1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "TargetInfo.h" 21 #include "clang/CodeGen/CodeGenOptions.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/RecordLayout.h" 26 #include "clang/Basic/Builtins.h" 27 #include "clang/Basic/Diagnostic.h" 28 #include "clang/Basic/SourceManager.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Basic/ConvertUTF.h" 31 #include "llvm/CallingConv.h" 32 #include "llvm/Module.h" 33 #include "llvm/Intrinsics.h" 34 #include "llvm/LLVMContext.h" 35 #include "llvm/Target/TargetData.h" 36 #include "llvm/Support/ErrorHandling.h" 37 using namespace clang; 38 using namespace CodeGen; 39 40 41 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 42 llvm::Module &M, const llvm::TargetData &TD, 43 Diagnostic &diags) 44 : BlockModule(C, M, TD, Types, *this), Context(C), 45 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 46 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 47 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), 48 MangleCtx(C), VtableInfo(*this), Runtime(0), 49 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 50 VMContext(M.getContext()) { 51 52 if (!Features.ObjC1) 53 Runtime = 0; 54 else if (!Features.NeXTRuntime) 55 Runtime = CreateGNUObjCRuntime(*this); 56 else if (Features.ObjCNonFragileABI) 57 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 58 else 59 Runtime = CreateMacObjCRuntime(*this); 60 61 // If debug info generation is enabled, create the CGDebugInfo object. 62 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 63 } 64 65 CodeGenModule::~CodeGenModule() { 66 delete Runtime; 67 delete DebugInfo; 68 } 69 70 void CodeGenModule::createObjCRuntime() { 71 if (!Features.NeXTRuntime) 72 Runtime = CreateGNUObjCRuntime(*this); 73 else if (Features.ObjCNonFragileABI) 74 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 75 else 76 Runtime = CreateMacObjCRuntime(*this); 77 } 78 79 void CodeGenModule::Release() { 80 EmitDeferred(); 81 EmitCXXGlobalInitFunc(); 82 if (Runtime) 83 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 84 AddGlobalCtor(ObjCInitFunction); 85 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 86 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 87 EmitAnnotations(); 88 EmitLLVMUsed(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified stmt yet. 93 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 101 << Msg << S->getSourceRange(); 102 } 103 104 /// ErrorUnsupported - Print out an error that codegen doesn't support the 105 /// specified decl yet. 106 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 107 bool OmitOnError) { 108 if (OmitOnError && getDiags().hasErrorOccurred()) 109 return; 110 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 111 "cannot compile this %0 yet"); 112 std::string Msg = Type; 113 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 114 } 115 116 LangOptions::VisibilityMode 117 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 118 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 119 if (VD->getStorageClass() == VarDecl::PrivateExtern) 120 return LangOptions::Hidden; 121 122 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 123 switch (attr->getVisibility()) { 124 default: assert(0 && "Unknown visibility!"); 125 case VisibilityAttr::DefaultVisibility: 126 return LangOptions::Default; 127 case VisibilityAttr::HiddenVisibility: 128 return LangOptions::Hidden; 129 case VisibilityAttr::ProtectedVisibility: 130 return LangOptions::Protected; 131 } 132 } 133 134 return getLangOptions().getVisibilityMode(); 135 } 136 137 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 138 const Decl *D) const { 139 // Internal definitions always have default visibility. 140 if (GV->hasLocalLinkage()) { 141 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 142 return; 143 } 144 145 switch (getDeclVisibilityMode(D)) { 146 default: assert(0 && "Unknown visibility!"); 147 case LangOptions::Default: 148 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 149 case LangOptions::Hidden: 150 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 151 case LangOptions::Protected: 152 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 153 } 154 } 155 156 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 157 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 158 159 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 160 return getMangledCXXCtorName(D, GD.getCtorType()); 161 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 162 return getMangledCXXDtorName(D, GD.getDtorType()); 163 164 return getMangledName(ND); 165 } 166 167 /// \brief Retrieves the mangled name for the given declaration. 168 /// 169 /// If the given declaration requires a mangled name, returns an 170 /// const char* containing the mangled name. Otherwise, returns 171 /// the unmangled name. 172 /// 173 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 174 if (!getMangleContext().shouldMangleDeclName(ND)) { 175 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 176 return ND->getNameAsCString(); 177 } 178 179 llvm::SmallString<256> Name; 180 getMangleContext().mangleName(ND, Name); 181 Name += '\0'; 182 return UniqueMangledName(Name.begin(), Name.end()); 183 } 184 185 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 186 const char *NameEnd) { 187 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 188 189 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 190 } 191 192 /// AddGlobalCtor - Add a function to the list that will be called before 193 /// main() runs. 194 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 197 } 198 199 /// AddGlobalDtor - Add a function to the list that will be called 200 /// when the module is unloaded. 201 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 202 // FIXME: Type coercion of void()* types. 203 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 204 } 205 206 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 207 // Ctor function type is void()*. 208 llvm::FunctionType* CtorFTy = 209 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 210 std::vector<const llvm::Type*>(), 211 false); 212 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 213 214 // Get the type of a ctor entry, { i32, void ()* }. 215 llvm::StructType* CtorStructTy = 216 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 217 llvm::PointerType::getUnqual(CtorFTy), NULL); 218 219 // Construct the constructor and destructor arrays. 220 std::vector<llvm::Constant*> Ctors; 221 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 222 std::vector<llvm::Constant*> S; 223 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 224 I->second, false)); 225 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 226 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 227 } 228 229 if (!Ctors.empty()) { 230 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 231 new llvm::GlobalVariable(TheModule, AT, false, 232 llvm::GlobalValue::AppendingLinkage, 233 llvm::ConstantArray::get(AT, Ctors), 234 GlobalName); 235 } 236 } 237 238 void CodeGenModule::EmitAnnotations() { 239 if (Annotations.empty()) 240 return; 241 242 // Create a new global variable for the ConstantStruct in the Module. 243 llvm::Constant *Array = 244 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 245 Annotations.size()), 246 Annotations); 247 llvm::GlobalValue *gv = 248 new llvm::GlobalVariable(TheModule, Array->getType(), false, 249 llvm::GlobalValue::AppendingLinkage, Array, 250 "llvm.global.annotations"); 251 gv->setSection("llvm.metadata"); 252 } 253 254 static CodeGenModule::GVALinkage 255 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 256 const LangOptions &Features) { 257 // Everything located semantically within an anonymous namespace is 258 // always internal. 259 if (FD->isInAnonymousNamespace()) 260 return CodeGenModule::GVA_Internal; 261 262 // "static" functions get internal linkage. 263 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 264 return CodeGenModule::GVA_Internal; 265 266 // The kind of external linkage this function will have, if it is not 267 // inline or static. 268 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 269 if (Context.getLangOptions().CPlusPlus) { 270 TemplateSpecializationKind TSK = FD->getTemplateSpecializationKind(); 271 272 if (TSK == TSK_ExplicitInstantiationDefinition) { 273 // If a function has been explicitly instantiated, then it should 274 // always have strong external linkage. 275 return CodeGenModule::GVA_StrongExternal; 276 } 277 278 if (TSK == TSK_ImplicitInstantiation) 279 External = CodeGenModule::GVA_TemplateInstantiation; 280 } 281 282 if (!FD->isInlined()) 283 return External; 284 285 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 286 // GNU or C99 inline semantics. Determine whether this symbol should be 287 // externally visible. 288 if (FD->isInlineDefinitionExternallyVisible()) 289 return External; 290 291 // C99 inline semantics, where the symbol is not externally visible. 292 return CodeGenModule::GVA_C99Inline; 293 } 294 295 // C++0x [temp.explicit]p9: 296 // [ Note: The intent is that an inline function that is the subject of 297 // an explicit instantiation declaration will still be implicitly 298 // instantiated when used so that the body can be considered for 299 // inlining, but that no out-of-line copy of the inline function would be 300 // generated in the translation unit. -- end note ] 301 if (FD->getTemplateSpecializationKind() 302 == TSK_ExplicitInstantiationDeclaration) 303 return CodeGenModule::GVA_C99Inline; 304 305 return CodeGenModule::GVA_CXXInline; 306 } 307 308 /// SetFunctionDefinitionAttributes - Set attributes for a global. 309 /// 310 /// FIXME: This is currently only done for aliases and functions, but not for 311 /// variables (these details are set in EmitGlobalVarDefinition for variables). 312 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 313 llvm::GlobalValue *GV) { 314 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 315 316 if (Linkage == GVA_Internal) { 317 GV->setLinkage(llvm::Function::InternalLinkage); 318 } else if (D->hasAttr<DLLExportAttr>()) { 319 GV->setLinkage(llvm::Function::DLLExportLinkage); 320 } else if (D->hasAttr<WeakAttr>()) { 321 GV->setLinkage(llvm::Function::WeakAnyLinkage); 322 } else if (Linkage == GVA_C99Inline) { 323 // In C99 mode, 'inline' functions are guaranteed to have a strong 324 // definition somewhere else, so we can use available_externally linkage. 325 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 326 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 327 // In C++, the compiler has to emit a definition in every translation unit 328 // that references the function. We should use linkonce_odr because 329 // a) if all references in this translation unit are optimized away, we 330 // don't need to codegen it. b) if the function persists, it needs to be 331 // merged with other definitions. c) C++ has the ODR, so we know the 332 // definition is dependable. 333 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 334 } else { 335 assert(Linkage == GVA_StrongExternal); 336 // Otherwise, we have strong external linkage. 337 GV->setLinkage(llvm::Function::ExternalLinkage); 338 } 339 340 SetCommonAttributes(D, GV); 341 } 342 343 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 344 const CGFunctionInfo &Info, 345 llvm::Function *F) { 346 unsigned CallingConv; 347 AttributeListType AttributeList; 348 ConstructAttributeList(Info, D, AttributeList, CallingConv); 349 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 350 AttributeList.size())); 351 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 352 } 353 354 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 355 llvm::Function *F) { 356 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 357 F->addFnAttr(llvm::Attribute::NoUnwind); 358 359 if (D->hasAttr<AlwaysInlineAttr>()) 360 F->addFnAttr(llvm::Attribute::AlwaysInline); 361 362 if (D->hasAttr<NoInlineAttr>()) 363 F->addFnAttr(llvm::Attribute::NoInline); 364 365 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 366 F->addFnAttr(llvm::Attribute::StackProtect); 367 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 368 F->addFnAttr(llvm::Attribute::StackProtectReq); 369 370 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 371 unsigned width = Context.Target.getCharWidth(); 372 F->setAlignment(AA->getAlignment() / width); 373 while ((AA = AA->getNext<AlignedAttr>())) 374 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 375 } 376 // C++ ABI requires 2-byte alignment for member functions. 377 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 378 F->setAlignment(2); 379 } 380 381 void CodeGenModule::SetCommonAttributes(const Decl *D, 382 llvm::GlobalValue *GV) { 383 setGlobalVisibility(GV, D); 384 385 if (D->hasAttr<UsedAttr>()) 386 AddUsedGlobal(GV); 387 388 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 389 GV->setSection(SA->getName()); 390 391 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 392 } 393 394 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 395 llvm::Function *F, 396 const CGFunctionInfo &FI) { 397 SetLLVMFunctionAttributes(D, FI, F); 398 SetLLVMFunctionAttributesForDefinition(D, F); 399 400 F->setLinkage(llvm::Function::InternalLinkage); 401 402 SetCommonAttributes(D, F); 403 } 404 405 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 406 llvm::Function *F, 407 bool IsIncompleteFunction) { 408 if (!IsIncompleteFunction) 409 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 410 411 // Only a few attributes are set on declarations; these may later be 412 // overridden by a definition. 413 414 if (FD->hasAttr<DLLImportAttr>()) { 415 F->setLinkage(llvm::Function::DLLImportLinkage); 416 } else if (FD->hasAttr<WeakAttr>() || 417 FD->hasAttr<WeakImportAttr>()) { 418 // "extern_weak" is overloaded in LLVM; we probably should have 419 // separate linkage types for this. 420 F->setLinkage(llvm::Function::ExternalWeakLinkage); 421 } else { 422 F->setLinkage(llvm::Function::ExternalLinkage); 423 } 424 425 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 426 F->setSection(SA->getName()); 427 } 428 429 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 430 assert(!GV->isDeclaration() && 431 "Only globals with definition can force usage."); 432 LLVMUsed.push_back(GV); 433 } 434 435 void CodeGenModule::EmitLLVMUsed() { 436 // Don't create llvm.used if there is no need. 437 if (LLVMUsed.empty()) 438 return; 439 440 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 441 442 // Convert LLVMUsed to what ConstantArray needs. 443 std::vector<llvm::Constant*> UsedArray; 444 UsedArray.resize(LLVMUsed.size()); 445 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 446 UsedArray[i] = 447 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 448 i8PTy); 449 } 450 451 if (UsedArray.empty()) 452 return; 453 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 454 455 llvm::GlobalVariable *GV = 456 new llvm::GlobalVariable(getModule(), ATy, false, 457 llvm::GlobalValue::AppendingLinkage, 458 llvm::ConstantArray::get(ATy, UsedArray), 459 "llvm.used"); 460 461 GV->setSection("llvm.metadata"); 462 } 463 464 void CodeGenModule::EmitDeferred() { 465 // Emit code for any potentially referenced deferred decls. Since a 466 // previously unused static decl may become used during the generation of code 467 // for a static function, iterate until no changes are made. 468 while (!DeferredDeclsToEmit.empty()) { 469 GlobalDecl D = DeferredDeclsToEmit.back(); 470 DeferredDeclsToEmit.pop_back(); 471 472 // The mangled name for the decl must have been emitted in GlobalDeclMap. 473 // Look it up to see if it was defined with a stronger definition (e.g. an 474 // extern inline function with a strong function redefinition). If so, 475 // just ignore the deferred decl. 476 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 477 assert(CGRef && "Deferred decl wasn't referenced?"); 478 479 if (!CGRef->isDeclaration()) 480 continue; 481 482 // Otherwise, emit the definition and move on to the next one. 483 EmitGlobalDefinition(D); 484 } 485 } 486 487 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 488 /// annotation information for a given GlobalValue. The annotation struct is 489 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 490 /// GlobalValue being annotated. The second field is the constant string 491 /// created from the AnnotateAttr's annotation. The third field is a constant 492 /// string containing the name of the translation unit. The fourth field is 493 /// the line number in the file of the annotated value declaration. 494 /// 495 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 496 /// appears to. 497 /// 498 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 499 const AnnotateAttr *AA, 500 unsigned LineNo) { 501 llvm::Module *M = &getModule(); 502 503 // get [N x i8] constants for the annotation string, and the filename string 504 // which are the 2nd and 3rd elements of the global annotation structure. 505 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 506 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 507 AA->getAnnotation(), true); 508 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 509 M->getModuleIdentifier(), 510 true); 511 512 // Get the two global values corresponding to the ConstantArrays we just 513 // created to hold the bytes of the strings. 514 llvm::GlobalValue *annoGV = 515 new llvm::GlobalVariable(*M, anno->getType(), false, 516 llvm::GlobalValue::PrivateLinkage, anno, 517 GV->getName()); 518 // translation unit name string, emitted into the llvm.metadata section. 519 llvm::GlobalValue *unitGV = 520 new llvm::GlobalVariable(*M, unit->getType(), false, 521 llvm::GlobalValue::PrivateLinkage, unit, 522 ".str"); 523 524 // Create the ConstantStruct for the global annotation. 525 llvm::Constant *Fields[4] = { 526 llvm::ConstantExpr::getBitCast(GV, SBP), 527 llvm::ConstantExpr::getBitCast(annoGV, SBP), 528 llvm::ConstantExpr::getBitCast(unitGV, SBP), 529 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 530 }; 531 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 532 } 533 534 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 535 // Never defer when EmitAllDecls is specified or the decl has 536 // attribute used. 537 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 538 return false; 539 540 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 541 // Constructors and destructors should never be deferred. 542 if (FD->hasAttr<ConstructorAttr>() || 543 FD->hasAttr<DestructorAttr>()) 544 return false; 545 546 // The key function for a class must never be deferred. 547 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 548 const CXXRecordDecl *RD = MD->getParent(); 549 if (MD->isOutOfLine() && RD->isDynamicClass()) { 550 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 551 if (KeyFunction && 552 KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) 553 return false; 554 } 555 } 556 557 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 558 559 // static, static inline, always_inline, and extern inline functions can 560 // always be deferred. Normal inline functions can be deferred in C99/C++. 561 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 562 Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 563 return true; 564 return false; 565 } 566 567 const VarDecl *VD = cast<VarDecl>(Global); 568 assert(VD->isFileVarDecl() && "Invalid decl"); 569 570 // We never want to defer structs that have non-trivial constructors or 571 // destructors. 572 573 // FIXME: Handle references. 574 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 575 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 576 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 577 return false; 578 } 579 } 580 581 // Static data may be deferred, but out-of-line static data members 582 // cannot be. 583 if (VD->getLinkage() == VarDecl::InternalLinkage || 584 VD->isInAnonymousNamespace()) { 585 // Initializer has side effects? 586 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 587 return false; 588 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 589 } 590 return false; 591 } 592 593 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 594 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 595 596 // If this is an alias definition (which otherwise looks like a declaration) 597 // emit it now. 598 if (Global->hasAttr<AliasAttr>()) 599 return EmitAliasDefinition(Global); 600 601 // Ignore declarations, they will be emitted on their first use. 602 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 603 // Forward declarations are emitted lazily on first use. 604 if (!FD->isThisDeclarationADefinition()) 605 return; 606 } else { 607 const VarDecl *VD = cast<VarDecl>(Global); 608 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 609 610 if (getLangOptions().CPlusPlus && !VD->getInit()) { 611 // In C++, if this is marked "extern", defer code generation. 612 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 613 return; 614 615 // If this is a declaration of an explicit specialization of a static 616 // data member in a class template, don't emit it. 617 if (VD->isStaticDataMember() && 618 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 619 return; 620 } 621 622 // In C, if this isn't a definition, defer code generation. 623 if (!getLangOptions().CPlusPlus && !VD->getInit()) 624 return; 625 } 626 627 // Defer code generation when possible if this is a static definition, inline 628 // function etc. These we only want to emit if they are used. 629 if (MayDeferGeneration(Global)) { 630 // If the value has already been used, add it directly to the 631 // DeferredDeclsToEmit list. 632 const char *MangledName = getMangledName(GD); 633 if (GlobalDeclMap.count(MangledName)) 634 DeferredDeclsToEmit.push_back(GD); 635 else { 636 // Otherwise, remember that we saw a deferred decl with this name. The 637 // first use of the mangled name will cause it to move into 638 // DeferredDeclsToEmit. 639 DeferredDecls[MangledName] = GD; 640 } 641 return; 642 } 643 644 // Otherwise emit the definition. 645 EmitGlobalDefinition(GD); 646 } 647 648 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 649 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 650 651 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 652 Context.getSourceManager(), 653 "Generating code for declaration"); 654 655 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 656 getVtableInfo().MaybeEmitVtable(GD); 657 if (MD->isVirtual() && MD->isOutOfLine() && 658 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 659 if (isa<CXXDestructorDecl>(D)) { 660 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 661 GD.getDtorType()); 662 BuildThunksForVirtual(CanonGD); 663 } else { 664 BuildThunksForVirtual(MD->getCanonicalDecl()); 665 } 666 } 667 } 668 669 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 670 EmitCXXConstructor(CD, GD.getCtorType()); 671 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 672 EmitCXXDestructor(DD, GD.getDtorType()); 673 else if (isa<FunctionDecl>(D)) 674 EmitGlobalFunctionDefinition(GD); 675 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 676 EmitGlobalVarDefinition(VD); 677 else { 678 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 679 } 680 } 681 682 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 683 /// module, create and return an llvm Function with the specified type. If there 684 /// is something in the module with the specified name, return it potentially 685 /// bitcasted to the right type. 686 /// 687 /// If D is non-null, it specifies a decl that correspond to this. This is used 688 /// to set the attributes on the function when it is first created. 689 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 690 const llvm::Type *Ty, 691 GlobalDecl D) { 692 // Lookup the entry, lazily creating it if necessary. 693 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 694 if (Entry) { 695 if (Entry->getType()->getElementType() == Ty) 696 return Entry; 697 698 // Make sure the result is of the correct type. 699 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 700 return llvm::ConstantExpr::getBitCast(Entry, PTy); 701 } 702 703 // This function doesn't have a complete type (for example, the return 704 // type is an incomplete struct). Use a fake type instead, and make 705 // sure not to try to set attributes. 706 bool IsIncompleteFunction = false; 707 if (!isa<llvm::FunctionType>(Ty)) { 708 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 709 std::vector<const llvm::Type*>(), false); 710 IsIncompleteFunction = true; 711 } 712 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 713 llvm::Function::ExternalLinkage, 714 "", &getModule()); 715 F->setName(MangledName); 716 if (D.getDecl()) 717 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 718 IsIncompleteFunction); 719 Entry = F; 720 721 // This is the first use or definition of a mangled name. If there is a 722 // deferred decl with this name, remember that we need to emit it at the end 723 // of the file. 724 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 725 DeferredDecls.find(MangledName); 726 if (DDI != DeferredDecls.end()) { 727 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 728 // list, and remove it from DeferredDecls (since we don't need it anymore). 729 DeferredDeclsToEmit.push_back(DDI->second); 730 DeferredDecls.erase(DDI); 731 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 732 // If this the first reference to a C++ inline function in a class, queue up 733 // the deferred function body for emission. These are not seen as 734 // top-level declarations. 735 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 736 DeferredDeclsToEmit.push_back(D); 737 // A called constructor which has no definition or declaration need be 738 // synthesized. 739 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 740 if (CD->isImplicit()) 741 DeferredDeclsToEmit.push_back(D); 742 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 743 if (DD->isImplicit()) 744 DeferredDeclsToEmit.push_back(D); 745 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 746 if (MD->isCopyAssignment() && MD->isImplicit()) 747 DeferredDeclsToEmit.push_back(D); 748 } 749 } 750 751 return F; 752 } 753 754 /// GetAddrOfFunction - Return the address of the given function. If Ty is 755 /// non-null, then this function will use the specified type if it has to 756 /// create it (this occurs when we see a definition of the function). 757 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 758 const llvm::Type *Ty) { 759 // If there was no specific requested type, just convert it now. 760 if (!Ty) 761 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 762 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 763 } 764 765 /// CreateRuntimeFunction - Create a new runtime function with the specified 766 /// type and name. 767 llvm::Constant * 768 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 769 const char *Name) { 770 // Convert Name to be a uniqued string from the IdentifierInfo table. 771 Name = getContext().Idents.get(Name).getNameStart(); 772 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 773 } 774 775 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 776 if (!D->getType().isConstant(Context)) 777 return false; 778 if (Context.getLangOptions().CPlusPlus && 779 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 780 // FIXME: We should do something fancier here! 781 return false; 782 } 783 return true; 784 } 785 786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 787 /// create and return an llvm GlobalVariable with the specified type. If there 788 /// is something in the module with the specified name, return it potentially 789 /// bitcasted to the right type. 790 /// 791 /// If D is non-null, it specifies a decl that correspond to this. This is used 792 /// to set the attributes on the global when it is first created. 793 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 794 const llvm::PointerType*Ty, 795 const VarDecl *D) { 796 // Lookup the entry, lazily creating it if necessary. 797 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 798 if (Entry) { 799 if (Entry->getType() == Ty) 800 return Entry; 801 802 // Make sure the result is of the correct type. 803 return llvm::ConstantExpr::getBitCast(Entry, Ty); 804 } 805 806 // This is the first use or definition of a mangled name. If there is a 807 // deferred decl with this name, remember that we need to emit it at the end 808 // of the file. 809 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 810 DeferredDecls.find(MangledName); 811 if (DDI != DeferredDecls.end()) { 812 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 813 // list, and remove it from DeferredDecls (since we don't need it anymore). 814 DeferredDeclsToEmit.push_back(DDI->second); 815 DeferredDecls.erase(DDI); 816 } 817 818 llvm::GlobalVariable *GV = 819 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 820 llvm::GlobalValue::ExternalLinkage, 821 0, "", 0, 822 false, Ty->getAddressSpace()); 823 GV->setName(MangledName); 824 825 // Handle things which are present even on external declarations. 826 if (D) { 827 // FIXME: This code is overly simple and should be merged with other global 828 // handling. 829 GV->setConstant(DeclIsConstantGlobal(Context, D)); 830 831 // FIXME: Merge with other attribute handling code. 832 if (D->getStorageClass() == VarDecl::PrivateExtern) 833 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 834 835 if (D->hasAttr<WeakAttr>() || 836 D->hasAttr<WeakImportAttr>()) 837 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 838 839 GV->setThreadLocal(D->isThreadSpecified()); 840 } 841 842 return Entry = GV; 843 } 844 845 846 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 847 /// given global variable. If Ty is non-null and if the global doesn't exist, 848 /// then it will be greated with the specified type instead of whatever the 849 /// normal requested type would be. 850 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 851 const llvm::Type *Ty) { 852 assert(D->hasGlobalStorage() && "Not a global variable"); 853 QualType ASTTy = D->getType(); 854 if (Ty == 0) 855 Ty = getTypes().ConvertTypeForMem(ASTTy); 856 857 const llvm::PointerType *PTy = 858 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 859 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 860 } 861 862 /// CreateRuntimeVariable - Create a new runtime global variable with the 863 /// specified type and name. 864 llvm::Constant * 865 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 866 const char *Name) { 867 // Convert Name to be a uniqued string from the IdentifierInfo table. 868 Name = getContext().Idents.get(Name).getNameStart(); 869 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 870 } 871 872 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 873 assert(!D->getInit() && "Cannot emit definite definitions here!"); 874 875 if (MayDeferGeneration(D)) { 876 // If we have not seen a reference to this variable yet, place it 877 // into the deferred declarations table to be emitted if needed 878 // later. 879 const char *MangledName = getMangledName(D); 880 if (GlobalDeclMap.count(MangledName) == 0) { 881 DeferredDecls[MangledName] = D; 882 return; 883 } 884 } 885 886 // The tentative definition is the only definition. 887 EmitGlobalVarDefinition(D); 888 } 889 890 llvm::GlobalVariable::LinkageTypes 891 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) { 892 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 893 return llvm::GlobalVariable::InternalLinkage; 894 895 if (const CXXMethodDecl *KeyFunction 896 = RD->getASTContext().getKeyFunction(RD)) { 897 // If this class has a key function, use that to determine the linkage of 898 // the vtable. 899 const FunctionDecl *Def = 0; 900 if (KeyFunction->getBody(Def)) 901 KeyFunction = cast<CXXMethodDecl>(Def); 902 903 switch (KeyFunction->getTemplateSpecializationKind()) { 904 case TSK_Undeclared: 905 case TSK_ExplicitSpecialization: 906 if (KeyFunction->isInlined()) 907 return llvm::GlobalVariable::WeakODRLinkage; 908 909 return llvm::GlobalVariable::ExternalLinkage; 910 911 case TSK_ImplicitInstantiation: 912 case TSK_ExplicitInstantiationDefinition: 913 return llvm::GlobalVariable::WeakODRLinkage; 914 915 case TSK_ExplicitInstantiationDeclaration: 916 // FIXME: Use available_externally linkage. However, this currently 917 // breaks LLVM's build due to undefined symbols. 918 // return llvm::GlobalVariable::AvailableExternallyLinkage; 919 return llvm::GlobalVariable::WeakODRLinkage; 920 } 921 } 922 923 switch (RD->getTemplateSpecializationKind()) { 924 case TSK_Undeclared: 925 case TSK_ExplicitSpecialization: 926 case TSK_ImplicitInstantiation: 927 case TSK_ExplicitInstantiationDefinition: 928 return llvm::GlobalVariable::WeakODRLinkage; 929 930 case TSK_ExplicitInstantiationDeclaration: 931 // FIXME: Use available_externally linkage. However, this currently 932 // breaks LLVM's build due to undefined symbols. 933 // return llvm::GlobalVariable::AvailableExternallyLinkage; 934 return llvm::GlobalVariable::WeakODRLinkage; 935 } 936 937 // Silence GCC warning. 938 return llvm::GlobalVariable::WeakODRLinkage; 939 } 940 941 static CodeGenModule::GVALinkage 942 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 943 // Everything located semantically within an anonymous namespace is 944 // always internal. 945 if (VD->isInAnonymousNamespace()) 946 return CodeGenModule::GVA_Internal; 947 948 // Handle linkage for static data members. 949 if (VD->isStaticDataMember()) { 950 switch (VD->getTemplateSpecializationKind()) { 951 case TSK_Undeclared: 952 case TSK_ExplicitSpecialization: 953 case TSK_ExplicitInstantiationDefinition: 954 return CodeGenModule::GVA_StrongExternal; 955 956 case TSK_ExplicitInstantiationDeclaration: 957 llvm_unreachable("Variable should not be instantiated"); 958 // Fall through to treat this like any other instantiation. 959 960 case TSK_ImplicitInstantiation: 961 return CodeGenModule::GVA_TemplateInstantiation; 962 } 963 } 964 965 if (VD->getLinkage() == VarDecl::InternalLinkage) 966 return CodeGenModule::GVA_Internal; 967 968 return CodeGenModule::GVA_StrongExternal; 969 } 970 971 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 972 llvm::Constant *Init = 0; 973 QualType ASTTy = D->getType(); 974 bool NonConstInit = false; 975 976 if (D->getInit() == 0) { 977 // This is a tentative definition; tentative definitions are 978 // implicitly initialized with { 0 }. 979 // 980 // Note that tentative definitions are only emitted at the end of 981 // a translation unit, so they should never have incomplete 982 // type. In addition, EmitTentativeDefinition makes sure that we 983 // never attempt to emit a tentative definition if a real one 984 // exists. A use may still exists, however, so we still may need 985 // to do a RAUW. 986 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 987 Init = EmitNullConstant(D->getType()); 988 } else { 989 Init = EmitConstantExpr(D->getInit(), D->getType()); 990 991 if (!Init) { 992 QualType T = D->getInit()->getType(); 993 if (getLangOptions().CPlusPlus) { 994 EmitCXXGlobalVarDeclInitFunc(D); 995 Init = EmitNullConstant(T); 996 NonConstInit = true; 997 } else { 998 ErrorUnsupported(D, "static initializer"); 999 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1000 } 1001 } 1002 } 1003 1004 const llvm::Type* InitType = Init->getType(); 1005 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1006 1007 // Strip off a bitcast if we got one back. 1008 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1009 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1010 // all zero index gep. 1011 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1012 Entry = CE->getOperand(0); 1013 } 1014 1015 // Entry is now either a Function or GlobalVariable. 1016 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1017 1018 // We have a definition after a declaration with the wrong type. 1019 // We must make a new GlobalVariable* and update everything that used OldGV 1020 // (a declaration or tentative definition) with the new GlobalVariable* 1021 // (which will be a definition). 1022 // 1023 // This happens if there is a prototype for a global (e.g. 1024 // "extern int x[];") and then a definition of a different type (e.g. 1025 // "int x[10];"). This also happens when an initializer has a different type 1026 // from the type of the global (this happens with unions). 1027 if (GV == 0 || 1028 GV->getType()->getElementType() != InitType || 1029 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1030 1031 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 1032 GlobalDeclMap.erase(getMangledName(D)); 1033 1034 // Make a new global with the correct type, this is now guaranteed to work. 1035 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1036 GV->takeName(cast<llvm::GlobalValue>(Entry)); 1037 1038 // Replace all uses of the old global with the new global 1039 llvm::Constant *NewPtrForOldDecl = 1040 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1041 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1042 1043 // Erase the old global, since it is no longer used. 1044 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1045 } 1046 1047 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1048 SourceManager &SM = Context.getSourceManager(); 1049 AddAnnotation(EmitAnnotateAttr(GV, AA, 1050 SM.getInstantiationLineNumber(D->getLocation()))); 1051 } 1052 1053 GV->setInitializer(Init); 1054 1055 // If it is safe to mark the global 'constant', do so now. 1056 GV->setConstant(false); 1057 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1058 GV->setConstant(true); 1059 1060 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1061 1062 // Set the llvm linkage type as appropriate. 1063 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 1064 if (Linkage == GVA_Internal) 1065 GV->setLinkage(llvm::Function::InternalLinkage); 1066 else if (D->hasAttr<DLLImportAttr>()) 1067 GV->setLinkage(llvm::Function::DLLImportLinkage); 1068 else if (D->hasAttr<DLLExportAttr>()) 1069 GV->setLinkage(llvm::Function::DLLExportLinkage); 1070 else if (D->hasAttr<WeakAttr>()) { 1071 if (GV->isConstant()) 1072 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1073 else 1074 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1075 } else if (Linkage == GVA_TemplateInstantiation) 1076 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1077 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1078 !D->hasExternalStorage() && !D->getInit() && 1079 !D->getAttr<SectionAttr>()) { 1080 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1081 // common vars aren't constant even if declared const. 1082 GV->setConstant(false); 1083 } else 1084 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1085 1086 SetCommonAttributes(D, GV); 1087 1088 // Emit global variable debug information. 1089 if (CGDebugInfo *DI = getDebugInfo()) { 1090 DI->setLocation(D->getLocation()); 1091 DI->EmitGlobalVariable(GV, D); 1092 } 1093 } 1094 1095 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1096 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1097 /// existing call uses of the old function in the module, this adjusts them to 1098 /// call the new function directly. 1099 /// 1100 /// This is not just a cleanup: the always_inline pass requires direct calls to 1101 /// functions to be able to inline them. If there is a bitcast in the way, it 1102 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1103 /// run at -O0. 1104 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1105 llvm::Function *NewFn) { 1106 // If we're redefining a global as a function, don't transform it. 1107 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1108 if (OldFn == 0) return; 1109 1110 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1111 llvm::SmallVector<llvm::Value*, 4> ArgList; 1112 1113 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1114 UI != E; ) { 1115 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1116 unsigned OpNo = UI.getOperandNo(); 1117 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1118 if (!CI || OpNo != 0) continue; 1119 1120 // If the return types don't match exactly, and if the call isn't dead, then 1121 // we can't transform this call. 1122 if (CI->getType() != NewRetTy && !CI->use_empty()) 1123 continue; 1124 1125 // If the function was passed too few arguments, don't transform. If extra 1126 // arguments were passed, we silently drop them. If any of the types 1127 // mismatch, we don't transform. 1128 unsigned ArgNo = 0; 1129 bool DontTransform = false; 1130 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1131 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1132 if (CI->getNumOperands()-1 == ArgNo || 1133 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1134 DontTransform = true; 1135 break; 1136 } 1137 } 1138 if (DontTransform) 1139 continue; 1140 1141 // Okay, we can transform this. Create the new call instruction and copy 1142 // over the required information. 1143 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1144 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1145 ArgList.end(), "", CI); 1146 ArgList.clear(); 1147 if (!NewCall->getType()->isVoidTy()) 1148 NewCall->takeName(CI); 1149 NewCall->setAttributes(CI->getAttributes()); 1150 NewCall->setCallingConv(CI->getCallingConv()); 1151 1152 // Finally, remove the old call, replacing any uses with the new one. 1153 if (!CI->use_empty()) 1154 CI->replaceAllUsesWith(NewCall); 1155 1156 // Copy any custom metadata attached with CI. 1157 if (llvm::MDNode *DbgNode = CI->getMetadata("dbg")) 1158 NewCall->setMetadata("dbg", DbgNode); 1159 CI->eraseFromParent(); 1160 } 1161 } 1162 1163 1164 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1165 const llvm::FunctionType *Ty; 1166 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1167 1168 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1169 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1170 1171 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1172 } else { 1173 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1174 1175 // As a special case, make sure that definitions of K&R function 1176 // "type foo()" aren't declared as varargs (which forces the backend 1177 // to do unnecessary work). 1178 if (D->getType()->isFunctionNoProtoType()) { 1179 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1180 // Due to stret, the lowered function could have arguments. 1181 // Just create the same type as was lowered by ConvertType 1182 // but strip off the varargs bit. 1183 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1184 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1185 } 1186 } 1187 1188 // Get or create the prototype for the function. 1189 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1190 1191 // Strip off a bitcast if we got one back. 1192 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1193 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1194 Entry = CE->getOperand(0); 1195 } 1196 1197 1198 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1199 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1200 1201 // If the types mismatch then we have to rewrite the definition. 1202 assert(OldFn->isDeclaration() && 1203 "Shouldn't replace non-declaration"); 1204 1205 // F is the Function* for the one with the wrong type, we must make a new 1206 // Function* and update everything that used F (a declaration) with the new 1207 // Function* (which will be a definition). 1208 // 1209 // This happens if there is a prototype for a function 1210 // (e.g. "int f()") and then a definition of a different type 1211 // (e.g. "int f(int x)"). Start by making a new function of the 1212 // correct type, RAUW, then steal the name. 1213 GlobalDeclMap.erase(getMangledName(D)); 1214 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1215 NewFn->takeName(OldFn); 1216 1217 // If this is an implementation of a function without a prototype, try to 1218 // replace any existing uses of the function (which may be calls) with uses 1219 // of the new function 1220 if (D->getType()->isFunctionNoProtoType()) { 1221 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1222 OldFn->removeDeadConstantUsers(); 1223 } 1224 1225 // Replace uses of F with the Function we will endow with a body. 1226 if (!Entry->use_empty()) { 1227 llvm::Constant *NewPtrForOldDecl = 1228 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1229 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1230 } 1231 1232 // Ok, delete the old function now, which is dead. 1233 OldFn->eraseFromParent(); 1234 1235 Entry = NewFn; 1236 } 1237 1238 llvm::Function *Fn = cast<llvm::Function>(Entry); 1239 1240 CodeGenFunction(*this).GenerateCode(D, Fn); 1241 1242 SetFunctionDefinitionAttributes(D, Fn); 1243 SetLLVMFunctionAttributesForDefinition(D, Fn); 1244 1245 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1246 AddGlobalCtor(Fn, CA->getPriority()); 1247 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1248 AddGlobalDtor(Fn, DA->getPriority()); 1249 } 1250 1251 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1252 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1253 assert(AA && "Not an alias?"); 1254 1255 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1256 1257 // Unique the name through the identifier table. 1258 const char *AliaseeName = AA->getAliasee().c_str(); 1259 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1260 1261 // Create a reference to the named value. This ensures that it is emitted 1262 // if a deferred decl. 1263 llvm::Constant *Aliasee; 1264 if (isa<llvm::FunctionType>(DeclTy)) 1265 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1266 else 1267 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1268 llvm::PointerType::getUnqual(DeclTy), 0); 1269 1270 // Create the new alias itself, but don't set a name yet. 1271 llvm::GlobalValue *GA = 1272 new llvm::GlobalAlias(Aliasee->getType(), 1273 llvm::Function::ExternalLinkage, 1274 "", Aliasee, &getModule()); 1275 1276 // See if there is already something with the alias' name in the module. 1277 const char *MangledName = getMangledName(D); 1278 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1279 1280 if (Entry && !Entry->isDeclaration()) { 1281 // If there is a definition in the module, then it wins over the alias. 1282 // This is dubious, but allow it to be safe. Just ignore the alias. 1283 GA->eraseFromParent(); 1284 return; 1285 } 1286 1287 if (Entry) { 1288 // If there is a declaration in the module, then we had an extern followed 1289 // by the alias, as in: 1290 // extern int test6(); 1291 // ... 1292 // int test6() __attribute__((alias("test7"))); 1293 // 1294 // Remove it and replace uses of it with the alias. 1295 1296 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1297 Entry->getType())); 1298 Entry->eraseFromParent(); 1299 } 1300 1301 // Now we know that there is no conflict, set the name. 1302 Entry = GA; 1303 GA->setName(MangledName); 1304 1305 // Set attributes which are particular to an alias; this is a 1306 // specialization of the attributes which may be set on a global 1307 // variable/function. 1308 if (D->hasAttr<DLLExportAttr>()) { 1309 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1310 // The dllexport attribute is ignored for undefined symbols. 1311 if (FD->getBody()) 1312 GA->setLinkage(llvm::Function::DLLExportLinkage); 1313 } else { 1314 GA->setLinkage(llvm::Function::DLLExportLinkage); 1315 } 1316 } else if (D->hasAttr<WeakAttr>() || 1317 D->hasAttr<WeakImportAttr>()) { 1318 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1319 } 1320 1321 SetCommonAttributes(D, GA); 1322 } 1323 1324 /// getBuiltinLibFunction - Given a builtin id for a function like 1325 /// "__builtin_fabsf", return a Function* for "fabsf". 1326 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1327 unsigned BuiltinID) { 1328 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1329 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1330 "isn't a lib fn"); 1331 1332 // Get the name, skip over the __builtin_ prefix (if necessary). 1333 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1334 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1335 Name += 10; 1336 1337 const llvm::FunctionType *Ty = 1338 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1339 1340 // Unique the name through the identifier table. 1341 Name = getContext().Idents.get(Name).getNameStart(); 1342 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1343 } 1344 1345 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1346 unsigned NumTys) { 1347 return llvm::Intrinsic::getDeclaration(&getModule(), 1348 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1349 } 1350 1351 llvm::Function *CodeGenModule::getMemCpyFn() { 1352 if (MemCpyFn) return MemCpyFn; 1353 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1354 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1355 } 1356 1357 llvm::Function *CodeGenModule::getMemMoveFn() { 1358 if (MemMoveFn) return MemMoveFn; 1359 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1360 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1361 } 1362 1363 llvm::Function *CodeGenModule::getMemSetFn() { 1364 if (MemSetFn) return MemSetFn; 1365 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1366 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1367 } 1368 1369 static llvm::StringMapEntry<llvm::Constant*> & 1370 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1371 const StringLiteral *Literal, 1372 bool TargetIsLSB, 1373 bool &IsUTF16, 1374 unsigned &StringLength) { 1375 unsigned NumBytes = Literal->getByteLength(); 1376 1377 // Check for simple case. 1378 if (!Literal->containsNonAsciiOrNull()) { 1379 StringLength = NumBytes; 1380 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1381 StringLength)); 1382 } 1383 1384 // Otherwise, convert the UTF8 literals into a byte string. 1385 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1386 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1387 UTF16 *ToPtr = &ToBuf[0]; 1388 1389 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1390 &ToPtr, ToPtr + NumBytes, 1391 strictConversion); 1392 1393 // Check for conversion failure. 1394 if (Result != conversionOK) { 1395 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1396 // this duplicate code. 1397 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1398 StringLength = NumBytes; 1399 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1400 StringLength)); 1401 } 1402 1403 // ConvertUTF8toUTF16 returns the length in ToPtr. 1404 StringLength = ToPtr - &ToBuf[0]; 1405 1406 // Render the UTF-16 string into a byte array and convert to the target byte 1407 // order. 1408 // 1409 // FIXME: This isn't something we should need to do here. 1410 llvm::SmallString<128> AsBytes; 1411 AsBytes.reserve(StringLength * 2); 1412 for (unsigned i = 0; i != StringLength; ++i) { 1413 unsigned short Val = ToBuf[i]; 1414 if (TargetIsLSB) { 1415 AsBytes.push_back(Val & 0xFF); 1416 AsBytes.push_back(Val >> 8); 1417 } else { 1418 AsBytes.push_back(Val >> 8); 1419 AsBytes.push_back(Val & 0xFF); 1420 } 1421 } 1422 // Append one extra null character, the second is automatically added by our 1423 // caller. 1424 AsBytes.push_back(0); 1425 1426 IsUTF16 = true; 1427 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1428 } 1429 1430 llvm::Constant * 1431 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1432 unsigned StringLength = 0; 1433 bool isUTF16 = false; 1434 llvm::StringMapEntry<llvm::Constant*> &Entry = 1435 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1436 getTargetData().isLittleEndian(), 1437 isUTF16, StringLength); 1438 1439 if (llvm::Constant *C = Entry.getValue()) 1440 return C; 1441 1442 llvm::Constant *Zero = 1443 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1444 llvm::Constant *Zeros[] = { Zero, Zero }; 1445 1446 // If we don't already have it, get __CFConstantStringClassReference. 1447 if (!CFConstantStringClassRef) { 1448 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1449 Ty = llvm::ArrayType::get(Ty, 0); 1450 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1451 "__CFConstantStringClassReference"); 1452 // Decay array -> ptr 1453 CFConstantStringClassRef = 1454 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1455 } 1456 1457 QualType CFTy = getContext().getCFConstantStringType(); 1458 1459 const llvm::StructType *STy = 1460 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1461 1462 std::vector<llvm::Constant*> Fields(4); 1463 1464 // Class pointer. 1465 Fields[0] = CFConstantStringClassRef; 1466 1467 // Flags. 1468 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1469 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1470 llvm::ConstantInt::get(Ty, 0x07C8); 1471 1472 // String pointer. 1473 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1474 1475 const char *Sect = 0; 1476 llvm::GlobalValue::LinkageTypes Linkage; 1477 bool isConstant; 1478 if (isUTF16) { 1479 Sect = getContext().Target.getUnicodeStringSection(); 1480 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1481 Linkage = llvm::GlobalValue::InternalLinkage; 1482 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1483 // does make plain ascii ones writable. 1484 isConstant = true; 1485 } else { 1486 Linkage = llvm::GlobalValue::PrivateLinkage; 1487 isConstant = !Features.WritableStrings; 1488 } 1489 1490 llvm::GlobalVariable *GV = 1491 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1492 ".str"); 1493 if (Sect) 1494 GV->setSection(Sect); 1495 if (isUTF16) { 1496 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1497 GV->setAlignment(Align); 1498 } 1499 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1500 1501 // String length. 1502 Ty = getTypes().ConvertType(getContext().LongTy); 1503 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1504 1505 // The struct. 1506 C = llvm::ConstantStruct::get(STy, Fields); 1507 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1508 llvm::GlobalVariable::PrivateLinkage, C, 1509 "_unnamed_cfstring_"); 1510 if (const char *Sect = getContext().Target.getCFStringSection()) 1511 GV->setSection(Sect); 1512 Entry.setValue(GV); 1513 1514 return GV; 1515 } 1516 1517 /// GetStringForStringLiteral - Return the appropriate bytes for a 1518 /// string literal, properly padded to match the literal type. 1519 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1520 const char *StrData = E->getStrData(); 1521 unsigned Len = E->getByteLength(); 1522 1523 const ConstantArrayType *CAT = 1524 getContext().getAsConstantArrayType(E->getType()); 1525 assert(CAT && "String isn't pointer or array!"); 1526 1527 // Resize the string to the right size. 1528 std::string Str(StrData, StrData+Len); 1529 uint64_t RealLen = CAT->getSize().getZExtValue(); 1530 1531 if (E->isWide()) 1532 RealLen *= getContext().Target.getWCharWidth()/8; 1533 1534 Str.resize(RealLen, '\0'); 1535 1536 return Str; 1537 } 1538 1539 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1540 /// constant array for the given string literal. 1541 llvm::Constant * 1542 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1543 // FIXME: This can be more efficient. 1544 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1545 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1546 if (S->isWide()) { 1547 llvm::Type *DestTy = 1548 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1549 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1550 } 1551 return C; 1552 } 1553 1554 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1555 /// array for the given ObjCEncodeExpr node. 1556 llvm::Constant * 1557 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1558 std::string Str; 1559 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1560 1561 return GetAddrOfConstantCString(Str); 1562 } 1563 1564 1565 /// GenerateWritableString -- Creates storage for a string literal. 1566 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1567 bool constant, 1568 CodeGenModule &CGM, 1569 const char *GlobalName) { 1570 // Create Constant for this string literal. Don't add a '\0'. 1571 llvm::Constant *C = 1572 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1573 1574 // Create a global variable for this string 1575 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1576 llvm::GlobalValue::PrivateLinkage, 1577 C, GlobalName); 1578 } 1579 1580 /// GetAddrOfConstantString - Returns a pointer to a character array 1581 /// containing the literal. This contents are exactly that of the 1582 /// given string, i.e. it will not be null terminated automatically; 1583 /// see GetAddrOfConstantCString. Note that whether the result is 1584 /// actually a pointer to an LLVM constant depends on 1585 /// Feature.WriteableStrings. 1586 /// 1587 /// The result has pointer to array type. 1588 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1589 const char *GlobalName) { 1590 bool IsConstant = !Features.WritableStrings; 1591 1592 // Get the default prefix if a name wasn't specified. 1593 if (!GlobalName) 1594 GlobalName = ".str"; 1595 1596 // Don't share any string literals if strings aren't constant. 1597 if (!IsConstant) 1598 return GenerateStringLiteral(str, false, *this, GlobalName); 1599 1600 llvm::StringMapEntry<llvm::Constant *> &Entry = 1601 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1602 1603 if (Entry.getValue()) 1604 return Entry.getValue(); 1605 1606 // Create a global variable for this. 1607 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1608 Entry.setValue(C); 1609 return C; 1610 } 1611 1612 /// GetAddrOfConstantCString - Returns a pointer to a character 1613 /// array containing the literal and a terminating '\-' 1614 /// character. The result has pointer to array type. 1615 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1616 const char *GlobalName){ 1617 return GetAddrOfConstantString(str + '\0', GlobalName); 1618 } 1619 1620 /// EmitObjCPropertyImplementations - Emit information for synthesized 1621 /// properties for an implementation. 1622 void CodeGenModule::EmitObjCPropertyImplementations(const 1623 ObjCImplementationDecl *D) { 1624 for (ObjCImplementationDecl::propimpl_iterator 1625 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1626 ObjCPropertyImplDecl *PID = *i; 1627 1628 // Dynamic is just for type-checking. 1629 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1630 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1631 1632 // Determine which methods need to be implemented, some may have 1633 // been overridden. Note that ::isSynthesized is not the method 1634 // we want, that just indicates if the decl came from a 1635 // property. What we want to know is if the method is defined in 1636 // this implementation. 1637 if (!D->getInstanceMethod(PD->getGetterName())) 1638 CodeGenFunction(*this).GenerateObjCGetter( 1639 const_cast<ObjCImplementationDecl *>(D), PID); 1640 if (!PD->isReadOnly() && 1641 !D->getInstanceMethod(PD->getSetterName())) 1642 CodeGenFunction(*this).GenerateObjCSetter( 1643 const_cast<ObjCImplementationDecl *>(D), PID); 1644 } 1645 } 1646 } 1647 1648 /// EmitNamespace - Emit all declarations in a namespace. 1649 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1650 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1651 I != E; ++I) 1652 EmitTopLevelDecl(*I); 1653 } 1654 1655 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1656 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1657 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1658 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1659 ErrorUnsupported(LSD, "linkage spec"); 1660 return; 1661 } 1662 1663 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1664 I != E; ++I) 1665 EmitTopLevelDecl(*I); 1666 } 1667 1668 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1669 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1670 // If an error has occurred, stop code generation, but continue 1671 // parsing and semantic analysis (to ensure all warnings and errors 1672 // are emitted). 1673 if (Diags.hasErrorOccurred()) 1674 return; 1675 1676 // Ignore dependent declarations. 1677 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1678 return; 1679 1680 switch (D->getKind()) { 1681 case Decl::CXXConversion: 1682 case Decl::CXXMethod: 1683 case Decl::Function: 1684 // Skip function templates 1685 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1686 return; 1687 1688 EmitGlobal(cast<FunctionDecl>(D)); 1689 break; 1690 1691 case Decl::Var: 1692 EmitGlobal(cast<VarDecl>(D)); 1693 break; 1694 1695 // C++ Decls 1696 case Decl::Namespace: 1697 EmitNamespace(cast<NamespaceDecl>(D)); 1698 break; 1699 // No code generation needed. 1700 case Decl::UsingShadow: 1701 case Decl::Using: 1702 case Decl::UsingDirective: 1703 case Decl::ClassTemplate: 1704 case Decl::FunctionTemplate: 1705 case Decl::NamespaceAlias: 1706 break; 1707 case Decl::CXXConstructor: 1708 // Skip function templates 1709 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1710 return; 1711 1712 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1713 break; 1714 case Decl::CXXDestructor: 1715 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1716 break; 1717 1718 case Decl::StaticAssert: 1719 // Nothing to do. 1720 break; 1721 1722 // Objective-C Decls 1723 1724 // Forward declarations, no (immediate) code generation. 1725 case Decl::ObjCClass: 1726 case Decl::ObjCForwardProtocol: 1727 case Decl::ObjCCategory: 1728 case Decl::ObjCInterface: 1729 break; 1730 1731 case Decl::ObjCProtocol: 1732 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1733 break; 1734 1735 case Decl::ObjCCategoryImpl: 1736 // Categories have properties but don't support synthesize so we 1737 // can ignore them here. 1738 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1739 break; 1740 1741 case Decl::ObjCImplementation: { 1742 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1743 EmitObjCPropertyImplementations(OMD); 1744 Runtime->GenerateClass(OMD); 1745 break; 1746 } 1747 case Decl::ObjCMethod: { 1748 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1749 // If this is not a prototype, emit the body. 1750 if (OMD->getBody()) 1751 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1752 break; 1753 } 1754 case Decl::ObjCCompatibleAlias: 1755 // compatibility-alias is a directive and has no code gen. 1756 break; 1757 1758 case Decl::LinkageSpec: 1759 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1760 break; 1761 1762 case Decl::FileScopeAsm: { 1763 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1764 llvm::StringRef AsmString = AD->getAsmString()->getString(); 1765 1766 const std::string &S = getModule().getModuleInlineAsm(); 1767 if (S.empty()) 1768 getModule().setModuleInlineAsm(AsmString); 1769 else 1770 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 1771 break; 1772 } 1773 1774 default: 1775 // Make sure we handled everything we should, every other kind is a 1776 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1777 // function. Need to recode Decl::Kind to do that easily. 1778 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1779 } 1780 } 1781