1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "CGBlocks.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CGOpenMPRuntimeAMDGCN.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/ConstantInitBuilder.h" 48 #include "clang/Frontend/FrontendDiagnostic.h" 49 #include "llvm/ADT/StringSwitch.h" 50 #include "llvm/ADT/Triple.h" 51 #include "llvm/Analysis/TargetLibraryInfo.h" 52 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 53 #include "llvm/IR/CallingConv.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ProfileSummary.h" 59 #include "llvm/ProfileData/InstrProfReader.h" 60 #include "llvm/Support/CodeGen.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/ConvertUTF.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MD5.h" 65 #include "llvm/Support/TimeProfiler.h" 66 67 using namespace clang; 68 using namespace CodeGen; 69 70 static llvm::cl::opt<bool> LimitedCoverage( 71 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 72 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 73 llvm::cl::init(false)); 74 75 static const char AnnotationSection[] = "llvm.metadata"; 76 77 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 78 switch (CGM.getTarget().getCXXABI().getKind()) { 79 case TargetCXXABI::Fuchsia: 80 case TargetCXXABI::GenericAArch64: 81 case TargetCXXABI::GenericARM: 82 case TargetCXXABI::iOS: 83 case TargetCXXABI::iOS64: 84 case TargetCXXABI::WatchOS: 85 case TargetCXXABI::GenericMIPS: 86 case TargetCXXABI::GenericItanium: 87 case TargetCXXABI::WebAssembly: 88 case TargetCXXABI::XL: 89 return CreateItaniumCXXABI(CGM); 90 case TargetCXXABI::Microsoft: 91 return CreateMicrosoftCXXABI(CGM); 92 } 93 94 llvm_unreachable("invalid C++ ABI kind"); 95 } 96 97 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 98 const PreprocessorOptions &PPO, 99 const CodeGenOptions &CGO, llvm::Module &M, 100 DiagnosticsEngine &diags, 101 CoverageSourceInfo *CoverageInfo) 102 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 103 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 104 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 105 VMContext(M.getContext()), Types(*this), VTables(*this), 106 SanitizerMD(new SanitizerMetadata(*this)) { 107 108 // Initialize the type cache. 109 llvm::LLVMContext &LLVMContext = M.getContext(); 110 VoidTy = llvm::Type::getVoidTy(LLVMContext); 111 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 112 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 113 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 114 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 115 HalfTy = llvm::Type::getHalfTy(LLVMContext); 116 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 117 FloatTy = llvm::Type::getFloatTy(LLVMContext); 118 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 119 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 120 PointerAlignInBytes = 121 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 122 SizeSizeInBytes = 123 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 124 IntAlignInBytes = 125 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 126 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 127 IntPtrTy = llvm::IntegerType::get(LLVMContext, 128 C.getTargetInfo().getMaxPointerWidth()); 129 Int8PtrTy = Int8Ty->getPointerTo(0); 130 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 131 AllocaInt8PtrTy = Int8Ty->getPointerTo( 132 M.getDataLayout().getAllocaAddrSpace()); 133 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 134 135 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 136 137 if (LangOpts.ObjC) 138 createObjCRuntime(); 139 if (LangOpts.OpenCL) 140 createOpenCLRuntime(); 141 if (LangOpts.OpenMP) 142 createOpenMPRuntime(); 143 if (LangOpts.CUDA) 144 createCUDARuntime(); 145 146 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 147 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 148 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 149 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 150 getCXXABI().getMangleContext())); 151 152 // If debug info or coverage generation is enabled, create the CGDebugInfo 153 // object. 154 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 155 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 156 DebugInfo.reset(new CGDebugInfo(*this)); 157 158 Block.GlobalUniqueCount = 0; 159 160 if (C.getLangOpts().ObjC) 161 ObjCData.reset(new ObjCEntrypoints()); 162 163 if (CodeGenOpts.hasProfileClangUse()) { 164 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 165 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 166 if (auto E = ReaderOrErr.takeError()) { 167 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 168 "Could not read profile %0: %1"); 169 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 170 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 171 << EI.message(); 172 }); 173 } else 174 PGOReader = std::move(ReaderOrErr.get()); 175 } 176 177 // If coverage mapping generation is enabled, create the 178 // CoverageMappingModuleGen object. 179 if (CodeGenOpts.CoverageMapping) 180 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 181 } 182 183 CodeGenModule::~CodeGenModule() {} 184 185 void CodeGenModule::createObjCRuntime() { 186 // This is just isGNUFamily(), but we want to force implementors of 187 // new ABIs to decide how best to do this. 188 switch (LangOpts.ObjCRuntime.getKind()) { 189 case ObjCRuntime::GNUstep: 190 case ObjCRuntime::GCC: 191 case ObjCRuntime::ObjFW: 192 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 193 return; 194 195 case ObjCRuntime::FragileMacOSX: 196 case ObjCRuntime::MacOSX: 197 case ObjCRuntime::iOS: 198 case ObjCRuntime::WatchOS: 199 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 200 return; 201 } 202 llvm_unreachable("bad runtime kind"); 203 } 204 205 void CodeGenModule::createOpenCLRuntime() { 206 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 207 } 208 209 void CodeGenModule::createOpenMPRuntime() { 210 // Select a specialized code generation class based on the target, if any. 211 // If it does not exist use the default implementation. 212 switch (getTriple().getArch()) { 213 case llvm::Triple::nvptx: 214 case llvm::Triple::nvptx64: 215 assert(getLangOpts().OpenMPIsDevice && 216 "OpenMP NVPTX is only prepared to deal with device code."); 217 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 218 break; 219 case llvm::Triple::amdgcn: 220 assert(getLangOpts().OpenMPIsDevice && 221 "OpenMP AMDGCN is only prepared to deal with device code."); 222 OpenMPRuntime.reset(new CGOpenMPRuntimeAMDGCN(*this)); 223 break; 224 default: 225 if (LangOpts.OpenMPSimd) 226 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 227 else 228 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 229 break; 230 } 231 } 232 233 void CodeGenModule::createCUDARuntime() { 234 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 235 } 236 237 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 238 Replacements[Name] = C; 239 } 240 241 void CodeGenModule::applyReplacements() { 242 for (auto &I : Replacements) { 243 StringRef MangledName = I.first(); 244 llvm::Constant *Replacement = I.second; 245 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 246 if (!Entry) 247 continue; 248 auto *OldF = cast<llvm::Function>(Entry); 249 auto *NewF = dyn_cast<llvm::Function>(Replacement); 250 if (!NewF) { 251 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 252 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 253 } else { 254 auto *CE = cast<llvm::ConstantExpr>(Replacement); 255 assert(CE->getOpcode() == llvm::Instruction::BitCast || 256 CE->getOpcode() == llvm::Instruction::GetElementPtr); 257 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 258 } 259 } 260 261 // Replace old with new, but keep the old order. 262 OldF->replaceAllUsesWith(Replacement); 263 if (NewF) { 264 NewF->removeFromParent(); 265 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 266 NewF); 267 } 268 OldF->eraseFromParent(); 269 } 270 } 271 272 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 273 GlobalValReplacements.push_back(std::make_pair(GV, C)); 274 } 275 276 void CodeGenModule::applyGlobalValReplacements() { 277 for (auto &I : GlobalValReplacements) { 278 llvm::GlobalValue *GV = I.first; 279 llvm::Constant *C = I.second; 280 281 GV->replaceAllUsesWith(C); 282 GV->eraseFromParent(); 283 } 284 } 285 286 // This is only used in aliases that we created and we know they have a 287 // linear structure. 288 static const llvm::GlobalObject *getAliasedGlobal( 289 const llvm::GlobalIndirectSymbol &GIS) { 290 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 291 const llvm::Constant *C = &GIS; 292 for (;;) { 293 C = C->stripPointerCasts(); 294 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 295 return GO; 296 // stripPointerCasts will not walk over weak aliases. 297 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 298 if (!GIS2) 299 return nullptr; 300 if (!Visited.insert(GIS2).second) 301 return nullptr; 302 C = GIS2->getIndirectSymbol(); 303 } 304 } 305 306 void CodeGenModule::checkAliases() { 307 // Check if the constructed aliases are well formed. It is really unfortunate 308 // that we have to do this in CodeGen, but we only construct mangled names 309 // and aliases during codegen. 310 bool Error = false; 311 DiagnosticsEngine &Diags = getDiags(); 312 for (const GlobalDecl &GD : Aliases) { 313 const auto *D = cast<ValueDecl>(GD.getDecl()); 314 SourceLocation Location; 315 bool IsIFunc = D->hasAttr<IFuncAttr>(); 316 if (const Attr *A = D->getDefiningAttr()) 317 Location = A->getLocation(); 318 else 319 llvm_unreachable("Not an alias or ifunc?"); 320 StringRef MangledName = getMangledName(GD); 321 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 322 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 323 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 324 if (!GV) { 325 Error = true; 326 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 327 } else if (GV->isDeclaration()) { 328 Error = true; 329 Diags.Report(Location, diag::err_alias_to_undefined) 330 << IsIFunc << IsIFunc; 331 } else if (IsIFunc) { 332 // Check resolver function type. 333 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 334 GV->getType()->getPointerElementType()); 335 assert(FTy); 336 if (!FTy->getReturnType()->isPointerTy()) 337 Diags.Report(Location, diag::err_ifunc_resolver_return); 338 } 339 340 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 341 llvm::GlobalValue *AliaseeGV; 342 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 343 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 344 else 345 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 346 347 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 348 StringRef AliasSection = SA->getName(); 349 if (AliasSection != AliaseeGV->getSection()) 350 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 351 << AliasSection << IsIFunc << IsIFunc; 352 } 353 354 // We have to handle alias to weak aliases in here. LLVM itself disallows 355 // this since the object semantics would not match the IL one. For 356 // compatibility with gcc we implement it by just pointing the alias 357 // to its aliasee's aliasee. We also warn, since the user is probably 358 // expecting the link to be weak. 359 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 360 if (GA->isInterposable()) { 361 Diags.Report(Location, diag::warn_alias_to_weak_alias) 362 << GV->getName() << GA->getName() << IsIFunc; 363 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 364 GA->getIndirectSymbol(), Alias->getType()); 365 Alias->setIndirectSymbol(Aliasee); 366 } 367 } 368 } 369 if (!Error) 370 return; 371 372 for (const GlobalDecl &GD : Aliases) { 373 StringRef MangledName = getMangledName(GD); 374 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 375 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 376 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 377 Alias->eraseFromParent(); 378 } 379 } 380 381 void CodeGenModule::clear() { 382 DeferredDeclsToEmit.clear(); 383 if (OpenMPRuntime) 384 OpenMPRuntime->clear(); 385 } 386 387 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 388 StringRef MainFile) { 389 if (!hasDiagnostics()) 390 return; 391 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 392 if (MainFile.empty()) 393 MainFile = "<stdin>"; 394 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 395 } else { 396 if (Mismatched > 0) 397 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 398 399 if (Missing > 0) 400 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 401 } 402 } 403 404 void CodeGenModule::Release() { 405 EmitDeferred(); 406 EmitVTablesOpportunistically(); 407 applyGlobalValReplacements(); 408 applyReplacements(); 409 checkAliases(); 410 emitMultiVersionFunctions(); 411 EmitCXXGlobalInitFunc(); 412 EmitCXXGlobalCleanUpFunc(); 413 registerGlobalDtorsWithAtExit(); 414 EmitCXXThreadLocalInitFunc(); 415 if (ObjCRuntime) 416 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 417 AddGlobalCtor(ObjCInitFunction); 418 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 419 CUDARuntime) { 420 if (llvm::Function *CudaCtorFunction = 421 CUDARuntime->makeModuleCtorFunction()) 422 AddGlobalCtor(CudaCtorFunction); 423 } 424 if (OpenMPRuntime) { 425 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 426 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 427 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 428 } 429 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 430 OpenMPRuntime->clear(); 431 } 432 if (PGOReader) { 433 getModule().setProfileSummary( 434 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 435 llvm::ProfileSummary::PSK_Instr); 436 if (PGOStats.hasDiagnostics()) 437 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 438 } 439 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 440 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 441 EmitGlobalAnnotations(); 442 EmitStaticExternCAliases(); 443 EmitDeferredUnusedCoverageMappings(); 444 if (CoverageMapping) 445 CoverageMapping->emit(); 446 if (CodeGenOpts.SanitizeCfiCrossDso) { 447 CodeGenFunction(*this).EmitCfiCheckFail(); 448 CodeGenFunction(*this).EmitCfiCheckStub(); 449 } 450 emitAtAvailableLinkGuard(); 451 if (Context.getTargetInfo().getTriple().isWasm() && 452 !Context.getTargetInfo().getTriple().isOSEmscripten()) { 453 EmitMainVoidAlias(); 454 } 455 emitLLVMUsed(); 456 if (SanStats) 457 SanStats->finish(); 458 459 if (CodeGenOpts.Autolink && 460 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 461 EmitModuleLinkOptions(); 462 } 463 464 // On ELF we pass the dependent library specifiers directly to the linker 465 // without manipulating them. This is in contrast to other platforms where 466 // they are mapped to a specific linker option by the compiler. This 467 // difference is a result of the greater variety of ELF linkers and the fact 468 // that ELF linkers tend to handle libraries in a more complicated fashion 469 // than on other platforms. This forces us to defer handling the dependent 470 // libs to the linker. 471 // 472 // CUDA/HIP device and host libraries are different. Currently there is no 473 // way to differentiate dependent libraries for host or device. Existing 474 // usage of #pragma comment(lib, *) is intended for host libraries on 475 // Windows. Therefore emit llvm.dependent-libraries only for host. 476 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 477 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 478 for (auto *MD : ELFDependentLibraries) 479 NMD->addOperand(MD); 480 } 481 482 // Record mregparm value now so it is visible through rest of codegen. 483 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 484 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 485 CodeGenOpts.NumRegisterParameters); 486 487 if (CodeGenOpts.DwarfVersion) { 488 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 489 CodeGenOpts.DwarfVersion); 490 } 491 492 if (Context.getLangOpts().SemanticInterposition) 493 // Require various optimization to respect semantic interposition. 494 getModule().setSemanticInterposition(1); 495 else if (Context.getLangOpts().ExplicitNoSemanticInterposition) 496 // Allow dso_local on applicable targets. 497 getModule().setSemanticInterposition(0); 498 499 if (CodeGenOpts.EmitCodeView) { 500 // Indicate that we want CodeView in the metadata. 501 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 502 } 503 if (CodeGenOpts.CodeViewGHash) { 504 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 505 } 506 if (CodeGenOpts.ControlFlowGuard) { 507 // Function ID tables and checks for Control Flow Guard (cfguard=2). 508 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 509 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 510 // Function ID tables for Control Flow Guard (cfguard=1). 511 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 512 } 513 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 514 // We don't support LTO with 2 with different StrictVTablePointers 515 // FIXME: we could support it by stripping all the information introduced 516 // by StrictVTablePointers. 517 518 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 519 520 llvm::Metadata *Ops[2] = { 521 llvm::MDString::get(VMContext, "StrictVTablePointers"), 522 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 523 llvm::Type::getInt32Ty(VMContext), 1))}; 524 525 getModule().addModuleFlag(llvm::Module::Require, 526 "StrictVTablePointersRequirement", 527 llvm::MDNode::get(VMContext, Ops)); 528 } 529 if (getModuleDebugInfo()) 530 // We support a single version in the linked module. The LLVM 531 // parser will drop debug info with a different version number 532 // (and warn about it, too). 533 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 534 llvm::DEBUG_METADATA_VERSION); 535 536 // We need to record the widths of enums and wchar_t, so that we can generate 537 // the correct build attributes in the ARM backend. wchar_size is also used by 538 // TargetLibraryInfo. 539 uint64_t WCharWidth = 540 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 541 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 542 543 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 544 if ( Arch == llvm::Triple::arm 545 || Arch == llvm::Triple::armeb 546 || Arch == llvm::Triple::thumb 547 || Arch == llvm::Triple::thumbeb) { 548 // The minimum width of an enum in bytes 549 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 550 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 551 } 552 553 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 554 StringRef ABIStr = Target.getABI(); 555 llvm::LLVMContext &Ctx = TheModule.getContext(); 556 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 557 llvm::MDString::get(Ctx, ABIStr)); 558 } 559 560 if (CodeGenOpts.SanitizeCfiCrossDso) { 561 // Indicate that we want cross-DSO control flow integrity checks. 562 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 563 } 564 565 if (CodeGenOpts.WholeProgramVTables) { 566 // Indicate whether VFE was enabled for this module, so that the 567 // vcall_visibility metadata added under whole program vtables is handled 568 // appropriately in the optimizer. 569 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 570 CodeGenOpts.VirtualFunctionElimination); 571 } 572 573 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 574 getModule().addModuleFlag(llvm::Module::Override, 575 "CFI Canonical Jump Tables", 576 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 577 } 578 579 if (CodeGenOpts.CFProtectionReturn && 580 Target.checkCFProtectionReturnSupported(getDiags())) { 581 // Indicate that we want to instrument return control flow protection. 582 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 583 1); 584 } 585 586 if (CodeGenOpts.CFProtectionBranch && 587 Target.checkCFProtectionBranchSupported(getDiags())) { 588 // Indicate that we want to instrument branch control flow protection. 589 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 590 1); 591 } 592 593 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 594 Arch == llvm::Triple::aarch64_be) { 595 getModule().addModuleFlag(llvm::Module::Error, 596 "branch-target-enforcement", 597 LangOpts.BranchTargetEnforcement); 598 599 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address", 600 LangOpts.hasSignReturnAddress()); 601 602 getModule().addModuleFlag(llvm::Module::Error, "sign-return-address-all", 603 LangOpts.isSignReturnAddressScopeAll()); 604 605 getModule().addModuleFlag(llvm::Module::Error, 606 "sign-return-address-with-bkey", 607 !LangOpts.isSignReturnAddressWithAKey()); 608 } 609 610 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 611 // Indicate whether __nvvm_reflect should be configured to flush denormal 612 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 613 // property.) 614 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 615 CodeGenOpts.FP32DenormalMode.Output != 616 llvm::DenormalMode::IEEE); 617 } 618 619 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 620 if (LangOpts.OpenCL) { 621 EmitOpenCLMetadata(); 622 // Emit SPIR version. 623 if (getTriple().isSPIR()) { 624 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 625 // opencl.spir.version named metadata. 626 // C++ is backwards compatible with OpenCL v2.0. 627 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 628 llvm::Metadata *SPIRVerElts[] = { 629 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 630 Int32Ty, Version / 100)), 631 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 632 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 633 llvm::NamedMDNode *SPIRVerMD = 634 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 635 llvm::LLVMContext &Ctx = TheModule.getContext(); 636 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 637 } 638 } 639 640 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 641 assert(PLevel < 3 && "Invalid PIC Level"); 642 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 643 if (Context.getLangOpts().PIE) 644 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 645 } 646 647 if (getCodeGenOpts().CodeModel.size() > 0) { 648 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 649 .Case("tiny", llvm::CodeModel::Tiny) 650 .Case("small", llvm::CodeModel::Small) 651 .Case("kernel", llvm::CodeModel::Kernel) 652 .Case("medium", llvm::CodeModel::Medium) 653 .Case("large", llvm::CodeModel::Large) 654 .Default(~0u); 655 if (CM != ~0u) { 656 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 657 getModule().setCodeModel(codeModel); 658 } 659 } 660 661 if (CodeGenOpts.NoPLT) 662 getModule().setRtLibUseGOT(); 663 664 SimplifyPersonality(); 665 666 if (getCodeGenOpts().EmitDeclMetadata) 667 EmitDeclMetadata(); 668 669 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 670 EmitCoverageFile(); 671 672 if (CGDebugInfo *DI = getModuleDebugInfo()) 673 DI->finalize(); 674 675 if (getCodeGenOpts().EmitVersionIdentMetadata) 676 EmitVersionIdentMetadata(); 677 678 if (!getCodeGenOpts().RecordCommandLine.empty()) 679 EmitCommandLineMetadata(); 680 681 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 682 683 EmitBackendOptionsMetadata(getCodeGenOpts()); 684 } 685 686 void CodeGenModule::EmitOpenCLMetadata() { 687 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 688 // opencl.ocl.version named metadata node. 689 // C++ is backwards compatible with OpenCL v2.0. 690 // FIXME: We might need to add CXX version at some point too? 691 auto Version = LangOpts.OpenCLCPlusPlus ? 200 : LangOpts.OpenCLVersion; 692 llvm::Metadata *OCLVerElts[] = { 693 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 694 Int32Ty, Version / 100)), 695 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 696 Int32Ty, (Version % 100) / 10))}; 697 llvm::NamedMDNode *OCLVerMD = 698 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 699 llvm::LLVMContext &Ctx = TheModule.getContext(); 700 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 701 } 702 703 void CodeGenModule::EmitBackendOptionsMetadata( 704 const CodeGenOptions CodeGenOpts) { 705 switch (getTriple().getArch()) { 706 default: 707 break; 708 case llvm::Triple::riscv32: 709 case llvm::Triple::riscv64: 710 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 711 CodeGenOpts.SmallDataLimit); 712 break; 713 } 714 } 715 716 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 717 // Make sure that this type is translated. 718 Types.UpdateCompletedType(TD); 719 } 720 721 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 722 // Make sure that this type is translated. 723 Types.RefreshTypeCacheForClass(RD); 724 } 725 726 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 727 if (!TBAA) 728 return nullptr; 729 return TBAA->getTypeInfo(QTy); 730 } 731 732 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 733 if (!TBAA) 734 return TBAAAccessInfo(); 735 if (getLangOpts().CUDAIsDevice) { 736 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 737 // access info. 738 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 739 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 740 nullptr) 741 return TBAAAccessInfo(); 742 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 743 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 744 nullptr) 745 return TBAAAccessInfo(); 746 } 747 } 748 return TBAA->getAccessInfo(AccessType); 749 } 750 751 TBAAAccessInfo 752 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 753 if (!TBAA) 754 return TBAAAccessInfo(); 755 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 756 } 757 758 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 759 if (!TBAA) 760 return nullptr; 761 return TBAA->getTBAAStructInfo(QTy); 762 } 763 764 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 765 if (!TBAA) 766 return nullptr; 767 return TBAA->getBaseTypeInfo(QTy); 768 } 769 770 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 771 if (!TBAA) 772 return nullptr; 773 return TBAA->getAccessTagInfo(Info); 774 } 775 776 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 777 TBAAAccessInfo TargetInfo) { 778 if (!TBAA) 779 return TBAAAccessInfo(); 780 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 781 } 782 783 TBAAAccessInfo 784 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 785 TBAAAccessInfo InfoB) { 786 if (!TBAA) 787 return TBAAAccessInfo(); 788 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 789 } 790 791 TBAAAccessInfo 792 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 793 TBAAAccessInfo SrcInfo) { 794 if (!TBAA) 795 return TBAAAccessInfo(); 796 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 797 } 798 799 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 800 TBAAAccessInfo TBAAInfo) { 801 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 802 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 803 } 804 805 void CodeGenModule::DecorateInstructionWithInvariantGroup( 806 llvm::Instruction *I, const CXXRecordDecl *RD) { 807 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 808 llvm::MDNode::get(getLLVMContext(), {})); 809 } 810 811 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 812 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 813 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 814 } 815 816 /// ErrorUnsupported - Print out an error that codegen doesn't support the 817 /// specified stmt yet. 818 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 819 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 820 "cannot compile this %0 yet"); 821 std::string Msg = Type; 822 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 823 << Msg << S->getSourceRange(); 824 } 825 826 /// ErrorUnsupported - Print out an error that codegen doesn't support the 827 /// specified decl yet. 828 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 829 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 830 "cannot compile this %0 yet"); 831 std::string Msg = Type; 832 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 833 } 834 835 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 836 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 837 } 838 839 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 840 const NamedDecl *D) const { 841 if (GV->hasDLLImportStorageClass()) 842 return; 843 // Internal definitions always have default visibility. 844 if (GV->hasLocalLinkage()) { 845 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 846 return; 847 } 848 if (!D) 849 return; 850 // Set visibility for definitions, and for declarations if requested globally 851 // or set explicitly. 852 LinkageInfo LV = D->getLinkageAndVisibility(); 853 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 854 !GV->isDeclarationForLinker()) 855 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 856 } 857 858 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 859 llvm::GlobalValue *GV) { 860 if (GV->hasLocalLinkage()) 861 return true; 862 863 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 864 return true; 865 866 // DLLImport explicitly marks the GV as external. 867 if (GV->hasDLLImportStorageClass()) 868 return false; 869 870 const llvm::Triple &TT = CGM.getTriple(); 871 if (TT.isWindowsGNUEnvironment()) { 872 // In MinGW, variables without DLLImport can still be automatically 873 // imported from a DLL by the linker; don't mark variables that 874 // potentially could come from another DLL as DSO local. 875 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 876 !GV->isThreadLocal()) 877 return false; 878 } 879 880 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 881 // remain unresolved in the link, they can be resolved to zero, which is 882 // outside the current DSO. 883 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 884 return false; 885 886 // Every other GV is local on COFF. 887 // Make an exception for windows OS in the triple: Some firmware builds use 888 // *-win32-macho triples. This (accidentally?) produced windows relocations 889 // without GOT tables in older clang versions; Keep this behaviour. 890 // FIXME: even thread local variables? 891 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 892 return true; 893 894 // Only handle COFF and ELF for now. 895 if (!TT.isOSBinFormatELF()) 896 return false; 897 898 // If this is not an executable, don't assume anything is local. 899 const auto &CGOpts = CGM.getCodeGenOpts(); 900 llvm::Reloc::Model RM = CGOpts.RelocationModel; 901 const auto &LOpts = CGM.getLangOpts(); 902 if (RM != llvm::Reloc::Static && !LOpts.PIE) 903 return false; 904 905 // A definition cannot be preempted from an executable. 906 if (!GV->isDeclarationForLinker()) 907 return true; 908 909 // Most PIC code sequences that assume that a symbol is local cannot produce a 910 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 911 // depended, it seems worth it to handle it here. 912 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 913 return false; 914 915 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 916 llvm::Triple::ArchType Arch = TT.getArch(); 917 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 918 Arch == llvm::Triple::ppc64le) 919 return false; 920 921 // If we can use copy relocations we can assume it is local. 922 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 923 if (!Var->isThreadLocal() && 924 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 925 return true; 926 927 // If we can use a plt entry as the symbol address we can assume it 928 // is local. 929 // FIXME: This should work for PIE, but the gold linker doesn't support it. 930 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 931 return true; 932 933 // Otherwise don't assume it is local. 934 return false; 935 } 936 937 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 938 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 939 } 940 941 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 942 GlobalDecl GD) const { 943 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 944 // C++ destructors have a few C++ ABI specific special cases. 945 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 946 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 947 return; 948 } 949 setDLLImportDLLExport(GV, D); 950 } 951 952 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 953 const NamedDecl *D) const { 954 if (D && D->isExternallyVisible()) { 955 if (D->hasAttr<DLLImportAttr>()) 956 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 957 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 958 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 959 } 960 } 961 962 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 963 GlobalDecl GD) const { 964 setDLLImportDLLExport(GV, GD); 965 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 966 } 967 968 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 969 const NamedDecl *D) const { 970 setDLLImportDLLExport(GV, D); 971 setGVPropertiesAux(GV, D); 972 } 973 974 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 975 const NamedDecl *D) const { 976 setGlobalVisibility(GV, D); 977 setDSOLocal(GV); 978 GV->setPartition(CodeGenOpts.SymbolPartition); 979 } 980 981 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 982 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 983 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 984 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 985 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 986 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 987 } 988 989 llvm::GlobalVariable::ThreadLocalMode 990 CodeGenModule::GetDefaultLLVMTLSModel() const { 991 switch (CodeGenOpts.getDefaultTLSModel()) { 992 case CodeGenOptions::GeneralDynamicTLSModel: 993 return llvm::GlobalVariable::GeneralDynamicTLSModel; 994 case CodeGenOptions::LocalDynamicTLSModel: 995 return llvm::GlobalVariable::LocalDynamicTLSModel; 996 case CodeGenOptions::InitialExecTLSModel: 997 return llvm::GlobalVariable::InitialExecTLSModel; 998 case CodeGenOptions::LocalExecTLSModel: 999 return llvm::GlobalVariable::LocalExecTLSModel; 1000 } 1001 llvm_unreachable("Invalid TLS model!"); 1002 } 1003 1004 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1005 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1006 1007 llvm::GlobalValue::ThreadLocalMode TLM; 1008 TLM = GetDefaultLLVMTLSModel(); 1009 1010 // Override the TLS model if it is explicitly specified. 1011 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1012 TLM = GetLLVMTLSModel(Attr->getModel()); 1013 } 1014 1015 GV->setThreadLocalMode(TLM); 1016 } 1017 1018 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1019 StringRef Name) { 1020 const TargetInfo &Target = CGM.getTarget(); 1021 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1022 } 1023 1024 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1025 const CPUSpecificAttr *Attr, 1026 unsigned CPUIndex, 1027 raw_ostream &Out) { 1028 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1029 // supported. 1030 if (Attr) 1031 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1032 else if (CGM.getTarget().supportsIFunc()) 1033 Out << ".resolver"; 1034 } 1035 1036 static void AppendTargetMangling(const CodeGenModule &CGM, 1037 const TargetAttr *Attr, raw_ostream &Out) { 1038 if (Attr->isDefaultVersion()) 1039 return; 1040 1041 Out << '.'; 1042 const TargetInfo &Target = CGM.getTarget(); 1043 ParsedTargetAttr Info = 1044 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 1045 // Multiversioning doesn't allow "no-${feature}", so we can 1046 // only have "+" prefixes here. 1047 assert(LHS.startswith("+") && RHS.startswith("+") && 1048 "Features should always have a prefix."); 1049 return Target.multiVersionSortPriority(LHS.substr(1)) > 1050 Target.multiVersionSortPriority(RHS.substr(1)); 1051 }); 1052 1053 bool IsFirst = true; 1054 1055 if (!Info.Architecture.empty()) { 1056 IsFirst = false; 1057 Out << "arch_" << Info.Architecture; 1058 } 1059 1060 for (StringRef Feat : Info.Features) { 1061 if (!IsFirst) 1062 Out << '_'; 1063 IsFirst = false; 1064 Out << Feat.substr(1); 1065 } 1066 } 1067 1068 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 1069 const NamedDecl *ND, 1070 bool OmitMultiVersionMangling = false) { 1071 SmallString<256> Buffer; 1072 llvm::raw_svector_ostream Out(Buffer); 1073 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1074 if (MC.shouldMangleDeclName(ND)) 1075 MC.mangleName(GD.getWithDecl(ND), Out); 1076 else { 1077 IdentifierInfo *II = ND->getIdentifier(); 1078 assert(II && "Attempt to mangle unnamed decl."); 1079 const auto *FD = dyn_cast<FunctionDecl>(ND); 1080 1081 if (FD && 1082 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1083 Out << "__regcall3__" << II->getName(); 1084 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1085 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1086 Out << "__device_stub__" << II->getName(); 1087 } else { 1088 Out << II->getName(); 1089 } 1090 } 1091 1092 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1093 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1094 switch (FD->getMultiVersionKind()) { 1095 case MultiVersionKind::CPUDispatch: 1096 case MultiVersionKind::CPUSpecific: 1097 AppendCPUSpecificCPUDispatchMangling(CGM, 1098 FD->getAttr<CPUSpecificAttr>(), 1099 GD.getMultiVersionIndex(), Out); 1100 break; 1101 case MultiVersionKind::Target: 1102 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1103 break; 1104 case MultiVersionKind::None: 1105 llvm_unreachable("None multiversion type isn't valid here"); 1106 } 1107 } 1108 1109 return std::string(Out.str()); 1110 } 1111 1112 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1113 const FunctionDecl *FD) { 1114 if (!FD->isMultiVersion()) 1115 return; 1116 1117 // Get the name of what this would be without the 'target' attribute. This 1118 // allows us to lookup the version that was emitted when this wasn't a 1119 // multiversion function. 1120 std::string NonTargetName = 1121 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1122 GlobalDecl OtherGD; 1123 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1124 assert(OtherGD.getCanonicalDecl() 1125 .getDecl() 1126 ->getAsFunction() 1127 ->isMultiVersion() && 1128 "Other GD should now be a multiversioned function"); 1129 // OtherFD is the version of this function that was mangled BEFORE 1130 // becoming a MultiVersion function. It potentially needs to be updated. 1131 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1132 .getDecl() 1133 ->getAsFunction() 1134 ->getMostRecentDecl(); 1135 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1136 // This is so that if the initial version was already the 'default' 1137 // version, we don't try to update it. 1138 if (OtherName != NonTargetName) { 1139 // Remove instead of erase, since others may have stored the StringRef 1140 // to this. 1141 const auto ExistingRecord = Manglings.find(NonTargetName); 1142 if (ExistingRecord != std::end(Manglings)) 1143 Manglings.remove(&(*ExistingRecord)); 1144 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1145 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 1146 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1147 Entry->setName(OtherName); 1148 } 1149 } 1150 } 1151 1152 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1153 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1154 1155 // Some ABIs don't have constructor variants. Make sure that base and 1156 // complete constructors get mangled the same. 1157 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1158 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1159 CXXCtorType OrigCtorType = GD.getCtorType(); 1160 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1161 if (OrigCtorType == Ctor_Base) 1162 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1163 } 1164 } 1165 1166 auto FoundName = MangledDeclNames.find(CanonicalGD); 1167 if (FoundName != MangledDeclNames.end()) 1168 return FoundName->second; 1169 1170 // Keep the first result in the case of a mangling collision. 1171 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1172 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1173 1174 // Ensure either we have different ABIs between host and device compilations, 1175 // says host compilation following MSVC ABI but device compilation follows 1176 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1177 // mangling should be the same after name stubbing. The later checking is 1178 // very important as the device kernel name being mangled in host-compilation 1179 // is used to resolve the device binaries to be executed. Inconsistent naming 1180 // result in undefined behavior. Even though we cannot check that naming 1181 // directly between host- and device-compilations, the host- and 1182 // device-mangling in host compilation could help catching certain ones. 1183 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1184 getLangOpts().CUDAIsDevice || 1185 (getContext().getAuxTargetInfo() && 1186 (getContext().getAuxTargetInfo()->getCXXABI() != 1187 getContext().getTargetInfo().getCXXABI())) || 1188 getCUDARuntime().getDeviceSideName(ND) == 1189 getMangledNameImpl( 1190 *this, 1191 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1192 ND)); 1193 1194 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1195 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1196 } 1197 1198 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1199 const BlockDecl *BD) { 1200 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1201 const Decl *D = GD.getDecl(); 1202 1203 SmallString<256> Buffer; 1204 llvm::raw_svector_ostream Out(Buffer); 1205 if (!D) 1206 MangleCtx.mangleGlobalBlock(BD, 1207 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1208 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1209 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1210 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1211 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1212 else 1213 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1214 1215 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1216 return Result.first->first(); 1217 } 1218 1219 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1220 return getModule().getNamedValue(Name); 1221 } 1222 1223 /// AddGlobalCtor - Add a function to the list that will be called before 1224 /// main() runs. 1225 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1226 llvm::Constant *AssociatedData) { 1227 // FIXME: Type coercion of void()* types. 1228 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1229 } 1230 1231 /// AddGlobalDtor - Add a function to the list that will be called 1232 /// when the module is unloaded. 1233 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1234 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1235 if (getCXXABI().useSinitAndSterm()) 1236 llvm::report_fatal_error( 1237 "register global dtors with atexit() is not supported yet"); 1238 DtorsUsingAtExit[Priority].push_back(Dtor); 1239 return; 1240 } 1241 1242 // FIXME: Type coercion of void()* types. 1243 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1244 } 1245 1246 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1247 if (Fns.empty()) return; 1248 1249 // Ctor function type is void()*. 1250 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1251 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1252 TheModule.getDataLayout().getProgramAddressSpace()); 1253 1254 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1255 llvm::StructType *CtorStructTy = llvm::StructType::get( 1256 Int32Ty, CtorPFTy, VoidPtrTy); 1257 1258 // Construct the constructor and destructor arrays. 1259 ConstantInitBuilder builder(*this); 1260 auto ctors = builder.beginArray(CtorStructTy); 1261 for (const auto &I : Fns) { 1262 auto ctor = ctors.beginStruct(CtorStructTy); 1263 ctor.addInt(Int32Ty, I.Priority); 1264 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1265 if (I.AssociatedData) 1266 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1267 else 1268 ctor.addNullPointer(VoidPtrTy); 1269 ctor.finishAndAddTo(ctors); 1270 } 1271 1272 auto list = 1273 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1274 /*constant*/ false, 1275 llvm::GlobalValue::AppendingLinkage); 1276 1277 // The LTO linker doesn't seem to like it when we set an alignment 1278 // on appending variables. Take it off as a workaround. 1279 list->setAlignment(llvm::None); 1280 1281 Fns.clear(); 1282 } 1283 1284 llvm::GlobalValue::LinkageTypes 1285 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1286 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1287 1288 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1289 1290 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1291 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1292 1293 if (isa<CXXConstructorDecl>(D) && 1294 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1295 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1296 // Our approach to inheriting constructors is fundamentally different from 1297 // that used by the MS ABI, so keep our inheriting constructor thunks 1298 // internal rather than trying to pick an unambiguous mangling for them. 1299 return llvm::GlobalValue::InternalLinkage; 1300 } 1301 1302 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1303 } 1304 1305 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1306 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1307 if (!MDS) return nullptr; 1308 1309 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1310 } 1311 1312 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1313 const CGFunctionInfo &Info, 1314 llvm::Function *F) { 1315 unsigned CallingConv; 1316 llvm::AttributeList PAL; 1317 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, false); 1318 F->setAttributes(PAL); 1319 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1320 } 1321 1322 static void removeImageAccessQualifier(std::string& TyName) { 1323 std::string ReadOnlyQual("__read_only"); 1324 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1325 if (ReadOnlyPos != std::string::npos) 1326 // "+ 1" for the space after access qualifier. 1327 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1328 else { 1329 std::string WriteOnlyQual("__write_only"); 1330 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1331 if (WriteOnlyPos != std::string::npos) 1332 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1333 else { 1334 std::string ReadWriteQual("__read_write"); 1335 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1336 if (ReadWritePos != std::string::npos) 1337 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1338 } 1339 } 1340 } 1341 1342 // Returns the address space id that should be produced to the 1343 // kernel_arg_addr_space metadata. This is always fixed to the ids 1344 // as specified in the SPIR 2.0 specification in order to differentiate 1345 // for example in clGetKernelArgInfo() implementation between the address 1346 // spaces with targets without unique mapping to the OpenCL address spaces 1347 // (basically all single AS CPUs). 1348 static unsigned ArgInfoAddressSpace(LangAS AS) { 1349 switch (AS) { 1350 case LangAS::opencl_global: 1351 return 1; 1352 case LangAS::opencl_constant: 1353 return 2; 1354 case LangAS::opencl_local: 1355 return 3; 1356 case LangAS::opencl_generic: 1357 return 4; // Not in SPIR 2.0 specs. 1358 case LangAS::opencl_global_device: 1359 return 5; 1360 case LangAS::opencl_global_host: 1361 return 6; 1362 default: 1363 return 0; // Assume private. 1364 } 1365 } 1366 1367 void CodeGenModule::GenOpenCLArgMetadata(llvm::Function *Fn, 1368 const FunctionDecl *FD, 1369 CodeGenFunction *CGF) { 1370 assert(((FD && CGF) || (!FD && !CGF)) && 1371 "Incorrect use - FD and CGF should either be both null or not!"); 1372 // Create MDNodes that represent the kernel arg metadata. 1373 // Each MDNode is a list in the form of "key", N number of values which is 1374 // the same number of values as their are kernel arguments. 1375 1376 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1377 1378 // MDNode for the kernel argument address space qualifiers. 1379 SmallVector<llvm::Metadata *, 8> addressQuals; 1380 1381 // MDNode for the kernel argument access qualifiers (images only). 1382 SmallVector<llvm::Metadata *, 8> accessQuals; 1383 1384 // MDNode for the kernel argument type names. 1385 SmallVector<llvm::Metadata *, 8> argTypeNames; 1386 1387 // MDNode for the kernel argument base type names. 1388 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1389 1390 // MDNode for the kernel argument type qualifiers. 1391 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1392 1393 // MDNode for the kernel argument names. 1394 SmallVector<llvm::Metadata *, 8> argNames; 1395 1396 if (FD && CGF) 1397 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1398 const ParmVarDecl *parm = FD->getParamDecl(i); 1399 QualType ty = parm->getType(); 1400 std::string typeQuals; 1401 1402 if (ty->isPointerType()) { 1403 QualType pointeeTy = ty->getPointeeType(); 1404 1405 // Get address qualifier. 1406 addressQuals.push_back( 1407 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1408 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1409 1410 // Get argument type name. 1411 std::string typeName = 1412 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 1413 1414 // Turn "unsigned type" to "utype" 1415 std::string::size_type pos = typeName.find("unsigned"); 1416 if (pointeeTy.isCanonical() && pos != std::string::npos) 1417 typeName.erase(pos + 1, 8); 1418 1419 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1420 1421 std::string baseTypeName = 1422 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 1423 Policy) + 1424 "*"; 1425 1426 // Turn "unsigned type" to "utype" 1427 pos = baseTypeName.find("unsigned"); 1428 if (pos != std::string::npos) 1429 baseTypeName.erase(pos + 1, 8); 1430 1431 argBaseTypeNames.push_back( 1432 llvm::MDString::get(VMContext, baseTypeName)); 1433 1434 // Get argument type qualifiers: 1435 if (ty.isRestrictQualified()) 1436 typeQuals = "restrict"; 1437 if (pointeeTy.isConstQualified() || 1438 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1439 typeQuals += typeQuals.empty() ? "const" : " const"; 1440 if (pointeeTy.isVolatileQualified()) 1441 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1442 } else { 1443 uint32_t AddrSpc = 0; 1444 bool isPipe = ty->isPipeType(); 1445 if (ty->isImageType() || isPipe) 1446 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1447 1448 addressQuals.push_back( 1449 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1450 1451 // Get argument type name. 1452 std::string typeName; 1453 if (isPipe) 1454 typeName = ty.getCanonicalType() 1455 ->castAs<PipeType>() 1456 ->getElementType() 1457 .getAsString(Policy); 1458 else 1459 typeName = ty.getUnqualifiedType().getAsString(Policy); 1460 1461 // Turn "unsigned type" to "utype" 1462 std::string::size_type pos = typeName.find("unsigned"); 1463 if (ty.isCanonical() && pos != std::string::npos) 1464 typeName.erase(pos + 1, 8); 1465 1466 std::string baseTypeName; 1467 if (isPipe) 1468 baseTypeName = ty.getCanonicalType() 1469 ->castAs<PipeType>() 1470 ->getElementType() 1471 .getCanonicalType() 1472 .getAsString(Policy); 1473 else 1474 baseTypeName = 1475 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 1476 1477 // Remove access qualifiers on images 1478 // (as they are inseparable from type in clang implementation, 1479 // but OpenCL spec provides a special query to get access qualifier 1480 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1481 if (ty->isImageType()) { 1482 removeImageAccessQualifier(typeName); 1483 removeImageAccessQualifier(baseTypeName); 1484 } 1485 1486 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1487 1488 // Turn "unsigned type" to "utype" 1489 pos = baseTypeName.find("unsigned"); 1490 if (pos != std::string::npos) 1491 baseTypeName.erase(pos + 1, 8); 1492 1493 argBaseTypeNames.push_back( 1494 llvm::MDString::get(VMContext, baseTypeName)); 1495 1496 if (isPipe) 1497 typeQuals = "pipe"; 1498 } 1499 1500 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1501 1502 // Get image and pipe access qualifier: 1503 if (ty->isImageType() || ty->isPipeType()) { 1504 const Decl *PDecl = parm; 1505 if (auto *TD = dyn_cast<TypedefType>(ty)) 1506 PDecl = TD->getDecl(); 1507 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1508 if (A && A->isWriteOnly()) 1509 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1510 else if (A && A->isReadWrite()) 1511 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1512 else 1513 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1514 } else 1515 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1516 1517 // Get argument name. 1518 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1519 } 1520 1521 Fn->setMetadata("kernel_arg_addr_space", 1522 llvm::MDNode::get(VMContext, addressQuals)); 1523 Fn->setMetadata("kernel_arg_access_qual", 1524 llvm::MDNode::get(VMContext, accessQuals)); 1525 Fn->setMetadata("kernel_arg_type", 1526 llvm::MDNode::get(VMContext, argTypeNames)); 1527 Fn->setMetadata("kernel_arg_base_type", 1528 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1529 Fn->setMetadata("kernel_arg_type_qual", 1530 llvm::MDNode::get(VMContext, argTypeQuals)); 1531 if (getCodeGenOpts().EmitOpenCLArgMetadata) 1532 Fn->setMetadata("kernel_arg_name", 1533 llvm::MDNode::get(VMContext, argNames)); 1534 } 1535 1536 /// Determines whether the language options require us to model 1537 /// unwind exceptions. We treat -fexceptions as mandating this 1538 /// except under the fragile ObjC ABI with only ObjC exceptions 1539 /// enabled. This means, for example, that C with -fexceptions 1540 /// enables this. 1541 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1542 // If exceptions are completely disabled, obviously this is false. 1543 if (!LangOpts.Exceptions) return false; 1544 1545 // If C++ exceptions are enabled, this is true. 1546 if (LangOpts.CXXExceptions) return true; 1547 1548 // If ObjC exceptions are enabled, this depends on the ABI. 1549 if (LangOpts.ObjCExceptions) { 1550 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1551 } 1552 1553 return true; 1554 } 1555 1556 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1557 const CXXMethodDecl *MD) { 1558 // Check that the type metadata can ever actually be used by a call. 1559 if (!CGM.getCodeGenOpts().LTOUnit || 1560 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1561 return false; 1562 1563 // Only functions whose address can be taken with a member function pointer 1564 // need this sort of type metadata. 1565 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1566 !isa<CXXDestructorDecl>(MD); 1567 } 1568 1569 std::vector<const CXXRecordDecl *> 1570 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1571 llvm::SetVector<const CXXRecordDecl *> MostBases; 1572 1573 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1574 CollectMostBases = [&](const CXXRecordDecl *RD) { 1575 if (RD->getNumBases() == 0) 1576 MostBases.insert(RD); 1577 for (const CXXBaseSpecifier &B : RD->bases()) 1578 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1579 }; 1580 CollectMostBases(RD); 1581 return MostBases.takeVector(); 1582 } 1583 1584 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1585 llvm::Function *F) { 1586 llvm::AttrBuilder B; 1587 1588 if (CodeGenOpts.UnwindTables) 1589 B.addAttribute(llvm::Attribute::UWTable); 1590 1591 if (CodeGenOpts.StackClashProtector) 1592 B.addAttribute("probe-stack", "inline-asm"); 1593 1594 if (!hasUnwindExceptions(LangOpts)) 1595 B.addAttribute(llvm::Attribute::NoUnwind); 1596 1597 if (D && D->hasAttr<NoStackProtectorAttr>()) 1598 B.addAttribute(llvm::Attribute::NoStackProtect); 1599 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1600 B.addAttribute(llvm::Attribute::StackProtect); 1601 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1602 B.addAttribute(llvm::Attribute::StackProtectStrong); 1603 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1604 B.addAttribute(llvm::Attribute::StackProtectReq); 1605 1606 if (!D) { 1607 // If we don't have a declaration to control inlining, the function isn't 1608 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1609 // disabled, mark the function as noinline. 1610 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1611 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1612 B.addAttribute(llvm::Attribute::NoInline); 1613 1614 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1615 return; 1616 } 1617 1618 // Track whether we need to add the optnone LLVM attribute, 1619 // starting with the default for this optimization level. 1620 bool ShouldAddOptNone = 1621 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1622 // We can't add optnone in the following cases, it won't pass the verifier. 1623 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1624 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1625 1626 // Add optnone, but do so only if the function isn't always_inline. 1627 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 1628 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1629 B.addAttribute(llvm::Attribute::OptimizeNone); 1630 1631 // OptimizeNone implies noinline; we should not be inlining such functions. 1632 B.addAttribute(llvm::Attribute::NoInline); 1633 1634 // We still need to handle naked functions even though optnone subsumes 1635 // much of their semantics. 1636 if (D->hasAttr<NakedAttr>()) 1637 B.addAttribute(llvm::Attribute::Naked); 1638 1639 // OptimizeNone wins over OptimizeForSize and MinSize. 1640 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1641 F->removeFnAttr(llvm::Attribute::MinSize); 1642 } else if (D->hasAttr<NakedAttr>()) { 1643 // Naked implies noinline: we should not be inlining such functions. 1644 B.addAttribute(llvm::Attribute::Naked); 1645 B.addAttribute(llvm::Attribute::NoInline); 1646 } else if (D->hasAttr<NoDuplicateAttr>()) { 1647 B.addAttribute(llvm::Attribute::NoDuplicate); 1648 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1649 // Add noinline if the function isn't always_inline. 1650 B.addAttribute(llvm::Attribute::NoInline); 1651 } else if (D->hasAttr<AlwaysInlineAttr>() && 1652 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1653 // (noinline wins over always_inline, and we can't specify both in IR) 1654 B.addAttribute(llvm::Attribute::AlwaysInline); 1655 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1656 // If we're not inlining, then force everything that isn't always_inline to 1657 // carry an explicit noinline attribute. 1658 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1659 B.addAttribute(llvm::Attribute::NoInline); 1660 } else { 1661 // Otherwise, propagate the inline hint attribute and potentially use its 1662 // absence to mark things as noinline. 1663 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1664 // Search function and template pattern redeclarations for inline. 1665 auto CheckForInline = [](const FunctionDecl *FD) { 1666 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 1667 return Redecl->isInlineSpecified(); 1668 }; 1669 if (any_of(FD->redecls(), CheckRedeclForInline)) 1670 return true; 1671 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 1672 if (!Pattern) 1673 return false; 1674 return any_of(Pattern->redecls(), CheckRedeclForInline); 1675 }; 1676 if (CheckForInline(FD)) { 1677 B.addAttribute(llvm::Attribute::InlineHint); 1678 } else if (CodeGenOpts.getInlining() == 1679 CodeGenOptions::OnlyHintInlining && 1680 !FD->isInlined() && 1681 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1682 B.addAttribute(llvm::Attribute::NoInline); 1683 } 1684 } 1685 } 1686 1687 // Add other optimization related attributes if we are optimizing this 1688 // function. 1689 if (!D->hasAttr<OptimizeNoneAttr>()) { 1690 if (D->hasAttr<ColdAttr>()) { 1691 if (!ShouldAddOptNone) 1692 B.addAttribute(llvm::Attribute::OptimizeForSize); 1693 B.addAttribute(llvm::Attribute::Cold); 1694 } 1695 1696 if (D->hasAttr<MinSizeAttr>()) 1697 B.addAttribute(llvm::Attribute::MinSize); 1698 } 1699 1700 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1701 1702 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1703 if (alignment) 1704 F->setAlignment(llvm::Align(alignment)); 1705 1706 if (!D->hasAttr<AlignedAttr>()) 1707 if (LangOpts.FunctionAlignment) 1708 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 1709 1710 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1711 // reserve a bit for differentiating between virtual and non-virtual member 1712 // functions. If the current target's C++ ABI requires this and this is a 1713 // member function, set its alignment accordingly. 1714 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1715 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1716 F->setAlignment(llvm::Align(2)); 1717 } 1718 1719 // In the cross-dso CFI mode with canonical jump tables, we want !type 1720 // attributes on definitions only. 1721 if (CodeGenOpts.SanitizeCfiCrossDso && 1722 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 1723 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1724 // Skip available_externally functions. They won't be codegen'ed in the 1725 // current module anyway. 1726 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 1727 CreateFunctionTypeMetadataForIcall(FD, F); 1728 } 1729 } 1730 1731 // Emit type metadata on member functions for member function pointer checks. 1732 // These are only ever necessary on definitions; we're guaranteed that the 1733 // definition will be present in the LTO unit as a result of LTO visibility. 1734 auto *MD = dyn_cast<CXXMethodDecl>(D); 1735 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1736 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1737 llvm::Metadata *Id = 1738 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1739 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1740 F->addTypeMetadata(0, Id); 1741 } 1742 } 1743 } 1744 1745 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 1746 llvm::Function *F) { 1747 if (D->hasAttr<StrictFPAttr>()) { 1748 llvm::AttrBuilder FuncAttrs; 1749 FuncAttrs.addAttribute("strictfp"); 1750 F->addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1751 } 1752 } 1753 1754 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1755 const Decl *D = GD.getDecl(); 1756 if (dyn_cast_or_null<NamedDecl>(D)) 1757 setGVProperties(GV, GD); 1758 else 1759 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1760 1761 if (D && D->hasAttr<UsedAttr>()) 1762 addUsedGlobal(GV); 1763 1764 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 1765 const auto *VD = cast<VarDecl>(D); 1766 if (VD->getType().isConstQualified() && 1767 VD->getStorageDuration() == SD_Static) 1768 addUsedGlobal(GV); 1769 } 1770 } 1771 1772 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 1773 llvm::AttrBuilder &Attrs) { 1774 // Add target-cpu and target-features attributes to functions. If 1775 // we have a decl for the function and it has a target attribute then 1776 // parse that and add it to the feature set. 1777 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1778 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 1779 std::vector<std::string> Features; 1780 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 1781 FD = FD ? FD->getMostRecentDecl() : FD; 1782 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1783 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1784 bool AddedAttr = false; 1785 if (TD || SD) { 1786 llvm::StringMap<bool> FeatureMap; 1787 getContext().getFunctionFeatureMap(FeatureMap, GD); 1788 1789 // Produce the canonical string for this set of features. 1790 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1791 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1792 1793 // Now add the target-cpu and target-features to the function. 1794 // While we populated the feature map above, we still need to 1795 // get and parse the target attribute so we can get the cpu for 1796 // the function. 1797 if (TD) { 1798 ParsedTargetAttr ParsedAttr = TD->parse(); 1799 if (!ParsedAttr.Architecture.empty() && 1800 getTarget().isValidCPUName(ParsedAttr.Architecture)) { 1801 TargetCPU = ParsedAttr.Architecture; 1802 TuneCPU = ""; // Clear the tune CPU. 1803 } 1804 if (!ParsedAttr.Tune.empty() && 1805 getTarget().isValidCPUName(ParsedAttr.Tune)) 1806 TuneCPU = ParsedAttr.Tune; 1807 } 1808 } else { 1809 // Otherwise just add the existing target cpu and target features to the 1810 // function. 1811 Features = getTarget().getTargetOpts().Features; 1812 } 1813 1814 if (!TargetCPU.empty()) { 1815 Attrs.addAttribute("target-cpu", TargetCPU); 1816 AddedAttr = true; 1817 } 1818 if (!TuneCPU.empty()) { 1819 Attrs.addAttribute("tune-cpu", TuneCPU); 1820 AddedAttr = true; 1821 } 1822 if (!Features.empty()) { 1823 llvm::sort(Features); 1824 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1825 AddedAttr = true; 1826 } 1827 1828 return AddedAttr; 1829 } 1830 1831 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1832 llvm::GlobalObject *GO) { 1833 const Decl *D = GD.getDecl(); 1834 SetCommonAttributes(GD, GO); 1835 1836 if (D) { 1837 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1838 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1839 GV->addAttribute("bss-section", SA->getName()); 1840 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1841 GV->addAttribute("data-section", SA->getName()); 1842 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1843 GV->addAttribute("rodata-section", SA->getName()); 1844 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 1845 GV->addAttribute("relro-section", SA->getName()); 1846 } 1847 1848 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1849 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1850 if (!D->getAttr<SectionAttr>()) 1851 F->addFnAttr("implicit-section-name", SA->getName()); 1852 1853 llvm::AttrBuilder Attrs; 1854 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 1855 // We know that GetCPUAndFeaturesAttributes will always have the 1856 // newest set, since it has the newest possible FunctionDecl, so the 1857 // new ones should replace the old. 1858 llvm::AttrBuilder RemoveAttrs; 1859 RemoveAttrs.addAttribute("target-cpu"); 1860 RemoveAttrs.addAttribute("target-features"); 1861 RemoveAttrs.addAttribute("tune-cpu"); 1862 F->removeAttributes(llvm::AttributeList::FunctionIndex, RemoveAttrs); 1863 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1864 } 1865 } 1866 1867 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1868 GO->setSection(CSA->getName()); 1869 else if (const auto *SA = D->getAttr<SectionAttr>()) 1870 GO->setSection(SA->getName()); 1871 } 1872 1873 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1874 } 1875 1876 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1877 llvm::Function *F, 1878 const CGFunctionInfo &FI) { 1879 const Decl *D = GD.getDecl(); 1880 SetLLVMFunctionAttributes(GD, FI, F); 1881 SetLLVMFunctionAttributesForDefinition(D, F); 1882 1883 F->setLinkage(llvm::Function::InternalLinkage); 1884 1885 setNonAliasAttributes(GD, F); 1886 } 1887 1888 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1889 // Set linkage and visibility in case we never see a definition. 1890 LinkageInfo LV = ND->getLinkageAndVisibility(); 1891 // Don't set internal linkage on declarations. 1892 // "extern_weak" is overloaded in LLVM; we probably should have 1893 // separate linkage types for this. 1894 if (isExternallyVisible(LV.getLinkage()) && 1895 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1896 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1897 } 1898 1899 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1900 llvm::Function *F) { 1901 // Only if we are checking indirect calls. 1902 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1903 return; 1904 1905 // Non-static class methods are handled via vtable or member function pointer 1906 // checks elsewhere. 1907 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1908 return; 1909 1910 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1911 F->addTypeMetadata(0, MD); 1912 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1913 1914 // Emit a hash-based bit set entry for cross-DSO calls. 1915 if (CodeGenOpts.SanitizeCfiCrossDso) 1916 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1917 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1918 } 1919 1920 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1921 bool IsIncompleteFunction, 1922 bool IsThunk) { 1923 1924 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1925 // If this is an intrinsic function, set the function's attributes 1926 // to the intrinsic's attributes. 1927 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1928 return; 1929 } 1930 1931 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1932 1933 if (!IsIncompleteFunction) 1934 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F); 1935 1936 // Add the Returned attribute for "this", except for iOS 5 and earlier 1937 // where substantial code, including the libstdc++ dylib, was compiled with 1938 // GCC and does not actually return "this". 1939 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1940 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1941 assert(!F->arg_empty() && 1942 F->arg_begin()->getType() 1943 ->canLosslesslyBitCastTo(F->getReturnType()) && 1944 "unexpected this return"); 1945 F->addAttribute(1, llvm::Attribute::Returned); 1946 } 1947 1948 // Only a few attributes are set on declarations; these may later be 1949 // overridden by a definition. 1950 1951 setLinkageForGV(F, FD); 1952 setGVProperties(F, FD); 1953 1954 // Setup target-specific attributes. 1955 if (!IsIncompleteFunction && F->isDeclaration()) 1956 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1957 1958 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1959 F->setSection(CSA->getName()); 1960 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1961 F->setSection(SA->getName()); 1962 1963 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 1964 if (FD->isInlineBuiltinDeclaration()) { 1965 const FunctionDecl *FDBody; 1966 bool HasBody = FD->hasBody(FDBody); 1967 (void)HasBody; 1968 assert(HasBody && "Inline builtin declarations should always have an " 1969 "available body!"); 1970 if (shouldEmitFunction(FDBody)) 1971 F->addAttribute(llvm::AttributeList::FunctionIndex, 1972 llvm::Attribute::NoBuiltin); 1973 } 1974 1975 if (FD->isReplaceableGlobalAllocationFunction()) { 1976 // A replaceable global allocation function does not act like a builtin by 1977 // default, only if it is invoked by a new-expression or delete-expression. 1978 F->addAttribute(llvm::AttributeList::FunctionIndex, 1979 llvm::Attribute::NoBuiltin); 1980 } 1981 1982 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1983 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1984 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1985 if (MD->isVirtual()) 1986 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1987 1988 // Don't emit entries for function declarations in the cross-DSO mode. This 1989 // is handled with better precision by the receiving DSO. But if jump tables 1990 // are non-canonical then we need type metadata in order to produce the local 1991 // jump table. 1992 if (!CodeGenOpts.SanitizeCfiCrossDso || 1993 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 1994 CreateFunctionTypeMetadataForIcall(FD, F); 1995 1996 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1997 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1998 1999 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2000 // Annotate the callback behavior as metadata: 2001 // - The callback callee (as argument number). 2002 // - The callback payloads (as argument numbers). 2003 llvm::LLVMContext &Ctx = F->getContext(); 2004 llvm::MDBuilder MDB(Ctx); 2005 2006 // The payload indices are all but the first one in the encoding. The first 2007 // identifies the callback callee. 2008 int CalleeIdx = *CB->encoding_begin(); 2009 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2010 F->addMetadata(llvm::LLVMContext::MD_callback, 2011 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2012 CalleeIdx, PayloadIndices, 2013 /* VarArgsArePassed */ false)})); 2014 } 2015 } 2016 2017 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2018 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2019 "Only globals with definition can force usage."); 2020 LLVMUsed.emplace_back(GV); 2021 } 2022 2023 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2024 assert(!GV->isDeclaration() && 2025 "Only globals with definition can force usage."); 2026 LLVMCompilerUsed.emplace_back(GV); 2027 } 2028 2029 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2030 std::vector<llvm::WeakTrackingVH> &List) { 2031 // Don't create llvm.used if there is no need. 2032 if (List.empty()) 2033 return; 2034 2035 // Convert List to what ConstantArray needs. 2036 SmallVector<llvm::Constant*, 8> UsedArray; 2037 UsedArray.resize(List.size()); 2038 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2039 UsedArray[i] = 2040 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2041 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2042 } 2043 2044 if (UsedArray.empty()) 2045 return; 2046 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2047 2048 auto *GV = new llvm::GlobalVariable( 2049 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2050 llvm::ConstantArray::get(ATy, UsedArray), Name); 2051 2052 GV->setSection("llvm.metadata"); 2053 } 2054 2055 void CodeGenModule::emitLLVMUsed() { 2056 emitUsed(*this, "llvm.used", LLVMUsed); 2057 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2058 } 2059 2060 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2061 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2062 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2063 } 2064 2065 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2066 llvm::SmallString<32> Opt; 2067 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2068 if (Opt.empty()) 2069 return; 2070 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2071 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2072 } 2073 2074 void CodeGenModule::AddDependentLib(StringRef Lib) { 2075 auto &C = getLLVMContext(); 2076 if (getTarget().getTriple().isOSBinFormatELF()) { 2077 ELFDependentLibraries.push_back( 2078 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2079 return; 2080 } 2081 2082 llvm::SmallString<24> Opt; 2083 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2084 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2085 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2086 } 2087 2088 /// Add link options implied by the given module, including modules 2089 /// it depends on, using a postorder walk. 2090 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2091 SmallVectorImpl<llvm::MDNode *> &Metadata, 2092 llvm::SmallPtrSet<Module *, 16> &Visited) { 2093 // Import this module's parent. 2094 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2095 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2096 } 2097 2098 // Import this module's dependencies. 2099 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 2100 if (Visited.insert(Mod->Imports[I - 1]).second) 2101 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 2102 } 2103 2104 // Add linker options to link against the libraries/frameworks 2105 // described by this module. 2106 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2107 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2108 2109 // For modules that use export_as for linking, use that module 2110 // name instead. 2111 if (Mod->UseExportAsModuleLinkName) 2112 return; 2113 2114 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 2115 // Link against a framework. Frameworks are currently Darwin only, so we 2116 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2117 if (Mod->LinkLibraries[I-1].IsFramework) { 2118 llvm::Metadata *Args[2] = { 2119 llvm::MDString::get(Context, "-framework"), 2120 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 2121 2122 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2123 continue; 2124 } 2125 2126 // Link against a library. 2127 if (IsELF) { 2128 llvm::Metadata *Args[2] = { 2129 llvm::MDString::get(Context, "lib"), 2130 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library), 2131 }; 2132 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2133 } else { 2134 llvm::SmallString<24> Opt; 2135 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 2136 Mod->LinkLibraries[I - 1].Library, Opt); 2137 auto *OptString = llvm::MDString::get(Context, Opt); 2138 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2139 } 2140 } 2141 } 2142 2143 void CodeGenModule::EmitModuleLinkOptions() { 2144 // Collect the set of all of the modules we want to visit to emit link 2145 // options, which is essentially the imported modules and all of their 2146 // non-explicit child modules. 2147 llvm::SetVector<clang::Module *> LinkModules; 2148 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2149 SmallVector<clang::Module *, 16> Stack; 2150 2151 // Seed the stack with imported modules. 2152 for (Module *M : ImportedModules) { 2153 // Do not add any link flags when an implementation TU of a module imports 2154 // a header of that same module. 2155 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2156 !getLangOpts().isCompilingModule()) 2157 continue; 2158 if (Visited.insert(M).second) 2159 Stack.push_back(M); 2160 } 2161 2162 // Find all of the modules to import, making a little effort to prune 2163 // non-leaf modules. 2164 while (!Stack.empty()) { 2165 clang::Module *Mod = Stack.pop_back_val(); 2166 2167 bool AnyChildren = false; 2168 2169 // Visit the submodules of this module. 2170 for (const auto &SM : Mod->submodules()) { 2171 // Skip explicit children; they need to be explicitly imported to be 2172 // linked against. 2173 if (SM->IsExplicit) 2174 continue; 2175 2176 if (Visited.insert(SM).second) { 2177 Stack.push_back(SM); 2178 AnyChildren = true; 2179 } 2180 } 2181 2182 // We didn't find any children, so add this module to the list of 2183 // modules to link against. 2184 if (!AnyChildren) { 2185 LinkModules.insert(Mod); 2186 } 2187 } 2188 2189 // Add link options for all of the imported modules in reverse topological 2190 // order. We don't do anything to try to order import link flags with respect 2191 // to linker options inserted by things like #pragma comment(). 2192 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2193 Visited.clear(); 2194 for (Module *M : LinkModules) 2195 if (Visited.insert(M).second) 2196 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2197 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2198 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2199 2200 // Add the linker options metadata flag. 2201 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2202 for (auto *MD : LinkerOptionsMetadata) 2203 NMD->addOperand(MD); 2204 } 2205 2206 void CodeGenModule::EmitDeferred() { 2207 // Emit deferred declare target declarations. 2208 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2209 getOpenMPRuntime().emitDeferredTargetDecls(); 2210 2211 // Emit code for any potentially referenced deferred decls. Since a 2212 // previously unused static decl may become used during the generation of code 2213 // for a static function, iterate until no changes are made. 2214 2215 if (!DeferredVTables.empty()) { 2216 EmitDeferredVTables(); 2217 2218 // Emitting a vtable doesn't directly cause more vtables to 2219 // become deferred, although it can cause functions to be 2220 // emitted that then need those vtables. 2221 assert(DeferredVTables.empty()); 2222 } 2223 2224 // Emit CUDA/HIP static device variables referenced by host code only. 2225 if (getLangOpts().CUDA) 2226 for (auto V : getContext().CUDAStaticDeviceVarReferencedByHost) 2227 DeferredDeclsToEmit.push_back(V); 2228 2229 // Stop if we're out of both deferred vtables and deferred declarations. 2230 if (DeferredDeclsToEmit.empty()) 2231 return; 2232 2233 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2234 // work, it will not interfere with this. 2235 std::vector<GlobalDecl> CurDeclsToEmit; 2236 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2237 2238 for (GlobalDecl &D : CurDeclsToEmit) { 2239 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2240 // to get GlobalValue with exactly the type we need, not something that 2241 // might had been created for another decl with the same mangled name but 2242 // different type. 2243 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2244 GetAddrOfGlobal(D, ForDefinition)); 2245 2246 // In case of different address spaces, we may still get a cast, even with 2247 // IsForDefinition equal to true. Query mangled names table to get 2248 // GlobalValue. 2249 if (!GV) 2250 GV = GetGlobalValue(getMangledName(D)); 2251 2252 // Make sure GetGlobalValue returned non-null. 2253 assert(GV); 2254 2255 // Check to see if we've already emitted this. This is necessary 2256 // for a couple of reasons: first, decls can end up in the 2257 // deferred-decls queue multiple times, and second, decls can end 2258 // up with definitions in unusual ways (e.g. by an extern inline 2259 // function acquiring a strong function redefinition). Just 2260 // ignore these cases. 2261 if (!GV->isDeclaration()) 2262 continue; 2263 2264 // If this is OpenMP, check if it is legal to emit this global normally. 2265 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2266 continue; 2267 2268 // Otherwise, emit the definition and move on to the next one. 2269 EmitGlobalDefinition(D, GV); 2270 2271 // If we found out that we need to emit more decls, do that recursively. 2272 // This has the advantage that the decls are emitted in a DFS and related 2273 // ones are close together, which is convenient for testing. 2274 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2275 EmitDeferred(); 2276 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2277 } 2278 } 2279 } 2280 2281 void CodeGenModule::EmitVTablesOpportunistically() { 2282 // Try to emit external vtables as available_externally if they have emitted 2283 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2284 // is not allowed to create new references to things that need to be emitted 2285 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2286 2287 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2288 && "Only emit opportunistic vtables with optimizations"); 2289 2290 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2291 assert(getVTables().isVTableExternal(RD) && 2292 "This queue should only contain external vtables"); 2293 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2294 VTables.GenerateClassData(RD); 2295 } 2296 OpportunisticVTables.clear(); 2297 } 2298 2299 void CodeGenModule::EmitGlobalAnnotations() { 2300 if (Annotations.empty()) 2301 return; 2302 2303 // Create a new global variable for the ConstantStruct in the Module. 2304 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2305 Annotations[0]->getType(), Annotations.size()), Annotations); 2306 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2307 llvm::GlobalValue::AppendingLinkage, 2308 Array, "llvm.global.annotations"); 2309 gv->setSection(AnnotationSection); 2310 } 2311 2312 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2313 llvm::Constant *&AStr = AnnotationStrings[Str]; 2314 if (AStr) 2315 return AStr; 2316 2317 // Not found yet, create a new global. 2318 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2319 auto *gv = 2320 new llvm::GlobalVariable(getModule(), s->getType(), true, 2321 llvm::GlobalValue::PrivateLinkage, s, ".str"); 2322 gv->setSection(AnnotationSection); 2323 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2324 AStr = gv; 2325 return gv; 2326 } 2327 2328 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2329 SourceManager &SM = getContext().getSourceManager(); 2330 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2331 if (PLoc.isValid()) 2332 return EmitAnnotationString(PLoc.getFilename()); 2333 return EmitAnnotationString(SM.getBufferName(Loc)); 2334 } 2335 2336 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2337 SourceManager &SM = getContext().getSourceManager(); 2338 PresumedLoc PLoc = SM.getPresumedLoc(L); 2339 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2340 SM.getExpansionLineNumber(L); 2341 return llvm::ConstantInt::get(Int32Ty, LineNo); 2342 } 2343 2344 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2345 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2346 Exprs = Exprs.drop_front(); 2347 if (Exprs.empty()) 2348 return llvm::ConstantPointerNull::get(Int8PtrTy); 2349 2350 llvm::FoldingSetNodeID ID; 2351 for (Expr *E : Exprs) { 2352 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2353 } 2354 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2355 if (Lookup) 2356 return Lookup; 2357 2358 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2359 LLVMArgs.reserve(Exprs.size()); 2360 ConstantEmitter ConstEmiter(*this); 2361 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2362 const auto *CE = cast<clang::ConstantExpr>(E); 2363 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2364 CE->getType()); 2365 }); 2366 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2367 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2368 llvm::GlobalValue::PrivateLinkage, Struct, 2369 ".args"); 2370 GV->setSection(AnnotationSection); 2371 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2372 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, Int8PtrTy); 2373 2374 Lookup = Bitcasted; 2375 return Bitcasted; 2376 } 2377 2378 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2379 const AnnotateAttr *AA, 2380 SourceLocation L) { 2381 // Get the globals for file name, annotation, and the line number. 2382 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2383 *UnitGV = EmitAnnotationUnit(L), 2384 *LineNoCst = EmitAnnotationLineNo(L), 2385 *Args = EmitAnnotationArgs(AA); 2386 2387 llvm::Constant *ASZeroGV = GV; 2388 if (GV->getAddressSpace() != 0) { 2389 ASZeroGV = llvm::ConstantExpr::getAddrSpaceCast( 2390 GV, GV->getValueType()->getPointerTo(0)); 2391 } 2392 2393 // Create the ConstantStruct for the global annotation. 2394 llvm::Constant *Fields[] = { 2395 llvm::ConstantExpr::getBitCast(ASZeroGV, Int8PtrTy), 2396 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 2397 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 2398 LineNoCst, 2399 Args, 2400 }; 2401 return llvm::ConstantStruct::getAnon(Fields); 2402 } 2403 2404 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2405 llvm::GlobalValue *GV) { 2406 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2407 // Get the struct elements for these annotations. 2408 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2409 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2410 } 2411 2412 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 2413 llvm::Function *Fn, 2414 SourceLocation Loc) const { 2415 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2416 // Blacklist by function name. 2417 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 2418 return true; 2419 // Blacklist by location. 2420 if (Loc.isValid()) 2421 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 2422 // If location is unknown, this may be a compiler-generated function. Assume 2423 // it's located in the main file. 2424 auto &SM = Context.getSourceManager(); 2425 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 2426 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 2427 } 2428 return false; 2429 } 2430 2431 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 2432 SourceLocation Loc, QualType Ty, 2433 StringRef Category) const { 2434 // For now globals can be blacklisted only in ASan and KASan. 2435 const SanitizerMask EnabledAsanMask = 2436 LangOpts.Sanitize.Mask & 2437 (SanitizerKind::Address | SanitizerKind::KernelAddress | 2438 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress | 2439 SanitizerKind::MemTag); 2440 if (!EnabledAsanMask) 2441 return false; 2442 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 2443 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 2444 return true; 2445 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 2446 return true; 2447 // Check global type. 2448 if (!Ty.isNull()) { 2449 // Drill down the array types: if global variable of a fixed type is 2450 // blacklisted, we also don't instrument arrays of them. 2451 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2452 Ty = AT->getElementType(); 2453 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2454 // We allow to blacklist only record types (classes, structs etc.) 2455 if (Ty->isRecordType()) { 2456 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2457 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 2458 return true; 2459 } 2460 } 2461 return false; 2462 } 2463 2464 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 2465 StringRef Category) const { 2466 const auto &XRayFilter = getContext().getXRayFilter(); 2467 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 2468 auto Attr = ImbueAttr::NONE; 2469 if (Loc.isValid()) 2470 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 2471 if (Attr == ImbueAttr::NONE) 2472 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 2473 switch (Attr) { 2474 case ImbueAttr::NONE: 2475 return false; 2476 case ImbueAttr::ALWAYS: 2477 Fn->addFnAttr("function-instrument", "xray-always"); 2478 break; 2479 case ImbueAttr::ALWAYS_ARG1: 2480 Fn->addFnAttr("function-instrument", "xray-always"); 2481 Fn->addFnAttr("xray-log-args", "1"); 2482 break; 2483 case ImbueAttr::NEVER: 2484 Fn->addFnAttr("function-instrument", "xray-never"); 2485 break; 2486 } 2487 return true; 2488 } 2489 2490 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 2491 // Never defer when EmitAllDecls is specified. 2492 if (LangOpts.EmitAllDecls) 2493 return true; 2494 2495 if (CodeGenOpts.KeepStaticConsts) { 2496 const auto *VD = dyn_cast<VarDecl>(Global); 2497 if (VD && VD->getType().isConstQualified() && 2498 VD->getStorageDuration() == SD_Static) 2499 return true; 2500 } 2501 2502 return getContext().DeclMustBeEmitted(Global); 2503 } 2504 2505 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 2506 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2507 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 2508 // Implicit template instantiations may change linkage if they are later 2509 // explicitly instantiated, so they should not be emitted eagerly. 2510 return false; 2511 // In OpenMP 5.0 function may be marked as device_type(nohost) and we should 2512 // not emit them eagerly unless we sure that the function must be emitted on 2513 // the host. 2514 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd && 2515 !LangOpts.OpenMPIsDevice && 2516 !OMPDeclareTargetDeclAttr::getDeviceType(FD) && 2517 !FD->isUsed(/*CheckUsedAttr=*/false) && !FD->isReferenced()) 2518 return false; 2519 } 2520 if (const auto *VD = dyn_cast<VarDecl>(Global)) 2521 if (Context.getInlineVariableDefinitionKind(VD) == 2522 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 2523 // A definition of an inline constexpr static data member may change 2524 // linkage later if it's redeclared outside the class. 2525 return false; 2526 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 2527 // codegen for global variables, because they may be marked as threadprivate. 2528 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2529 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2530 !isTypeConstant(Global->getType(), false) && 2531 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 2532 return false; 2533 2534 return true; 2535 } 2536 2537 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 2538 StringRef Name = getMangledName(GD); 2539 2540 // The UUID descriptor should be pointer aligned. 2541 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2542 2543 // Look for an existing global. 2544 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2545 return ConstantAddress(GV, Alignment); 2546 2547 ConstantEmitter Emitter(*this); 2548 llvm::Constant *Init; 2549 2550 APValue &V = GD->getAsAPValue(); 2551 if (!V.isAbsent()) { 2552 // If possible, emit the APValue version of the initializer. In particular, 2553 // this gets the type of the constant right. 2554 Init = Emitter.emitForInitializer( 2555 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 2556 } else { 2557 // As a fallback, directly construct the constant. 2558 // FIXME: This may get padding wrong under esoteric struct layout rules. 2559 // MSVC appears to create a complete type 'struct __s_GUID' that it 2560 // presumably uses to represent these constants. 2561 MSGuidDecl::Parts Parts = GD->getParts(); 2562 llvm::Constant *Fields[4] = { 2563 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 2564 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 2565 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 2566 llvm::ConstantDataArray::getRaw( 2567 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 2568 Int8Ty)}; 2569 Init = llvm::ConstantStruct::getAnon(Fields); 2570 } 2571 2572 auto *GV = new llvm::GlobalVariable( 2573 getModule(), Init->getType(), 2574 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2575 if (supportsCOMDAT()) 2576 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2577 setDSOLocal(GV); 2578 2579 llvm::Constant *Addr = GV; 2580 if (!V.isAbsent()) { 2581 Emitter.finalize(GV); 2582 } else { 2583 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 2584 Addr = llvm::ConstantExpr::getBitCast( 2585 GV, Ty->getPointerTo(GV->getAddressSpace())); 2586 } 2587 return ConstantAddress(Addr, Alignment); 2588 } 2589 2590 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 2591 const TemplateParamObjectDecl *TPO) { 2592 ErrorUnsupported(TPO, "template parameter object"); 2593 return ConstantAddress::invalid(); 2594 } 2595 2596 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2597 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2598 assert(AA && "No alias?"); 2599 2600 CharUnits Alignment = getContext().getDeclAlign(VD); 2601 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2602 2603 // See if there is already something with the target's name in the module. 2604 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2605 if (Entry) { 2606 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2607 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2608 return ConstantAddress(Ptr, Alignment); 2609 } 2610 2611 llvm::Constant *Aliasee; 2612 if (isa<llvm::FunctionType>(DeclTy)) 2613 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2614 GlobalDecl(cast<FunctionDecl>(VD)), 2615 /*ForVTable=*/false); 2616 else 2617 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2618 llvm::PointerType::getUnqual(DeclTy), 2619 nullptr); 2620 2621 auto *F = cast<llvm::GlobalValue>(Aliasee); 2622 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2623 WeakRefReferences.insert(F); 2624 2625 return ConstantAddress(Aliasee, Alignment); 2626 } 2627 2628 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2629 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2630 2631 // Weak references don't produce any output by themselves. 2632 if (Global->hasAttr<WeakRefAttr>()) 2633 return; 2634 2635 // If this is an alias definition (which otherwise looks like a declaration) 2636 // emit it now. 2637 if (Global->hasAttr<AliasAttr>()) 2638 return EmitAliasDefinition(GD); 2639 2640 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2641 if (Global->hasAttr<IFuncAttr>()) 2642 return emitIFuncDefinition(GD); 2643 2644 // If this is a cpu_dispatch multiversion function, emit the resolver. 2645 if (Global->hasAttr<CPUDispatchAttr>()) 2646 return emitCPUDispatchDefinition(GD); 2647 2648 // If this is CUDA, be selective about which declarations we emit. 2649 if (LangOpts.CUDA) { 2650 if (LangOpts.CUDAIsDevice) { 2651 if (!Global->hasAttr<CUDADeviceAttr>() && 2652 !Global->hasAttr<CUDAGlobalAttr>() && 2653 !Global->hasAttr<CUDAConstantAttr>() && 2654 !Global->hasAttr<CUDASharedAttr>() && 2655 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 2656 !Global->getType()->isCUDADeviceBuiltinTextureType()) 2657 return; 2658 } else { 2659 // We need to emit host-side 'shadows' for all global 2660 // device-side variables because the CUDA runtime needs their 2661 // size and host-side address in order to provide access to 2662 // their device-side incarnations. 2663 2664 // So device-only functions are the only things we skip. 2665 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2666 Global->hasAttr<CUDADeviceAttr>()) 2667 return; 2668 2669 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2670 "Expected Variable or Function"); 2671 } 2672 } 2673 2674 if (LangOpts.OpenMP) { 2675 // If this is OpenMP, check if it is legal to emit this global normally. 2676 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2677 return; 2678 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2679 if (MustBeEmitted(Global)) 2680 EmitOMPDeclareReduction(DRD); 2681 return; 2682 } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 2683 if (MustBeEmitted(Global)) 2684 EmitOMPDeclareMapper(DMD); 2685 return; 2686 } 2687 } 2688 2689 // Ignore declarations, they will be emitted on their first use. 2690 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2691 // Forward declarations are emitted lazily on first use. 2692 if (!FD->doesThisDeclarationHaveABody()) { 2693 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2694 return; 2695 2696 StringRef MangledName = getMangledName(GD); 2697 2698 // Compute the function info and LLVM type. 2699 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2700 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2701 2702 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2703 /*DontDefer=*/false); 2704 return; 2705 } 2706 } else { 2707 const auto *VD = cast<VarDecl>(Global); 2708 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2709 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 2710 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2711 if (LangOpts.OpenMP) { 2712 // Emit declaration of the must-be-emitted declare target variable. 2713 if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 2714 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 2715 bool UnifiedMemoryEnabled = 2716 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 2717 if (*Res == OMPDeclareTargetDeclAttr::MT_To && 2718 !UnifiedMemoryEnabled) { 2719 (void)GetAddrOfGlobalVar(VD); 2720 } else { 2721 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 2722 (*Res == OMPDeclareTargetDeclAttr::MT_To && 2723 UnifiedMemoryEnabled)) && 2724 "Link clause or to clause with unified memory expected."); 2725 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 2726 } 2727 2728 return; 2729 } 2730 } 2731 // If this declaration may have caused an inline variable definition to 2732 // change linkage, make sure that it's emitted. 2733 if (Context.getInlineVariableDefinitionKind(VD) == 2734 ASTContext::InlineVariableDefinitionKind::Strong) 2735 GetAddrOfGlobalVar(VD); 2736 return; 2737 } 2738 } 2739 2740 // Defer code generation to first use when possible, e.g. if this is an inline 2741 // function. If the global must always be emitted, do it eagerly if possible 2742 // to benefit from cache locality. 2743 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2744 // Emit the definition if it can't be deferred. 2745 EmitGlobalDefinition(GD); 2746 return; 2747 } 2748 2749 // If we're deferring emission of a C++ variable with an 2750 // initializer, remember the order in which it appeared in the file. 2751 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2752 cast<VarDecl>(Global)->hasInit()) { 2753 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2754 CXXGlobalInits.push_back(nullptr); 2755 } 2756 2757 StringRef MangledName = getMangledName(GD); 2758 if (GetGlobalValue(MangledName) != nullptr) { 2759 // The value has already been used and should therefore be emitted. 2760 addDeferredDeclToEmit(GD); 2761 } else if (MustBeEmitted(Global)) { 2762 // The value must be emitted, but cannot be emitted eagerly. 2763 assert(!MayBeEmittedEagerly(Global)); 2764 addDeferredDeclToEmit(GD); 2765 } else { 2766 // Otherwise, remember that we saw a deferred decl with this name. The 2767 // first use of the mangled name will cause it to move into 2768 // DeferredDeclsToEmit. 2769 DeferredDecls[MangledName] = GD; 2770 } 2771 } 2772 2773 // Check if T is a class type with a destructor that's not dllimport. 2774 static bool HasNonDllImportDtor(QualType T) { 2775 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2776 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2777 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2778 return true; 2779 2780 return false; 2781 } 2782 2783 namespace { 2784 struct FunctionIsDirectlyRecursive 2785 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 2786 const StringRef Name; 2787 const Builtin::Context &BI; 2788 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 2789 : Name(N), BI(C) {} 2790 2791 bool VisitCallExpr(const CallExpr *E) { 2792 const FunctionDecl *FD = E->getDirectCallee(); 2793 if (!FD) 2794 return false; 2795 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2796 if (Attr && Name == Attr->getLabel()) 2797 return true; 2798 unsigned BuiltinID = FD->getBuiltinID(); 2799 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2800 return false; 2801 StringRef BuiltinName = BI.getName(BuiltinID); 2802 if (BuiltinName.startswith("__builtin_") && 2803 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2804 return true; 2805 } 2806 return false; 2807 } 2808 2809 bool VisitStmt(const Stmt *S) { 2810 for (const Stmt *Child : S->children()) 2811 if (Child && this->Visit(Child)) 2812 return true; 2813 return false; 2814 } 2815 }; 2816 2817 // Make sure we're not referencing non-imported vars or functions. 2818 struct DLLImportFunctionVisitor 2819 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2820 bool SafeToInline = true; 2821 2822 bool shouldVisitImplicitCode() const { return true; } 2823 2824 bool VisitVarDecl(VarDecl *VD) { 2825 if (VD->getTLSKind()) { 2826 // A thread-local variable cannot be imported. 2827 SafeToInline = false; 2828 return SafeToInline; 2829 } 2830 2831 // A variable definition might imply a destructor call. 2832 if (VD->isThisDeclarationADefinition()) 2833 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2834 2835 return SafeToInline; 2836 } 2837 2838 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2839 if (const auto *D = E->getTemporary()->getDestructor()) 2840 SafeToInline = D->hasAttr<DLLImportAttr>(); 2841 return SafeToInline; 2842 } 2843 2844 bool VisitDeclRefExpr(DeclRefExpr *E) { 2845 ValueDecl *VD = E->getDecl(); 2846 if (isa<FunctionDecl>(VD)) 2847 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2848 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2849 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2850 return SafeToInline; 2851 } 2852 2853 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2854 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2855 return SafeToInline; 2856 } 2857 2858 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2859 CXXMethodDecl *M = E->getMethodDecl(); 2860 if (!M) { 2861 // Call through a pointer to member function. This is safe to inline. 2862 SafeToInline = true; 2863 } else { 2864 SafeToInline = M->hasAttr<DLLImportAttr>(); 2865 } 2866 return SafeToInline; 2867 } 2868 2869 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2870 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2871 return SafeToInline; 2872 } 2873 2874 bool VisitCXXNewExpr(CXXNewExpr *E) { 2875 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2876 return SafeToInline; 2877 } 2878 }; 2879 } 2880 2881 // isTriviallyRecursive - Check if this function calls another 2882 // decl that, because of the asm attribute or the other decl being a builtin, 2883 // ends up pointing to itself. 2884 bool 2885 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2886 StringRef Name; 2887 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2888 // asm labels are a special kind of mangling we have to support. 2889 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2890 if (!Attr) 2891 return false; 2892 Name = Attr->getLabel(); 2893 } else { 2894 Name = FD->getName(); 2895 } 2896 2897 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2898 const Stmt *Body = FD->getBody(); 2899 return Body ? Walker.Visit(Body) : false; 2900 } 2901 2902 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2903 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2904 return true; 2905 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2906 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2907 return false; 2908 2909 if (F->hasAttr<DLLImportAttr>()) { 2910 // Check whether it would be safe to inline this dllimport function. 2911 DLLImportFunctionVisitor Visitor; 2912 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2913 if (!Visitor.SafeToInline) 2914 return false; 2915 2916 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2917 // Implicit destructor invocations aren't captured in the AST, so the 2918 // check above can't see them. Check for them manually here. 2919 for (const Decl *Member : Dtor->getParent()->decls()) 2920 if (isa<FieldDecl>(Member)) 2921 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2922 return false; 2923 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2924 if (HasNonDllImportDtor(B.getType())) 2925 return false; 2926 } 2927 } 2928 2929 // PR9614. Avoid cases where the source code is lying to us. An available 2930 // externally function should have an equivalent function somewhere else, 2931 // but a function that calls itself through asm label/`__builtin_` trickery is 2932 // clearly not equivalent to the real implementation. 2933 // This happens in glibc's btowc and in some configure checks. 2934 return !isTriviallyRecursive(F); 2935 } 2936 2937 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2938 return CodeGenOpts.OptimizationLevel > 0; 2939 } 2940 2941 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 2942 llvm::GlobalValue *GV) { 2943 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2944 2945 if (FD->isCPUSpecificMultiVersion()) { 2946 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 2947 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 2948 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 2949 // Requires multiple emits. 2950 } else 2951 EmitGlobalFunctionDefinition(GD, GV); 2952 } 2953 2954 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2955 const auto *D = cast<ValueDecl>(GD.getDecl()); 2956 2957 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2958 Context.getSourceManager(), 2959 "Generating code for declaration"); 2960 2961 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2962 // At -O0, don't generate IR for functions with available_externally 2963 // linkage. 2964 if (!shouldEmitFunction(GD)) 2965 return; 2966 2967 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 2968 std::string Name; 2969 llvm::raw_string_ostream OS(Name); 2970 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 2971 /*Qualified=*/true); 2972 return Name; 2973 }); 2974 2975 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2976 // Make sure to emit the definition(s) before we emit the thunks. 2977 // This is necessary for the generation of certain thunks. 2978 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 2979 ABI->emitCXXStructor(GD); 2980 else if (FD->isMultiVersion()) 2981 EmitMultiVersionFunctionDefinition(GD, GV); 2982 else 2983 EmitGlobalFunctionDefinition(GD, GV); 2984 2985 if (Method->isVirtual()) 2986 getVTables().EmitThunks(GD); 2987 2988 return; 2989 } 2990 2991 if (FD->isMultiVersion()) 2992 return EmitMultiVersionFunctionDefinition(GD, GV); 2993 return EmitGlobalFunctionDefinition(GD, GV); 2994 } 2995 2996 if (const auto *VD = dyn_cast<VarDecl>(D)) 2997 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2998 2999 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3000 } 3001 3002 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3003 llvm::Function *NewFn); 3004 3005 static unsigned 3006 TargetMVPriority(const TargetInfo &TI, 3007 const CodeGenFunction::MultiVersionResolverOption &RO) { 3008 unsigned Priority = 0; 3009 for (StringRef Feat : RO.Conditions.Features) 3010 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3011 3012 if (!RO.Conditions.Architecture.empty()) 3013 Priority = std::max( 3014 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3015 return Priority; 3016 } 3017 3018 void CodeGenModule::emitMultiVersionFunctions() { 3019 for (GlobalDecl GD : MultiVersionFuncs) { 3020 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3021 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3022 getContext().forEachMultiversionedFunctionVersion( 3023 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3024 GlobalDecl CurGD{ 3025 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3026 StringRef MangledName = getMangledName(CurGD); 3027 llvm::Constant *Func = GetGlobalValue(MangledName); 3028 if (!Func) { 3029 if (CurFD->isDefined()) { 3030 EmitGlobalFunctionDefinition(CurGD, nullptr); 3031 Func = GetGlobalValue(MangledName); 3032 } else { 3033 const CGFunctionInfo &FI = 3034 getTypes().arrangeGlobalDeclaration(GD); 3035 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3036 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3037 /*DontDefer=*/false, ForDefinition); 3038 } 3039 assert(Func && "This should have just been created"); 3040 } 3041 3042 const auto *TA = CurFD->getAttr<TargetAttr>(); 3043 llvm::SmallVector<StringRef, 8> Feats; 3044 TA->getAddedFeatures(Feats); 3045 3046 Options.emplace_back(cast<llvm::Function>(Func), 3047 TA->getArchitecture(), Feats); 3048 }); 3049 3050 llvm::Function *ResolverFunc; 3051 const TargetInfo &TI = getTarget(); 3052 3053 if (TI.supportsIFunc() || FD->isTargetMultiVersion()) { 3054 ResolverFunc = cast<llvm::Function>( 3055 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 3056 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3057 } else { 3058 ResolverFunc = cast<llvm::Function>(GetGlobalValue(getMangledName(GD))); 3059 } 3060 3061 if (supportsCOMDAT()) 3062 ResolverFunc->setComdat( 3063 getModule().getOrInsertComdat(ResolverFunc->getName())); 3064 3065 llvm::stable_sort( 3066 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3067 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3068 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3069 }); 3070 CodeGenFunction CGF(*this); 3071 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3072 } 3073 } 3074 3075 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3076 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3077 assert(FD && "Not a FunctionDecl?"); 3078 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3079 assert(DD && "Not a cpu_dispatch Function?"); 3080 llvm::Type *DeclTy = getTypes().ConvertType(FD->getType()); 3081 3082 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 3083 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 3084 DeclTy = getTypes().GetFunctionType(FInfo); 3085 } 3086 3087 StringRef ResolverName = getMangledName(GD); 3088 3089 llvm::Type *ResolverType; 3090 GlobalDecl ResolverGD; 3091 if (getTarget().supportsIFunc()) 3092 ResolverType = llvm::FunctionType::get( 3093 llvm::PointerType::get(DeclTy, 3094 Context.getTargetAddressSpace(FD->getType())), 3095 false); 3096 else { 3097 ResolverType = DeclTy; 3098 ResolverGD = GD; 3099 } 3100 3101 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3102 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3103 ResolverFunc->setLinkage(llvm::Function::WeakODRLinkage); 3104 if (supportsCOMDAT()) 3105 ResolverFunc->setComdat( 3106 getModule().getOrInsertComdat(ResolverFunc->getName())); 3107 3108 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3109 const TargetInfo &Target = getTarget(); 3110 unsigned Index = 0; 3111 for (const IdentifierInfo *II : DD->cpus()) { 3112 // Get the name of the target function so we can look it up/create it. 3113 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3114 getCPUSpecificMangling(*this, II->getName()); 3115 3116 llvm::Constant *Func = GetGlobalValue(MangledName); 3117 3118 if (!Func) { 3119 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3120 if (ExistingDecl.getDecl() && 3121 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3122 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3123 Func = GetGlobalValue(MangledName); 3124 } else { 3125 if (!ExistingDecl.getDecl()) 3126 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3127 3128 Func = GetOrCreateLLVMFunction( 3129 MangledName, DeclTy, ExistingDecl, 3130 /*ForVTable=*/false, /*DontDefer=*/true, 3131 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3132 } 3133 } 3134 3135 llvm::SmallVector<StringRef, 32> Features; 3136 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3137 llvm::transform(Features, Features.begin(), 3138 [](StringRef Str) { return Str.substr(1); }); 3139 Features.erase(std::remove_if( 3140 Features.begin(), Features.end(), [&Target](StringRef Feat) { 3141 return !Target.validateCpuSupports(Feat); 3142 }), Features.end()); 3143 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3144 ++Index; 3145 } 3146 3147 llvm::sort( 3148 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3149 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3150 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 3151 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 3152 }); 3153 3154 // If the list contains multiple 'default' versions, such as when it contains 3155 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3156 // always run on at least a 'pentium'). We do this by deleting the 'least 3157 // advanced' (read, lowest mangling letter). 3158 while (Options.size() > 1 && 3159 CodeGenFunction::GetX86CpuSupportsMask( 3160 (Options.end() - 2)->Conditions.Features) == 0) { 3161 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3162 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3163 if (LHSName.compare(RHSName) < 0) 3164 Options.erase(Options.end() - 2); 3165 else 3166 Options.erase(Options.end() - 1); 3167 } 3168 3169 CodeGenFunction CGF(*this); 3170 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3171 3172 if (getTarget().supportsIFunc()) { 3173 std::string AliasName = getMangledNameImpl( 3174 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3175 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3176 if (!AliasFunc) { 3177 auto *IFunc = cast<llvm::GlobalIFunc>(GetOrCreateLLVMFunction( 3178 AliasName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 3179 /*IsThunk=*/false, llvm::AttributeList(), NotForDefinition)); 3180 auto *GA = llvm::GlobalAlias::create( 3181 DeclTy, 0, getFunctionLinkage(GD), AliasName, IFunc, &getModule()); 3182 GA->setLinkage(llvm::Function::WeakODRLinkage); 3183 SetCommonAttributes(GD, GA); 3184 } 3185 } 3186 } 3187 3188 /// If a dispatcher for the specified mangled name is not in the module, create 3189 /// and return an llvm Function with the specified type. 3190 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver( 3191 GlobalDecl GD, llvm::Type *DeclTy, const FunctionDecl *FD) { 3192 std::string MangledName = 3193 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3194 3195 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3196 // a separate resolver). 3197 std::string ResolverName = MangledName; 3198 if (getTarget().supportsIFunc()) 3199 ResolverName += ".ifunc"; 3200 else if (FD->isTargetMultiVersion()) 3201 ResolverName += ".resolver"; 3202 3203 // If this already exists, just return that one. 3204 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3205 return ResolverGV; 3206 3207 // Since this is the first time we've created this IFunc, make sure 3208 // that we put this multiversioned function into the list to be 3209 // replaced later if necessary (target multiversioning only). 3210 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 3211 MultiVersionFuncs.push_back(GD); 3212 3213 if (getTarget().supportsIFunc()) { 3214 llvm::Type *ResolverType = llvm::FunctionType::get( 3215 llvm::PointerType::get( 3216 DeclTy, getContext().getTargetAddressSpace(FD->getType())), 3217 false); 3218 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3219 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3220 /*ForVTable=*/false); 3221 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 3222 DeclTy, 0, llvm::Function::WeakODRLinkage, "", Resolver, &getModule()); 3223 GIF->setName(ResolverName); 3224 SetCommonAttributes(FD, GIF); 3225 3226 return GIF; 3227 } 3228 3229 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3230 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3231 assert(isa<llvm::GlobalValue>(Resolver) && 3232 "Resolver should be created for the first time"); 3233 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3234 return Resolver; 3235 } 3236 3237 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3238 /// module, create and return an llvm Function with the specified type. If there 3239 /// is something in the module with the specified name, return it potentially 3240 /// bitcasted to the right type. 3241 /// 3242 /// If D is non-null, it specifies a decl that correspond to this. This is used 3243 /// to set the attributes on the function when it is first created. 3244 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 3245 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 3246 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 3247 ForDefinition_t IsForDefinition) { 3248 const Decl *D = GD.getDecl(); 3249 3250 // Any attempts to use a MultiVersion function should result in retrieving 3251 // the iFunc instead. Name Mangling will handle the rest of the changes. 3252 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 3253 // For the device mark the function as one that should be emitted. 3254 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 3255 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 3256 !DontDefer && !IsForDefinition) { 3257 if (const FunctionDecl *FDDef = FD->getDefinition()) { 3258 GlobalDecl GDDef; 3259 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 3260 GDDef = GlobalDecl(CD, GD.getCtorType()); 3261 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 3262 GDDef = GlobalDecl(DD, GD.getDtorType()); 3263 else 3264 GDDef = GlobalDecl(FDDef); 3265 EmitGlobal(GDDef); 3266 } 3267 } 3268 3269 if (FD->isMultiVersion()) { 3270 if (FD->hasAttr<TargetAttr>()) 3271 UpdateMultiVersionNames(GD, FD); 3272 if (!IsForDefinition) 3273 return GetOrCreateMultiVersionResolver(GD, Ty, FD); 3274 } 3275 } 3276 3277 // Lookup the entry, lazily creating it if necessary. 3278 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3279 if (Entry) { 3280 if (WeakRefReferences.erase(Entry)) { 3281 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 3282 if (FD && !FD->hasAttr<WeakAttr>()) 3283 Entry->setLinkage(llvm::Function::ExternalLinkage); 3284 } 3285 3286 // Handle dropped DLL attributes. 3287 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 3288 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3289 setDSOLocal(Entry); 3290 } 3291 3292 // If there are two attempts to define the same mangled name, issue an 3293 // error. 3294 if (IsForDefinition && !Entry->isDeclaration()) { 3295 GlobalDecl OtherGD; 3296 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 3297 // to make sure that we issue an error only once. 3298 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3299 (GD.getCanonicalDecl().getDecl() != 3300 OtherGD.getCanonicalDecl().getDecl()) && 3301 DiagnosedConflictingDefinitions.insert(GD).second) { 3302 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3303 << MangledName; 3304 getDiags().Report(OtherGD.getDecl()->getLocation(), 3305 diag::note_previous_definition); 3306 } 3307 } 3308 3309 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 3310 (Entry->getValueType() == Ty)) { 3311 return Entry; 3312 } 3313 3314 // Make sure the result is of the correct type. 3315 // (If function is requested for a definition, we always need to create a new 3316 // function, not just return a bitcast.) 3317 if (!IsForDefinition) 3318 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 3319 } 3320 3321 // This function doesn't have a complete type (for example, the return 3322 // type is an incomplete struct). Use a fake type instead, and make 3323 // sure not to try to set attributes. 3324 bool IsIncompleteFunction = false; 3325 3326 llvm::FunctionType *FTy; 3327 if (isa<llvm::FunctionType>(Ty)) { 3328 FTy = cast<llvm::FunctionType>(Ty); 3329 } else { 3330 FTy = llvm::FunctionType::get(VoidTy, false); 3331 IsIncompleteFunction = true; 3332 } 3333 3334 llvm::Function *F = 3335 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 3336 Entry ? StringRef() : MangledName, &getModule()); 3337 3338 // If we already created a function with the same mangled name (but different 3339 // type) before, take its name and add it to the list of functions to be 3340 // replaced with F at the end of CodeGen. 3341 // 3342 // This happens if there is a prototype for a function (e.g. "int f()") and 3343 // then a definition of a different type (e.g. "int f(int x)"). 3344 if (Entry) { 3345 F->takeName(Entry); 3346 3347 // This might be an implementation of a function without a prototype, in 3348 // which case, try to do special replacement of calls which match the new 3349 // prototype. The really key thing here is that we also potentially drop 3350 // arguments from the call site so as to make a direct call, which makes the 3351 // inliner happier and suppresses a number of optimizer warnings (!) about 3352 // dropping arguments. 3353 if (!Entry->use_empty()) { 3354 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 3355 Entry->removeDeadConstantUsers(); 3356 } 3357 3358 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 3359 F, Entry->getValueType()->getPointerTo()); 3360 addGlobalValReplacement(Entry, BC); 3361 } 3362 3363 assert(F->getName() == MangledName && "name was uniqued!"); 3364 if (D) 3365 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 3366 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 3367 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 3368 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 3369 } 3370 3371 if (!DontDefer) { 3372 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 3373 // each other bottoming out with the base dtor. Therefore we emit non-base 3374 // dtors on usage, even if there is no dtor definition in the TU. 3375 if (D && isa<CXXDestructorDecl>(D) && 3376 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 3377 GD.getDtorType())) 3378 addDeferredDeclToEmit(GD); 3379 3380 // This is the first use or definition of a mangled name. If there is a 3381 // deferred decl with this name, remember that we need to emit it at the end 3382 // of the file. 3383 auto DDI = DeferredDecls.find(MangledName); 3384 if (DDI != DeferredDecls.end()) { 3385 // Move the potentially referenced deferred decl to the 3386 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 3387 // don't need it anymore). 3388 addDeferredDeclToEmit(DDI->second); 3389 DeferredDecls.erase(DDI); 3390 3391 // Otherwise, there are cases we have to worry about where we're 3392 // using a declaration for which we must emit a definition but where 3393 // we might not find a top-level definition: 3394 // - member functions defined inline in their classes 3395 // - friend functions defined inline in some class 3396 // - special member functions with implicit definitions 3397 // If we ever change our AST traversal to walk into class methods, 3398 // this will be unnecessary. 3399 // 3400 // We also don't emit a definition for a function if it's going to be an 3401 // entry in a vtable, unless it's already marked as used. 3402 } else if (getLangOpts().CPlusPlus && D) { 3403 // Look for a declaration that's lexically in a record. 3404 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 3405 FD = FD->getPreviousDecl()) { 3406 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 3407 if (FD->doesThisDeclarationHaveABody()) { 3408 addDeferredDeclToEmit(GD.getWithDecl(FD)); 3409 break; 3410 } 3411 } 3412 } 3413 } 3414 } 3415 3416 // Make sure the result is of the requested type. 3417 if (!IsIncompleteFunction) { 3418 assert(F->getFunctionType() == Ty); 3419 return F; 3420 } 3421 3422 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 3423 return llvm::ConstantExpr::getBitCast(F, PTy); 3424 } 3425 3426 /// GetAddrOfFunction - Return the address of the given function. If Ty is 3427 /// non-null, then this function will use the specified type if it has to 3428 /// create it (this occurs when we see a definition of the function). 3429 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 3430 llvm::Type *Ty, 3431 bool ForVTable, 3432 bool DontDefer, 3433 ForDefinition_t IsForDefinition) { 3434 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 3435 "consteval function should never be emitted"); 3436 // If there was no specific requested type, just convert it now. 3437 if (!Ty) { 3438 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3439 Ty = getTypes().ConvertType(FD->getType()); 3440 } 3441 3442 // Devirtualized destructor calls may come through here instead of via 3443 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 3444 // of the complete destructor when necessary. 3445 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 3446 if (getTarget().getCXXABI().isMicrosoft() && 3447 GD.getDtorType() == Dtor_Complete && 3448 DD->getParent()->getNumVBases() == 0) 3449 GD = GlobalDecl(DD, Dtor_Base); 3450 } 3451 3452 StringRef MangledName = getMangledName(GD); 3453 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 3454 /*IsThunk=*/false, llvm::AttributeList(), 3455 IsForDefinition); 3456 } 3457 3458 static const FunctionDecl * 3459 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 3460 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 3461 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3462 3463 IdentifierInfo &CII = C.Idents.get(Name); 3464 for (const auto &Result : DC->lookup(&CII)) 3465 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 3466 return FD; 3467 3468 if (!C.getLangOpts().CPlusPlus) 3469 return nullptr; 3470 3471 // Demangle the premangled name from getTerminateFn() 3472 IdentifierInfo &CXXII = 3473 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 3474 ? C.Idents.get("terminate") 3475 : C.Idents.get(Name); 3476 3477 for (const auto &N : {"__cxxabiv1", "std"}) { 3478 IdentifierInfo &NS = C.Idents.get(N); 3479 for (const auto &Result : DC->lookup(&NS)) { 3480 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 3481 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 3482 for (const auto &Result : LSD->lookup(&NS)) 3483 if ((ND = dyn_cast<NamespaceDecl>(Result))) 3484 break; 3485 3486 if (ND) 3487 for (const auto &Result : ND->lookup(&CXXII)) 3488 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 3489 return FD; 3490 } 3491 } 3492 3493 return nullptr; 3494 } 3495 3496 /// CreateRuntimeFunction - Create a new runtime function with the specified 3497 /// type and name. 3498 llvm::FunctionCallee 3499 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 3500 llvm::AttributeList ExtraAttrs, bool Local, 3501 bool AssumeConvergent) { 3502 if (AssumeConvergent) { 3503 ExtraAttrs = 3504 ExtraAttrs.addAttribute(VMContext, llvm::AttributeList::FunctionIndex, 3505 llvm::Attribute::Convergent); 3506 } 3507 3508 llvm::Constant *C = 3509 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 3510 /*DontDefer=*/false, /*IsThunk=*/false, 3511 ExtraAttrs); 3512 3513 if (auto *F = dyn_cast<llvm::Function>(C)) { 3514 if (F->empty()) { 3515 F->setCallingConv(getRuntimeCC()); 3516 3517 // In Windows Itanium environments, try to mark runtime functions 3518 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 3519 // will link their standard library statically or dynamically. Marking 3520 // functions imported when they are not imported can cause linker errors 3521 // and warnings. 3522 if (!Local && getTriple().isWindowsItaniumEnvironment() && 3523 !getCodeGenOpts().LTOVisibilityPublicStd) { 3524 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 3525 if (!FD || FD->hasAttr<DLLImportAttr>()) { 3526 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3527 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 3528 } 3529 } 3530 setDSOLocal(F); 3531 } 3532 } 3533 3534 return {FTy, C}; 3535 } 3536 3537 /// isTypeConstant - Determine whether an object of this type can be emitted 3538 /// as a constant. 3539 /// 3540 /// If ExcludeCtor is true, the duration when the object's constructor runs 3541 /// will not be considered. The caller will need to verify that the object is 3542 /// not written to during its construction. 3543 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 3544 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 3545 return false; 3546 3547 if (Context.getLangOpts().CPlusPlus) { 3548 if (const CXXRecordDecl *Record 3549 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 3550 return ExcludeCtor && !Record->hasMutableFields() && 3551 Record->hasTrivialDestructor(); 3552 } 3553 3554 return true; 3555 } 3556 3557 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 3558 /// create and return an llvm GlobalVariable with the specified type. If there 3559 /// is something in the module with the specified name, return it potentially 3560 /// bitcasted to the right type. 3561 /// 3562 /// If D is non-null, it specifies a decl that correspond to this. This is used 3563 /// to set the attributes on the global when it is first created. 3564 /// 3565 /// If IsForDefinition is true, it is guaranteed that an actual global with 3566 /// type Ty will be returned, not conversion of a variable with the same 3567 /// mangled name but some other type. 3568 llvm::Constant * 3569 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 3570 llvm::PointerType *Ty, 3571 const VarDecl *D, 3572 ForDefinition_t IsForDefinition) { 3573 // Lookup the entry, lazily creating it if necessary. 3574 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3575 if (Entry) { 3576 if (WeakRefReferences.erase(Entry)) { 3577 if (D && !D->hasAttr<WeakAttr>()) 3578 Entry->setLinkage(llvm::Function::ExternalLinkage); 3579 } 3580 3581 // Handle dropped DLL attributes. 3582 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 3583 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 3584 3585 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 3586 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 3587 3588 if (Entry->getType() == Ty) 3589 return Entry; 3590 3591 // If there are two attempts to define the same mangled name, issue an 3592 // error. 3593 if (IsForDefinition && !Entry->isDeclaration()) { 3594 GlobalDecl OtherGD; 3595 const VarDecl *OtherD; 3596 3597 // Check that D is not yet in DiagnosedConflictingDefinitions is required 3598 // to make sure that we issue an error only once. 3599 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 3600 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 3601 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 3602 OtherD->hasInit() && 3603 DiagnosedConflictingDefinitions.insert(D).second) { 3604 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 3605 << MangledName; 3606 getDiags().Report(OtherGD.getDecl()->getLocation(), 3607 diag::note_previous_definition); 3608 } 3609 } 3610 3611 // Make sure the result is of the correct type. 3612 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 3613 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 3614 3615 // (If global is requested for a definition, we always need to create a new 3616 // global, not just return a bitcast.) 3617 if (!IsForDefinition) 3618 return llvm::ConstantExpr::getBitCast(Entry, Ty); 3619 } 3620 3621 auto AddrSpace = GetGlobalVarAddressSpace(D); 3622 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 3623 3624 auto *GV = new llvm::GlobalVariable( 3625 getModule(), Ty->getElementType(), false, 3626 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 3627 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 3628 3629 // If we already created a global with the same mangled name (but different 3630 // type) before, take its name and remove it from its parent. 3631 if (Entry) { 3632 GV->takeName(Entry); 3633 3634 if (!Entry->use_empty()) { 3635 llvm::Constant *NewPtrForOldDecl = 3636 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3637 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3638 } 3639 3640 Entry->eraseFromParent(); 3641 } 3642 3643 // This is the first use or definition of a mangled name. If there is a 3644 // deferred decl with this name, remember that we need to emit it at the end 3645 // of the file. 3646 auto DDI = DeferredDecls.find(MangledName); 3647 if (DDI != DeferredDecls.end()) { 3648 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 3649 // list, and remove it from DeferredDecls (since we don't need it anymore). 3650 addDeferredDeclToEmit(DDI->second); 3651 DeferredDecls.erase(DDI); 3652 } 3653 3654 // Handle things which are present even on external declarations. 3655 if (D) { 3656 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 3657 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 3658 3659 // FIXME: This code is overly simple and should be merged with other global 3660 // handling. 3661 GV->setConstant(isTypeConstant(D->getType(), false)); 3662 3663 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 3664 3665 setLinkageForGV(GV, D); 3666 3667 if (D->getTLSKind()) { 3668 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3669 CXXThreadLocals.push_back(D); 3670 setTLSMode(GV, *D); 3671 } 3672 3673 setGVProperties(GV, D); 3674 3675 // If required by the ABI, treat declarations of static data members with 3676 // inline initializers as definitions. 3677 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3678 EmitGlobalVarDefinition(D); 3679 } 3680 3681 // Emit section information for extern variables. 3682 if (D->hasExternalStorage()) { 3683 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3684 GV->setSection(SA->getName()); 3685 } 3686 3687 // Handle XCore specific ABI requirements. 3688 if (getTriple().getArch() == llvm::Triple::xcore && 3689 D->getLanguageLinkage() == CLanguageLinkage && 3690 D->getType().isConstant(Context) && 3691 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3692 GV->setSection(".cp.rodata"); 3693 3694 // Check if we a have a const declaration with an initializer, we may be 3695 // able to emit it as available_externally to expose it's value to the 3696 // optimizer. 3697 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3698 D->getType().isConstQualified() && !GV->hasInitializer() && 3699 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3700 const auto *Record = 3701 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3702 bool HasMutableFields = Record && Record->hasMutableFields(); 3703 if (!HasMutableFields) { 3704 const VarDecl *InitDecl; 3705 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3706 if (InitExpr) { 3707 ConstantEmitter emitter(*this); 3708 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3709 if (Init) { 3710 auto *InitType = Init->getType(); 3711 if (GV->getValueType() != InitType) { 3712 // The type of the initializer does not match the definition. 3713 // This happens when an initializer has a different type from 3714 // the type of the global (because of padding at the end of a 3715 // structure for instance). 3716 GV->setName(StringRef()); 3717 // Make a new global with the correct type, this is now guaranteed 3718 // to work. 3719 auto *NewGV = cast<llvm::GlobalVariable>( 3720 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 3721 ->stripPointerCasts()); 3722 3723 // Erase the old global, since it is no longer used. 3724 GV->eraseFromParent(); 3725 GV = NewGV; 3726 } else { 3727 GV->setInitializer(Init); 3728 GV->setConstant(true); 3729 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3730 } 3731 emitter.finalize(GV); 3732 } 3733 } 3734 } 3735 } 3736 } 3737 3738 if (GV->isDeclaration()) 3739 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 3740 3741 LangAS ExpectedAS = 3742 D ? D->getType().getAddressSpace() 3743 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3744 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3745 Ty->getPointerAddressSpace()); 3746 if (AddrSpace != ExpectedAS) 3747 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3748 ExpectedAS, Ty); 3749 3750 return GV; 3751 } 3752 3753 llvm::Constant * 3754 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 3755 const Decl *D = GD.getDecl(); 3756 3757 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 3758 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3759 /*DontDefer=*/false, IsForDefinition); 3760 3761 if (isa<CXXMethodDecl>(D)) { 3762 auto FInfo = 3763 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 3764 auto Ty = getTypes().GetFunctionType(*FInfo); 3765 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3766 IsForDefinition); 3767 } 3768 3769 if (isa<FunctionDecl>(D)) { 3770 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3771 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3772 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3773 IsForDefinition); 3774 } 3775 3776 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 3777 } 3778 3779 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 3780 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 3781 unsigned Alignment) { 3782 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3783 llvm::GlobalVariable *OldGV = nullptr; 3784 3785 if (GV) { 3786 // Check if the variable has the right type. 3787 if (GV->getValueType() == Ty) 3788 return GV; 3789 3790 // Because C++ name mangling, the only way we can end up with an already 3791 // existing global with the same name is if it has been declared extern "C". 3792 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3793 OldGV = GV; 3794 } 3795 3796 // Create a new variable. 3797 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3798 Linkage, nullptr, Name); 3799 3800 if (OldGV) { 3801 // Replace occurrences of the old variable if needed. 3802 GV->takeName(OldGV); 3803 3804 if (!OldGV->use_empty()) { 3805 llvm::Constant *NewPtrForOldDecl = 3806 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3807 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3808 } 3809 3810 OldGV->eraseFromParent(); 3811 } 3812 3813 if (supportsCOMDAT() && GV->isWeakForLinker() && 3814 !GV->hasAvailableExternallyLinkage()) 3815 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3816 3817 GV->setAlignment(llvm::MaybeAlign(Alignment)); 3818 3819 return GV; 3820 } 3821 3822 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3823 /// given global variable. If Ty is non-null and if the global doesn't exist, 3824 /// then it will be created with the specified type instead of whatever the 3825 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3826 /// that an actual global with type Ty will be returned, not conversion of a 3827 /// variable with the same mangled name but some other type. 3828 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3829 llvm::Type *Ty, 3830 ForDefinition_t IsForDefinition) { 3831 assert(D->hasGlobalStorage() && "Not a global variable"); 3832 QualType ASTTy = D->getType(); 3833 if (!Ty) 3834 Ty = getTypes().ConvertTypeForMem(ASTTy); 3835 3836 llvm::PointerType *PTy = 3837 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3838 3839 StringRef MangledName = getMangledName(D); 3840 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3841 } 3842 3843 /// CreateRuntimeVariable - Create a new runtime global variable with the 3844 /// specified type and name. 3845 llvm::Constant * 3846 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3847 StringRef Name) { 3848 auto PtrTy = 3849 getContext().getLangOpts().OpenCL 3850 ? llvm::PointerType::get( 3851 Ty, getContext().getTargetAddressSpace(LangAS::opencl_global)) 3852 : llvm::PointerType::getUnqual(Ty); 3853 auto *Ret = GetOrCreateLLVMGlobal(Name, PtrTy, nullptr); 3854 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3855 return Ret; 3856 } 3857 3858 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3859 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3860 3861 StringRef MangledName = getMangledName(D); 3862 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3863 3864 // We already have a definition, not declaration, with the same mangled name. 3865 // Emitting of declaration is not required (and actually overwrites emitted 3866 // definition). 3867 if (GV && !GV->isDeclaration()) 3868 return; 3869 3870 // If we have not seen a reference to this variable yet, place it into the 3871 // deferred declarations table to be emitted if needed later. 3872 if (!MustBeEmitted(D) && !GV) { 3873 DeferredDecls[MangledName] = D; 3874 return; 3875 } 3876 3877 // The tentative definition is the only definition. 3878 EmitGlobalVarDefinition(D); 3879 } 3880 3881 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 3882 EmitExternalVarDeclaration(D); 3883 } 3884 3885 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3886 return Context.toCharUnitsFromBits( 3887 getDataLayout().getTypeStoreSizeInBits(Ty)); 3888 } 3889 3890 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3891 LangAS AddrSpace = LangAS::Default; 3892 if (LangOpts.OpenCL) { 3893 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3894 assert(AddrSpace == LangAS::opencl_global || 3895 AddrSpace == LangAS::opencl_global_device || 3896 AddrSpace == LangAS::opencl_global_host || 3897 AddrSpace == LangAS::opencl_constant || 3898 AddrSpace == LangAS::opencl_local || 3899 AddrSpace >= LangAS::FirstTargetAddressSpace); 3900 return AddrSpace; 3901 } 3902 3903 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3904 if (D && D->hasAttr<CUDAConstantAttr>()) 3905 return LangAS::cuda_constant; 3906 else if (D && D->hasAttr<CUDASharedAttr>()) 3907 return LangAS::cuda_shared; 3908 else if (D && D->hasAttr<CUDADeviceAttr>()) 3909 return LangAS::cuda_device; 3910 else if (D && D->getType().isConstQualified()) 3911 return LangAS::cuda_constant; 3912 else 3913 return LangAS::cuda_device; 3914 } 3915 3916 if (LangOpts.OpenMP) { 3917 LangAS AS; 3918 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 3919 return AS; 3920 } 3921 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3922 } 3923 3924 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3925 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3926 if (LangOpts.OpenCL) 3927 return LangAS::opencl_constant; 3928 if (auto AS = getTarget().getConstantAddressSpace()) 3929 return AS.getValue(); 3930 return LangAS::Default; 3931 } 3932 3933 // In address space agnostic languages, string literals are in default address 3934 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3935 // emitted in constant address space in LLVM IR. To be consistent with other 3936 // parts of AST, string literal global variables in constant address space 3937 // need to be casted to default address space before being put into address 3938 // map and referenced by other part of CodeGen. 3939 // In OpenCL, string literals are in constant address space in AST, therefore 3940 // they should not be casted to default address space. 3941 static llvm::Constant * 3942 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3943 llvm::GlobalVariable *GV) { 3944 llvm::Constant *Cast = GV; 3945 if (!CGM.getLangOpts().OpenCL) { 3946 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3947 if (AS != LangAS::Default) 3948 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3949 CGM, GV, AS.getValue(), LangAS::Default, 3950 GV->getValueType()->getPointerTo( 3951 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3952 } 3953 } 3954 return Cast; 3955 } 3956 3957 template<typename SomeDecl> 3958 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3959 llvm::GlobalValue *GV) { 3960 if (!getLangOpts().CPlusPlus) 3961 return; 3962 3963 // Must have 'used' attribute, or else inline assembly can't rely on 3964 // the name existing. 3965 if (!D->template hasAttr<UsedAttr>()) 3966 return; 3967 3968 // Must have internal linkage and an ordinary name. 3969 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3970 return; 3971 3972 // Must be in an extern "C" context. Entities declared directly within 3973 // a record are not extern "C" even if the record is in such a context. 3974 const SomeDecl *First = D->getFirstDecl(); 3975 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3976 return; 3977 3978 // OK, this is an internal linkage entity inside an extern "C" linkage 3979 // specification. Make a note of that so we can give it the "expected" 3980 // mangled name if nothing else is using that name. 3981 std::pair<StaticExternCMap::iterator, bool> R = 3982 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3983 3984 // If we have multiple internal linkage entities with the same name 3985 // in extern "C" regions, none of them gets that name. 3986 if (!R.second) 3987 R.first->second = nullptr; 3988 } 3989 3990 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3991 if (!CGM.supportsCOMDAT()) 3992 return false; 3993 3994 // Do not set COMDAT attribute for CUDA/HIP stub functions to prevent 3995 // them being "merged" by the COMDAT Folding linker optimization. 3996 if (D.hasAttr<CUDAGlobalAttr>()) 3997 return false; 3998 3999 if (D.hasAttr<SelectAnyAttr>()) 4000 return true; 4001 4002 GVALinkage Linkage; 4003 if (auto *VD = dyn_cast<VarDecl>(&D)) 4004 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4005 else 4006 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4007 4008 switch (Linkage) { 4009 case GVA_Internal: 4010 case GVA_AvailableExternally: 4011 case GVA_StrongExternal: 4012 return false; 4013 case GVA_DiscardableODR: 4014 case GVA_StrongODR: 4015 return true; 4016 } 4017 llvm_unreachable("No such linkage"); 4018 } 4019 4020 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4021 llvm::GlobalObject &GO) { 4022 if (!shouldBeInCOMDAT(*this, D)) 4023 return; 4024 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4025 } 4026 4027 /// Pass IsTentative as true if you want to create a tentative definition. 4028 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4029 bool IsTentative) { 4030 // OpenCL global variables of sampler type are translated to function calls, 4031 // therefore no need to be translated. 4032 QualType ASTTy = D->getType(); 4033 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4034 return; 4035 4036 // If this is OpenMP device, check if it is legal to emit this global 4037 // normally. 4038 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4039 OpenMPRuntime->emitTargetGlobalVariable(D)) 4040 return; 4041 4042 llvm::Constant *Init = nullptr; 4043 bool NeedsGlobalCtor = false; 4044 bool NeedsGlobalDtor = 4045 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4046 4047 const VarDecl *InitDecl; 4048 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4049 4050 Optional<ConstantEmitter> emitter; 4051 4052 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4053 // as part of their declaration." Sema has already checked for 4054 // error cases, so we just need to set Init to UndefValue. 4055 bool IsCUDASharedVar = 4056 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4057 // Shadows of initialized device-side global variables are also left 4058 // undefined. 4059 bool IsCUDAShadowVar = 4060 !getLangOpts().CUDAIsDevice && 4061 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4062 D->hasAttr<CUDASharedAttr>()); 4063 bool IsCUDADeviceShadowVar = 4064 getLangOpts().CUDAIsDevice && 4065 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4066 D->getType()->isCUDADeviceBuiltinTextureType()); 4067 // HIP pinned shadow of initialized host-side global variables are also 4068 // left undefined. 4069 if (getLangOpts().CUDA && 4070 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4071 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4072 else if (D->hasAttr<LoaderUninitializedAttr>()) 4073 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 4074 else if (!InitExpr) { 4075 // This is a tentative definition; tentative definitions are 4076 // implicitly initialized with { 0 }. 4077 // 4078 // Note that tentative definitions are only emitted at the end of 4079 // a translation unit, so they should never have incomplete 4080 // type. In addition, EmitTentativeDefinition makes sure that we 4081 // never attempt to emit a tentative definition if a real one 4082 // exists. A use may still exists, however, so we still may need 4083 // to do a RAUW. 4084 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4085 Init = EmitNullConstant(D->getType()); 4086 } else { 4087 initializedGlobalDecl = GlobalDecl(D); 4088 emitter.emplace(*this); 4089 Init = emitter->tryEmitForInitializer(*InitDecl); 4090 4091 if (!Init) { 4092 QualType T = InitExpr->getType(); 4093 if (D->getType()->isReferenceType()) 4094 T = D->getType(); 4095 4096 if (getLangOpts().CPlusPlus) { 4097 Init = EmitNullConstant(T); 4098 NeedsGlobalCtor = true; 4099 } else { 4100 ErrorUnsupported(D, "static initializer"); 4101 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4102 } 4103 } else { 4104 // We don't need an initializer, so remove the entry for the delayed 4105 // initializer position (just in case this entry was delayed) if we 4106 // also don't need to register a destructor. 4107 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4108 DelayedCXXInitPosition.erase(D); 4109 } 4110 } 4111 4112 llvm::Type* InitType = Init->getType(); 4113 llvm::Constant *Entry = 4114 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4115 4116 // Strip off pointer casts if we got them. 4117 Entry = Entry->stripPointerCasts(); 4118 4119 // Entry is now either a Function or GlobalVariable. 4120 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4121 4122 // We have a definition after a declaration with the wrong type. 4123 // We must make a new GlobalVariable* and update everything that used OldGV 4124 // (a declaration or tentative definition) with the new GlobalVariable* 4125 // (which will be a definition). 4126 // 4127 // This happens if there is a prototype for a global (e.g. 4128 // "extern int x[];") and then a definition of a different type (e.g. 4129 // "int x[10];"). This also happens when an initializer has a different type 4130 // from the type of the global (this happens with unions). 4131 if (!GV || GV->getValueType() != InitType || 4132 GV->getType()->getAddressSpace() != 4133 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4134 4135 // Move the old entry aside so that we'll create a new one. 4136 Entry->setName(StringRef()); 4137 4138 // Make a new global with the correct type, this is now guaranteed to work. 4139 GV = cast<llvm::GlobalVariable>( 4140 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4141 ->stripPointerCasts()); 4142 4143 // Replace all uses of the old global with the new global 4144 llvm::Constant *NewPtrForOldDecl = 4145 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4146 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4147 4148 // Erase the old global, since it is no longer used. 4149 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4150 } 4151 4152 MaybeHandleStaticInExternC(D, GV); 4153 4154 if (D->hasAttr<AnnotateAttr>()) 4155 AddGlobalAnnotations(D, GV); 4156 4157 // Set the llvm linkage type as appropriate. 4158 llvm::GlobalValue::LinkageTypes Linkage = 4159 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4160 4161 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4162 // the device. [...]" 4163 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4164 // __device__, declares a variable that: [...] 4165 // Is accessible from all the threads within the grid and from the host 4166 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4167 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4168 if (GV && LangOpts.CUDA) { 4169 if (LangOpts.CUDAIsDevice) { 4170 if (Linkage != llvm::GlobalValue::InternalLinkage && 4171 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>())) 4172 GV->setExternallyInitialized(true); 4173 } else { 4174 // Host-side shadows of external declarations of device-side 4175 // global variables become internal definitions. These have to 4176 // be internal in order to prevent name conflicts with global 4177 // host variables with the same name in a different TUs. 4178 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 4179 Linkage = llvm::GlobalValue::InternalLinkage; 4180 // Shadow variables and their properties must be registered with CUDA 4181 // runtime. Skip Extern global variables, which will be registered in 4182 // the TU where they are defined. 4183 // 4184 // Don't register a C++17 inline variable. The local symbol can be 4185 // discarded and referencing a discarded local symbol from outside the 4186 // comdat (__cuda_register_globals) is disallowed by the ELF spec. 4187 // TODO: Reject __device__ constexpr and __device__ inline in Sema. 4188 if (!D->hasExternalStorage() && !D->isInline()) 4189 getCUDARuntime().registerDeviceVar(D, *GV, !D->hasDefinition(), 4190 D->hasAttr<CUDAConstantAttr>()); 4191 } else if (D->hasAttr<CUDASharedAttr>()) { 4192 // __shared__ variables are odd. Shadows do get created, but 4193 // they are not registered with the CUDA runtime, so they 4194 // can't really be used to access their device-side 4195 // counterparts. It's not clear yet whether it's nvcc's bug or 4196 // a feature, but we've got to do the same for compatibility. 4197 Linkage = llvm::GlobalValue::InternalLinkage; 4198 } else if (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4199 D->getType()->isCUDADeviceBuiltinTextureType()) { 4200 // Builtin surfaces and textures and their template arguments are 4201 // also registered with CUDA runtime. 4202 Linkage = llvm::GlobalValue::InternalLinkage; 4203 const ClassTemplateSpecializationDecl *TD = 4204 cast<ClassTemplateSpecializationDecl>( 4205 D->getType()->getAs<RecordType>()->getDecl()); 4206 const TemplateArgumentList &Args = TD->getTemplateArgs(); 4207 if (TD->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) { 4208 assert(Args.size() == 2 && 4209 "Unexpected number of template arguments of CUDA device " 4210 "builtin surface type."); 4211 auto SurfType = Args[1].getAsIntegral(); 4212 if (!D->hasExternalStorage()) 4213 getCUDARuntime().registerDeviceSurf(D, *GV, !D->hasDefinition(), 4214 SurfType.getSExtValue()); 4215 } else { 4216 assert(Args.size() == 3 && 4217 "Unexpected number of template arguments of CUDA device " 4218 "builtin texture type."); 4219 auto TexType = Args[1].getAsIntegral(); 4220 auto Normalized = Args[2].getAsIntegral(); 4221 if (!D->hasExternalStorage()) 4222 getCUDARuntime().registerDeviceTex(D, *GV, !D->hasDefinition(), 4223 TexType.getSExtValue(), 4224 Normalized.getZExtValue()); 4225 } 4226 } 4227 } 4228 } 4229 4230 GV->setInitializer(Init); 4231 if (emitter) 4232 emitter->finalize(GV); 4233 4234 // If it is safe to mark the global 'constant', do so now. 4235 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4236 isTypeConstant(D->getType(), true)); 4237 4238 // If it is in a read-only section, mark it 'constant'. 4239 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 4240 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 4241 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 4242 GV->setConstant(true); 4243 } 4244 4245 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4246 4247 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 4248 // function is only defined alongside the variable, not also alongside 4249 // callers. Normally, all accesses to a thread_local go through the 4250 // thread-wrapper in order to ensure initialization has occurred, underlying 4251 // variable will never be used other than the thread-wrapper, so it can be 4252 // converted to internal linkage. 4253 // 4254 // However, if the variable has the 'constinit' attribute, it _can_ be 4255 // referenced directly, without calling the thread-wrapper, so the linkage 4256 // must not be changed. 4257 // 4258 // Additionally, if the variable isn't plain external linkage, e.g. if it's 4259 // weak or linkonce, the de-duplication semantics are important to preserve, 4260 // so we don't change the linkage. 4261 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 4262 Linkage == llvm::GlobalValue::ExternalLinkage && 4263 Context.getTargetInfo().getTriple().isOSDarwin() && 4264 !D->hasAttr<ConstInitAttr>()) 4265 Linkage = llvm::GlobalValue::InternalLinkage; 4266 4267 GV->setLinkage(Linkage); 4268 if (D->hasAttr<DLLImportAttr>()) 4269 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 4270 else if (D->hasAttr<DLLExportAttr>()) 4271 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 4272 else 4273 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 4274 4275 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 4276 // common vars aren't constant even if declared const. 4277 GV->setConstant(false); 4278 // Tentative definition of global variables may be initialized with 4279 // non-zero null pointers. In this case they should have weak linkage 4280 // since common linkage must have zero initializer and must not have 4281 // explicit section therefore cannot have non-zero initial value. 4282 if (!GV->getInitializer()->isNullValue()) 4283 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 4284 } 4285 4286 setNonAliasAttributes(D, GV); 4287 4288 if (D->getTLSKind() && !GV->isThreadLocal()) { 4289 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4290 CXXThreadLocals.push_back(D); 4291 setTLSMode(GV, *D); 4292 } 4293 4294 maybeSetTrivialComdat(*D, *GV); 4295 4296 // Emit the initializer function if necessary. 4297 if (NeedsGlobalCtor || NeedsGlobalDtor) 4298 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 4299 4300 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 4301 4302 // Emit global variable debug information. 4303 if (CGDebugInfo *DI = getModuleDebugInfo()) 4304 if (getCodeGenOpts().hasReducedDebugInfo()) 4305 DI->EmitGlobalVariable(GV, D); 4306 } 4307 4308 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 4309 if (CGDebugInfo *DI = getModuleDebugInfo()) 4310 if (getCodeGenOpts().hasReducedDebugInfo()) { 4311 QualType ASTTy = D->getType(); 4312 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 4313 llvm::PointerType *PTy = 4314 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 4315 llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), PTy, D); 4316 DI->EmitExternalVariable( 4317 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 4318 } 4319 } 4320 4321 static bool isVarDeclStrongDefinition(const ASTContext &Context, 4322 CodeGenModule &CGM, const VarDecl *D, 4323 bool NoCommon) { 4324 // Don't give variables common linkage if -fno-common was specified unless it 4325 // was overridden by a NoCommon attribute. 4326 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 4327 return true; 4328 4329 // C11 6.9.2/2: 4330 // A declaration of an identifier for an object that has file scope without 4331 // an initializer, and without a storage-class specifier or with the 4332 // storage-class specifier static, constitutes a tentative definition. 4333 if (D->getInit() || D->hasExternalStorage()) 4334 return true; 4335 4336 // A variable cannot be both common and exist in a section. 4337 if (D->hasAttr<SectionAttr>()) 4338 return true; 4339 4340 // A variable cannot be both common and exist in a section. 4341 // We don't try to determine which is the right section in the front-end. 4342 // If no specialized section name is applicable, it will resort to default. 4343 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 4344 D->hasAttr<PragmaClangDataSectionAttr>() || 4345 D->hasAttr<PragmaClangRelroSectionAttr>() || 4346 D->hasAttr<PragmaClangRodataSectionAttr>()) 4347 return true; 4348 4349 // Thread local vars aren't considered common linkage. 4350 if (D->getTLSKind()) 4351 return true; 4352 4353 // Tentative definitions marked with WeakImportAttr are true definitions. 4354 if (D->hasAttr<WeakImportAttr>()) 4355 return true; 4356 4357 // A variable cannot be both common and exist in a comdat. 4358 if (shouldBeInCOMDAT(CGM, *D)) 4359 return true; 4360 4361 // Declarations with a required alignment do not have common linkage in MSVC 4362 // mode. 4363 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4364 if (D->hasAttr<AlignedAttr>()) 4365 return true; 4366 QualType VarType = D->getType(); 4367 if (Context.isAlignmentRequired(VarType)) 4368 return true; 4369 4370 if (const auto *RT = VarType->getAs<RecordType>()) { 4371 const RecordDecl *RD = RT->getDecl(); 4372 for (const FieldDecl *FD : RD->fields()) { 4373 if (FD->isBitField()) 4374 continue; 4375 if (FD->hasAttr<AlignedAttr>()) 4376 return true; 4377 if (Context.isAlignmentRequired(FD->getType())) 4378 return true; 4379 } 4380 } 4381 } 4382 4383 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 4384 // common symbols, so symbols with greater alignment requirements cannot be 4385 // common. 4386 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 4387 // alignments for common symbols via the aligncomm directive, so this 4388 // restriction only applies to MSVC environments. 4389 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 4390 Context.getTypeAlignIfKnown(D->getType()) > 4391 Context.toBits(CharUnits::fromQuantity(32))) 4392 return true; 4393 4394 return false; 4395 } 4396 4397 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 4398 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 4399 if (Linkage == GVA_Internal) 4400 return llvm::Function::InternalLinkage; 4401 4402 if (D->hasAttr<WeakAttr>()) { 4403 if (IsConstantVariable) 4404 return llvm::GlobalVariable::WeakODRLinkage; 4405 else 4406 return llvm::GlobalVariable::WeakAnyLinkage; 4407 } 4408 4409 if (const auto *FD = D->getAsFunction()) 4410 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 4411 return llvm::GlobalVariable::LinkOnceAnyLinkage; 4412 4413 // We are guaranteed to have a strong definition somewhere else, 4414 // so we can use available_externally linkage. 4415 if (Linkage == GVA_AvailableExternally) 4416 return llvm::GlobalValue::AvailableExternallyLinkage; 4417 4418 // Note that Apple's kernel linker doesn't support symbol 4419 // coalescing, so we need to avoid linkonce and weak linkages there. 4420 // Normally, this means we just map to internal, but for explicit 4421 // instantiations we'll map to external. 4422 4423 // In C++, the compiler has to emit a definition in every translation unit 4424 // that references the function. We should use linkonce_odr because 4425 // a) if all references in this translation unit are optimized away, we 4426 // don't need to codegen it. b) if the function persists, it needs to be 4427 // merged with other definitions. c) C++ has the ODR, so we know the 4428 // definition is dependable. 4429 if (Linkage == GVA_DiscardableODR) 4430 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 4431 : llvm::Function::InternalLinkage; 4432 4433 // An explicit instantiation of a template has weak linkage, since 4434 // explicit instantiations can occur in multiple translation units 4435 // and must all be equivalent. However, we are not allowed to 4436 // throw away these explicit instantiations. 4437 // 4438 // We don't currently support CUDA device code spread out across multiple TUs, 4439 // so say that CUDA templates are either external (for kernels) or internal. 4440 // This lets llvm perform aggressive inter-procedural optimizations. 4441 if (Linkage == GVA_StrongODR) { 4442 if (Context.getLangOpts().AppleKext) 4443 return llvm::Function::ExternalLinkage; 4444 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 4445 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 4446 : llvm::Function::InternalLinkage; 4447 return llvm::Function::WeakODRLinkage; 4448 } 4449 4450 // C++ doesn't have tentative definitions and thus cannot have common 4451 // linkage. 4452 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 4453 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 4454 CodeGenOpts.NoCommon)) 4455 return llvm::GlobalVariable::CommonLinkage; 4456 4457 // selectany symbols are externally visible, so use weak instead of 4458 // linkonce. MSVC optimizes away references to const selectany globals, so 4459 // all definitions should be the same and ODR linkage should be used. 4460 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 4461 if (D->hasAttr<SelectAnyAttr>()) 4462 return llvm::GlobalVariable::WeakODRLinkage; 4463 4464 // Otherwise, we have strong external linkage. 4465 assert(Linkage == GVA_StrongExternal); 4466 return llvm::GlobalVariable::ExternalLinkage; 4467 } 4468 4469 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 4470 const VarDecl *VD, bool IsConstant) { 4471 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 4472 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 4473 } 4474 4475 /// Replace the uses of a function that was declared with a non-proto type. 4476 /// We want to silently drop extra arguments from call sites 4477 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 4478 llvm::Function *newFn) { 4479 // Fast path. 4480 if (old->use_empty()) return; 4481 4482 llvm::Type *newRetTy = newFn->getReturnType(); 4483 SmallVector<llvm::Value*, 4> newArgs; 4484 SmallVector<llvm::OperandBundleDef, 1> newBundles; 4485 4486 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 4487 ui != ue; ) { 4488 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 4489 llvm::User *user = use->getUser(); 4490 4491 // Recognize and replace uses of bitcasts. Most calls to 4492 // unprototyped functions will use bitcasts. 4493 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 4494 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 4495 replaceUsesOfNonProtoConstant(bitcast, newFn); 4496 continue; 4497 } 4498 4499 // Recognize calls to the function. 4500 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 4501 if (!callSite) continue; 4502 if (!callSite->isCallee(&*use)) 4503 continue; 4504 4505 // If the return types don't match exactly, then we can't 4506 // transform this call unless it's dead. 4507 if (callSite->getType() != newRetTy && !callSite->use_empty()) 4508 continue; 4509 4510 // Get the call site's attribute list. 4511 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 4512 llvm::AttributeList oldAttrs = callSite->getAttributes(); 4513 4514 // If the function was passed too few arguments, don't transform. 4515 unsigned newNumArgs = newFn->arg_size(); 4516 if (callSite->arg_size() < newNumArgs) 4517 continue; 4518 4519 // If extra arguments were passed, we silently drop them. 4520 // If any of the types mismatch, we don't transform. 4521 unsigned argNo = 0; 4522 bool dontTransform = false; 4523 for (llvm::Argument &A : newFn->args()) { 4524 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 4525 dontTransform = true; 4526 break; 4527 } 4528 4529 // Add any parameter attributes. 4530 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 4531 argNo++; 4532 } 4533 if (dontTransform) 4534 continue; 4535 4536 // Okay, we can transform this. Create the new call instruction and copy 4537 // over the required information. 4538 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 4539 4540 // Copy over any operand bundles. 4541 callSite->getOperandBundlesAsDefs(newBundles); 4542 4543 llvm::CallBase *newCall; 4544 if (dyn_cast<llvm::CallInst>(callSite)) { 4545 newCall = 4546 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 4547 } else { 4548 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 4549 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 4550 oldInvoke->getUnwindDest(), newArgs, 4551 newBundles, "", callSite); 4552 } 4553 newArgs.clear(); // for the next iteration 4554 4555 if (!newCall->getType()->isVoidTy()) 4556 newCall->takeName(callSite); 4557 newCall->setAttributes(llvm::AttributeList::get( 4558 newFn->getContext(), oldAttrs.getFnAttributes(), 4559 oldAttrs.getRetAttributes(), newArgAttrs)); 4560 newCall->setCallingConv(callSite->getCallingConv()); 4561 4562 // Finally, remove the old call, replacing any uses with the new one. 4563 if (!callSite->use_empty()) 4564 callSite->replaceAllUsesWith(newCall); 4565 4566 // Copy debug location attached to CI. 4567 if (callSite->getDebugLoc()) 4568 newCall->setDebugLoc(callSite->getDebugLoc()); 4569 4570 callSite->eraseFromParent(); 4571 } 4572 } 4573 4574 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 4575 /// implement a function with no prototype, e.g. "int foo() {}". If there are 4576 /// existing call uses of the old function in the module, this adjusts them to 4577 /// call the new function directly. 4578 /// 4579 /// This is not just a cleanup: the always_inline pass requires direct calls to 4580 /// functions to be able to inline them. If there is a bitcast in the way, it 4581 /// won't inline them. Instcombine normally deletes these calls, but it isn't 4582 /// run at -O0. 4583 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4584 llvm::Function *NewFn) { 4585 // If we're redefining a global as a function, don't transform it. 4586 if (!isa<llvm::Function>(Old)) return; 4587 4588 replaceUsesOfNonProtoConstant(Old, NewFn); 4589 } 4590 4591 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 4592 auto DK = VD->isThisDeclarationADefinition(); 4593 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 4594 return; 4595 4596 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 4597 // If we have a definition, this might be a deferred decl. If the 4598 // instantiation is explicit, make sure we emit it at the end. 4599 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 4600 GetAddrOfGlobalVar(VD); 4601 4602 EmitTopLevelDecl(VD); 4603 } 4604 4605 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 4606 llvm::GlobalValue *GV) { 4607 const auto *D = cast<FunctionDecl>(GD.getDecl()); 4608 4609 // Compute the function info and LLVM type. 4610 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4611 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4612 4613 // Get or create the prototype for the function. 4614 if (!GV || (GV->getValueType() != Ty)) 4615 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 4616 /*DontDefer=*/true, 4617 ForDefinition)); 4618 4619 // Already emitted. 4620 if (!GV->isDeclaration()) 4621 return; 4622 4623 // We need to set linkage and visibility on the function before 4624 // generating code for it because various parts of IR generation 4625 // want to propagate this information down (e.g. to local static 4626 // declarations). 4627 auto *Fn = cast<llvm::Function>(GV); 4628 setFunctionLinkage(GD, Fn); 4629 4630 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 4631 setGVProperties(Fn, GD); 4632 4633 MaybeHandleStaticInExternC(D, Fn); 4634 4635 maybeSetTrivialComdat(*D, *Fn); 4636 4637 // Set CodeGen attributes that represent floating point environment. 4638 setLLVMFunctionFEnvAttributes(D, Fn); 4639 4640 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 4641 4642 setNonAliasAttributes(GD, Fn); 4643 SetLLVMFunctionAttributesForDefinition(D, Fn); 4644 4645 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 4646 AddGlobalCtor(Fn, CA->getPriority()); 4647 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 4648 AddGlobalDtor(Fn, DA->getPriority()); 4649 if (D->hasAttr<AnnotateAttr>()) 4650 AddGlobalAnnotations(D, Fn); 4651 } 4652 4653 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 4654 const auto *D = cast<ValueDecl>(GD.getDecl()); 4655 const AliasAttr *AA = D->getAttr<AliasAttr>(); 4656 assert(AA && "Not an alias?"); 4657 4658 StringRef MangledName = getMangledName(GD); 4659 4660 if (AA->getAliasee() == MangledName) { 4661 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4662 return; 4663 } 4664 4665 // If there is a definition in the module, then it wins over the alias. 4666 // This is dubious, but allow it to be safe. Just ignore the alias. 4667 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4668 if (Entry && !Entry->isDeclaration()) 4669 return; 4670 4671 Aliases.push_back(GD); 4672 4673 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4674 4675 // Create a reference to the named value. This ensures that it is emitted 4676 // if a deferred decl. 4677 llvm::Constant *Aliasee; 4678 llvm::GlobalValue::LinkageTypes LT; 4679 if (isa<llvm::FunctionType>(DeclTy)) { 4680 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 4681 /*ForVTable=*/false); 4682 LT = getFunctionLinkage(GD); 4683 } else { 4684 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 4685 llvm::PointerType::getUnqual(DeclTy), 4686 /*D=*/nullptr); 4687 LT = getLLVMLinkageVarDefinition(cast<VarDecl>(GD.getDecl()), 4688 D->getType().isConstQualified()); 4689 } 4690 4691 // Create the new alias itself, but don't set a name yet. 4692 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 4693 auto *GA = 4694 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 4695 4696 if (Entry) { 4697 if (GA->getAliasee() == Entry) { 4698 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 4699 return; 4700 } 4701 4702 assert(Entry->isDeclaration()); 4703 4704 // If there is a declaration in the module, then we had an extern followed 4705 // by the alias, as in: 4706 // extern int test6(); 4707 // ... 4708 // int test6() __attribute__((alias("test7"))); 4709 // 4710 // Remove it and replace uses of it with the alias. 4711 GA->takeName(Entry); 4712 4713 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 4714 Entry->getType())); 4715 Entry->eraseFromParent(); 4716 } else { 4717 GA->setName(MangledName); 4718 } 4719 4720 // Set attributes which are particular to an alias; this is a 4721 // specialization of the attributes which may be set on a global 4722 // variable/function. 4723 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 4724 D->isWeakImported()) { 4725 GA->setLinkage(llvm::Function::WeakAnyLinkage); 4726 } 4727 4728 if (const auto *VD = dyn_cast<VarDecl>(D)) 4729 if (VD->getTLSKind()) 4730 setTLSMode(GA, *VD); 4731 4732 SetCommonAttributes(GD, GA); 4733 } 4734 4735 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 4736 const auto *D = cast<ValueDecl>(GD.getDecl()); 4737 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 4738 assert(IFA && "Not an ifunc?"); 4739 4740 StringRef MangledName = getMangledName(GD); 4741 4742 if (IFA->getResolver() == MangledName) { 4743 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4744 return; 4745 } 4746 4747 // Report an error if some definition overrides ifunc. 4748 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4749 if (Entry && !Entry->isDeclaration()) { 4750 GlobalDecl OtherGD; 4751 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4752 DiagnosedConflictingDefinitions.insert(GD).second) { 4753 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 4754 << MangledName; 4755 Diags.Report(OtherGD.getDecl()->getLocation(), 4756 diag::note_previous_definition); 4757 } 4758 return; 4759 } 4760 4761 Aliases.push_back(GD); 4762 4763 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 4764 llvm::Constant *Resolver = 4765 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 4766 /*ForVTable=*/false); 4767 llvm::GlobalIFunc *GIF = 4768 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 4769 "", Resolver, &getModule()); 4770 if (Entry) { 4771 if (GIF->getResolver() == Entry) { 4772 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4773 return; 4774 } 4775 assert(Entry->isDeclaration()); 4776 4777 // If there is a declaration in the module, then we had an extern followed 4778 // by the ifunc, as in: 4779 // extern int test(); 4780 // ... 4781 // int test() __attribute__((ifunc("resolver"))); 4782 // 4783 // Remove it and replace uses of it with the ifunc. 4784 GIF->takeName(Entry); 4785 4786 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4787 Entry->getType())); 4788 Entry->eraseFromParent(); 4789 } else 4790 GIF->setName(MangledName); 4791 4792 SetCommonAttributes(GD, GIF); 4793 } 4794 4795 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4796 ArrayRef<llvm::Type*> Tys) { 4797 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4798 Tys); 4799 } 4800 4801 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4802 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4803 const StringLiteral *Literal, bool TargetIsLSB, 4804 bool &IsUTF16, unsigned &StringLength) { 4805 StringRef String = Literal->getString(); 4806 unsigned NumBytes = String.size(); 4807 4808 // Check for simple case. 4809 if (!Literal->containsNonAsciiOrNull()) { 4810 StringLength = NumBytes; 4811 return *Map.insert(std::make_pair(String, nullptr)).first; 4812 } 4813 4814 // Otherwise, convert the UTF8 literals into a string of shorts. 4815 IsUTF16 = true; 4816 4817 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4818 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4819 llvm::UTF16 *ToPtr = &ToBuf[0]; 4820 4821 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4822 ToPtr + NumBytes, llvm::strictConversion); 4823 4824 // ConvertUTF8toUTF16 returns the length in ToPtr. 4825 StringLength = ToPtr - &ToBuf[0]; 4826 4827 // Add an explicit null. 4828 *ToPtr = 0; 4829 return *Map.insert(std::make_pair( 4830 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4831 (StringLength + 1) * 2), 4832 nullptr)).first; 4833 } 4834 4835 ConstantAddress 4836 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4837 unsigned StringLength = 0; 4838 bool isUTF16 = false; 4839 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4840 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4841 getDataLayout().isLittleEndian(), isUTF16, 4842 StringLength); 4843 4844 if (auto *C = Entry.second) 4845 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4846 4847 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4848 llvm::Constant *Zeros[] = { Zero, Zero }; 4849 4850 const ASTContext &Context = getContext(); 4851 const llvm::Triple &Triple = getTriple(); 4852 4853 const auto CFRuntime = getLangOpts().CFRuntime; 4854 const bool IsSwiftABI = 4855 static_cast<unsigned>(CFRuntime) >= 4856 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 4857 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 4858 4859 // If we don't already have it, get __CFConstantStringClassReference. 4860 if (!CFConstantStringClassRef) { 4861 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 4862 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4863 Ty = llvm::ArrayType::get(Ty, 0); 4864 4865 switch (CFRuntime) { 4866 default: break; 4867 case LangOptions::CoreFoundationABI::Swift: LLVM_FALLTHROUGH; 4868 case LangOptions::CoreFoundationABI::Swift5_0: 4869 CFConstantStringClassName = 4870 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 4871 : "$s10Foundation19_NSCFConstantStringCN"; 4872 Ty = IntPtrTy; 4873 break; 4874 case LangOptions::CoreFoundationABI::Swift4_2: 4875 CFConstantStringClassName = 4876 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 4877 : "$S10Foundation19_NSCFConstantStringCN"; 4878 Ty = IntPtrTy; 4879 break; 4880 case LangOptions::CoreFoundationABI::Swift4_1: 4881 CFConstantStringClassName = 4882 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 4883 : "__T010Foundation19_NSCFConstantStringCN"; 4884 Ty = IntPtrTy; 4885 break; 4886 } 4887 4888 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 4889 4890 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 4891 llvm::GlobalValue *GV = nullptr; 4892 4893 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 4894 IdentifierInfo &II = Context.Idents.get(GV->getName()); 4895 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 4896 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4897 4898 const VarDecl *VD = nullptr; 4899 for (const auto &Result : DC->lookup(&II)) 4900 if ((VD = dyn_cast<VarDecl>(Result))) 4901 break; 4902 4903 if (Triple.isOSBinFormatELF()) { 4904 if (!VD) 4905 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4906 } else { 4907 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4908 if (!VD || !VD->hasAttr<DLLExportAttr>()) 4909 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4910 else 4911 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4912 } 4913 4914 setDSOLocal(GV); 4915 } 4916 } 4917 4918 // Decay array -> ptr 4919 CFConstantStringClassRef = 4920 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 4921 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 4922 } 4923 4924 QualType CFTy = Context.getCFConstantStringType(); 4925 4926 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4927 4928 ConstantInitBuilder Builder(*this); 4929 auto Fields = Builder.beginStruct(STy); 4930 4931 // Class pointer. 4932 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4933 4934 // Flags. 4935 if (IsSwiftABI) { 4936 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 4937 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 4938 } else { 4939 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4940 } 4941 4942 // String pointer. 4943 llvm::Constant *C = nullptr; 4944 if (isUTF16) { 4945 auto Arr = llvm::makeArrayRef( 4946 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4947 Entry.first().size() / 2); 4948 C = llvm::ConstantDataArray::get(VMContext, Arr); 4949 } else { 4950 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4951 } 4952 4953 // Note: -fwritable-strings doesn't make the backing store strings of 4954 // CFStrings writable. (See <rdar://problem/10657500>) 4955 auto *GV = 4956 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4957 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4958 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4959 // Don't enforce the target's minimum global alignment, since the only use 4960 // of the string is via this class initializer. 4961 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 4962 : Context.getTypeAlignInChars(Context.CharTy); 4963 GV->setAlignment(Align.getAsAlign()); 4964 4965 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4966 // Without it LLVM can merge the string with a non unnamed_addr one during 4967 // LTO. Doing that changes the section it ends in, which surprises ld64. 4968 if (Triple.isOSBinFormatMachO()) 4969 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4970 : "__TEXT,__cstring,cstring_literals"); 4971 // Make sure the literal ends up in .rodata to allow for safe ICF and for 4972 // the static linker to adjust permissions to read-only later on. 4973 else if (Triple.isOSBinFormatELF()) 4974 GV->setSection(".rodata"); 4975 4976 // String. 4977 llvm::Constant *Str = 4978 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4979 4980 if (isUTF16) 4981 // Cast the UTF16 string to the correct type. 4982 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4983 Fields.add(Str); 4984 4985 // String length. 4986 llvm::IntegerType *LengthTy = 4987 llvm::IntegerType::get(getModule().getContext(), 4988 Context.getTargetInfo().getLongWidth()); 4989 if (IsSwiftABI) { 4990 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 4991 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 4992 LengthTy = Int32Ty; 4993 else 4994 LengthTy = IntPtrTy; 4995 } 4996 Fields.addInt(LengthTy, StringLength); 4997 4998 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 4999 // properly aligned on 32-bit platforms. 5000 CharUnits Alignment = 5001 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5002 5003 // The struct. 5004 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5005 /*isConstant=*/false, 5006 llvm::GlobalVariable::PrivateLinkage); 5007 GV->addAttribute("objc_arc_inert"); 5008 switch (Triple.getObjectFormat()) { 5009 case llvm::Triple::UnknownObjectFormat: 5010 llvm_unreachable("unknown file format"); 5011 case llvm::Triple::GOFF: 5012 llvm_unreachable("GOFF is not yet implemented"); 5013 case llvm::Triple::XCOFF: 5014 llvm_unreachable("XCOFF is not yet implemented"); 5015 case llvm::Triple::COFF: 5016 case llvm::Triple::ELF: 5017 case llvm::Triple::Wasm: 5018 GV->setSection("cfstring"); 5019 break; 5020 case llvm::Triple::MachO: 5021 GV->setSection("__DATA,__cfstring"); 5022 break; 5023 } 5024 Entry.second = GV; 5025 5026 return ConstantAddress(GV, Alignment); 5027 } 5028 5029 bool CodeGenModule::getExpressionLocationsEnabled() const { 5030 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5031 } 5032 5033 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5034 if (ObjCFastEnumerationStateType.isNull()) { 5035 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5036 D->startDefinition(); 5037 5038 QualType FieldTypes[] = { 5039 Context.UnsignedLongTy, 5040 Context.getPointerType(Context.getObjCIdType()), 5041 Context.getPointerType(Context.UnsignedLongTy), 5042 Context.getConstantArrayType(Context.UnsignedLongTy, 5043 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5044 }; 5045 5046 for (size_t i = 0; i < 4; ++i) { 5047 FieldDecl *Field = FieldDecl::Create(Context, 5048 D, 5049 SourceLocation(), 5050 SourceLocation(), nullptr, 5051 FieldTypes[i], /*TInfo=*/nullptr, 5052 /*BitWidth=*/nullptr, 5053 /*Mutable=*/false, 5054 ICIS_NoInit); 5055 Field->setAccess(AS_public); 5056 D->addDecl(Field); 5057 } 5058 5059 D->completeDefinition(); 5060 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5061 } 5062 5063 return ObjCFastEnumerationStateType; 5064 } 5065 5066 llvm::Constant * 5067 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5068 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5069 5070 // Don't emit it as the address of the string, emit the string data itself 5071 // as an inline array. 5072 if (E->getCharByteWidth() == 1) { 5073 SmallString<64> Str(E->getString()); 5074 5075 // Resize the string to the right size, which is indicated by its type. 5076 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5077 Str.resize(CAT->getSize().getZExtValue()); 5078 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5079 } 5080 5081 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5082 llvm::Type *ElemTy = AType->getElementType(); 5083 unsigned NumElements = AType->getNumElements(); 5084 5085 // Wide strings have either 2-byte or 4-byte elements. 5086 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5087 SmallVector<uint16_t, 32> Elements; 5088 Elements.reserve(NumElements); 5089 5090 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5091 Elements.push_back(E->getCodeUnit(i)); 5092 Elements.resize(NumElements); 5093 return llvm::ConstantDataArray::get(VMContext, Elements); 5094 } 5095 5096 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5097 SmallVector<uint32_t, 32> Elements; 5098 Elements.reserve(NumElements); 5099 5100 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5101 Elements.push_back(E->getCodeUnit(i)); 5102 Elements.resize(NumElements); 5103 return llvm::ConstantDataArray::get(VMContext, Elements); 5104 } 5105 5106 static llvm::GlobalVariable * 5107 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5108 CodeGenModule &CGM, StringRef GlobalName, 5109 CharUnits Alignment) { 5110 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5111 CGM.getStringLiteralAddressSpace()); 5112 5113 llvm::Module &M = CGM.getModule(); 5114 // Create a global variable for this string 5115 auto *GV = new llvm::GlobalVariable( 5116 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5117 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5118 GV->setAlignment(Alignment.getAsAlign()); 5119 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5120 if (GV->isWeakForLinker()) { 5121 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5122 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5123 } 5124 CGM.setDSOLocal(GV); 5125 5126 return GV; 5127 } 5128 5129 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5130 /// constant array for the given string literal. 5131 ConstantAddress 5132 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5133 StringRef Name) { 5134 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5135 5136 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5137 llvm::GlobalVariable **Entry = nullptr; 5138 if (!LangOpts.WritableStrings) { 5139 Entry = &ConstantStringMap[C]; 5140 if (auto GV = *Entry) { 5141 if (Alignment.getQuantity() > GV->getAlignment()) 5142 GV->setAlignment(Alignment.getAsAlign()); 5143 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5144 Alignment); 5145 } 5146 } 5147 5148 SmallString<256> MangledNameBuffer; 5149 StringRef GlobalVariableName; 5150 llvm::GlobalValue::LinkageTypes LT; 5151 5152 // Mangle the string literal if that's how the ABI merges duplicate strings. 5153 // Don't do it if they are writable, since we don't want writes in one TU to 5154 // affect strings in another. 5155 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5156 !LangOpts.WritableStrings) { 5157 llvm::raw_svector_ostream Out(MangledNameBuffer); 5158 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5159 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5160 GlobalVariableName = MangledNameBuffer; 5161 } else { 5162 LT = llvm::GlobalValue::PrivateLinkage; 5163 GlobalVariableName = Name; 5164 } 5165 5166 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5167 if (Entry) 5168 *Entry = GV; 5169 5170 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 5171 QualType()); 5172 5173 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5174 Alignment); 5175 } 5176 5177 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5178 /// array for the given ObjCEncodeExpr node. 5179 ConstantAddress 5180 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5181 std::string Str; 5182 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5183 5184 return GetAddrOfConstantCString(Str); 5185 } 5186 5187 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5188 /// the literal and a terminating '\0' character. 5189 /// The result has pointer to array type. 5190 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5191 const std::string &Str, const char *GlobalName) { 5192 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5193 CharUnits Alignment = 5194 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5195 5196 llvm::Constant *C = 5197 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5198 5199 // Don't share any string literals if strings aren't constant. 5200 llvm::GlobalVariable **Entry = nullptr; 5201 if (!LangOpts.WritableStrings) { 5202 Entry = &ConstantStringMap[C]; 5203 if (auto GV = *Entry) { 5204 if (Alignment.getQuantity() > GV->getAlignment()) 5205 GV->setAlignment(Alignment.getAsAlign()); 5206 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5207 Alignment); 5208 } 5209 } 5210 5211 // Get the default prefix if a name wasn't specified. 5212 if (!GlobalName) 5213 GlobalName = ".str"; 5214 // Create a global variable for this. 5215 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5216 GlobalName, Alignment); 5217 if (Entry) 5218 *Entry = GV; 5219 5220 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5221 Alignment); 5222 } 5223 5224 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 5225 const MaterializeTemporaryExpr *E, const Expr *Init) { 5226 assert((E->getStorageDuration() == SD_Static || 5227 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 5228 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 5229 5230 // If we're not materializing a subobject of the temporary, keep the 5231 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 5232 QualType MaterializedType = Init->getType(); 5233 if (Init == E->getSubExpr()) 5234 MaterializedType = E->getType(); 5235 5236 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 5237 5238 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 5239 return ConstantAddress(Slot, Align); 5240 5241 // FIXME: If an externally-visible declaration extends multiple temporaries, 5242 // we need to give each temporary the same name in every translation unit (and 5243 // we also need to make the temporaries externally-visible). 5244 SmallString<256> Name; 5245 llvm::raw_svector_ostream Out(Name); 5246 getCXXABI().getMangleContext().mangleReferenceTemporary( 5247 VD, E->getManglingNumber(), Out); 5248 5249 APValue *Value = nullptr; 5250 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 5251 // If the initializer of the extending declaration is a constant 5252 // initializer, we should have a cached constant initializer for this 5253 // temporary. Note that this might have a different value from the value 5254 // computed by evaluating the initializer if the surrounding constant 5255 // expression modifies the temporary. 5256 Value = E->getOrCreateValue(false); 5257 } 5258 5259 // Try evaluating it now, it might have a constant initializer. 5260 Expr::EvalResult EvalResult; 5261 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 5262 !EvalResult.hasSideEffects()) 5263 Value = &EvalResult.Val; 5264 5265 LangAS AddrSpace = 5266 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 5267 5268 Optional<ConstantEmitter> emitter; 5269 llvm::Constant *InitialValue = nullptr; 5270 bool Constant = false; 5271 llvm::Type *Type; 5272 if (Value) { 5273 // The temporary has a constant initializer, use it. 5274 emitter.emplace(*this); 5275 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 5276 MaterializedType); 5277 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 5278 Type = InitialValue->getType(); 5279 } else { 5280 // No initializer, the initialization will be provided when we 5281 // initialize the declaration which performed lifetime extension. 5282 Type = getTypes().ConvertTypeForMem(MaterializedType); 5283 } 5284 5285 // Create a global variable for this lifetime-extended temporary. 5286 llvm::GlobalValue::LinkageTypes Linkage = 5287 getLLVMLinkageVarDefinition(VD, Constant); 5288 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 5289 const VarDecl *InitVD; 5290 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 5291 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 5292 // Temporaries defined inside a class get linkonce_odr linkage because the 5293 // class can be defined in multiple translation units. 5294 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 5295 } else { 5296 // There is no need for this temporary to have external linkage if the 5297 // VarDecl has external linkage. 5298 Linkage = llvm::GlobalVariable::InternalLinkage; 5299 } 5300 } 5301 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 5302 auto *GV = new llvm::GlobalVariable( 5303 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 5304 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 5305 if (emitter) emitter->finalize(GV); 5306 setGVProperties(GV, VD); 5307 GV->setAlignment(Align.getAsAlign()); 5308 if (supportsCOMDAT() && GV->isWeakForLinker()) 5309 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5310 if (VD->getTLSKind()) 5311 setTLSMode(GV, *VD); 5312 llvm::Constant *CV = GV; 5313 if (AddrSpace != LangAS::Default) 5314 CV = getTargetCodeGenInfo().performAddrSpaceCast( 5315 *this, GV, AddrSpace, LangAS::Default, 5316 Type->getPointerTo( 5317 getContext().getTargetAddressSpace(LangAS::Default))); 5318 MaterializedGlobalTemporaryMap[E] = CV; 5319 return ConstantAddress(CV, Align); 5320 } 5321 5322 /// EmitObjCPropertyImplementations - Emit information for synthesized 5323 /// properties for an implementation. 5324 void CodeGenModule::EmitObjCPropertyImplementations(const 5325 ObjCImplementationDecl *D) { 5326 for (const auto *PID : D->property_impls()) { 5327 // Dynamic is just for type-checking. 5328 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 5329 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 5330 5331 // Determine which methods need to be implemented, some may have 5332 // been overridden. Note that ::isPropertyAccessor is not the method 5333 // we want, that just indicates if the decl came from a 5334 // property. What we want to know is if the method is defined in 5335 // this implementation. 5336 auto *Getter = PID->getGetterMethodDecl(); 5337 if (!Getter || Getter->isSynthesizedAccessorStub()) 5338 CodeGenFunction(*this).GenerateObjCGetter( 5339 const_cast<ObjCImplementationDecl *>(D), PID); 5340 auto *Setter = PID->getSetterMethodDecl(); 5341 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 5342 CodeGenFunction(*this).GenerateObjCSetter( 5343 const_cast<ObjCImplementationDecl *>(D), PID); 5344 } 5345 } 5346 } 5347 5348 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 5349 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 5350 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 5351 ivar; ivar = ivar->getNextIvar()) 5352 if (ivar->getType().isDestructedType()) 5353 return true; 5354 5355 return false; 5356 } 5357 5358 static bool AllTrivialInitializers(CodeGenModule &CGM, 5359 ObjCImplementationDecl *D) { 5360 CodeGenFunction CGF(CGM); 5361 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 5362 E = D->init_end(); B != E; ++B) { 5363 CXXCtorInitializer *CtorInitExp = *B; 5364 Expr *Init = CtorInitExp->getInit(); 5365 if (!CGF.isTrivialInitializer(Init)) 5366 return false; 5367 } 5368 return true; 5369 } 5370 5371 /// EmitObjCIvarInitializations - Emit information for ivar initialization 5372 /// for an implementation. 5373 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 5374 // We might need a .cxx_destruct even if we don't have any ivar initializers. 5375 if (needsDestructMethod(D)) { 5376 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 5377 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5378 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 5379 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5380 getContext().VoidTy, nullptr, D, 5381 /*isInstance=*/true, /*isVariadic=*/false, 5382 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5383 /*isImplicitlyDeclared=*/true, 5384 /*isDefined=*/false, ObjCMethodDecl::Required); 5385 D->addInstanceMethod(DTORMethod); 5386 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 5387 D->setHasDestructors(true); 5388 } 5389 5390 // If the implementation doesn't have any ivar initializers, we don't need 5391 // a .cxx_construct. 5392 if (D->getNumIvarInitializers() == 0 || 5393 AllTrivialInitializers(*this, D)) 5394 return; 5395 5396 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 5397 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 5398 // The constructor returns 'self'. 5399 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 5400 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 5401 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 5402 /*isVariadic=*/false, 5403 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 5404 /*isImplicitlyDeclared=*/true, 5405 /*isDefined=*/false, ObjCMethodDecl::Required); 5406 D->addInstanceMethod(CTORMethod); 5407 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 5408 D->setHasNonZeroConstructors(true); 5409 } 5410 5411 // EmitLinkageSpec - Emit all declarations in a linkage spec. 5412 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 5413 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 5414 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 5415 ErrorUnsupported(LSD, "linkage spec"); 5416 return; 5417 } 5418 5419 EmitDeclContext(LSD); 5420 } 5421 5422 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 5423 for (auto *I : DC->decls()) { 5424 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 5425 // are themselves considered "top-level", so EmitTopLevelDecl on an 5426 // ObjCImplDecl does not recursively visit them. We need to do that in 5427 // case they're nested inside another construct (LinkageSpecDecl / 5428 // ExportDecl) that does stop them from being considered "top-level". 5429 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 5430 for (auto *M : OID->methods()) 5431 EmitTopLevelDecl(M); 5432 } 5433 5434 EmitTopLevelDecl(I); 5435 } 5436 } 5437 5438 /// EmitTopLevelDecl - Emit code for a single top level declaration. 5439 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 5440 // Ignore dependent declarations. 5441 if (D->isTemplated()) 5442 return; 5443 5444 // Consteval function shouldn't be emitted. 5445 if (auto *FD = dyn_cast<FunctionDecl>(D)) 5446 if (FD->isConsteval()) 5447 return; 5448 5449 switch (D->getKind()) { 5450 case Decl::CXXConversion: 5451 case Decl::CXXMethod: 5452 case Decl::Function: 5453 EmitGlobal(cast<FunctionDecl>(D)); 5454 // Always provide some coverage mapping 5455 // even for the functions that aren't emitted. 5456 AddDeferredUnusedCoverageMapping(D); 5457 break; 5458 5459 case Decl::CXXDeductionGuide: 5460 // Function-like, but does not result in code emission. 5461 break; 5462 5463 case Decl::Var: 5464 case Decl::Decomposition: 5465 case Decl::VarTemplateSpecialization: 5466 EmitGlobal(cast<VarDecl>(D)); 5467 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 5468 for (auto *B : DD->bindings()) 5469 if (auto *HD = B->getHoldingVar()) 5470 EmitGlobal(HD); 5471 break; 5472 5473 // Indirect fields from global anonymous structs and unions can be 5474 // ignored; only the actual variable requires IR gen support. 5475 case Decl::IndirectField: 5476 break; 5477 5478 // C++ Decls 5479 case Decl::Namespace: 5480 EmitDeclContext(cast<NamespaceDecl>(D)); 5481 break; 5482 case Decl::ClassTemplateSpecialization: { 5483 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 5484 if (CGDebugInfo *DI = getModuleDebugInfo()) 5485 if (Spec->getSpecializationKind() == 5486 TSK_ExplicitInstantiationDefinition && 5487 Spec->hasDefinition()) 5488 DI->completeTemplateDefinition(*Spec); 5489 } LLVM_FALLTHROUGH; 5490 case Decl::CXXRecord: { 5491 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 5492 if (CGDebugInfo *DI = getModuleDebugInfo()) { 5493 if (CRD->hasDefinition()) 5494 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5495 if (auto *ES = D->getASTContext().getExternalSource()) 5496 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 5497 DI->completeUnusedClass(*CRD); 5498 } 5499 // Emit any static data members, they may be definitions. 5500 for (auto *I : CRD->decls()) 5501 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 5502 EmitTopLevelDecl(I); 5503 break; 5504 } 5505 // No code generation needed. 5506 case Decl::UsingShadow: 5507 case Decl::ClassTemplate: 5508 case Decl::VarTemplate: 5509 case Decl::Concept: 5510 case Decl::VarTemplatePartialSpecialization: 5511 case Decl::FunctionTemplate: 5512 case Decl::TypeAliasTemplate: 5513 case Decl::Block: 5514 case Decl::Empty: 5515 case Decl::Binding: 5516 break; 5517 case Decl::Using: // using X; [C++] 5518 if (CGDebugInfo *DI = getModuleDebugInfo()) 5519 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 5520 break; 5521 case Decl::NamespaceAlias: 5522 if (CGDebugInfo *DI = getModuleDebugInfo()) 5523 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 5524 break; 5525 case Decl::UsingDirective: // using namespace X; [C++] 5526 if (CGDebugInfo *DI = getModuleDebugInfo()) 5527 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 5528 break; 5529 case Decl::CXXConstructor: 5530 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 5531 break; 5532 case Decl::CXXDestructor: 5533 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 5534 break; 5535 5536 case Decl::StaticAssert: 5537 // Nothing to do. 5538 break; 5539 5540 // Objective-C Decls 5541 5542 // Forward declarations, no (immediate) code generation. 5543 case Decl::ObjCInterface: 5544 case Decl::ObjCCategory: 5545 break; 5546 5547 case Decl::ObjCProtocol: { 5548 auto *Proto = cast<ObjCProtocolDecl>(D); 5549 if (Proto->isThisDeclarationADefinition()) 5550 ObjCRuntime->GenerateProtocol(Proto); 5551 break; 5552 } 5553 5554 case Decl::ObjCCategoryImpl: 5555 // Categories have properties but don't support synthesize so we 5556 // can ignore them here. 5557 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 5558 break; 5559 5560 case Decl::ObjCImplementation: { 5561 auto *OMD = cast<ObjCImplementationDecl>(D); 5562 EmitObjCPropertyImplementations(OMD); 5563 EmitObjCIvarInitializations(OMD); 5564 ObjCRuntime->GenerateClass(OMD); 5565 // Emit global variable debug information. 5566 if (CGDebugInfo *DI = getModuleDebugInfo()) 5567 if (getCodeGenOpts().hasReducedDebugInfo()) 5568 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 5569 OMD->getClassInterface()), OMD->getLocation()); 5570 break; 5571 } 5572 case Decl::ObjCMethod: { 5573 auto *OMD = cast<ObjCMethodDecl>(D); 5574 // If this is not a prototype, emit the body. 5575 if (OMD->getBody()) 5576 CodeGenFunction(*this).GenerateObjCMethod(OMD); 5577 break; 5578 } 5579 case Decl::ObjCCompatibleAlias: 5580 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 5581 break; 5582 5583 case Decl::PragmaComment: { 5584 const auto *PCD = cast<PragmaCommentDecl>(D); 5585 switch (PCD->getCommentKind()) { 5586 case PCK_Unknown: 5587 llvm_unreachable("unexpected pragma comment kind"); 5588 case PCK_Linker: 5589 AppendLinkerOptions(PCD->getArg()); 5590 break; 5591 case PCK_Lib: 5592 AddDependentLib(PCD->getArg()); 5593 break; 5594 case PCK_Compiler: 5595 case PCK_ExeStr: 5596 case PCK_User: 5597 break; // We ignore all of these. 5598 } 5599 break; 5600 } 5601 5602 case Decl::PragmaDetectMismatch: { 5603 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 5604 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 5605 break; 5606 } 5607 5608 case Decl::LinkageSpec: 5609 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 5610 break; 5611 5612 case Decl::FileScopeAsm: { 5613 // File-scope asm is ignored during device-side CUDA compilation. 5614 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 5615 break; 5616 // File-scope asm is ignored during device-side OpenMP compilation. 5617 if (LangOpts.OpenMPIsDevice) 5618 break; 5619 auto *AD = cast<FileScopeAsmDecl>(D); 5620 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 5621 break; 5622 } 5623 5624 case Decl::Import: { 5625 auto *Import = cast<ImportDecl>(D); 5626 5627 // If we've already imported this module, we're done. 5628 if (!ImportedModules.insert(Import->getImportedModule())) 5629 break; 5630 5631 // Emit debug information for direct imports. 5632 if (!Import->getImportedOwningModule()) { 5633 if (CGDebugInfo *DI = getModuleDebugInfo()) 5634 DI->EmitImportDecl(*Import); 5635 } 5636 5637 // Find all of the submodules and emit the module initializers. 5638 llvm::SmallPtrSet<clang::Module *, 16> Visited; 5639 SmallVector<clang::Module *, 16> Stack; 5640 Visited.insert(Import->getImportedModule()); 5641 Stack.push_back(Import->getImportedModule()); 5642 5643 while (!Stack.empty()) { 5644 clang::Module *Mod = Stack.pop_back_val(); 5645 if (!EmittedModuleInitializers.insert(Mod).second) 5646 continue; 5647 5648 for (auto *D : Context.getModuleInitializers(Mod)) 5649 EmitTopLevelDecl(D); 5650 5651 // Visit the submodules of this module. 5652 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 5653 SubEnd = Mod->submodule_end(); 5654 Sub != SubEnd; ++Sub) { 5655 // Skip explicit children; they need to be explicitly imported to emit 5656 // the initializers. 5657 if ((*Sub)->IsExplicit) 5658 continue; 5659 5660 if (Visited.insert(*Sub).second) 5661 Stack.push_back(*Sub); 5662 } 5663 } 5664 break; 5665 } 5666 5667 case Decl::Export: 5668 EmitDeclContext(cast<ExportDecl>(D)); 5669 break; 5670 5671 case Decl::OMPThreadPrivate: 5672 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 5673 break; 5674 5675 case Decl::OMPAllocate: 5676 break; 5677 5678 case Decl::OMPDeclareReduction: 5679 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 5680 break; 5681 5682 case Decl::OMPDeclareMapper: 5683 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 5684 break; 5685 5686 case Decl::OMPRequires: 5687 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 5688 break; 5689 5690 case Decl::Typedef: 5691 case Decl::TypeAlias: // using foo = bar; [C++11] 5692 if (CGDebugInfo *DI = getModuleDebugInfo()) 5693 DI->EmitAndRetainType( 5694 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 5695 break; 5696 5697 case Decl::Record: 5698 if (CGDebugInfo *DI = getModuleDebugInfo()) 5699 if (cast<RecordDecl>(D)->getDefinition()) 5700 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 5701 break; 5702 5703 case Decl::Enum: 5704 if (CGDebugInfo *DI = getModuleDebugInfo()) 5705 if (cast<EnumDecl>(D)->getDefinition()) 5706 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 5707 break; 5708 5709 default: 5710 // Make sure we handled everything we should, every other kind is a 5711 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 5712 // function. Need to recode Decl::Kind to do that easily. 5713 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 5714 break; 5715 } 5716 } 5717 5718 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 5719 // Do we need to generate coverage mapping? 5720 if (!CodeGenOpts.CoverageMapping) 5721 return; 5722 switch (D->getKind()) { 5723 case Decl::CXXConversion: 5724 case Decl::CXXMethod: 5725 case Decl::Function: 5726 case Decl::ObjCMethod: 5727 case Decl::CXXConstructor: 5728 case Decl::CXXDestructor: { 5729 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 5730 break; 5731 SourceManager &SM = getContext().getSourceManager(); 5732 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 5733 break; 5734 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5735 if (I == DeferredEmptyCoverageMappingDecls.end()) 5736 DeferredEmptyCoverageMappingDecls[D] = true; 5737 break; 5738 } 5739 default: 5740 break; 5741 }; 5742 } 5743 5744 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 5745 // Do we need to generate coverage mapping? 5746 if (!CodeGenOpts.CoverageMapping) 5747 return; 5748 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 5749 if (Fn->isTemplateInstantiation()) 5750 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 5751 } 5752 auto I = DeferredEmptyCoverageMappingDecls.find(D); 5753 if (I == DeferredEmptyCoverageMappingDecls.end()) 5754 DeferredEmptyCoverageMappingDecls[D] = false; 5755 else 5756 I->second = false; 5757 } 5758 5759 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 5760 // We call takeVector() here to avoid use-after-free. 5761 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 5762 // we deserialize function bodies to emit coverage info for them, and that 5763 // deserializes more declarations. How should we handle that case? 5764 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 5765 if (!Entry.second) 5766 continue; 5767 const Decl *D = Entry.first; 5768 switch (D->getKind()) { 5769 case Decl::CXXConversion: 5770 case Decl::CXXMethod: 5771 case Decl::Function: 5772 case Decl::ObjCMethod: { 5773 CodeGenPGO PGO(*this); 5774 GlobalDecl GD(cast<FunctionDecl>(D)); 5775 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5776 getFunctionLinkage(GD)); 5777 break; 5778 } 5779 case Decl::CXXConstructor: { 5780 CodeGenPGO PGO(*this); 5781 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 5782 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5783 getFunctionLinkage(GD)); 5784 break; 5785 } 5786 case Decl::CXXDestructor: { 5787 CodeGenPGO PGO(*this); 5788 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 5789 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 5790 getFunctionLinkage(GD)); 5791 break; 5792 } 5793 default: 5794 break; 5795 }; 5796 } 5797 } 5798 5799 void CodeGenModule::EmitMainVoidAlias() { 5800 // In order to transition away from "__original_main" gracefully, emit an 5801 // alias for "main" in the no-argument case so that libc can detect when 5802 // new-style no-argument main is in used. 5803 if (llvm::Function *F = getModule().getFunction("main")) { 5804 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 5805 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) 5806 addUsedGlobal(llvm::GlobalAlias::create("__main_void", F)); 5807 } 5808 } 5809 5810 /// Turns the given pointer into a constant. 5811 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 5812 const void *Ptr) { 5813 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 5814 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 5815 return llvm::ConstantInt::get(i64, PtrInt); 5816 } 5817 5818 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 5819 llvm::NamedMDNode *&GlobalMetadata, 5820 GlobalDecl D, 5821 llvm::GlobalValue *Addr) { 5822 if (!GlobalMetadata) 5823 GlobalMetadata = 5824 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 5825 5826 // TODO: should we report variant information for ctors/dtors? 5827 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 5828 llvm::ConstantAsMetadata::get(GetPointerConstant( 5829 CGM.getLLVMContext(), D.getDecl()))}; 5830 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 5831 } 5832 5833 /// For each function which is declared within an extern "C" region and marked 5834 /// as 'used', but has internal linkage, create an alias from the unmangled 5835 /// name to the mangled name if possible. People expect to be able to refer 5836 /// to such functions with an unmangled name from inline assembly within the 5837 /// same translation unit. 5838 void CodeGenModule::EmitStaticExternCAliases() { 5839 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 5840 return; 5841 for (auto &I : StaticExternCValues) { 5842 IdentifierInfo *Name = I.first; 5843 llvm::GlobalValue *Val = I.second; 5844 if (Val && !getModule().getNamedValue(Name->getName())) 5845 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 5846 } 5847 } 5848 5849 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 5850 GlobalDecl &Result) const { 5851 auto Res = Manglings.find(MangledName); 5852 if (Res == Manglings.end()) 5853 return false; 5854 Result = Res->getValue(); 5855 return true; 5856 } 5857 5858 /// Emits metadata nodes associating all the global values in the 5859 /// current module with the Decls they came from. This is useful for 5860 /// projects using IR gen as a subroutine. 5861 /// 5862 /// Since there's currently no way to associate an MDNode directly 5863 /// with an llvm::GlobalValue, we create a global named metadata 5864 /// with the name 'clang.global.decl.ptrs'. 5865 void CodeGenModule::EmitDeclMetadata() { 5866 llvm::NamedMDNode *GlobalMetadata = nullptr; 5867 5868 for (auto &I : MangledDeclNames) { 5869 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 5870 // Some mangled names don't necessarily have an associated GlobalValue 5871 // in this module, e.g. if we mangled it for DebugInfo. 5872 if (Addr) 5873 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 5874 } 5875 } 5876 5877 /// Emits metadata nodes for all the local variables in the current 5878 /// function. 5879 void CodeGenFunction::EmitDeclMetadata() { 5880 if (LocalDeclMap.empty()) return; 5881 5882 llvm::LLVMContext &Context = getLLVMContext(); 5883 5884 // Find the unique metadata ID for this name. 5885 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5886 5887 llvm::NamedMDNode *GlobalMetadata = nullptr; 5888 5889 for (auto &I : LocalDeclMap) { 5890 const Decl *D = I.first; 5891 llvm::Value *Addr = I.second.getPointer(); 5892 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5893 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5894 Alloca->setMetadata( 5895 DeclPtrKind, llvm::MDNode::get( 5896 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5897 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5898 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5899 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5900 } 5901 } 5902 } 5903 5904 void CodeGenModule::EmitVersionIdentMetadata() { 5905 llvm::NamedMDNode *IdentMetadata = 5906 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5907 std::string Version = getClangFullVersion(); 5908 llvm::LLVMContext &Ctx = TheModule.getContext(); 5909 5910 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5911 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5912 } 5913 5914 void CodeGenModule::EmitCommandLineMetadata() { 5915 llvm::NamedMDNode *CommandLineMetadata = 5916 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 5917 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 5918 llvm::LLVMContext &Ctx = TheModule.getContext(); 5919 5920 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 5921 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 5922 } 5923 5924 void CodeGenModule::EmitCoverageFile() { 5925 if (getCodeGenOpts().CoverageDataFile.empty() && 5926 getCodeGenOpts().CoverageNotesFile.empty()) 5927 return; 5928 5929 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5930 if (!CUNode) 5931 return; 5932 5933 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5934 llvm::LLVMContext &Ctx = TheModule.getContext(); 5935 auto *CoverageDataFile = 5936 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5937 auto *CoverageNotesFile = 5938 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5939 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5940 llvm::MDNode *CU = CUNode->getOperand(i); 5941 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5942 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5943 } 5944 } 5945 5946 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5947 bool ForEH) { 5948 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5949 // FIXME: should we even be calling this method if RTTI is disabled 5950 // and it's not for EH? 5951 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 5952 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 5953 getTriple().isNVPTX())) 5954 return llvm::Constant::getNullValue(Int8PtrTy); 5955 5956 if (ForEH && Ty->isObjCObjectPointerType() && 5957 LangOpts.ObjCRuntime.isGNUFamily()) 5958 return ObjCRuntime->GetEHType(Ty); 5959 5960 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5961 } 5962 5963 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5964 // Do not emit threadprivates in simd-only mode. 5965 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5966 return; 5967 for (auto RefExpr : D->varlists()) { 5968 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5969 bool PerformInit = 5970 VD->getAnyInitializer() && 5971 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5972 /*ForRef=*/false); 5973 5974 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5975 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5976 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 5977 CXXGlobalInits.push_back(InitFunction); 5978 } 5979 } 5980 5981 llvm::Metadata * 5982 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5983 StringRef Suffix) { 5984 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5985 if (InternalId) 5986 return InternalId; 5987 5988 if (isExternallyVisible(T->getLinkage())) { 5989 std::string OutName; 5990 llvm::raw_string_ostream Out(OutName); 5991 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5992 Out << Suffix; 5993 5994 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5995 } else { 5996 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5997 llvm::ArrayRef<llvm::Metadata *>()); 5998 } 5999 6000 return InternalId; 6001 } 6002 6003 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6004 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6005 } 6006 6007 llvm::Metadata * 6008 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6009 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6010 } 6011 6012 // Generalize pointer types to a void pointer with the qualifiers of the 6013 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6014 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6015 // 'void *'. 6016 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6017 if (!Ty->isPointerType()) 6018 return Ty; 6019 6020 return Ctx.getPointerType( 6021 QualType(Ctx.VoidTy).withCVRQualifiers( 6022 Ty->getPointeeType().getCVRQualifiers())); 6023 } 6024 6025 // Apply type generalization to a FunctionType's return and argument types 6026 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6027 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6028 SmallVector<QualType, 8> GeneralizedParams; 6029 for (auto &Param : FnType->param_types()) 6030 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6031 6032 return Ctx.getFunctionType( 6033 GeneralizeType(Ctx, FnType->getReturnType()), 6034 GeneralizedParams, FnType->getExtProtoInfo()); 6035 } 6036 6037 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6038 return Ctx.getFunctionNoProtoType( 6039 GeneralizeType(Ctx, FnType->getReturnType())); 6040 6041 llvm_unreachable("Encountered unknown FunctionType"); 6042 } 6043 6044 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 6045 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 6046 GeneralizedMetadataIdMap, ".generalized"); 6047 } 6048 6049 /// Returns whether this module needs the "all-vtables" type identifier. 6050 bool CodeGenModule::NeedAllVtablesTypeId() const { 6051 // Returns true if at least one of vtable-based CFI checkers is enabled and 6052 // is not in the trapping mode. 6053 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 6054 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 6055 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 6056 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 6057 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 6058 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 6059 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 6060 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 6061 } 6062 6063 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 6064 CharUnits Offset, 6065 const CXXRecordDecl *RD) { 6066 llvm::Metadata *MD = 6067 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 6068 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6069 6070 if (CodeGenOpts.SanitizeCfiCrossDso) 6071 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 6072 VTable->addTypeMetadata(Offset.getQuantity(), 6073 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 6074 6075 if (NeedAllVtablesTypeId()) { 6076 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 6077 VTable->addTypeMetadata(Offset.getQuantity(), MD); 6078 } 6079 } 6080 6081 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 6082 if (!SanStats) 6083 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 6084 6085 return *SanStats; 6086 } 6087 llvm::Value * 6088 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 6089 CodeGenFunction &CGF) { 6090 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 6091 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 6092 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 6093 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 6094 "__translate_sampler_initializer"), 6095 {C}); 6096 } 6097 6098 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 6099 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 6100 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 6101 /* forPointeeType= */ true); 6102 } 6103 6104 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 6105 LValueBaseInfo *BaseInfo, 6106 TBAAAccessInfo *TBAAInfo, 6107 bool forPointeeType) { 6108 if (TBAAInfo) 6109 *TBAAInfo = getTBAAAccessInfo(T); 6110 6111 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 6112 // that doesn't return the information we need to compute BaseInfo. 6113 6114 // Honor alignment typedef attributes even on incomplete types. 6115 // We also honor them straight for C++ class types, even as pointees; 6116 // there's an expressivity gap here. 6117 if (auto TT = T->getAs<TypedefType>()) { 6118 if (auto Align = TT->getDecl()->getMaxAlignment()) { 6119 if (BaseInfo) 6120 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 6121 return getContext().toCharUnitsFromBits(Align); 6122 } 6123 } 6124 6125 bool AlignForArray = T->isArrayType(); 6126 6127 // Analyze the base element type, so we don't get confused by incomplete 6128 // array types. 6129 T = getContext().getBaseElementType(T); 6130 6131 if (T->isIncompleteType()) { 6132 // We could try to replicate the logic from 6133 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 6134 // type is incomplete, so it's impossible to test. We could try to reuse 6135 // getTypeAlignIfKnown, but that doesn't return the information we need 6136 // to set BaseInfo. So just ignore the possibility that the alignment is 6137 // greater than one. 6138 if (BaseInfo) 6139 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6140 return CharUnits::One(); 6141 } 6142 6143 if (BaseInfo) 6144 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 6145 6146 CharUnits Alignment; 6147 // For C++ class pointees, we don't know whether we're pointing at a 6148 // base or a complete object, so we generally need to use the 6149 // non-virtual alignment. 6150 const CXXRecordDecl *RD; 6151 if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) { 6152 Alignment = getClassPointerAlignment(RD); 6153 } else { 6154 Alignment = getContext().getTypeAlignInChars(T); 6155 if (T.getQualifiers().hasUnaligned()) 6156 Alignment = CharUnits::One(); 6157 } 6158 6159 // Cap to the global maximum type alignment unless the alignment 6160 // was somehow explicit on the type. 6161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 6162 if (Alignment.getQuantity() > MaxAlign && 6163 !getContext().isAlignmentRequired(T)) 6164 Alignment = CharUnits::fromQuantity(MaxAlign); 6165 } 6166 return Alignment; 6167 } 6168 6169 bool CodeGenModule::stopAutoInit() { 6170 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 6171 if (StopAfter) { 6172 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 6173 // used 6174 if (NumAutoVarInit >= StopAfter) { 6175 return true; 6176 } 6177 if (!NumAutoVarInit) { 6178 unsigned DiagID = getDiags().getCustomDiagID( 6179 DiagnosticsEngine::Warning, 6180 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 6181 "number of times ftrivial-auto-var-init=%1 gets applied."); 6182 getDiags().Report(DiagID) 6183 << StopAfter 6184 << (getContext().getLangOpts().getTrivialAutoVarInit() == 6185 LangOptions::TrivialAutoVarInitKind::Zero 6186 ? "zero" 6187 : "pattern"); 6188 } 6189 ++NumAutoVarInit; 6190 } 6191 return false; 6192 } 6193