1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::TargetData &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNU: 142 case ObjCRuntime::FragileGNU: 143 ObjCRuntime = CreateGNUObjCRuntime(*this); 144 return; 145 146 case ObjCRuntime::FragileMacOSX: 147 case ObjCRuntime::MacOSX: 148 case ObjCRuntime::iOS: 149 ObjCRuntime = CreateMacObjCRuntime(*this); 150 return; 151 } 152 llvm_unreachable("bad runtime kind"); 153 } 154 155 void CodeGenModule::createOpenCLRuntime() { 156 OpenCLRuntime = new CGOpenCLRuntime(*this); 157 } 158 159 void CodeGenModule::createCUDARuntime() { 160 CUDARuntime = CreateNVCUDARuntime(*this); 161 } 162 163 void CodeGenModule::Release() { 164 EmitDeferred(); 165 EmitCXXGlobalInitFunc(); 166 EmitCXXGlobalDtorFunc(); 167 if (ObjCRuntime) 168 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 169 AddGlobalCtor(ObjCInitFunction); 170 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 171 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 172 EmitGlobalAnnotations(); 173 EmitLLVMUsed(); 174 175 SimplifyPersonality(); 176 177 if (getCodeGenOpts().EmitDeclMetadata) 178 EmitDeclMetadata(); 179 180 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 181 EmitCoverageFile(); 182 183 if (DebugInfo) 184 DebugInfo->finalize(); 185 } 186 187 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 188 // Make sure that this type is translated. 189 Types.UpdateCompletedType(TD); 190 } 191 192 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 193 if (!TBAA) 194 return 0; 195 return TBAA->getTBAAInfo(QTy); 196 } 197 198 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 199 if (!TBAA) 200 return 0; 201 return TBAA->getTBAAInfoForVTablePtr(); 202 } 203 204 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 205 llvm::MDNode *TBAAInfo) { 206 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 207 } 208 209 bool CodeGenModule::isTargetDarwin() const { 210 return getContext().getTargetInfo().getTriple().isOSDarwin(); 211 } 212 213 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 214 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 215 getDiags().Report(Context.getFullLoc(loc), diagID); 216 } 217 218 /// ErrorUnsupported - Print out an error that codegen doesn't support the 219 /// specified stmt yet. 220 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 221 bool OmitOnError) { 222 if (OmitOnError && getDiags().hasErrorOccurred()) 223 return; 224 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 225 "cannot compile this %0 yet"); 226 std::string Msg = Type; 227 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 228 << Msg << S->getSourceRange(); 229 } 230 231 /// ErrorUnsupported - Print out an error that codegen doesn't support the 232 /// specified decl yet. 233 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 234 bool OmitOnError) { 235 if (OmitOnError && getDiags().hasErrorOccurred()) 236 return; 237 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 238 "cannot compile this %0 yet"); 239 std::string Msg = Type; 240 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 241 } 242 243 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 244 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 245 } 246 247 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 248 const NamedDecl *D) const { 249 // Internal definitions always have default visibility. 250 if (GV->hasLocalLinkage()) { 251 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 252 return; 253 } 254 255 // Set visibility for definitions. 256 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 257 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 258 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 259 } 260 261 /// Set the symbol visibility of type information (vtable and RTTI) 262 /// associated with the given type. 263 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 264 const CXXRecordDecl *RD, 265 TypeVisibilityKind TVK) const { 266 setGlobalVisibility(GV, RD); 267 268 if (!CodeGenOpts.HiddenWeakVTables) 269 return; 270 271 // We never want to drop the visibility for RTTI names. 272 if (TVK == TVK_ForRTTIName) 273 return; 274 275 // We want to drop the visibility to hidden for weak type symbols. 276 // This isn't possible if there might be unresolved references 277 // elsewhere that rely on this symbol being visible. 278 279 // This should be kept roughly in sync with setThunkVisibility 280 // in CGVTables.cpp. 281 282 // Preconditions. 283 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 284 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 285 return; 286 287 // Don't override an explicit visibility attribute. 288 if (RD->getExplicitVisibility()) 289 return; 290 291 switch (RD->getTemplateSpecializationKind()) { 292 // We have to disable the optimization if this is an EI definition 293 // because there might be EI declarations in other shared objects. 294 case TSK_ExplicitInstantiationDefinition: 295 case TSK_ExplicitInstantiationDeclaration: 296 return; 297 298 // Every use of a non-template class's type information has to emit it. 299 case TSK_Undeclared: 300 break; 301 302 // In theory, implicit instantiations can ignore the possibility of 303 // an explicit instantiation declaration because there necessarily 304 // must be an EI definition somewhere with default visibility. In 305 // practice, it's possible to have an explicit instantiation for 306 // an arbitrary template class, and linkers aren't necessarily able 307 // to deal with mixed-visibility symbols. 308 case TSK_ExplicitSpecialization: 309 case TSK_ImplicitInstantiation: 310 if (!CodeGenOpts.HiddenWeakTemplateVTables) 311 return; 312 break; 313 } 314 315 // If there's a key function, there may be translation units 316 // that don't have the key function's definition. But ignore 317 // this if we're emitting RTTI under -fno-rtti. 318 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 319 if (Context.getKeyFunction(RD)) 320 return; 321 } 322 323 // Otherwise, drop the visibility to hidden. 324 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 325 GV->setUnnamedAddr(true); 326 } 327 328 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 329 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 330 331 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 332 if (!Str.empty()) 333 return Str; 334 335 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 336 IdentifierInfo *II = ND->getIdentifier(); 337 assert(II && "Attempt to mangle unnamed decl."); 338 339 Str = II->getName(); 340 return Str; 341 } 342 343 SmallString<256> Buffer; 344 llvm::raw_svector_ostream Out(Buffer); 345 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 346 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 347 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 348 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 349 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 350 getCXXABI().getMangleContext().mangleBlock(BD, Out); 351 else 352 getCXXABI().getMangleContext().mangleName(ND, Out); 353 354 // Allocate space for the mangled name. 355 Out.flush(); 356 size_t Length = Buffer.size(); 357 char *Name = MangledNamesAllocator.Allocate<char>(Length); 358 std::copy(Buffer.begin(), Buffer.end(), Name); 359 360 Str = StringRef(Name, Length); 361 362 return Str; 363 } 364 365 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 366 const BlockDecl *BD) { 367 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 368 const Decl *D = GD.getDecl(); 369 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 370 if (D == 0) 371 MangleCtx.mangleGlobalBlock(BD, Out); 372 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 373 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 374 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 375 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 376 else 377 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 378 } 379 380 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 381 return getModule().getNamedValue(Name); 382 } 383 384 /// AddGlobalCtor - Add a function to the list that will be called before 385 /// main() runs. 386 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 387 // FIXME: Type coercion of void()* types. 388 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 389 } 390 391 /// AddGlobalDtor - Add a function to the list that will be called 392 /// when the module is unloaded. 393 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 394 // FIXME: Type coercion of void()* types. 395 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 396 } 397 398 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 399 // Ctor function type is void()*. 400 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 401 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 402 403 // Get the type of a ctor entry, { i32, void ()* }. 404 llvm::StructType *CtorStructTy = 405 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 406 407 // Construct the constructor and destructor arrays. 408 SmallVector<llvm::Constant*, 8> Ctors; 409 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 410 llvm::Constant *S[] = { 411 llvm::ConstantInt::get(Int32Ty, I->second, false), 412 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 413 }; 414 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 415 } 416 417 if (!Ctors.empty()) { 418 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 419 new llvm::GlobalVariable(TheModule, AT, false, 420 llvm::GlobalValue::AppendingLinkage, 421 llvm::ConstantArray::get(AT, Ctors), 422 GlobalName); 423 } 424 } 425 426 llvm::GlobalValue::LinkageTypes 427 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 428 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 429 430 if (Linkage == GVA_Internal) 431 return llvm::Function::InternalLinkage; 432 433 if (D->hasAttr<DLLExportAttr>()) 434 return llvm::Function::DLLExportLinkage; 435 436 if (D->hasAttr<WeakAttr>()) 437 return llvm::Function::WeakAnyLinkage; 438 439 // In C99 mode, 'inline' functions are guaranteed to have a strong 440 // definition somewhere else, so we can use available_externally linkage. 441 if (Linkage == GVA_C99Inline) 442 return llvm::Function::AvailableExternallyLinkage; 443 444 // Note that Apple's kernel linker doesn't support symbol 445 // coalescing, so we need to avoid linkonce and weak linkages there. 446 // Normally, this means we just map to internal, but for explicit 447 // instantiations we'll map to external. 448 449 // In C++, the compiler has to emit a definition in every translation unit 450 // that references the function. We should use linkonce_odr because 451 // a) if all references in this translation unit are optimized away, we 452 // don't need to codegen it. b) if the function persists, it needs to be 453 // merged with other definitions. c) C++ has the ODR, so we know the 454 // definition is dependable. 455 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 456 return !Context.getLangOpts().AppleKext 457 ? llvm::Function::LinkOnceODRLinkage 458 : llvm::Function::InternalLinkage; 459 460 // An explicit instantiation of a template has weak linkage, since 461 // explicit instantiations can occur in multiple translation units 462 // and must all be equivalent. However, we are not allowed to 463 // throw away these explicit instantiations. 464 if (Linkage == GVA_ExplicitTemplateInstantiation) 465 return !Context.getLangOpts().AppleKext 466 ? llvm::Function::WeakODRLinkage 467 : llvm::Function::ExternalLinkage; 468 469 // Otherwise, we have strong external linkage. 470 assert(Linkage == GVA_StrongExternal); 471 return llvm::Function::ExternalLinkage; 472 } 473 474 475 /// SetFunctionDefinitionAttributes - Set attributes for a global. 476 /// 477 /// FIXME: This is currently only done for aliases and functions, but not for 478 /// variables (these details are set in EmitGlobalVarDefinition for variables). 479 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 480 llvm::GlobalValue *GV) { 481 SetCommonAttributes(D, GV); 482 } 483 484 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 485 const CGFunctionInfo &Info, 486 llvm::Function *F) { 487 unsigned CallingConv; 488 AttributeListType AttributeList; 489 ConstructAttributeList(Info, D, AttributeList, CallingConv); 490 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 491 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 492 } 493 494 /// Determines whether the language options require us to model 495 /// unwind exceptions. We treat -fexceptions as mandating this 496 /// except under the fragile ObjC ABI with only ObjC exceptions 497 /// enabled. This means, for example, that C with -fexceptions 498 /// enables this. 499 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 500 // If exceptions are completely disabled, obviously this is false. 501 if (!LangOpts.Exceptions) return false; 502 503 // If C++ exceptions are enabled, this is true. 504 if (LangOpts.CXXExceptions) return true; 505 506 // If ObjC exceptions are enabled, this depends on the ABI. 507 if (LangOpts.ObjCExceptions) { 508 if (LangOpts.ObjCRuntime.isFragile()) return false; 509 } 510 511 return true; 512 } 513 514 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 515 llvm::Function *F) { 516 if (CodeGenOpts.UnwindTables) 517 F->setHasUWTable(); 518 519 if (!hasUnwindExceptions(LangOpts)) 520 F->addFnAttr(llvm::Attribute::NoUnwind); 521 522 if (D->hasAttr<NakedAttr>()) { 523 // Naked implies noinline: we should not be inlining such functions. 524 F->addFnAttr(llvm::Attribute::Naked); 525 F->addFnAttr(llvm::Attribute::NoInline); 526 } 527 528 if (D->hasAttr<NoInlineAttr>()) 529 F->addFnAttr(llvm::Attribute::NoInline); 530 531 // (noinline wins over always_inline, and we can't specify both in IR) 532 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 533 !F->hasFnAttr(llvm::Attribute::NoInline)) 534 F->addFnAttr(llvm::Attribute::AlwaysInline); 535 536 // FIXME: Communicate hot and cold attributes to LLVM more directly. 537 if (D->hasAttr<ColdAttr>()) 538 F->addFnAttr(llvm::Attribute::OptimizeForSize); 539 540 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 541 F->setUnnamedAddr(true); 542 543 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 544 F->addFnAttr(llvm::Attribute::StackProtect); 545 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 546 F->addFnAttr(llvm::Attribute::StackProtectReq); 547 548 if (LangOpts.AddressSanitizer) { 549 // When AddressSanitizer is enabled, set AddressSafety attribute 550 // unless __attribute__((no_address_safety_analysis)) is used. 551 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 552 F->addFnAttr(llvm::Attribute::AddressSafety); 553 } 554 555 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 556 if (alignment) 557 F->setAlignment(alignment); 558 559 // C++ ABI requires 2-byte alignment for member functions. 560 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 561 F->setAlignment(2); 562 } 563 564 void CodeGenModule::SetCommonAttributes(const Decl *D, 565 llvm::GlobalValue *GV) { 566 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 567 setGlobalVisibility(GV, ND); 568 else 569 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 570 571 if (D->hasAttr<UsedAttr>()) 572 AddUsedGlobal(GV); 573 574 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 575 GV->setSection(SA->getName()); 576 577 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 578 } 579 580 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 581 llvm::Function *F, 582 const CGFunctionInfo &FI) { 583 SetLLVMFunctionAttributes(D, FI, F); 584 SetLLVMFunctionAttributesForDefinition(D, F); 585 586 F->setLinkage(llvm::Function::InternalLinkage); 587 588 SetCommonAttributes(D, F); 589 } 590 591 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 592 llvm::Function *F, 593 bool IsIncompleteFunction) { 594 if (unsigned IID = F->getIntrinsicID()) { 595 // If this is an intrinsic function, set the function's attributes 596 // to the intrinsic's attributes. 597 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 598 return; 599 } 600 601 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 602 603 if (!IsIncompleteFunction) 604 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 605 606 // Only a few attributes are set on declarations; these may later be 607 // overridden by a definition. 608 609 if (FD->hasAttr<DLLImportAttr>()) { 610 F->setLinkage(llvm::Function::DLLImportLinkage); 611 } else if (FD->hasAttr<WeakAttr>() || 612 FD->isWeakImported()) { 613 // "extern_weak" is overloaded in LLVM; we probably should have 614 // separate linkage types for this. 615 F->setLinkage(llvm::Function::ExternalWeakLinkage); 616 } else { 617 F->setLinkage(llvm::Function::ExternalLinkage); 618 619 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 620 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 621 F->setVisibility(GetLLVMVisibility(LV.visibility())); 622 } 623 } 624 625 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 626 F->setSection(SA->getName()); 627 } 628 629 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 630 assert(!GV->isDeclaration() && 631 "Only globals with definition can force usage."); 632 LLVMUsed.push_back(GV); 633 } 634 635 void CodeGenModule::EmitLLVMUsed() { 636 // Don't create llvm.used if there is no need. 637 if (LLVMUsed.empty()) 638 return; 639 640 // Convert LLVMUsed to what ConstantArray needs. 641 SmallVector<llvm::Constant*, 8> UsedArray; 642 UsedArray.resize(LLVMUsed.size()); 643 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 644 UsedArray[i] = 645 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 646 Int8PtrTy); 647 } 648 649 if (UsedArray.empty()) 650 return; 651 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 652 653 llvm::GlobalVariable *GV = 654 new llvm::GlobalVariable(getModule(), ATy, false, 655 llvm::GlobalValue::AppendingLinkage, 656 llvm::ConstantArray::get(ATy, UsedArray), 657 "llvm.used"); 658 659 GV->setSection("llvm.metadata"); 660 } 661 662 void CodeGenModule::EmitDeferred() { 663 // Emit code for any potentially referenced deferred decls. Since a 664 // previously unused static decl may become used during the generation of code 665 // for a static function, iterate until no changes are made. 666 667 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 668 if (!DeferredVTables.empty()) { 669 const CXXRecordDecl *RD = DeferredVTables.back(); 670 DeferredVTables.pop_back(); 671 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 672 continue; 673 } 674 675 GlobalDecl D = DeferredDeclsToEmit.back(); 676 DeferredDeclsToEmit.pop_back(); 677 678 // Check to see if we've already emitted this. This is necessary 679 // for a couple of reasons: first, decls can end up in the 680 // deferred-decls queue multiple times, and second, decls can end 681 // up with definitions in unusual ways (e.g. by an extern inline 682 // function acquiring a strong function redefinition). Just 683 // ignore these cases. 684 // 685 // TODO: That said, looking this up multiple times is very wasteful. 686 StringRef Name = getMangledName(D); 687 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 688 assert(CGRef && "Deferred decl wasn't referenced?"); 689 690 if (!CGRef->isDeclaration()) 691 continue; 692 693 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 694 // purposes an alias counts as a definition. 695 if (isa<llvm::GlobalAlias>(CGRef)) 696 continue; 697 698 // Otherwise, emit the definition and move on to the next one. 699 EmitGlobalDefinition(D); 700 } 701 } 702 703 void CodeGenModule::EmitGlobalAnnotations() { 704 if (Annotations.empty()) 705 return; 706 707 // Create a new global variable for the ConstantStruct in the Module. 708 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 709 Annotations[0]->getType(), Annotations.size()), Annotations); 710 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 711 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 712 "llvm.global.annotations"); 713 gv->setSection(AnnotationSection); 714 } 715 716 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 717 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 718 if (i != AnnotationStrings.end()) 719 return i->second; 720 721 // Not found yet, create a new global. 722 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 723 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 724 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 725 gv->setSection(AnnotationSection); 726 gv->setUnnamedAddr(true); 727 AnnotationStrings[Str] = gv; 728 return gv; 729 } 730 731 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 732 SourceManager &SM = getContext().getSourceManager(); 733 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 734 if (PLoc.isValid()) 735 return EmitAnnotationString(PLoc.getFilename()); 736 return EmitAnnotationString(SM.getBufferName(Loc)); 737 } 738 739 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 740 SourceManager &SM = getContext().getSourceManager(); 741 PresumedLoc PLoc = SM.getPresumedLoc(L); 742 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 743 SM.getExpansionLineNumber(L); 744 return llvm::ConstantInt::get(Int32Ty, LineNo); 745 } 746 747 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 748 const AnnotateAttr *AA, 749 SourceLocation L) { 750 // Get the globals for file name, annotation, and the line number. 751 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 752 *UnitGV = EmitAnnotationUnit(L), 753 *LineNoCst = EmitAnnotationLineNo(L); 754 755 // Create the ConstantStruct for the global annotation. 756 llvm::Constant *Fields[4] = { 757 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 758 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 759 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 760 LineNoCst 761 }; 762 return llvm::ConstantStruct::getAnon(Fields); 763 } 764 765 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 766 llvm::GlobalValue *GV) { 767 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 768 // Get the struct elements for these annotations. 769 for (specific_attr_iterator<AnnotateAttr> 770 ai = D->specific_attr_begin<AnnotateAttr>(), 771 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 772 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 773 } 774 775 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 776 // Never defer when EmitAllDecls is specified. 777 if (LangOpts.EmitAllDecls) 778 return false; 779 780 return !getContext().DeclMustBeEmitted(Global); 781 } 782 783 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 784 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 785 assert(AA && "No alias?"); 786 787 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 788 789 // See if there is already something with the target's name in the module. 790 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 791 792 llvm::Constant *Aliasee; 793 if (isa<llvm::FunctionType>(DeclTy)) 794 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 795 /*ForVTable=*/false); 796 else 797 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 798 llvm::PointerType::getUnqual(DeclTy), 0); 799 if (!Entry) { 800 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 801 F->setLinkage(llvm::Function::ExternalWeakLinkage); 802 WeakRefReferences.insert(F); 803 } 804 805 return Aliasee; 806 } 807 808 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 809 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 810 811 // Weak references don't produce any output by themselves. 812 if (Global->hasAttr<WeakRefAttr>()) 813 return; 814 815 // If this is an alias definition (which otherwise looks like a declaration) 816 // emit it now. 817 if (Global->hasAttr<AliasAttr>()) 818 return EmitAliasDefinition(GD); 819 820 // If this is CUDA, be selective about which declarations we emit. 821 if (LangOpts.CUDA) { 822 if (CodeGenOpts.CUDAIsDevice) { 823 if (!Global->hasAttr<CUDADeviceAttr>() && 824 !Global->hasAttr<CUDAGlobalAttr>() && 825 !Global->hasAttr<CUDAConstantAttr>() && 826 !Global->hasAttr<CUDASharedAttr>()) 827 return; 828 } else { 829 if (!Global->hasAttr<CUDAHostAttr>() && ( 830 Global->hasAttr<CUDADeviceAttr>() || 831 Global->hasAttr<CUDAConstantAttr>() || 832 Global->hasAttr<CUDASharedAttr>())) 833 return; 834 } 835 } 836 837 // Ignore declarations, they will be emitted on their first use. 838 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 839 // Forward declarations are emitted lazily on first use. 840 if (!FD->doesThisDeclarationHaveABody()) { 841 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 842 return; 843 844 const FunctionDecl *InlineDefinition = 0; 845 FD->getBody(InlineDefinition); 846 847 StringRef MangledName = getMangledName(GD); 848 DeferredDecls.erase(MangledName); 849 EmitGlobalDefinition(InlineDefinition); 850 return; 851 } 852 } else { 853 const VarDecl *VD = cast<VarDecl>(Global); 854 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 855 856 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 857 return; 858 } 859 860 // Defer code generation when possible if this is a static definition, inline 861 // function etc. These we only want to emit if they are used. 862 if (!MayDeferGeneration(Global)) { 863 // Emit the definition if it can't be deferred. 864 EmitGlobalDefinition(GD); 865 return; 866 } 867 868 // If we're deferring emission of a C++ variable with an 869 // initializer, remember the order in which it appeared in the file. 870 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 871 cast<VarDecl>(Global)->hasInit()) { 872 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 873 CXXGlobalInits.push_back(0); 874 } 875 876 // If the value has already been used, add it directly to the 877 // DeferredDeclsToEmit list. 878 StringRef MangledName = getMangledName(GD); 879 if (GetGlobalValue(MangledName)) 880 DeferredDeclsToEmit.push_back(GD); 881 else { 882 // Otherwise, remember that we saw a deferred decl with this name. The 883 // first use of the mangled name will cause it to move into 884 // DeferredDeclsToEmit. 885 DeferredDecls[MangledName] = GD; 886 } 887 } 888 889 namespace { 890 struct FunctionIsDirectlyRecursive : 891 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 892 const StringRef Name; 893 const Builtin::Context &BI; 894 bool Result; 895 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 896 Name(N), BI(C), Result(false) { 897 } 898 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 899 900 bool TraverseCallExpr(CallExpr *E) { 901 const FunctionDecl *FD = E->getDirectCallee(); 902 if (!FD) 903 return true; 904 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 905 if (Attr && Name == Attr->getLabel()) { 906 Result = true; 907 return false; 908 } 909 unsigned BuiltinID = FD->getBuiltinID(); 910 if (!BuiltinID) 911 return true; 912 StringRef BuiltinName = BI.GetName(BuiltinID); 913 if (BuiltinName.startswith("__builtin_") && 914 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 915 Result = true; 916 return false; 917 } 918 return true; 919 } 920 }; 921 } 922 923 // isTriviallyRecursive - Check if this function calls another 924 // decl that, because of the asm attribute or the other decl being a builtin, 925 // ends up pointing to itself. 926 bool 927 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 928 StringRef Name; 929 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 930 // asm labels are a special kind of mangling we have to support. 931 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 932 if (!Attr) 933 return false; 934 Name = Attr->getLabel(); 935 } else { 936 Name = FD->getName(); 937 } 938 939 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 940 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 941 return Walker.Result; 942 } 943 944 bool 945 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 946 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 947 return true; 948 if (CodeGenOpts.OptimizationLevel == 0 && 949 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 950 return false; 951 // PR9614. Avoid cases where the source code is lying to us. An available 952 // externally function should have an equivalent function somewhere else, 953 // but a function that calls itself is clearly not equivalent to the real 954 // implementation. 955 // This happens in glibc's btowc and in some configure checks. 956 return !isTriviallyRecursive(F); 957 } 958 959 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 960 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 961 962 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 963 Context.getSourceManager(), 964 "Generating code for declaration"); 965 966 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 967 // At -O0, don't generate IR for functions with available_externally 968 // linkage. 969 if (!shouldEmitFunction(Function)) 970 return; 971 972 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 973 // Make sure to emit the definition(s) before we emit the thunks. 974 // This is necessary for the generation of certain thunks. 975 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 976 EmitCXXConstructor(CD, GD.getCtorType()); 977 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 978 EmitCXXDestructor(DD, GD.getDtorType()); 979 else 980 EmitGlobalFunctionDefinition(GD); 981 982 if (Method->isVirtual()) 983 getVTables().EmitThunks(GD); 984 985 return; 986 } 987 988 return EmitGlobalFunctionDefinition(GD); 989 } 990 991 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 992 return EmitGlobalVarDefinition(VD); 993 994 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 995 } 996 997 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 998 /// module, create and return an llvm Function with the specified type. If there 999 /// is something in the module with the specified name, return it potentially 1000 /// bitcasted to the right type. 1001 /// 1002 /// If D is non-null, it specifies a decl that correspond to this. This is used 1003 /// to set the attributes on the function when it is first created. 1004 llvm::Constant * 1005 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1006 llvm::Type *Ty, 1007 GlobalDecl D, bool ForVTable, 1008 llvm::Attributes ExtraAttrs) { 1009 // Lookup the entry, lazily creating it if necessary. 1010 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1011 if (Entry) { 1012 if (WeakRefReferences.count(Entry)) { 1013 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1014 if (FD && !FD->hasAttr<WeakAttr>()) 1015 Entry->setLinkage(llvm::Function::ExternalLinkage); 1016 1017 WeakRefReferences.erase(Entry); 1018 } 1019 1020 if (Entry->getType()->getElementType() == Ty) 1021 return Entry; 1022 1023 // Make sure the result is of the correct type. 1024 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1025 } 1026 1027 // This function doesn't have a complete type (for example, the return 1028 // type is an incomplete struct). Use a fake type instead, and make 1029 // sure not to try to set attributes. 1030 bool IsIncompleteFunction = false; 1031 1032 llvm::FunctionType *FTy; 1033 if (isa<llvm::FunctionType>(Ty)) { 1034 FTy = cast<llvm::FunctionType>(Ty); 1035 } else { 1036 FTy = llvm::FunctionType::get(VoidTy, false); 1037 IsIncompleteFunction = true; 1038 } 1039 1040 llvm::Function *F = llvm::Function::Create(FTy, 1041 llvm::Function::ExternalLinkage, 1042 MangledName, &getModule()); 1043 assert(F->getName() == MangledName && "name was uniqued!"); 1044 if (D.getDecl()) 1045 SetFunctionAttributes(D, F, IsIncompleteFunction); 1046 if (ExtraAttrs != llvm::Attribute::None) 1047 F->addFnAttr(ExtraAttrs); 1048 1049 // This is the first use or definition of a mangled name. If there is a 1050 // deferred decl with this name, remember that we need to emit it at the end 1051 // of the file. 1052 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1053 if (DDI != DeferredDecls.end()) { 1054 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1055 // list, and remove it from DeferredDecls (since we don't need it anymore). 1056 DeferredDeclsToEmit.push_back(DDI->second); 1057 DeferredDecls.erase(DDI); 1058 1059 // Otherwise, there are cases we have to worry about where we're 1060 // using a declaration for which we must emit a definition but where 1061 // we might not find a top-level definition: 1062 // - member functions defined inline in their classes 1063 // - friend functions defined inline in some class 1064 // - special member functions with implicit definitions 1065 // If we ever change our AST traversal to walk into class methods, 1066 // this will be unnecessary. 1067 // 1068 // We also don't emit a definition for a function if it's going to be an entry 1069 // in a vtable, unless it's already marked as used. 1070 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1071 // Look for a declaration that's lexically in a record. 1072 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1073 do { 1074 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1075 if (FD->isImplicit() && !ForVTable) { 1076 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1077 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1078 break; 1079 } else if (FD->doesThisDeclarationHaveABody()) { 1080 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1081 break; 1082 } 1083 } 1084 FD = FD->getPreviousDecl(); 1085 } while (FD); 1086 } 1087 1088 // Make sure the result is of the requested type. 1089 if (!IsIncompleteFunction) { 1090 assert(F->getType()->getElementType() == Ty); 1091 return F; 1092 } 1093 1094 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1095 return llvm::ConstantExpr::getBitCast(F, PTy); 1096 } 1097 1098 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1099 /// non-null, then this function will use the specified type if it has to 1100 /// create it (this occurs when we see a definition of the function). 1101 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1102 llvm::Type *Ty, 1103 bool ForVTable) { 1104 // If there was no specific requested type, just convert it now. 1105 if (!Ty) 1106 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1107 1108 StringRef MangledName = getMangledName(GD); 1109 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1110 } 1111 1112 /// CreateRuntimeFunction - Create a new runtime function with the specified 1113 /// type and name. 1114 llvm::Constant * 1115 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1116 StringRef Name, 1117 llvm::Attributes ExtraAttrs) { 1118 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1119 ExtraAttrs); 1120 } 1121 1122 /// isTypeConstant - Determine whether an object of this type can be emitted 1123 /// as a constant. 1124 /// 1125 /// If ExcludeCtor is true, the duration when the object's constructor runs 1126 /// will not be considered. The caller will need to verify that the object is 1127 /// not written to during its construction. 1128 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1129 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1130 return false; 1131 1132 if (Context.getLangOpts().CPlusPlus) { 1133 if (const CXXRecordDecl *Record 1134 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1135 return ExcludeCtor && !Record->hasMutableFields() && 1136 Record->hasTrivialDestructor(); 1137 } 1138 1139 return true; 1140 } 1141 1142 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1143 /// create and return an llvm GlobalVariable with the specified type. If there 1144 /// is something in the module with the specified name, return it potentially 1145 /// bitcasted to the right type. 1146 /// 1147 /// If D is non-null, it specifies a decl that correspond to this. This is used 1148 /// to set the attributes on the global when it is first created. 1149 llvm::Constant * 1150 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1151 llvm::PointerType *Ty, 1152 const VarDecl *D, 1153 bool UnnamedAddr) { 1154 // Lookup the entry, lazily creating it if necessary. 1155 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1156 if (Entry) { 1157 if (WeakRefReferences.count(Entry)) { 1158 if (D && !D->hasAttr<WeakAttr>()) 1159 Entry->setLinkage(llvm::Function::ExternalLinkage); 1160 1161 WeakRefReferences.erase(Entry); 1162 } 1163 1164 if (UnnamedAddr) 1165 Entry->setUnnamedAddr(true); 1166 1167 if (Entry->getType() == Ty) 1168 return Entry; 1169 1170 // Make sure the result is of the correct type. 1171 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1172 } 1173 1174 // This is the first use or definition of a mangled name. If there is a 1175 // deferred decl with this name, remember that we need to emit it at the end 1176 // of the file. 1177 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1178 if (DDI != DeferredDecls.end()) { 1179 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1180 // list, and remove it from DeferredDecls (since we don't need it anymore). 1181 DeferredDeclsToEmit.push_back(DDI->second); 1182 DeferredDecls.erase(DDI); 1183 } 1184 1185 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1186 llvm::GlobalVariable *GV = 1187 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1188 llvm::GlobalValue::ExternalLinkage, 1189 0, MangledName, 0, 1190 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1191 1192 // Handle things which are present even on external declarations. 1193 if (D) { 1194 // FIXME: This code is overly simple and should be merged with other global 1195 // handling. 1196 GV->setConstant(isTypeConstant(D->getType(), false)); 1197 1198 // Set linkage and visibility in case we never see a definition. 1199 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1200 if (LV.linkage() != ExternalLinkage) { 1201 // Don't set internal linkage on declarations. 1202 } else { 1203 if (D->hasAttr<DLLImportAttr>()) 1204 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1205 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1206 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1207 1208 // Set visibility on a declaration only if it's explicit. 1209 if (LV.visibilityExplicit()) 1210 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1211 } 1212 1213 GV->setThreadLocal(D->isThreadSpecified()); 1214 1215 // Set the TLS model if it it's explicitly specified. 1216 if (D->hasAttr<TLSModelAttr>()) { 1217 const TLSModelAttr *Attr = D->getAttr<TLSModelAttr>(); 1218 GV->setThreadLocalMode(GetLLVMTLSModel(Attr->getModel())); 1219 } 1220 } 1221 1222 if (AddrSpace != Ty->getAddressSpace()) 1223 return llvm::ConstantExpr::getBitCast(GV, Ty); 1224 else 1225 return GV; 1226 } 1227 1228 1229 llvm::GlobalVariable * 1230 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1231 llvm::Type *Ty, 1232 llvm::GlobalValue::LinkageTypes Linkage) { 1233 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1234 llvm::GlobalVariable *OldGV = 0; 1235 1236 1237 if (GV) { 1238 // Check if the variable has the right type. 1239 if (GV->getType()->getElementType() == Ty) 1240 return GV; 1241 1242 // Because C++ name mangling, the only way we can end up with an already 1243 // existing global with the same name is if it has been declared extern "C". 1244 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1245 OldGV = GV; 1246 } 1247 1248 // Create a new variable. 1249 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1250 Linkage, 0, Name); 1251 1252 if (OldGV) { 1253 // Replace occurrences of the old variable if needed. 1254 GV->takeName(OldGV); 1255 1256 if (!OldGV->use_empty()) { 1257 llvm::Constant *NewPtrForOldDecl = 1258 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1259 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1260 } 1261 1262 OldGV->eraseFromParent(); 1263 } 1264 1265 return GV; 1266 } 1267 1268 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1269 /// given global variable. If Ty is non-null and if the global doesn't exist, 1270 /// then it will be created with the specified type instead of whatever the 1271 /// normal requested type would be. 1272 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1273 llvm::Type *Ty) { 1274 assert(D->hasGlobalStorage() && "Not a global variable"); 1275 QualType ASTTy = D->getType(); 1276 if (Ty == 0) 1277 Ty = getTypes().ConvertTypeForMem(ASTTy); 1278 1279 llvm::PointerType *PTy = 1280 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1281 1282 StringRef MangledName = getMangledName(D); 1283 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1284 } 1285 1286 /// CreateRuntimeVariable - Create a new runtime global variable with the 1287 /// specified type and name. 1288 llvm::Constant * 1289 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1290 StringRef Name) { 1291 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1292 true); 1293 } 1294 1295 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1296 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1297 1298 if (MayDeferGeneration(D)) { 1299 // If we have not seen a reference to this variable yet, place it 1300 // into the deferred declarations table to be emitted if needed 1301 // later. 1302 StringRef MangledName = getMangledName(D); 1303 if (!GetGlobalValue(MangledName)) { 1304 DeferredDecls[MangledName] = D; 1305 return; 1306 } 1307 } 1308 1309 // The tentative definition is the only definition. 1310 EmitGlobalVarDefinition(D); 1311 } 1312 1313 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1314 if (DefinitionRequired) 1315 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1316 } 1317 1318 llvm::GlobalVariable::LinkageTypes 1319 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1320 if (RD->getLinkage() != ExternalLinkage) 1321 return llvm::GlobalVariable::InternalLinkage; 1322 1323 if (const CXXMethodDecl *KeyFunction 1324 = RD->getASTContext().getKeyFunction(RD)) { 1325 // If this class has a key function, use that to determine the linkage of 1326 // the vtable. 1327 const FunctionDecl *Def = 0; 1328 if (KeyFunction->hasBody(Def)) 1329 KeyFunction = cast<CXXMethodDecl>(Def); 1330 1331 switch (KeyFunction->getTemplateSpecializationKind()) { 1332 case TSK_Undeclared: 1333 case TSK_ExplicitSpecialization: 1334 // When compiling with optimizations turned on, we emit all vtables, 1335 // even if the key function is not defined in the current translation 1336 // unit. If this is the case, use available_externally linkage. 1337 if (!Def && CodeGenOpts.OptimizationLevel) 1338 return llvm::GlobalVariable::AvailableExternallyLinkage; 1339 1340 if (KeyFunction->isInlined()) 1341 return !Context.getLangOpts().AppleKext ? 1342 llvm::GlobalVariable::LinkOnceODRLinkage : 1343 llvm::Function::InternalLinkage; 1344 1345 return llvm::GlobalVariable::ExternalLinkage; 1346 1347 case TSK_ImplicitInstantiation: 1348 return !Context.getLangOpts().AppleKext ? 1349 llvm::GlobalVariable::LinkOnceODRLinkage : 1350 llvm::Function::InternalLinkage; 1351 1352 case TSK_ExplicitInstantiationDefinition: 1353 return !Context.getLangOpts().AppleKext ? 1354 llvm::GlobalVariable::WeakODRLinkage : 1355 llvm::Function::InternalLinkage; 1356 1357 case TSK_ExplicitInstantiationDeclaration: 1358 // FIXME: Use available_externally linkage. However, this currently 1359 // breaks LLVM's build due to undefined symbols. 1360 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1361 return !Context.getLangOpts().AppleKext ? 1362 llvm::GlobalVariable::LinkOnceODRLinkage : 1363 llvm::Function::InternalLinkage; 1364 } 1365 } 1366 1367 if (Context.getLangOpts().AppleKext) 1368 return llvm::Function::InternalLinkage; 1369 1370 switch (RD->getTemplateSpecializationKind()) { 1371 case TSK_Undeclared: 1372 case TSK_ExplicitSpecialization: 1373 case TSK_ImplicitInstantiation: 1374 // FIXME: Use available_externally linkage. However, this currently 1375 // breaks LLVM's build due to undefined symbols. 1376 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1377 case TSK_ExplicitInstantiationDeclaration: 1378 return llvm::GlobalVariable::LinkOnceODRLinkage; 1379 1380 case TSK_ExplicitInstantiationDefinition: 1381 return llvm::GlobalVariable::WeakODRLinkage; 1382 } 1383 1384 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1385 } 1386 1387 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1388 return Context.toCharUnitsFromBits( 1389 TheTargetData.getTypeStoreSizeInBits(Ty)); 1390 } 1391 1392 llvm::Constant * 1393 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1394 const Expr *rawInit) { 1395 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1396 if (const ExprWithCleanups *withCleanups = 1397 dyn_cast<ExprWithCleanups>(rawInit)) { 1398 cleanups = withCleanups->getObjects(); 1399 rawInit = withCleanups->getSubExpr(); 1400 } 1401 1402 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1403 if (!init || !init->initializesStdInitializerList() || 1404 init->getNumInits() == 0) 1405 return 0; 1406 1407 ASTContext &ctx = getContext(); 1408 unsigned numInits = init->getNumInits(); 1409 // FIXME: This check is here because we would otherwise silently miscompile 1410 // nested global std::initializer_lists. Better would be to have a real 1411 // implementation. 1412 for (unsigned i = 0; i < numInits; ++i) { 1413 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1414 if (inner && inner->initializesStdInitializerList()) { 1415 ErrorUnsupported(inner, "nested global std::initializer_list"); 1416 return 0; 1417 } 1418 } 1419 1420 // Synthesize a fake VarDecl for the array and initialize that. 1421 QualType elementType = init->getInit(0)->getType(); 1422 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1423 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1424 ArrayType::Normal, 0); 1425 1426 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1427 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1428 arrayType, D->getLocation()); 1429 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1430 D->getDeclContext()), 1431 D->getLocStart(), D->getLocation(), 1432 name, arrayType, sourceInfo, 1433 SC_Static, SC_Static); 1434 1435 // Now clone the InitListExpr to initialize the array instead. 1436 // Incredible hack: we want to use the existing InitListExpr here, so we need 1437 // to tell it that it no longer initializes a std::initializer_list. 1438 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), 1439 const_cast<InitListExpr*>(init)->getInits(), 1440 init->getNumInits(), 1441 init->getRBraceLoc()); 1442 arrayInit->setType(arrayType); 1443 1444 if (!cleanups.empty()) 1445 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1446 1447 backingArray->setInit(arrayInit); 1448 1449 // Emit the definition of the array. 1450 EmitGlobalVarDefinition(backingArray); 1451 1452 // Inspect the initializer list to validate it and determine its type. 1453 // FIXME: doing this every time is probably inefficient; caching would be nice 1454 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1455 RecordDecl::field_iterator field = record->field_begin(); 1456 if (field == record->field_end()) { 1457 ErrorUnsupported(D, "weird std::initializer_list"); 1458 return 0; 1459 } 1460 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1461 // Start pointer. 1462 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1463 ErrorUnsupported(D, "weird std::initializer_list"); 1464 return 0; 1465 } 1466 ++field; 1467 if (field == record->field_end()) { 1468 ErrorUnsupported(D, "weird std::initializer_list"); 1469 return 0; 1470 } 1471 bool isStartEnd = false; 1472 if (ctx.hasSameType(field->getType(), elementPtr)) { 1473 // End pointer. 1474 isStartEnd = true; 1475 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1476 ErrorUnsupported(D, "weird std::initializer_list"); 1477 return 0; 1478 } 1479 1480 // Now build an APValue representing the std::initializer_list. 1481 APValue initListValue(APValue::UninitStruct(), 0, 2); 1482 APValue &startField = initListValue.getStructField(0); 1483 APValue::LValuePathEntry startOffsetPathEntry; 1484 startOffsetPathEntry.ArrayIndex = 0; 1485 startField = APValue(APValue::LValueBase(backingArray), 1486 CharUnits::fromQuantity(0), 1487 llvm::makeArrayRef(startOffsetPathEntry), 1488 /*IsOnePastTheEnd=*/false, 0); 1489 1490 if (isStartEnd) { 1491 APValue &endField = initListValue.getStructField(1); 1492 APValue::LValuePathEntry endOffsetPathEntry; 1493 endOffsetPathEntry.ArrayIndex = numInits; 1494 endField = APValue(APValue::LValueBase(backingArray), 1495 ctx.getTypeSizeInChars(elementType) * numInits, 1496 llvm::makeArrayRef(endOffsetPathEntry), 1497 /*IsOnePastTheEnd=*/true, 0); 1498 } else { 1499 APValue &sizeField = initListValue.getStructField(1); 1500 sizeField = APValue(llvm::APSInt(numElements)); 1501 } 1502 1503 // Emit the constant for the initializer_list. 1504 llvm::Constant *llvmInit = 1505 EmitConstantValueForMemory(initListValue, D->getType()); 1506 assert(llvmInit && "failed to initialize as constant"); 1507 return llvmInit; 1508 } 1509 1510 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1511 unsigned AddrSpace) { 1512 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1513 if (D->hasAttr<CUDAConstantAttr>()) 1514 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1515 else if (D->hasAttr<CUDASharedAttr>()) 1516 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1517 else 1518 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1519 } 1520 1521 return AddrSpace; 1522 } 1523 1524 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1525 llvm::Constant *Init = 0; 1526 QualType ASTTy = D->getType(); 1527 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1528 bool NeedsGlobalCtor = false; 1529 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1530 1531 const VarDecl *InitDecl; 1532 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1533 1534 if (!InitExpr) { 1535 // This is a tentative definition; tentative definitions are 1536 // implicitly initialized with { 0 }. 1537 // 1538 // Note that tentative definitions are only emitted at the end of 1539 // a translation unit, so they should never have incomplete 1540 // type. In addition, EmitTentativeDefinition makes sure that we 1541 // never attempt to emit a tentative definition if a real one 1542 // exists. A use may still exists, however, so we still may need 1543 // to do a RAUW. 1544 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1545 Init = EmitNullConstant(D->getType()); 1546 } else { 1547 // If this is a std::initializer_list, emit the special initializer. 1548 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1549 // An empty init list will perform zero-initialization, which happens 1550 // to be exactly what we want. 1551 // FIXME: It does so in a global constructor, which is *not* what we 1552 // want. 1553 1554 if (!Init) 1555 Init = EmitConstantInit(*InitDecl); 1556 if (!Init) { 1557 QualType T = InitExpr->getType(); 1558 if (D->getType()->isReferenceType()) 1559 T = D->getType(); 1560 1561 if (getLangOpts().CPlusPlus) { 1562 Init = EmitNullConstant(T); 1563 NeedsGlobalCtor = true; 1564 } else { 1565 ErrorUnsupported(D, "static initializer"); 1566 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1567 } 1568 } else { 1569 // We don't need an initializer, so remove the entry for the delayed 1570 // initializer position (just in case this entry was delayed) if we 1571 // also don't need to register a destructor. 1572 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1573 DelayedCXXInitPosition.erase(D); 1574 } 1575 } 1576 1577 llvm::Type* InitType = Init->getType(); 1578 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1579 1580 // Strip off a bitcast if we got one back. 1581 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1582 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1583 // all zero index gep. 1584 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1585 Entry = CE->getOperand(0); 1586 } 1587 1588 // Entry is now either a Function or GlobalVariable. 1589 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1590 1591 // We have a definition after a declaration with the wrong type. 1592 // We must make a new GlobalVariable* and update everything that used OldGV 1593 // (a declaration or tentative definition) with the new GlobalVariable* 1594 // (which will be a definition). 1595 // 1596 // This happens if there is a prototype for a global (e.g. 1597 // "extern int x[];") and then a definition of a different type (e.g. 1598 // "int x[10];"). This also happens when an initializer has a different type 1599 // from the type of the global (this happens with unions). 1600 if (GV == 0 || 1601 GV->getType()->getElementType() != InitType || 1602 GV->getType()->getAddressSpace() != 1603 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1604 1605 // Move the old entry aside so that we'll create a new one. 1606 Entry->setName(StringRef()); 1607 1608 // Make a new global with the correct type, this is now guaranteed to work. 1609 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1610 1611 // Replace all uses of the old global with the new global 1612 llvm::Constant *NewPtrForOldDecl = 1613 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1614 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1615 1616 // Erase the old global, since it is no longer used. 1617 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1618 } 1619 1620 if (D->hasAttr<AnnotateAttr>()) 1621 AddGlobalAnnotations(D, GV); 1622 1623 GV->setInitializer(Init); 1624 1625 // If it is safe to mark the global 'constant', do so now. 1626 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1627 isTypeConstant(D->getType(), true)); 1628 1629 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1630 1631 // Set the llvm linkage type as appropriate. 1632 llvm::GlobalValue::LinkageTypes Linkage = 1633 GetLLVMLinkageVarDefinition(D, GV); 1634 GV->setLinkage(Linkage); 1635 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1636 // common vars aren't constant even if declared const. 1637 GV->setConstant(false); 1638 1639 SetCommonAttributes(D, GV); 1640 1641 // Emit the initializer function if necessary. 1642 if (NeedsGlobalCtor || NeedsGlobalDtor) 1643 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1644 1645 // Emit global variable debug information. 1646 if (CGDebugInfo *DI = getModuleDebugInfo()) 1647 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1648 DI->EmitGlobalVariable(GV, D); 1649 } 1650 1651 llvm::GlobalValue::LinkageTypes 1652 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1653 llvm::GlobalVariable *GV) { 1654 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1655 if (Linkage == GVA_Internal) 1656 return llvm::Function::InternalLinkage; 1657 else if (D->hasAttr<DLLImportAttr>()) 1658 return llvm::Function::DLLImportLinkage; 1659 else if (D->hasAttr<DLLExportAttr>()) 1660 return llvm::Function::DLLExportLinkage; 1661 else if (D->hasAttr<WeakAttr>()) { 1662 if (GV->isConstant()) 1663 return llvm::GlobalVariable::WeakODRLinkage; 1664 else 1665 return llvm::GlobalVariable::WeakAnyLinkage; 1666 } else if (Linkage == GVA_TemplateInstantiation || 1667 Linkage == GVA_ExplicitTemplateInstantiation) 1668 return llvm::GlobalVariable::WeakODRLinkage; 1669 else if (!getLangOpts().CPlusPlus && 1670 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1671 D->getAttr<CommonAttr>()) && 1672 !D->hasExternalStorage() && !D->getInit() && 1673 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1674 !D->getAttr<WeakImportAttr>()) { 1675 // Thread local vars aren't considered common linkage. 1676 return llvm::GlobalVariable::CommonLinkage; 1677 } 1678 return llvm::GlobalVariable::ExternalLinkage; 1679 } 1680 1681 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1682 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1683 /// existing call uses of the old function in the module, this adjusts them to 1684 /// call the new function directly. 1685 /// 1686 /// This is not just a cleanup: the always_inline pass requires direct calls to 1687 /// functions to be able to inline them. If there is a bitcast in the way, it 1688 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1689 /// run at -O0. 1690 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1691 llvm::Function *NewFn) { 1692 // If we're redefining a global as a function, don't transform it. 1693 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1694 if (OldFn == 0) return; 1695 1696 llvm::Type *NewRetTy = NewFn->getReturnType(); 1697 SmallVector<llvm::Value*, 4> ArgList; 1698 1699 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1700 UI != E; ) { 1701 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1702 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1703 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1704 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1705 llvm::CallSite CS(CI); 1706 if (!CI || !CS.isCallee(I)) continue; 1707 1708 // If the return types don't match exactly, and if the call isn't dead, then 1709 // we can't transform this call. 1710 if (CI->getType() != NewRetTy && !CI->use_empty()) 1711 continue; 1712 1713 // Get the attribute list. 1714 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1715 llvm::AttrListPtr AttrList = CI->getAttributes(); 1716 1717 // Get any return attributes. 1718 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1719 1720 // Add the return attributes. 1721 if (RAttrs) 1722 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1723 1724 // If the function was passed too few arguments, don't transform. If extra 1725 // arguments were passed, we silently drop them. If any of the types 1726 // mismatch, we don't transform. 1727 unsigned ArgNo = 0; 1728 bool DontTransform = false; 1729 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1730 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1731 if (CS.arg_size() == ArgNo || 1732 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1733 DontTransform = true; 1734 break; 1735 } 1736 1737 // Add any parameter attributes. 1738 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1739 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1740 } 1741 if (DontTransform) 1742 continue; 1743 1744 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1745 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1746 1747 // Okay, we can transform this. Create the new call instruction and copy 1748 // over the required information. 1749 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1750 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1751 ArgList.clear(); 1752 if (!NewCall->getType()->isVoidTy()) 1753 NewCall->takeName(CI); 1754 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1755 NewCall->setCallingConv(CI->getCallingConv()); 1756 1757 // Finally, remove the old call, replacing any uses with the new one. 1758 if (!CI->use_empty()) 1759 CI->replaceAllUsesWith(NewCall); 1760 1761 // Copy debug location attached to CI. 1762 if (!CI->getDebugLoc().isUnknown()) 1763 NewCall->setDebugLoc(CI->getDebugLoc()); 1764 CI->eraseFromParent(); 1765 } 1766 } 1767 1768 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1769 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1770 // If we have a definition, this might be a deferred decl. If the 1771 // instantiation is explicit, make sure we emit it at the end. 1772 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1773 GetAddrOfGlobalVar(VD); 1774 } 1775 1776 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1777 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1778 1779 // Compute the function info and LLVM type. 1780 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1781 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1782 1783 // Get or create the prototype for the function. 1784 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1785 1786 // Strip off a bitcast if we got one back. 1787 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1788 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1789 Entry = CE->getOperand(0); 1790 } 1791 1792 1793 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1794 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1795 1796 // If the types mismatch then we have to rewrite the definition. 1797 assert(OldFn->isDeclaration() && 1798 "Shouldn't replace non-declaration"); 1799 1800 // F is the Function* for the one with the wrong type, we must make a new 1801 // Function* and update everything that used F (a declaration) with the new 1802 // Function* (which will be a definition). 1803 // 1804 // This happens if there is a prototype for a function 1805 // (e.g. "int f()") and then a definition of a different type 1806 // (e.g. "int f(int x)"). Move the old function aside so that it 1807 // doesn't interfere with GetAddrOfFunction. 1808 OldFn->setName(StringRef()); 1809 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1810 1811 // If this is an implementation of a function without a prototype, try to 1812 // replace any existing uses of the function (which may be calls) with uses 1813 // of the new function 1814 if (D->getType()->isFunctionNoProtoType()) { 1815 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1816 OldFn->removeDeadConstantUsers(); 1817 } 1818 1819 // Replace uses of F with the Function we will endow with a body. 1820 if (!Entry->use_empty()) { 1821 llvm::Constant *NewPtrForOldDecl = 1822 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1823 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1824 } 1825 1826 // Ok, delete the old function now, which is dead. 1827 OldFn->eraseFromParent(); 1828 1829 Entry = NewFn; 1830 } 1831 1832 // We need to set linkage and visibility on the function before 1833 // generating code for it because various parts of IR generation 1834 // want to propagate this information down (e.g. to local static 1835 // declarations). 1836 llvm::Function *Fn = cast<llvm::Function>(Entry); 1837 setFunctionLinkage(D, Fn); 1838 1839 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1840 setGlobalVisibility(Fn, D); 1841 1842 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1843 1844 SetFunctionDefinitionAttributes(D, Fn); 1845 SetLLVMFunctionAttributesForDefinition(D, Fn); 1846 1847 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1848 AddGlobalCtor(Fn, CA->getPriority()); 1849 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1850 AddGlobalDtor(Fn, DA->getPriority()); 1851 if (D->hasAttr<AnnotateAttr>()) 1852 AddGlobalAnnotations(D, Fn); 1853 } 1854 1855 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1856 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1857 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1858 assert(AA && "Not an alias?"); 1859 1860 StringRef MangledName = getMangledName(GD); 1861 1862 // If there is a definition in the module, then it wins over the alias. 1863 // This is dubious, but allow it to be safe. Just ignore the alias. 1864 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1865 if (Entry && !Entry->isDeclaration()) 1866 return; 1867 1868 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1869 1870 // Create a reference to the named value. This ensures that it is emitted 1871 // if a deferred decl. 1872 llvm::Constant *Aliasee; 1873 if (isa<llvm::FunctionType>(DeclTy)) 1874 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(), 1875 /*ForVTable=*/false); 1876 else 1877 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1878 llvm::PointerType::getUnqual(DeclTy), 0); 1879 1880 // Create the new alias itself, but don't set a name yet. 1881 llvm::GlobalValue *GA = 1882 new llvm::GlobalAlias(Aliasee->getType(), 1883 llvm::Function::ExternalLinkage, 1884 "", Aliasee, &getModule()); 1885 1886 if (Entry) { 1887 assert(Entry->isDeclaration()); 1888 1889 // If there is a declaration in the module, then we had an extern followed 1890 // by the alias, as in: 1891 // extern int test6(); 1892 // ... 1893 // int test6() __attribute__((alias("test7"))); 1894 // 1895 // Remove it and replace uses of it with the alias. 1896 GA->takeName(Entry); 1897 1898 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1899 Entry->getType())); 1900 Entry->eraseFromParent(); 1901 } else { 1902 GA->setName(MangledName); 1903 } 1904 1905 // Set attributes which are particular to an alias; this is a 1906 // specialization of the attributes which may be set on a global 1907 // variable/function. 1908 if (D->hasAttr<DLLExportAttr>()) { 1909 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1910 // The dllexport attribute is ignored for undefined symbols. 1911 if (FD->hasBody()) 1912 GA->setLinkage(llvm::Function::DLLExportLinkage); 1913 } else { 1914 GA->setLinkage(llvm::Function::DLLExportLinkage); 1915 } 1916 } else if (D->hasAttr<WeakAttr>() || 1917 D->hasAttr<WeakRefAttr>() || 1918 D->isWeakImported()) { 1919 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1920 } 1921 1922 SetCommonAttributes(D, GA); 1923 } 1924 1925 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 1926 ArrayRef<llvm::Type*> Tys) { 1927 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 1928 Tys); 1929 } 1930 1931 static llvm::StringMapEntry<llvm::Constant*> & 1932 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1933 const StringLiteral *Literal, 1934 bool TargetIsLSB, 1935 bool &IsUTF16, 1936 unsigned &StringLength) { 1937 StringRef String = Literal->getString(); 1938 unsigned NumBytes = String.size(); 1939 1940 // Check for simple case. 1941 if (!Literal->containsNonAsciiOrNull()) { 1942 StringLength = NumBytes; 1943 return Map.GetOrCreateValue(String); 1944 } 1945 1946 // Otherwise, convert the UTF8 literals into a string of shorts. 1947 IsUTF16 = true; 1948 1949 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 1950 const UTF8 *FromPtr = (UTF8 *)String.data(); 1951 UTF16 *ToPtr = &ToBuf[0]; 1952 1953 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1954 &ToPtr, ToPtr + NumBytes, 1955 strictConversion); 1956 1957 // ConvertUTF8toUTF16 returns the length in ToPtr. 1958 StringLength = ToPtr - &ToBuf[0]; 1959 1960 // Add an explicit null. 1961 *ToPtr = 0; 1962 return Map. 1963 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 1964 (StringLength + 1) * 2)); 1965 } 1966 1967 static llvm::StringMapEntry<llvm::Constant*> & 1968 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1969 const StringLiteral *Literal, 1970 unsigned &StringLength) { 1971 StringRef String = Literal->getString(); 1972 StringLength = String.size(); 1973 return Map.GetOrCreateValue(String); 1974 } 1975 1976 llvm::Constant * 1977 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1978 unsigned StringLength = 0; 1979 bool isUTF16 = false; 1980 llvm::StringMapEntry<llvm::Constant*> &Entry = 1981 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1982 getTargetData().isLittleEndian(), 1983 isUTF16, StringLength); 1984 1985 if (llvm::Constant *C = Entry.getValue()) 1986 return C; 1987 1988 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 1989 llvm::Constant *Zeros[] = { Zero, Zero }; 1990 1991 // If we don't already have it, get __CFConstantStringClassReference. 1992 if (!CFConstantStringClassRef) { 1993 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1994 Ty = llvm::ArrayType::get(Ty, 0); 1995 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1996 "__CFConstantStringClassReference"); 1997 // Decay array -> ptr 1998 CFConstantStringClassRef = 1999 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2000 } 2001 2002 QualType CFTy = getContext().getCFConstantStringType(); 2003 2004 llvm::StructType *STy = 2005 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2006 2007 llvm::Constant *Fields[4]; 2008 2009 // Class pointer. 2010 Fields[0] = CFConstantStringClassRef; 2011 2012 // Flags. 2013 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2014 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2015 llvm::ConstantInt::get(Ty, 0x07C8); 2016 2017 // String pointer. 2018 llvm::Constant *C = 0; 2019 if (isUTF16) { 2020 ArrayRef<uint16_t> Arr = 2021 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2022 Entry.getKey().size() / 2); 2023 C = llvm::ConstantDataArray::get(VMContext, Arr); 2024 } else { 2025 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2026 } 2027 2028 llvm::GlobalValue::LinkageTypes Linkage; 2029 if (isUTF16) 2030 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2031 Linkage = llvm::GlobalValue::InternalLinkage; 2032 else 2033 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2034 // when using private linkage. It is not clear if this is a bug in ld 2035 // or a reasonable new restriction. 2036 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2037 2038 // Note: -fwritable-strings doesn't make the backing store strings of 2039 // CFStrings writable. (See <rdar://problem/10657500>) 2040 llvm::GlobalVariable *GV = 2041 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2042 Linkage, C, ".str"); 2043 GV->setUnnamedAddr(true); 2044 if (isUTF16) { 2045 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2046 GV->setAlignment(Align.getQuantity()); 2047 } else { 2048 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2049 GV->setAlignment(Align.getQuantity()); 2050 } 2051 2052 // String. 2053 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2054 2055 if (isUTF16) 2056 // Cast the UTF16 string to the correct type. 2057 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2058 2059 // String length. 2060 Ty = getTypes().ConvertType(getContext().LongTy); 2061 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2062 2063 // The struct. 2064 C = llvm::ConstantStruct::get(STy, Fields); 2065 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2066 llvm::GlobalVariable::PrivateLinkage, C, 2067 "_unnamed_cfstring_"); 2068 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2069 GV->setSection(Sect); 2070 Entry.setValue(GV); 2071 2072 return GV; 2073 } 2074 2075 static RecordDecl * 2076 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2077 DeclContext *DC, IdentifierInfo *Id) { 2078 SourceLocation Loc; 2079 if (Ctx.getLangOpts().CPlusPlus) 2080 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2081 else 2082 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2083 } 2084 2085 llvm::Constant * 2086 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2087 unsigned StringLength = 0; 2088 llvm::StringMapEntry<llvm::Constant*> &Entry = 2089 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2090 2091 if (llvm::Constant *C = Entry.getValue()) 2092 return C; 2093 2094 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2095 llvm::Constant *Zeros[] = { Zero, Zero }; 2096 2097 // If we don't already have it, get _NSConstantStringClassReference. 2098 if (!ConstantStringClassRef) { 2099 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2100 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2101 llvm::Constant *GV; 2102 if (LangOpts.ObjCRuntime.isNonFragile()) { 2103 std::string str = 2104 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2105 : "OBJC_CLASS_$_" + StringClass; 2106 GV = getObjCRuntime().GetClassGlobal(str); 2107 // Make sure the result is of the correct type. 2108 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2109 ConstantStringClassRef = 2110 llvm::ConstantExpr::getBitCast(GV, PTy); 2111 } else { 2112 std::string str = 2113 StringClass.empty() ? "_NSConstantStringClassReference" 2114 : "_" + StringClass + "ClassReference"; 2115 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2116 GV = CreateRuntimeVariable(PTy, str); 2117 // Decay array -> ptr 2118 ConstantStringClassRef = 2119 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2120 } 2121 } 2122 2123 if (!NSConstantStringType) { 2124 // Construct the type for a constant NSString. 2125 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2126 Context.getTranslationUnitDecl(), 2127 &Context.Idents.get("__builtin_NSString")); 2128 D->startDefinition(); 2129 2130 QualType FieldTypes[3]; 2131 2132 // const int *isa; 2133 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2134 // const char *str; 2135 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2136 // unsigned int length; 2137 FieldTypes[2] = Context.UnsignedIntTy; 2138 2139 // Create fields 2140 for (unsigned i = 0; i < 3; ++i) { 2141 FieldDecl *Field = FieldDecl::Create(Context, D, 2142 SourceLocation(), 2143 SourceLocation(), 0, 2144 FieldTypes[i], /*TInfo=*/0, 2145 /*BitWidth=*/0, 2146 /*Mutable=*/false, 2147 ICIS_NoInit); 2148 Field->setAccess(AS_public); 2149 D->addDecl(Field); 2150 } 2151 2152 D->completeDefinition(); 2153 QualType NSTy = Context.getTagDeclType(D); 2154 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2155 } 2156 2157 llvm::Constant *Fields[3]; 2158 2159 // Class pointer. 2160 Fields[0] = ConstantStringClassRef; 2161 2162 // String pointer. 2163 llvm::Constant *C = 2164 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2165 2166 llvm::GlobalValue::LinkageTypes Linkage; 2167 bool isConstant; 2168 Linkage = llvm::GlobalValue::PrivateLinkage; 2169 isConstant = !LangOpts.WritableStrings; 2170 2171 llvm::GlobalVariable *GV = 2172 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2173 ".str"); 2174 GV->setUnnamedAddr(true); 2175 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2176 GV->setAlignment(Align.getQuantity()); 2177 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2178 2179 // String length. 2180 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2181 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2182 2183 // The struct. 2184 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2185 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2186 llvm::GlobalVariable::PrivateLinkage, C, 2187 "_unnamed_nsstring_"); 2188 // FIXME. Fix section. 2189 if (const char *Sect = 2190 LangOpts.ObjCRuntime.isNonFragile() 2191 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2192 : getContext().getTargetInfo().getNSStringSection()) 2193 GV->setSection(Sect); 2194 Entry.setValue(GV); 2195 2196 return GV; 2197 } 2198 2199 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2200 if (ObjCFastEnumerationStateType.isNull()) { 2201 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2202 Context.getTranslationUnitDecl(), 2203 &Context.Idents.get("__objcFastEnumerationState")); 2204 D->startDefinition(); 2205 2206 QualType FieldTypes[] = { 2207 Context.UnsignedLongTy, 2208 Context.getPointerType(Context.getObjCIdType()), 2209 Context.getPointerType(Context.UnsignedLongTy), 2210 Context.getConstantArrayType(Context.UnsignedLongTy, 2211 llvm::APInt(32, 5), ArrayType::Normal, 0) 2212 }; 2213 2214 for (size_t i = 0; i < 4; ++i) { 2215 FieldDecl *Field = FieldDecl::Create(Context, 2216 D, 2217 SourceLocation(), 2218 SourceLocation(), 0, 2219 FieldTypes[i], /*TInfo=*/0, 2220 /*BitWidth=*/0, 2221 /*Mutable=*/false, 2222 ICIS_NoInit); 2223 Field->setAccess(AS_public); 2224 D->addDecl(Field); 2225 } 2226 2227 D->completeDefinition(); 2228 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2229 } 2230 2231 return ObjCFastEnumerationStateType; 2232 } 2233 2234 llvm::Constant * 2235 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2236 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2237 2238 // Don't emit it as the address of the string, emit the string data itself 2239 // as an inline array. 2240 if (E->getCharByteWidth() == 1) { 2241 SmallString<64> Str(E->getString()); 2242 2243 // Resize the string to the right size, which is indicated by its type. 2244 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2245 Str.resize(CAT->getSize().getZExtValue()); 2246 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2247 } 2248 2249 llvm::ArrayType *AType = 2250 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2251 llvm::Type *ElemTy = AType->getElementType(); 2252 unsigned NumElements = AType->getNumElements(); 2253 2254 // Wide strings have either 2-byte or 4-byte elements. 2255 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2256 SmallVector<uint16_t, 32> Elements; 2257 Elements.reserve(NumElements); 2258 2259 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2260 Elements.push_back(E->getCodeUnit(i)); 2261 Elements.resize(NumElements); 2262 return llvm::ConstantDataArray::get(VMContext, Elements); 2263 } 2264 2265 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2266 SmallVector<uint32_t, 32> Elements; 2267 Elements.reserve(NumElements); 2268 2269 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2270 Elements.push_back(E->getCodeUnit(i)); 2271 Elements.resize(NumElements); 2272 return llvm::ConstantDataArray::get(VMContext, Elements); 2273 } 2274 2275 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2276 /// constant array for the given string literal. 2277 llvm::Constant * 2278 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2279 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2280 if (S->isAscii() || S->isUTF8()) { 2281 SmallString<64> Str(S->getString()); 2282 2283 // Resize the string to the right size, which is indicated by its type. 2284 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2285 Str.resize(CAT->getSize().getZExtValue()); 2286 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2287 } 2288 2289 // FIXME: the following does not memoize wide strings. 2290 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2291 llvm::GlobalVariable *GV = 2292 new llvm::GlobalVariable(getModule(),C->getType(), 2293 !LangOpts.WritableStrings, 2294 llvm::GlobalValue::PrivateLinkage, 2295 C,".str"); 2296 2297 GV->setAlignment(Align.getQuantity()); 2298 GV->setUnnamedAddr(true); 2299 return GV; 2300 } 2301 2302 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2303 /// array for the given ObjCEncodeExpr node. 2304 llvm::Constant * 2305 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2306 std::string Str; 2307 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2308 2309 return GetAddrOfConstantCString(Str); 2310 } 2311 2312 2313 /// GenerateWritableString -- Creates storage for a string literal. 2314 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2315 bool constant, 2316 CodeGenModule &CGM, 2317 const char *GlobalName, 2318 unsigned Alignment) { 2319 // Create Constant for this string literal. Don't add a '\0'. 2320 llvm::Constant *C = 2321 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2322 2323 // Create a global variable for this string 2324 llvm::GlobalVariable *GV = 2325 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2326 llvm::GlobalValue::PrivateLinkage, 2327 C, GlobalName); 2328 GV->setAlignment(Alignment); 2329 GV->setUnnamedAddr(true); 2330 return GV; 2331 } 2332 2333 /// GetAddrOfConstantString - Returns a pointer to a character array 2334 /// containing the literal. This contents are exactly that of the 2335 /// given string, i.e. it will not be null terminated automatically; 2336 /// see GetAddrOfConstantCString. Note that whether the result is 2337 /// actually a pointer to an LLVM constant depends on 2338 /// Feature.WriteableStrings. 2339 /// 2340 /// The result has pointer to array type. 2341 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2342 const char *GlobalName, 2343 unsigned Alignment) { 2344 // Get the default prefix if a name wasn't specified. 2345 if (!GlobalName) 2346 GlobalName = ".str"; 2347 2348 // Don't share any string literals if strings aren't constant. 2349 if (LangOpts.WritableStrings) 2350 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2351 2352 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2353 ConstantStringMap.GetOrCreateValue(Str); 2354 2355 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2356 if (Alignment > GV->getAlignment()) { 2357 GV->setAlignment(Alignment); 2358 } 2359 return GV; 2360 } 2361 2362 // Create a global variable for this. 2363 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2364 Alignment); 2365 Entry.setValue(GV); 2366 return GV; 2367 } 2368 2369 /// GetAddrOfConstantCString - Returns a pointer to a character 2370 /// array containing the literal and a terminating '\0' 2371 /// character. The result has pointer to array type. 2372 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2373 const char *GlobalName, 2374 unsigned Alignment) { 2375 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2376 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2377 } 2378 2379 /// EmitObjCPropertyImplementations - Emit information for synthesized 2380 /// properties for an implementation. 2381 void CodeGenModule::EmitObjCPropertyImplementations(const 2382 ObjCImplementationDecl *D) { 2383 for (ObjCImplementationDecl::propimpl_iterator 2384 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2385 ObjCPropertyImplDecl *PID = *i; 2386 2387 // Dynamic is just for type-checking. 2388 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2389 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2390 2391 // Determine which methods need to be implemented, some may have 2392 // been overridden. Note that ::isSynthesized is not the method 2393 // we want, that just indicates if the decl came from a 2394 // property. What we want to know is if the method is defined in 2395 // this implementation. 2396 if (!D->getInstanceMethod(PD->getGetterName())) 2397 CodeGenFunction(*this).GenerateObjCGetter( 2398 const_cast<ObjCImplementationDecl *>(D), PID); 2399 if (!PD->isReadOnly() && 2400 !D->getInstanceMethod(PD->getSetterName())) 2401 CodeGenFunction(*this).GenerateObjCSetter( 2402 const_cast<ObjCImplementationDecl *>(D), PID); 2403 } 2404 } 2405 } 2406 2407 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2408 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2409 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2410 ivar; ivar = ivar->getNextIvar()) 2411 if (ivar->getType().isDestructedType()) 2412 return true; 2413 2414 return false; 2415 } 2416 2417 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2418 /// for an implementation. 2419 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2420 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2421 if (needsDestructMethod(D)) { 2422 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2423 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2424 ObjCMethodDecl *DTORMethod = 2425 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2426 cxxSelector, getContext().VoidTy, 0, D, 2427 /*isInstance=*/true, /*isVariadic=*/false, 2428 /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true, 2429 /*isDefined=*/false, ObjCMethodDecl::Required); 2430 D->addInstanceMethod(DTORMethod); 2431 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2432 D->setHasCXXStructors(true); 2433 } 2434 2435 // If the implementation doesn't have any ivar initializers, we don't need 2436 // a .cxx_construct. 2437 if (D->getNumIvarInitializers() == 0) 2438 return; 2439 2440 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2441 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2442 // The constructor returns 'self'. 2443 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2444 D->getLocation(), 2445 D->getLocation(), 2446 cxxSelector, 2447 getContext().getObjCIdType(), 0, 2448 D, /*isInstance=*/true, 2449 /*isVariadic=*/false, 2450 /*isSynthesized=*/true, 2451 /*isImplicitlyDeclared=*/true, 2452 /*isDefined=*/false, 2453 ObjCMethodDecl::Required); 2454 D->addInstanceMethod(CTORMethod); 2455 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2456 D->setHasCXXStructors(true); 2457 } 2458 2459 /// EmitNamespace - Emit all declarations in a namespace. 2460 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2461 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2462 I != E; ++I) 2463 EmitTopLevelDecl(*I); 2464 } 2465 2466 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2467 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2468 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2469 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2470 ErrorUnsupported(LSD, "linkage spec"); 2471 return; 2472 } 2473 2474 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2475 I != E; ++I) 2476 EmitTopLevelDecl(*I); 2477 } 2478 2479 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2480 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2481 // If an error has occurred, stop code generation, but continue 2482 // parsing and semantic analysis (to ensure all warnings and errors 2483 // are emitted). 2484 if (Diags.hasErrorOccurred()) 2485 return; 2486 2487 // Ignore dependent declarations. 2488 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2489 return; 2490 2491 switch (D->getKind()) { 2492 case Decl::CXXConversion: 2493 case Decl::CXXMethod: 2494 case Decl::Function: 2495 // Skip function templates 2496 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2497 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2498 return; 2499 2500 EmitGlobal(cast<FunctionDecl>(D)); 2501 break; 2502 2503 case Decl::Var: 2504 EmitGlobal(cast<VarDecl>(D)); 2505 break; 2506 2507 // Indirect fields from global anonymous structs and unions can be 2508 // ignored; only the actual variable requires IR gen support. 2509 case Decl::IndirectField: 2510 break; 2511 2512 // C++ Decls 2513 case Decl::Namespace: 2514 EmitNamespace(cast<NamespaceDecl>(D)); 2515 break; 2516 // No code generation needed. 2517 case Decl::UsingShadow: 2518 case Decl::Using: 2519 case Decl::UsingDirective: 2520 case Decl::ClassTemplate: 2521 case Decl::FunctionTemplate: 2522 case Decl::TypeAliasTemplate: 2523 case Decl::NamespaceAlias: 2524 case Decl::Block: 2525 case Decl::Import: 2526 break; 2527 case Decl::CXXConstructor: 2528 // Skip function templates 2529 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2530 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2531 return; 2532 2533 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2534 break; 2535 case Decl::CXXDestructor: 2536 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2537 return; 2538 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2539 break; 2540 2541 case Decl::StaticAssert: 2542 // Nothing to do. 2543 break; 2544 2545 // Objective-C Decls 2546 2547 // Forward declarations, no (immediate) code generation. 2548 case Decl::ObjCInterface: 2549 break; 2550 2551 case Decl::ObjCCategory: { 2552 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 2553 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 2554 Context.ResetObjCLayout(CD->getClassInterface()); 2555 break; 2556 } 2557 2558 case Decl::ObjCProtocol: { 2559 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2560 if (Proto->isThisDeclarationADefinition()) 2561 ObjCRuntime->GenerateProtocol(Proto); 2562 break; 2563 } 2564 2565 case Decl::ObjCCategoryImpl: 2566 // Categories have properties but don't support synthesize so we 2567 // can ignore them here. 2568 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2569 break; 2570 2571 case Decl::ObjCImplementation: { 2572 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2573 if (LangOpts.ObjCRuntime.isNonFragile() && OMD->hasSynthBitfield()) 2574 Context.ResetObjCLayout(OMD->getClassInterface()); 2575 EmitObjCPropertyImplementations(OMD); 2576 EmitObjCIvarInitializations(OMD); 2577 ObjCRuntime->GenerateClass(OMD); 2578 // Emit global variable debug information. 2579 if (CGDebugInfo *DI = getModuleDebugInfo()) 2580 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2581 OMD->getLocation()); 2582 2583 break; 2584 } 2585 case Decl::ObjCMethod: { 2586 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2587 // If this is not a prototype, emit the body. 2588 if (OMD->getBody()) 2589 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2590 break; 2591 } 2592 case Decl::ObjCCompatibleAlias: 2593 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2594 break; 2595 2596 case Decl::LinkageSpec: 2597 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2598 break; 2599 2600 case Decl::FileScopeAsm: { 2601 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2602 StringRef AsmString = AD->getAsmString()->getString(); 2603 2604 const std::string &S = getModule().getModuleInlineAsm(); 2605 if (S.empty()) 2606 getModule().setModuleInlineAsm(AsmString); 2607 else if (*--S.end() == '\n') 2608 getModule().setModuleInlineAsm(S + AsmString.str()); 2609 else 2610 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2611 break; 2612 } 2613 2614 default: 2615 // Make sure we handled everything we should, every other kind is a 2616 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2617 // function. Need to recode Decl::Kind to do that easily. 2618 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2619 } 2620 } 2621 2622 /// Turns the given pointer into a constant. 2623 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2624 const void *Ptr) { 2625 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2626 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2627 return llvm::ConstantInt::get(i64, PtrInt); 2628 } 2629 2630 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2631 llvm::NamedMDNode *&GlobalMetadata, 2632 GlobalDecl D, 2633 llvm::GlobalValue *Addr) { 2634 if (!GlobalMetadata) 2635 GlobalMetadata = 2636 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2637 2638 // TODO: should we report variant information for ctors/dtors? 2639 llvm::Value *Ops[] = { 2640 Addr, 2641 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2642 }; 2643 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2644 } 2645 2646 /// Emits metadata nodes associating all the global values in the 2647 /// current module with the Decls they came from. This is useful for 2648 /// projects using IR gen as a subroutine. 2649 /// 2650 /// Since there's currently no way to associate an MDNode directly 2651 /// with an llvm::GlobalValue, we create a global named metadata 2652 /// with the name 'clang.global.decl.ptrs'. 2653 void CodeGenModule::EmitDeclMetadata() { 2654 llvm::NamedMDNode *GlobalMetadata = 0; 2655 2656 // StaticLocalDeclMap 2657 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2658 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2659 I != E; ++I) { 2660 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2661 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2662 } 2663 } 2664 2665 /// Emits metadata nodes for all the local variables in the current 2666 /// function. 2667 void CodeGenFunction::EmitDeclMetadata() { 2668 if (LocalDeclMap.empty()) return; 2669 2670 llvm::LLVMContext &Context = getLLVMContext(); 2671 2672 // Find the unique metadata ID for this name. 2673 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2674 2675 llvm::NamedMDNode *GlobalMetadata = 0; 2676 2677 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2678 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2679 const Decl *D = I->first; 2680 llvm::Value *Addr = I->second; 2681 2682 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2683 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2684 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2685 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2686 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2687 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2688 } 2689 } 2690 } 2691 2692 void CodeGenModule::EmitCoverageFile() { 2693 if (!getCodeGenOpts().CoverageFile.empty()) { 2694 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2695 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2696 llvm::LLVMContext &Ctx = TheModule.getContext(); 2697 llvm::MDString *CoverageFile = 2698 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2699 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2700 llvm::MDNode *CU = CUNode->getOperand(i); 2701 llvm::Value *node[] = { CoverageFile, CU }; 2702 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2703 GCov->addOperand(N); 2704 } 2705 } 2706 } 2707 } 2708