xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d6b21e484241adc5d56770360806e52d073bb351)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/RecordLayout.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/Diagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Basic/ConvertUTF.h"
31 #include "llvm/CallingConv.h"
32 #include "llvm/Module.h"
33 #include "llvm/Intrinsics.h"
34 #include "llvm/LLVMContext.h"
35 #include "llvm/Target/TargetData.h"
36 #include "llvm/Support/ErrorHandling.h"
37 using namespace clang;
38 using namespace CodeGen;
39 
40 
41 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
42                              llvm::Module &M, const llvm::TargetData &TD,
43                              Diagnostic &diags)
44   : BlockModule(C, M, TD, Types, *this), Context(C),
45     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
46     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
47     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
48     MangleCtx(C), VtableInfo(*this), Runtime(0),
49     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
50     VMContext(M.getContext()) {
51 
52   if (!Features.ObjC1)
53     Runtime = 0;
54   else if (!Features.NeXTRuntime)
55     Runtime = CreateGNUObjCRuntime(*this);
56   else if (Features.ObjCNonFragileABI)
57     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
58   else
59     Runtime = CreateMacObjCRuntime(*this);
60 
61   // If debug info generation is enabled, create the CGDebugInfo object.
62   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
63 }
64 
65 CodeGenModule::~CodeGenModule() {
66   delete Runtime;
67   delete DebugInfo;
68 }
69 
70 void CodeGenModule::createObjCRuntime() {
71   if (!Features.NeXTRuntime)
72     Runtime = CreateGNUObjCRuntime(*this);
73   else if (Features.ObjCNonFragileABI)
74     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
75   else
76     Runtime = CreateMacObjCRuntime(*this);
77 }
78 
79 void CodeGenModule::Release() {
80   EmitDeferred();
81   EmitCXXGlobalInitFunc();
82   if (Runtime)
83     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
84       AddGlobalCtor(ObjCInitFunction);
85   EmitCtorList(GlobalCtors, "llvm.global_ctors");
86   EmitCtorList(GlobalDtors, "llvm.global_dtors");
87   EmitAnnotations();
88   EmitLLVMUsed();
89 }
90 
91 /// ErrorUnsupported - Print out an error that codegen doesn't support the
92 /// specified stmt yet.
93 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
94                                      bool OmitOnError) {
95   if (OmitOnError && getDiags().hasErrorOccurred())
96     return;
97   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                                "cannot compile this %0 yet");
99   std::string Msg = Type;
100   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
101     << Msg << S->getSourceRange();
102 }
103 
104 /// ErrorUnsupported - Print out an error that codegen doesn't support the
105 /// specified decl yet.
106 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
107                                      bool OmitOnError) {
108   if (OmitOnError && getDiags().hasErrorOccurred())
109     return;
110   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
111                                                "cannot compile this %0 yet");
112   std::string Msg = Type;
113   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
114 }
115 
116 LangOptions::VisibilityMode
117 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
118   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
119     if (VD->getStorageClass() == VarDecl::PrivateExtern)
120       return LangOptions::Hidden;
121 
122   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
123     switch (attr->getVisibility()) {
124     default: assert(0 && "Unknown visibility!");
125     case VisibilityAttr::DefaultVisibility:
126       return LangOptions::Default;
127     case VisibilityAttr::HiddenVisibility:
128       return LangOptions::Hidden;
129     case VisibilityAttr::ProtectedVisibility:
130       return LangOptions::Protected;
131     }
132   }
133 
134   return getLangOptions().getVisibilityMode();
135 }
136 
137 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
138                                         const Decl *D) const {
139   // Internal definitions always have default visibility.
140   if (GV->hasLocalLinkage()) {
141     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
142     return;
143   }
144 
145   switch (getDeclVisibilityMode(D)) {
146   default: assert(0 && "Unknown visibility!");
147   case LangOptions::Default:
148     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
149   case LangOptions::Hidden:
150     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
151   case LangOptions::Protected:
152     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
153   }
154 }
155 
156 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
157   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
158 
159   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
160     return getMangledCXXCtorName(D, GD.getCtorType());
161   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
162     return getMangledCXXDtorName(D, GD.getDtorType());
163 
164   return getMangledName(ND);
165 }
166 
167 /// \brief Retrieves the mangled name for the given declaration.
168 ///
169 /// If the given declaration requires a mangled name, returns an
170 /// const char* containing the mangled name.  Otherwise, returns
171 /// the unmangled name.
172 ///
173 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
174   if (!getMangleContext().shouldMangleDeclName(ND)) {
175     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
176     return ND->getNameAsCString();
177   }
178 
179   llvm::SmallString<256> Name;
180   getMangleContext().mangleName(ND, Name);
181   Name += '\0';
182   return UniqueMangledName(Name.begin(), Name.end());
183 }
184 
185 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
186                                              const char *NameEnd) {
187   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
188 
189   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
190 }
191 
192 /// AddGlobalCtor - Add a function to the list that will be called before
193 /// main() runs.
194 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
195   // FIXME: Type coercion of void()* types.
196   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
197 }
198 
199 /// AddGlobalDtor - Add a function to the list that will be called
200 /// when the module is unloaded.
201 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
202   // FIXME: Type coercion of void()* types.
203   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
204 }
205 
206 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
207   // Ctor function type is void()*.
208   llvm::FunctionType* CtorFTy =
209     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
210                             std::vector<const llvm::Type*>(),
211                             false);
212   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
213 
214   // Get the type of a ctor entry, { i32, void ()* }.
215   llvm::StructType* CtorStructTy =
216     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
217                           llvm::PointerType::getUnqual(CtorFTy), NULL);
218 
219   // Construct the constructor and destructor arrays.
220   std::vector<llvm::Constant*> Ctors;
221   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
222     std::vector<llvm::Constant*> S;
223     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
224                 I->second, false));
225     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
226     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
227   }
228 
229   if (!Ctors.empty()) {
230     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
231     new llvm::GlobalVariable(TheModule, AT, false,
232                              llvm::GlobalValue::AppendingLinkage,
233                              llvm::ConstantArray::get(AT, Ctors),
234                              GlobalName);
235   }
236 }
237 
238 void CodeGenModule::EmitAnnotations() {
239   if (Annotations.empty())
240     return;
241 
242   // Create a new global variable for the ConstantStruct in the Module.
243   llvm::Constant *Array =
244   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
245                                                 Annotations.size()),
246                            Annotations);
247   llvm::GlobalValue *gv =
248   new llvm::GlobalVariable(TheModule, Array->getType(), false,
249                            llvm::GlobalValue::AppendingLinkage, Array,
250                            "llvm.global.annotations");
251   gv->setSection("llvm.metadata");
252 }
253 
254 static CodeGenModule::GVALinkage
255 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
256                       const LangOptions &Features) {
257   // Everything located semantically within an anonymous namespace is
258   // always internal.
259   if (FD->isInAnonymousNamespace())
260     return CodeGenModule::GVA_Internal;
261 
262   // "static" functions get internal linkage.
263   if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD))
264     return CodeGenModule::GVA_Internal;
265 
266   // The kind of external linkage this function will have, if it is not
267   // inline or static.
268   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
269   if (Context.getLangOptions().CPlusPlus) {
270     TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind();
271 
272     if (TSK == TSK_ExplicitInstantiationDefinition) {
273       // If a function has been explicitly instantiated, then it should
274       // always have strong external linkage.
275       return CodeGenModule::GVA_StrongExternal;
276     }
277 
278     if (TSK == TSK_ImplicitInstantiation)
279       External = CodeGenModule::GVA_TemplateInstantiation;
280   }
281 
282   if (!FD->isInlined())
283     return External;
284 
285   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
286     // GNU or C99 inline semantics. Determine whether this symbol should be
287     // externally visible.
288     if (FD->isInlineDefinitionExternallyVisible())
289       return External;
290 
291     // C99 inline semantics, where the symbol is not externally visible.
292     return CodeGenModule::GVA_C99Inline;
293   }
294 
295   // C++0x [temp.explicit]p9:
296   //   [ Note: The intent is that an inline function that is the subject of
297   //   an explicit instantiation declaration will still be implicitly
298   //   instantiated when used so that the body can be considered for
299   //   inlining, but that no out-of-line copy of the inline function would be
300   //   generated in the translation unit. -- end note ]
301   if (FD->getTemplateSpecializationKind()
302                                        == TSK_ExplicitInstantiationDeclaration)
303     return CodeGenModule::GVA_C99Inline;
304 
305   return CodeGenModule::GVA_CXXInline;
306 }
307 
308 /// SetFunctionDefinitionAttributes - Set attributes for a global.
309 ///
310 /// FIXME: This is currently only done for aliases and functions, but not for
311 /// variables (these details are set in EmitGlobalVarDefinition for variables).
312 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
313                                                     llvm::GlobalValue *GV) {
314   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
315 
316   if (Linkage == GVA_Internal) {
317     GV->setLinkage(llvm::Function::InternalLinkage);
318   } else if (D->hasAttr<DLLExportAttr>()) {
319     GV->setLinkage(llvm::Function::DLLExportLinkage);
320   } else if (D->hasAttr<WeakAttr>()) {
321     GV->setLinkage(llvm::Function::WeakAnyLinkage);
322   } else if (Linkage == GVA_C99Inline) {
323     // In C99 mode, 'inline' functions are guaranteed to have a strong
324     // definition somewhere else, so we can use available_externally linkage.
325     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
326   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
327     // In C++, the compiler has to emit a definition in every translation unit
328     // that references the function.  We should use linkonce_odr because
329     // a) if all references in this translation unit are optimized away, we
330     // don't need to codegen it.  b) if the function persists, it needs to be
331     // merged with other definitions. c) C++ has the ODR, so we know the
332     // definition is dependable.
333     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
334   } else {
335     assert(Linkage == GVA_StrongExternal);
336     // Otherwise, we have strong external linkage.
337     GV->setLinkage(llvm::Function::ExternalLinkage);
338   }
339 
340   SetCommonAttributes(D, GV);
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
344                                               const CGFunctionInfo &Info,
345                                               llvm::Function *F) {
346   unsigned CallingConv;
347   AttributeListType AttributeList;
348   ConstructAttributeList(Info, D, AttributeList, CallingConv);
349   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
350                                           AttributeList.size()));
351   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
352 }
353 
354 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
355                                                            llvm::Function *F) {
356   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
357     F->addFnAttr(llvm::Attribute::NoUnwind);
358 
359   if (D->hasAttr<AlwaysInlineAttr>())
360     F->addFnAttr(llvm::Attribute::AlwaysInline);
361 
362   if (D->hasAttr<NoInlineAttr>())
363     F->addFnAttr(llvm::Attribute::NoInline);
364 
365   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
366     F->addFnAttr(llvm::Attribute::StackProtect);
367   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
368     F->addFnAttr(llvm::Attribute::StackProtectReq);
369 
370   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
371     unsigned width = Context.Target.getCharWidth();
372     F->setAlignment(AA->getAlignment() / width);
373     while ((AA = AA->getNext<AlignedAttr>()))
374       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
375   }
376   // C++ ABI requires 2-byte alignment for member functions.
377   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
378     F->setAlignment(2);
379 }
380 
381 void CodeGenModule::SetCommonAttributes(const Decl *D,
382                                         llvm::GlobalValue *GV) {
383   setGlobalVisibility(GV, D);
384 
385   if (D->hasAttr<UsedAttr>())
386     AddUsedGlobal(GV);
387 
388   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
389     GV->setSection(SA->getName());
390 
391   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
392 }
393 
394 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
395                                                   llvm::Function *F,
396                                                   const CGFunctionInfo &FI) {
397   SetLLVMFunctionAttributes(D, FI, F);
398   SetLLVMFunctionAttributesForDefinition(D, F);
399 
400   F->setLinkage(llvm::Function::InternalLinkage);
401 
402   SetCommonAttributes(D, F);
403 }
404 
405 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
406                                           llvm::Function *F,
407                                           bool IsIncompleteFunction) {
408   if (!IsIncompleteFunction)
409     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
410 
411   // Only a few attributes are set on declarations; these may later be
412   // overridden by a definition.
413 
414   if (FD->hasAttr<DLLImportAttr>()) {
415     F->setLinkage(llvm::Function::DLLImportLinkage);
416   } else if (FD->hasAttr<WeakAttr>() ||
417              FD->hasAttr<WeakImportAttr>()) {
418     // "extern_weak" is overloaded in LLVM; we probably should have
419     // separate linkage types for this.
420     F->setLinkage(llvm::Function::ExternalWeakLinkage);
421   } else {
422     F->setLinkage(llvm::Function::ExternalLinkage);
423   }
424 
425   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
426     F->setSection(SA->getName());
427 }
428 
429 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
430   assert(!GV->isDeclaration() &&
431          "Only globals with definition can force usage.");
432   LLVMUsed.push_back(GV);
433 }
434 
435 void CodeGenModule::EmitLLVMUsed() {
436   // Don't create llvm.used if there is no need.
437   if (LLVMUsed.empty())
438     return;
439 
440   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
441 
442   // Convert LLVMUsed to what ConstantArray needs.
443   std::vector<llvm::Constant*> UsedArray;
444   UsedArray.resize(LLVMUsed.size());
445   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
446     UsedArray[i] =
447      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
448                                       i8PTy);
449   }
450 
451   if (UsedArray.empty())
452     return;
453   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
454 
455   llvm::GlobalVariable *GV =
456     new llvm::GlobalVariable(getModule(), ATy, false,
457                              llvm::GlobalValue::AppendingLinkage,
458                              llvm::ConstantArray::get(ATy, UsedArray),
459                              "llvm.used");
460 
461   GV->setSection("llvm.metadata");
462 }
463 
464 void CodeGenModule::EmitDeferred() {
465   // Emit code for any potentially referenced deferred decls.  Since a
466   // previously unused static decl may become used during the generation of code
467   // for a static function, iterate until no  changes are made.
468   while (!DeferredDeclsToEmit.empty()) {
469     GlobalDecl D = DeferredDeclsToEmit.back();
470     DeferredDeclsToEmit.pop_back();
471 
472     // The mangled name for the decl must have been emitted in GlobalDeclMap.
473     // Look it up to see if it was defined with a stronger definition (e.g. an
474     // extern inline function with a strong function redefinition).  If so,
475     // just ignore the deferred decl.
476     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
477     assert(CGRef && "Deferred decl wasn't referenced?");
478 
479     if (!CGRef->isDeclaration())
480       continue;
481 
482     // Otherwise, emit the definition and move on to the next one.
483     EmitGlobalDefinition(D);
484   }
485 }
486 
487 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
488 /// annotation information for a given GlobalValue.  The annotation struct is
489 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
490 /// GlobalValue being annotated.  The second field is the constant string
491 /// created from the AnnotateAttr's annotation.  The third field is a constant
492 /// string containing the name of the translation unit.  The fourth field is
493 /// the line number in the file of the annotated value declaration.
494 ///
495 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
496 ///        appears to.
497 ///
498 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
499                                                 const AnnotateAttr *AA,
500                                                 unsigned LineNo) {
501   llvm::Module *M = &getModule();
502 
503   // get [N x i8] constants for the annotation string, and the filename string
504   // which are the 2nd and 3rd elements of the global annotation structure.
505   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
506   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
507                                                   AA->getAnnotation(), true);
508   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
509                                                   M->getModuleIdentifier(),
510                                                   true);
511 
512   // Get the two global values corresponding to the ConstantArrays we just
513   // created to hold the bytes of the strings.
514   llvm::GlobalValue *annoGV =
515     new llvm::GlobalVariable(*M, anno->getType(), false,
516                              llvm::GlobalValue::PrivateLinkage, anno,
517                              GV->getName());
518   // translation unit name string, emitted into the llvm.metadata section.
519   llvm::GlobalValue *unitGV =
520     new llvm::GlobalVariable(*M, unit->getType(), false,
521                              llvm::GlobalValue::PrivateLinkage, unit,
522                              ".str");
523 
524   // Create the ConstantStruct for the global annotation.
525   llvm::Constant *Fields[4] = {
526     llvm::ConstantExpr::getBitCast(GV, SBP),
527     llvm::ConstantExpr::getBitCast(annoGV, SBP),
528     llvm::ConstantExpr::getBitCast(unitGV, SBP),
529     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
530   };
531   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
532 }
533 
534 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
535   // Never defer when EmitAllDecls is specified or the decl has
536   // attribute used.
537   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
538     return false;
539 
540   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
541     // Constructors and destructors should never be deferred.
542     if (FD->hasAttr<ConstructorAttr>() ||
543         FD->hasAttr<DestructorAttr>())
544       return false;
545 
546     // The key function for a class must never be deferred.
547     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
548       const CXXRecordDecl *RD = MD->getParent();
549       if (MD->isOutOfLine() && RD->isDynamicClass()) {
550         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
551         if (KeyFunction &&
552             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
553           return false;
554       }
555     }
556 
557     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
558 
559     // static, static inline, always_inline, and extern inline functions can
560     // always be deferred.  Normal inline functions can be deferred in C99/C++.
561     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
562         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
563       return true;
564     return false;
565   }
566 
567   const VarDecl *VD = cast<VarDecl>(Global);
568   assert(VD->isFileVarDecl() && "Invalid decl");
569 
570   // We never want to defer structs that have non-trivial constructors or
571   // destructors.
572 
573   // FIXME: Handle references.
574   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
575     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
576       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
577         return false;
578     }
579   }
580 
581   // Static data may be deferred, but out-of-line static data members
582   // cannot be.
583   if (VD->getLinkage() == VarDecl::InternalLinkage ||
584       VD->isInAnonymousNamespace()) {
585     // Initializer has side effects?
586     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
587       return false;
588     return !(VD->isStaticDataMember() && VD->isOutOfLine());
589   }
590   return false;
591 }
592 
593 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
594   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
595 
596   // If this is an alias definition (which otherwise looks like a declaration)
597   // emit it now.
598   if (Global->hasAttr<AliasAttr>())
599     return EmitAliasDefinition(Global);
600 
601   // Ignore declarations, they will be emitted on their first use.
602   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
603     // Forward declarations are emitted lazily on first use.
604     if (!FD->isThisDeclarationADefinition())
605       return;
606   } else {
607     const VarDecl *VD = cast<VarDecl>(Global);
608     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
609 
610     if (getLangOptions().CPlusPlus && !VD->getInit()) {
611       // In C++, if this is marked "extern", defer code generation.
612       if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
613         return;
614 
615       // If this is a declaration of an explicit specialization of a static
616       // data member in a class template, don't emit it.
617       if (VD->isStaticDataMember() &&
618           VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
619         return;
620     }
621 
622     // In C, if this isn't a definition, defer code generation.
623     if (!getLangOptions().CPlusPlus && !VD->getInit())
624       return;
625   }
626 
627   // Defer code generation when possible if this is a static definition, inline
628   // function etc.  These we only want to emit if they are used.
629   if (MayDeferGeneration(Global)) {
630     // If the value has already been used, add it directly to the
631     // DeferredDeclsToEmit list.
632     const char *MangledName = getMangledName(GD);
633     if (GlobalDeclMap.count(MangledName))
634       DeferredDeclsToEmit.push_back(GD);
635     else {
636       // Otherwise, remember that we saw a deferred decl with this name.  The
637       // first use of the mangled name will cause it to move into
638       // DeferredDeclsToEmit.
639       DeferredDecls[MangledName] = GD;
640     }
641     return;
642   }
643 
644   // Otherwise emit the definition.
645   EmitGlobalDefinition(GD);
646 }
647 
648 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
649   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
650 
651   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
652                                  Context.getSourceManager(),
653                                  "Generating code for declaration");
654 
655   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
656     getVtableInfo().MaybeEmitVtable(GD);
657     if (MD->isVirtual() && MD->isOutOfLine() &&
658         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
659       if (isa<CXXDestructorDecl>(D)) {
660         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
661                            GD.getDtorType());
662         BuildThunksForVirtual(CanonGD);
663       } else {
664         BuildThunksForVirtual(MD->getCanonicalDecl());
665       }
666     }
667   }
668 
669   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
670     EmitCXXConstructor(CD, GD.getCtorType());
671   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
672     EmitCXXDestructor(DD, GD.getDtorType());
673   else if (isa<FunctionDecl>(D))
674     EmitGlobalFunctionDefinition(GD);
675   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
676     EmitGlobalVarDefinition(VD);
677   else {
678     assert(0 && "Invalid argument to EmitGlobalDefinition()");
679   }
680 }
681 
682 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
683 /// module, create and return an llvm Function with the specified type. If there
684 /// is something in the module with the specified name, return it potentially
685 /// bitcasted to the right type.
686 ///
687 /// If D is non-null, it specifies a decl that correspond to this.  This is used
688 /// to set the attributes on the function when it is first created.
689 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
690                                                        const llvm::Type *Ty,
691                                                        GlobalDecl D) {
692   // Lookup the entry, lazily creating it if necessary.
693   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
694   if (Entry) {
695     if (Entry->getType()->getElementType() == Ty)
696       return Entry;
697 
698     // Make sure the result is of the correct type.
699     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
700     return llvm::ConstantExpr::getBitCast(Entry, PTy);
701   }
702 
703   // This function doesn't have a complete type (for example, the return
704   // type is an incomplete struct). Use a fake type instead, and make
705   // sure not to try to set attributes.
706   bool IsIncompleteFunction = false;
707   if (!isa<llvm::FunctionType>(Ty)) {
708     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
709                                  std::vector<const llvm::Type*>(), false);
710     IsIncompleteFunction = true;
711   }
712   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
713                                              llvm::Function::ExternalLinkage,
714                                              "", &getModule());
715   F->setName(MangledName);
716   if (D.getDecl())
717     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
718                           IsIncompleteFunction);
719   Entry = F;
720 
721   // This is the first use or definition of a mangled name.  If there is a
722   // deferred decl with this name, remember that we need to emit it at the end
723   // of the file.
724   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
725     DeferredDecls.find(MangledName);
726   if (DDI != DeferredDecls.end()) {
727     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
728     // list, and remove it from DeferredDecls (since we don't need it anymore).
729     DeferredDeclsToEmit.push_back(DDI->second);
730     DeferredDecls.erase(DDI);
731   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
732     // If this the first reference to a C++ inline function in a class, queue up
733     // the deferred function body for emission.  These are not seen as
734     // top-level declarations.
735     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
736       DeferredDeclsToEmit.push_back(D);
737     // A called constructor which has no definition or declaration need be
738     // synthesized.
739     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
740       if (CD->isImplicit())
741         DeferredDeclsToEmit.push_back(D);
742     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
743       if (DD->isImplicit())
744         DeferredDeclsToEmit.push_back(D);
745     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
746       if (MD->isCopyAssignment() && MD->isImplicit())
747         DeferredDeclsToEmit.push_back(D);
748     }
749   }
750 
751   return F;
752 }
753 
754 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
755 /// non-null, then this function will use the specified type if it has to
756 /// create it (this occurs when we see a definition of the function).
757 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
758                                                  const llvm::Type *Ty) {
759   // If there was no specific requested type, just convert it now.
760   if (!Ty)
761     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
762   return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
763 }
764 
765 /// CreateRuntimeFunction - Create a new runtime function with the specified
766 /// type and name.
767 llvm::Constant *
768 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
769                                      const char *Name) {
770   // Convert Name to be a uniqued string from the IdentifierInfo table.
771   Name = getContext().Idents.get(Name).getNameStart();
772   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
773 }
774 
775 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
776   if (!D->getType().isConstant(Context))
777     return false;
778   if (Context.getLangOptions().CPlusPlus &&
779       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
780     // FIXME: We should do something fancier here!
781     return false;
782   }
783   return true;
784 }
785 
786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
787 /// create and return an llvm GlobalVariable with the specified type.  If there
788 /// is something in the module with the specified name, return it potentially
789 /// bitcasted to the right type.
790 ///
791 /// If D is non-null, it specifies a decl that correspond to this.  This is used
792 /// to set the attributes on the global when it is first created.
793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
794                                                      const llvm::PointerType*Ty,
795                                                      const VarDecl *D) {
796   // Lookup the entry, lazily creating it if necessary.
797   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
798   if (Entry) {
799     if (Entry->getType() == Ty)
800       return Entry;
801 
802     // Make sure the result is of the correct type.
803     return llvm::ConstantExpr::getBitCast(Entry, Ty);
804   }
805 
806   // This is the first use or definition of a mangled name.  If there is a
807   // deferred decl with this name, remember that we need to emit it at the end
808   // of the file.
809   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
810     DeferredDecls.find(MangledName);
811   if (DDI != DeferredDecls.end()) {
812     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
813     // list, and remove it from DeferredDecls (since we don't need it anymore).
814     DeferredDeclsToEmit.push_back(DDI->second);
815     DeferredDecls.erase(DDI);
816   }
817 
818   llvm::GlobalVariable *GV =
819     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
820                              llvm::GlobalValue::ExternalLinkage,
821                              0, "", 0,
822                              false, Ty->getAddressSpace());
823   GV->setName(MangledName);
824 
825   // Handle things which are present even on external declarations.
826   if (D) {
827     // FIXME: This code is overly simple and should be merged with other global
828     // handling.
829     GV->setConstant(DeclIsConstantGlobal(Context, D));
830 
831     // FIXME: Merge with other attribute handling code.
832     if (D->getStorageClass() == VarDecl::PrivateExtern)
833       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
834 
835     if (D->hasAttr<WeakAttr>() ||
836         D->hasAttr<WeakImportAttr>())
837       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
838 
839     GV->setThreadLocal(D->isThreadSpecified());
840   }
841 
842   return Entry = GV;
843 }
844 
845 
846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
847 /// given global variable.  If Ty is non-null and if the global doesn't exist,
848 /// then it will be greated with the specified type instead of whatever the
849 /// normal requested type would be.
850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
851                                                   const llvm::Type *Ty) {
852   assert(D->hasGlobalStorage() && "Not a global variable");
853   QualType ASTTy = D->getType();
854   if (Ty == 0)
855     Ty = getTypes().ConvertTypeForMem(ASTTy);
856 
857   const llvm::PointerType *PTy =
858     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
859   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
860 }
861 
862 /// CreateRuntimeVariable - Create a new runtime global variable with the
863 /// specified type and name.
864 llvm::Constant *
865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
866                                      const char *Name) {
867   // Convert Name to be a uniqued string from the IdentifierInfo table.
868   Name = getContext().Idents.get(Name).getNameStart();
869   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
870 }
871 
872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
873   assert(!D->getInit() && "Cannot emit definite definitions here!");
874 
875   if (MayDeferGeneration(D)) {
876     // If we have not seen a reference to this variable yet, place it
877     // into the deferred declarations table to be emitted if needed
878     // later.
879     const char *MangledName = getMangledName(D);
880     if (GlobalDeclMap.count(MangledName) == 0) {
881       DeferredDecls[MangledName] = D;
882       return;
883     }
884   }
885 
886   // The tentative definition is the only definition.
887   EmitGlobalVarDefinition(D);
888 }
889 
890 llvm::GlobalVariable::LinkageTypes
891 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
892   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
893     return llvm::GlobalVariable::InternalLinkage;
894 
895   if (const CXXMethodDecl *KeyFunction
896                                     = RD->getASTContext().getKeyFunction(RD)) {
897     // If this class has a key function, use that to determine the linkage of
898     // the vtable.
899     const FunctionDecl *Def = 0;
900     if (KeyFunction->getBody(Def))
901       KeyFunction = cast<CXXMethodDecl>(Def);
902 
903     switch (KeyFunction->getTemplateSpecializationKind()) {
904       case TSK_Undeclared:
905       case TSK_ExplicitSpecialization:
906         if (KeyFunction->isInlined())
907           return llvm::GlobalVariable::WeakODRLinkage;
908 
909         return llvm::GlobalVariable::ExternalLinkage;
910 
911       case TSK_ImplicitInstantiation:
912       case TSK_ExplicitInstantiationDefinition:
913         return llvm::GlobalVariable::WeakODRLinkage;
914 
915       case TSK_ExplicitInstantiationDeclaration:
916         // FIXME: Use available_externally linkage. However, this currently
917         // breaks LLVM's build due to undefined symbols.
918         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
919         return llvm::GlobalVariable::WeakODRLinkage;
920     }
921   }
922 
923   switch (RD->getTemplateSpecializationKind()) {
924   case TSK_Undeclared:
925   case TSK_ExplicitSpecialization:
926   case TSK_ImplicitInstantiation:
927   case TSK_ExplicitInstantiationDefinition:
928     return llvm::GlobalVariable::WeakODRLinkage;
929 
930   case TSK_ExplicitInstantiationDeclaration:
931     // FIXME: Use available_externally linkage. However, this currently
932     // breaks LLVM's build due to undefined symbols.
933     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
934     return llvm::GlobalVariable::WeakODRLinkage;
935   }
936 
937   // Silence GCC warning.
938   return llvm::GlobalVariable::WeakODRLinkage;
939 }
940 
941 static CodeGenModule::GVALinkage
942 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
943   // Everything located semantically within an anonymous namespace is
944   // always internal.
945   if (VD->isInAnonymousNamespace())
946     return CodeGenModule::GVA_Internal;
947 
948   // Handle linkage for static data members.
949   if (VD->isStaticDataMember()) {
950     switch (VD->getTemplateSpecializationKind()) {
951     case TSK_Undeclared:
952     case TSK_ExplicitSpecialization:
953     case TSK_ExplicitInstantiationDefinition:
954       return CodeGenModule::GVA_StrongExternal;
955 
956     case TSK_ExplicitInstantiationDeclaration:
957       llvm_unreachable("Variable should not be instantiated");
958       // Fall through to treat this like any other instantiation.
959 
960     case TSK_ImplicitInstantiation:
961       return CodeGenModule::GVA_TemplateInstantiation;
962     }
963   }
964 
965   if (VD->getLinkage() == VarDecl::InternalLinkage)
966     return CodeGenModule::GVA_Internal;
967 
968   return CodeGenModule::GVA_StrongExternal;
969 }
970 
971 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
972   llvm::Constant *Init = 0;
973   QualType ASTTy = D->getType();
974   bool NonConstInit = false;
975 
976   if (D->getInit() == 0) {
977     // This is a tentative definition; tentative definitions are
978     // implicitly initialized with { 0 }.
979     //
980     // Note that tentative definitions are only emitted at the end of
981     // a translation unit, so they should never have incomplete
982     // type. In addition, EmitTentativeDefinition makes sure that we
983     // never attempt to emit a tentative definition if a real one
984     // exists. A use may still exists, however, so we still may need
985     // to do a RAUW.
986     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
987     Init = EmitNullConstant(D->getType());
988   } else {
989     Init = EmitConstantExpr(D->getInit(), D->getType());
990 
991     if (!Init) {
992       QualType T = D->getInit()->getType();
993       if (getLangOptions().CPlusPlus) {
994         EmitCXXGlobalVarDeclInitFunc(D);
995         Init = EmitNullConstant(T);
996         NonConstInit = true;
997       } else {
998         ErrorUnsupported(D, "static initializer");
999         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1000       }
1001     }
1002   }
1003 
1004   const llvm::Type* InitType = Init->getType();
1005   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1006 
1007   // Strip off a bitcast if we got one back.
1008   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1009     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1010            // all zero index gep.
1011            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1012     Entry = CE->getOperand(0);
1013   }
1014 
1015   // Entry is now either a Function or GlobalVariable.
1016   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1017 
1018   // We have a definition after a declaration with the wrong type.
1019   // We must make a new GlobalVariable* and update everything that used OldGV
1020   // (a declaration or tentative definition) with the new GlobalVariable*
1021   // (which will be a definition).
1022   //
1023   // This happens if there is a prototype for a global (e.g.
1024   // "extern int x[];") and then a definition of a different type (e.g.
1025   // "int x[10];"). This also happens when an initializer has a different type
1026   // from the type of the global (this happens with unions).
1027   if (GV == 0 ||
1028       GV->getType()->getElementType() != InitType ||
1029       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1030 
1031     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1032     GlobalDeclMap.erase(getMangledName(D));
1033 
1034     // Make a new global with the correct type, this is now guaranteed to work.
1035     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1036     GV->takeName(cast<llvm::GlobalValue>(Entry));
1037 
1038     // Replace all uses of the old global with the new global
1039     llvm::Constant *NewPtrForOldDecl =
1040         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1041     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1042 
1043     // Erase the old global, since it is no longer used.
1044     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1045   }
1046 
1047   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1048     SourceManager &SM = Context.getSourceManager();
1049     AddAnnotation(EmitAnnotateAttr(GV, AA,
1050                               SM.getInstantiationLineNumber(D->getLocation())));
1051   }
1052 
1053   GV->setInitializer(Init);
1054 
1055   // If it is safe to mark the global 'constant', do so now.
1056   GV->setConstant(false);
1057   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1058     GV->setConstant(true);
1059 
1060   GV->setAlignment(getContext().getDeclAlignInBytes(D));
1061 
1062   // Set the llvm linkage type as appropriate.
1063   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1064   if (Linkage == GVA_Internal)
1065     GV->setLinkage(llvm::Function::InternalLinkage);
1066   else if (D->hasAttr<DLLImportAttr>())
1067     GV->setLinkage(llvm::Function::DLLImportLinkage);
1068   else if (D->hasAttr<DLLExportAttr>())
1069     GV->setLinkage(llvm::Function::DLLExportLinkage);
1070   else if (D->hasAttr<WeakAttr>()) {
1071     if (GV->isConstant())
1072       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1073     else
1074       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1075   } else if (Linkage == GVA_TemplateInstantiation)
1076     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1077   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1078            !D->hasExternalStorage() && !D->getInit() &&
1079            !D->getAttr<SectionAttr>()) {
1080     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1081     // common vars aren't constant even if declared const.
1082     GV->setConstant(false);
1083   } else
1084     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1085 
1086   SetCommonAttributes(D, GV);
1087 
1088   // Emit global variable debug information.
1089   if (CGDebugInfo *DI = getDebugInfo()) {
1090     DI->setLocation(D->getLocation());
1091     DI->EmitGlobalVariable(GV, D);
1092   }
1093 }
1094 
1095 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1096 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1097 /// existing call uses of the old function in the module, this adjusts them to
1098 /// call the new function directly.
1099 ///
1100 /// This is not just a cleanup: the always_inline pass requires direct calls to
1101 /// functions to be able to inline them.  If there is a bitcast in the way, it
1102 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1103 /// run at -O0.
1104 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1105                                                       llvm::Function *NewFn) {
1106   // If we're redefining a global as a function, don't transform it.
1107   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1108   if (OldFn == 0) return;
1109 
1110   const llvm::Type *NewRetTy = NewFn->getReturnType();
1111   llvm::SmallVector<llvm::Value*, 4> ArgList;
1112 
1113   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1114        UI != E; ) {
1115     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1116     unsigned OpNo = UI.getOperandNo();
1117     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1118     if (!CI || OpNo != 0) continue;
1119 
1120     // If the return types don't match exactly, and if the call isn't dead, then
1121     // we can't transform this call.
1122     if (CI->getType() != NewRetTy && !CI->use_empty())
1123       continue;
1124 
1125     // If the function was passed too few arguments, don't transform.  If extra
1126     // arguments were passed, we silently drop them.  If any of the types
1127     // mismatch, we don't transform.
1128     unsigned ArgNo = 0;
1129     bool DontTransform = false;
1130     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1131          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1132       if (CI->getNumOperands()-1 == ArgNo ||
1133           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1134         DontTransform = true;
1135         break;
1136       }
1137     }
1138     if (DontTransform)
1139       continue;
1140 
1141     // Okay, we can transform this.  Create the new call instruction and copy
1142     // over the required information.
1143     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1144     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1145                                                      ArgList.end(), "", CI);
1146     ArgList.clear();
1147     if (!NewCall->getType()->isVoidTy())
1148       NewCall->takeName(CI);
1149     NewCall->setAttributes(CI->getAttributes());
1150     NewCall->setCallingConv(CI->getCallingConv());
1151 
1152     // Finally, remove the old call, replacing any uses with the new one.
1153     if (!CI->use_empty())
1154       CI->replaceAllUsesWith(NewCall);
1155 
1156     // Copy any custom metadata attached with CI.
1157     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1158       NewCall->setMetadata("dbg", DbgNode);
1159     CI->eraseFromParent();
1160   }
1161 }
1162 
1163 
1164 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1165   const llvm::FunctionType *Ty;
1166   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1167 
1168   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1169     bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1170 
1171     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1172   } else {
1173     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1174 
1175     // As a special case, make sure that definitions of K&R function
1176     // "type foo()" aren't declared as varargs (which forces the backend
1177     // to do unnecessary work).
1178     if (D->getType()->isFunctionNoProtoType()) {
1179       assert(Ty->isVarArg() && "Didn't lower type as expected");
1180       // Due to stret, the lowered function could have arguments.
1181       // Just create the same type as was lowered by ConvertType
1182       // but strip off the varargs bit.
1183       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1184       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1185     }
1186   }
1187 
1188   // Get or create the prototype for the function.
1189   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1190 
1191   // Strip off a bitcast if we got one back.
1192   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1193     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1194     Entry = CE->getOperand(0);
1195   }
1196 
1197 
1198   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1199     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1200 
1201     // If the types mismatch then we have to rewrite the definition.
1202     assert(OldFn->isDeclaration() &&
1203            "Shouldn't replace non-declaration");
1204 
1205     // F is the Function* for the one with the wrong type, we must make a new
1206     // Function* and update everything that used F (a declaration) with the new
1207     // Function* (which will be a definition).
1208     //
1209     // This happens if there is a prototype for a function
1210     // (e.g. "int f()") and then a definition of a different type
1211     // (e.g. "int f(int x)").  Start by making a new function of the
1212     // correct type, RAUW, then steal the name.
1213     GlobalDeclMap.erase(getMangledName(D));
1214     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1215     NewFn->takeName(OldFn);
1216 
1217     // If this is an implementation of a function without a prototype, try to
1218     // replace any existing uses of the function (which may be calls) with uses
1219     // of the new function
1220     if (D->getType()->isFunctionNoProtoType()) {
1221       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1222       OldFn->removeDeadConstantUsers();
1223     }
1224 
1225     // Replace uses of F with the Function we will endow with a body.
1226     if (!Entry->use_empty()) {
1227       llvm::Constant *NewPtrForOldDecl =
1228         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1229       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1230     }
1231 
1232     // Ok, delete the old function now, which is dead.
1233     OldFn->eraseFromParent();
1234 
1235     Entry = NewFn;
1236   }
1237 
1238   llvm::Function *Fn = cast<llvm::Function>(Entry);
1239 
1240   CodeGenFunction(*this).GenerateCode(D, Fn);
1241 
1242   SetFunctionDefinitionAttributes(D, Fn);
1243   SetLLVMFunctionAttributesForDefinition(D, Fn);
1244 
1245   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1246     AddGlobalCtor(Fn, CA->getPriority());
1247   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1248     AddGlobalDtor(Fn, DA->getPriority());
1249 }
1250 
1251 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1252   const AliasAttr *AA = D->getAttr<AliasAttr>();
1253   assert(AA && "Not an alias?");
1254 
1255   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1256 
1257   // Unique the name through the identifier table.
1258   const char *AliaseeName = AA->getAliasee().c_str();
1259   AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1260 
1261   // Create a reference to the named value.  This ensures that it is emitted
1262   // if a deferred decl.
1263   llvm::Constant *Aliasee;
1264   if (isa<llvm::FunctionType>(DeclTy))
1265     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1266   else
1267     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1268                                     llvm::PointerType::getUnqual(DeclTy), 0);
1269 
1270   // Create the new alias itself, but don't set a name yet.
1271   llvm::GlobalValue *GA =
1272     new llvm::GlobalAlias(Aliasee->getType(),
1273                           llvm::Function::ExternalLinkage,
1274                           "", Aliasee, &getModule());
1275 
1276   // See if there is already something with the alias' name in the module.
1277   const char *MangledName = getMangledName(D);
1278   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1279 
1280   if (Entry && !Entry->isDeclaration()) {
1281     // If there is a definition in the module, then it wins over the alias.
1282     // This is dubious, but allow it to be safe.  Just ignore the alias.
1283     GA->eraseFromParent();
1284     return;
1285   }
1286 
1287   if (Entry) {
1288     // If there is a declaration in the module, then we had an extern followed
1289     // by the alias, as in:
1290     //   extern int test6();
1291     //   ...
1292     //   int test6() __attribute__((alias("test7")));
1293     //
1294     // Remove it and replace uses of it with the alias.
1295 
1296     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1297                                                           Entry->getType()));
1298     Entry->eraseFromParent();
1299   }
1300 
1301   // Now we know that there is no conflict, set the name.
1302   Entry = GA;
1303   GA->setName(MangledName);
1304 
1305   // Set attributes which are particular to an alias; this is a
1306   // specialization of the attributes which may be set on a global
1307   // variable/function.
1308   if (D->hasAttr<DLLExportAttr>()) {
1309     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1310       // The dllexport attribute is ignored for undefined symbols.
1311       if (FD->getBody())
1312         GA->setLinkage(llvm::Function::DLLExportLinkage);
1313     } else {
1314       GA->setLinkage(llvm::Function::DLLExportLinkage);
1315     }
1316   } else if (D->hasAttr<WeakAttr>() ||
1317              D->hasAttr<WeakImportAttr>()) {
1318     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1319   }
1320 
1321   SetCommonAttributes(D, GA);
1322 }
1323 
1324 /// getBuiltinLibFunction - Given a builtin id for a function like
1325 /// "__builtin_fabsf", return a Function* for "fabsf".
1326 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1327                                                   unsigned BuiltinID) {
1328   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1329           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1330          "isn't a lib fn");
1331 
1332   // Get the name, skip over the __builtin_ prefix (if necessary).
1333   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1334   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1335     Name += 10;
1336 
1337   const llvm::FunctionType *Ty =
1338     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1339 
1340   // Unique the name through the identifier table.
1341   Name = getContext().Idents.get(Name).getNameStart();
1342   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1343 }
1344 
1345 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1346                                             unsigned NumTys) {
1347   return llvm::Intrinsic::getDeclaration(&getModule(),
1348                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1349 }
1350 
1351 llvm::Function *CodeGenModule::getMemCpyFn() {
1352   if (MemCpyFn) return MemCpyFn;
1353   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1354   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1355 }
1356 
1357 llvm::Function *CodeGenModule::getMemMoveFn() {
1358   if (MemMoveFn) return MemMoveFn;
1359   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1360   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1361 }
1362 
1363 llvm::Function *CodeGenModule::getMemSetFn() {
1364   if (MemSetFn) return MemSetFn;
1365   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1366   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1367 }
1368 
1369 static llvm::StringMapEntry<llvm::Constant*> &
1370 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1371                          const StringLiteral *Literal,
1372                          bool TargetIsLSB,
1373                          bool &IsUTF16,
1374                          unsigned &StringLength) {
1375   unsigned NumBytes = Literal->getByteLength();
1376 
1377   // Check for simple case.
1378   if (!Literal->containsNonAsciiOrNull()) {
1379     StringLength = NumBytes;
1380     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1381                                                 StringLength));
1382   }
1383 
1384   // Otherwise, convert the UTF8 literals into a byte string.
1385   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1386   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1387   UTF16 *ToPtr = &ToBuf[0];
1388 
1389   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1390                                                &ToPtr, ToPtr + NumBytes,
1391                                                strictConversion);
1392 
1393   // Check for conversion failure.
1394   if (Result != conversionOK) {
1395     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1396     // this duplicate code.
1397     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1398     StringLength = NumBytes;
1399     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1400                                                 StringLength));
1401   }
1402 
1403   // ConvertUTF8toUTF16 returns the length in ToPtr.
1404   StringLength = ToPtr - &ToBuf[0];
1405 
1406   // Render the UTF-16 string into a byte array and convert to the target byte
1407   // order.
1408   //
1409   // FIXME: This isn't something we should need to do here.
1410   llvm::SmallString<128> AsBytes;
1411   AsBytes.reserve(StringLength * 2);
1412   for (unsigned i = 0; i != StringLength; ++i) {
1413     unsigned short Val = ToBuf[i];
1414     if (TargetIsLSB) {
1415       AsBytes.push_back(Val & 0xFF);
1416       AsBytes.push_back(Val >> 8);
1417     } else {
1418       AsBytes.push_back(Val >> 8);
1419       AsBytes.push_back(Val & 0xFF);
1420     }
1421   }
1422   // Append one extra null character, the second is automatically added by our
1423   // caller.
1424   AsBytes.push_back(0);
1425 
1426   IsUTF16 = true;
1427   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1428 }
1429 
1430 llvm::Constant *
1431 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1432   unsigned StringLength = 0;
1433   bool isUTF16 = false;
1434   llvm::StringMapEntry<llvm::Constant*> &Entry =
1435     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1436                              getTargetData().isLittleEndian(),
1437                              isUTF16, StringLength);
1438 
1439   if (llvm::Constant *C = Entry.getValue())
1440     return C;
1441 
1442   llvm::Constant *Zero =
1443       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1444   llvm::Constant *Zeros[] = { Zero, Zero };
1445 
1446   // If we don't already have it, get __CFConstantStringClassReference.
1447   if (!CFConstantStringClassRef) {
1448     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1449     Ty = llvm::ArrayType::get(Ty, 0);
1450     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1451                                            "__CFConstantStringClassReference");
1452     // Decay array -> ptr
1453     CFConstantStringClassRef =
1454       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1455   }
1456 
1457   QualType CFTy = getContext().getCFConstantStringType();
1458 
1459   const llvm::StructType *STy =
1460     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1461 
1462   std::vector<llvm::Constant*> Fields(4);
1463 
1464   // Class pointer.
1465   Fields[0] = CFConstantStringClassRef;
1466 
1467   // Flags.
1468   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1469   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1470     llvm::ConstantInt::get(Ty, 0x07C8);
1471 
1472   // String pointer.
1473   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1474 
1475   const char *Sect = 0;
1476   llvm::GlobalValue::LinkageTypes Linkage;
1477   bool isConstant;
1478   if (isUTF16) {
1479     Sect = getContext().Target.getUnicodeStringSection();
1480     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1481     Linkage = llvm::GlobalValue::InternalLinkage;
1482     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1483     // does make plain ascii ones writable.
1484     isConstant = true;
1485   } else {
1486     Linkage = llvm::GlobalValue::PrivateLinkage;
1487     isConstant = !Features.WritableStrings;
1488   }
1489 
1490   llvm::GlobalVariable *GV =
1491     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1492                              ".str");
1493   if (Sect)
1494     GV->setSection(Sect);
1495   if (isUTF16) {
1496     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1497     GV->setAlignment(Align);
1498   }
1499   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1500 
1501   // String length.
1502   Ty = getTypes().ConvertType(getContext().LongTy);
1503   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1504 
1505   // The struct.
1506   C = llvm::ConstantStruct::get(STy, Fields);
1507   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1508                                 llvm::GlobalVariable::PrivateLinkage, C,
1509                                 "_unnamed_cfstring_");
1510   if (const char *Sect = getContext().Target.getCFStringSection())
1511     GV->setSection(Sect);
1512   Entry.setValue(GV);
1513 
1514   return GV;
1515 }
1516 
1517 /// GetStringForStringLiteral - Return the appropriate bytes for a
1518 /// string literal, properly padded to match the literal type.
1519 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1520   const char *StrData = E->getStrData();
1521   unsigned Len = E->getByteLength();
1522 
1523   const ConstantArrayType *CAT =
1524     getContext().getAsConstantArrayType(E->getType());
1525   assert(CAT && "String isn't pointer or array!");
1526 
1527   // Resize the string to the right size.
1528   std::string Str(StrData, StrData+Len);
1529   uint64_t RealLen = CAT->getSize().getZExtValue();
1530 
1531   if (E->isWide())
1532     RealLen *= getContext().Target.getWCharWidth()/8;
1533 
1534   Str.resize(RealLen, '\0');
1535 
1536   return Str;
1537 }
1538 
1539 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1540 /// constant array for the given string literal.
1541 llvm::Constant *
1542 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1543   // FIXME: This can be more efficient.
1544   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1545   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1546   if (S->isWide()) {
1547     llvm::Type *DestTy =
1548         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1549     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1550   }
1551   return C;
1552 }
1553 
1554 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1555 /// array for the given ObjCEncodeExpr node.
1556 llvm::Constant *
1557 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1558   std::string Str;
1559   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1560 
1561   return GetAddrOfConstantCString(Str);
1562 }
1563 
1564 
1565 /// GenerateWritableString -- Creates storage for a string literal.
1566 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1567                                              bool constant,
1568                                              CodeGenModule &CGM,
1569                                              const char *GlobalName) {
1570   // Create Constant for this string literal. Don't add a '\0'.
1571   llvm::Constant *C =
1572       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1573 
1574   // Create a global variable for this string
1575   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1576                                   llvm::GlobalValue::PrivateLinkage,
1577                                   C, GlobalName);
1578 }
1579 
1580 /// GetAddrOfConstantString - Returns a pointer to a character array
1581 /// containing the literal. This contents are exactly that of the
1582 /// given string, i.e. it will not be null terminated automatically;
1583 /// see GetAddrOfConstantCString. Note that whether the result is
1584 /// actually a pointer to an LLVM constant depends on
1585 /// Feature.WriteableStrings.
1586 ///
1587 /// The result has pointer to array type.
1588 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1589                                                        const char *GlobalName) {
1590   bool IsConstant = !Features.WritableStrings;
1591 
1592   // Get the default prefix if a name wasn't specified.
1593   if (!GlobalName)
1594     GlobalName = ".str";
1595 
1596   // Don't share any string literals if strings aren't constant.
1597   if (!IsConstant)
1598     return GenerateStringLiteral(str, false, *this, GlobalName);
1599 
1600   llvm::StringMapEntry<llvm::Constant *> &Entry =
1601     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1602 
1603   if (Entry.getValue())
1604     return Entry.getValue();
1605 
1606   // Create a global variable for this.
1607   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1608   Entry.setValue(C);
1609   return C;
1610 }
1611 
1612 /// GetAddrOfConstantCString - Returns a pointer to a character
1613 /// array containing the literal and a terminating '\-'
1614 /// character. The result has pointer to array type.
1615 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1616                                                         const char *GlobalName){
1617   return GetAddrOfConstantString(str + '\0', GlobalName);
1618 }
1619 
1620 /// EmitObjCPropertyImplementations - Emit information for synthesized
1621 /// properties for an implementation.
1622 void CodeGenModule::EmitObjCPropertyImplementations(const
1623                                                     ObjCImplementationDecl *D) {
1624   for (ObjCImplementationDecl::propimpl_iterator
1625          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1626     ObjCPropertyImplDecl *PID = *i;
1627 
1628     // Dynamic is just for type-checking.
1629     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1630       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1631 
1632       // Determine which methods need to be implemented, some may have
1633       // been overridden. Note that ::isSynthesized is not the method
1634       // we want, that just indicates if the decl came from a
1635       // property. What we want to know is if the method is defined in
1636       // this implementation.
1637       if (!D->getInstanceMethod(PD->getGetterName()))
1638         CodeGenFunction(*this).GenerateObjCGetter(
1639                                  const_cast<ObjCImplementationDecl *>(D), PID);
1640       if (!PD->isReadOnly() &&
1641           !D->getInstanceMethod(PD->getSetterName()))
1642         CodeGenFunction(*this).GenerateObjCSetter(
1643                                  const_cast<ObjCImplementationDecl *>(D), PID);
1644     }
1645   }
1646 }
1647 
1648 /// EmitNamespace - Emit all declarations in a namespace.
1649 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1650   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1651        I != E; ++I)
1652     EmitTopLevelDecl(*I);
1653 }
1654 
1655 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1656 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1657   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1658       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1659     ErrorUnsupported(LSD, "linkage spec");
1660     return;
1661   }
1662 
1663   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1664        I != E; ++I)
1665     EmitTopLevelDecl(*I);
1666 }
1667 
1668 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1669 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1670   // If an error has occurred, stop code generation, but continue
1671   // parsing and semantic analysis (to ensure all warnings and errors
1672   // are emitted).
1673   if (Diags.hasErrorOccurred())
1674     return;
1675 
1676   // Ignore dependent declarations.
1677   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1678     return;
1679 
1680   switch (D->getKind()) {
1681   case Decl::CXXConversion:
1682   case Decl::CXXMethod:
1683   case Decl::Function:
1684     // Skip function templates
1685     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1686       return;
1687 
1688     EmitGlobal(cast<FunctionDecl>(D));
1689     break;
1690 
1691   case Decl::Var:
1692     EmitGlobal(cast<VarDecl>(D));
1693     break;
1694 
1695   // C++ Decls
1696   case Decl::Namespace:
1697     EmitNamespace(cast<NamespaceDecl>(D));
1698     break;
1699     // No code generation needed.
1700   case Decl::UsingShadow:
1701   case Decl::Using:
1702   case Decl::UsingDirective:
1703   case Decl::ClassTemplate:
1704   case Decl::FunctionTemplate:
1705   case Decl::NamespaceAlias:
1706     break;
1707   case Decl::CXXConstructor:
1708     // Skip function templates
1709     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1710       return;
1711 
1712     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1713     break;
1714   case Decl::CXXDestructor:
1715     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1716     break;
1717 
1718   case Decl::StaticAssert:
1719     // Nothing to do.
1720     break;
1721 
1722   // Objective-C Decls
1723 
1724   // Forward declarations, no (immediate) code generation.
1725   case Decl::ObjCClass:
1726   case Decl::ObjCForwardProtocol:
1727   case Decl::ObjCCategory:
1728   case Decl::ObjCInterface:
1729     break;
1730 
1731   case Decl::ObjCProtocol:
1732     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1733     break;
1734 
1735   case Decl::ObjCCategoryImpl:
1736     // Categories have properties but don't support synthesize so we
1737     // can ignore them here.
1738     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1739     break;
1740 
1741   case Decl::ObjCImplementation: {
1742     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1743     EmitObjCPropertyImplementations(OMD);
1744     Runtime->GenerateClass(OMD);
1745     break;
1746   }
1747   case Decl::ObjCMethod: {
1748     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1749     // If this is not a prototype, emit the body.
1750     if (OMD->getBody())
1751       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1752     break;
1753   }
1754   case Decl::ObjCCompatibleAlias:
1755     // compatibility-alias is a directive and has no code gen.
1756     break;
1757 
1758   case Decl::LinkageSpec:
1759     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1760     break;
1761 
1762   case Decl::FileScopeAsm: {
1763     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1764     llvm::StringRef AsmString = AD->getAsmString()->getString();
1765 
1766     const std::string &S = getModule().getModuleInlineAsm();
1767     if (S.empty())
1768       getModule().setModuleInlineAsm(AsmString);
1769     else
1770       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1771     break;
1772   }
1773 
1774   default:
1775     // Make sure we handled everything we should, every other kind is a
1776     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1777     // function. Need to recode Decl::Kind to do that easily.
1778     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1779   }
1780 }
1781