xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d6e043ba1f9cdab6b8036454442f301ce4f9547d)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/CharInfo.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ConvertUTF.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Target/Mangler.h"
50 
51 using namespace clang;
52 using namespace CodeGen;
53 
54 static const char AnnotationSection[] = "llvm.metadata";
55 
56 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57   switch (CGM.getTarget().getCXXABI().getKind()) {
58   case TargetCXXABI::GenericAArch64:
59   case TargetCXXABI::GenericARM:
60   case TargetCXXABI::iOS:
61   case TargetCXXABI::GenericItanium:
62     return *CreateItaniumCXXABI(CGM);
63   case TargetCXXABI::Microsoft:
64     return *CreateMicrosoftCXXABI(CGM);
65   }
66 
67   llvm_unreachable("invalid C++ ABI kind");
68 }
69 
70 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
71                              llvm::Module &M, const llvm::DataLayout &TD,
72                              DiagnosticsEngine &diags)
73     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
74       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
75       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
76       TheTargetCodeGenInfo(0), Types(*this), VTables(*this), ObjCRuntime(0),
77       OpenCLRuntime(0), CUDARuntime(0), DebugInfo(0), ARCData(0),
78       NoObjCARCExceptionsMetadata(0), RRData(0), CFConstantStringClassRef(0),
79       ConstantStringClassRef(0), NSConstantStringType(0),
80       NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), BlockObjectAssign(0),
81       BlockObjectDispose(0), BlockDescriptorType(0), GenericBlockLiteralType(0),
82       LifetimeStartFn(0), LifetimeEndFn(0),
83       SanitizerBlacklist(
84           llvm::SpecialCaseList::createOrDie(CGO.SanitizerBlacklistFile)),
85       SanOpts(SanitizerBlacklist->isIn(M) ? SanitizerOptions::Disabled
86                                           : LangOpts.Sanitize) {
87 
88   // Initialize the type cache.
89   llvm::LLVMContext &LLVMContext = M.getContext();
90   VoidTy = llvm::Type::getVoidTy(LLVMContext);
91   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
92   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
93   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
94   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
95   FloatTy = llvm::Type::getFloatTy(LLVMContext);
96   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
97   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
98   PointerAlignInBytes =
99   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
100   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
101   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
102   Int8PtrTy = Int8Ty->getPointerTo(0);
103   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
104 
105   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
106 
107   if (LangOpts.ObjC1)
108     createObjCRuntime();
109   if (LangOpts.OpenCL)
110     createOpenCLRuntime();
111   if (LangOpts.CUDA)
112     createCUDARuntime();
113 
114   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
115   if (SanOpts.Thread ||
116       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
117     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
118                            ABI.getMangleContext());
119 
120   // If debug info or coverage generation is enabled, create the CGDebugInfo
121   // object.
122   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
123       CodeGenOpts.EmitGcovArcs ||
124       CodeGenOpts.EmitGcovNotes)
125     DebugInfo = new CGDebugInfo(*this);
126 
127   Block.GlobalUniqueCount = 0;
128 
129   if (C.getLangOpts().ObjCAutoRefCount)
130     ARCData = new ARCEntrypoints();
131   RRData = new RREntrypoints();
132 }
133 
134 CodeGenModule::~CodeGenModule() {
135   delete ObjCRuntime;
136   delete OpenCLRuntime;
137   delete CUDARuntime;
138   delete TheTargetCodeGenInfo;
139   delete &ABI;
140   delete TBAA;
141   delete DebugInfo;
142   delete ARCData;
143   delete RRData;
144 }
145 
146 void CodeGenModule::createObjCRuntime() {
147   // This is just isGNUFamily(), but we want to force implementors of
148   // new ABIs to decide how best to do this.
149   switch (LangOpts.ObjCRuntime.getKind()) {
150   case ObjCRuntime::GNUstep:
151   case ObjCRuntime::GCC:
152   case ObjCRuntime::ObjFW:
153     ObjCRuntime = CreateGNUObjCRuntime(*this);
154     return;
155 
156   case ObjCRuntime::FragileMacOSX:
157   case ObjCRuntime::MacOSX:
158   case ObjCRuntime::iOS:
159     ObjCRuntime = CreateMacObjCRuntime(*this);
160     return;
161   }
162   llvm_unreachable("bad runtime kind");
163 }
164 
165 void CodeGenModule::createOpenCLRuntime() {
166   OpenCLRuntime = new CGOpenCLRuntime(*this);
167 }
168 
169 void CodeGenModule::createCUDARuntime() {
170   CUDARuntime = CreateNVCUDARuntime(*this);
171 }
172 
173 void CodeGenModule::Release() {
174   EmitDeferred();
175   EmitCXXGlobalInitFunc();
176   EmitCXXGlobalDtorFunc();
177   EmitCXXThreadLocalInitFunc();
178   if (ObjCRuntime)
179     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
180       AddGlobalCtor(ObjCInitFunction);
181   EmitCtorList(GlobalCtors, "llvm.global_ctors");
182   EmitCtorList(GlobalDtors, "llvm.global_dtors");
183   EmitGlobalAnnotations();
184   EmitStaticExternCAliases();
185   EmitLLVMUsed();
186 
187   if (CodeGenOpts.Autolink &&
188       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
189     EmitModuleLinkOptions();
190   }
191   if (CodeGenOpts.DwarfVersion)
192     // We actually want the latest version when there are conflicts.
193     // We can change from Warning to Latest if such mode is supported.
194     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
195                               CodeGenOpts.DwarfVersion);
196 
197   SimplifyPersonality();
198 
199   if (getCodeGenOpts().EmitDeclMetadata)
200     EmitDeclMetadata();
201 
202   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
203     EmitCoverageFile();
204 
205   if (DebugInfo)
206     DebugInfo->finalize();
207 }
208 
209 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
210   // Make sure that this type is translated.
211   Types.UpdateCompletedType(TD);
212 }
213 
214 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
215   if (!TBAA)
216     return 0;
217   return TBAA->getTBAAInfo(QTy);
218 }
219 
220 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
221   if (!TBAA)
222     return 0;
223   return TBAA->getTBAAInfoForVTablePtr();
224 }
225 
226 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
227   if (!TBAA)
228     return 0;
229   return TBAA->getTBAAStructInfo(QTy);
230 }
231 
232 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
233   if (!TBAA)
234     return 0;
235   return TBAA->getTBAAStructTypeInfo(QTy);
236 }
237 
238 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
239                                                   llvm::MDNode *AccessN,
240                                                   uint64_t O) {
241   if (!TBAA)
242     return 0;
243   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
244 }
245 
246 /// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
247 /// is the same as the type. For struct-path aware TBAA, the tag
248 /// is different from the type: base type, access type and offset.
249 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
250 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
251                                         llvm::MDNode *TBAAInfo,
252                                         bool ConvertTypeToTag) {
253   if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
254     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
255                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
256   else
257     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
258 }
259 
260 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
261   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
262   getDiags().Report(Context.getFullLoc(loc), diagID);
263 }
264 
265 /// ErrorUnsupported - Print out an error that codegen doesn't support the
266 /// specified stmt yet.
267 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
268                                      bool OmitOnError) {
269   if (OmitOnError && getDiags().hasErrorOccurred())
270     return;
271   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
272                                                "cannot compile this %0 yet");
273   std::string Msg = Type;
274   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
275     << Msg << S->getSourceRange();
276 }
277 
278 /// ErrorUnsupported - Print out an error that codegen doesn't support the
279 /// specified decl yet.
280 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
281                                      bool OmitOnError) {
282   if (OmitOnError && getDiags().hasErrorOccurred())
283     return;
284   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
285                                                "cannot compile this %0 yet");
286   std::string Msg = Type;
287   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
288 }
289 
290 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
291   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
292 }
293 
294 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
295                                         const NamedDecl *D) const {
296   // Internal definitions always have default visibility.
297   if (GV->hasLocalLinkage()) {
298     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
299     return;
300   }
301 
302   // Set visibility for definitions.
303   LinkageInfo LV = D->getLinkageAndVisibility();
304   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
305     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
306 }
307 
308 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
309   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
310       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
311       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
312       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
313       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
314 }
315 
316 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
317     CodeGenOptions::TLSModel M) {
318   switch (M) {
319   case CodeGenOptions::GeneralDynamicTLSModel:
320     return llvm::GlobalVariable::GeneralDynamicTLSModel;
321   case CodeGenOptions::LocalDynamicTLSModel:
322     return llvm::GlobalVariable::LocalDynamicTLSModel;
323   case CodeGenOptions::InitialExecTLSModel:
324     return llvm::GlobalVariable::InitialExecTLSModel;
325   case CodeGenOptions::LocalExecTLSModel:
326     return llvm::GlobalVariable::LocalExecTLSModel;
327   }
328   llvm_unreachable("Invalid TLS model!");
329 }
330 
331 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
332                                const VarDecl &D) const {
333   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
334 
335   llvm::GlobalVariable::ThreadLocalMode TLM;
336   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
337 
338   // Override the TLS model if it is explicitly specified.
339   if (D.hasAttr<TLSModelAttr>()) {
340     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
341     TLM = GetLLVMTLSModel(Attr->getModel());
342   }
343 
344   GV->setThreadLocalMode(TLM);
345 }
346 
347 /// Set the symbol visibility of type information (vtable and RTTI)
348 /// associated with the given type.
349 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
350                                       const CXXRecordDecl *RD,
351                                       TypeVisibilityKind TVK) const {
352   setGlobalVisibility(GV, RD);
353 
354   if (!CodeGenOpts.HiddenWeakVTables)
355     return;
356 
357   // We never want to drop the visibility for RTTI names.
358   if (TVK == TVK_ForRTTIName)
359     return;
360 
361   // We want to drop the visibility to hidden for weak type symbols.
362   // This isn't possible if there might be unresolved references
363   // elsewhere that rely on this symbol being visible.
364 
365   // This should be kept roughly in sync with setThunkVisibility
366   // in CGVTables.cpp.
367 
368   // Preconditions.
369   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
370       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
371     return;
372 
373   // Don't override an explicit visibility attribute.
374   if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
375     return;
376 
377   switch (RD->getTemplateSpecializationKind()) {
378   // We have to disable the optimization if this is an EI definition
379   // because there might be EI declarations in other shared objects.
380   case TSK_ExplicitInstantiationDefinition:
381   case TSK_ExplicitInstantiationDeclaration:
382     return;
383 
384   // Every use of a non-template class's type information has to emit it.
385   case TSK_Undeclared:
386     break;
387 
388   // In theory, implicit instantiations can ignore the possibility of
389   // an explicit instantiation declaration because there necessarily
390   // must be an EI definition somewhere with default visibility.  In
391   // practice, it's possible to have an explicit instantiation for
392   // an arbitrary template class, and linkers aren't necessarily able
393   // to deal with mixed-visibility symbols.
394   case TSK_ExplicitSpecialization:
395   case TSK_ImplicitInstantiation:
396     return;
397   }
398 
399   // If there's a key function, there may be translation units
400   // that don't have the key function's definition.  But ignore
401   // this if we're emitting RTTI under -fno-rtti.
402   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
403     // FIXME: what should we do if we "lose" the key function during
404     // the emission of the file?
405     if (Context.getCurrentKeyFunction(RD))
406       return;
407   }
408 
409   // Otherwise, drop the visibility to hidden.
410   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
411   GV->setUnnamedAddr(true);
412 }
413 
414 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
415   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
416 
417   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
418   if (!Str.empty())
419     return Str;
420 
421   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
422     IdentifierInfo *II = ND->getIdentifier();
423     assert(II && "Attempt to mangle unnamed decl.");
424 
425     Str = II->getName();
426     return Str;
427   }
428 
429   SmallString<256> Buffer;
430   llvm::raw_svector_ostream Out(Buffer);
431   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
432     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
433   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
434     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
435   else
436     getCXXABI().getMangleContext().mangleName(ND, Out);
437 
438   // Allocate space for the mangled name.
439   Out.flush();
440   size_t Length = Buffer.size();
441   char *Name = MangledNamesAllocator.Allocate<char>(Length);
442   std::copy(Buffer.begin(), Buffer.end(), Name);
443 
444   Str = StringRef(Name, Length);
445 
446   return Str;
447 }
448 
449 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                         const BlockDecl *BD) {
451   MangleContext &MangleCtx = getCXXABI().getMangleContext();
452   const Decl *D = GD.getDecl();
453   llvm::raw_svector_ostream Out(Buffer.getBuffer());
454   if (D == 0)
455     MangleCtx.mangleGlobalBlock(BD,
456       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461   else
462     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463 }
464 
465 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466   return getModule().getNamedValue(Name);
467 }
468 
469 /// AddGlobalCtor - Add a function to the list that will be called before
470 /// main() runs.
471 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472   // FIXME: Type coercion of void()* types.
473   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474 }
475 
476 /// AddGlobalDtor - Add a function to the list that will be called
477 /// when the module is unloaded.
478 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479   // FIXME: Type coercion of void()* types.
480   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481 }
482 
483 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484   // Ctor function type is void()*.
485   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487 
488   // Get the type of a ctor entry, { i32, void ()* }.
489   llvm::StructType *CtorStructTy =
490     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491 
492   // Construct the constructor and destructor arrays.
493   SmallVector<llvm::Constant*, 8> Ctors;
494   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495     llvm::Constant *S[] = {
496       llvm::ConstantInt::get(Int32Ty, I->second, false),
497       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498     };
499     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500   }
501 
502   if (!Ctors.empty()) {
503     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504     new llvm::GlobalVariable(TheModule, AT, false,
505                              llvm::GlobalValue::AppendingLinkage,
506                              llvm::ConstantArray::get(AT, Ctors),
507                              GlobalName);
508   }
509 }
510 
511 llvm::GlobalValue::LinkageTypes
512 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
513   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
514 
515   if (isa<CXXDestructorDecl>(D) &&
516       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
517                                          GD.getDtorType()))
518     return llvm::Function::LinkOnceODRLinkage;
519 
520   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
521 
522   if (Linkage == GVA_Internal)
523     return llvm::Function::InternalLinkage;
524 
525   if (D->hasAttr<DLLExportAttr>())
526     return llvm::Function::DLLExportLinkage;
527 
528   if (D->hasAttr<WeakAttr>())
529     return llvm::Function::WeakAnyLinkage;
530 
531   // In C99 mode, 'inline' functions are guaranteed to have a strong
532   // definition somewhere else, so we can use available_externally linkage.
533   if (Linkage == GVA_C99Inline)
534     return llvm::Function::AvailableExternallyLinkage;
535 
536   // Note that Apple's kernel linker doesn't support symbol
537   // coalescing, so we need to avoid linkonce and weak linkages there.
538   // Normally, this means we just map to internal, but for explicit
539   // instantiations we'll map to external.
540 
541   // In C++, the compiler has to emit a definition in every translation unit
542   // that references the function.  We should use linkonce_odr because
543   // a) if all references in this translation unit are optimized away, we
544   // don't need to codegen it.  b) if the function persists, it needs to be
545   // merged with other definitions. c) C++ has the ODR, so we know the
546   // definition is dependable.
547   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
548     return !Context.getLangOpts().AppleKext
549              ? llvm::Function::LinkOnceODRLinkage
550              : llvm::Function::InternalLinkage;
551 
552   // An explicit instantiation of a template has weak linkage, since
553   // explicit instantiations can occur in multiple translation units
554   // and must all be equivalent. However, we are not allowed to
555   // throw away these explicit instantiations.
556   if (Linkage == GVA_ExplicitTemplateInstantiation)
557     return !Context.getLangOpts().AppleKext
558              ? llvm::Function::WeakODRLinkage
559              : llvm::Function::ExternalLinkage;
560 
561   // Otherwise, we have strong external linkage.
562   assert(Linkage == GVA_StrongExternal);
563   return llvm::Function::ExternalLinkage;
564 }
565 
566 
567 /// SetFunctionDefinitionAttributes - Set attributes for a global.
568 ///
569 /// FIXME: This is currently only done for aliases and functions, but not for
570 /// variables (these details are set in EmitGlobalVarDefinition for variables).
571 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
572                                                     llvm::GlobalValue *GV) {
573   SetCommonAttributes(D, GV);
574 }
575 
576 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
577                                               const CGFunctionInfo &Info,
578                                               llvm::Function *F) {
579   unsigned CallingConv;
580   AttributeListType AttributeList;
581   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
582   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
583   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
584 }
585 
586 /// Determines whether the language options require us to model
587 /// unwind exceptions.  We treat -fexceptions as mandating this
588 /// except under the fragile ObjC ABI with only ObjC exceptions
589 /// enabled.  This means, for example, that C with -fexceptions
590 /// enables this.
591 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
592   // If exceptions are completely disabled, obviously this is false.
593   if (!LangOpts.Exceptions) return false;
594 
595   // If C++ exceptions are enabled, this is true.
596   if (LangOpts.CXXExceptions) return true;
597 
598   // If ObjC exceptions are enabled, this depends on the ABI.
599   if (LangOpts.ObjCExceptions) {
600     return LangOpts.ObjCRuntime.hasUnwindExceptions();
601   }
602 
603   return true;
604 }
605 
606 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
607                                                            llvm::Function *F) {
608   llvm::AttrBuilder B;
609 
610   if (CodeGenOpts.UnwindTables)
611     B.addAttribute(llvm::Attribute::UWTable);
612 
613   if (!hasUnwindExceptions(LangOpts))
614     B.addAttribute(llvm::Attribute::NoUnwind);
615 
616   if (D->hasAttr<NakedAttr>()) {
617     // Naked implies noinline: we should not be inlining such functions.
618     B.addAttribute(llvm::Attribute::Naked);
619     B.addAttribute(llvm::Attribute::NoInline);
620   } else if (D->hasAttr<NoInlineAttr>()) {
621     B.addAttribute(llvm::Attribute::NoInline);
622   } else if ((D->hasAttr<AlwaysInlineAttr>() ||
623               D->hasAttr<ForceInlineAttr>()) &&
624              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
625                                               llvm::Attribute::NoInline)) {
626     // (noinline wins over always_inline, and we can't specify both in IR)
627     B.addAttribute(llvm::Attribute::AlwaysInline);
628   }
629 
630   if (D->hasAttr<ColdAttr>()) {
631     B.addAttribute(llvm::Attribute::OptimizeForSize);
632     B.addAttribute(llvm::Attribute::Cold);
633   }
634 
635   if (D->hasAttr<MinSizeAttr>())
636     B.addAttribute(llvm::Attribute::MinSize);
637 
638   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
639     B.addAttribute(llvm::Attribute::StackProtect);
640   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
641     B.addAttribute(llvm::Attribute::StackProtectReq);
642 
643   // Add sanitizer attributes if function is not blacklisted.
644   if (!SanitizerBlacklist->isIn(*F)) {
645     // When AddressSanitizer is enabled, set SanitizeAddress attribute
646     // unless __attribute__((no_sanitize_address)) is used.
647     if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
648       B.addAttribute(llvm::Attribute::SanitizeAddress);
649     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
650     if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
651       B.addAttribute(llvm::Attribute::SanitizeThread);
652     }
653     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
654     if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
655       B.addAttribute(llvm::Attribute::SanitizeMemory);
656   }
657 
658   F->addAttributes(llvm::AttributeSet::FunctionIndex,
659                    llvm::AttributeSet::get(
660                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
661 
662   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
663     F->setUnnamedAddr(true);
664   else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
665     if (MD->isVirtual())
666       F->setUnnamedAddr(true);
667 
668   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
669   if (alignment)
670     F->setAlignment(alignment);
671 
672   // C++ ABI requires 2-byte alignment for member functions.
673   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
674     F->setAlignment(2);
675 }
676 
677 void CodeGenModule::SetCommonAttributes(const Decl *D,
678                                         llvm::GlobalValue *GV) {
679   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
680     setGlobalVisibility(GV, ND);
681   else
682     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
683 
684   if (D->hasAttr<UsedAttr>())
685     AddUsedGlobal(GV);
686 
687   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
688     GV->setSection(SA->getName());
689 
690   // Alias cannot have attributes. Filter them here.
691   if (!isa<llvm::GlobalAlias>(GV))
692     getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
693 }
694 
695 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
696                                                   llvm::Function *F,
697                                                   const CGFunctionInfo &FI) {
698   SetLLVMFunctionAttributes(D, FI, F);
699   SetLLVMFunctionAttributesForDefinition(D, F);
700 
701   F->setLinkage(llvm::Function::InternalLinkage);
702 
703   SetCommonAttributes(D, F);
704 }
705 
706 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
707                                           llvm::Function *F,
708                                           bool IsIncompleteFunction) {
709   if (unsigned IID = F->getIntrinsicID()) {
710     // If this is an intrinsic function, set the function's attributes
711     // to the intrinsic's attributes.
712     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
713                                                     (llvm::Intrinsic::ID)IID));
714     return;
715   }
716 
717   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
718 
719   if (!IsIncompleteFunction)
720     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
721 
722   if (getCXXABI().HasThisReturn(GD)) {
723     assert(!F->arg_empty() &&
724            F->arg_begin()->getType()
725              ->canLosslesslyBitCastTo(F->getReturnType()) &&
726            "unexpected this return");
727     F->addAttribute(1, llvm::Attribute::Returned);
728   }
729 
730   // Only a few attributes are set on declarations; these may later be
731   // overridden by a definition.
732 
733   if (FD->hasAttr<DLLImportAttr>()) {
734     F->setLinkage(llvm::Function::DLLImportLinkage);
735   } else if (FD->hasAttr<WeakAttr>() ||
736              FD->isWeakImported()) {
737     // "extern_weak" is overloaded in LLVM; we probably should have
738     // separate linkage types for this.
739     F->setLinkage(llvm::Function::ExternalWeakLinkage);
740   } else {
741     F->setLinkage(llvm::Function::ExternalLinkage);
742 
743     LinkageInfo LV = FD->getLinkageAndVisibility();
744     if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
745       F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
746     }
747   }
748 
749   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
750     F->setSection(SA->getName());
751 
752   // A replaceable global allocation function does not act like a builtin by
753   // default, only if it is invoked by a new-expression or delete-expression.
754   if (FD->isReplaceableGlobalAllocationFunction())
755     F->addAttribute(llvm::AttributeSet::FunctionIndex,
756                     llvm::Attribute::NoBuiltin);
757 }
758 
759 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
760   assert(!GV->isDeclaration() &&
761          "Only globals with definition can force usage.");
762   LLVMUsed.push_back(GV);
763 }
764 
765 void CodeGenModule::EmitLLVMUsed() {
766   // Don't create llvm.used if there is no need.
767   if (LLVMUsed.empty())
768     return;
769 
770   // Convert LLVMUsed to what ConstantArray needs.
771   SmallVector<llvm::Constant*, 8> UsedArray;
772   UsedArray.resize(LLVMUsed.size());
773   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
774     UsedArray[i] =
775      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
776                                     Int8PtrTy);
777   }
778 
779   if (UsedArray.empty())
780     return;
781   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
782 
783   llvm::GlobalVariable *GV =
784     new llvm::GlobalVariable(getModule(), ATy, false,
785                              llvm::GlobalValue::AppendingLinkage,
786                              llvm::ConstantArray::get(ATy, UsedArray),
787                              "llvm.used");
788 
789   GV->setSection("llvm.metadata");
790 }
791 
792 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
793   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
794   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
795 }
796 
797 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
798   llvm::SmallString<32> Opt;
799   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
800   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
801   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
802 }
803 
804 void CodeGenModule::AddDependentLib(StringRef Lib) {
805   llvm::SmallString<24> Opt;
806   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
807   llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
808   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
809 }
810 
811 /// \brief Add link options implied by the given module, including modules
812 /// it depends on, using a postorder walk.
813 static void addLinkOptionsPostorder(CodeGenModule &CGM,
814                                     Module *Mod,
815                                     SmallVectorImpl<llvm::Value *> &Metadata,
816                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
817   // Import this module's parent.
818   if (Mod->Parent && Visited.insert(Mod->Parent)) {
819     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
820   }
821 
822   // Import this module's dependencies.
823   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
824     if (Visited.insert(Mod->Imports[I-1]))
825       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
826   }
827 
828   // Add linker options to link against the libraries/frameworks
829   // described by this module.
830   llvm::LLVMContext &Context = CGM.getLLVMContext();
831   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
832     // Link against a framework.  Frameworks are currently Darwin only, so we
833     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
834     if (Mod->LinkLibraries[I-1].IsFramework) {
835       llvm::Value *Args[2] = {
836         llvm::MDString::get(Context, "-framework"),
837         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
838       };
839 
840       Metadata.push_back(llvm::MDNode::get(Context, Args));
841       continue;
842     }
843 
844     // Link against a library.
845     llvm::SmallString<24> Opt;
846     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
847       Mod->LinkLibraries[I-1].Library, Opt);
848     llvm::Value *OptString = llvm::MDString::get(Context, Opt);
849     Metadata.push_back(llvm::MDNode::get(Context, OptString));
850   }
851 }
852 
853 void CodeGenModule::EmitModuleLinkOptions() {
854   // Collect the set of all of the modules we want to visit to emit link
855   // options, which is essentially the imported modules and all of their
856   // non-explicit child modules.
857   llvm::SetVector<clang::Module *> LinkModules;
858   llvm::SmallPtrSet<clang::Module *, 16> Visited;
859   SmallVector<clang::Module *, 16> Stack;
860 
861   // Seed the stack with imported modules.
862   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
863                                                MEnd = ImportedModules.end();
864        M != MEnd; ++M) {
865     if (Visited.insert(*M))
866       Stack.push_back(*M);
867   }
868 
869   // Find all of the modules to import, making a little effort to prune
870   // non-leaf modules.
871   while (!Stack.empty()) {
872     clang::Module *Mod = Stack.back();
873     Stack.pop_back();
874 
875     bool AnyChildren = false;
876 
877     // Visit the submodules of this module.
878     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
879                                         SubEnd = Mod->submodule_end();
880          Sub != SubEnd; ++Sub) {
881       // Skip explicit children; they need to be explicitly imported to be
882       // linked against.
883       if ((*Sub)->IsExplicit)
884         continue;
885 
886       if (Visited.insert(*Sub)) {
887         Stack.push_back(*Sub);
888         AnyChildren = true;
889       }
890     }
891 
892     // We didn't find any children, so add this module to the list of
893     // modules to link against.
894     if (!AnyChildren) {
895       LinkModules.insert(Mod);
896     }
897   }
898 
899   // Add link options for all of the imported modules in reverse topological
900   // order.  We don't do anything to try to order import link flags with respect
901   // to linker options inserted by things like #pragma comment().
902   SmallVector<llvm::Value *, 16> MetadataArgs;
903   Visited.clear();
904   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
905                                                MEnd = LinkModules.end();
906        M != MEnd; ++M) {
907     if (Visited.insert(*M))
908       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
909   }
910   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
911   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
912 
913   // Add the linker options metadata flag.
914   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
915                             llvm::MDNode::get(getLLVMContext(),
916                                               LinkerOptionsMetadata));
917 }
918 
919 void CodeGenModule::EmitDeferred() {
920   // Emit code for any potentially referenced deferred decls.  Since a
921   // previously unused static decl may become used during the generation of code
922   // for a static function, iterate until no changes are made.
923 
924   while (true) {
925     if (!DeferredVTables.empty()) {
926       EmitDeferredVTables();
927 
928       // Emitting a v-table doesn't directly cause more v-tables to
929       // become deferred, although it can cause functions to be
930       // emitted that then need those v-tables.
931       assert(DeferredVTables.empty());
932     }
933 
934     // Stop if we're out of both deferred v-tables and deferred declarations.
935     if (DeferredDeclsToEmit.empty()) break;
936 
937     GlobalDecl D = DeferredDeclsToEmit.back();
938     DeferredDeclsToEmit.pop_back();
939 
940     // Check to see if we've already emitted this.  This is necessary
941     // for a couple of reasons: first, decls can end up in the
942     // deferred-decls queue multiple times, and second, decls can end
943     // up with definitions in unusual ways (e.g. by an extern inline
944     // function acquiring a strong function redefinition).  Just
945     // ignore these cases.
946     //
947     // TODO: That said, looking this up multiple times is very wasteful.
948     StringRef Name = getMangledName(D);
949     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
950     assert(CGRef && "Deferred decl wasn't referenced?");
951 
952     if (!CGRef->isDeclaration())
953       continue;
954 
955     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
956     // purposes an alias counts as a definition.
957     if (isa<llvm::GlobalAlias>(CGRef))
958       continue;
959 
960     // Otherwise, emit the definition and move on to the next one.
961     EmitGlobalDefinition(D);
962   }
963 }
964 
965 void CodeGenModule::EmitGlobalAnnotations() {
966   if (Annotations.empty())
967     return;
968 
969   // Create a new global variable for the ConstantStruct in the Module.
970   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
971     Annotations[0]->getType(), Annotations.size()), Annotations);
972   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
973     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
974     "llvm.global.annotations");
975   gv->setSection(AnnotationSection);
976 }
977 
978 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
979   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
980   if (i != AnnotationStrings.end())
981     return i->second;
982 
983   // Not found yet, create a new global.
984   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
985   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
986     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
987   gv->setSection(AnnotationSection);
988   gv->setUnnamedAddr(true);
989   AnnotationStrings[Str] = gv;
990   return gv;
991 }
992 
993 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
994   SourceManager &SM = getContext().getSourceManager();
995   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
996   if (PLoc.isValid())
997     return EmitAnnotationString(PLoc.getFilename());
998   return EmitAnnotationString(SM.getBufferName(Loc));
999 }
1000 
1001 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1002   SourceManager &SM = getContext().getSourceManager();
1003   PresumedLoc PLoc = SM.getPresumedLoc(L);
1004   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1005     SM.getExpansionLineNumber(L);
1006   return llvm::ConstantInt::get(Int32Ty, LineNo);
1007 }
1008 
1009 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1010                                                 const AnnotateAttr *AA,
1011                                                 SourceLocation L) {
1012   // Get the globals for file name, annotation, and the line number.
1013   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1014                  *UnitGV = EmitAnnotationUnit(L),
1015                  *LineNoCst = EmitAnnotationLineNo(L);
1016 
1017   // Create the ConstantStruct for the global annotation.
1018   llvm::Constant *Fields[4] = {
1019     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1020     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1021     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1022     LineNoCst
1023   };
1024   return llvm::ConstantStruct::getAnon(Fields);
1025 }
1026 
1027 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1028                                          llvm::GlobalValue *GV) {
1029   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1030   // Get the struct elements for these annotations.
1031   for (specific_attr_iterator<AnnotateAttr>
1032        ai = D->specific_attr_begin<AnnotateAttr>(),
1033        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1034     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1035 }
1036 
1037 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1038   // Never defer when EmitAllDecls is specified.
1039   if (LangOpts.EmitAllDecls)
1040     return false;
1041 
1042   return !getContext().DeclMustBeEmitted(Global);
1043 }
1044 
1045 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1046     const CXXUuidofExpr* E) {
1047   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1048   // well-formed.
1049   StringRef Uuid;
1050   if (E->isTypeOperand())
1051     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1052   else {
1053     // Special case: __uuidof(0) means an all-zero GUID.
1054     Expr *Op = E->getExprOperand();
1055     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1056       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1057     else
1058       Uuid = "00000000-0000-0000-0000-000000000000";
1059   }
1060   std::string Name = "_GUID_" + Uuid.lower();
1061   std::replace(Name.begin(), Name.end(), '-', '_');
1062 
1063   // Look for an existing global.
1064   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1065     return GV;
1066 
1067   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1068   assert(Init && "failed to initialize as constant");
1069 
1070   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1071   // first field is declared as "long", which for many targets is 8 bytes.
1072   // Those architectures are not supported. (With the MS abi, long is always 4
1073   // bytes.)
1074   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1075   if (Init->getType() != GuidType) {
1076     DiagnosticsEngine &Diags = getDiags();
1077     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1078         "__uuidof codegen is not supported on this architecture");
1079     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1080     Init = llvm::UndefValue::get(GuidType);
1081   }
1082 
1083   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1084       /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, Init, Name);
1085   GV->setUnnamedAddr(true);
1086   return GV;
1087 }
1088 
1089 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1090   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1091   assert(AA && "No alias?");
1092 
1093   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1094 
1095   // See if there is already something with the target's name in the module.
1096   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1097   if (Entry) {
1098     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1099     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1100   }
1101 
1102   llvm::Constant *Aliasee;
1103   if (isa<llvm::FunctionType>(DeclTy))
1104     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1105                                       GlobalDecl(cast<FunctionDecl>(VD)),
1106                                       /*ForVTable=*/false);
1107   else
1108     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1109                                     llvm::PointerType::getUnqual(DeclTy), 0);
1110 
1111   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1112   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1113   WeakRefReferences.insert(F);
1114 
1115   return Aliasee;
1116 }
1117 
1118 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1119   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1120 
1121   // Weak references don't produce any output by themselves.
1122   if (Global->hasAttr<WeakRefAttr>())
1123     return;
1124 
1125   // If this is an alias definition (which otherwise looks like a declaration)
1126   // emit it now.
1127   if (Global->hasAttr<AliasAttr>())
1128     return EmitAliasDefinition(GD);
1129 
1130   // If this is CUDA, be selective about which declarations we emit.
1131   if (LangOpts.CUDA) {
1132     if (CodeGenOpts.CUDAIsDevice) {
1133       if (!Global->hasAttr<CUDADeviceAttr>() &&
1134           !Global->hasAttr<CUDAGlobalAttr>() &&
1135           !Global->hasAttr<CUDAConstantAttr>() &&
1136           !Global->hasAttr<CUDASharedAttr>())
1137         return;
1138     } else {
1139       if (!Global->hasAttr<CUDAHostAttr>() && (
1140             Global->hasAttr<CUDADeviceAttr>() ||
1141             Global->hasAttr<CUDAConstantAttr>() ||
1142             Global->hasAttr<CUDASharedAttr>()))
1143         return;
1144     }
1145   }
1146 
1147   // Ignore declarations, they will be emitted on their first use.
1148   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1149     // Forward declarations are emitted lazily on first use.
1150     if (!FD->doesThisDeclarationHaveABody()) {
1151       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1152         return;
1153 
1154       const FunctionDecl *InlineDefinition = 0;
1155       FD->getBody(InlineDefinition);
1156 
1157       StringRef MangledName = getMangledName(GD);
1158       DeferredDecls.erase(MangledName);
1159       EmitGlobalDefinition(InlineDefinition);
1160       return;
1161     }
1162   } else {
1163     const VarDecl *VD = cast<VarDecl>(Global);
1164     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1165 
1166     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1167       return;
1168   }
1169 
1170   // Defer code generation when possible if this is a static definition, inline
1171   // function etc.  These we only want to emit if they are used.
1172   if (!MayDeferGeneration(Global)) {
1173     // Emit the definition if it can't be deferred.
1174     EmitGlobalDefinition(GD);
1175     return;
1176   }
1177 
1178   // If we're deferring emission of a C++ variable with an
1179   // initializer, remember the order in which it appeared in the file.
1180   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1181       cast<VarDecl>(Global)->hasInit()) {
1182     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1183     CXXGlobalInits.push_back(0);
1184   }
1185 
1186   // If the value has already been used, add it directly to the
1187   // DeferredDeclsToEmit list.
1188   StringRef MangledName = getMangledName(GD);
1189   if (GetGlobalValue(MangledName))
1190     DeferredDeclsToEmit.push_back(GD);
1191   else {
1192     // Otherwise, remember that we saw a deferred decl with this name.  The
1193     // first use of the mangled name will cause it to move into
1194     // DeferredDeclsToEmit.
1195     DeferredDecls[MangledName] = GD;
1196   }
1197 }
1198 
1199 namespace {
1200   struct FunctionIsDirectlyRecursive :
1201     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1202     const StringRef Name;
1203     const Builtin::Context &BI;
1204     bool Result;
1205     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1206       Name(N), BI(C), Result(false) {
1207     }
1208     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1209 
1210     bool TraverseCallExpr(CallExpr *E) {
1211       const FunctionDecl *FD = E->getDirectCallee();
1212       if (!FD)
1213         return true;
1214       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1215       if (Attr && Name == Attr->getLabel()) {
1216         Result = true;
1217         return false;
1218       }
1219       unsigned BuiltinID = FD->getBuiltinID();
1220       if (!BuiltinID)
1221         return true;
1222       StringRef BuiltinName = BI.GetName(BuiltinID);
1223       if (BuiltinName.startswith("__builtin_") &&
1224           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1225         Result = true;
1226         return false;
1227       }
1228       return true;
1229     }
1230   };
1231 }
1232 
1233 // isTriviallyRecursive - Check if this function calls another
1234 // decl that, because of the asm attribute or the other decl being a builtin,
1235 // ends up pointing to itself.
1236 bool
1237 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1238   StringRef Name;
1239   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1240     // asm labels are a special kind of mangling we have to support.
1241     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1242     if (!Attr)
1243       return false;
1244     Name = Attr->getLabel();
1245   } else {
1246     Name = FD->getName();
1247   }
1248 
1249   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1250   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1251   return Walker.Result;
1252 }
1253 
1254 bool
1255 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1256   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1257     return true;
1258   const FunctionDecl *F = cast<FunctionDecl>(GD.getDecl());
1259   if (CodeGenOpts.OptimizationLevel == 0 &&
1260       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1261     return false;
1262   // PR9614. Avoid cases where the source code is lying to us. An available
1263   // externally function should have an equivalent function somewhere else,
1264   // but a function that calls itself is clearly not equivalent to the real
1265   // implementation.
1266   // This happens in glibc's btowc and in some configure checks.
1267   return !isTriviallyRecursive(F);
1268 }
1269 
1270 /// If the type for the method's class was generated by
1271 /// CGDebugInfo::createContextChain(), the cache contains only a
1272 /// limited DIType without any declarations. Since EmitFunctionStart()
1273 /// needs to find the canonical declaration for each method, we need
1274 /// to construct the complete type prior to emitting the method.
1275 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1276   if (!D->isInstance())
1277     return;
1278 
1279   if (CGDebugInfo *DI = getModuleDebugInfo())
1280     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1281       const PointerType *ThisPtr =
1282         cast<PointerType>(D->getThisType(getContext()));
1283       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1284     }
1285 }
1286 
1287 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1288   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1289 
1290   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1291                                  Context.getSourceManager(),
1292                                  "Generating code for declaration");
1293 
1294   if (isa<FunctionDecl>(D)) {
1295     // At -O0, don't generate IR for functions with available_externally
1296     // linkage.
1297     if (!shouldEmitFunction(GD))
1298       return;
1299 
1300     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1301       CompleteDIClassType(Method);
1302       // Make sure to emit the definition(s) before we emit the thunks.
1303       // This is necessary for the generation of certain thunks.
1304       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1305         EmitCXXConstructor(CD, GD.getCtorType());
1306       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1307         EmitCXXDestructor(DD, GD.getDtorType());
1308       else
1309         EmitGlobalFunctionDefinition(GD);
1310 
1311       if (Method->isVirtual())
1312         getVTables().EmitThunks(GD);
1313 
1314       return;
1315     }
1316 
1317     return EmitGlobalFunctionDefinition(GD);
1318   }
1319 
1320   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1321     return EmitGlobalVarDefinition(VD);
1322 
1323   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1324 }
1325 
1326 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1327 /// module, create and return an llvm Function with the specified type. If there
1328 /// is something in the module with the specified name, return it potentially
1329 /// bitcasted to the right type.
1330 ///
1331 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1332 /// to set the attributes on the function when it is first created.
1333 llvm::Constant *
1334 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1335                                        llvm::Type *Ty,
1336                                        GlobalDecl GD, bool ForVTable,
1337                                        llvm::AttributeSet ExtraAttrs) {
1338   const Decl *D = GD.getDecl();
1339 
1340   // Lookup the entry, lazily creating it if necessary.
1341   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1342   if (Entry) {
1343     if (WeakRefReferences.erase(Entry)) {
1344       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1345       if (FD && !FD->hasAttr<WeakAttr>())
1346         Entry->setLinkage(llvm::Function::ExternalLinkage);
1347     }
1348 
1349     if (Entry->getType()->getElementType() == Ty)
1350       return Entry;
1351 
1352     // Make sure the result is of the correct type.
1353     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1354   }
1355 
1356   // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1357   // each other bottoming out with the base dtor.  Therefore we emit non-base
1358   // dtors on usage, even if there is no dtor definition in the TU.
1359   if (D && isa<CXXDestructorDecl>(D) &&
1360       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1361                                          GD.getDtorType()))
1362     DeferredDeclsToEmit.push_back(GD);
1363 
1364   // This function doesn't have a complete type (for example, the return
1365   // type is an incomplete struct). Use a fake type instead, and make
1366   // sure not to try to set attributes.
1367   bool IsIncompleteFunction = false;
1368 
1369   llvm::FunctionType *FTy;
1370   if (isa<llvm::FunctionType>(Ty)) {
1371     FTy = cast<llvm::FunctionType>(Ty);
1372   } else {
1373     FTy = llvm::FunctionType::get(VoidTy, false);
1374     IsIncompleteFunction = true;
1375   }
1376 
1377   llvm::Function *F = llvm::Function::Create(FTy,
1378                                              llvm::Function::ExternalLinkage,
1379                                              MangledName, &getModule());
1380   assert(F->getName() == MangledName && "name was uniqued!");
1381   if (D)
1382     SetFunctionAttributes(GD, F, IsIncompleteFunction);
1383   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1384     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1385     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1386                      llvm::AttributeSet::get(VMContext,
1387                                              llvm::AttributeSet::FunctionIndex,
1388                                              B));
1389   }
1390 
1391   // This is the first use or definition of a mangled name.  If there is a
1392   // deferred decl with this name, remember that we need to emit it at the end
1393   // of the file.
1394   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1395   if (DDI != DeferredDecls.end()) {
1396     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1397     // list, and remove it from DeferredDecls (since we don't need it anymore).
1398     DeferredDeclsToEmit.push_back(DDI->second);
1399     DeferredDecls.erase(DDI);
1400 
1401   // Otherwise, there are cases we have to worry about where we're
1402   // using a declaration for which we must emit a definition but where
1403   // we might not find a top-level definition:
1404   //   - member functions defined inline in their classes
1405   //   - friend functions defined inline in some class
1406   //   - special member functions with implicit definitions
1407   // If we ever change our AST traversal to walk into class methods,
1408   // this will be unnecessary.
1409   //
1410   // We also don't emit a definition for a function if it's going to be an entry
1411   // in a vtable, unless it's already marked as used.
1412   } else if (getLangOpts().CPlusPlus && D) {
1413     // Look for a declaration that's lexically in a record.
1414     const FunctionDecl *FD = cast<FunctionDecl>(D);
1415     FD = FD->getMostRecentDecl();
1416     do {
1417       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1418         if (FD->isImplicit() && !ForVTable) {
1419           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1420           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1421           break;
1422         } else if (FD->doesThisDeclarationHaveABody()) {
1423           DeferredDeclsToEmit.push_back(GD.getWithDecl(FD));
1424           break;
1425         }
1426       }
1427       FD = FD->getPreviousDecl();
1428     } while (FD);
1429   }
1430 
1431   // Make sure the result is of the requested type.
1432   if (!IsIncompleteFunction) {
1433     assert(F->getType()->getElementType() == Ty);
1434     return F;
1435   }
1436 
1437   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1438   return llvm::ConstantExpr::getBitCast(F, PTy);
1439 }
1440 
1441 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1442 /// non-null, then this function will use the specified type if it has to
1443 /// create it (this occurs when we see a definition of the function).
1444 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1445                                                  llvm::Type *Ty,
1446                                                  bool ForVTable) {
1447   // If there was no specific requested type, just convert it now.
1448   if (!Ty)
1449     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1450 
1451   StringRef MangledName = getMangledName(GD);
1452   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1453 }
1454 
1455 /// CreateRuntimeFunction - Create a new runtime function with the specified
1456 /// type and name.
1457 llvm::Constant *
1458 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1459                                      StringRef Name,
1460                                      llvm::AttributeSet ExtraAttrs) {
1461   llvm::Constant *C
1462     = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1463                               ExtraAttrs);
1464   if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1465     if (F->empty())
1466       F->setCallingConv(getRuntimeCC());
1467   return C;
1468 }
1469 
1470 /// isTypeConstant - Determine whether an object of this type can be emitted
1471 /// as a constant.
1472 ///
1473 /// If ExcludeCtor is true, the duration when the object's constructor runs
1474 /// will not be considered. The caller will need to verify that the object is
1475 /// not written to during its construction.
1476 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1477   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1478     return false;
1479 
1480   if (Context.getLangOpts().CPlusPlus) {
1481     if (const CXXRecordDecl *Record
1482           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1483       return ExcludeCtor && !Record->hasMutableFields() &&
1484              Record->hasTrivialDestructor();
1485   }
1486 
1487   return true;
1488 }
1489 
1490 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1491 /// create and return an llvm GlobalVariable with the specified type.  If there
1492 /// is something in the module with the specified name, return it potentially
1493 /// bitcasted to the right type.
1494 ///
1495 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1496 /// to set the attributes on the global when it is first created.
1497 llvm::Constant *
1498 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1499                                      llvm::PointerType *Ty,
1500                                      const VarDecl *D,
1501                                      bool UnnamedAddr) {
1502   // Lookup the entry, lazily creating it if necessary.
1503   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1504   if (Entry) {
1505     if (WeakRefReferences.erase(Entry)) {
1506       if (D && !D->hasAttr<WeakAttr>())
1507         Entry->setLinkage(llvm::Function::ExternalLinkage);
1508     }
1509 
1510     if (UnnamedAddr)
1511       Entry->setUnnamedAddr(true);
1512 
1513     if (Entry->getType() == Ty)
1514       return Entry;
1515 
1516     // Make sure the result is of the correct type.
1517     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1518   }
1519 
1520   // This is the first use or definition of a mangled name.  If there is a
1521   // deferred decl with this name, remember that we need to emit it at the end
1522   // of the file.
1523   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1524   if (DDI != DeferredDecls.end()) {
1525     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1526     // list, and remove it from DeferredDecls (since we don't need it anymore).
1527     DeferredDeclsToEmit.push_back(DDI->second);
1528     DeferredDecls.erase(DDI);
1529   }
1530 
1531   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1532   llvm::GlobalVariable *GV =
1533     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1534                              llvm::GlobalValue::ExternalLinkage,
1535                              0, MangledName, 0,
1536                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1537 
1538   // Handle things which are present even on external declarations.
1539   if (D) {
1540     // FIXME: This code is overly simple and should be merged with other global
1541     // handling.
1542     GV->setConstant(isTypeConstant(D->getType(), false));
1543 
1544     // Set linkage and visibility in case we never see a definition.
1545     LinkageInfo LV = D->getLinkageAndVisibility();
1546     if (LV.getLinkage() != ExternalLinkage) {
1547       // Don't set internal linkage on declarations.
1548     } else {
1549       if (D->hasAttr<DLLImportAttr>())
1550         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1551       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1552         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1553 
1554       // Set visibility on a declaration only if it's explicit.
1555       if (LV.isVisibilityExplicit())
1556         GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1557     }
1558 
1559     if (D->getTLSKind()) {
1560       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1561         CXXThreadLocals.push_back(std::make_pair(D, GV));
1562       setTLSMode(GV, *D);
1563     }
1564   }
1565 
1566   if (AddrSpace != Ty->getAddressSpace())
1567     return llvm::ConstantExpr::getBitCast(GV, Ty);
1568   else
1569     return GV;
1570 }
1571 
1572 
1573 llvm::GlobalVariable *
1574 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1575                                       llvm::Type *Ty,
1576                                       llvm::GlobalValue::LinkageTypes Linkage) {
1577   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1578   llvm::GlobalVariable *OldGV = 0;
1579 
1580 
1581   if (GV) {
1582     // Check if the variable has the right type.
1583     if (GV->getType()->getElementType() == Ty)
1584       return GV;
1585 
1586     // Because C++ name mangling, the only way we can end up with an already
1587     // existing global with the same name is if it has been declared extern "C".
1588     assert(GV->isDeclaration() && "Declaration has wrong type!");
1589     OldGV = GV;
1590   }
1591 
1592   // Create a new variable.
1593   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1594                                 Linkage, 0, Name);
1595 
1596   if (OldGV) {
1597     // Replace occurrences of the old variable if needed.
1598     GV->takeName(OldGV);
1599 
1600     if (!OldGV->use_empty()) {
1601       llvm::Constant *NewPtrForOldDecl =
1602       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1603       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1604     }
1605 
1606     OldGV->eraseFromParent();
1607   }
1608 
1609   return GV;
1610 }
1611 
1612 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1613 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1614 /// then it will be created with the specified type instead of whatever the
1615 /// normal requested type would be.
1616 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1617                                                   llvm::Type *Ty) {
1618   assert(D->hasGlobalStorage() && "Not a global variable");
1619   QualType ASTTy = D->getType();
1620   if (Ty == 0)
1621     Ty = getTypes().ConvertTypeForMem(ASTTy);
1622 
1623   llvm::PointerType *PTy =
1624     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1625 
1626   StringRef MangledName = getMangledName(D);
1627   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1628 }
1629 
1630 /// CreateRuntimeVariable - Create a new runtime global variable with the
1631 /// specified type and name.
1632 llvm::Constant *
1633 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1634                                      StringRef Name) {
1635   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1636                                true);
1637 }
1638 
1639 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1640   assert(!D->getInit() && "Cannot emit definite definitions here!");
1641 
1642   if (MayDeferGeneration(D)) {
1643     // If we have not seen a reference to this variable yet, place it
1644     // into the deferred declarations table to be emitted if needed
1645     // later.
1646     StringRef MangledName = getMangledName(D);
1647     if (!GetGlobalValue(MangledName)) {
1648       DeferredDecls[MangledName] = D;
1649       return;
1650     }
1651   }
1652 
1653   // The tentative definition is the only definition.
1654   EmitGlobalVarDefinition(D);
1655 }
1656 
1657 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1658     return Context.toCharUnitsFromBits(
1659       TheDataLayout.getTypeStoreSizeInBits(Ty));
1660 }
1661 
1662 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1663                                                  unsigned AddrSpace) {
1664   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1665     if (D->hasAttr<CUDAConstantAttr>())
1666       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1667     else if (D->hasAttr<CUDASharedAttr>())
1668       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1669     else
1670       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1671   }
1672 
1673   return AddrSpace;
1674 }
1675 
1676 template<typename SomeDecl>
1677 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1678                                                llvm::GlobalValue *GV) {
1679   if (!getLangOpts().CPlusPlus)
1680     return;
1681 
1682   // Must have 'used' attribute, or else inline assembly can't rely on
1683   // the name existing.
1684   if (!D->template hasAttr<UsedAttr>())
1685     return;
1686 
1687   // Must have internal linkage and an ordinary name.
1688   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1689     return;
1690 
1691   // Must be in an extern "C" context. Entities declared directly within
1692   // a record are not extern "C" even if the record is in such a context.
1693   const SomeDecl *First = D->getFirstDeclaration();
1694   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1695     return;
1696 
1697   // OK, this is an internal linkage entity inside an extern "C" linkage
1698   // specification. Make a note of that so we can give it the "expected"
1699   // mangled name if nothing else is using that name.
1700   std::pair<StaticExternCMap::iterator, bool> R =
1701       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1702 
1703   // If we have multiple internal linkage entities with the same name
1704   // in extern "C" regions, none of them gets that name.
1705   if (!R.second)
1706     R.first->second = 0;
1707 }
1708 
1709 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1710   llvm::Constant *Init = 0;
1711   QualType ASTTy = D->getType();
1712   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1713   bool NeedsGlobalCtor = false;
1714   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1715 
1716   const VarDecl *InitDecl;
1717   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1718 
1719   if (!InitExpr) {
1720     // This is a tentative definition; tentative definitions are
1721     // implicitly initialized with { 0 }.
1722     //
1723     // Note that tentative definitions are only emitted at the end of
1724     // a translation unit, so they should never have incomplete
1725     // type. In addition, EmitTentativeDefinition makes sure that we
1726     // never attempt to emit a tentative definition if a real one
1727     // exists. A use may still exists, however, so we still may need
1728     // to do a RAUW.
1729     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1730     Init = EmitNullConstant(D->getType());
1731   } else {
1732     initializedGlobalDecl = GlobalDecl(D);
1733     Init = EmitConstantInit(*InitDecl);
1734 
1735     if (!Init) {
1736       QualType T = InitExpr->getType();
1737       if (D->getType()->isReferenceType())
1738         T = D->getType();
1739 
1740       if (getLangOpts().CPlusPlus) {
1741         Init = EmitNullConstant(T);
1742         NeedsGlobalCtor = true;
1743       } else {
1744         ErrorUnsupported(D, "static initializer");
1745         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1746       }
1747     } else {
1748       // We don't need an initializer, so remove the entry for the delayed
1749       // initializer position (just in case this entry was delayed) if we
1750       // also don't need to register a destructor.
1751       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1752         DelayedCXXInitPosition.erase(D);
1753     }
1754   }
1755 
1756   llvm::Type* InitType = Init->getType();
1757   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1758 
1759   // Strip off a bitcast if we got one back.
1760   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1761     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1762            // all zero index gep.
1763            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1764     Entry = CE->getOperand(0);
1765   }
1766 
1767   // Entry is now either a Function or GlobalVariable.
1768   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1769 
1770   // We have a definition after a declaration with the wrong type.
1771   // We must make a new GlobalVariable* and update everything that used OldGV
1772   // (a declaration or tentative definition) with the new GlobalVariable*
1773   // (which will be a definition).
1774   //
1775   // This happens if there is a prototype for a global (e.g.
1776   // "extern int x[];") and then a definition of a different type (e.g.
1777   // "int x[10];"). This also happens when an initializer has a different type
1778   // from the type of the global (this happens with unions).
1779   if (GV == 0 ||
1780       GV->getType()->getElementType() != InitType ||
1781       GV->getType()->getAddressSpace() !=
1782        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1783 
1784     // Move the old entry aside so that we'll create a new one.
1785     Entry->setName(StringRef());
1786 
1787     // Make a new global with the correct type, this is now guaranteed to work.
1788     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1789 
1790     // Replace all uses of the old global with the new global
1791     llvm::Constant *NewPtrForOldDecl =
1792         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1793     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1794 
1795     // Erase the old global, since it is no longer used.
1796     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1797   }
1798 
1799   MaybeHandleStaticInExternC(D, GV);
1800 
1801   if (D->hasAttr<AnnotateAttr>())
1802     AddGlobalAnnotations(D, GV);
1803 
1804   GV->setInitializer(Init);
1805 
1806   // If it is safe to mark the global 'constant', do so now.
1807   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1808                   isTypeConstant(D->getType(), true));
1809 
1810   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1811 
1812   // Set the llvm linkage type as appropriate.
1813   llvm::GlobalValue::LinkageTypes Linkage =
1814     GetLLVMLinkageVarDefinition(D, GV->isConstant());
1815   GV->setLinkage(Linkage);
1816   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1817     // common vars aren't constant even if declared const.
1818     GV->setConstant(false);
1819 
1820   SetCommonAttributes(D, GV);
1821 
1822   // Emit the initializer function if necessary.
1823   if (NeedsGlobalCtor || NeedsGlobalDtor)
1824     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1825 
1826   // If we are compiling with ASan, add metadata indicating dynamically
1827   // initialized globals.
1828   if (SanOpts.Address && NeedsGlobalCtor) {
1829     llvm::Module &M = getModule();
1830 
1831     llvm::NamedMDNode *DynamicInitializers =
1832         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1833     llvm::Value *GlobalToAdd[] = { GV };
1834     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1835     DynamicInitializers->addOperand(ThisGlobal);
1836   }
1837 
1838   // Emit global variable debug information.
1839   if (CGDebugInfo *DI = getModuleDebugInfo())
1840     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1841       DI->EmitGlobalVariable(GV, D);
1842 }
1843 
1844 llvm::GlobalValue::LinkageTypes
1845 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, bool isConstant) {
1846   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1847   if (Linkage == GVA_Internal)
1848     return llvm::Function::InternalLinkage;
1849   else if (D->hasAttr<DLLImportAttr>())
1850     return llvm::Function::DLLImportLinkage;
1851   else if (D->hasAttr<DLLExportAttr>())
1852     return llvm::Function::DLLExportLinkage;
1853   else if (D->hasAttr<SelectAnyAttr>()) {
1854     // selectany symbols are externally visible, so use weak instead of
1855     // linkonce.  MSVC optimizes away references to const selectany globals, so
1856     // all definitions should be the same and ODR linkage should be used.
1857     // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1858     return llvm::GlobalVariable::WeakODRLinkage;
1859   } else if (D->hasAttr<WeakAttr>()) {
1860     if (isConstant)
1861       return llvm::GlobalVariable::WeakODRLinkage;
1862     else
1863       return llvm::GlobalVariable::WeakAnyLinkage;
1864   } else if (Linkage == GVA_TemplateInstantiation ||
1865              Linkage == GVA_ExplicitTemplateInstantiation)
1866     return llvm::GlobalVariable::WeakODRLinkage;
1867   else if (!getLangOpts().CPlusPlus &&
1868            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1869              D->getAttr<CommonAttr>()) &&
1870            !D->hasExternalStorage() && !D->getInit() &&
1871            !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1872            !D->getAttr<WeakImportAttr>()) {
1873     // Thread local vars aren't considered common linkage.
1874     return llvm::GlobalVariable::CommonLinkage;
1875   } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1876              getTarget().getTriple().isMacOSX())
1877     // On Darwin, the backing variable for a C++11 thread_local variable always
1878     // has internal linkage; all accesses should just be calls to the
1879     // Itanium-specified entry point, which has the normal linkage of the
1880     // variable.
1881     return llvm::GlobalValue::InternalLinkage;
1882   return llvm::GlobalVariable::ExternalLinkage;
1883 }
1884 
1885 /// Replace the uses of a function that was declared with a non-proto type.
1886 /// We want to silently drop extra arguments from call sites
1887 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1888                                           llvm::Function *newFn) {
1889   // Fast path.
1890   if (old->use_empty()) return;
1891 
1892   llvm::Type *newRetTy = newFn->getReturnType();
1893   SmallVector<llvm::Value*, 4> newArgs;
1894 
1895   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1896          ui != ue; ) {
1897     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1898     llvm::User *user = *use;
1899 
1900     // Recognize and replace uses of bitcasts.  Most calls to
1901     // unprototyped functions will use bitcasts.
1902     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1903       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1904         replaceUsesOfNonProtoConstant(bitcast, newFn);
1905       continue;
1906     }
1907 
1908     // Recognize calls to the function.
1909     llvm::CallSite callSite(user);
1910     if (!callSite) continue;
1911     if (!callSite.isCallee(use)) continue;
1912 
1913     // If the return types don't match exactly, then we can't
1914     // transform this call unless it's dead.
1915     if (callSite->getType() != newRetTy && !callSite->use_empty())
1916       continue;
1917 
1918     // Get the call site's attribute list.
1919     SmallVector<llvm::AttributeSet, 8> newAttrs;
1920     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1921 
1922     // Collect any return attributes from the call.
1923     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1924       newAttrs.push_back(
1925         llvm::AttributeSet::get(newFn->getContext(),
1926                                 oldAttrs.getRetAttributes()));
1927 
1928     // If the function was passed too few arguments, don't transform.
1929     unsigned newNumArgs = newFn->arg_size();
1930     if (callSite.arg_size() < newNumArgs) continue;
1931 
1932     // If extra arguments were passed, we silently drop them.
1933     // If any of the types mismatch, we don't transform.
1934     unsigned argNo = 0;
1935     bool dontTransform = false;
1936     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1937            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1938       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1939         dontTransform = true;
1940         break;
1941       }
1942 
1943       // Add any parameter attributes.
1944       if (oldAttrs.hasAttributes(argNo + 1))
1945         newAttrs.
1946           push_back(llvm::
1947                     AttributeSet::get(newFn->getContext(),
1948                                       oldAttrs.getParamAttributes(argNo + 1)));
1949     }
1950     if (dontTransform)
1951       continue;
1952 
1953     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1954       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1955                                                  oldAttrs.getFnAttributes()));
1956 
1957     // Okay, we can transform this.  Create the new call instruction and copy
1958     // over the required information.
1959     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1960 
1961     llvm::CallSite newCall;
1962     if (callSite.isCall()) {
1963       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1964                                        callSite.getInstruction());
1965     } else {
1966       llvm::InvokeInst *oldInvoke =
1967         cast<llvm::InvokeInst>(callSite.getInstruction());
1968       newCall = llvm::InvokeInst::Create(newFn,
1969                                          oldInvoke->getNormalDest(),
1970                                          oldInvoke->getUnwindDest(),
1971                                          newArgs, "",
1972                                          callSite.getInstruction());
1973     }
1974     newArgs.clear(); // for the next iteration
1975 
1976     if (!newCall->getType()->isVoidTy())
1977       newCall->takeName(callSite.getInstruction());
1978     newCall.setAttributes(
1979                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1980     newCall.setCallingConv(callSite.getCallingConv());
1981 
1982     // Finally, remove the old call, replacing any uses with the new one.
1983     if (!callSite->use_empty())
1984       callSite->replaceAllUsesWith(newCall.getInstruction());
1985 
1986     // Copy debug location attached to CI.
1987     if (!callSite->getDebugLoc().isUnknown())
1988       newCall->setDebugLoc(callSite->getDebugLoc());
1989     callSite->eraseFromParent();
1990   }
1991 }
1992 
1993 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1994 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1995 /// existing call uses of the old function in the module, this adjusts them to
1996 /// call the new function directly.
1997 ///
1998 /// This is not just a cleanup: the always_inline pass requires direct calls to
1999 /// functions to be able to inline them.  If there is a bitcast in the way, it
2000 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2001 /// run at -O0.
2002 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2003                                                       llvm::Function *NewFn) {
2004   // If we're redefining a global as a function, don't transform it.
2005   if (!isa<llvm::Function>(Old)) return;
2006 
2007   replaceUsesOfNonProtoConstant(Old, NewFn);
2008 }
2009 
2010 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2011   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2012   // If we have a definition, this might be a deferred decl. If the
2013   // instantiation is explicit, make sure we emit it at the end.
2014   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2015     GetAddrOfGlobalVar(VD);
2016 
2017   EmitTopLevelDecl(VD);
2018 }
2019 
2020 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2021   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2022 
2023   // Compute the function info and LLVM type.
2024   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2025   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2026 
2027   // Get or create the prototype for the function.
2028   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2029 
2030   // Strip off a bitcast if we got one back.
2031   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2032     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2033     Entry = CE->getOperand(0);
2034   }
2035 
2036 
2037   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2038     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2039 
2040     // If the types mismatch then we have to rewrite the definition.
2041     assert(OldFn->isDeclaration() &&
2042            "Shouldn't replace non-declaration");
2043 
2044     // F is the Function* for the one with the wrong type, we must make a new
2045     // Function* and update everything that used F (a declaration) with the new
2046     // Function* (which will be a definition).
2047     //
2048     // This happens if there is a prototype for a function
2049     // (e.g. "int f()") and then a definition of a different type
2050     // (e.g. "int f(int x)").  Move the old function aside so that it
2051     // doesn't interfere with GetAddrOfFunction.
2052     OldFn->setName(StringRef());
2053     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2054 
2055     // This might be an implementation of a function without a
2056     // prototype, in which case, try to do special replacement of
2057     // calls which match the new prototype.  The really key thing here
2058     // is that we also potentially drop arguments from the call site
2059     // so as to make a direct call, which makes the inliner happier
2060     // and suppresses a number of optimizer warnings (!) about
2061     // dropping arguments.
2062     if (!OldFn->use_empty()) {
2063       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2064       OldFn->removeDeadConstantUsers();
2065     }
2066 
2067     // Replace uses of F with the Function we will endow with a body.
2068     if (!Entry->use_empty()) {
2069       llvm::Constant *NewPtrForOldDecl =
2070         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2071       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2072     }
2073 
2074     // Ok, delete the old function now, which is dead.
2075     OldFn->eraseFromParent();
2076 
2077     Entry = NewFn;
2078   }
2079 
2080   // We need to set linkage and visibility on the function before
2081   // generating code for it because various parts of IR generation
2082   // want to propagate this information down (e.g. to local static
2083   // declarations).
2084   llvm::Function *Fn = cast<llvm::Function>(Entry);
2085   setFunctionLinkage(GD, Fn);
2086 
2087   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2088   setGlobalVisibility(Fn, D);
2089 
2090   MaybeHandleStaticInExternC(D, Fn);
2091 
2092   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2093 
2094   SetFunctionDefinitionAttributes(D, Fn);
2095   SetLLVMFunctionAttributesForDefinition(D, Fn);
2096 
2097   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2098     AddGlobalCtor(Fn, CA->getPriority());
2099   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2100     AddGlobalDtor(Fn, DA->getPriority());
2101   if (D->hasAttr<AnnotateAttr>())
2102     AddGlobalAnnotations(D, Fn);
2103 }
2104 
2105 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2106   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2107   const AliasAttr *AA = D->getAttr<AliasAttr>();
2108   assert(AA && "Not an alias?");
2109 
2110   StringRef MangledName = getMangledName(GD);
2111 
2112   // If there is a definition in the module, then it wins over the alias.
2113   // This is dubious, but allow it to be safe.  Just ignore the alias.
2114   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2115   if (Entry && !Entry->isDeclaration())
2116     return;
2117 
2118   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2119 
2120   // Create a reference to the named value.  This ensures that it is emitted
2121   // if a deferred decl.
2122   llvm::Constant *Aliasee;
2123   if (isa<llvm::FunctionType>(DeclTy))
2124     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2125                                       /*ForVTable=*/false);
2126   else
2127     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2128                                     llvm::PointerType::getUnqual(DeclTy), 0);
2129 
2130   // Create the new alias itself, but don't set a name yet.
2131   llvm::GlobalValue *GA =
2132     new llvm::GlobalAlias(Aliasee->getType(),
2133                           llvm::Function::ExternalLinkage,
2134                           "", Aliasee, &getModule());
2135 
2136   if (Entry) {
2137     assert(Entry->isDeclaration());
2138 
2139     // If there is a declaration in the module, then we had an extern followed
2140     // by the alias, as in:
2141     //   extern int test6();
2142     //   ...
2143     //   int test6() __attribute__((alias("test7")));
2144     //
2145     // Remove it and replace uses of it with the alias.
2146     GA->takeName(Entry);
2147 
2148     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2149                                                           Entry->getType()));
2150     Entry->eraseFromParent();
2151   } else {
2152     GA->setName(MangledName);
2153   }
2154 
2155   // Set attributes which are particular to an alias; this is a
2156   // specialization of the attributes which may be set on a global
2157   // variable/function.
2158   if (D->hasAttr<DLLExportAttr>()) {
2159     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2160       // The dllexport attribute is ignored for undefined symbols.
2161       if (FD->hasBody())
2162         GA->setLinkage(llvm::Function::DLLExportLinkage);
2163     } else {
2164       GA->setLinkage(llvm::Function::DLLExportLinkage);
2165     }
2166   } else if (D->hasAttr<WeakAttr>() ||
2167              D->hasAttr<WeakRefAttr>() ||
2168              D->isWeakImported()) {
2169     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2170   }
2171 
2172   SetCommonAttributes(D, GA);
2173 }
2174 
2175 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2176                                             ArrayRef<llvm::Type*> Tys) {
2177   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2178                                          Tys);
2179 }
2180 
2181 static llvm::StringMapEntry<llvm::Constant*> &
2182 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2183                          const StringLiteral *Literal,
2184                          bool TargetIsLSB,
2185                          bool &IsUTF16,
2186                          unsigned &StringLength) {
2187   StringRef String = Literal->getString();
2188   unsigned NumBytes = String.size();
2189 
2190   // Check for simple case.
2191   if (!Literal->containsNonAsciiOrNull()) {
2192     StringLength = NumBytes;
2193     return Map.GetOrCreateValue(String);
2194   }
2195 
2196   // Otherwise, convert the UTF8 literals into a string of shorts.
2197   IsUTF16 = true;
2198 
2199   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2200   const UTF8 *FromPtr = (const UTF8 *)String.data();
2201   UTF16 *ToPtr = &ToBuf[0];
2202 
2203   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2204                            &ToPtr, ToPtr + NumBytes,
2205                            strictConversion);
2206 
2207   // ConvertUTF8toUTF16 returns the length in ToPtr.
2208   StringLength = ToPtr - &ToBuf[0];
2209 
2210   // Add an explicit null.
2211   *ToPtr = 0;
2212   return Map.
2213     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2214                                (StringLength + 1) * 2));
2215 }
2216 
2217 static llvm::StringMapEntry<llvm::Constant*> &
2218 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2219                        const StringLiteral *Literal,
2220                        unsigned &StringLength) {
2221   StringRef String = Literal->getString();
2222   StringLength = String.size();
2223   return Map.GetOrCreateValue(String);
2224 }
2225 
2226 llvm::Constant *
2227 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2228   unsigned StringLength = 0;
2229   bool isUTF16 = false;
2230   llvm::StringMapEntry<llvm::Constant*> &Entry =
2231     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2232                              getDataLayout().isLittleEndian(),
2233                              isUTF16, StringLength);
2234 
2235   if (llvm::Constant *C = Entry.getValue())
2236     return C;
2237 
2238   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2239   llvm::Constant *Zeros[] = { Zero, Zero };
2240   llvm::Value *V;
2241 
2242   // If we don't already have it, get __CFConstantStringClassReference.
2243   if (!CFConstantStringClassRef) {
2244     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2245     Ty = llvm::ArrayType::get(Ty, 0);
2246     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2247                                            "__CFConstantStringClassReference");
2248     // Decay array -> ptr
2249     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2250     CFConstantStringClassRef = V;
2251   }
2252   else
2253     V = CFConstantStringClassRef;
2254 
2255   QualType CFTy = getContext().getCFConstantStringType();
2256 
2257   llvm::StructType *STy =
2258     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2259 
2260   llvm::Constant *Fields[4];
2261 
2262   // Class pointer.
2263   Fields[0] = cast<llvm::ConstantExpr>(V);
2264 
2265   // Flags.
2266   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2267   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2268     llvm::ConstantInt::get(Ty, 0x07C8);
2269 
2270   // String pointer.
2271   llvm::Constant *C = 0;
2272   if (isUTF16) {
2273     ArrayRef<uint16_t> Arr =
2274       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2275                                      const_cast<char *>(Entry.getKey().data())),
2276                                    Entry.getKey().size() / 2);
2277     C = llvm::ConstantDataArray::get(VMContext, Arr);
2278   } else {
2279     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2280   }
2281 
2282   llvm::GlobalValue::LinkageTypes Linkage;
2283   if (isUTF16)
2284     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2285     Linkage = llvm::GlobalValue::InternalLinkage;
2286   else
2287     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2288     // when using private linkage. It is not clear if this is a bug in ld
2289     // or a reasonable new restriction.
2290     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2291 
2292   // Note: -fwritable-strings doesn't make the backing store strings of
2293   // CFStrings writable. (See <rdar://problem/10657500>)
2294   llvm::GlobalVariable *GV =
2295     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2296                              Linkage, C, ".str");
2297   GV->setUnnamedAddr(true);
2298   // Don't enforce the target's minimum global alignment, since the only use
2299   // of the string is via this class initializer.
2300   if (isUTF16) {
2301     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2302     GV->setAlignment(Align.getQuantity());
2303   } else {
2304     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2305     GV->setAlignment(Align.getQuantity());
2306   }
2307 
2308   // String.
2309   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2310 
2311   if (isUTF16)
2312     // Cast the UTF16 string to the correct type.
2313     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2314 
2315   // String length.
2316   Ty = getTypes().ConvertType(getContext().LongTy);
2317   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2318 
2319   // The struct.
2320   C = llvm::ConstantStruct::get(STy, Fields);
2321   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2322                                 llvm::GlobalVariable::PrivateLinkage, C,
2323                                 "_unnamed_cfstring_");
2324   if (const char *Sect = getTarget().getCFStringSection())
2325     GV->setSection(Sect);
2326   Entry.setValue(GV);
2327 
2328   return GV;
2329 }
2330 
2331 static RecordDecl *
2332 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2333                  DeclContext *DC, IdentifierInfo *Id) {
2334   SourceLocation Loc;
2335   if (Ctx.getLangOpts().CPlusPlus)
2336     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2337   else
2338     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2339 }
2340 
2341 llvm::Constant *
2342 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2343   unsigned StringLength = 0;
2344   llvm::StringMapEntry<llvm::Constant*> &Entry =
2345     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2346 
2347   if (llvm::Constant *C = Entry.getValue())
2348     return C;
2349 
2350   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2351   llvm::Constant *Zeros[] = { Zero, Zero };
2352   llvm::Value *V;
2353   // If we don't already have it, get _NSConstantStringClassReference.
2354   if (!ConstantStringClassRef) {
2355     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2356     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2357     llvm::Constant *GV;
2358     if (LangOpts.ObjCRuntime.isNonFragile()) {
2359       std::string str =
2360         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2361                             : "OBJC_CLASS_$_" + StringClass;
2362       GV = getObjCRuntime().GetClassGlobal(str);
2363       // Make sure the result is of the correct type.
2364       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2365       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2366       ConstantStringClassRef = V;
2367     } else {
2368       std::string str =
2369         StringClass.empty() ? "_NSConstantStringClassReference"
2370                             : "_" + StringClass + "ClassReference";
2371       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2372       GV = CreateRuntimeVariable(PTy, str);
2373       // Decay array -> ptr
2374       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2375       ConstantStringClassRef = V;
2376     }
2377   }
2378   else
2379     V = ConstantStringClassRef;
2380 
2381   if (!NSConstantStringType) {
2382     // Construct the type for a constant NSString.
2383     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2384                                      Context.getTranslationUnitDecl(),
2385                                    &Context.Idents.get("__builtin_NSString"));
2386     D->startDefinition();
2387 
2388     QualType FieldTypes[3];
2389 
2390     // const int *isa;
2391     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2392     // const char *str;
2393     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2394     // unsigned int length;
2395     FieldTypes[2] = Context.UnsignedIntTy;
2396 
2397     // Create fields
2398     for (unsigned i = 0; i < 3; ++i) {
2399       FieldDecl *Field = FieldDecl::Create(Context, D,
2400                                            SourceLocation(),
2401                                            SourceLocation(), 0,
2402                                            FieldTypes[i], /*TInfo=*/0,
2403                                            /*BitWidth=*/0,
2404                                            /*Mutable=*/false,
2405                                            ICIS_NoInit);
2406       Field->setAccess(AS_public);
2407       D->addDecl(Field);
2408     }
2409 
2410     D->completeDefinition();
2411     QualType NSTy = Context.getTagDeclType(D);
2412     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2413   }
2414 
2415   llvm::Constant *Fields[3];
2416 
2417   // Class pointer.
2418   Fields[0] = cast<llvm::ConstantExpr>(V);
2419 
2420   // String pointer.
2421   llvm::Constant *C =
2422     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2423 
2424   llvm::GlobalValue::LinkageTypes Linkage;
2425   bool isConstant;
2426   Linkage = llvm::GlobalValue::PrivateLinkage;
2427   isConstant = !LangOpts.WritableStrings;
2428 
2429   llvm::GlobalVariable *GV =
2430   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2431                            ".str");
2432   GV->setUnnamedAddr(true);
2433   // Don't enforce the target's minimum global alignment, since the only use
2434   // of the string is via this class initializer.
2435   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2436   GV->setAlignment(Align.getQuantity());
2437   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2438 
2439   // String length.
2440   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2441   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2442 
2443   // The struct.
2444   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2445   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2446                                 llvm::GlobalVariable::PrivateLinkage, C,
2447                                 "_unnamed_nsstring_");
2448   // FIXME. Fix section.
2449   if (const char *Sect =
2450         LangOpts.ObjCRuntime.isNonFragile()
2451           ? getTarget().getNSStringNonFragileABISection()
2452           : getTarget().getNSStringSection())
2453     GV->setSection(Sect);
2454   Entry.setValue(GV);
2455 
2456   return GV;
2457 }
2458 
2459 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2460   if (ObjCFastEnumerationStateType.isNull()) {
2461     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2462                                      Context.getTranslationUnitDecl(),
2463                       &Context.Idents.get("__objcFastEnumerationState"));
2464     D->startDefinition();
2465 
2466     QualType FieldTypes[] = {
2467       Context.UnsignedLongTy,
2468       Context.getPointerType(Context.getObjCIdType()),
2469       Context.getPointerType(Context.UnsignedLongTy),
2470       Context.getConstantArrayType(Context.UnsignedLongTy,
2471                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2472     };
2473 
2474     for (size_t i = 0; i < 4; ++i) {
2475       FieldDecl *Field = FieldDecl::Create(Context,
2476                                            D,
2477                                            SourceLocation(),
2478                                            SourceLocation(), 0,
2479                                            FieldTypes[i], /*TInfo=*/0,
2480                                            /*BitWidth=*/0,
2481                                            /*Mutable=*/false,
2482                                            ICIS_NoInit);
2483       Field->setAccess(AS_public);
2484       D->addDecl(Field);
2485     }
2486 
2487     D->completeDefinition();
2488     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2489   }
2490 
2491   return ObjCFastEnumerationStateType;
2492 }
2493 
2494 llvm::Constant *
2495 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2496   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2497 
2498   // Don't emit it as the address of the string, emit the string data itself
2499   // as an inline array.
2500   if (E->getCharByteWidth() == 1) {
2501     SmallString<64> Str(E->getString());
2502 
2503     // Resize the string to the right size, which is indicated by its type.
2504     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2505     Str.resize(CAT->getSize().getZExtValue());
2506     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2507   }
2508 
2509   llvm::ArrayType *AType =
2510     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2511   llvm::Type *ElemTy = AType->getElementType();
2512   unsigned NumElements = AType->getNumElements();
2513 
2514   // Wide strings have either 2-byte or 4-byte elements.
2515   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2516     SmallVector<uint16_t, 32> Elements;
2517     Elements.reserve(NumElements);
2518 
2519     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2520       Elements.push_back(E->getCodeUnit(i));
2521     Elements.resize(NumElements);
2522     return llvm::ConstantDataArray::get(VMContext, Elements);
2523   }
2524 
2525   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2526   SmallVector<uint32_t, 32> Elements;
2527   Elements.reserve(NumElements);
2528 
2529   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2530     Elements.push_back(E->getCodeUnit(i));
2531   Elements.resize(NumElements);
2532   return llvm::ConstantDataArray::get(VMContext, Elements);
2533 }
2534 
2535 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2536 /// constant array for the given string literal.
2537 llvm::Constant *
2538 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2539   CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2540   if (S->isAscii() || S->isUTF8()) {
2541     SmallString<64> Str(S->getString());
2542 
2543     // Resize the string to the right size, which is indicated by its type.
2544     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2545     Str.resize(CAT->getSize().getZExtValue());
2546     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2547   }
2548 
2549   // FIXME: the following does not memoize wide strings.
2550   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2551   llvm::GlobalVariable *GV =
2552     new llvm::GlobalVariable(getModule(),C->getType(),
2553                              !LangOpts.WritableStrings,
2554                              llvm::GlobalValue::PrivateLinkage,
2555                              C,".str");
2556 
2557   GV->setAlignment(Align.getQuantity());
2558   GV->setUnnamedAddr(true);
2559   return GV;
2560 }
2561 
2562 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2563 /// array for the given ObjCEncodeExpr node.
2564 llvm::Constant *
2565 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2566   std::string Str;
2567   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2568 
2569   return GetAddrOfConstantCString(Str);
2570 }
2571 
2572 
2573 /// GenerateWritableString -- Creates storage for a string literal.
2574 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2575                                              bool constant,
2576                                              CodeGenModule &CGM,
2577                                              const char *GlobalName,
2578                                              unsigned Alignment) {
2579   // Create Constant for this string literal. Don't add a '\0'.
2580   llvm::Constant *C =
2581       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2582 
2583   // Create a global variable for this string
2584   llvm::GlobalVariable *GV =
2585     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2586                              llvm::GlobalValue::PrivateLinkage,
2587                              C, GlobalName);
2588   GV->setAlignment(Alignment);
2589   GV->setUnnamedAddr(true);
2590   return GV;
2591 }
2592 
2593 /// GetAddrOfConstantString - Returns a pointer to a character array
2594 /// containing the literal. This contents are exactly that of the
2595 /// given string, i.e. it will not be null terminated automatically;
2596 /// see GetAddrOfConstantCString. Note that whether the result is
2597 /// actually a pointer to an LLVM constant depends on
2598 /// Feature.WriteableStrings.
2599 ///
2600 /// The result has pointer to array type.
2601 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2602                                                        const char *GlobalName,
2603                                                        unsigned Alignment) {
2604   // Get the default prefix if a name wasn't specified.
2605   if (!GlobalName)
2606     GlobalName = ".str";
2607 
2608   if (Alignment == 0)
2609     Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2610       .getQuantity();
2611 
2612   // Don't share any string literals if strings aren't constant.
2613   if (LangOpts.WritableStrings)
2614     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2615 
2616   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2617     ConstantStringMap.GetOrCreateValue(Str);
2618 
2619   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2620     if (Alignment > GV->getAlignment()) {
2621       GV->setAlignment(Alignment);
2622     }
2623     return GV;
2624   }
2625 
2626   // Create a global variable for this.
2627   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2628                                                    Alignment);
2629   Entry.setValue(GV);
2630   return GV;
2631 }
2632 
2633 /// GetAddrOfConstantCString - Returns a pointer to a character
2634 /// array containing the literal and a terminating '\0'
2635 /// character. The result has pointer to array type.
2636 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2637                                                         const char *GlobalName,
2638                                                         unsigned Alignment) {
2639   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2640   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2641 }
2642 
2643 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
2644     const MaterializeTemporaryExpr *E, const Expr *Init) {
2645   assert((E->getStorageDuration() == SD_Static ||
2646           E->getStorageDuration() == SD_Thread) && "not a global temporary");
2647   const VarDecl *VD = cast<VarDecl>(E->getExtendingDecl());
2648 
2649   // If we're not materializing a subobject of the temporary, keep the
2650   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
2651   QualType MaterializedType = Init->getType();
2652   if (Init == E->GetTemporaryExpr())
2653     MaterializedType = E->getType();
2654 
2655   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
2656   if (Slot)
2657     return Slot;
2658 
2659   // FIXME: If an externally-visible declaration extends multiple temporaries,
2660   // we need to give each temporary the same name in every translation unit (and
2661   // we also need to make the temporaries externally-visible).
2662   SmallString<256> Name;
2663   llvm::raw_svector_ostream Out(Name);
2664   getCXXABI().getMangleContext().mangleReferenceTemporary(VD, Out);
2665   Out.flush();
2666 
2667   APValue *Value = 0;
2668   if (E->getStorageDuration() == SD_Static) {
2669     // We might have a cached constant initializer for this temporary. Note
2670     // that this might have a different value from the value computed by
2671     // evaluating the initializer if the surrounding constant expression
2672     // modifies the temporary.
2673     Value = getContext().getMaterializedTemporaryValue(E, false);
2674     if (Value && Value->isUninit())
2675       Value = 0;
2676   }
2677 
2678   // Try evaluating it now, it might have a constant initializer.
2679   Expr::EvalResult EvalResult;
2680   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
2681       !EvalResult.hasSideEffects())
2682     Value = &EvalResult.Val;
2683 
2684   llvm::Constant *InitialValue = 0;
2685   bool Constant = false;
2686   llvm::Type *Type;
2687   if (Value) {
2688     // The temporary has a constant initializer, use it.
2689     InitialValue = EmitConstantValue(*Value, MaterializedType, 0);
2690     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
2691     Type = InitialValue->getType();
2692   } else {
2693     // No initializer, the initialization will be provided when we
2694     // initialize the declaration which performed lifetime extension.
2695     Type = getTypes().ConvertTypeForMem(MaterializedType);
2696   }
2697 
2698   // Create a global variable for this lifetime-extended temporary.
2699   llvm::GlobalVariable *GV =
2700     new llvm::GlobalVariable(getModule(), Type, Constant,
2701                              llvm::GlobalValue::PrivateLinkage,
2702                              InitialValue, Name.c_str());
2703   GV->setAlignment(
2704       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
2705   if (VD->getTLSKind())
2706     setTLSMode(GV, *VD);
2707   Slot = GV;
2708   return GV;
2709 }
2710 
2711 /// EmitObjCPropertyImplementations - Emit information for synthesized
2712 /// properties for an implementation.
2713 void CodeGenModule::EmitObjCPropertyImplementations(const
2714                                                     ObjCImplementationDecl *D) {
2715   for (ObjCImplementationDecl::propimpl_iterator
2716          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2717     ObjCPropertyImplDecl *PID = *i;
2718 
2719     // Dynamic is just for type-checking.
2720     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2721       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2722 
2723       // Determine which methods need to be implemented, some may have
2724       // been overridden. Note that ::isPropertyAccessor is not the method
2725       // we want, that just indicates if the decl came from a
2726       // property. What we want to know is if the method is defined in
2727       // this implementation.
2728       if (!D->getInstanceMethod(PD->getGetterName()))
2729         CodeGenFunction(*this).GenerateObjCGetter(
2730                                  const_cast<ObjCImplementationDecl *>(D), PID);
2731       if (!PD->isReadOnly() &&
2732           !D->getInstanceMethod(PD->getSetterName()))
2733         CodeGenFunction(*this).GenerateObjCSetter(
2734                                  const_cast<ObjCImplementationDecl *>(D), PID);
2735     }
2736   }
2737 }
2738 
2739 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2740   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2741   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2742        ivar; ivar = ivar->getNextIvar())
2743     if (ivar->getType().isDestructedType())
2744       return true;
2745 
2746   return false;
2747 }
2748 
2749 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2750 /// for an implementation.
2751 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2752   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2753   if (needsDestructMethod(D)) {
2754     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2755     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2756     ObjCMethodDecl *DTORMethod =
2757       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2758                              cxxSelector, getContext().VoidTy, 0, D,
2759                              /*isInstance=*/true, /*isVariadic=*/false,
2760                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2761                              /*isDefined=*/false, ObjCMethodDecl::Required);
2762     D->addInstanceMethod(DTORMethod);
2763     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2764     D->setHasDestructors(true);
2765   }
2766 
2767   // If the implementation doesn't have any ivar initializers, we don't need
2768   // a .cxx_construct.
2769   if (D->getNumIvarInitializers() == 0)
2770     return;
2771 
2772   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2773   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2774   // The constructor returns 'self'.
2775   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2776                                                 D->getLocation(),
2777                                                 D->getLocation(),
2778                                                 cxxSelector,
2779                                                 getContext().getObjCIdType(), 0,
2780                                                 D, /*isInstance=*/true,
2781                                                 /*isVariadic=*/false,
2782                                                 /*isPropertyAccessor=*/true,
2783                                                 /*isImplicitlyDeclared=*/true,
2784                                                 /*isDefined=*/false,
2785                                                 ObjCMethodDecl::Required);
2786   D->addInstanceMethod(CTORMethod);
2787   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2788   D->setHasNonZeroConstructors(true);
2789 }
2790 
2791 /// EmitNamespace - Emit all declarations in a namespace.
2792 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2793   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2794        I != E; ++I)
2795     EmitTopLevelDecl(*I);
2796 }
2797 
2798 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2799 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2800   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2801       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2802     ErrorUnsupported(LSD, "linkage spec");
2803     return;
2804   }
2805 
2806   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2807        I != E; ++I) {
2808     // Meta-data for ObjC class includes references to implemented methods.
2809     // Generate class's method definitions first.
2810     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2811       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2812            MEnd = OID->meth_end();
2813            M != MEnd; ++M)
2814         EmitTopLevelDecl(*M);
2815     }
2816     EmitTopLevelDecl(*I);
2817   }
2818 }
2819 
2820 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2821 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2822   // If an error has occurred, stop code generation, but continue
2823   // parsing and semantic analysis (to ensure all warnings and errors
2824   // are emitted).
2825   if (Diags.hasErrorOccurred())
2826     return;
2827 
2828   // Ignore dependent declarations.
2829   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2830     return;
2831 
2832   switch (D->getKind()) {
2833   case Decl::CXXConversion:
2834   case Decl::CXXMethod:
2835   case Decl::Function:
2836     // Skip function templates
2837     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2838         cast<FunctionDecl>(D)->isLateTemplateParsed())
2839       return;
2840 
2841     EmitGlobal(cast<FunctionDecl>(D));
2842     break;
2843 
2844   case Decl::Var:
2845     // Skip variable templates
2846     if (cast<VarDecl>(D)->getDescribedVarTemplate())
2847       return;
2848   case Decl::VarTemplateSpecialization:
2849     EmitGlobal(cast<VarDecl>(D));
2850     break;
2851 
2852   // Indirect fields from global anonymous structs and unions can be
2853   // ignored; only the actual variable requires IR gen support.
2854   case Decl::IndirectField:
2855     break;
2856 
2857   // C++ Decls
2858   case Decl::Namespace:
2859     EmitNamespace(cast<NamespaceDecl>(D));
2860     break;
2861     // No code generation needed.
2862   case Decl::UsingShadow:
2863   case Decl::Using:
2864   case Decl::ClassTemplate:
2865   case Decl::VarTemplate:
2866   case Decl::VarTemplatePartialSpecialization:
2867   case Decl::FunctionTemplate:
2868   case Decl::TypeAliasTemplate:
2869   case Decl::Block:
2870   case Decl::Empty:
2871     break;
2872   case Decl::NamespaceAlias:
2873     if (CGDebugInfo *DI = getModuleDebugInfo())
2874         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2875     return;
2876   case Decl::UsingDirective: // using namespace X; [C++]
2877     if (CGDebugInfo *DI = getModuleDebugInfo())
2878       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2879     return;
2880   case Decl::CXXConstructor:
2881     // Skip function templates
2882     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2883         cast<FunctionDecl>(D)->isLateTemplateParsed())
2884       return;
2885 
2886     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2887     break;
2888   case Decl::CXXDestructor:
2889     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2890       return;
2891     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2892     break;
2893 
2894   case Decl::StaticAssert:
2895     // Nothing to do.
2896     break;
2897 
2898   // Objective-C Decls
2899 
2900   // Forward declarations, no (immediate) code generation.
2901   case Decl::ObjCInterface:
2902   case Decl::ObjCCategory:
2903     break;
2904 
2905   case Decl::ObjCProtocol: {
2906     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2907     if (Proto->isThisDeclarationADefinition())
2908       ObjCRuntime->GenerateProtocol(Proto);
2909     break;
2910   }
2911 
2912   case Decl::ObjCCategoryImpl:
2913     // Categories have properties but don't support synthesize so we
2914     // can ignore them here.
2915     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2916     break;
2917 
2918   case Decl::ObjCImplementation: {
2919     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2920     EmitObjCPropertyImplementations(OMD);
2921     EmitObjCIvarInitializations(OMD);
2922     ObjCRuntime->GenerateClass(OMD);
2923     // Emit global variable debug information.
2924     if (CGDebugInfo *DI = getModuleDebugInfo())
2925       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2926         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2927             OMD->getClassInterface()), OMD->getLocation());
2928     break;
2929   }
2930   case Decl::ObjCMethod: {
2931     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2932     // If this is not a prototype, emit the body.
2933     if (OMD->getBody())
2934       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2935     break;
2936   }
2937   case Decl::ObjCCompatibleAlias:
2938     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2939     break;
2940 
2941   case Decl::LinkageSpec:
2942     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2943     break;
2944 
2945   case Decl::FileScopeAsm: {
2946     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2947     StringRef AsmString = AD->getAsmString()->getString();
2948 
2949     const std::string &S = getModule().getModuleInlineAsm();
2950     if (S.empty())
2951       getModule().setModuleInlineAsm(AsmString);
2952     else if (S.end()[-1] == '\n')
2953       getModule().setModuleInlineAsm(S + AsmString.str());
2954     else
2955       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2956     break;
2957   }
2958 
2959   case Decl::Import: {
2960     ImportDecl *Import = cast<ImportDecl>(D);
2961 
2962     // Ignore import declarations that come from imported modules.
2963     if (clang::Module *Owner = Import->getOwningModule()) {
2964       if (getLangOpts().CurrentModule.empty() ||
2965           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2966         break;
2967     }
2968 
2969     ImportedModules.insert(Import->getImportedModule());
2970     break;
2971  }
2972 
2973   default:
2974     // Make sure we handled everything we should, every other kind is a
2975     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2976     // function. Need to recode Decl::Kind to do that easily.
2977     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2978   }
2979 }
2980 
2981 /// Turns the given pointer into a constant.
2982 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2983                                           const void *Ptr) {
2984   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2985   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2986   return llvm::ConstantInt::get(i64, PtrInt);
2987 }
2988 
2989 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2990                                    llvm::NamedMDNode *&GlobalMetadata,
2991                                    GlobalDecl D,
2992                                    llvm::GlobalValue *Addr) {
2993   if (!GlobalMetadata)
2994     GlobalMetadata =
2995       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2996 
2997   // TODO: should we report variant information for ctors/dtors?
2998   llvm::Value *Ops[] = {
2999     Addr,
3000     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3001   };
3002   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3003 }
3004 
3005 /// For each function which is declared within an extern "C" region and marked
3006 /// as 'used', but has internal linkage, create an alias from the unmangled
3007 /// name to the mangled name if possible. People expect to be able to refer
3008 /// to such functions with an unmangled name from inline assembly within the
3009 /// same translation unit.
3010 void CodeGenModule::EmitStaticExternCAliases() {
3011   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3012                                   E = StaticExternCValues.end();
3013        I != E; ++I) {
3014     IdentifierInfo *Name = I->first;
3015     llvm::GlobalValue *Val = I->second;
3016     if (Val && !getModule().getNamedValue(Name->getName()))
3017       AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3018                                           Name->getName(), Val, &getModule()));
3019   }
3020 }
3021 
3022 /// Emits metadata nodes associating all the global values in the
3023 /// current module with the Decls they came from.  This is useful for
3024 /// projects using IR gen as a subroutine.
3025 ///
3026 /// Since there's currently no way to associate an MDNode directly
3027 /// with an llvm::GlobalValue, we create a global named metadata
3028 /// with the name 'clang.global.decl.ptrs'.
3029 void CodeGenModule::EmitDeclMetadata() {
3030   llvm::NamedMDNode *GlobalMetadata = 0;
3031 
3032   // StaticLocalDeclMap
3033   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3034          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3035        I != E; ++I) {
3036     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3037     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3038   }
3039 }
3040 
3041 /// Emits metadata nodes for all the local variables in the current
3042 /// function.
3043 void CodeGenFunction::EmitDeclMetadata() {
3044   if (LocalDeclMap.empty()) return;
3045 
3046   llvm::LLVMContext &Context = getLLVMContext();
3047 
3048   // Find the unique metadata ID for this name.
3049   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3050 
3051   llvm::NamedMDNode *GlobalMetadata = 0;
3052 
3053   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3054          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3055     const Decl *D = I->first;
3056     llvm::Value *Addr = I->second;
3057 
3058     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3059       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3060       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3061     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3062       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3063       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3064     }
3065   }
3066 }
3067 
3068 void CodeGenModule::EmitCoverageFile() {
3069   if (!getCodeGenOpts().CoverageFile.empty()) {
3070     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3071       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3072       llvm::LLVMContext &Ctx = TheModule.getContext();
3073       llvm::MDString *CoverageFile =
3074           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3075       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3076         llvm::MDNode *CU = CUNode->getOperand(i);
3077         llvm::Value *node[] = { CoverageFile, CU };
3078         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3079         GCov->addOperand(N);
3080       }
3081     }
3082   }
3083 }
3084 
3085 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3086                                                      QualType GuidType) {
3087   // Sema has checked that all uuid strings are of the form
3088   // "12345678-1234-1234-1234-1234567890ab".
3089   assert(Uuid.size() == 36);
3090   const char *Uuidstr = Uuid.data();
3091   for (int i = 0; i < 36; ++i) {
3092     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3093     else                                         assert(isHexDigit(Uuidstr[i]));
3094   }
3095 
3096   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3097   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3098   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3099   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3100 
3101   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3102   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3103   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3104   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3105   APValue& Arr = InitStruct.getStructField(3);
3106   Arr = APValue(APValue::UninitArray(), 8, 8);
3107   for (int t = 0; t < 8; ++t)
3108     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3109           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3110 
3111   return EmitConstantValue(InitStruct, GuidType);
3112 }
3113