1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CodeGenFunction.h" 24 #include "CodeGenPGO.h" 25 #include "CodeGenTBAA.h" 26 #include "CoverageMappingGen.h" 27 #include "TargetInfo.h" 28 #include "clang/AST/ASTContext.h" 29 #include "clang/AST/CharUnits.h" 30 #include "clang/AST/DeclCXX.h" 31 #include "clang/AST/DeclObjC.h" 32 #include "clang/AST/DeclTemplate.h" 33 #include "clang/AST/Mangle.h" 34 #include "clang/AST/RecordLayout.h" 35 #include "clang/AST/RecursiveASTVisitor.h" 36 #include "clang/Basic/Builtins.h" 37 #include "clang/Basic/CharInfo.h" 38 #include "clang/Basic/Diagnostic.h" 39 #include "clang/Basic/Module.h" 40 #include "clang/Basic/SourceManager.h" 41 #include "clang/Basic/TargetInfo.h" 42 #include "clang/Basic/Version.h" 43 #include "clang/Frontend/CodeGenOptions.h" 44 #include "clang/Sema/SemaDiagnostic.h" 45 #include "llvm/ADT/APSInt.h" 46 #include "llvm/ADT/Triple.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/ProfileData/InstrProfReader.h" 54 #include "llvm/Support/ConvertUTF.h" 55 #include "llvm/Support/ErrorHandling.h" 56 57 using namespace clang; 58 using namespace CodeGen; 59 60 static const char AnnotationSection[] = "llvm.metadata"; 61 62 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 63 switch (CGM.getTarget().getCXXABI().getKind()) { 64 case TargetCXXABI::GenericAArch64: 65 case TargetCXXABI::GenericARM: 66 case TargetCXXABI::iOS: 67 case TargetCXXABI::iOS64: 68 case TargetCXXABI::WatchOS: 69 case TargetCXXABI::GenericMIPS: 70 case TargetCXXABI::GenericItanium: 71 case TargetCXXABI::WebAssembly: 72 return CreateItaniumCXXABI(CGM); 73 case TargetCXXABI::Microsoft: 74 return CreateMicrosoftCXXABI(CGM); 75 } 76 77 llvm_unreachable("invalid C++ ABI kind"); 78 } 79 80 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 81 const PreprocessorOptions &PPO, 82 const CodeGenOptions &CGO, llvm::Module &M, 83 DiagnosticsEngine &diags, 84 CoverageSourceInfo *CoverageInfo) 85 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 86 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 87 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 88 VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr), 89 Types(*this), VTables(*this), ObjCRuntime(nullptr), 90 OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr), 91 DebugInfo(nullptr), ObjCData(nullptr), 92 NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr), 93 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 94 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 95 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 96 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 97 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 98 LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) { 99 100 // Initialize the type cache. 101 llvm::LLVMContext &LLVMContext = M.getContext(); 102 VoidTy = llvm::Type::getVoidTy(LLVMContext); 103 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 104 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 105 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 106 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 IntAlignInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 114 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 115 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 116 Int8PtrTy = Int8Ty->getPointerTo(0); 117 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 118 119 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 120 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 121 122 if (LangOpts.ObjC1) 123 createObjCRuntime(); 124 if (LangOpts.OpenCL) 125 createOpenCLRuntime(); 126 if (LangOpts.OpenMP) 127 createOpenMPRuntime(); 128 if (LangOpts.CUDA) 129 createCUDARuntime(); 130 131 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 132 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 133 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 134 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 135 getCXXABI().getMangleContext()); 136 137 // If debug info or coverage generation is enabled, create the CGDebugInfo 138 // object. 139 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 140 CodeGenOpts.EmitGcovArcs || 141 CodeGenOpts.EmitGcovNotes) 142 DebugInfo = new CGDebugInfo(*this); 143 144 Block.GlobalUniqueCount = 0; 145 146 if (C.getLangOpts().ObjC1) 147 ObjCData = new ObjCEntrypoints(); 148 149 if (!CodeGenOpts.InstrProfileInput.empty()) { 150 auto ReaderOrErr = 151 llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput); 152 if (std::error_code EC = ReaderOrErr.getError()) { 153 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 154 "Could not read profile %0: %1"); 155 getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput 156 << EC.message(); 157 } else 158 PGOReader = std::move(ReaderOrErr.get()); 159 } 160 161 // If coverage mapping generation is enabled, create the 162 // CoverageMappingModuleGen object. 163 if (CodeGenOpts.CoverageMapping) 164 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 165 } 166 167 CodeGenModule::~CodeGenModule() { 168 delete ObjCRuntime; 169 delete OpenCLRuntime; 170 delete OpenMPRuntime; 171 delete CUDARuntime; 172 delete TheTargetCodeGenInfo; 173 delete TBAA; 174 delete DebugInfo; 175 delete ObjCData; 176 } 177 178 void CodeGenModule::createObjCRuntime() { 179 // This is just isGNUFamily(), but we want to force implementors of 180 // new ABIs to decide how best to do this. 181 switch (LangOpts.ObjCRuntime.getKind()) { 182 case ObjCRuntime::GNUstep: 183 case ObjCRuntime::GCC: 184 case ObjCRuntime::ObjFW: 185 ObjCRuntime = CreateGNUObjCRuntime(*this); 186 return; 187 188 case ObjCRuntime::FragileMacOSX: 189 case ObjCRuntime::MacOSX: 190 case ObjCRuntime::iOS: 191 case ObjCRuntime::WatchOS: 192 ObjCRuntime = CreateMacObjCRuntime(*this); 193 return; 194 } 195 llvm_unreachable("bad runtime kind"); 196 } 197 198 void CodeGenModule::createOpenCLRuntime() { 199 OpenCLRuntime = new CGOpenCLRuntime(*this); 200 } 201 202 void CodeGenModule::createOpenMPRuntime() { 203 OpenMPRuntime = new CGOpenMPRuntime(*this); 204 } 205 206 void CodeGenModule::createCUDARuntime() { 207 CUDARuntime = CreateNVCUDARuntime(*this); 208 } 209 210 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 211 Replacements[Name] = C; 212 } 213 214 void CodeGenModule::applyReplacements() { 215 for (auto &I : Replacements) { 216 StringRef MangledName = I.first(); 217 llvm::Constant *Replacement = I.second; 218 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 219 if (!Entry) 220 continue; 221 auto *OldF = cast<llvm::Function>(Entry); 222 auto *NewF = dyn_cast<llvm::Function>(Replacement); 223 if (!NewF) { 224 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 225 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 226 } else { 227 auto *CE = cast<llvm::ConstantExpr>(Replacement); 228 assert(CE->getOpcode() == llvm::Instruction::BitCast || 229 CE->getOpcode() == llvm::Instruction::GetElementPtr); 230 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 231 } 232 } 233 234 // Replace old with new, but keep the old order. 235 OldF->replaceAllUsesWith(Replacement); 236 if (NewF) { 237 NewF->removeFromParent(); 238 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 239 NewF); 240 } 241 OldF->eraseFromParent(); 242 } 243 } 244 245 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 246 GlobalValReplacements.push_back(std::make_pair(GV, C)); 247 } 248 249 void CodeGenModule::applyGlobalValReplacements() { 250 for (auto &I : GlobalValReplacements) { 251 llvm::GlobalValue *GV = I.first; 252 llvm::Constant *C = I.second; 253 254 GV->replaceAllUsesWith(C); 255 GV->eraseFromParent(); 256 } 257 } 258 259 // This is only used in aliases that we created and we know they have a 260 // linear structure. 261 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 262 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 263 const llvm::Constant *C = &GA; 264 for (;;) { 265 C = C->stripPointerCasts(); 266 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 267 return GO; 268 // stripPointerCasts will not walk over weak aliases. 269 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 270 if (!GA2) 271 return nullptr; 272 if (!Visited.insert(GA2).second) 273 return nullptr; 274 C = GA2->getAliasee(); 275 } 276 } 277 278 void CodeGenModule::checkAliases() { 279 // Check if the constructed aliases are well formed. It is really unfortunate 280 // that we have to do this in CodeGen, but we only construct mangled names 281 // and aliases during codegen. 282 bool Error = false; 283 DiagnosticsEngine &Diags = getDiags(); 284 for (const GlobalDecl &GD : Aliases) { 285 const auto *D = cast<ValueDecl>(GD.getDecl()); 286 const AliasAttr *AA = D->getAttr<AliasAttr>(); 287 StringRef MangledName = getMangledName(GD); 288 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 289 auto *Alias = cast<llvm::GlobalAlias>(Entry); 290 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 291 if (!GV) { 292 Error = true; 293 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 294 } else if (GV->isDeclaration()) { 295 Error = true; 296 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 297 } 298 299 llvm::Constant *Aliasee = Alias->getAliasee(); 300 llvm::GlobalValue *AliaseeGV; 301 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 302 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 303 else 304 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 305 306 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 307 StringRef AliasSection = SA->getName(); 308 if (AliasSection != AliaseeGV->getSection()) 309 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 310 << AliasSection; 311 } 312 313 // We have to handle alias to weak aliases in here. LLVM itself disallows 314 // this since the object semantics would not match the IL one. For 315 // compatibility with gcc we implement it by just pointing the alias 316 // to its aliasee's aliasee. We also warn, since the user is probably 317 // expecting the link to be weak. 318 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 319 if (GA->mayBeOverridden()) { 320 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 321 << GV->getName() << GA->getName(); 322 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 323 GA->getAliasee(), Alias->getType()); 324 Alias->setAliasee(Aliasee); 325 } 326 } 327 } 328 if (!Error) 329 return; 330 331 for (const GlobalDecl &GD : Aliases) { 332 StringRef MangledName = getMangledName(GD); 333 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 334 auto *Alias = cast<llvm::GlobalAlias>(Entry); 335 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 336 Alias->eraseFromParent(); 337 } 338 } 339 340 void CodeGenModule::clear() { 341 DeferredDeclsToEmit.clear(); 342 if (OpenMPRuntime) 343 OpenMPRuntime->clear(); 344 } 345 346 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 347 StringRef MainFile) { 348 if (!hasDiagnostics()) 349 return; 350 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 351 if (MainFile.empty()) 352 MainFile = "<stdin>"; 353 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 354 } else 355 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 356 << Mismatched; 357 } 358 359 void CodeGenModule::Release() { 360 EmitDeferred(); 361 applyGlobalValReplacements(); 362 applyReplacements(); 363 checkAliases(); 364 EmitCXXGlobalInitFunc(); 365 EmitCXXGlobalDtorFunc(); 366 EmitCXXThreadLocalInitFunc(); 367 if (ObjCRuntime) 368 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 369 AddGlobalCtor(ObjCInitFunction); 370 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 371 CUDARuntime) { 372 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 373 AddGlobalCtor(CudaCtorFunction); 374 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 375 AddGlobalDtor(CudaDtorFunction); 376 } 377 if (PGOReader && PGOStats.hasDiagnostics()) 378 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 379 // In PGO mode, attach maximum function count to the module. 380 if (PGOReader) 381 getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount()); 382 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 383 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 384 EmitGlobalAnnotations(); 385 EmitStaticExternCAliases(); 386 EmitDeferredUnusedCoverageMappings(); 387 if (CoverageMapping) 388 CoverageMapping->emit(); 389 emitLLVMUsed(); 390 391 if (CodeGenOpts.Autolink && 392 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 393 EmitModuleLinkOptions(); 394 } 395 if (CodeGenOpts.DwarfVersion) { 396 // We actually want the latest version when there are conflicts. 397 // We can change from Warning to Latest if such mode is supported. 398 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 399 CodeGenOpts.DwarfVersion); 400 } 401 if (CodeGenOpts.EmitCodeView) { 402 // Indicate that we want CodeView in the metadata. 403 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 404 } 405 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 406 // We don't support LTO with 2 with different StrictVTablePointers 407 // FIXME: we could support it by stripping all the information introduced 408 // by StrictVTablePointers. 409 410 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 411 412 llvm::Metadata *Ops[2] = { 413 llvm::MDString::get(VMContext, "StrictVTablePointers"), 414 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 415 llvm::Type::getInt32Ty(VMContext), 1))}; 416 417 getModule().addModuleFlag(llvm::Module::Require, 418 "StrictVTablePointersRequirement", 419 llvm::MDNode::get(VMContext, Ops)); 420 } 421 if (DebugInfo) 422 // We support a single version in the linked module. The LLVM 423 // parser will drop debug info with a different version number 424 // (and warn about it, too). 425 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 426 llvm::DEBUG_METADATA_VERSION); 427 428 // We need to record the widths of enums and wchar_t, so that we can generate 429 // the correct build attributes in the ARM backend. 430 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 431 if ( Arch == llvm::Triple::arm 432 || Arch == llvm::Triple::armeb 433 || Arch == llvm::Triple::thumb 434 || Arch == llvm::Triple::thumbeb) { 435 // Width of wchar_t in bytes 436 uint64_t WCharWidth = 437 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 438 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 439 440 // The minimum width of an enum in bytes 441 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 442 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 443 } 444 445 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 446 llvm::PICLevel::Level PL = llvm::PICLevel::Default; 447 switch (PLevel) { 448 case 0: break; 449 case 1: PL = llvm::PICLevel::Small; break; 450 case 2: PL = llvm::PICLevel::Large; break; 451 default: llvm_unreachable("Invalid PIC Level"); 452 } 453 454 getModule().setPICLevel(PL); 455 } 456 457 SimplifyPersonality(); 458 459 if (getCodeGenOpts().EmitDeclMetadata) 460 EmitDeclMetadata(); 461 462 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 463 EmitCoverageFile(); 464 465 if (DebugInfo) 466 DebugInfo->finalize(); 467 468 EmitVersionIdentMetadata(); 469 470 EmitTargetMetadata(); 471 } 472 473 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 474 // Make sure that this type is translated. 475 Types.UpdateCompletedType(TD); 476 } 477 478 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 479 if (!TBAA) 480 return nullptr; 481 return TBAA->getTBAAInfo(QTy); 482 } 483 484 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 485 if (!TBAA) 486 return nullptr; 487 return TBAA->getTBAAInfoForVTablePtr(); 488 } 489 490 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 491 if (!TBAA) 492 return nullptr; 493 return TBAA->getTBAAStructInfo(QTy); 494 } 495 496 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 497 llvm::MDNode *AccessN, 498 uint64_t O) { 499 if (!TBAA) 500 return nullptr; 501 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 502 } 503 504 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 505 /// and struct-path aware TBAA, the tag has the same format: 506 /// base type, access type and offset. 507 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 508 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 509 llvm::MDNode *TBAAInfo, 510 bool ConvertTypeToTag) { 511 if (ConvertTypeToTag && TBAA) 512 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 513 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 514 else 515 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 516 } 517 518 void CodeGenModule::DecorateInstructionWithInvariantGroup( 519 llvm::Instruction *I, const CXXRecordDecl *RD) { 520 llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 521 auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD); 522 // Check if we have to wrap MDString in MDNode. 523 if (!MetaDataNode) 524 MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD); 525 I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode); 526 } 527 528 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 529 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 530 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 531 } 532 533 /// ErrorUnsupported - Print out an error that codegen doesn't support the 534 /// specified stmt yet. 535 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 536 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 537 "cannot compile this %0 yet"); 538 std::string Msg = Type; 539 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 540 << Msg << S->getSourceRange(); 541 } 542 543 /// ErrorUnsupported - Print out an error that codegen doesn't support the 544 /// specified decl yet. 545 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 546 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 547 "cannot compile this %0 yet"); 548 std::string Msg = Type; 549 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 550 } 551 552 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 553 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 554 } 555 556 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 557 const NamedDecl *D) const { 558 // Internal definitions always have default visibility. 559 if (GV->hasLocalLinkage()) { 560 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 561 return; 562 } 563 564 // Set visibility for definitions. 565 LinkageInfo LV = D->getLinkageAndVisibility(); 566 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 567 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 568 } 569 570 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 571 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 572 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 573 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 574 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 575 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 576 } 577 578 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 579 CodeGenOptions::TLSModel M) { 580 switch (M) { 581 case CodeGenOptions::GeneralDynamicTLSModel: 582 return llvm::GlobalVariable::GeneralDynamicTLSModel; 583 case CodeGenOptions::LocalDynamicTLSModel: 584 return llvm::GlobalVariable::LocalDynamicTLSModel; 585 case CodeGenOptions::InitialExecTLSModel: 586 return llvm::GlobalVariable::InitialExecTLSModel; 587 case CodeGenOptions::LocalExecTLSModel: 588 return llvm::GlobalVariable::LocalExecTLSModel; 589 } 590 llvm_unreachable("Invalid TLS model!"); 591 } 592 593 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 594 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 595 596 llvm::GlobalValue::ThreadLocalMode TLM; 597 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 598 599 // Override the TLS model if it is explicitly specified. 600 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 601 TLM = GetLLVMTLSModel(Attr->getModel()); 602 } 603 604 GV->setThreadLocalMode(TLM); 605 } 606 607 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 608 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 609 if (!FoundStr.empty()) 610 return FoundStr; 611 612 const auto *ND = cast<NamedDecl>(GD.getDecl()); 613 SmallString<256> Buffer; 614 StringRef Str; 615 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 616 llvm::raw_svector_ostream Out(Buffer); 617 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 618 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 619 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 620 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 621 else 622 getCXXABI().getMangleContext().mangleName(ND, Out); 623 Str = Out.str(); 624 } else { 625 IdentifierInfo *II = ND->getIdentifier(); 626 assert(II && "Attempt to mangle unnamed decl."); 627 Str = II->getName(); 628 } 629 630 // Keep the first result in the case of a mangling collision. 631 auto Result = Manglings.insert(std::make_pair(Str, GD)); 632 return FoundStr = Result.first->first(); 633 } 634 635 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 636 const BlockDecl *BD) { 637 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 638 const Decl *D = GD.getDecl(); 639 640 SmallString<256> Buffer; 641 llvm::raw_svector_ostream Out(Buffer); 642 if (!D) 643 MangleCtx.mangleGlobalBlock(BD, 644 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 645 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 646 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 647 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 648 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 649 else 650 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 651 652 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 653 return Result.first->first(); 654 } 655 656 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 657 return getModule().getNamedValue(Name); 658 } 659 660 /// AddGlobalCtor - Add a function to the list that will be called before 661 /// main() runs. 662 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 663 llvm::Constant *AssociatedData) { 664 // FIXME: Type coercion of void()* types. 665 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 666 } 667 668 /// AddGlobalDtor - Add a function to the list that will be called 669 /// when the module is unloaded. 670 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 671 // FIXME: Type coercion of void()* types. 672 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 673 } 674 675 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 676 // Ctor function type is void()*. 677 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 678 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 679 680 // Get the type of a ctor entry, { i32, void ()*, i8* }. 681 llvm::StructType *CtorStructTy = llvm::StructType::get( 682 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr); 683 684 // Construct the constructor and destructor arrays. 685 SmallVector<llvm::Constant *, 8> Ctors; 686 for (const auto &I : Fns) { 687 llvm::Constant *S[] = { 688 llvm::ConstantInt::get(Int32Ty, I.Priority, false), 689 llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy), 690 (I.AssociatedData 691 ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy) 692 : llvm::Constant::getNullValue(VoidPtrTy))}; 693 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 694 } 695 696 if (!Ctors.empty()) { 697 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 698 new llvm::GlobalVariable(TheModule, AT, false, 699 llvm::GlobalValue::AppendingLinkage, 700 llvm::ConstantArray::get(AT, Ctors), 701 GlobalName); 702 } 703 } 704 705 llvm::GlobalValue::LinkageTypes 706 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 707 const auto *D = cast<FunctionDecl>(GD.getDecl()); 708 709 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 710 711 if (isa<CXXDestructorDecl>(D) && 712 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 713 GD.getDtorType())) { 714 // Destructor variants in the Microsoft C++ ABI are always internal or 715 // linkonce_odr thunks emitted on an as-needed basis. 716 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 717 : llvm::GlobalValue::LinkOnceODRLinkage; 718 } 719 720 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 721 } 722 723 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 724 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 725 726 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 727 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 728 // Don't dllexport/import destructor thunks. 729 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 730 return; 731 } 732 } 733 734 if (FD->hasAttr<DLLImportAttr>()) 735 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 736 else if (FD->hasAttr<DLLExportAttr>()) 737 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 738 else 739 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 740 } 741 742 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 743 llvm::Function *F) { 744 setNonAliasAttributes(D, F); 745 } 746 747 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 748 const CGFunctionInfo &Info, 749 llvm::Function *F) { 750 unsigned CallingConv; 751 AttributeListType AttributeList; 752 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 753 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 754 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 755 } 756 757 /// Determines whether the language options require us to model 758 /// unwind exceptions. We treat -fexceptions as mandating this 759 /// except under the fragile ObjC ABI with only ObjC exceptions 760 /// enabled. This means, for example, that C with -fexceptions 761 /// enables this. 762 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 763 // If exceptions are completely disabled, obviously this is false. 764 if (!LangOpts.Exceptions) return false; 765 766 // If C++ exceptions are enabled, this is true. 767 if (LangOpts.CXXExceptions) return true; 768 769 // If ObjC exceptions are enabled, this depends on the ABI. 770 if (LangOpts.ObjCExceptions) { 771 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 772 } 773 774 return true; 775 } 776 777 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 778 llvm::Function *F) { 779 llvm::AttrBuilder B; 780 781 if (CodeGenOpts.UnwindTables) 782 B.addAttribute(llvm::Attribute::UWTable); 783 784 if (!hasUnwindExceptions(LangOpts)) 785 B.addAttribute(llvm::Attribute::NoUnwind); 786 787 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 788 B.addAttribute(llvm::Attribute::StackProtect); 789 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 790 B.addAttribute(llvm::Attribute::StackProtectStrong); 791 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 792 B.addAttribute(llvm::Attribute::StackProtectReq); 793 794 if (!D) { 795 F->addAttributes(llvm::AttributeSet::FunctionIndex, 796 llvm::AttributeSet::get( 797 F->getContext(), 798 llvm::AttributeSet::FunctionIndex, B)); 799 return; 800 } 801 802 if (D->hasAttr<NakedAttr>()) { 803 // Naked implies noinline: we should not be inlining such functions. 804 B.addAttribute(llvm::Attribute::Naked); 805 B.addAttribute(llvm::Attribute::NoInline); 806 } else if (D->hasAttr<NoDuplicateAttr>()) { 807 B.addAttribute(llvm::Attribute::NoDuplicate); 808 } else if (D->hasAttr<NoInlineAttr>()) { 809 B.addAttribute(llvm::Attribute::NoInline); 810 } else if (D->hasAttr<AlwaysInlineAttr>() && 811 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 812 llvm::Attribute::NoInline)) { 813 // (noinline wins over always_inline, and we can't specify both in IR) 814 B.addAttribute(llvm::Attribute::AlwaysInline); 815 } 816 817 if (D->hasAttr<ColdAttr>()) { 818 if (!D->hasAttr<OptimizeNoneAttr>()) 819 B.addAttribute(llvm::Attribute::OptimizeForSize); 820 B.addAttribute(llvm::Attribute::Cold); 821 } 822 823 if (D->hasAttr<MinSizeAttr>()) 824 B.addAttribute(llvm::Attribute::MinSize); 825 826 F->addAttributes(llvm::AttributeSet::FunctionIndex, 827 llvm::AttributeSet::get( 828 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 829 830 if (D->hasAttr<OptimizeNoneAttr>()) { 831 // OptimizeNone implies noinline; we should not be inlining such functions. 832 F->addFnAttr(llvm::Attribute::OptimizeNone); 833 F->addFnAttr(llvm::Attribute::NoInline); 834 835 // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline. 836 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 837 F->removeFnAttr(llvm::Attribute::MinSize); 838 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 839 "OptimizeNone and AlwaysInline on same function!"); 840 841 // Attribute 'inlinehint' has no effect on 'optnone' functions. 842 // Explicitly remove it from the set of function attributes. 843 F->removeFnAttr(llvm::Attribute::InlineHint); 844 } 845 846 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 847 F->setUnnamedAddr(true); 848 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 849 if (MD->isVirtual()) 850 F->setUnnamedAddr(true); 851 852 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 853 if (alignment) 854 F->setAlignment(alignment); 855 856 // Some C++ ABIs require 2-byte alignment for member functions, in order to 857 // reserve a bit for differentiating between virtual and non-virtual member 858 // functions. If the current target's C++ ABI requires this and this is a 859 // member function, set its alignment accordingly. 860 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 861 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 862 F->setAlignment(2); 863 } 864 } 865 866 void CodeGenModule::SetCommonAttributes(const Decl *D, 867 llvm::GlobalValue *GV) { 868 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 869 setGlobalVisibility(GV, ND); 870 else 871 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 872 873 if (D && D->hasAttr<UsedAttr>()) 874 addUsedGlobal(GV); 875 } 876 877 void CodeGenModule::setAliasAttributes(const Decl *D, 878 llvm::GlobalValue *GV) { 879 SetCommonAttributes(D, GV); 880 881 // Process the dllexport attribute based on whether the original definition 882 // (not necessarily the aliasee) was exported. 883 if (D->hasAttr<DLLExportAttr>()) 884 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 885 } 886 887 void CodeGenModule::setNonAliasAttributes(const Decl *D, 888 llvm::GlobalObject *GO) { 889 SetCommonAttributes(D, GO); 890 891 if (D) 892 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 893 GO->setSection(SA->getName()); 894 895 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 896 } 897 898 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 899 llvm::Function *F, 900 const CGFunctionInfo &FI) { 901 SetLLVMFunctionAttributes(D, FI, F); 902 SetLLVMFunctionAttributesForDefinition(D, F); 903 904 F->setLinkage(llvm::Function::InternalLinkage); 905 906 setNonAliasAttributes(D, F); 907 } 908 909 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 910 const NamedDecl *ND) { 911 // Set linkage and visibility in case we never see a definition. 912 LinkageInfo LV = ND->getLinkageAndVisibility(); 913 if (LV.getLinkage() != ExternalLinkage) { 914 // Don't set internal linkage on declarations. 915 } else { 916 if (ND->hasAttr<DLLImportAttr>()) { 917 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 918 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 919 } else if (ND->hasAttr<DLLExportAttr>()) { 920 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 921 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 922 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 923 // "extern_weak" is overloaded in LLVM; we probably should have 924 // separate linkage types for this. 925 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 926 } 927 928 // Set visibility on a declaration only if it's explicit. 929 if (LV.isVisibilityExplicit()) 930 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 931 } 932 } 933 934 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 935 bool IsIncompleteFunction, 936 bool IsThunk) { 937 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 938 // If this is an intrinsic function, set the function's attributes 939 // to the intrinsic's attributes. 940 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 941 return; 942 } 943 944 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 945 946 if (!IsIncompleteFunction) 947 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 948 949 // Add the Returned attribute for "this", except for iOS 5 and earlier 950 // where substantial code, including the libstdc++ dylib, was compiled with 951 // GCC and does not actually return "this". 952 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 953 !(getTarget().getTriple().isiOS() && 954 getTarget().getTriple().isOSVersionLT(6))) { 955 assert(!F->arg_empty() && 956 F->arg_begin()->getType() 957 ->canLosslesslyBitCastTo(F->getReturnType()) && 958 "unexpected this return"); 959 F->addAttribute(1, llvm::Attribute::Returned); 960 } 961 962 // Only a few attributes are set on declarations; these may later be 963 // overridden by a definition. 964 965 setLinkageAndVisibilityForGV(F, FD); 966 967 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 968 F->setSection(SA->getName()); 969 970 // A replaceable global allocation function does not act like a builtin by 971 // default, only if it is invoked by a new-expression or delete-expression. 972 if (FD->isReplaceableGlobalAllocationFunction()) 973 F->addAttribute(llvm::AttributeSet::FunctionIndex, 974 llvm::Attribute::NoBuiltin); 975 976 // If we are checking indirect calls and this is not a non-static member 977 // function, emit a bit set entry for the function type. 978 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall) && 979 !(isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())) { 980 llvm::NamedMDNode *BitsetsMD = 981 getModule().getOrInsertNamedMetadata("llvm.bitsets"); 982 983 llvm::Metadata *BitsetOps[] = { 984 CreateMetadataIdentifierForType(FD->getType()), 985 llvm::ConstantAsMetadata::get(F), 986 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))}; 987 BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps)); 988 } 989 } 990 991 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 992 assert(!GV->isDeclaration() && 993 "Only globals with definition can force usage."); 994 LLVMUsed.emplace_back(GV); 995 } 996 997 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 998 assert(!GV->isDeclaration() && 999 "Only globals with definition can force usage."); 1000 LLVMCompilerUsed.emplace_back(GV); 1001 } 1002 1003 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1004 std::vector<llvm::WeakVH> &List) { 1005 // Don't create llvm.used if there is no need. 1006 if (List.empty()) 1007 return; 1008 1009 // Convert List to what ConstantArray needs. 1010 SmallVector<llvm::Constant*, 8> UsedArray; 1011 UsedArray.resize(List.size()); 1012 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1013 UsedArray[i] = 1014 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1015 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1016 } 1017 1018 if (UsedArray.empty()) 1019 return; 1020 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1021 1022 auto *GV = new llvm::GlobalVariable( 1023 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1024 llvm::ConstantArray::get(ATy, UsedArray), Name); 1025 1026 GV->setSection("llvm.metadata"); 1027 } 1028 1029 void CodeGenModule::emitLLVMUsed() { 1030 emitUsed(*this, "llvm.used", LLVMUsed); 1031 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1032 } 1033 1034 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1035 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1036 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1037 } 1038 1039 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1040 llvm::SmallString<32> Opt; 1041 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1042 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1043 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1044 } 1045 1046 void CodeGenModule::AddDependentLib(StringRef Lib) { 1047 llvm::SmallString<24> Opt; 1048 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1049 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1050 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1051 } 1052 1053 /// \brief Add link options implied by the given module, including modules 1054 /// it depends on, using a postorder walk. 1055 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1056 SmallVectorImpl<llvm::Metadata *> &Metadata, 1057 llvm::SmallPtrSet<Module *, 16> &Visited) { 1058 // Import this module's parent. 1059 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1060 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1061 } 1062 1063 // Import this module's dependencies. 1064 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1065 if (Visited.insert(Mod->Imports[I - 1]).second) 1066 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1067 } 1068 1069 // Add linker options to link against the libraries/frameworks 1070 // described by this module. 1071 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1072 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1073 // Link against a framework. Frameworks are currently Darwin only, so we 1074 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1075 if (Mod->LinkLibraries[I-1].IsFramework) { 1076 llvm::Metadata *Args[2] = { 1077 llvm::MDString::get(Context, "-framework"), 1078 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1079 1080 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1081 continue; 1082 } 1083 1084 // Link against a library. 1085 llvm::SmallString<24> Opt; 1086 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1087 Mod->LinkLibraries[I-1].Library, Opt); 1088 auto *OptString = llvm::MDString::get(Context, Opt); 1089 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1090 } 1091 } 1092 1093 void CodeGenModule::EmitModuleLinkOptions() { 1094 // Collect the set of all of the modules we want to visit to emit link 1095 // options, which is essentially the imported modules and all of their 1096 // non-explicit child modules. 1097 llvm::SetVector<clang::Module *> LinkModules; 1098 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1099 SmallVector<clang::Module *, 16> Stack; 1100 1101 // Seed the stack with imported modules. 1102 for (Module *M : ImportedModules) 1103 if (Visited.insert(M).second) 1104 Stack.push_back(M); 1105 1106 // Find all of the modules to import, making a little effort to prune 1107 // non-leaf modules. 1108 while (!Stack.empty()) { 1109 clang::Module *Mod = Stack.pop_back_val(); 1110 1111 bool AnyChildren = false; 1112 1113 // Visit the submodules of this module. 1114 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1115 SubEnd = Mod->submodule_end(); 1116 Sub != SubEnd; ++Sub) { 1117 // Skip explicit children; they need to be explicitly imported to be 1118 // linked against. 1119 if ((*Sub)->IsExplicit) 1120 continue; 1121 1122 if (Visited.insert(*Sub).second) { 1123 Stack.push_back(*Sub); 1124 AnyChildren = true; 1125 } 1126 } 1127 1128 // We didn't find any children, so add this module to the list of 1129 // modules to link against. 1130 if (!AnyChildren) { 1131 LinkModules.insert(Mod); 1132 } 1133 } 1134 1135 // Add link options for all of the imported modules in reverse topological 1136 // order. We don't do anything to try to order import link flags with respect 1137 // to linker options inserted by things like #pragma comment(). 1138 SmallVector<llvm::Metadata *, 16> MetadataArgs; 1139 Visited.clear(); 1140 for (Module *M : LinkModules) 1141 if (Visited.insert(M).second) 1142 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1143 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1144 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1145 1146 // Add the linker options metadata flag. 1147 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1148 llvm::MDNode::get(getLLVMContext(), 1149 LinkerOptionsMetadata)); 1150 } 1151 1152 void CodeGenModule::EmitDeferred() { 1153 // Emit code for any potentially referenced deferred decls. Since a 1154 // previously unused static decl may become used during the generation of code 1155 // for a static function, iterate until no changes are made. 1156 1157 if (!DeferredVTables.empty()) { 1158 EmitDeferredVTables(); 1159 1160 // Emitting a v-table doesn't directly cause more v-tables to 1161 // become deferred, although it can cause functions to be 1162 // emitted that then need those v-tables. 1163 assert(DeferredVTables.empty()); 1164 } 1165 1166 // Stop if we're out of both deferred v-tables and deferred declarations. 1167 if (DeferredDeclsToEmit.empty()) 1168 return; 1169 1170 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1171 // work, it will not interfere with this. 1172 std::vector<DeferredGlobal> CurDeclsToEmit; 1173 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1174 1175 for (DeferredGlobal &G : CurDeclsToEmit) { 1176 GlobalDecl D = G.GD; 1177 llvm::GlobalValue *GV = G.GV; 1178 G.GV = nullptr; 1179 1180 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1181 // to get GlobalValue with exactly the type we need, not something that 1182 // might had been created for another decl with the same mangled name but 1183 // different type. 1184 // FIXME: Support for variables is not implemented yet. 1185 if (isa<FunctionDecl>(D.getDecl())) 1186 GV = cast<llvm::GlobalValue>(GetAddrOfGlobal(D, /*IsForDefinition=*/true)); 1187 else 1188 if (!GV) 1189 GV = GetGlobalValue(getMangledName(D)); 1190 1191 // Check to see if we've already emitted this. This is necessary 1192 // for a couple of reasons: first, decls can end up in the 1193 // deferred-decls queue multiple times, and second, decls can end 1194 // up with definitions in unusual ways (e.g. by an extern inline 1195 // function acquiring a strong function redefinition). Just 1196 // ignore these cases. 1197 if (GV && !GV->isDeclaration()) 1198 continue; 1199 1200 // Otherwise, emit the definition and move on to the next one. 1201 EmitGlobalDefinition(D, GV); 1202 1203 // If we found out that we need to emit more decls, do that recursively. 1204 // This has the advantage that the decls are emitted in a DFS and related 1205 // ones are close together, which is convenient for testing. 1206 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1207 EmitDeferred(); 1208 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1209 } 1210 } 1211 } 1212 1213 void CodeGenModule::EmitGlobalAnnotations() { 1214 if (Annotations.empty()) 1215 return; 1216 1217 // Create a new global variable for the ConstantStruct in the Module. 1218 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1219 Annotations[0]->getType(), Annotations.size()), Annotations); 1220 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1221 llvm::GlobalValue::AppendingLinkage, 1222 Array, "llvm.global.annotations"); 1223 gv->setSection(AnnotationSection); 1224 } 1225 1226 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1227 llvm::Constant *&AStr = AnnotationStrings[Str]; 1228 if (AStr) 1229 return AStr; 1230 1231 // Not found yet, create a new global. 1232 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1233 auto *gv = 1234 new llvm::GlobalVariable(getModule(), s->getType(), true, 1235 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1236 gv->setSection(AnnotationSection); 1237 gv->setUnnamedAddr(true); 1238 AStr = gv; 1239 return gv; 1240 } 1241 1242 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1243 SourceManager &SM = getContext().getSourceManager(); 1244 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1245 if (PLoc.isValid()) 1246 return EmitAnnotationString(PLoc.getFilename()); 1247 return EmitAnnotationString(SM.getBufferName(Loc)); 1248 } 1249 1250 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1251 SourceManager &SM = getContext().getSourceManager(); 1252 PresumedLoc PLoc = SM.getPresumedLoc(L); 1253 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1254 SM.getExpansionLineNumber(L); 1255 return llvm::ConstantInt::get(Int32Ty, LineNo); 1256 } 1257 1258 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1259 const AnnotateAttr *AA, 1260 SourceLocation L) { 1261 // Get the globals for file name, annotation, and the line number. 1262 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1263 *UnitGV = EmitAnnotationUnit(L), 1264 *LineNoCst = EmitAnnotationLineNo(L); 1265 1266 // Create the ConstantStruct for the global annotation. 1267 llvm::Constant *Fields[4] = { 1268 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1269 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1270 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1271 LineNoCst 1272 }; 1273 return llvm::ConstantStruct::getAnon(Fields); 1274 } 1275 1276 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1277 llvm::GlobalValue *GV) { 1278 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1279 // Get the struct elements for these annotations. 1280 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1281 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1282 } 1283 1284 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn, 1285 SourceLocation Loc) const { 1286 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1287 // Blacklist by function name. 1288 if (SanitizerBL.isBlacklistedFunction(Fn->getName())) 1289 return true; 1290 // Blacklist by location. 1291 if (Loc.isValid()) 1292 return SanitizerBL.isBlacklistedLocation(Loc); 1293 // If location is unknown, this may be a compiler-generated function. Assume 1294 // it's located in the main file. 1295 auto &SM = Context.getSourceManager(); 1296 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1297 return SanitizerBL.isBlacklistedFile(MainFile->getName()); 1298 } 1299 return false; 1300 } 1301 1302 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1303 SourceLocation Loc, QualType Ty, 1304 StringRef Category) const { 1305 // For now globals can be blacklisted only in ASan and KASan. 1306 if (!LangOpts.Sanitize.hasOneOf( 1307 SanitizerKind::Address | SanitizerKind::KernelAddress)) 1308 return false; 1309 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1310 if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category)) 1311 return true; 1312 if (SanitizerBL.isBlacklistedLocation(Loc, Category)) 1313 return true; 1314 // Check global type. 1315 if (!Ty.isNull()) { 1316 // Drill down the array types: if global variable of a fixed type is 1317 // blacklisted, we also don't instrument arrays of them. 1318 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1319 Ty = AT->getElementType(); 1320 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1321 // We allow to blacklist only record types (classes, structs etc.) 1322 if (Ty->isRecordType()) { 1323 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1324 if (SanitizerBL.isBlacklistedType(TypeStr, Category)) 1325 return true; 1326 } 1327 } 1328 return false; 1329 } 1330 1331 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1332 // Never defer when EmitAllDecls is specified. 1333 if (LangOpts.EmitAllDecls) 1334 return true; 1335 1336 return getContext().DeclMustBeEmitted(Global); 1337 } 1338 1339 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1340 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1341 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1342 // Implicit template instantiations may change linkage if they are later 1343 // explicitly instantiated, so they should not be emitted eagerly. 1344 return false; 1345 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1346 // codegen for global variables, because they may be marked as threadprivate. 1347 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1348 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1349 return false; 1350 1351 return true; 1352 } 1353 1354 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1355 const CXXUuidofExpr* E) { 1356 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1357 // well-formed. 1358 StringRef Uuid = E->getUuidAsStringRef(Context); 1359 std::string Name = "_GUID_" + Uuid.lower(); 1360 std::replace(Name.begin(), Name.end(), '-', '_'); 1361 1362 // Contains a 32-bit field. 1363 CharUnits Alignment = CharUnits::fromQuantity(4); 1364 1365 // Look for an existing global. 1366 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1367 return ConstantAddress(GV, Alignment); 1368 1369 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1370 assert(Init && "failed to initialize as constant"); 1371 1372 auto *GV = new llvm::GlobalVariable( 1373 getModule(), Init->getType(), 1374 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1375 if (supportsCOMDAT()) 1376 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1377 return ConstantAddress(GV, Alignment); 1378 } 1379 1380 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1381 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1382 assert(AA && "No alias?"); 1383 1384 CharUnits Alignment = getContext().getDeclAlign(VD); 1385 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1386 1387 // See if there is already something with the target's name in the module. 1388 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1389 if (Entry) { 1390 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1391 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1392 return ConstantAddress(Ptr, Alignment); 1393 } 1394 1395 llvm::Constant *Aliasee; 1396 if (isa<llvm::FunctionType>(DeclTy)) 1397 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1398 GlobalDecl(cast<FunctionDecl>(VD)), 1399 /*ForVTable=*/false); 1400 else 1401 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1402 llvm::PointerType::getUnqual(DeclTy), 1403 nullptr); 1404 1405 auto *F = cast<llvm::GlobalValue>(Aliasee); 1406 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1407 WeakRefReferences.insert(F); 1408 1409 return ConstantAddress(Aliasee, Alignment); 1410 } 1411 1412 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1413 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1414 1415 // Weak references don't produce any output by themselves. 1416 if (Global->hasAttr<WeakRefAttr>()) 1417 return; 1418 1419 // If this is an alias definition (which otherwise looks like a declaration) 1420 // emit it now. 1421 if (Global->hasAttr<AliasAttr>()) 1422 return EmitAliasDefinition(GD); 1423 1424 // If this is CUDA, be selective about which declarations we emit. 1425 if (LangOpts.CUDA) { 1426 if (LangOpts.CUDAIsDevice) { 1427 if (!Global->hasAttr<CUDADeviceAttr>() && 1428 !Global->hasAttr<CUDAGlobalAttr>() && 1429 !Global->hasAttr<CUDAConstantAttr>() && 1430 !Global->hasAttr<CUDASharedAttr>()) 1431 return; 1432 } else { 1433 if (!Global->hasAttr<CUDAHostAttr>() && ( 1434 Global->hasAttr<CUDADeviceAttr>() || 1435 Global->hasAttr<CUDAConstantAttr>() || 1436 Global->hasAttr<CUDASharedAttr>())) 1437 return; 1438 } 1439 } 1440 1441 // Ignore declarations, they will be emitted on their first use. 1442 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1443 // Forward declarations are emitted lazily on first use. 1444 if (!FD->doesThisDeclarationHaveABody()) { 1445 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1446 return; 1447 1448 StringRef MangledName = getMangledName(GD); 1449 1450 // Compute the function info and LLVM type. 1451 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1452 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1453 1454 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1455 /*DontDefer=*/false); 1456 return; 1457 } 1458 } else { 1459 const auto *VD = cast<VarDecl>(Global); 1460 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1461 1462 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1463 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1464 return; 1465 } 1466 1467 // Defer code generation to first use when possible, e.g. if this is an inline 1468 // function. If the global must always be emitted, do it eagerly if possible 1469 // to benefit from cache locality. 1470 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1471 // Emit the definition if it can't be deferred. 1472 EmitGlobalDefinition(GD); 1473 return; 1474 } 1475 1476 // If we're deferring emission of a C++ variable with an 1477 // initializer, remember the order in which it appeared in the file. 1478 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1479 cast<VarDecl>(Global)->hasInit()) { 1480 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1481 CXXGlobalInits.push_back(nullptr); 1482 } 1483 1484 StringRef MangledName = getMangledName(GD); 1485 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) { 1486 // The value has already been used and should therefore be emitted. 1487 addDeferredDeclToEmit(GV, GD); 1488 } else if (MustBeEmitted(Global)) { 1489 // The value must be emitted, but cannot be emitted eagerly. 1490 assert(!MayBeEmittedEagerly(Global)); 1491 addDeferredDeclToEmit(/*GV=*/nullptr, GD); 1492 } else { 1493 // Otherwise, remember that we saw a deferred decl with this name. The 1494 // first use of the mangled name will cause it to move into 1495 // DeferredDeclsToEmit. 1496 DeferredDecls[MangledName] = GD; 1497 } 1498 } 1499 1500 namespace { 1501 struct FunctionIsDirectlyRecursive : 1502 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1503 const StringRef Name; 1504 const Builtin::Context &BI; 1505 bool Result; 1506 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1507 Name(N), BI(C), Result(false) { 1508 } 1509 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1510 1511 bool TraverseCallExpr(CallExpr *E) { 1512 const FunctionDecl *FD = E->getDirectCallee(); 1513 if (!FD) 1514 return true; 1515 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1516 if (Attr && Name == Attr->getLabel()) { 1517 Result = true; 1518 return false; 1519 } 1520 unsigned BuiltinID = FD->getBuiltinID(); 1521 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1522 return true; 1523 StringRef BuiltinName = BI.getName(BuiltinID); 1524 if (BuiltinName.startswith("__builtin_") && 1525 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1526 Result = true; 1527 return false; 1528 } 1529 return true; 1530 } 1531 }; 1532 1533 struct DLLImportFunctionVisitor 1534 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1535 bool SafeToInline = true; 1536 1537 bool VisitVarDecl(VarDecl *VD) { 1538 // A thread-local variable cannot be imported. 1539 SafeToInline = !VD->getTLSKind(); 1540 return SafeToInline; 1541 } 1542 1543 // Make sure we're not referencing non-imported vars or functions. 1544 bool VisitDeclRefExpr(DeclRefExpr *E) { 1545 ValueDecl *VD = E->getDecl(); 1546 if (isa<FunctionDecl>(VD)) 1547 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1548 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1549 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1550 return SafeToInline; 1551 } 1552 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1553 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1554 return SafeToInline; 1555 } 1556 bool VisitCXXNewExpr(CXXNewExpr *E) { 1557 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1558 return SafeToInline; 1559 } 1560 }; 1561 } 1562 1563 // isTriviallyRecursive - Check if this function calls another 1564 // decl that, because of the asm attribute or the other decl being a builtin, 1565 // ends up pointing to itself. 1566 bool 1567 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1568 StringRef Name; 1569 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1570 // asm labels are a special kind of mangling we have to support. 1571 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1572 if (!Attr) 1573 return false; 1574 Name = Attr->getLabel(); 1575 } else { 1576 Name = FD->getName(); 1577 } 1578 1579 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1580 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1581 return Walker.Result; 1582 } 1583 1584 bool 1585 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1586 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1587 return true; 1588 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1589 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1590 return false; 1591 1592 if (F->hasAttr<DLLImportAttr>()) { 1593 // Check whether it would be safe to inline this dllimport function. 1594 DLLImportFunctionVisitor Visitor; 1595 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1596 if (!Visitor.SafeToInline) 1597 return false; 1598 } 1599 1600 // PR9614. Avoid cases where the source code is lying to us. An available 1601 // externally function should have an equivalent function somewhere else, 1602 // but a function that calls itself is clearly not equivalent to the real 1603 // implementation. 1604 // This happens in glibc's btowc and in some configure checks. 1605 return !isTriviallyRecursive(F); 1606 } 1607 1608 /// If the type for the method's class was generated by 1609 /// CGDebugInfo::createContextChain(), the cache contains only a 1610 /// limited DIType without any declarations. Since EmitFunctionStart() 1611 /// needs to find the canonical declaration for each method, we need 1612 /// to construct the complete type prior to emitting the method. 1613 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1614 if (!D->isInstance()) 1615 return; 1616 1617 if (CGDebugInfo *DI = getModuleDebugInfo()) 1618 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1619 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1620 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1621 } 1622 } 1623 1624 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1625 const auto *D = cast<ValueDecl>(GD.getDecl()); 1626 1627 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1628 Context.getSourceManager(), 1629 "Generating code for declaration"); 1630 1631 if (isa<FunctionDecl>(D)) { 1632 // At -O0, don't generate IR for functions with available_externally 1633 // linkage. 1634 if (!shouldEmitFunction(GD)) 1635 return; 1636 1637 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1638 CompleteDIClassType(Method); 1639 // Make sure to emit the definition(s) before we emit the thunks. 1640 // This is necessary for the generation of certain thunks. 1641 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1642 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 1643 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1644 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 1645 else 1646 EmitGlobalFunctionDefinition(GD, GV); 1647 1648 if (Method->isVirtual()) 1649 getVTables().EmitThunks(GD); 1650 1651 return; 1652 } 1653 1654 return EmitGlobalFunctionDefinition(GD, GV); 1655 } 1656 1657 if (const auto *VD = dyn_cast<VarDecl>(D)) 1658 return EmitGlobalVarDefinition(VD); 1659 1660 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1661 } 1662 1663 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1664 llvm::Function *NewFn); 1665 1666 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1667 /// module, create and return an llvm Function with the specified type. If there 1668 /// is something in the module with the specified name, return it potentially 1669 /// bitcasted to the right type. 1670 /// 1671 /// If D is non-null, it specifies a decl that correspond to this. This is used 1672 /// to set the attributes on the function when it is first created. 1673 llvm::Constant * 1674 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1675 llvm::Type *Ty, 1676 GlobalDecl GD, bool ForVTable, 1677 bool DontDefer, bool IsThunk, 1678 llvm::AttributeSet ExtraAttrs, 1679 bool IsForDefinition) { 1680 const Decl *D = GD.getDecl(); 1681 1682 // Lookup the entry, lazily creating it if necessary. 1683 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1684 if (Entry) { 1685 if (WeakRefReferences.erase(Entry)) { 1686 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1687 if (FD && !FD->hasAttr<WeakAttr>()) 1688 Entry->setLinkage(llvm::Function::ExternalLinkage); 1689 } 1690 1691 // Handle dropped DLL attributes. 1692 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1693 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1694 1695 // If there are two attempts to define the same mangled name, issue an 1696 // error. 1697 if (IsForDefinition && !Entry->isDeclaration()) { 1698 GlobalDecl OtherGD; 1699 // Check that GD is not yet in ExplicitDefinitions is required to make 1700 // sure that we issue an error only once. 1701 if (lookupRepresentativeDecl(MangledName, OtherGD) && 1702 (GD.getCanonicalDecl().getDecl() != 1703 OtherGD.getCanonicalDecl().getDecl()) && 1704 DiagnosedConflictingDefinitions.insert(GD).second) { 1705 getDiags().Report(D->getLocation(), 1706 diag::err_duplicate_mangled_name); 1707 getDiags().Report(OtherGD.getDecl()->getLocation(), 1708 diag::note_previous_definition); 1709 } 1710 } 1711 1712 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 1713 (Entry->getType()->getElementType() == Ty)) { 1714 return Entry; 1715 } 1716 1717 // Make sure the result is of the correct type. 1718 // (If function is requested for a definition, we always need to create a new 1719 // function, not just return a bitcast.) 1720 if (!IsForDefinition) 1721 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1722 } 1723 1724 // This function doesn't have a complete type (for example, the return 1725 // type is an incomplete struct). Use a fake type instead, and make 1726 // sure not to try to set attributes. 1727 bool IsIncompleteFunction = false; 1728 1729 llvm::FunctionType *FTy; 1730 if (isa<llvm::FunctionType>(Ty)) { 1731 FTy = cast<llvm::FunctionType>(Ty); 1732 } else { 1733 FTy = llvm::FunctionType::get(VoidTy, false); 1734 IsIncompleteFunction = true; 1735 } 1736 1737 llvm::Function *F = 1738 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 1739 Entry ? StringRef() : MangledName, &getModule()); 1740 1741 // If we already created a function with the same mangled name (but different 1742 // type) before, take its name and add it to the list of functions to be 1743 // replaced with F at the end of CodeGen. 1744 // 1745 // This happens if there is a prototype for a function (e.g. "int f()") and 1746 // then a definition of a different type (e.g. "int f(int x)"). 1747 if (Entry) { 1748 F->takeName(Entry); 1749 1750 // This might be an implementation of a function without a prototype, in 1751 // which case, try to do special replacement of calls which match the new 1752 // prototype. The really key thing here is that we also potentially drop 1753 // arguments from the call site so as to make a direct call, which makes the 1754 // inliner happier and suppresses a number of optimizer warnings (!) about 1755 // dropping arguments. 1756 if (!Entry->use_empty()) { 1757 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 1758 Entry->removeDeadConstantUsers(); 1759 } 1760 1761 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 1762 F, Entry->getType()->getElementType()->getPointerTo()); 1763 addGlobalValReplacement(Entry, BC); 1764 } 1765 1766 assert(F->getName() == MangledName && "name was uniqued!"); 1767 if (D) 1768 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 1769 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1770 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1771 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1772 llvm::AttributeSet::get(VMContext, 1773 llvm::AttributeSet::FunctionIndex, 1774 B)); 1775 } 1776 1777 if (!DontDefer) { 1778 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1779 // each other bottoming out with the base dtor. Therefore we emit non-base 1780 // dtors on usage, even if there is no dtor definition in the TU. 1781 if (D && isa<CXXDestructorDecl>(D) && 1782 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1783 GD.getDtorType())) 1784 addDeferredDeclToEmit(F, GD); 1785 1786 // This is the first use or definition of a mangled name. If there is a 1787 // deferred decl with this name, remember that we need to emit it at the end 1788 // of the file. 1789 auto DDI = DeferredDecls.find(MangledName); 1790 if (DDI != DeferredDecls.end()) { 1791 // Move the potentially referenced deferred decl to the 1792 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1793 // don't need it anymore). 1794 addDeferredDeclToEmit(F, DDI->second); 1795 DeferredDecls.erase(DDI); 1796 1797 // Otherwise, there are cases we have to worry about where we're 1798 // using a declaration for which we must emit a definition but where 1799 // we might not find a top-level definition: 1800 // - member functions defined inline in their classes 1801 // - friend functions defined inline in some class 1802 // - special member functions with implicit definitions 1803 // If we ever change our AST traversal to walk into class methods, 1804 // this will be unnecessary. 1805 // 1806 // We also don't emit a definition for a function if it's going to be an 1807 // entry in a vtable, unless it's already marked as used. 1808 } else if (getLangOpts().CPlusPlus && D) { 1809 // Look for a declaration that's lexically in a record. 1810 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1811 FD = FD->getPreviousDecl()) { 1812 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1813 if (FD->doesThisDeclarationHaveABody()) { 1814 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1815 break; 1816 } 1817 } 1818 } 1819 } 1820 } 1821 1822 // Make sure the result is of the requested type. 1823 if (!IsIncompleteFunction) { 1824 assert(F->getType()->getElementType() == Ty); 1825 return F; 1826 } 1827 1828 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1829 return llvm::ConstantExpr::getBitCast(F, PTy); 1830 } 1831 1832 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1833 /// non-null, then this function will use the specified type if it has to 1834 /// create it (this occurs when we see a definition of the function). 1835 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1836 llvm::Type *Ty, 1837 bool ForVTable, 1838 bool DontDefer, 1839 bool IsForDefinition) { 1840 // If there was no specific requested type, just convert it now. 1841 if (!Ty) { 1842 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1843 auto CanonTy = Context.getCanonicalType(FD->getType()); 1844 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 1845 } 1846 1847 StringRef MangledName = getMangledName(GD); 1848 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 1849 /*IsThunk=*/false, llvm::AttributeSet(), 1850 IsForDefinition); 1851 } 1852 1853 /// CreateRuntimeFunction - Create a new runtime function with the specified 1854 /// type and name. 1855 llvm::Constant * 1856 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1857 StringRef Name, 1858 llvm::AttributeSet ExtraAttrs) { 1859 llvm::Constant *C = 1860 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1861 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1862 if (auto *F = dyn_cast<llvm::Function>(C)) 1863 if (F->empty()) 1864 F->setCallingConv(getRuntimeCC()); 1865 return C; 1866 } 1867 1868 /// CreateBuiltinFunction - Create a new builtin function with the specified 1869 /// type and name. 1870 llvm::Constant * 1871 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, 1872 StringRef Name, 1873 llvm::AttributeSet ExtraAttrs) { 1874 llvm::Constant *C = 1875 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1876 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 1877 if (auto *F = dyn_cast<llvm::Function>(C)) 1878 if (F->empty()) 1879 F->setCallingConv(getBuiltinCC()); 1880 return C; 1881 } 1882 1883 /// isTypeConstant - Determine whether an object of this type can be emitted 1884 /// as a constant. 1885 /// 1886 /// If ExcludeCtor is true, the duration when the object's constructor runs 1887 /// will not be considered. The caller will need to verify that the object is 1888 /// not written to during its construction. 1889 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1890 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1891 return false; 1892 1893 if (Context.getLangOpts().CPlusPlus) { 1894 if (const CXXRecordDecl *Record 1895 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1896 return ExcludeCtor && !Record->hasMutableFields() && 1897 Record->hasTrivialDestructor(); 1898 } 1899 1900 return true; 1901 } 1902 1903 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1904 /// create and return an llvm GlobalVariable with the specified type. If there 1905 /// is something in the module with the specified name, return it potentially 1906 /// bitcasted to the right type. 1907 /// 1908 /// If D is non-null, it specifies a decl that correspond to this. This is used 1909 /// to set the attributes on the global when it is first created. 1910 llvm::Constant * 1911 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1912 llvm::PointerType *Ty, 1913 const VarDecl *D) { 1914 // Lookup the entry, lazily creating it if necessary. 1915 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1916 if (Entry) { 1917 if (WeakRefReferences.erase(Entry)) { 1918 if (D && !D->hasAttr<WeakAttr>()) 1919 Entry->setLinkage(llvm::Function::ExternalLinkage); 1920 } 1921 1922 // Handle dropped DLL attributes. 1923 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 1924 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 1925 1926 if (Entry->getType() == Ty) 1927 return Entry; 1928 1929 // Make sure the result is of the correct type. 1930 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1931 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1932 1933 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1934 } 1935 1936 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1937 auto *GV = new llvm::GlobalVariable( 1938 getModule(), Ty->getElementType(), false, 1939 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1940 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1941 1942 // This is the first use or definition of a mangled name. If there is a 1943 // deferred decl with this name, remember that we need to emit it at the end 1944 // of the file. 1945 auto DDI = DeferredDecls.find(MangledName); 1946 if (DDI != DeferredDecls.end()) { 1947 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1948 // list, and remove it from DeferredDecls (since we don't need it anymore). 1949 addDeferredDeclToEmit(GV, DDI->second); 1950 DeferredDecls.erase(DDI); 1951 } 1952 1953 // Handle things which are present even on external declarations. 1954 if (D) { 1955 // FIXME: This code is overly simple and should be merged with other global 1956 // handling. 1957 GV->setConstant(isTypeConstant(D->getType(), false)); 1958 1959 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1960 1961 setLinkageAndVisibilityForGV(GV, D); 1962 1963 if (D->getTLSKind()) { 1964 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1965 CXXThreadLocals.push_back(D); 1966 setTLSMode(GV, *D); 1967 } 1968 1969 // If required by the ABI, treat declarations of static data members with 1970 // inline initializers as definitions. 1971 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1972 EmitGlobalVarDefinition(D); 1973 } 1974 1975 // Handle XCore specific ABI requirements. 1976 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1977 D->getLanguageLinkage() == CLanguageLinkage && 1978 D->getType().isConstant(Context) && 1979 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1980 GV->setSection(".cp.rodata"); 1981 } 1982 1983 if (AddrSpace != Ty->getAddressSpace()) 1984 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1985 1986 return GV; 1987 } 1988 1989 llvm::Constant * 1990 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 1991 bool IsForDefinition) { 1992 if (isa<CXXConstructorDecl>(GD.getDecl())) 1993 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()), 1994 getFromCtorType(GD.getCtorType()), 1995 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 1996 /*DontDefer=*/false, IsForDefinition); 1997 else if (isa<CXXDestructorDecl>(GD.getDecl())) 1998 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()), 1999 getFromDtorType(GD.getDtorType()), 2000 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2001 /*DontDefer=*/false, IsForDefinition); 2002 else if (isa<CXXMethodDecl>(GD.getDecl())) { 2003 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2004 cast<CXXMethodDecl>(GD.getDecl())); 2005 auto Ty = getTypes().GetFunctionType(*FInfo); 2006 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2007 IsForDefinition); 2008 } else if (isa<FunctionDecl>(GD.getDecl())) { 2009 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2010 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2011 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2012 IsForDefinition); 2013 } else 2014 return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl())); 2015 } 2016 2017 llvm::GlobalVariable * 2018 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2019 llvm::Type *Ty, 2020 llvm::GlobalValue::LinkageTypes Linkage) { 2021 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2022 llvm::GlobalVariable *OldGV = nullptr; 2023 2024 if (GV) { 2025 // Check if the variable has the right type. 2026 if (GV->getType()->getElementType() == Ty) 2027 return GV; 2028 2029 // Because C++ name mangling, the only way we can end up with an already 2030 // existing global with the same name is if it has been declared extern "C". 2031 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2032 OldGV = GV; 2033 } 2034 2035 // Create a new variable. 2036 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2037 Linkage, nullptr, Name); 2038 2039 if (OldGV) { 2040 // Replace occurrences of the old variable if needed. 2041 GV->takeName(OldGV); 2042 2043 if (!OldGV->use_empty()) { 2044 llvm::Constant *NewPtrForOldDecl = 2045 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2046 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2047 } 2048 2049 OldGV->eraseFromParent(); 2050 } 2051 2052 if (supportsCOMDAT() && GV->isWeakForLinker() && 2053 !GV->hasAvailableExternallyLinkage()) 2054 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2055 2056 return GV; 2057 } 2058 2059 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2060 /// given global variable. If Ty is non-null and if the global doesn't exist, 2061 /// then it will be created with the specified type instead of whatever the 2062 /// normal requested type would be. 2063 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2064 llvm::Type *Ty) { 2065 assert(D->hasGlobalStorage() && "Not a global variable"); 2066 QualType ASTTy = D->getType(); 2067 if (!Ty) 2068 Ty = getTypes().ConvertTypeForMem(ASTTy); 2069 2070 llvm::PointerType *PTy = 2071 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2072 2073 StringRef MangledName = getMangledName(D); 2074 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 2075 } 2076 2077 /// CreateRuntimeVariable - Create a new runtime global variable with the 2078 /// specified type and name. 2079 llvm::Constant * 2080 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2081 StringRef Name) { 2082 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2083 } 2084 2085 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2086 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2087 2088 if (!MustBeEmitted(D)) { 2089 // If we have not seen a reference to this variable yet, place it 2090 // into the deferred declarations table to be emitted if needed 2091 // later. 2092 StringRef MangledName = getMangledName(D); 2093 if (!GetGlobalValue(MangledName)) { 2094 DeferredDecls[MangledName] = D; 2095 return; 2096 } 2097 } 2098 2099 // The tentative definition is the only definition. 2100 EmitGlobalVarDefinition(D); 2101 } 2102 2103 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2104 return Context.toCharUnitsFromBits( 2105 getDataLayout().getTypeStoreSizeInBits(Ty)); 2106 } 2107 2108 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 2109 unsigned AddrSpace) { 2110 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2111 if (D->hasAttr<CUDAConstantAttr>()) 2112 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 2113 else if (D->hasAttr<CUDASharedAttr>()) 2114 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 2115 else 2116 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 2117 } 2118 2119 return AddrSpace; 2120 } 2121 2122 template<typename SomeDecl> 2123 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2124 llvm::GlobalValue *GV) { 2125 if (!getLangOpts().CPlusPlus) 2126 return; 2127 2128 // Must have 'used' attribute, or else inline assembly can't rely on 2129 // the name existing. 2130 if (!D->template hasAttr<UsedAttr>()) 2131 return; 2132 2133 // Must have internal linkage and an ordinary name. 2134 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2135 return; 2136 2137 // Must be in an extern "C" context. Entities declared directly within 2138 // a record are not extern "C" even if the record is in such a context. 2139 const SomeDecl *First = D->getFirstDecl(); 2140 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2141 return; 2142 2143 // OK, this is an internal linkage entity inside an extern "C" linkage 2144 // specification. Make a note of that so we can give it the "expected" 2145 // mangled name if nothing else is using that name. 2146 std::pair<StaticExternCMap::iterator, bool> R = 2147 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2148 2149 // If we have multiple internal linkage entities with the same name 2150 // in extern "C" regions, none of them gets that name. 2151 if (!R.second) 2152 R.first->second = nullptr; 2153 } 2154 2155 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2156 if (!CGM.supportsCOMDAT()) 2157 return false; 2158 2159 if (D.hasAttr<SelectAnyAttr>()) 2160 return true; 2161 2162 GVALinkage Linkage; 2163 if (auto *VD = dyn_cast<VarDecl>(&D)) 2164 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2165 else 2166 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2167 2168 switch (Linkage) { 2169 case GVA_Internal: 2170 case GVA_AvailableExternally: 2171 case GVA_StrongExternal: 2172 return false; 2173 case GVA_DiscardableODR: 2174 case GVA_StrongODR: 2175 return true; 2176 } 2177 llvm_unreachable("No such linkage"); 2178 } 2179 2180 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2181 llvm::GlobalObject &GO) { 2182 if (!shouldBeInCOMDAT(*this, D)) 2183 return; 2184 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2185 } 2186 2187 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 2188 llvm::Constant *Init = nullptr; 2189 QualType ASTTy = D->getType(); 2190 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2191 bool NeedsGlobalCtor = false; 2192 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2193 2194 const VarDecl *InitDecl; 2195 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2196 2197 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part 2198 // of their declaration." 2199 if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice 2200 && D->hasAttr<CUDASharedAttr>()) { 2201 if (InitExpr) { 2202 const auto *C = dyn_cast<CXXConstructExpr>(InitExpr); 2203 if (C == nullptr || !C->getConstructor()->hasTrivialBody()) 2204 Error(D->getLocation(), 2205 "__shared__ variable cannot have an initialization."); 2206 } 2207 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2208 } else if (!InitExpr) { 2209 // This is a tentative definition; tentative definitions are 2210 // implicitly initialized with { 0 }. 2211 // 2212 // Note that tentative definitions are only emitted at the end of 2213 // a translation unit, so they should never have incomplete 2214 // type. In addition, EmitTentativeDefinition makes sure that we 2215 // never attempt to emit a tentative definition if a real one 2216 // exists. A use may still exists, however, so we still may need 2217 // to do a RAUW. 2218 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2219 Init = EmitNullConstant(D->getType()); 2220 } else { 2221 initializedGlobalDecl = GlobalDecl(D); 2222 Init = EmitConstantInit(*InitDecl); 2223 2224 if (!Init) { 2225 QualType T = InitExpr->getType(); 2226 if (D->getType()->isReferenceType()) 2227 T = D->getType(); 2228 2229 if (getLangOpts().CPlusPlus) { 2230 Init = EmitNullConstant(T); 2231 NeedsGlobalCtor = true; 2232 } else { 2233 ErrorUnsupported(D, "static initializer"); 2234 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2235 } 2236 } else { 2237 // We don't need an initializer, so remove the entry for the delayed 2238 // initializer position (just in case this entry was delayed) if we 2239 // also don't need to register a destructor. 2240 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2241 DelayedCXXInitPosition.erase(D); 2242 } 2243 } 2244 2245 llvm::Type* InitType = Init->getType(); 2246 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 2247 2248 // Strip off a bitcast if we got one back. 2249 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2250 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2251 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2252 // All zero index gep. 2253 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2254 Entry = CE->getOperand(0); 2255 } 2256 2257 // Entry is now either a Function or GlobalVariable. 2258 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2259 2260 // We have a definition after a declaration with the wrong type. 2261 // We must make a new GlobalVariable* and update everything that used OldGV 2262 // (a declaration or tentative definition) with the new GlobalVariable* 2263 // (which will be a definition). 2264 // 2265 // This happens if there is a prototype for a global (e.g. 2266 // "extern int x[];") and then a definition of a different type (e.g. 2267 // "int x[10];"). This also happens when an initializer has a different type 2268 // from the type of the global (this happens with unions). 2269 if (!GV || 2270 GV->getType()->getElementType() != InitType || 2271 GV->getType()->getAddressSpace() != 2272 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 2273 2274 // Move the old entry aside so that we'll create a new one. 2275 Entry->setName(StringRef()); 2276 2277 // Make a new global with the correct type, this is now guaranteed to work. 2278 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 2279 2280 // Replace all uses of the old global with the new global 2281 llvm::Constant *NewPtrForOldDecl = 2282 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2283 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2284 2285 // Erase the old global, since it is no longer used. 2286 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2287 } 2288 2289 MaybeHandleStaticInExternC(D, GV); 2290 2291 if (D->hasAttr<AnnotateAttr>()) 2292 AddGlobalAnnotations(D, GV); 2293 2294 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2295 // the device. [...]" 2296 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2297 // __device__, declares a variable that: [...] 2298 // Is accessible from all the threads within the grid and from the host 2299 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2300 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2301 if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice && 2302 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) { 2303 GV->setExternallyInitialized(true); 2304 } 2305 GV->setInitializer(Init); 2306 2307 // If it is safe to mark the global 'constant', do so now. 2308 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2309 isTypeConstant(D->getType(), true)); 2310 2311 // If it is in a read-only section, mark it 'constant'. 2312 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2313 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2314 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2315 GV->setConstant(true); 2316 } 2317 2318 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2319 2320 // Set the llvm linkage type as appropriate. 2321 llvm::GlobalValue::LinkageTypes Linkage = 2322 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2323 2324 // On Darwin, if the normal linkage of a C++ thread_local variable is 2325 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2326 // copies within a linkage unit; otherwise, the backing variable has 2327 // internal linkage and all accesses should just be calls to the 2328 // Itanium-specified entry point, which has the normal linkage of the 2329 // variable. This is to preserve the ability to change the implementation 2330 // behind the scenes. 2331 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2332 Context.getTargetInfo().getTriple().isOSDarwin() && 2333 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2334 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2335 Linkage = llvm::GlobalValue::InternalLinkage; 2336 2337 GV->setLinkage(Linkage); 2338 if (D->hasAttr<DLLImportAttr>()) 2339 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2340 else if (D->hasAttr<DLLExportAttr>()) 2341 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2342 else 2343 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2344 2345 if (Linkage == llvm::GlobalVariable::CommonLinkage) 2346 // common vars aren't constant even if declared const. 2347 GV->setConstant(false); 2348 2349 setNonAliasAttributes(D, GV); 2350 2351 if (D->getTLSKind() && !GV->isThreadLocal()) { 2352 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2353 CXXThreadLocals.push_back(D); 2354 setTLSMode(GV, *D); 2355 } 2356 2357 maybeSetTrivialComdat(*D, *GV); 2358 2359 // Emit the initializer function if necessary. 2360 if (NeedsGlobalCtor || NeedsGlobalDtor) 2361 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2362 2363 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2364 2365 // Emit global variable debug information. 2366 if (CGDebugInfo *DI = getModuleDebugInfo()) 2367 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 2368 DI->EmitGlobalVariable(GV, D); 2369 } 2370 2371 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2372 CodeGenModule &CGM, const VarDecl *D, 2373 bool NoCommon) { 2374 // Don't give variables common linkage if -fno-common was specified unless it 2375 // was overridden by a NoCommon attribute. 2376 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2377 return true; 2378 2379 // C11 6.9.2/2: 2380 // A declaration of an identifier for an object that has file scope without 2381 // an initializer, and without a storage-class specifier or with the 2382 // storage-class specifier static, constitutes a tentative definition. 2383 if (D->getInit() || D->hasExternalStorage()) 2384 return true; 2385 2386 // A variable cannot be both common and exist in a section. 2387 if (D->hasAttr<SectionAttr>()) 2388 return true; 2389 2390 // Thread local vars aren't considered common linkage. 2391 if (D->getTLSKind()) 2392 return true; 2393 2394 // Tentative definitions marked with WeakImportAttr are true definitions. 2395 if (D->hasAttr<WeakImportAttr>()) 2396 return true; 2397 2398 // A variable cannot be both common and exist in a comdat. 2399 if (shouldBeInCOMDAT(CGM, *D)) 2400 return true; 2401 2402 // Declarations with a required alignment do not have common linakge in MSVC 2403 // mode. 2404 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2405 if (D->hasAttr<AlignedAttr>()) 2406 return true; 2407 QualType VarType = D->getType(); 2408 if (Context.isAlignmentRequired(VarType)) 2409 return true; 2410 2411 if (const auto *RT = VarType->getAs<RecordType>()) { 2412 const RecordDecl *RD = RT->getDecl(); 2413 for (const FieldDecl *FD : RD->fields()) { 2414 if (FD->isBitField()) 2415 continue; 2416 if (FD->hasAttr<AlignedAttr>()) 2417 return true; 2418 if (Context.isAlignmentRequired(FD->getType())) 2419 return true; 2420 } 2421 } 2422 } 2423 2424 return false; 2425 } 2426 2427 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2428 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2429 if (Linkage == GVA_Internal) 2430 return llvm::Function::InternalLinkage; 2431 2432 if (D->hasAttr<WeakAttr>()) { 2433 if (IsConstantVariable) 2434 return llvm::GlobalVariable::WeakODRLinkage; 2435 else 2436 return llvm::GlobalVariable::WeakAnyLinkage; 2437 } 2438 2439 // We are guaranteed to have a strong definition somewhere else, 2440 // so we can use available_externally linkage. 2441 if (Linkage == GVA_AvailableExternally) 2442 return llvm::Function::AvailableExternallyLinkage; 2443 2444 // Note that Apple's kernel linker doesn't support symbol 2445 // coalescing, so we need to avoid linkonce and weak linkages there. 2446 // Normally, this means we just map to internal, but for explicit 2447 // instantiations we'll map to external. 2448 2449 // In C++, the compiler has to emit a definition in every translation unit 2450 // that references the function. We should use linkonce_odr because 2451 // a) if all references in this translation unit are optimized away, we 2452 // don't need to codegen it. b) if the function persists, it needs to be 2453 // merged with other definitions. c) C++ has the ODR, so we know the 2454 // definition is dependable. 2455 if (Linkage == GVA_DiscardableODR) 2456 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2457 : llvm::Function::InternalLinkage; 2458 2459 // An explicit instantiation of a template has weak linkage, since 2460 // explicit instantiations can occur in multiple translation units 2461 // and must all be equivalent. However, we are not allowed to 2462 // throw away these explicit instantiations. 2463 if (Linkage == GVA_StrongODR) 2464 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2465 : llvm::Function::ExternalLinkage; 2466 2467 // C++ doesn't have tentative definitions and thus cannot have common 2468 // linkage. 2469 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2470 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 2471 CodeGenOpts.NoCommon)) 2472 return llvm::GlobalVariable::CommonLinkage; 2473 2474 // selectany symbols are externally visible, so use weak instead of 2475 // linkonce. MSVC optimizes away references to const selectany globals, so 2476 // all definitions should be the same and ODR linkage should be used. 2477 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2478 if (D->hasAttr<SelectAnyAttr>()) 2479 return llvm::GlobalVariable::WeakODRLinkage; 2480 2481 // Otherwise, we have strong external linkage. 2482 assert(Linkage == GVA_StrongExternal); 2483 return llvm::GlobalVariable::ExternalLinkage; 2484 } 2485 2486 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2487 const VarDecl *VD, bool IsConstant) { 2488 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2489 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2490 } 2491 2492 /// Replace the uses of a function that was declared with a non-proto type. 2493 /// We want to silently drop extra arguments from call sites 2494 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2495 llvm::Function *newFn) { 2496 // Fast path. 2497 if (old->use_empty()) return; 2498 2499 llvm::Type *newRetTy = newFn->getReturnType(); 2500 SmallVector<llvm::Value*, 4> newArgs; 2501 2502 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2503 ui != ue; ) { 2504 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2505 llvm::User *user = use->getUser(); 2506 2507 // Recognize and replace uses of bitcasts. Most calls to 2508 // unprototyped functions will use bitcasts. 2509 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2510 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2511 replaceUsesOfNonProtoConstant(bitcast, newFn); 2512 continue; 2513 } 2514 2515 // Recognize calls to the function. 2516 llvm::CallSite callSite(user); 2517 if (!callSite) continue; 2518 if (!callSite.isCallee(&*use)) continue; 2519 2520 // If the return types don't match exactly, then we can't 2521 // transform this call unless it's dead. 2522 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2523 continue; 2524 2525 // Get the call site's attribute list. 2526 SmallVector<llvm::AttributeSet, 8> newAttrs; 2527 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2528 2529 // Collect any return attributes from the call. 2530 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2531 newAttrs.push_back( 2532 llvm::AttributeSet::get(newFn->getContext(), 2533 oldAttrs.getRetAttributes())); 2534 2535 // If the function was passed too few arguments, don't transform. 2536 unsigned newNumArgs = newFn->arg_size(); 2537 if (callSite.arg_size() < newNumArgs) continue; 2538 2539 // If extra arguments were passed, we silently drop them. 2540 // If any of the types mismatch, we don't transform. 2541 unsigned argNo = 0; 2542 bool dontTransform = false; 2543 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2544 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2545 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2546 dontTransform = true; 2547 break; 2548 } 2549 2550 // Add any parameter attributes. 2551 if (oldAttrs.hasAttributes(argNo + 1)) 2552 newAttrs. 2553 push_back(llvm:: 2554 AttributeSet::get(newFn->getContext(), 2555 oldAttrs.getParamAttributes(argNo + 1))); 2556 } 2557 if (dontTransform) 2558 continue; 2559 2560 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2561 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2562 oldAttrs.getFnAttributes())); 2563 2564 // Okay, we can transform this. Create the new call instruction and copy 2565 // over the required information. 2566 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2567 2568 llvm::CallSite newCall; 2569 if (callSite.isCall()) { 2570 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2571 callSite.getInstruction()); 2572 } else { 2573 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2574 newCall = llvm::InvokeInst::Create(newFn, 2575 oldInvoke->getNormalDest(), 2576 oldInvoke->getUnwindDest(), 2577 newArgs, "", 2578 callSite.getInstruction()); 2579 } 2580 newArgs.clear(); // for the next iteration 2581 2582 if (!newCall->getType()->isVoidTy()) 2583 newCall->takeName(callSite.getInstruction()); 2584 newCall.setAttributes( 2585 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2586 newCall.setCallingConv(callSite.getCallingConv()); 2587 2588 // Finally, remove the old call, replacing any uses with the new one. 2589 if (!callSite->use_empty()) 2590 callSite->replaceAllUsesWith(newCall.getInstruction()); 2591 2592 // Copy debug location attached to CI. 2593 if (callSite->getDebugLoc()) 2594 newCall->setDebugLoc(callSite->getDebugLoc()); 2595 callSite->eraseFromParent(); 2596 } 2597 } 2598 2599 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2600 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2601 /// existing call uses of the old function in the module, this adjusts them to 2602 /// call the new function directly. 2603 /// 2604 /// This is not just a cleanup: the always_inline pass requires direct calls to 2605 /// functions to be able to inline them. If there is a bitcast in the way, it 2606 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2607 /// run at -O0. 2608 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2609 llvm::Function *NewFn) { 2610 // If we're redefining a global as a function, don't transform it. 2611 if (!isa<llvm::Function>(Old)) return; 2612 2613 replaceUsesOfNonProtoConstant(Old, NewFn); 2614 } 2615 2616 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2617 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2618 // If we have a definition, this might be a deferred decl. If the 2619 // instantiation is explicit, make sure we emit it at the end. 2620 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2621 GetAddrOfGlobalVar(VD); 2622 2623 EmitTopLevelDecl(VD); 2624 } 2625 2626 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2627 llvm::GlobalValue *GV) { 2628 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2629 2630 // Compute the function info and LLVM type. 2631 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2632 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2633 2634 // Get or create the prototype for the function. 2635 if (!GV || (GV->getType()->getElementType() != Ty)) 2636 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 2637 /*DontDefer=*/true, 2638 /*IsForDefinition=*/true)); 2639 2640 // Already emitted. 2641 if (!GV->isDeclaration()) 2642 return; 2643 2644 // We need to set linkage and visibility on the function before 2645 // generating code for it because various parts of IR generation 2646 // want to propagate this information down (e.g. to local static 2647 // declarations). 2648 auto *Fn = cast<llvm::Function>(GV); 2649 setFunctionLinkage(GD, Fn); 2650 setFunctionDLLStorageClass(GD, Fn); 2651 2652 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2653 setGlobalVisibility(Fn, D); 2654 2655 MaybeHandleStaticInExternC(D, Fn); 2656 2657 maybeSetTrivialComdat(*D, *Fn); 2658 2659 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2660 2661 setFunctionDefinitionAttributes(D, Fn); 2662 SetLLVMFunctionAttributesForDefinition(D, Fn); 2663 2664 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2665 AddGlobalCtor(Fn, CA->getPriority()); 2666 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2667 AddGlobalDtor(Fn, DA->getPriority()); 2668 if (D->hasAttr<AnnotateAttr>()) 2669 AddGlobalAnnotations(D, Fn); 2670 } 2671 2672 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2673 const auto *D = cast<ValueDecl>(GD.getDecl()); 2674 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2675 assert(AA && "Not an alias?"); 2676 2677 StringRef MangledName = getMangledName(GD); 2678 2679 if (AA->getAliasee() == MangledName) { 2680 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2681 return; 2682 } 2683 2684 // If there is a definition in the module, then it wins over the alias. 2685 // This is dubious, but allow it to be safe. Just ignore the alias. 2686 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2687 if (Entry && !Entry->isDeclaration()) 2688 return; 2689 2690 Aliases.push_back(GD); 2691 2692 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2693 2694 // Create a reference to the named value. This ensures that it is emitted 2695 // if a deferred decl. 2696 llvm::Constant *Aliasee; 2697 if (isa<llvm::FunctionType>(DeclTy)) 2698 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2699 /*ForVTable=*/false); 2700 else 2701 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2702 llvm::PointerType::getUnqual(DeclTy), 2703 /*D=*/nullptr); 2704 2705 // Create the new alias itself, but don't set a name yet. 2706 auto *GA = llvm::GlobalAlias::create( 2707 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2708 2709 if (Entry) { 2710 if (GA->getAliasee() == Entry) { 2711 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2712 return; 2713 } 2714 2715 assert(Entry->isDeclaration()); 2716 2717 // If there is a declaration in the module, then we had an extern followed 2718 // by the alias, as in: 2719 // extern int test6(); 2720 // ... 2721 // int test6() __attribute__((alias("test7"))); 2722 // 2723 // Remove it and replace uses of it with the alias. 2724 GA->takeName(Entry); 2725 2726 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2727 Entry->getType())); 2728 Entry->eraseFromParent(); 2729 } else { 2730 GA->setName(MangledName); 2731 } 2732 2733 // Set attributes which are particular to an alias; this is a 2734 // specialization of the attributes which may be set on a global 2735 // variable/function. 2736 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 2737 D->isWeakImported()) { 2738 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2739 } 2740 2741 if (const auto *VD = dyn_cast<VarDecl>(D)) 2742 if (VD->getTLSKind()) 2743 setTLSMode(GA, *VD); 2744 2745 setAliasAttributes(D, GA); 2746 } 2747 2748 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2749 ArrayRef<llvm::Type*> Tys) { 2750 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2751 Tys); 2752 } 2753 2754 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2755 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2756 const StringLiteral *Literal, bool TargetIsLSB, 2757 bool &IsUTF16, unsigned &StringLength) { 2758 StringRef String = Literal->getString(); 2759 unsigned NumBytes = String.size(); 2760 2761 // Check for simple case. 2762 if (!Literal->containsNonAsciiOrNull()) { 2763 StringLength = NumBytes; 2764 return *Map.insert(std::make_pair(String, nullptr)).first; 2765 } 2766 2767 // Otherwise, convert the UTF8 literals into a string of shorts. 2768 IsUTF16 = true; 2769 2770 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2771 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2772 UTF16 *ToPtr = &ToBuf[0]; 2773 2774 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2775 &ToPtr, ToPtr + NumBytes, 2776 strictConversion); 2777 2778 // ConvertUTF8toUTF16 returns the length in ToPtr. 2779 StringLength = ToPtr - &ToBuf[0]; 2780 2781 // Add an explicit null. 2782 *ToPtr = 0; 2783 return *Map.insert(std::make_pair( 2784 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2785 (StringLength + 1) * 2), 2786 nullptr)).first; 2787 } 2788 2789 static llvm::StringMapEntry<llvm::GlobalVariable *> & 2790 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 2791 const StringLiteral *Literal, unsigned &StringLength) { 2792 StringRef String = Literal->getString(); 2793 StringLength = String.size(); 2794 return *Map.insert(std::make_pair(String, nullptr)).first; 2795 } 2796 2797 ConstantAddress 2798 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2799 unsigned StringLength = 0; 2800 bool isUTF16 = false; 2801 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2802 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2803 getDataLayout().isLittleEndian(), isUTF16, 2804 StringLength); 2805 2806 if (auto *C = Entry.second) 2807 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2808 2809 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2810 llvm::Constant *Zeros[] = { Zero, Zero }; 2811 llvm::Value *V; 2812 2813 // If we don't already have it, get __CFConstantStringClassReference. 2814 if (!CFConstantStringClassRef) { 2815 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2816 Ty = llvm::ArrayType::get(Ty, 0); 2817 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2818 "__CFConstantStringClassReference"); 2819 // Decay array -> ptr 2820 V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 2821 CFConstantStringClassRef = V; 2822 } 2823 else 2824 V = CFConstantStringClassRef; 2825 2826 QualType CFTy = getContext().getCFConstantStringType(); 2827 2828 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2829 2830 llvm::Constant *Fields[4]; 2831 2832 // Class pointer. 2833 Fields[0] = cast<llvm::ConstantExpr>(V); 2834 2835 // Flags. 2836 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2837 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2838 llvm::ConstantInt::get(Ty, 0x07C8); 2839 2840 // String pointer. 2841 llvm::Constant *C = nullptr; 2842 if (isUTF16) { 2843 auto Arr = llvm::makeArrayRef( 2844 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 2845 Entry.first().size() / 2); 2846 C = llvm::ConstantDataArray::get(VMContext, Arr); 2847 } else { 2848 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2849 } 2850 2851 // Note: -fwritable-strings doesn't make the backing store strings of 2852 // CFStrings writable. (See <rdar://problem/10657500>) 2853 auto *GV = 2854 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2855 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2856 GV->setUnnamedAddr(true); 2857 // Don't enforce the target's minimum global alignment, since the only use 2858 // of the string is via this class initializer. 2859 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2860 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2861 // that changes the section it ends in, which surprises ld64. 2862 if (isUTF16) { 2863 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2864 GV->setAlignment(Align.getQuantity()); 2865 GV->setSection("__TEXT,__ustring"); 2866 } else { 2867 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2868 GV->setAlignment(Align.getQuantity()); 2869 GV->setSection("__TEXT,__cstring,cstring_literals"); 2870 } 2871 2872 // String. 2873 Fields[2] = 2874 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2875 2876 if (isUTF16) 2877 // Cast the UTF16 string to the correct type. 2878 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2879 2880 // String length. 2881 Ty = getTypes().ConvertType(getContext().LongTy); 2882 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2883 2884 CharUnits Alignment = getPointerAlign(); 2885 2886 // The struct. 2887 C = llvm::ConstantStruct::get(STy, Fields); 2888 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2889 llvm::GlobalVariable::PrivateLinkage, C, 2890 "_unnamed_cfstring_"); 2891 GV->setSection("__DATA,__cfstring"); 2892 GV->setAlignment(Alignment.getQuantity()); 2893 Entry.second = GV; 2894 2895 return ConstantAddress(GV, Alignment); 2896 } 2897 2898 ConstantAddress 2899 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2900 unsigned StringLength = 0; 2901 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2902 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2903 2904 if (auto *C = Entry.second) 2905 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 2906 2907 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2908 llvm::Constant *Zeros[] = { Zero, Zero }; 2909 llvm::Value *V; 2910 // If we don't already have it, get _NSConstantStringClassReference. 2911 if (!ConstantStringClassRef) { 2912 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2913 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2914 llvm::Constant *GV; 2915 if (LangOpts.ObjCRuntime.isNonFragile()) { 2916 std::string str = 2917 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2918 : "OBJC_CLASS_$_" + StringClass; 2919 GV = getObjCRuntime().GetClassGlobal(str); 2920 // Make sure the result is of the correct type. 2921 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2922 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2923 ConstantStringClassRef = V; 2924 } else { 2925 std::string str = 2926 StringClass.empty() ? "_NSConstantStringClassReference" 2927 : "_" + StringClass + "ClassReference"; 2928 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2929 GV = CreateRuntimeVariable(PTy, str); 2930 // Decay array -> ptr 2931 V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros); 2932 ConstantStringClassRef = V; 2933 } 2934 } else 2935 V = ConstantStringClassRef; 2936 2937 if (!NSConstantStringType) { 2938 // Construct the type for a constant NSString. 2939 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2940 D->startDefinition(); 2941 2942 QualType FieldTypes[3]; 2943 2944 // const int *isa; 2945 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2946 // const char *str; 2947 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2948 // unsigned int length; 2949 FieldTypes[2] = Context.UnsignedIntTy; 2950 2951 // Create fields 2952 for (unsigned i = 0; i < 3; ++i) { 2953 FieldDecl *Field = FieldDecl::Create(Context, D, 2954 SourceLocation(), 2955 SourceLocation(), nullptr, 2956 FieldTypes[i], /*TInfo=*/nullptr, 2957 /*BitWidth=*/nullptr, 2958 /*Mutable=*/false, 2959 ICIS_NoInit); 2960 Field->setAccess(AS_public); 2961 D->addDecl(Field); 2962 } 2963 2964 D->completeDefinition(); 2965 QualType NSTy = Context.getTagDeclType(D); 2966 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2967 } 2968 2969 llvm::Constant *Fields[3]; 2970 2971 // Class pointer. 2972 Fields[0] = cast<llvm::ConstantExpr>(V); 2973 2974 // String pointer. 2975 llvm::Constant *C = 2976 llvm::ConstantDataArray::getString(VMContext, Entry.first()); 2977 2978 llvm::GlobalValue::LinkageTypes Linkage; 2979 bool isConstant; 2980 Linkage = llvm::GlobalValue::PrivateLinkage; 2981 isConstant = !LangOpts.WritableStrings; 2982 2983 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2984 Linkage, C, ".str"); 2985 GV->setUnnamedAddr(true); 2986 // Don't enforce the target's minimum global alignment, since the only use 2987 // of the string is via this class initializer. 2988 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2989 GV->setAlignment(Align.getQuantity()); 2990 Fields[1] = 2991 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 2992 2993 // String length. 2994 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2995 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2996 2997 // The struct. 2998 CharUnits Alignment = getPointerAlign(); 2999 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 3000 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 3001 llvm::GlobalVariable::PrivateLinkage, C, 3002 "_unnamed_nsstring_"); 3003 GV->setAlignment(Alignment.getQuantity()); 3004 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 3005 const char *NSStringNonFragileABISection = 3006 "__DATA,__objc_stringobj,regular,no_dead_strip"; 3007 // FIXME. Fix section. 3008 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 3009 ? NSStringNonFragileABISection 3010 : NSStringSection); 3011 Entry.second = GV; 3012 3013 return ConstantAddress(GV, Alignment); 3014 } 3015 3016 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3017 if (ObjCFastEnumerationStateType.isNull()) { 3018 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3019 D->startDefinition(); 3020 3021 QualType FieldTypes[] = { 3022 Context.UnsignedLongTy, 3023 Context.getPointerType(Context.getObjCIdType()), 3024 Context.getPointerType(Context.UnsignedLongTy), 3025 Context.getConstantArrayType(Context.UnsignedLongTy, 3026 llvm::APInt(32, 5), ArrayType::Normal, 0) 3027 }; 3028 3029 for (size_t i = 0; i < 4; ++i) { 3030 FieldDecl *Field = FieldDecl::Create(Context, 3031 D, 3032 SourceLocation(), 3033 SourceLocation(), nullptr, 3034 FieldTypes[i], /*TInfo=*/nullptr, 3035 /*BitWidth=*/nullptr, 3036 /*Mutable=*/false, 3037 ICIS_NoInit); 3038 Field->setAccess(AS_public); 3039 D->addDecl(Field); 3040 } 3041 3042 D->completeDefinition(); 3043 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3044 } 3045 3046 return ObjCFastEnumerationStateType; 3047 } 3048 3049 llvm::Constant * 3050 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3051 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3052 3053 // Don't emit it as the address of the string, emit the string data itself 3054 // as an inline array. 3055 if (E->getCharByteWidth() == 1) { 3056 SmallString<64> Str(E->getString()); 3057 3058 // Resize the string to the right size, which is indicated by its type. 3059 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3060 Str.resize(CAT->getSize().getZExtValue()); 3061 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3062 } 3063 3064 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3065 llvm::Type *ElemTy = AType->getElementType(); 3066 unsigned NumElements = AType->getNumElements(); 3067 3068 // Wide strings have either 2-byte or 4-byte elements. 3069 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3070 SmallVector<uint16_t, 32> Elements; 3071 Elements.reserve(NumElements); 3072 3073 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3074 Elements.push_back(E->getCodeUnit(i)); 3075 Elements.resize(NumElements); 3076 return llvm::ConstantDataArray::get(VMContext, Elements); 3077 } 3078 3079 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3080 SmallVector<uint32_t, 32> Elements; 3081 Elements.reserve(NumElements); 3082 3083 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3084 Elements.push_back(E->getCodeUnit(i)); 3085 Elements.resize(NumElements); 3086 return llvm::ConstantDataArray::get(VMContext, Elements); 3087 } 3088 3089 static llvm::GlobalVariable * 3090 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3091 CodeGenModule &CGM, StringRef GlobalName, 3092 CharUnits Alignment) { 3093 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3094 unsigned AddrSpace = 0; 3095 if (CGM.getLangOpts().OpenCL) 3096 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3097 3098 llvm::Module &M = CGM.getModule(); 3099 // Create a global variable for this string 3100 auto *GV = new llvm::GlobalVariable( 3101 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3102 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3103 GV->setAlignment(Alignment.getQuantity()); 3104 GV->setUnnamedAddr(true); 3105 if (GV->isWeakForLinker()) { 3106 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3107 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3108 } 3109 3110 return GV; 3111 } 3112 3113 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3114 /// constant array for the given string literal. 3115 ConstantAddress 3116 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3117 StringRef Name) { 3118 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3119 3120 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3121 llvm::GlobalVariable **Entry = nullptr; 3122 if (!LangOpts.WritableStrings) { 3123 Entry = &ConstantStringMap[C]; 3124 if (auto GV = *Entry) { 3125 if (Alignment.getQuantity() > GV->getAlignment()) 3126 GV->setAlignment(Alignment.getQuantity()); 3127 return ConstantAddress(GV, Alignment); 3128 } 3129 } 3130 3131 SmallString<256> MangledNameBuffer; 3132 StringRef GlobalVariableName; 3133 llvm::GlobalValue::LinkageTypes LT; 3134 3135 // Mangle the string literal if the ABI allows for it. However, we cannot 3136 // do this if we are compiling with ASan or -fwritable-strings because they 3137 // rely on strings having normal linkage. 3138 if (!LangOpts.WritableStrings && 3139 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3140 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3141 llvm::raw_svector_ostream Out(MangledNameBuffer); 3142 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3143 3144 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3145 GlobalVariableName = MangledNameBuffer; 3146 } else { 3147 LT = llvm::GlobalValue::PrivateLinkage; 3148 GlobalVariableName = Name; 3149 } 3150 3151 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3152 if (Entry) 3153 *Entry = GV; 3154 3155 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3156 QualType()); 3157 return ConstantAddress(GV, Alignment); 3158 } 3159 3160 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3161 /// array for the given ObjCEncodeExpr node. 3162 ConstantAddress 3163 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3164 std::string Str; 3165 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3166 3167 return GetAddrOfConstantCString(Str); 3168 } 3169 3170 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3171 /// the literal and a terminating '\0' character. 3172 /// The result has pointer to array type. 3173 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3174 const std::string &Str, const char *GlobalName) { 3175 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3176 CharUnits Alignment = 3177 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3178 3179 llvm::Constant *C = 3180 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3181 3182 // Don't share any string literals if strings aren't constant. 3183 llvm::GlobalVariable **Entry = nullptr; 3184 if (!LangOpts.WritableStrings) { 3185 Entry = &ConstantStringMap[C]; 3186 if (auto GV = *Entry) { 3187 if (Alignment.getQuantity() > GV->getAlignment()) 3188 GV->setAlignment(Alignment.getQuantity()); 3189 return ConstantAddress(GV, Alignment); 3190 } 3191 } 3192 3193 // Get the default prefix if a name wasn't specified. 3194 if (!GlobalName) 3195 GlobalName = ".str"; 3196 // Create a global variable for this. 3197 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3198 GlobalName, Alignment); 3199 if (Entry) 3200 *Entry = GV; 3201 return ConstantAddress(GV, Alignment); 3202 } 3203 3204 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3205 const MaterializeTemporaryExpr *E, const Expr *Init) { 3206 assert((E->getStorageDuration() == SD_Static || 3207 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3208 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3209 3210 // If we're not materializing a subobject of the temporary, keep the 3211 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3212 QualType MaterializedType = Init->getType(); 3213 if (Init == E->GetTemporaryExpr()) 3214 MaterializedType = E->getType(); 3215 3216 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3217 3218 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3219 return ConstantAddress(Slot, Align); 3220 3221 // FIXME: If an externally-visible declaration extends multiple temporaries, 3222 // we need to give each temporary the same name in every translation unit (and 3223 // we also need to make the temporaries externally-visible). 3224 SmallString<256> Name; 3225 llvm::raw_svector_ostream Out(Name); 3226 getCXXABI().getMangleContext().mangleReferenceTemporary( 3227 VD, E->getManglingNumber(), Out); 3228 3229 APValue *Value = nullptr; 3230 if (E->getStorageDuration() == SD_Static) { 3231 // We might have a cached constant initializer for this temporary. Note 3232 // that this might have a different value from the value computed by 3233 // evaluating the initializer if the surrounding constant expression 3234 // modifies the temporary. 3235 Value = getContext().getMaterializedTemporaryValue(E, false); 3236 if (Value && Value->isUninit()) 3237 Value = nullptr; 3238 } 3239 3240 // Try evaluating it now, it might have a constant initializer. 3241 Expr::EvalResult EvalResult; 3242 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3243 !EvalResult.hasSideEffects()) 3244 Value = &EvalResult.Val; 3245 3246 llvm::Constant *InitialValue = nullptr; 3247 bool Constant = false; 3248 llvm::Type *Type; 3249 if (Value) { 3250 // The temporary has a constant initializer, use it. 3251 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 3252 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3253 Type = InitialValue->getType(); 3254 } else { 3255 // No initializer, the initialization will be provided when we 3256 // initialize the declaration which performed lifetime extension. 3257 Type = getTypes().ConvertTypeForMem(MaterializedType); 3258 } 3259 3260 // Create a global variable for this lifetime-extended temporary. 3261 llvm::GlobalValue::LinkageTypes Linkage = 3262 getLLVMLinkageVarDefinition(VD, Constant); 3263 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3264 const VarDecl *InitVD; 3265 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3266 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3267 // Temporaries defined inside a class get linkonce_odr linkage because the 3268 // class can be defined in multipe translation units. 3269 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3270 } else { 3271 // There is no need for this temporary to have external linkage if the 3272 // VarDecl has external linkage. 3273 Linkage = llvm::GlobalVariable::InternalLinkage; 3274 } 3275 } 3276 unsigned AddrSpace = GetGlobalVarAddressSpace( 3277 VD, getContext().getTargetAddressSpace(MaterializedType)); 3278 auto *GV = new llvm::GlobalVariable( 3279 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3280 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 3281 AddrSpace); 3282 setGlobalVisibility(GV, VD); 3283 GV->setAlignment(Align.getQuantity()); 3284 if (supportsCOMDAT() && GV->isWeakForLinker()) 3285 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3286 if (VD->getTLSKind()) 3287 setTLSMode(GV, *VD); 3288 MaterializedGlobalTemporaryMap[E] = GV; 3289 return ConstantAddress(GV, Align); 3290 } 3291 3292 /// EmitObjCPropertyImplementations - Emit information for synthesized 3293 /// properties for an implementation. 3294 void CodeGenModule::EmitObjCPropertyImplementations(const 3295 ObjCImplementationDecl *D) { 3296 for (const auto *PID : D->property_impls()) { 3297 // Dynamic is just for type-checking. 3298 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3299 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3300 3301 // Determine which methods need to be implemented, some may have 3302 // been overridden. Note that ::isPropertyAccessor is not the method 3303 // we want, that just indicates if the decl came from a 3304 // property. What we want to know is if the method is defined in 3305 // this implementation. 3306 if (!D->getInstanceMethod(PD->getGetterName())) 3307 CodeGenFunction(*this).GenerateObjCGetter( 3308 const_cast<ObjCImplementationDecl *>(D), PID); 3309 if (!PD->isReadOnly() && 3310 !D->getInstanceMethod(PD->getSetterName())) 3311 CodeGenFunction(*this).GenerateObjCSetter( 3312 const_cast<ObjCImplementationDecl *>(D), PID); 3313 } 3314 } 3315 } 3316 3317 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3318 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3319 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3320 ivar; ivar = ivar->getNextIvar()) 3321 if (ivar->getType().isDestructedType()) 3322 return true; 3323 3324 return false; 3325 } 3326 3327 static bool AllTrivialInitializers(CodeGenModule &CGM, 3328 ObjCImplementationDecl *D) { 3329 CodeGenFunction CGF(CGM); 3330 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3331 E = D->init_end(); B != E; ++B) { 3332 CXXCtorInitializer *CtorInitExp = *B; 3333 Expr *Init = CtorInitExp->getInit(); 3334 if (!CGF.isTrivialInitializer(Init)) 3335 return false; 3336 } 3337 return true; 3338 } 3339 3340 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3341 /// for an implementation. 3342 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3343 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3344 if (needsDestructMethod(D)) { 3345 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3346 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3347 ObjCMethodDecl *DTORMethod = 3348 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3349 cxxSelector, getContext().VoidTy, nullptr, D, 3350 /*isInstance=*/true, /*isVariadic=*/false, 3351 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3352 /*isDefined=*/false, ObjCMethodDecl::Required); 3353 D->addInstanceMethod(DTORMethod); 3354 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3355 D->setHasDestructors(true); 3356 } 3357 3358 // If the implementation doesn't have any ivar initializers, we don't need 3359 // a .cxx_construct. 3360 if (D->getNumIvarInitializers() == 0 || 3361 AllTrivialInitializers(*this, D)) 3362 return; 3363 3364 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3365 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3366 // The constructor returns 'self'. 3367 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3368 D->getLocation(), 3369 D->getLocation(), 3370 cxxSelector, 3371 getContext().getObjCIdType(), 3372 nullptr, D, /*isInstance=*/true, 3373 /*isVariadic=*/false, 3374 /*isPropertyAccessor=*/true, 3375 /*isImplicitlyDeclared=*/true, 3376 /*isDefined=*/false, 3377 ObjCMethodDecl::Required); 3378 D->addInstanceMethod(CTORMethod); 3379 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3380 D->setHasNonZeroConstructors(true); 3381 } 3382 3383 /// EmitNamespace - Emit all declarations in a namespace. 3384 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3385 for (auto *I : ND->decls()) { 3386 if (const auto *VD = dyn_cast<VarDecl>(I)) 3387 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3388 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3389 continue; 3390 EmitTopLevelDecl(I); 3391 } 3392 } 3393 3394 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3395 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3396 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3397 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3398 ErrorUnsupported(LSD, "linkage spec"); 3399 return; 3400 } 3401 3402 for (auto *I : LSD->decls()) { 3403 // Meta-data for ObjC class includes references to implemented methods. 3404 // Generate class's method definitions first. 3405 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3406 for (auto *M : OID->methods()) 3407 EmitTopLevelDecl(M); 3408 } 3409 EmitTopLevelDecl(I); 3410 } 3411 } 3412 3413 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3414 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3415 // Ignore dependent declarations. 3416 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3417 return; 3418 3419 switch (D->getKind()) { 3420 case Decl::CXXConversion: 3421 case Decl::CXXMethod: 3422 case Decl::Function: 3423 // Skip function templates 3424 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3425 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3426 return; 3427 3428 EmitGlobal(cast<FunctionDecl>(D)); 3429 // Always provide some coverage mapping 3430 // even for the functions that aren't emitted. 3431 AddDeferredUnusedCoverageMapping(D); 3432 break; 3433 3434 case Decl::Var: 3435 // Skip variable templates 3436 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3437 return; 3438 case Decl::VarTemplateSpecialization: 3439 EmitGlobal(cast<VarDecl>(D)); 3440 break; 3441 3442 // Indirect fields from global anonymous structs and unions can be 3443 // ignored; only the actual variable requires IR gen support. 3444 case Decl::IndirectField: 3445 break; 3446 3447 // C++ Decls 3448 case Decl::Namespace: 3449 EmitNamespace(cast<NamespaceDecl>(D)); 3450 break; 3451 // No code generation needed. 3452 case Decl::UsingShadow: 3453 case Decl::ClassTemplate: 3454 case Decl::VarTemplate: 3455 case Decl::VarTemplatePartialSpecialization: 3456 case Decl::FunctionTemplate: 3457 case Decl::TypeAliasTemplate: 3458 case Decl::Block: 3459 case Decl::Empty: 3460 break; 3461 case Decl::Using: // using X; [C++] 3462 if (CGDebugInfo *DI = getModuleDebugInfo()) 3463 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3464 return; 3465 case Decl::NamespaceAlias: 3466 if (CGDebugInfo *DI = getModuleDebugInfo()) 3467 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3468 return; 3469 case Decl::UsingDirective: // using namespace X; [C++] 3470 if (CGDebugInfo *DI = getModuleDebugInfo()) 3471 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3472 return; 3473 case Decl::CXXConstructor: 3474 // Skip function templates 3475 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3476 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3477 return; 3478 3479 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3480 break; 3481 case Decl::CXXDestructor: 3482 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3483 return; 3484 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3485 break; 3486 3487 case Decl::StaticAssert: 3488 // Nothing to do. 3489 break; 3490 3491 // Objective-C Decls 3492 3493 // Forward declarations, no (immediate) code generation. 3494 case Decl::ObjCInterface: 3495 case Decl::ObjCCategory: 3496 break; 3497 3498 case Decl::ObjCProtocol: { 3499 auto *Proto = cast<ObjCProtocolDecl>(D); 3500 if (Proto->isThisDeclarationADefinition()) 3501 ObjCRuntime->GenerateProtocol(Proto); 3502 break; 3503 } 3504 3505 case Decl::ObjCCategoryImpl: 3506 // Categories have properties but don't support synthesize so we 3507 // can ignore them here. 3508 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3509 break; 3510 3511 case Decl::ObjCImplementation: { 3512 auto *OMD = cast<ObjCImplementationDecl>(D); 3513 EmitObjCPropertyImplementations(OMD); 3514 EmitObjCIvarInitializations(OMD); 3515 ObjCRuntime->GenerateClass(OMD); 3516 // Emit global variable debug information. 3517 if (CGDebugInfo *DI = getModuleDebugInfo()) 3518 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3519 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3520 OMD->getClassInterface()), OMD->getLocation()); 3521 break; 3522 } 3523 case Decl::ObjCMethod: { 3524 auto *OMD = cast<ObjCMethodDecl>(D); 3525 // If this is not a prototype, emit the body. 3526 if (OMD->getBody()) 3527 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3528 break; 3529 } 3530 case Decl::ObjCCompatibleAlias: 3531 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3532 break; 3533 3534 case Decl::LinkageSpec: 3535 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3536 break; 3537 3538 case Decl::FileScopeAsm: { 3539 // File-scope asm is ignored during device-side CUDA compilation. 3540 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 3541 break; 3542 auto *AD = cast<FileScopeAsmDecl>(D); 3543 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 3544 break; 3545 } 3546 3547 case Decl::Import: { 3548 auto *Import = cast<ImportDecl>(D); 3549 3550 // Ignore import declarations that come from imported modules. 3551 if (Import->getImportedOwningModule()) 3552 break; 3553 if (CGDebugInfo *DI = getModuleDebugInfo()) 3554 DI->EmitImportDecl(*Import); 3555 3556 ImportedModules.insert(Import->getImportedModule()); 3557 break; 3558 } 3559 3560 case Decl::OMPThreadPrivate: 3561 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 3562 break; 3563 3564 case Decl::ClassTemplateSpecialization: { 3565 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3566 if (DebugInfo && 3567 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 3568 Spec->hasDefinition()) 3569 DebugInfo->completeTemplateDefinition(*Spec); 3570 break; 3571 } 3572 3573 default: 3574 // Make sure we handled everything we should, every other kind is a 3575 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3576 // function. Need to recode Decl::Kind to do that easily. 3577 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3578 break; 3579 } 3580 } 3581 3582 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 3583 // Do we need to generate coverage mapping? 3584 if (!CodeGenOpts.CoverageMapping) 3585 return; 3586 switch (D->getKind()) { 3587 case Decl::CXXConversion: 3588 case Decl::CXXMethod: 3589 case Decl::Function: 3590 case Decl::ObjCMethod: 3591 case Decl::CXXConstructor: 3592 case Decl::CXXDestructor: { 3593 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 3594 return; 3595 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3596 if (I == DeferredEmptyCoverageMappingDecls.end()) 3597 DeferredEmptyCoverageMappingDecls[D] = true; 3598 break; 3599 } 3600 default: 3601 break; 3602 }; 3603 } 3604 3605 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 3606 // Do we need to generate coverage mapping? 3607 if (!CodeGenOpts.CoverageMapping) 3608 return; 3609 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 3610 if (Fn->isTemplateInstantiation()) 3611 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 3612 } 3613 auto I = DeferredEmptyCoverageMappingDecls.find(D); 3614 if (I == DeferredEmptyCoverageMappingDecls.end()) 3615 DeferredEmptyCoverageMappingDecls[D] = false; 3616 else 3617 I->second = false; 3618 } 3619 3620 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 3621 std::vector<const Decl *> DeferredDecls; 3622 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 3623 if (!I.second) 3624 continue; 3625 DeferredDecls.push_back(I.first); 3626 } 3627 // Sort the declarations by their location to make sure that the tests get a 3628 // predictable order for the coverage mapping for the unused declarations. 3629 if (CodeGenOpts.DumpCoverageMapping) 3630 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 3631 [] (const Decl *LHS, const Decl *RHS) { 3632 return LHS->getLocStart() < RHS->getLocStart(); 3633 }); 3634 for (const auto *D : DeferredDecls) { 3635 switch (D->getKind()) { 3636 case Decl::CXXConversion: 3637 case Decl::CXXMethod: 3638 case Decl::Function: 3639 case Decl::ObjCMethod: { 3640 CodeGenPGO PGO(*this); 3641 GlobalDecl GD(cast<FunctionDecl>(D)); 3642 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3643 getFunctionLinkage(GD)); 3644 break; 3645 } 3646 case Decl::CXXConstructor: { 3647 CodeGenPGO PGO(*this); 3648 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 3649 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3650 getFunctionLinkage(GD)); 3651 break; 3652 } 3653 case Decl::CXXDestructor: { 3654 CodeGenPGO PGO(*this); 3655 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 3656 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 3657 getFunctionLinkage(GD)); 3658 break; 3659 } 3660 default: 3661 break; 3662 }; 3663 } 3664 } 3665 3666 /// Turns the given pointer into a constant. 3667 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3668 const void *Ptr) { 3669 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3670 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3671 return llvm::ConstantInt::get(i64, PtrInt); 3672 } 3673 3674 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3675 llvm::NamedMDNode *&GlobalMetadata, 3676 GlobalDecl D, 3677 llvm::GlobalValue *Addr) { 3678 if (!GlobalMetadata) 3679 GlobalMetadata = 3680 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3681 3682 // TODO: should we report variant information for ctors/dtors? 3683 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 3684 llvm::ConstantAsMetadata::get(GetPointerConstant( 3685 CGM.getLLVMContext(), D.getDecl()))}; 3686 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3687 } 3688 3689 /// For each function which is declared within an extern "C" region and marked 3690 /// as 'used', but has internal linkage, create an alias from the unmangled 3691 /// name to the mangled name if possible. People expect to be able to refer 3692 /// to such functions with an unmangled name from inline assembly within the 3693 /// same translation unit. 3694 void CodeGenModule::EmitStaticExternCAliases() { 3695 for (auto &I : StaticExternCValues) { 3696 IdentifierInfo *Name = I.first; 3697 llvm::GlobalValue *Val = I.second; 3698 if (Val && !getModule().getNamedValue(Name->getName())) 3699 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3700 } 3701 } 3702 3703 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3704 GlobalDecl &Result) const { 3705 auto Res = Manglings.find(MangledName); 3706 if (Res == Manglings.end()) 3707 return false; 3708 Result = Res->getValue(); 3709 return true; 3710 } 3711 3712 /// Emits metadata nodes associating all the global values in the 3713 /// current module with the Decls they came from. This is useful for 3714 /// projects using IR gen as a subroutine. 3715 /// 3716 /// Since there's currently no way to associate an MDNode directly 3717 /// with an llvm::GlobalValue, we create a global named metadata 3718 /// with the name 'clang.global.decl.ptrs'. 3719 void CodeGenModule::EmitDeclMetadata() { 3720 llvm::NamedMDNode *GlobalMetadata = nullptr; 3721 3722 for (auto &I : MangledDeclNames) { 3723 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3724 // Some mangled names don't necessarily have an associated GlobalValue 3725 // in this module, e.g. if we mangled it for DebugInfo. 3726 if (Addr) 3727 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3728 } 3729 } 3730 3731 /// Emits metadata nodes for all the local variables in the current 3732 /// function. 3733 void CodeGenFunction::EmitDeclMetadata() { 3734 if (LocalDeclMap.empty()) return; 3735 3736 llvm::LLVMContext &Context = getLLVMContext(); 3737 3738 // Find the unique metadata ID for this name. 3739 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3740 3741 llvm::NamedMDNode *GlobalMetadata = nullptr; 3742 3743 for (auto &I : LocalDeclMap) { 3744 const Decl *D = I.first; 3745 llvm::Value *Addr = I.second.getPointer(); 3746 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3747 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3748 Alloca->setMetadata( 3749 DeclPtrKind, llvm::MDNode::get( 3750 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 3751 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3752 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3753 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3754 } 3755 } 3756 } 3757 3758 void CodeGenModule::EmitVersionIdentMetadata() { 3759 llvm::NamedMDNode *IdentMetadata = 3760 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3761 std::string Version = getClangFullVersion(); 3762 llvm::LLVMContext &Ctx = TheModule.getContext(); 3763 3764 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 3765 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3766 } 3767 3768 void CodeGenModule::EmitTargetMetadata() { 3769 // Warning, new MangledDeclNames may be appended within this loop. 3770 // We rely on MapVector insertions adding new elements to the end 3771 // of the container. 3772 // FIXME: Move this loop into the one target that needs it, and only 3773 // loop over those declarations for which we couldn't emit the target 3774 // metadata when we emitted the declaration. 3775 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3776 auto Val = *(MangledDeclNames.begin() + I); 3777 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3778 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3779 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3780 } 3781 } 3782 3783 void CodeGenModule::EmitCoverageFile() { 3784 if (!getCodeGenOpts().CoverageFile.empty()) { 3785 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3786 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3787 llvm::LLVMContext &Ctx = TheModule.getContext(); 3788 llvm::MDString *CoverageFile = 3789 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3790 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3791 llvm::MDNode *CU = CUNode->getOperand(i); 3792 llvm::Metadata *Elts[] = {CoverageFile, CU}; 3793 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 3794 } 3795 } 3796 } 3797 } 3798 3799 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 3800 // Sema has checked that all uuid strings are of the form 3801 // "12345678-1234-1234-1234-1234567890ab". 3802 assert(Uuid.size() == 36); 3803 for (unsigned i = 0; i < 36; ++i) { 3804 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3805 else assert(isHexDigit(Uuid[i])); 3806 } 3807 3808 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 3809 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3810 3811 llvm::Constant *Field3[8]; 3812 for (unsigned Idx = 0; Idx < 8; ++Idx) 3813 Field3[Idx] = llvm::ConstantInt::get( 3814 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3815 3816 llvm::Constant *Fields[4] = { 3817 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3818 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3819 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3820 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3821 }; 3822 3823 return llvm::ConstantStruct::getAnon(Fields); 3824 } 3825 3826 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3827 bool ForEH) { 3828 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3829 // FIXME: should we even be calling this method if RTTI is disabled 3830 // and it's not for EH? 3831 if (!ForEH && !getLangOpts().RTTI) 3832 return llvm::Constant::getNullValue(Int8PtrTy); 3833 3834 if (ForEH && Ty->isObjCObjectPointerType() && 3835 LangOpts.ObjCRuntime.isGNUFamily()) 3836 return ObjCRuntime->GetEHType(Ty); 3837 3838 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3839 } 3840 3841 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 3842 for (auto RefExpr : D->varlists()) { 3843 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 3844 bool PerformInit = 3845 VD->getAnyInitializer() && 3846 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 3847 /*ForRef=*/false); 3848 3849 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 3850 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 3851 VD, Addr, RefExpr->getLocStart(), PerformInit)) 3852 CXXGlobalInits.push_back(InitFunction); 3853 } 3854 } 3855 3856 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 3857 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 3858 if (InternalId) 3859 return InternalId; 3860 3861 if (isExternallyVisible(T->getLinkage())) { 3862 std::string OutName; 3863 llvm::raw_string_ostream Out(OutName); 3864 getCXXABI().getMangleContext().mangleTypeName(T, Out); 3865 3866 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 3867 } else { 3868 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 3869 llvm::ArrayRef<llvm::Metadata *>()); 3870 } 3871 3872 return InternalId; 3873 } 3874 3875 llvm::MDTuple *CodeGenModule::CreateVTableBitSetEntry( 3876 llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { 3877 llvm::Metadata *BitsetOps[] = { 3878 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)), 3879 llvm::ConstantAsMetadata::get(VTable), 3880 llvm::ConstantAsMetadata::get( 3881 llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))}; 3882 return llvm::MDTuple::get(getLLVMContext(), BitsetOps); 3883 } 3884 3885 // Fills in the supplied string map with the set of target features for the 3886 // passed in function. 3887 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 3888 const FunctionDecl *FD) { 3889 StringRef TargetCPU = Target.getTargetOpts().CPU; 3890 if (const auto *TD = FD->getAttr<TargetAttr>()) { 3891 // If we have a TargetAttr build up the feature map based on that. 3892 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 3893 3894 // Make a copy of the features as passed on the command line into the 3895 // beginning of the additional features from the function to override. 3896 ParsedAttr.first.insert(ParsedAttr.first.begin(), 3897 Target.getTargetOpts().FeaturesAsWritten.begin(), 3898 Target.getTargetOpts().FeaturesAsWritten.end()); 3899 3900 if (ParsedAttr.second != "") 3901 TargetCPU = ParsedAttr.second; 3902 3903 // Now populate the feature map, first with the TargetCPU which is either 3904 // the default or a new one from the target attribute string. Then we'll use 3905 // the passed in features (FeaturesAsWritten) along with the new ones from 3906 // the attribute. 3907 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first); 3908 } else { 3909 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 3910 Target.getTargetOpts().Features); 3911 } 3912 } 3913