr) {
3153           ConstantEmitter emitter(*this);
3154           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
3155           if (Init) {
3156             auto *InitType = Init->getType();
3157             if (GV->getType()->getElementType() != InitType) {
3158               // The type of the initializer does not match the definition.
3159               // This happens when an initializer has a different type from
3160               // the type of the global (because of padding at the end of a
3161               // structure for instance).
3162               GV->setName(StringRef());
3163               // Make a new global with the correct type, this is now guaranteed
3164               // to work.
3165               auto *NewGV = cast<llvm::GlobalVariable>(
3166                   GetAddrOfGlobalVar(D, InitType, IsForDefinition));
3167 
3168               // Erase the old global, since it is no longer used.
3169               GV->eraseFromParent();
3170               GV = NewGV;
3171             } else {
3172               GV->setInitializer(Init);
3173               GV->setConstant(true);
3174               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
3175             }
3176             emitter.finalize(GV);
3177           }
3178         }
3179       }
3180     }
3181   }
3182 
3183   LangAS ExpectedAS =
3184       D ? D->getType().getAddressSpace()
3185         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
3186   assert(getContext().getTargetAddressSpace(ExpectedAS) ==
3187          Ty->getPointerAddressSpace());
3188   if (AddrSpace != ExpectedAS)
3189     return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace,
3190                                                        ExpectedAS, Ty);
3191 
3192   return GV;
3193 }
3194 
3195 llvm::Constant *
3196 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
3197                                ForDefinition_t IsForDefinition) {
3198   const Decl *D = GD.getDecl();
3199   if (isa<CXXConstructorDecl>(D))
3200     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D),
3201                                 getFromCtorType(GD.getCtorType()),
3202                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3203                                 /*DontDefer=*/false, IsForDefinition);
3204   else if (isa<CXXDestructorDecl>(D))
3205     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D),
3206                                 getFromDtorType(GD.getDtorType()),
3207                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
3208                                 /*DontDefer=*/false, IsForDefinition);
3209   else if (isa<CXXMethodDecl>(D)) {
3210     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
3211         cast<CXXMethodDecl>(D));
3212     auto Ty = getTypes().GetFunctionType(*FInfo);
3213     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3214                              IsForDefinition);
3215   } else if (isa<FunctionDecl>(D)) {
3216     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3217     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3218     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
3219                              IsForDefinition);
3220   } else
3221     return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr,
3222                               IsForDefinition);
3223 }
3224 
3225 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
3226     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
3227     unsigned Alignment) {
3228   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
3229   llvm::GlobalVariable *OldGV = nullptr;
3230 
3231   if (GV) {
3232     // Check if the variable has the right type.
3233     if (GV->getType()->getElementType() == Ty)
3234       return GV;
3235 
3236     // Because C++ name mangling, the only way we can end up with an already
3237     // existing global with the same name is if it has been declared extern "C".
3238     assert(GV->isDeclaration() && "Declaration has wrong type!");
3239     OldGV = GV;
3240   }
3241 
3242   // Create a new variable.
3243   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
3244                                 Linkage, nullptr, Name);
3245 
3246   if (OldGV) {
3247     // Replace occurrences of the old variable if needed.
3248     GV->takeName(OldGV);
3249 
3250     if (!OldGV->use_empty()) {
3251       llvm::Constant *NewPtrForOldDecl =
3252       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
3253       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
3254     }
3255 
3256     OldGV->eraseFromParent();
3257   }
3258 
3259   if (supportsCOMDAT() && GV->isWeakForLinker() &&
3260       !GV->hasAvailableExternallyLinkage())
3261     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3262 
3263   GV->setAlignment(Alignment);
3264 
3265   return GV;
3266 }
3267 
3268 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
3269 /// given global variable.  If Ty is non-null and if the global doesn't exist,
3270 /// then it will be created with the specified type instead of whatever the
3271 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
3272 /// that an actual global with type Ty will be returned, not conversion of a
3273 /// variable with the same mangled name but some other type.
3274 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
3275                                                   llvm::Type *Ty,
3276                                            ForDefinition_t IsForDefinition) {
3277   assert(D->hasGlobalStorage() && "Not a global variable");
3278   QualType ASTTy = D->getType();
3279   if (!Ty)
3280     Ty = getTypes().ConvertTypeForMem(ASTTy);
3281 
3282   llvm::PointerType *PTy =
3283     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
3284 
3285   StringRef MangledName = getMangledName(D);
3286   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
3287 }
3288 
3289 /// CreateRuntimeVariable - Create a new runtime global variable with the
3290 /// specified type and name.
3291 llvm::Constant *
3292 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
3293                                      StringRef Name) {
3294   auto *Ret =
3295       GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
3296   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
3297   return Ret;
3298 }
3299 
3300 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
3301   assert(!D->getInit() && "Cannot emit definite definitions here!");
3302 
3303   StringRef MangledName = getMangledName(D);
3304   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3305 
3306   // We already have a definition, not declaration, with the same mangled name.
3307   // Emitting of declaration is not required (and actually overwrites emitted
3308   // definition).
3309   if (GV && !GV->isDeclaration())
3310     return;
3311 
3312   // If we have not seen a reference to this variable yet, place it into the
3313   // deferred declarations table to be emitted if needed later.
3314   if (!MustBeEmitted(D) && !GV) {
3315       DeferredDecls[MangledName] = D;
3316       return;
3317   }
3318 
3319   // The tentative definition is the only definition.
3320   EmitGlobalVarDefinition(D);
3321 }
3322 
3323 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
3324   return Context.toCharUnitsFromBits(
3325       getDataLayout().getTypeStoreSizeInBits(Ty));
3326 }
3327 
3328 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
3329   LangAS AddrSpace = LangAS::Default;
3330   if (LangOpts.OpenCL) {
3331     AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
3332     assert(AddrSpace == LangAS::opencl_global ||
3333            AddrSpace == LangAS::opencl_constant ||
3334            AddrSpace == LangAS::opencl_local ||
3335            AddrSpace >= LangAS::FirstTargetAddressSpace);
3336     return AddrSpace;
3337   }
3338 
3339   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
3340     if (D && D->hasAttr<CUDAConstantAttr>())
3341       return LangAS::cuda_constant;
3342     else if (D && D->hasAttr<CUDASharedAttr>())
3343       return LangAS::cuda_shared;
3344     else if (D && D->hasAttr<CUDADeviceAttr>())
3345       return LangAS::cuda_device;
3346     else if (D && D->getType().isConstQualified())
3347       return LangAS::cuda_constant;
3348     else
3349       return LangAS::cuda_device;
3350   }
3351 
3352   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
3353 }
3354 
3355 LangAS CodeGenModule::getStringLiteralAddressSpace() const {
3356   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3357   if (LangOpts.OpenCL)
3358     return LangAS::opencl_constant;
3359   if (auto AS = getTarget().getConstantAddressSpace())
3360     return AS.getValue();
3361   return LangAS::Default;
3362 }
3363 
3364 // In address space agnostic languages, string literals are in default address
3365 // space in AST. However, certain targets (e.g. amdgcn) request them to be
3366 // emitted in constant address space in LLVM IR. To be consistent with other
3367 // parts of AST, string literal global variables in constant address space
3368 // need to be casted to default address space before being put into address
3369 // map and referenced by other part of CodeGen.
3370 // In OpenCL, string literals are in constant address space in AST, therefore
3371 // they should not be casted to default address space.
3372 static llvm::Constant *
3373 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
3374                                        llvm::GlobalVariable *GV) {
3375   llvm::Constant *Cast = GV;
3376   if (!CGM.getLangOpts().OpenCL) {
3377     if (auto AS = CGM.getTarget().getConstantAddressSpace()) {
3378       if (AS != LangAS::Default)
3379         Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
3380             CGM, GV, AS.getValue(), LangAS::Default,
3381             GV->getValueType()->getPointerTo(
3382                 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
3383     }
3384   }
3385   return Cast;
3386 }
3387 
3388 template<typename SomeDecl>
3389 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
3390                                                llvm::GlobalValue *GV) {
3391   if (!getLangOpts().CPlusPlus)
3392     return;
3393 
3394   // Must have 'used' attribute, or else inline assembly can't rely on
3395   // the name existing.
3396   if (!D->template hasAttr<UsedAttr>())
3397     return;
3398 
3399   // Must have internal linkage and an ordinary name.
3400   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
3401     return;
3402 
3403   // Must be in an extern "C" context. Entities declared directly within
3404   // a record are not extern "C" even if the record is in such a context.
3405   const SomeDecl *First = D->getFirstDecl();
3406   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
3407     return;
3408 
3409   // OK, this is an internal linkage entity inside an extern "C" linkage
3410   // specification. Make a note of that so we can give it the "expected"
3411   // mangled name if nothing else is using that name.
3412   std::pair<StaticExternCMap::iterator, bool> R =
3413       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
3414 
3415   // If we have multiple internal linkage entities with the same name
3416   // in extern "C" regions, none of them gets that name.
3417   if (!R.second)
3418     R.first->second = nullptr;
3419 }
3420 
3421 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
3422   if (!CGM.supportsCOMDAT())
3423     return false;
3424 
3425   if (D.hasAttr<SelectAnyAttr>())
3426     return true;
3427 
3428   GVALinkage Linkage;
3429   if (auto *VD = dyn_cast<VarDecl>(&D))
3430     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
3431   else
3432     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
3433 
3434   switch (Linkage) {
3435   case GVA_Internal:
3436   case GVA_AvailableExternally:
3437   case GVA_StrongExternal:
3438     return false;
3439   case GVA_DiscardableODR:
3440   case GVA_StrongODR:
3441     return true;
3442   }
3443   llvm_unreachable("No such linkage");
3444 }
3445 
3446 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
3447                                           llvm::GlobalObject &GO) {
3448   if (!shouldBeInCOMDAT(*this, D))
3449     return;
3450   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
3451 }
3452 
3453 /// Pass IsTentative as true if you want to create a tentative definition.
3454 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
3455                                             bool IsTentative) {
3456   // OpenCL global variables of sampler type are translated to function calls,
3457   // therefore no need to be translated.
3458   QualType ASTTy = D->getType();
3459   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
3460     return;
3461 
3462   // If this is OpenMP device, check if it is legal to emit this global
3463   // normally.
3464   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
3465       OpenMPRuntime->emitTargetGlobalVariable(D))
3466     return;
3467 
3468   llvm::Constant *Init = nullptr;
3469   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
3470   bool NeedsGlobalCtor = false;
3471   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
3472 
3473   const VarDecl *InitDecl;
3474   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
3475 
3476   Optional<ConstantEmitter> emitter;
3477 
3478   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
3479   // as part of their declaration."  Sema has already checked for
3480   // error cases, so we just need to set Init to UndefValue.
3481   bool IsCUDASharedVar =
3482       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
3483   // Shadows of initialized device-side global variables are also left
3484   // undefined.
3485   bool IsCUDAShadowVar =
3486       !getLangOpts().CUDAIsDevice &&
3487       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
3488        D->hasAttr<CUDASharedAttr>());
3489   if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar))
3490     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
3491   else if (!InitExpr) {
3492     // This is a tentative definition; tentative definitions are
3493     // implicitly initialized with { 0 }.
3494     //
3495     // Note that tentative definitions are only emitted at the end of
3496     // a translation unit, so they should never have incomplete
3497     // type. In addition, EmitTentativeDefinition makes sure that we
3498     // never attempt to emit a tentative definition if a real one
3499     // exists. A use may still exists, however, so we still may need
3500     // to do a RAUW.
3501     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
3502     Init = EmitNullConstant(D->getType());
3503   } else {
3504     initializedGlobalDecl = GlobalDecl(D);
3505     emitter.emplace(*this);
3506     Init = emitter->tryEmitForInitializer(*InitDecl);
3507 
3508     if (!Init) {
3509       QualType T = InitExpr->getType();
3510       if (D->getType()->isReferenceType())
3511         T = D->getType();
3512 
3513       if (getLangOpts().CPlusPlus) {
3514         Init = EmitNullConstant(T);
3515         NeedsGlobalCtor = true;
3516       } else {
3517         ErrorUnsupported(D, "static initializer");
3518         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
3519       }
3520     } else {
3521       // We don't need an initializer, so remove the entry for the delayed
3522       // initializer position (just in case this entry was delayed) if we
3523       // also don't need to register a destructor.
3524       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
3525         DelayedCXXInitPosition.erase(D);
3526     }
3527   }
3528 
3529   llvm::Type* InitType = Init->getType();
3530   llvm::Constant *Entry =
3531       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
3532 
3533   // Strip off a bitcast if we got one back.
3534   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
3535     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
3536            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
3537            // All zero index gep.
3538            CE->getOpcode() == llvm::Instruction::GetElementPtr);
3539     Entry = CE->getOperand(0);
3540   }
3541 
3542   // Entry is now either a Function or GlobalVariable.
3543   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
3544 
3545   // We have a definition after a declaration with the wrong type.
3546   // We must make a new GlobalVariable* and update everything that used OldGV
3547   // (a declaration or tentative definition) with the new GlobalVariable*
3548   // (which will be a definition).
3549   //
3550   // This happens if there is a prototype for a global (e.g.
3551   // "extern int x[];") and then a definition of a different type (e.g.
3552   // "int x[10];"). This also happens when an initializer has a different type
3553   // from the type of the global (this happens with unions).
3554   if (!GV || GV->getType()->getElementType() != InitType ||
3555       GV->getType()->getAddressSpace() !=
3556           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
3557 
3558     // Move the old entry aside so that we'll create a new one.
3559     Entry->setName(StringRef());
3560 
3561     // Make a new global with the correct type, this is now guaranteed to work.
3562     GV = cast<llvm::GlobalVariable>(
3563         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)));
3564 
3565     // Replace all uses of the old global with the new global
3566     llvm::Constant *NewPtrForOldDecl =
3567         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
3568     Entry->replaceAllUsesWith(NewPtrForOldDecl);
3569 
3570     // Erase the old global, since it is no longer used.
3571     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
3572   }
3573 
3574   MaybeHandleStaticInExternC(D, GV);
3575 
3576   if (D->hasAttr<AnnotateAttr>())
3577     AddGlobalAnnotations(D, GV);
3578 
3579   // Set the llvm linkage type as appropriate.
3580   llvm::GlobalValue::LinkageTypes Linkage =
3581       getLLVMLinkageVarDefinition(D, GV->isConstant());
3582 
3583   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
3584   // the device. [...]"
3585   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
3586   // __device__, declares a variable that: [...]
3587   // Is accessible from all the threads within the grid and from the host
3588   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
3589   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
3590   if (GV && LangOpts.CUDA) {
3591     if (LangOpts.CUDAIsDevice) {
3592       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())
3593         GV->setExternallyInitialized(true);
3594     } else {
3595       // Host-side shadows of external declarations of device-side
3596       // global variables become internal definitions. These have to
3597       // be internal in order to prevent name conflicts with global
3598       // host variables with the same name in a different TUs.
3599       if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) {
3600         Linkage = llvm::GlobalValue::InternalLinkage;
3601 
3602         // Shadow variables and their properties must be registered
3603         // with CUDA runtime.
3604         unsigned Flags = 0;
3605         if (!D->hasDefinition())
3606           Flags |= CGCUDARuntime::ExternDeviceVar;
3607         if (D->hasAttr<CUDAConstantAttr>())
3608           Flags |= CGCUDARuntime::ConstantDeviceVar;
3609         // Extern global variables will be registered in the TU where they are
3610         // defined.
3611         if (!D->hasExternalStorage())
3612           getCUDARuntime().registerDeviceVar(*GV, Flags);
3613       } else if (D->hasAttr<CUDASharedAttr>())
3614         // __shared__ variables are odd. Shadows do get created, but
3615         // they are not registered with the CUDA runtime, so they
3616         // can't really be used to access their device-side
3617         // counterparts. It's not clear yet whether it's nvcc's bug or
3618         // a feature, but we've got to do the same for compatibility.
3619         Linkage = llvm::GlobalValue::InternalLinkage;
3620     }
3621   }
3622 
3623   GV->setInitializer(Init);
3624   if (emitter) emitter->finalize(GV);
3625 
3626   // If it is safe to mark the global 'constant', do so now.
3627   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
3628                   isTypeConstant(D->getType(), true));
3629 
3630   // If it is in a read-only section, mark it 'constant'.
3631   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
3632     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
3633     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
3634       GV->setConstant(true);
3635   }
3636 
3637   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
3638 
3639 
3640   // On Darwin, if the normal linkage of a C++ thread_local variable is
3641   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
3642   // copies within a linkage unit; otherwise, the backing variable has
3643   // internal linkage and all accesses should just be calls to the
3644   // Itanium-specified entry point, which has the normal linkage of the
3645   // variable. This is to preserve the ability to change the implementation
3646   // behind the scenes.
3647   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
3648       Context.getTargetInfo().getTriple().isOSDarwin() &&
3649       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
3650       !llvm::GlobalVariable::isWeakLinkage(Linkage))
3651     Linkage = llvm::GlobalValue::InternalLinkage;
3652 
3653   GV->setLinkage(Linkage);
3654   if (D->hasAttr<DLLImportAttr>())
3655     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
3656   else if (D->hasAttr<DLLExportAttr>())
3657     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
3658   else
3659     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
3660 
3661   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
3662     // common vars aren't constant even if declared const.
3663     GV->setConstant(false);
3664     // Tentative definition of global variables may be initialized with
3665     // non-zero null pointers. In this case they should have weak linkage
3666     // since common linkage must have zero initializer and must not have
3667     // explicit section therefore cannot have non-zero initial value.
3668     if (!GV->getInitializer()->isNullValue())
3669       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
3670   }
3671 
3672   setNonAliasAttributes(D, GV);
3673 
3674   if (D->getTLSKind() && !GV->isThreadLocal()) {
3675     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
3676       CXXThreadLocals.push_back(D);
3677     setTLSMode(GV, *D);
3678   }
3679 
3680   maybeSetTrivialComdat(*D, *GV);
3681 
3682   // Emit the initializer function if necessary.
3683   if (NeedsGlobalCtor || NeedsGlobalDtor)
3684     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
3685 
3686   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
3687 
3688   // Emit global variable debug information.
3689   if (CGDebugInfo *DI = getModuleDebugInfo())
3690     if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
3691       DI->EmitGlobalVariable(GV, D);
3692 }
3693 
3694 static bool isVarDeclStrongDefinition(const ASTContext &Context,
3695                                       CodeGenModule &CGM, const VarDecl *D,
3696                                       bool NoCommon) {
3697   // Don't give variables common linkage if -fno-common was specified unless it
3698   // was overridden by a NoCommon attribute.
3699   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
3700     return true;
3701 
3702   // C11 6.9.2/2:
3703   //   A declaration of an identifier for an object that has file scope without
3704   //   an initializer, and without a storage-class specifier or with the
3705   //   storage-class specifier static, constitutes a tentative definition.
3706   if (D->getInit() || D->hasExternalStorage())
3707     return true;
3708 
3709   // A variable cannot be both common and exist in a section.
3710   if (D->hasAttr<SectionAttr>())
3711     return true;
3712 
3713   // A variable cannot be both common and exist in a section.
3714   // We don't try to determine which is the right section in the front-end.
3715   // If no specialized section name is applicable, it will resort to default.
3716   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
3717       D->hasAttr<PragmaClangDataSectionAttr>() ||
3718       D->hasAttr<PragmaClangRodataSectionAttr>())
3719     return true;
3720 
3721   // Thread local vars aren't considered common linkage.
3722   if (D->getTLSKind())
3723     return true;
3724 
3725   // Tentative definitions marked with WeakImportAttr are true definitions.
3726   if (D->hasAttr<WeakImportAttr>())
3727     return true;
3728 
3729   // A variable cannot be both common and exist in a comdat.
3730   if (shouldBeInCOMDAT(CGM, *D))
3731     return true;
3732 
3733   // Declarations with a required alignment do not have common linkage in MSVC
3734   // mode.
3735   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3736     if (D->hasAttr<AlignedAttr>())
3737       return true;
3738     QualType VarType = D->getType();
3739     if (Context.isAlignmentRequired(VarType))
3740       return true;
3741 
3742     if (const auto *RT = VarType->getAs<RecordType>()) {
3743       const RecordDecl *RD = RT->getDecl();
3744       for (const FieldDecl *FD : RD->fields()) {
3745         if (FD->isBitField())
3746           continue;
3747         if (FD->hasAttr<AlignedAttr>())
3748           return true;
3749         if (Context.isAlignmentRequired(FD->getType()))
3750           return true;
3751       }
3752     }
3753   }
3754 
3755   return false;
3756 }
3757 
3758 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
3759     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
3760   if (Linkage == GVA_Internal)
3761     return llvm::Function::InternalLinkage;
3762 
3763   if (D->hasAttr<WeakAttr>()) {
3764     if (IsConstantVariable)
3765       return llvm::GlobalVariable::WeakODRLinkage;
3766     else
3767       return llvm::GlobalVariable::WeakAnyLinkage;
3768   }
3769 
3770   if (const auto *FD = D->getAsFunction())
3771     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
3772       return llvm::GlobalVariable::LinkOnceAnyLinkage;
3773 
3774   // We are guaranteed to have a strong definition somewhere else,
3775   // so we can use available_externally linkage.
3776   if (Linkage == GVA_AvailableExternally)
3777     return llvm::GlobalValue::AvailableExternallyLinkage;
3778 
3779   // Note that Apple's kernel linker doesn't support symbol
3780   // coalescing, so we need to avoid linkonce and weak linkages there.
3781   // Normally, this means we just map to internal, but for explicit
3782   // instantiations we'll map to external.
3783 
3784   // In C++, the compiler has to emit a definition in every translation unit
3785   // that references the function.  We should use linkonce_odr because
3786   // a) if all references in this translation unit are optimized away, we
3787   // don't need to codegen it.  b) if the function persists, it needs to be
3788   // merged with other definitions. c) C++ has the ODR, so we know the
3789   // definition is dependable.
3790   if (Linkage == GVA_DiscardableODR)
3791     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
3792                                             : llvm::Function::InternalLinkage;
3793 
3794   // An explicit instantiation of a template has weak linkage, since
3795   // explicit instantiations can occur in multiple translation units
3796   // and must all be equivalent. However, we are not allowed to
3797   // throw away these explicit instantiations.
3798   //
3799   // We don't currently support CUDA device code spread out across multiple TUs,
3800   // so say that CUDA templates are either external (for kernels) or internal.
3801   // This lets llvm perform aggressive inter-procedural optimizations.
3802   if (Linkage == GVA_StrongODR) {
3803     if (Context.getLangOpts().AppleKext)
3804       return llvm::Function::ExternalLinkage;
3805     if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice)
3806       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
3807                                           : llvm::Function::InternalLinkage;
3808     return llvm::Function::WeakODRLinkage;
3809   }
3810 
3811   // C++ doesn't have tentative definitions and thus cannot have common
3812   // linkage.
3813   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
3814       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
3815                                  CodeGenOpts.NoCommon))
3816     return llvm::GlobalVariable::CommonLinkage;
3817 
3818   // selectany symbols are externally visible, so use weak instead of
3819   // linkonce.  MSVC optimizes away references to const selectany globals, so
3820   // all definitions should be the same and ODR linkage should be used.
3821   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
3822   if (D->hasAttr<SelectAnyAttr>())
3823     return llvm::GlobalVariable::WeakODRLinkage;
3824 
3825   // Otherwise, we have strong external linkage.
3826   assert(Linkage == GVA_StrongExternal);
3827   return llvm::GlobalVariable::ExternalLinkage;
3828 }
3829 
3830 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
3831     const VarDecl *VD, bool IsConstant) {
3832   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
3833   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
3834 }
3835 
3836 /// Replace the uses of a function that was declared with a non-proto type.
3837 /// We want to silently drop extra arguments from call sites
3838 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
3839                                           llvm::Function *newFn) {
3840   // Fast path.
3841   if (old->use_empty()) return;
3842 
3843   llvm::Type *newRetTy = newFn->getReturnType();
3844   SmallVector<llvm::Value*, 4> newArgs;
3845   SmallVector<llvm::OperandBundleDef, 1> newBundles;
3846 
3847   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
3848          ui != ue; ) {
3849     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
3850     llvm::User *user = use->getUser();
3851 
3852     // Recognize and replace uses of bitcasts.  Most calls to
3853     // unprototyped functions will use bitcasts.
3854     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
3855       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
3856         replaceUsesOfNonProtoConstant(bitcast, newFn);
3857       continue;
3858     }
3859 
3860     // Recognize calls to the function.
3861     llvm::CallSite callSite(user);
3862     if (!callSite) continue;
3863     if (!callSite.isCallee(&*use)) continue;
3864 
3865     // If the return types don't match exactly, then we can't
3866     // transform this call unless it's dead.
3867     if (callSite->getType() != newRetTy && !callSite->use_empty())
3868       continue;
3869 
3870     // Get the call site's attribute list.
3871     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
3872     llvm::AttributeList oldAttrs = callSite.getAttributes();
3873 
3874     // If the function was passed too few arguments, don't transform.
3875     unsigned newNumArgs = newFn->arg_size();
3876     if (callSite.arg_size() < newNumArgs) continue;
3877 
3878     // If extra arguments were passed, we silently drop them.
3879     // If any of the types mismatch, we don't transform.
3880     unsigned argNo = 0;
3881     bool dontTransform = false;
3882     for (llvm::Argument &A : newFn->args()) {
3883       if (callSite.getArgument(argNo)->getType() != A.getType()) {
3884         dontTransform = true;
3885         break;
3886       }
3887 
3888       // Add any parameter attributes.
3889       newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo));
3890       argNo++;
3891     }
3892     if (dontTransform)
3893       continue;
3894 
3895     // Okay, we can transform this.  Create the new call instruction and copy
3896     // over the required information.
3897     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
3898 
3899     // Copy over any operand bundles.
3900     callSite.getOperandBundlesAsDefs(newBundles);
3901 
3902     llvm::CallSite newCall;
3903     if (callSite.isCall()) {
3904       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
3905                                        callSite.getInstruction());
3906     } else {
3907       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
3908       newCall = llvm::InvokeInst::Create(newFn,
3909                                          oldInvoke->getNormalDest(),
3910                                          oldInvoke->getUnwindDest(),
3911                                          newArgs, newBundles, "",
3912                                          callSite.getInstruction());
3913     }
3914     newArgs.clear(); // for the next iteration
3915 
3916     if (!newCall->getType()->isVoidTy())
3917       newCall->takeName(callSite.getInstruction());
3918     newCall.setAttributes(llvm::AttributeList::get(
3919         newFn->getContext(), oldAttrs.getFnAttributes(),
3920         oldAttrs.getRetAttributes(), newArgAttrs));
3921     newCall.setCallingConv(callSite.getCallingConv());
3922 
3923     // Finally, remove the old call, replacing any uses with the new one.
3924     if (!callSite->use_empty())
3925       callSite->replaceAllUsesWith(newCall.getInstruction());
3926 
3927     // Copy debug location attached to CI.
3928     if (callSite->getDebugLoc())
3929       newCall->setDebugLoc(callSite->getDebugLoc());
3930 
3931     callSite->eraseFromParent();
3932   }
3933 }
3934 
3935 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
3936 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
3937 /// existing call uses of the old function in the module, this adjusts them to
3938 /// call the new function directly.
3939 ///
3940 /// This is not just a cleanup: the always_inline pass requires direct calls to
3941 /// functions to be able to inline them.  If there is a bitcast in the way, it
3942 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
3943 /// run at -O0.
3944 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3945                                                       llvm::Function *NewFn) {
3946   // If we're redefining a global as a function, don't transform it.
3947   if (!isa<llvm::Function>(Old)) return;
3948 
3949   replaceUsesOfNonProtoConstant(Old, NewFn);
3950 }
3951 
3952 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
3953   auto DK = VD->isThisDeclarationADefinition();
3954   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
3955     return;
3956 
3957   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
3958   // If we have a definition, this might be a deferred decl. If the
3959   // instantiation is explicit, make sure we emit it at the end.
3960   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
3961     GetAddrOfGlobalVar(VD);
3962 
3963   EmitTopLevelDecl(VD);
3964 }
3965 
3966 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
3967                                                  llvm::GlobalValue *GV) {
3968   const auto *D = cast<FunctionDecl>(GD.getDecl());
3969 
3970   // Compute the function info and LLVM type.
3971   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3972   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3973 
3974   // Get or create the prototype for the function.
3975   if (!GV || (GV->getType()->getElementType() != Ty))
3976     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
3977                                                    /*DontDefer=*/true,
3978                                                    ForDefinition));
3979 
3980   // Already emitted.
3981   if (!GV->isDeclaration())
3982     return;
3983 
3984   // We need to set linkage and visibility on the function before
3985   // generating code for it because various parts of IR generation
3986   // want to propagate this information down (e.g. to local static
3987   // declarations).
3988   auto *Fn = cast<llvm::Function>(GV);
3989   setFunctionLinkage(GD, Fn);
3990 
3991   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
3992   setGVProperties(Fn, GD);
3993 
3994   MaybeHandleStaticInExternC(D, Fn);
3995 
3996 
3997   maybeSetTrivialComdat(*D, *Fn);
3998 
3999   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
4000 
4001   setNonAliasAttributes(GD, Fn);
4002   SetLLVMFunctionAttributesForDefinition(D, Fn);
4003 
4004   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
4005     AddGlobalCtor(Fn, CA->getPriority());
4006   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
4007     AddGlobalDtor(Fn, DA->getPriority());
4008   if (D->hasAttr<AnnotateAttr>())
4009     AddGlobalAnnotations(D, Fn);
4010 }
4011 
4012 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
4013   const auto *D = cast<ValueDecl>(GD.getDecl());
4014   const AliasAttr *AA = D->getAttr<AliasAttr>();
4015   assert(AA && "Not an alias?");
4016 
4017   StringRef MangledName = getMangledName(GD);
4018 
4019   if (AA->getAliasee() == MangledName) {
4020     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4021     return;
4022   }
4023 
4024   // If there is a definition in the module, then it wins over the alias.
4025   // This is dubious, but allow it to be safe.  Just ignore the alias.
4026   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4027   if (Entry && !Entry->isDeclaration())
4028     return;
4029 
4030   Aliases.push_back(GD);
4031 
4032   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4033 
4034   // Create a reference to the named value.  This ensures that it is emitted
4035   // if a deferred decl.
4036   llvm::Constant *Aliasee;
4037   if (isa<llvm::FunctionType>(DeclTy))
4038     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
4039                                       /*ForVTable=*/false);
4040   else
4041     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
4042                                     llvm::PointerType::getUnqual(DeclTy),
4043                                     /*D=*/nullptr);
4044 
4045   // Create the new alias itself, but don't set a name yet.
4046   auto *GA = llvm::GlobalAlias::create(
4047       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
4048 
4049   if (Entry) {
4050     if (GA->getAliasee() == Entry) {
4051       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
4052       return;
4053     }
4054 
4055     assert(Entry->isDeclaration());
4056 
4057     // If there is a declaration in the module, then we had an extern followed
4058     // by the alias, as in:
4059     //   extern int test6();
4060     //   ...
4061     //   int test6() __attribute__((alias("test7")));
4062     //
4063     // Remove it and replace uses of it with the alias.
4064     GA->takeName(Entry);
4065 
4066     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
4067                                                           Entry->getType()));
4068     Entry->eraseFromParent();
4069   } else {
4070     GA->setName(MangledName);
4071   }
4072 
4073   // Set attributes which are particular to an alias; this is a
4074   // specialization of the attributes which may be set on a global
4075   // variable/function.
4076   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
4077       D->isWeakImported()) {
4078     GA->setLinkage(llvm::Function::WeakAnyLinkage);
4079   }
4080 
4081   if (const auto *VD = dyn_cast<VarDecl>(D))
4082     if (VD->getTLSKind())
4083       setTLSMode(GA, *VD);
4084 
4085   SetCommonAttributes(GD, GA);
4086 }
4087 
4088 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
4089   const auto *D = cast<ValueDecl>(GD.getDecl());
4090   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
4091   assert(IFA && "Not an ifunc?");
4092 
4093   StringRef MangledName = getMangledName(GD);
4094 
4095   if (IFA->getResolver() == MangledName) {
4096     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4097     return;
4098   }
4099 
4100   // Report an error if some definition overrides ifunc.
4101   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4102   if (Entry && !Entry->isDeclaration()) {
4103     GlobalDecl OtherGD;
4104     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4105         DiagnosedConflictingDefinitions.insert(GD).second) {
4106       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
4107           << MangledName;
4108       Diags.Report(OtherGD.getDecl()->getLocation(),
4109                    diag::note_previous_definition);
4110     }
4111     return;
4112   }
4113 
4114   Aliases.push_back(GD);
4115 
4116   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
4117   llvm::Constant *Resolver =
4118       GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD,
4119                               /*ForVTable=*/false);
4120   llvm::GlobalIFunc *GIF =
4121       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
4122                                 "", Resolver, &getModule());
4123   if (Entry) {
4124     if (GIF->getResolver() == Entry) {
4125       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
4126       return;
4127     }
4128     assert(Entry->isDeclaration());
4129 
4130     // If there is a declaration in the module, then we had an extern followed
4131     // by the ifunc, as in:
4132     //   extern int test();
4133     //   ...
4134     //   int test() __attribute__((ifunc("resolver")));
4135     //
4136     // Remove it and replace uses of it with the ifunc.
4137     GIF->takeName(Entry);
4138 
4139     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
4140                                                           Entry->getType()));
4141     Entry->eraseFromParent();
4142   } else
4143     GIF->setName(MangledName);
4144 
4145   SetCommonAttributes(GD, GIF);
4146 }
4147 
4148 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
4149                                             ArrayRef<llvm::Type*> Tys) {
4150   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
4151                                          Tys);
4152 }
4153 
4154 static llvm::StringMapEntry<llvm::GlobalVariable *> &
4155 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
4156                          const StringLiteral *Literal, bool TargetIsLSB,
4157                          bool &IsUTF16, unsigned &StringLength) {
4158   StringRef String = Literal->getString();
4159   unsigned NumBytes = String.size();
4160 
4161   // Check for simple case.
4162   if (!Literal->containsNonAsciiOrNull()) {
4163     StringLength = NumBytes;
4164     return *Map.insert(std::make_pair(String, nullptr)).first;
4165   }
4166 
4167   // Otherwise, convert the UTF8 literals into a string of shorts.
4168   IsUTF16 = true;
4169 
4170   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
4171   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
4172   llvm::UTF16 *ToPtr = &ToBuf[0];
4173 
4174   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
4175                                  ToPtr + NumBytes, llvm::strictConversion);
4176 
4177   // ConvertUTF8toUTF16 returns the length in ToPtr.
4178   StringLength = ToPtr - &ToBuf[0];
4179 
4180   // Add an explicit null.
4181   *ToPtr = 0;
4182   return *Map.insert(std::make_pair(
4183                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
4184                                    (StringLength + 1) * 2),
4185                          nullptr)).first;
4186 }
4187 
4188 ConstantAddress
4189 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
4190   unsigned StringLength = 0;
4191   bool isUTF16 = false;
4192   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
4193       GetConstantCFStringEntry(CFConstantStringMap, Literal,
4194                                getDataLayout().isLittleEndian(), isUTF16,
4195                                StringLength);
4196 
4197   if (auto *C = Entry.second)
4198     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
4199 
4200   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
4201   llvm::Constant *Zeros[] = { Zero, Zero };
4202 
4203   const ASTContext &Context = getContext();
4204   const llvm::Triple &Triple = getTriple();
4205 
4206   const auto CFRuntime = getLangOpts().CFRuntime;
4207   const bool IsSwiftABI =
4208       static_cast<unsigned>(CFRuntime) >=
4209       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
4210   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
4211 
4212   // If we don't already have it, get __CFConstantStringClassReference.
4213   if (!CFConstantStringClassRef) {
4214     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
4215     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
4216     Ty = llvm::ArrayType::get(Ty, 0);
4217 
4218     switch (CFRuntime) {
4219     default: break;
4220     case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH;
4221     case LangOptions::CoreFoundationABI::Swift5_0:
4222       CFConstantStringClassName =
4223           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
4224                               : "$s10Foundation19_NSCFConstantStringCN";
4225       Ty = IntPtrTy;
4226       break;
4227     case LangOptions::CoreFoundationABI::Swift4_2:
4228       CFConstantStringClassName =
4229           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
4230                               : "$S10Foundation19_NSCFConstantStringCN";
4231       Ty = IntPtrTy;
4232       break;
4233     case LangOptions::CoreFoundationABI::Swift4_1:
4234       CFConstantStringClassName =
4235           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
4236                               : "__T010Foundation19_NSCFConstantStringCN";
4237       Ty = IntPtrTy;
4238       break;
4239     }
4240 
4241     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
4242 
4243     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
4244       llvm::GlobalValue *GV = nullptr;
4245 
4246       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
4247         IdentifierInfo &II = Context.Idents.get(GV->getName());
4248         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
4249         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4250 
4251         const VarDecl *VD = nullptr;
4252         for (const auto &Result : DC->lookup(&II))
4253           if ((VD = dyn_cast<VarDecl>(Result)))
4254             break;
4255 
4256         if (Triple.isOSBinFormatELF()) {
4257           if (!VD)
4258             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4259         } else {
4260           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
4261           if (!VD || !VD->hasAttr<DLLExportAttr>())
4262             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4263           else
4264             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
4265         }
4266 
4267         setDSOLocal(GV);
4268       }
4269     }
4270 
4271     // Decay array -> ptr
4272     CFConstantStringClassRef =
4273         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
4274                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
4275   }
4276 
4277   QualType CFTy = Context.getCFConstantStringType();
4278 
4279   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
4280 
4281   ConstantInitBuilder Builder(*this);
4282   auto Fields = Builder.beginStruct(STy);
4283 
4284   // Class pointer.
4285   Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef));
4286 
4287   // Flags.
4288   if (IsSwiftABI) {
4289     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
4290     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
4291   } else {
4292     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
4293   }
4294 
4295   // String pointer.
4296   llvm::Constant *C = nullptr;
4297   if (isUTF16) {
4298     auto Arr = llvm::makeArrayRef(
4299         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
4300         Entry.first().size() / 2);
4301     C = llvm::ConstantDataArray::get(VMContext, Arr);
4302   } else {
4303     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
4304   }
4305 
4306   // Note: -fwritable-strings doesn't make the backing store strings of
4307   // CFStrings writable. (See <rdar://problem/10657500>)
4308   auto *GV =
4309       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
4310                                llvm::GlobalValue::PrivateLinkage, C, ".str");
4311   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4312   // Don't enforce the target's minimum global alignment, since the only use
4313   // of the string is via this class initializer.
4314   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
4315                             : Context.getTypeAlignInChars(Context.CharTy);
4316   GV->setAlignment(Align.getQuantity());
4317 
4318   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
4319   // Without it LLVM can merge the string with a non unnamed_addr one during
4320   // LTO.  Doing that changes the section it ends in, which surprises ld64.
4321   if (Triple.isOSBinFormatMachO())
4322     GV->setSection(isUTF16 ? "__TEXT,__ustring"
4323                            : "__TEXT,__cstring,cstring_literals");
4324   // Make sure the literal ends up in .rodata to allow for safe ICF and for
4325   // the static linker to adjust permissions to read-only later on.
4326   else if (Triple.isOSBinFormatELF())
4327     GV->setSection(".rodata");
4328 
4329   // String.
4330   llvm::Constant *Str =
4331       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
4332 
4333   if (isUTF16)
4334     // Cast the UTF16 string to the correct type.
4335     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
4336   Fields.add(Str);
4337 
4338   // String length.
4339   llvm::IntegerType *LengthTy =
4340       llvm::IntegerType::get(getModule().getContext(),
4341                              Context.getTargetInfo().getLongWidth());
4342   if (IsSwiftABI) {
4343     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
4344         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
4345       LengthTy = Int32Ty;
4346     else
4347       LengthTy = IntPtrTy;
4348   }
4349   Fields.addInt(LengthTy, StringLength);
4350 
4351   CharUnits Alignment = getPointerAlign();
4352 
4353   // The struct.
4354   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
4355                                     /*isConstant=*/false,
4356                                     llvm::GlobalVariable::PrivateLinkage);
4357   switch (Triple.getObjectFormat()) {
4358   case llvm::Triple::UnknownObjectFormat:
4359     llvm_unreachable("unknown file format");
4360   case llvm::Triple::COFF:
4361   case llvm::Triple::ELF:
4362   case llvm::Triple::Wasm:
4363     GV->setSection("cfstring");
4364     break;
4365   case llvm::Triple::MachO:
4366     GV->setSection("__DATA,__cfstring");
4367     break;
4368   }
4369   Entry.second = GV;
4370 
4371   return ConstantAddress(GV, Alignment);
4372 }
4373 
4374 bool CodeGenModule::getExpressionLocationsEnabled() const {
4375   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
4376 }
4377 
4378 QualType CodeGenModule::getObjCFastEnumerationStateType() {
4379   if (ObjCFastEnumerationStateType.isNull()) {
4380     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
4381     D->startDefinition();
4382 
4383     QualType FieldTypes[] = {
4384       Context.UnsignedLongTy,
4385       Context.getPointerType(Context.getObjCIdType()),
4386       Context.getPointerType(Context.UnsignedLongTy),
4387       Context.getConstantArrayType(Context.UnsignedLongTy,
4388                            llvm::APInt(32, 5), ArrayType::Normal, 0)
4389     };
4390 
4391     for (size_t i = 0; i < 4; ++i) {
4392       FieldDecl *Field = FieldDecl::Create(Context,
4393                                            D,
4394                                            SourceLocation(),
4395                                            SourceLocation(), nullptr,
4396                                            FieldTypes[i], /*TInfo=*/nullptr,
4397                                            /*BitWidth=*/nullptr,
4398                                            /*Mutable=*/false,
4399                                            ICIS_NoInit);
4400       Field->setAccess(AS_public);
4401       D->addDecl(Field);
4402     }
4403 
4404     D->completeDefinition();
4405     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
4406   }
4407 
4408   return ObjCFastEnumerationStateType;
4409 }
4410 
4411 llvm::Constant *
4412 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
4413   assert(!E->getType()->isPointerType() && "Strings are always arrays");
4414 
4415   // Don't emit it as the address of the string, emit the string data itself
4416   // as an inline array.
4417   if (E->getCharByteWidth() == 1) {
4418     SmallString<64> Str(E->getString());
4419 
4420     // Resize the string to the right size, which is indicated by its type.
4421     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
4422     Str.resize(CAT->getSize().getZExtValue());
4423     return llvm::ConstantDataArray::getString(VMContext, Str, false);
4424   }
4425 
4426   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
4427   llvm::Type *ElemTy = AType->getElementType();
4428   unsigned NumElements = AType->getNumElements();
4429 
4430   // Wide strings have either 2-byte or 4-byte elements.
4431   if (ElemTy->getPrimitiveSizeInBits() == 16) {
4432     SmallVector<uint16_t, 32> Elements;
4433     Elements.reserve(NumElements);
4434 
4435     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4436       Elements.push_back(E->getCodeUnit(i));
4437     Elements.resize(NumElements);
4438     return llvm::ConstantDataArray::get(VMContext, Elements);
4439   }
4440 
4441   assert(ElemTy->getPrimitiveSizeInBits() == 32);
4442   SmallVector<uint32_t, 32> Elements;
4443   Elements.reserve(NumElements);
4444 
4445   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
4446     Elements.push_back(E->getCodeUnit(i));
4447   Elements.resize(NumElements);
4448   return llvm::ConstantDataArray::get(VMContext, Elements);
4449 }
4450 
4451 static llvm::GlobalVariable *
4452 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
4453                       CodeGenModule &CGM, StringRef GlobalName,
4454                       CharUnits Alignment) {
4455   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
4456       CGM.getStringLiteralAddressSpace());
4457 
4458   llvm::Module &M = CGM.getModule();
4459   // Create a global variable for this string
4460   auto *GV = new llvm::GlobalVariable(
4461       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
4462       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
4463   GV->setAlignment(Alignment.getQuantity());
4464   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4465   if (GV->isWeakForLinker()) {
4466     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
4467     GV->setComdat(M.getOrInsertComdat(GV->getName()));
4468   }
4469   CGM.setDSOLocal(GV);
4470 
4471   return GV;
4472 }
4473 
4474 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
4475 /// constant array for the given string literal.
4476 ConstantAddress
4477 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
4478                                                   StringRef Name) {
4479   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
4480 
4481   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
4482   llvm::GlobalVariable **Entry = nullptr;
4483   if (!LangOpts.WritableStrings) {
4484     Entry = &ConstantStringMap[C];
4485     if (auto GV = *Entry) {
4486       if (Alignment.getQuantity() > GV->getAlignment())
4487         GV->setAlignment(Alignment.getQuantity());
4488       return ConstantAddress(GV, Alignment);
4489     }
4490   }
4491 
4492   SmallString<256> MangledNameBuffer;
4493   StringRef GlobalVariableName;
4494   llvm::GlobalValue::LinkageTypes LT;
4495 
4496   // Mangle the string literal if that's how the ABI merges duplicate strings.
4497   // Don't do it if they are writable, since we don't want writes in one TU to
4498   // affect strings in another.
4499   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
4500       !LangOpts.WritableStrings) {
4501     llvm::raw_svector_ostream Out(MangledNameBuffer);
4502     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
4503     LT = llvm::GlobalValue::LinkOnceODRLinkage;
4504     GlobalVariableName = MangledNameBuffer;
4505   } else {
4506     LT = llvm::GlobalValue::PrivateLinkage;
4507     GlobalVariableName = Name;
4508   }
4509 
4510   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
4511   if (Entry)
4512     *Entry = GV;
4513 
4514   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
4515                                   QualType());
4516 
4517   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4518                          Alignment);
4519 }
4520 
4521 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
4522 /// array for the given ObjCEncodeExpr node.
4523 ConstantAddress
4524 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
4525   std::string Str;
4526   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
4527 
4528   return GetAddrOfConstantCString(Str);
4529 }
4530 
4531 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
4532 /// the literal and a terminating '\0' character.
4533 /// The result has pointer to array type.
4534 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
4535     const std::string &Str, const char *GlobalName) {
4536   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
4537   CharUnits Alignment =
4538     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
4539 
4540   llvm::Constant *C =
4541       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
4542 
4543   // Don't share any string literals if strings aren't constant.
4544   llvm::GlobalVariable **Entry = nullptr;
4545   if (!LangOpts.WritableStrings) {
4546     Entry = &ConstantStringMap[C];
4547     if (auto GV = *Entry) {
4548       if (Alignment.getQuantity() > GV->getAlignment())
4549         GV->setAlignment(Alignment.getQuantity());
4550       return ConstantAddress(GV, Alignment);
4551     }
4552   }
4553 
4554   // Get the default prefix if a name wasn't specified.
4555   if (!GlobalName)
4556     GlobalName = ".str";
4557   // Create a global variable for this.
4558   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
4559                                   GlobalName, Alignment);
4560   if (Entry)
4561     *Entry = GV;
4562 
4563   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
4564                          Alignment);
4565 }
4566 
4567 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
4568     const MaterializeTemporaryExpr *E, const Expr *Init) {
4569   assert((E->getStorageDuration() == SD_Static ||
4570           E->getStorageDuration() == SD_Thread) && "not a global temporary");
4571   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
4572 
4573   // If we're not materializing a subobject of the temporary, keep the
4574   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
4575   QualType MaterializedType = Init->getType();
4576   if (Init == E->GetTemporaryExpr())
4577     MaterializedType = E->getType();
4578 
4579   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
4580 
4581   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
4582     return ConstantAddress(Slot, Align);
4583 
4584   // FIXME: If an externally-visible declaration extends multiple temporaries,
4585   // we need to give each temporary the same name in every translation unit (and
4586   // we also need to make the temporaries externally-visible).
4587   SmallString<256> Name;
4588   llvm::raw_svector_ostream Out(Name);
4589   getCXXABI().getMangleContext().mangleReferenceTemporary(
4590       VD, E->getManglingNumber(), Out);
4591 
4592   APValue *Value = nullptr;
4593   if (E->getStorageDuration() == SD_Static) {
4594     // We might have a cached constant initializer for this temporary. Note
4595     // that this might have a different value from the value computed by
4596     // evaluating the initializer if the surrounding constant expression
4597     // modifies the temporary.
4598     Value = getContext().getMaterializedTemporaryValue(E, false);
4599     if (Value && Value->isUninit())
4600       Value = nullptr;
4601   }
4602 
4603   // Try evaluating it now, it might have a constant initializer.
4604   Expr::EvalResult EvalResult;
4605   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
4606       !EvalResult.hasSideEffects())
4607     Value = &EvalResult.Val;
4608 
4609   LangAS AddrSpace =
4610       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
4611 
4612   Optional<ConstantEmitter> emitter;
4613   llvm::Constant *InitialValue = nullptr;
4614   bool Constant = false;
4615   llvm::Type *Type;
4616   if (Value) {
4617     // The temporary has a constant initializer, use it.
4618     emitter.emplace(*this);
4619     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
4620                                                MaterializedType);
4621     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
4622     Type = InitialValue->getType();
4623   } else {
4624     // No initializer, the initialization will be provided when we
4625     // initialize the declaration which performed lifetime extension.
4626     Type = getTypes().ConvertTypeForMem(MaterializedType);
4627   }
4628 
4629   // Create a global variable for this lifetime-extended temporary.
4630   llvm::GlobalValue::LinkageTypes Linkage =
4631       getLLVMLinkageVarDefinition(VD, Constant);
4632   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
4633     const VarDecl *InitVD;
4634     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
4635         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
4636       // Temporaries defined inside a class get linkonce_odr linkage because the
4637       // class can be defined in multiple translation units.
4638       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
4639     } else {
4640       // There is no need for this temporary to have external linkage if the
4641       // VarDecl has external linkage.
4642       Linkage = llvm::GlobalVariable::InternalLinkage;
4643     }
4644   }
4645   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4646   auto *GV = new llvm::GlobalVariable(
4647       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
4648       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
4649   if (emitter) emitter->finalize(GV);
4650   setGVProperties(GV, VD);
4651   GV->setAlignment(Align.getQuantity());
4652   if (supportsCOMDAT() && GV->isWeakForLinker())
4653     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4654   if (VD->getTLSKind())
4655     setTLSMode(GV, *VD);
4656   llvm::Constant *CV = GV;
4657   if (AddrSpace != LangAS::Default)
4658     CV = getTargetCodeGenInfo().performAddrSpaceCast(
4659         *this, GV, AddrSpace, LangAS::Default,
4660         Type->getPointerTo(
4661             getContext().getTargetAddressSpace(LangAS::Default)));
4662   MaterializedGlobalTemporaryMap[E] = CV;
4663   return ConstantAddress(CV, Align);
4664 }
4665 
4666 /// EmitObjCPropertyImplementations - Emit information for synthesized
4667 /// properties for an implementation.
4668 void CodeGenModule::EmitObjCPropertyImplementations(const
4669                                                     ObjCImplementationDecl *D) {
4670   for (const auto *PID : D->property_impls()) {
4671     // Dynamic is just for type-checking.
4672     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
4673       ObjCPropertyDecl *PD = PID->getPropertyDecl();
4674 
4675       // Determine which methods need to be implemented, some may have
4676       // been overridden. Note that ::isPropertyAccessor is not the method
4677       // we want, that just indicates if the decl came from a
4678       // property. What we want to know is if the method is defined in
4679       // this implementation.
4680       if (!D->getInstanceMethod(PD->getGetterName()))
4681         CodeGenFunction(*this).GenerateObjCGetter(
4682                                  const_cast<ObjCImplementationDecl *>(D), PID);
4683       if (!PD->isReadOnly() &&
4684           !D->getInstanceMethod(PD->getSetterName()))
4685         CodeGenFunction(*this).GenerateObjCSetter(
4686                                  const_cast<ObjCImplementationDecl *>(D), PID);
4687     }
4688   }
4689 }
4690 
4691 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
4692   const ObjCInterfaceDecl *iface = impl->getClassInterface();
4693   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
4694        ivar; ivar = ivar->getNextIvar())
4695     if (ivar->getType().isDestructedType())
4696       return true;
4697 
4698   return false;
4699 }
4700 
4701 static bool AllTrivialInitializers(CodeGenModule &CGM,
4702                                    ObjCImplementationDecl *D) {
4703   CodeGenFunction CGF(CGM);
4704   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
4705        E = D->init_end(); B != E; ++B) {
4706     CXXCtorInitializer *CtorInitExp = *B;
4707     Expr *Init = CtorInitExp->getInit();
4708     if (!CGF.isTrivialInitializer(Init))
4709       return false;
4710   }
4711   return true;
4712 }
4713 
4714 /// EmitObjCIvarInitializations - Emit information for ivar initialization
4715 /// for an implementation.
4716 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
4717   // We might need a .cxx_destruct even if we don't have any ivar initializers.
4718   if (needsDestructMethod(D)) {
4719     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
4720     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4721     ObjCMethodDecl *DTORMethod =
4722       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
4723                              cxxSelector, getContext().VoidTy, nullptr, D,
4724                              /*isInstance=*/true, /*isVariadic=*/false,
4725                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
4726                              /*isDefined=*/false, ObjCMethodDecl::Required);
4727     D->addInstanceMethod(DTORMethod);
4728     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
4729     D->setHasDestructors(true);
4730   }
4731 
4732   // If the implementation doesn't have any ivar initializers, we don't need
4733   // a .cxx_construct.
4734   if (D->getNumIvarInitializers() == 0 ||
4735       AllTrivialInitializers(*this, D))
4736     return;
4737 
4738   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
4739   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
4740   // The constructor returns 'self'.
4741   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
4742                                                 D->getLocation(),
4743                                                 D->getLocation(),
4744                                                 cxxSelector,
4745                                                 getContext().getObjCIdType(),
4746                                                 nullptr, D, /*isInstance=*/true,
4747                                                 /*isVariadic=*/false,
4748                                                 /*isPropertyAccessor=*/true,
4749                                                 /*isImplicitlyDeclared=*/true,
4750                                                 /*isDefined=*/false,
4751                                                 ObjCMethodDecl::Required);
4752   D->addInstanceMethod(CTORMethod);
4753   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
4754   D->setHasNonZeroConstructors(true);
4755 }
4756 
4757 // EmitLinkageSpec - Emit all declarations in a linkage spec.
4758 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
4759   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
4760       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
4761     ErrorUnsupported(LSD, "linkage spec");
4762     return;
4763   }
4764 
4765   EmitDeclContext(LSD);
4766 }
4767 
4768 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
4769   for (auto *I : DC->decls()) {
4770     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
4771     // are themselves considered "top-level", so EmitTopLevelDecl on an
4772     // ObjCImplDecl does not recursively visit them. We need to do that in
4773     // case they're nested inside another construct (LinkageSpecDecl /
4774     // ExportDecl) that does stop them from being considered "top-level".
4775     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
4776       for (auto *M : OID->methods())
4777         EmitTopLevelDecl(M);
4778     }
4779 
4780     EmitTopLevelDecl(I);
4781   }
4782 }
4783 
4784 /// EmitTopLevelDecl - Emit code for a single top level declaration.
4785 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
4786   // Ignore dependent declarations.
4787   if (D->isTemplated())
4788     return;
4789 
4790   switch (D->getKind()) {
4791   case Decl::CXXConversion:
4792   case Decl::CXXMethod:
4793   case Decl::Function:
4794     EmitGlobal(cast<FunctionDecl>(D));
4795     // Always provide some coverage mapping
4796     // even for the functions that aren't emitted.
4797     AddDeferredUnusedCoverageMapping(D);
4798     break;
4799 
4800   case Decl::CXXDeductionGuide:
4801     // Function-like, but does not result in code emission.
4802     break;
4803 
4804   case Decl::Var:
4805   case Decl::Decomposition:
4806   case Decl::VarTemplateSpecialization:
4807     EmitGlobal(cast<VarDecl>(D));
4808     if (auto *DD = dyn_cast<DecompositionDecl>(D))
4809       for (auto *B : DD->bindings())
4810         if (auto *HD = B->getHoldingVar())
4811           EmitGlobal(HD);
4812     break;
4813 
4814   // Indirect fields from global anonymous structs and unions can be
4815   // ignored; only the actual variable requires IR gen support.
4816   case Decl::IndirectField:
4817     break;
4818 
4819   // C++ Decls
4820   case Decl::Namespace:
4821     EmitDeclContext(cast<NamespaceDecl>(D));
4822     break;
4823   case Decl::ClassTemplateSpecialization: {
4824     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
4825     if (DebugInfo &&
4826         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
4827         Spec->hasDefinition())
4828       DebugInfo->completeTemplateDefinition(*Spec);
4829   } LLVM_FALLTHROUGH;
4830   case Decl::CXXRecord:
4831     if (DebugInfo) {
4832       if (auto *ES = D->getASTContext().getExternalSource())
4833         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
4834           DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D));
4835     }
4836     // Emit any static data members, they may be definitions.
4837     for (auto *I : cast<CXXRecordDecl>(D)->decls())
4838       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
4839         EmitTopLevelDecl(I);
4840     break;
4841     // No code generation needed.
4842   case Decl::UsingShadow:
4843   case Decl::ClassTemplate:
4844   case Decl::VarTemplate:
4845   case Decl::VarTemplatePartialSpecialization:
4846   case Decl::FunctionTemplate:
4847   case Decl::TypeAliasTemplate:
4848   case Decl::Block:
4849   case Decl::Empty:
4850   case Decl::Binding:
4851     break;
4852   case Decl::Using:          // using X; [C++]
4853     if (CGDebugInfo *DI = getModuleDebugInfo())
4854         DI->EmitUsingDecl(cast<UsingDecl>(*D));
4855     return;
4856   case Decl::NamespaceAlias:
4857     if (CGDebugInfo *DI = getModuleDebugInfo())
4858         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
4859     return;
4860   case Decl::UsingDirective: // using namespace X; [C++]
4861     if (CGDebugInfo *DI = getModuleDebugInfo())
4862       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
4863     return;
4864   case Decl::CXXConstructor:
4865     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
4866     break;
4867   case Decl::CXXDestructor:
4868     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
4869     break;
4870 
4871   case Decl::StaticAssert:
4872     // Nothing to do.
4873     break;
4874 
4875   // Objective-C Decls
4876 
4877   // Forward declarations, no (immediate) code generation.
4878   case Decl::ObjCInterface:
4879   case Decl::ObjCCategory:
4880     break;
4881 
4882   case Decl::ObjCProtocol: {
4883     auto *Proto = cast<ObjCProtocolDecl>(D);
4884     if (Proto->isThisDeclarationADefinition())
4885       ObjCRuntime->GenerateProtocol(Proto);
4886     break;
4887   }
4888 
4889   case Decl::ObjCCategoryImpl:
4890     // Categories have properties but don't support synthesize so we
4891     // can ignore them here.
4892     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
4893     break;
4894 
4895   case Decl::ObjCImplementation: {
4896     auto *OMD = cast<ObjCImplementationDecl>(D);
4897     EmitObjCPropertyImplementations(OMD);
4898     EmitObjCIvarInitializations(OMD);
4899     ObjCRuntime->GenerateClass(OMD);
4900     // Emit global variable debug information.
4901     if (CGDebugInfo *DI = getModuleDebugInfo())
4902       if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo)
4903         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
4904             OMD->getClassInterface()), OMD->getLocation());
4905     break;
4906   }
4907   case Decl::ObjCMethod: {
4908     auto *OMD = cast<ObjCMethodDecl>(D);
4909     // If this is not a prototype, emit the body.
4910     if (OMD->getBody())
4911       CodeGenFunction(*this).GenerateObjCMethod(OMD);
4912     break;
4913   }
4914   case Decl::ObjCCompatibleAlias:
4915     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
4916     break;
4917 
4918   case Decl::PragmaComment: {
4919     const auto *PCD = cast<PragmaCommentDecl>(D);
4920     switch (PCD->getCommentKind()) {
4921     case PCK_Unknown:
4922       llvm_unreachable("unexpected pragma comment kind");
4923     case PCK_Linker:
4924       AppendLinkerOptions(PCD->getArg());
4925       break;
4926     case PCK_Lib:
4927       if (getTarget().getTriple().isOSBinFormatELF() &&
4928           !getTarget().getTriple().isPS4())
4929         AddELFLibDirective(PCD->getArg());
4930       else
4931         AddDependentLib(PCD->getArg());
4932       break;
4933     case PCK_Compiler:
4934     case PCK_ExeStr:
4935     case PCK_User:
4936       break; // We ignore all of these.
4937     }
4938     break;
4939   }
4940 
4941   case Decl::PragmaDetectMismatch: {
4942     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
4943     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
4944     break;
4945   }
4946 
4947   case Decl::LinkageSpec:
4948     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
4949     break;
4950 
4951   case Decl::FileScopeAsm: {
4952     // File-scope asm is ignored during device-side CUDA compilation.
4953     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
4954       break;
4955     // File-scope asm is ignored during device-side OpenMP compilation.
4956     if (LangOpts.OpenMPIsDevice)
4957       break;
4958     auto *AD = cast<FileScopeAsmDecl>(D);
4959     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
4960     break;
4961   }
4962 
4963   case Decl::Import: {
4964     auto *Import = cast<ImportDecl>(D);
4965 
4966     // If we've already imported this module, we're done.
4967     if (!ImportedModules.insert(Import->getImportedModule()))
4968       break;
4969 
4970     // Emit debug information for direct imports.
4971     if (!Import->getImportedOwningModule()) {
4972       if (CGDebugInfo *DI = getModuleDebugInfo())
4973         DI->EmitImportDecl(*Import);
4974     }
4975 
4976     // Find all of the submodules and emit the module initializers.
4977     llvm::SmallPtrSet<clang::Module *, 16> Visited;
4978     SmallVector<clang::Module *, 16> Stack;
4979     Visited.insert(Import->getImportedModule());
4980     Stack.push_back(Import->getImportedModule());
4981 
4982     while (!Stack.empty()) {
4983       clang::Module *Mod = Stack.pop_back_val();
4984       if (!EmittedModuleInitializers.insert(Mod).second)
4985         continue;
4986 
4987       for (auto *D : Context.getModuleInitializers(Mod))
4988         EmitTopLevelDecl(D);
4989 
4990       // Visit the submodules of this module.
4991       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
4992                                              SubEnd = Mod->submodule_end();
4993            Sub != SubEnd; ++Sub) {
4994         // Skip explicit children; they need to be explicitly imported to emit
4995         // the initializers.
4996         if ((*Sub)->IsExplicit)
4997           continue;
4998 
4999         if (Visited.insert(*Sub).second)
5000           Stack.push_back(*Sub);
5001       }
5002     }
5003     break;
5004   }
5005 
5006   case Decl::Export:
5007     EmitDeclContext(cast<ExportDecl>(D));
5008     break;
5009 
5010   case Decl::OMPThreadPrivate:
5011     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
5012     break;
5013 
5014   case Decl::OMPDeclareReduction:
5015     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
5016     break;
5017 
5018   case Decl::OMPRequires:
5019     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
5020     break;
5021 
5022   default:
5023     // Make sure we handled everything we should, every other kind is a
5024     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
5025     // function. Need to recode Decl::Kind to do that easily.
5026     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
5027     break;
5028   }
5029 }
5030 
5031 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
5032   // Do we need to generate coverage mapping?
5033   if (!CodeGenOpts.CoverageMapping)
5034     return;
5035   switch (D->getKind()) {
5036   case Decl::CXXConversion:
5037   case Decl::CXXMethod:
5038   case Decl::Function:
5039   case Decl::ObjCMethod:
5040   case Decl::CXXConstructor:
5041   case Decl::CXXDestructor: {
5042     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
5043       return;
5044     SourceManager &SM = getContext().getSourceManager();
5045     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
5046       return;
5047     auto I = DeferredEmptyCoverageMappingDecls.find(D);
5048     if (I == DeferredEmptyCoverageMappingDecls.end())
5049       DeferredEmptyCoverageMappingDecls[D] = true;
5050     break;
5051   }
5052   default:
5053     break;
5054   };
5055 }
5056 
5057 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
5058   // Do we need to generate coverage mapping?
5059   if (!CodeGenOpts.CoverageMapping)
5060     return;
5061   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
5062     if (Fn->isTemplateInstantiation())
5063       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
5064   }
5065   auto I = DeferredEmptyCoverageMappingDecls.find(D);
5066   if (I == DeferredEmptyCoverageMappingDecls.end())
5067     DeferredEmptyCoverageMappingDecls[D] = false;
5068   else
5069     I->second = false;
5070 }
5071 
5072 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
5073   // We call takeVector() here to avoid use-after-free.
5074   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
5075   // we deserialize function bodies to emit coverage info for them, and that
5076   // deserializes more declarations. How should we handle that case?
5077   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
5078     if (!Entry.second)
5079       continue;
5080     const Decl *D = Entry.first;
5081     switch (D->getKind()) {
5082     case Decl::CXXConversion:
5083     case Decl::CXXMethod:
5084     case Decl::Function:
5085     case Decl::ObjCMethod: {
5086       CodeGenPGO PGO(*this);
5087       GlobalDecl GD(cast<FunctionDecl>(D));
5088       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5089                                   getFunctionLinkage(GD));
5090       break;
5091     }
5092     case Decl::CXXConstructor: {
5093       CodeGenPGO PGO(*this);
5094       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
5095       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5096                                   getFunctionLinkage(GD));
5097       break;
5098     }
5099     case Decl::CXXDestructor: {
5100       CodeGenPGO PGO(*this);
5101       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
5102       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
5103                                   getFunctionLinkage(GD));
5104       break;
5105     }
5106     default:
5107       break;
5108     };
5109   }
5110 }
5111 
5112 /// Turns the given pointer into a constant.
5113 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
5114                                           const void *Ptr) {
5115   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
5116   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
5117   return llvm::ConstantInt::get(i64, PtrInt);
5118 }
5119 
5120 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
5121                                    llvm::NamedMDNode *&GlobalMetadata,
5122                                    GlobalDecl D,
5123                                    llvm::GlobalValue *Addr) {
5124   if (!GlobalMetadata)
5125     GlobalMetadata =
5126       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
5127 
5128   // TODO: should we report variant information for ctors/dtors?
5129   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
5130                            llvm::ConstantAsMetadata::get(GetPointerConstant(
5131                                CGM.getLLVMContext(), D.getDecl()))};
5132   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
5133 }
5134 
5135 /// For each function which is declared within an extern "C" region and marked
5136 /// as 'used', but has internal linkage, create an alias from the unmangled
5137 /// name to the mangled name if possible. People expect to be able to refer
5138 /// to such functions with an unmangled name from inline assembly within the
5139 /// same translation unit.
5140 void CodeGenModule::EmitStaticExternCAliases() {
5141   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
5142     return;
5143   for (auto &I : StaticExternCValues) {
5144     IdentifierInfo *Name = I.first;
5145     llvm::GlobalValue *Val = I.second;
5146     if (Val && !getModule().getNamedValue(Name->getName()))
5147       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
5148   }
5149 }
5150 
5151 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
5152                                              GlobalDecl &Result) const {
5153   auto Res = Manglings.find(MangledName);
5154   if (Res == Manglings.end())
5155     return false;
5156   Result = Res->getValue();
5157   return true;
5158 }
5159 
5160 /// Emits metadata nodes associating all the global values in the
5161 /// current module with the Decls they came from.  This is useful for
5162 /// projects using IR gen as a subroutine.
5163 ///
5164 /// Since there's currently no way to associate an MDNode directly
5165 /// with an llvm::GlobalValue, we create a global named metadata
5166 /// with the name 'clang.global.decl.ptrs'.
5167 void CodeGenModule::EmitDeclMetadata() {
5168   llvm::NamedMDNode *GlobalMetadata = nullptr;
5169 
5170   for (auto &I : MangledDeclNames) {
5171     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
5172     // Some mangled names don't necessarily have an associated GlobalValue
5173     // in this module, e.g. if we mangled it for DebugInfo.
5174     if (Addr)
5175       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
5176   }
5177 }
5178 
5179 /// Emits metadata nodes for all the local variables in the current
5180 /// function.
5181 void CodeGenFunction::EmitDeclMetadata() {
5182   if (LocalDeclMap.empty()) return;
5183 
5184   llvm::LLVMContext &Context = getLLVMContext();
5185 
5186   // Find the unique metadata ID for this name.
5187   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
5188 
5189   llvm::NamedMDNode *GlobalMetadata = nullptr;
5190 
5191   for (auto &I : LocalDeclMap) {
5192     const Decl *D = I.first;
5193     llvm::Value *Addr = I.second.getPointer();
5194     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
5195       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
5196       Alloca->setMetadata(
5197           DeclPtrKind, llvm::MDNode::get(
5198                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
5199     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
5200       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
5201       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
5202     }
5203   }
5204 }
5205 
5206 void CodeGenModule::EmitVersionIdentMetadata() {
5207   llvm::NamedMDNode *IdentMetadata =
5208     TheModule.getOrInsertNamedMetadata("llvm.ident");
5209   std::string Version = getClangFullVersion();
5210   llvm::LLVMContext &Ctx = TheModule.getContext();
5211 
5212   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
5213   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
5214 }
5215 
5216 void CodeGenModule::EmitCommandLineMetadata() {
5217   llvm::NamedMDNode *CommandLineMetadata =
5218     TheModule.getOrInsertNamedMetadata("llvm.commandline");
5219   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
5220   llvm::LLVMContext &Ctx = TheModule.getContext();
5221 
5222   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
5223   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
5224 }
5225 
5226 void CodeGenModule::EmitTargetMetadata() {
5227   // Warning, new MangledDeclNames may be appended within this loop.
5228   // We rely on MapVector insertions adding new elements to the end
5229   // of the container.
5230   // FIXME: Move this loop into the one target that needs it, and only
5231   // loop over those declarations for which we couldn't emit the target
5232   // metadata when we emitted the declaration.
5233   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
5234     auto Val = *(MangledDeclNames.begin() + I);
5235     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
5236     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
5237     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
5238   }
5239 }
5240 
5241 void CodeGenModule::EmitCoverageFile() {
5242   if (getCodeGenOpts().CoverageDataFile.empty() &&
5243       getCodeGenOpts().CoverageNotesFile.empty())
5244     return;
5245 
5246   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
5247   if (!CUNode)
5248     return;
5249 
5250   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
5251   llvm::LLVMContext &Ctx = TheModule.getContext();
5252   auto *CoverageDataFile =
5253       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
5254   auto *CoverageNotesFile =
5255       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
5256   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
5257     llvm::MDNode *CU = CUNode->getOperand(i);
5258     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
5259     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
5260   }
5261 }
5262 
5263 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
5264   // Sema has checked that all uuid strings are of the form
5265   // "12345678-1234-1234-1234-1234567890ab".
5266   assert(Uuid.size() == 36);
5267   for (unsigned i = 0; i < 36; ++i) {
5268     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
5269     else                                         assert(isHexDigit(Uuid[i]));
5270   }
5271 
5272   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
5273   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
5274 
5275   llvm::Constant *Field3[8];
5276   for (unsigned Idx = 0; Idx < 8; ++Idx)
5277     Field3[Idx] = llvm::ConstantInt::get(
5278         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
5279 
5280   llvm::Constant *Fields[4] = {
5281     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
5282     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
5283     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
5284     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
5285   };
5286 
5287   return llvm::ConstantStruct::getAnon(Fields);
5288 }
5289 
5290 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
5291                                                        bool ForEH) {
5292   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
5293   // FIXME: should we even be calling this method if RTTI is disabled
5294   // and it's not for EH?
5295   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice)
5296     return llvm::Constant::getNullValue(Int8PtrTy);
5297 
5298   if (ForEH && Ty->isObjCObjectPointerType() &&
5299       LangOpts.ObjCRuntime.isGNUFamily())
5300     return ObjCRuntime->GetEHType(Ty);
5301 
5302   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
5303 }
5304 
5305 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
5306   // Do not emit threadprivates in simd-only mode.
5307   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
5308     return;
5309   for (auto RefExpr : D->varlists()) {
5310     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
5311     bool PerformInit =
5312         VD->getAnyInitializer() &&
5313         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
5314                                                         /*ForRef=*/false);
5315 
5316     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
5317     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
5318             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
5319       CXXGlobalInits.push_back(InitFunction);
5320   }
5321 }
5322 
5323 llvm::Metadata *
5324 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
5325                                             StringRef Suffix) {
5326   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
5327   if (InternalId)
5328     return InternalId;
5329 
5330   if (isExternallyVisible(T->getLinkage())) {
5331     std::string OutName;
5332     llvm::raw_string_ostream Out(OutName);
5333     getCXXABI().getMangleContext().mangleTypeName(T, Out);
5334     Out << Suffix;
5335 
5336     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
5337   } else {
5338     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
5339                                            llvm::ArrayRef<llvm::Metadata *>());
5340   }
5341 
5342   return InternalId;
5343 }
5344 
5345 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
5346   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
5347 }
5348 
5349 llvm::Metadata *
5350 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
5351   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
5352 }
5353 
5354 // Generalize pointer types to a void pointer with the qualifiers of the
5355 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
5356 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
5357 // 'void *'.
5358 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
5359   if (!Ty->isPointerType())
5360     return Ty;
5361 
5362   return Ctx.getPointerType(
5363       QualType(Ctx.VoidTy).withCVRQualifiers(
5364           Ty->getPointeeType().getCVRQualifiers()));
5365 }
5366 
5367 // Apply type generalization to a FunctionType's return and argument types
5368 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
5369   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
5370     SmallVector<QualType, 8> GeneralizedParams;
5371     for (auto &Param : FnType->param_types())
5372       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
5373 
5374     return Ctx.getFunctionType(
5375         GeneralizeType(Ctx, FnType->getReturnType()),
5376         GeneralizedParams, FnType->getExtProtoInfo());
5377   }
5378 
5379   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
5380     return Ctx.getFunctionNoProtoType(
5381         GeneralizeType(Ctx, FnType->getReturnType()));
5382 
5383   llvm_unreachable("Encountered unknown FunctionType");
5384 }
5385 
5386 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
5387   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
5388                                       GeneralizedMetadataIdMap, ".generalized");
5389 }
5390 
5391 /// Returns whether this module needs the "all-vtables" type identifier.
5392 bool CodeGenModule::NeedAllVtablesTypeId() const {
5393   // Returns true if at least one of vtable-based CFI checkers is enabled and
5394   // is not in the trapping mode.
5395   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
5396            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
5397           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
5398            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
5399           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
5400            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
5401           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
5402            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
5403 }
5404 
5405 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
5406                                           CharUnits Offset,
5407                                           const CXXRecordDecl *RD) {
5408   llvm::Metadata *MD =
5409       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
5410   VTable->addTypeMetadata(Offset.getQuantity(), MD);
5411 
5412   if (CodeGenOpts.SanitizeCfiCrossDso)
5413     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
5414       VTable->addTypeMetadata(Offset.getQuantity(),
5415                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
5416 
5417   if (NeedAllVtablesTypeId()) {
5418     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
5419     VTable->addTypeMetadata(Offset.getQuantity(), MD);
5420   }
5421 }
5422 
5423 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) {
5424   assert(TD != nullptr);
5425   TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
5426 
5427   ParsedAttr.Features.erase(
5428       llvm::remove_if(ParsedAttr.Features,
5429                       [&](const std::string &Feat) {
5430                         return !Target.isValidFeatureName(
5431                             StringRef{Feat}.substr(1));
5432                       }),
5433       ParsedAttr.Features.end());
5434   return ParsedAttr;
5435 }
5436 
5437 
5438 // Fills in the supplied string map with the set of target features for the
5439 // passed in function.
5440 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
5441                                           GlobalDecl GD) {
5442   StringRef TargetCPU = Target.getTargetOpts().CPU;
5443   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
5444   if (const auto *TD = FD->getAttr<TargetAttr>()) {
5445     TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
5446 
5447     // Make a copy of the features as passed on the command line into the
5448     // beginning of the additional features from the function to override.
5449     ParsedAttr.Features.insert(ParsedAttr.Features.begin(),
5450                             Target.getTargetOpts().FeaturesAsWritten.begin(),
5451                             Target.getTargetOpts().FeaturesAsWritten.end());
5452 
5453     if (ParsedAttr.Architecture != "" &&
5454         Target.isValidCPUName(ParsedAttr.Architecture))
5455       TargetCPU = ParsedAttr.Architecture;
5456 
5457     // Now populate the feature map, first with the TargetCPU which is either
5458     // the default or a new one from the target attribute string. Then we'll use
5459     // the passed in features (FeaturesAsWritten) along with the new ones from
5460     // the attribute.
5461     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5462                           ParsedAttr.Features);
5463   } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
5464     llvm::SmallVector<StringRef, 32> FeaturesTmp;
5465     Target.getCPUSpecificCPUDispatchFeatures(
5466         SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
5467     std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
5468     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features);
5469   } else {
5470     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
5471                           Target.getTargetOpts().Features);
5472   }
5473 }
5474 
5475 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
5476   if (!SanStats)
5477     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
5478 
5479   return *SanStats;
5480 }
5481 llvm::Value *
5482 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
5483                                                   CodeGenFunction &CGF) {
5484   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
5485   auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
5486   auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
5487   return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy,
5488                                 "__translate_sampler_initializer"),
5489                                 {C});
5490 }
5491