1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/Decl.h" 34 #include "clang/AST/DeclCXX.h" 35 #include "clang/AST/DeclObjC.h" 36 #include "clang/AST/DeclTemplate.h" 37 #include "clang/AST/Mangle.h" 38 #include "clang/AST/RecursiveASTVisitor.h" 39 #include "clang/AST/StmtVisitor.h" 40 #include "clang/Basic/Builtins.h" 41 #include "clang/Basic/CharInfo.h" 42 #include "clang/Basic/CodeGenOptions.h" 43 #include "clang/Basic/Diagnostic.h" 44 #include "clang/Basic/FileManager.h" 45 #include "clang/Basic/Module.h" 46 #include "clang/Basic/SourceManager.h" 47 #include "clang/Basic/TargetInfo.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/CodeGen/BackendUtil.h" 50 #include "clang/CodeGen/ConstantInitBuilder.h" 51 #include "clang/Frontend/FrontendDiagnostic.h" 52 #include "llvm/ADT/STLExtras.h" 53 #include "llvm/ADT/StringExtras.h" 54 #include "llvm/ADT/StringSwitch.h" 55 #include "llvm/Analysis/TargetLibraryInfo.h" 56 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 57 #include "llvm/IR/AttributeMask.h" 58 #include "llvm/IR/CallingConv.h" 59 #include "llvm/IR/DataLayout.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/ProfileSummary.h" 64 #include "llvm/ProfileData/InstrProfReader.h" 65 #include "llvm/ProfileData/SampleProf.h" 66 #include "llvm/Support/CRC.h" 67 #include "llvm/Support/CodeGen.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/ConvertUTF.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/RISCVISAInfo.h" 72 #include "llvm/Support/TimeProfiler.h" 73 #include "llvm/Support/xxhash.h" 74 #include "llvm/TargetParser/Triple.h" 75 #include "llvm/TargetParser/X86TargetParser.h" 76 #include <optional> 77 78 using namespace clang; 79 using namespace CodeGen; 80 81 static llvm::cl::opt<bool> LimitedCoverage( 82 "limited-coverage-experimental", llvm::cl::Hidden, 83 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 84 85 static const char AnnotationSection[] = "llvm.metadata"; 86 87 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 88 switch (CGM.getContext().getCXXABIKind()) { 89 case TargetCXXABI::AppleARM64: 90 case TargetCXXABI::Fuchsia: 91 case TargetCXXABI::GenericAArch64: 92 case TargetCXXABI::GenericARM: 93 case TargetCXXABI::iOS: 94 case TargetCXXABI::WatchOS: 95 case TargetCXXABI::GenericMIPS: 96 case TargetCXXABI::GenericItanium: 97 case TargetCXXABI::WebAssembly: 98 case TargetCXXABI::XL: 99 return CreateItaniumCXXABI(CGM); 100 case TargetCXXABI::Microsoft: 101 return CreateMicrosoftCXXABI(CGM); 102 } 103 104 llvm_unreachable("invalid C++ ABI kind"); 105 } 106 107 static std::unique_ptr<TargetCodeGenInfo> 108 createTargetCodeGenInfo(CodeGenModule &CGM) { 109 const TargetInfo &Target = CGM.getTarget(); 110 const llvm::Triple &Triple = Target.getTriple(); 111 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 112 113 switch (Triple.getArch()) { 114 default: 115 return createDefaultTargetCodeGenInfo(CGM); 116 117 case llvm::Triple::le32: 118 return createPNaClTargetCodeGenInfo(CGM); 119 case llvm::Triple::m68k: 120 return createM68kTargetCodeGenInfo(CGM); 121 case llvm::Triple::mips: 122 case llvm::Triple::mipsel: 123 if (Triple.getOS() == llvm::Triple::NaCl) 124 return createPNaClTargetCodeGenInfo(CGM); 125 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 126 127 case llvm::Triple::mips64: 128 case llvm::Triple::mips64el: 129 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 130 131 case llvm::Triple::avr: { 132 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 133 // on avrtiny. For passing return value, R18~R25 are used on avr, and 134 // R22~R25 are used on avrtiny. 135 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 136 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 137 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 138 } 139 140 case llvm::Triple::aarch64: 141 case llvm::Triple::aarch64_32: 142 case llvm::Triple::aarch64_be: { 143 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 144 if (Target.getABI() == "darwinpcs") 145 Kind = AArch64ABIKind::DarwinPCS; 146 else if (Triple.isOSWindows()) 147 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 148 149 return createAArch64TargetCodeGenInfo(CGM, Kind); 150 } 151 152 case llvm::Triple::wasm32: 153 case llvm::Triple::wasm64: { 154 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 155 if (Target.getABI() == "experimental-mv") 156 Kind = WebAssemblyABIKind::ExperimentalMV; 157 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 158 } 159 160 case llvm::Triple::arm: 161 case llvm::Triple::armeb: 162 case llvm::Triple::thumb: 163 case llvm::Triple::thumbeb: { 164 if (Triple.getOS() == llvm::Triple::Win32) 165 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 166 167 ARMABIKind Kind = ARMABIKind::AAPCS; 168 StringRef ABIStr = Target.getABI(); 169 if (ABIStr == "apcs-gnu") 170 Kind = ARMABIKind::APCS; 171 else if (ABIStr == "aapcs16") 172 Kind = ARMABIKind::AAPCS16_VFP; 173 else if (CodeGenOpts.FloatABI == "hard" || 174 (CodeGenOpts.FloatABI != "soft" && 175 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 176 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 177 Triple.getEnvironment() == llvm::Triple::EABIHF))) 178 Kind = ARMABIKind::AAPCS_VFP; 179 180 return createARMTargetCodeGenInfo(CGM, Kind); 181 } 182 183 case llvm::Triple::ppc: { 184 if (Triple.isOSAIX()) 185 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 186 187 bool IsSoftFloat = 188 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 189 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 190 } 191 case llvm::Triple::ppcle: { 192 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 193 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 194 } 195 case llvm::Triple::ppc64: 196 if (Triple.isOSAIX()) 197 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 198 199 if (Triple.isOSBinFormatELF()) { 200 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 201 if (Target.getABI() == "elfv2") 202 Kind = PPC64_SVR4_ABIKind::ELFv2; 203 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 204 205 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 206 } 207 return createPPC64TargetCodeGenInfo(CGM); 208 case llvm::Triple::ppc64le: { 209 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 210 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 211 if (Target.getABI() == "elfv1") 212 Kind = PPC64_SVR4_ABIKind::ELFv1; 213 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 214 215 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 216 } 217 218 case llvm::Triple::nvptx: 219 case llvm::Triple::nvptx64: 220 return createNVPTXTargetCodeGenInfo(CGM); 221 222 case llvm::Triple::msp430: 223 return createMSP430TargetCodeGenInfo(CGM); 224 225 case llvm::Triple::riscv32: 226 case llvm::Triple::riscv64: { 227 StringRef ABIStr = Target.getABI(); 228 unsigned XLen = Target.getPointerWidth(LangAS::Default); 229 unsigned ABIFLen = 0; 230 if (ABIStr.ends_with("f")) 231 ABIFLen = 32; 232 else if (ABIStr.ends_with("d")) 233 ABIFLen = 64; 234 bool EABI = ABIStr.ends_with("e"); 235 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 236 } 237 238 case llvm::Triple::systemz: { 239 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 240 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 241 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 242 } 243 244 case llvm::Triple::tce: 245 case llvm::Triple::tcele: 246 return createTCETargetCodeGenInfo(CGM); 247 248 case llvm::Triple::x86: { 249 bool IsDarwinVectorABI = Triple.isOSDarwin(); 250 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 251 252 if (Triple.getOS() == llvm::Triple::Win32) { 253 return createWinX86_32TargetCodeGenInfo( 254 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 255 CodeGenOpts.NumRegisterParameters); 256 } 257 return createX86_32TargetCodeGenInfo( 258 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 259 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 260 } 261 262 case llvm::Triple::x86_64: { 263 StringRef ABI = Target.getABI(); 264 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 265 : ABI == "avx" ? X86AVXABILevel::AVX 266 : X86AVXABILevel::None); 267 268 switch (Triple.getOS()) { 269 case llvm::Triple::Win32: 270 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 default: 272 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 273 } 274 } 275 case llvm::Triple::hexagon: 276 return createHexagonTargetCodeGenInfo(CGM); 277 case llvm::Triple::lanai: 278 return createLanaiTargetCodeGenInfo(CGM); 279 case llvm::Triple::r600: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::amdgcn: 282 return createAMDGPUTargetCodeGenInfo(CGM); 283 case llvm::Triple::sparc: 284 return createSparcV8TargetCodeGenInfo(CGM); 285 case llvm::Triple::sparcv9: 286 return createSparcV9TargetCodeGenInfo(CGM); 287 case llvm::Triple::xcore: 288 return createXCoreTargetCodeGenInfo(CGM); 289 case llvm::Triple::arc: 290 return createARCTargetCodeGenInfo(CGM); 291 case llvm::Triple::spir: 292 case llvm::Triple::spir64: 293 return createCommonSPIRTargetCodeGenInfo(CGM); 294 case llvm::Triple::spirv32: 295 case llvm::Triple::spirv64: 296 return createSPIRVTargetCodeGenInfo(CGM); 297 case llvm::Triple::ve: 298 return createVETargetCodeGenInfo(CGM); 299 case llvm::Triple::csky: { 300 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 301 bool hasFP64 = 302 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 303 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 304 : hasFP64 ? 64 305 : 32); 306 } 307 case llvm::Triple::bpfeb: 308 case llvm::Triple::bpfel: 309 return createBPFTargetCodeGenInfo(CGM); 310 case llvm::Triple::loongarch32: 311 case llvm::Triple::loongarch64: { 312 StringRef ABIStr = Target.getABI(); 313 unsigned ABIFRLen = 0; 314 if (ABIStr.ends_with("f")) 315 ABIFRLen = 32; 316 else if (ABIStr.ends_with("d")) 317 ABIFRLen = 64; 318 return createLoongArchTargetCodeGenInfo( 319 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 320 } 321 } 322 } 323 324 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 325 if (!TheTargetCodeGenInfo) 326 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 327 return *TheTargetCodeGenInfo; 328 } 329 330 CodeGenModule::CodeGenModule(ASTContext &C, 331 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 332 const HeaderSearchOptions &HSO, 333 const PreprocessorOptions &PPO, 334 const CodeGenOptions &CGO, llvm::Module &M, 335 DiagnosticsEngine &diags, 336 CoverageSourceInfo *CoverageInfo) 337 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 338 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 339 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 340 VMContext(M.getContext()), Types(*this), VTables(*this), 341 SanitizerMD(new SanitizerMetadata(*this)) { 342 343 // Initialize the type cache. 344 llvm::LLVMContext &LLVMContext = M.getContext(); 345 VoidTy = llvm::Type::getVoidTy(LLVMContext); 346 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 347 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 348 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 349 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 350 HalfTy = llvm::Type::getHalfTy(LLVMContext); 351 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 352 FloatTy = llvm::Type::getFloatTy(LLVMContext); 353 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 354 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 355 PointerAlignInBytes = 356 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 357 .getQuantity(); 358 SizeSizeInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 360 IntAlignInBytes = 361 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 362 CharTy = 363 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 364 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 365 IntPtrTy = llvm::IntegerType::get(LLVMContext, 366 C.getTargetInfo().getMaxPointerWidth()); 367 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 368 const llvm::DataLayout &DL = M.getDataLayout(); 369 AllocaInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 371 GlobalsInt8PtrTy = 372 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 373 ConstGlobalsPtrTy = llvm::PointerType::get( 374 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 375 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 376 377 // Build C++20 Module initializers. 378 // TODO: Add Microsoft here once we know the mangling required for the 379 // initializers. 380 CXX20ModuleInits = 381 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 382 ItaniumMangleContext::MK_Itanium; 383 384 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 385 386 if (LangOpts.ObjC) 387 createObjCRuntime(); 388 if (LangOpts.OpenCL) 389 createOpenCLRuntime(); 390 if (LangOpts.OpenMP) 391 createOpenMPRuntime(); 392 if (LangOpts.CUDA) 393 createCUDARuntime(); 394 if (LangOpts.HLSL) 395 createHLSLRuntime(); 396 397 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 398 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 399 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 400 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts, 401 getLangOpts(), getCXXABI().getMangleContext())); 402 403 // If debug info or coverage generation is enabled, create the CGDebugInfo 404 // object. 405 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 406 CodeGenOpts.CoverageNotesFile.size() || 407 CodeGenOpts.CoverageDataFile.size()) 408 DebugInfo.reset(new CGDebugInfo(*this)); 409 410 Block.GlobalUniqueCount = 0; 411 412 if (C.getLangOpts().ObjC) 413 ObjCData.reset(new ObjCEntrypoints()); 414 415 if (CodeGenOpts.hasProfileClangUse()) { 416 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 417 CodeGenOpts.ProfileInstrumentUsePath, *FS, 418 CodeGenOpts.ProfileRemappingFile); 419 // We're checking for profile read errors in CompilerInvocation, so if 420 // there was an error it should've already been caught. If it hasn't been 421 // somehow, trip an assertion. 422 assert(ReaderOrErr); 423 PGOReader = std::move(ReaderOrErr.get()); 424 } 425 426 // If coverage mapping generation is enabled, create the 427 // CoverageMappingModuleGen object. 428 if (CodeGenOpts.CoverageMapping) 429 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 430 431 // Generate the module name hash here if needed. 432 if (CodeGenOpts.UniqueInternalLinkageNames && 433 !getModule().getSourceFileName().empty()) { 434 std::string Path = getModule().getSourceFileName(); 435 // Check if a path substitution is needed from the MacroPrefixMap. 436 for (const auto &Entry : LangOpts.MacroPrefixMap) 437 if (Path.rfind(Entry.first, 0) != std::string::npos) { 438 Path = Entry.second + Path.substr(Entry.first.size()); 439 break; 440 } 441 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 442 } 443 } 444 445 CodeGenModule::~CodeGenModule() {} 446 447 void CodeGenModule::createObjCRuntime() { 448 // This is just isGNUFamily(), but we want to force implementors of 449 // new ABIs to decide how best to do this. 450 switch (LangOpts.ObjCRuntime.getKind()) { 451 case ObjCRuntime::GNUstep: 452 case ObjCRuntime::GCC: 453 case ObjCRuntime::ObjFW: 454 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 455 return; 456 457 case ObjCRuntime::FragileMacOSX: 458 case ObjCRuntime::MacOSX: 459 case ObjCRuntime::iOS: 460 case ObjCRuntime::WatchOS: 461 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 462 return; 463 } 464 llvm_unreachable("bad runtime kind"); 465 } 466 467 void CodeGenModule::createOpenCLRuntime() { 468 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 469 } 470 471 void CodeGenModule::createOpenMPRuntime() { 472 // Select a specialized code generation class based on the target, if any. 473 // If it does not exist use the default implementation. 474 switch (getTriple().getArch()) { 475 case llvm::Triple::nvptx: 476 case llvm::Triple::nvptx64: 477 case llvm::Triple::amdgcn: 478 assert(getLangOpts().OpenMPIsTargetDevice && 479 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 480 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 481 break; 482 default: 483 if (LangOpts.OpenMPSimd) 484 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 485 else 486 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 487 break; 488 } 489 } 490 491 void CodeGenModule::createCUDARuntime() { 492 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 493 } 494 495 void CodeGenModule::createHLSLRuntime() { 496 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 497 } 498 499 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 500 Replacements[Name] = C; 501 } 502 503 void CodeGenModule::applyReplacements() { 504 for (auto &I : Replacements) { 505 StringRef MangledName = I.first; 506 llvm::Constant *Replacement = I.second; 507 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 508 if (!Entry) 509 continue; 510 auto *OldF = cast<llvm::Function>(Entry); 511 auto *NewF = dyn_cast<llvm::Function>(Replacement); 512 if (!NewF) { 513 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 514 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 515 } else { 516 auto *CE = cast<llvm::ConstantExpr>(Replacement); 517 assert(CE->getOpcode() == llvm::Instruction::BitCast || 518 CE->getOpcode() == llvm::Instruction::GetElementPtr); 519 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 520 } 521 } 522 523 // Replace old with new, but keep the old order. 524 OldF->replaceAllUsesWith(Replacement); 525 if (NewF) { 526 NewF->removeFromParent(); 527 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 528 NewF); 529 } 530 OldF->eraseFromParent(); 531 } 532 } 533 534 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 535 GlobalValReplacements.push_back(std::make_pair(GV, C)); 536 } 537 538 void CodeGenModule::applyGlobalValReplacements() { 539 for (auto &I : GlobalValReplacements) { 540 llvm::GlobalValue *GV = I.first; 541 llvm::Constant *C = I.second; 542 543 GV->replaceAllUsesWith(C); 544 GV->eraseFromParent(); 545 } 546 } 547 548 // This is only used in aliases that we created and we know they have a 549 // linear structure. 550 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 551 const llvm::Constant *C; 552 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 553 C = GA->getAliasee(); 554 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 555 C = GI->getResolver(); 556 else 557 return GV; 558 559 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 560 if (!AliaseeGV) 561 return nullptr; 562 563 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 564 if (FinalGV == GV) 565 return nullptr; 566 567 return FinalGV; 568 } 569 570 static bool checkAliasedGlobal( 571 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 572 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 573 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 574 SourceRange AliasRange) { 575 GV = getAliasedGlobal(Alias); 576 if (!GV) { 577 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 578 return false; 579 } 580 581 if (GV->hasCommonLinkage()) { 582 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 583 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 584 Diags.Report(Location, diag::err_alias_to_common); 585 return false; 586 } 587 } 588 589 if (GV->isDeclaration()) { 590 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 591 Diags.Report(Location, diag::note_alias_requires_mangled_name) 592 << IsIFunc << IsIFunc; 593 // Provide a note if the given function is not found and exists as a 594 // mangled name. 595 for (const auto &[Decl, Name] : MangledDeclNames) { 596 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 597 if (ND->getName() == GV->getName()) { 598 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 599 << Name 600 << FixItHint::CreateReplacement( 601 AliasRange, 602 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 603 .str()); 604 } 605 } 606 } 607 return false; 608 } 609 610 if (IsIFunc) { 611 // Check resolver function type. 612 const auto *F = dyn_cast<llvm::Function>(GV); 613 if (!F) { 614 Diags.Report(Location, diag::err_alias_to_undefined) 615 << IsIFunc << IsIFunc; 616 return false; 617 } 618 619 llvm::FunctionType *FTy = F->getFunctionType(); 620 if (!FTy->getReturnType()->isPointerTy()) { 621 Diags.Report(Location, diag::err_ifunc_resolver_return); 622 return false; 623 } 624 } 625 626 return true; 627 } 628 629 void CodeGenModule::checkAliases() { 630 // Check if the constructed aliases are well formed. It is really unfortunate 631 // that we have to do this in CodeGen, but we only construct mangled names 632 // and aliases during codegen. 633 bool Error = false; 634 DiagnosticsEngine &Diags = getDiags(); 635 for (const GlobalDecl &GD : Aliases) { 636 const auto *D = cast<ValueDecl>(GD.getDecl()); 637 SourceLocation Location; 638 SourceRange Range; 639 bool IsIFunc = D->hasAttr<IFuncAttr>(); 640 if (const Attr *A = D->getDefiningAttr()) { 641 Location = A->getLocation(); 642 Range = A->getRange(); 643 } else 644 llvm_unreachable("Not an alias or ifunc?"); 645 646 StringRef MangledName = getMangledName(GD); 647 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 648 const llvm::GlobalValue *GV = nullptr; 649 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 650 MangledDeclNames, Range)) { 651 Error = true; 652 continue; 653 } 654 655 llvm::Constant *Aliasee = 656 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 657 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 658 659 llvm::GlobalValue *AliaseeGV; 660 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 661 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 662 else 663 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 664 665 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 666 StringRef AliasSection = SA->getName(); 667 if (AliasSection != AliaseeGV->getSection()) 668 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 669 << AliasSection << IsIFunc << IsIFunc; 670 } 671 672 // We have to handle alias to weak aliases in here. LLVM itself disallows 673 // this since the object semantics would not match the IL one. For 674 // compatibility with gcc we implement it by just pointing the alias 675 // to its aliasee's aliasee. We also warn, since the user is probably 676 // expecting the link to be weak. 677 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 678 if (GA->isInterposable()) { 679 Diags.Report(Location, diag::warn_alias_to_weak_alias) 680 << GV->getName() << GA->getName() << IsIFunc; 681 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 682 GA->getAliasee(), Alias->getType()); 683 684 if (IsIFunc) 685 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 686 else 687 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 688 } 689 } 690 } 691 if (!Error) 692 return; 693 694 for (const GlobalDecl &GD : Aliases) { 695 StringRef MangledName = getMangledName(GD); 696 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 697 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 698 Alias->eraseFromParent(); 699 } 700 } 701 702 void CodeGenModule::clear() { 703 DeferredDeclsToEmit.clear(); 704 EmittedDeferredDecls.clear(); 705 DeferredAnnotations.clear(); 706 if (OpenMPRuntime) 707 OpenMPRuntime->clear(); 708 } 709 710 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 711 StringRef MainFile) { 712 if (!hasDiagnostics()) 713 return; 714 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 715 if (MainFile.empty()) 716 MainFile = "<stdin>"; 717 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 718 } else { 719 if (Mismatched > 0) 720 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 721 722 if (Missing > 0) 723 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 724 } 725 } 726 727 static std::optional<llvm::GlobalValue::VisibilityTypes> 728 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 729 // Map to LLVM visibility. 730 switch (K) { 731 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 732 return std::nullopt; 733 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 734 return llvm::GlobalValue::DefaultVisibility; 735 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 736 return llvm::GlobalValue::HiddenVisibility; 737 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 738 return llvm::GlobalValue::ProtectedVisibility; 739 } 740 llvm_unreachable("unknown option value!"); 741 } 742 743 void setLLVMVisibility(llvm::GlobalValue &GV, 744 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 745 if (!V) 746 return; 747 748 // Reset DSO locality before setting the visibility. This removes 749 // any effects that visibility options and annotations may have 750 // had on the DSO locality. Setting the visibility will implicitly set 751 // appropriate globals to DSO Local; however, this will be pessimistic 752 // w.r.t. to the normal compiler IRGen. 753 GV.setDSOLocal(false); 754 GV.setVisibility(*V); 755 } 756 757 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 758 llvm::Module &M) { 759 if (!LO.VisibilityFromDLLStorageClass) 760 return; 761 762 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 763 getLLVMVisibility(LO.getDLLExportVisibility()); 764 765 std::optional<llvm::GlobalValue::VisibilityTypes> 766 NoDLLStorageClassVisibility = 767 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 768 769 std::optional<llvm::GlobalValue::VisibilityTypes> 770 ExternDeclDLLImportVisibility = 771 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 772 773 std::optional<llvm::GlobalValue::VisibilityTypes> 774 ExternDeclNoDLLStorageClassVisibility = 775 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 776 777 for (llvm::GlobalValue &GV : M.global_values()) { 778 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 779 continue; 780 781 if (GV.isDeclarationForLinker()) 782 setLLVMVisibility(GV, GV.getDLLStorageClass() == 783 llvm::GlobalValue::DLLImportStorageClass 784 ? ExternDeclDLLImportVisibility 785 : ExternDeclNoDLLStorageClassVisibility); 786 else 787 setLLVMVisibility(GV, GV.getDLLStorageClass() == 788 llvm::GlobalValue::DLLExportStorageClass 789 ? DLLExportVisibility 790 : NoDLLStorageClassVisibility); 791 792 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 793 } 794 } 795 796 static bool isStackProtectorOn(const LangOptions &LangOpts, 797 const llvm::Triple &Triple, 798 clang::LangOptions::StackProtectorMode Mode) { 799 if (Triple.isAMDGPU() || Triple.isNVPTX()) 800 return false; 801 return LangOpts.getStackProtector() == Mode; 802 } 803 804 void CodeGenModule::Release() { 805 Module *Primary = getContext().getCurrentNamedModule(); 806 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 807 EmitModuleInitializers(Primary); 808 EmitDeferred(); 809 DeferredDecls.insert(EmittedDeferredDecls.begin(), 810 EmittedDeferredDecls.end()); 811 EmittedDeferredDecls.clear(); 812 EmitVTablesOpportunistically(); 813 applyGlobalValReplacements(); 814 applyReplacements(); 815 emitMultiVersionFunctions(); 816 817 if (Context.getLangOpts().IncrementalExtensions && 818 GlobalTopLevelStmtBlockInFlight.first) { 819 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 820 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 821 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 822 } 823 824 // Module implementations are initialized the same way as a regular TU that 825 // imports one or more modules. 826 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 827 EmitCXXModuleInitFunc(Primary); 828 else 829 EmitCXXGlobalInitFunc(); 830 EmitCXXGlobalCleanUpFunc(); 831 registerGlobalDtorsWithAtExit(); 832 EmitCXXThreadLocalInitFunc(); 833 if (ObjCRuntime) 834 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 835 AddGlobalCtor(ObjCInitFunction); 836 if (Context.getLangOpts().CUDA && CUDARuntime) { 837 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 838 AddGlobalCtor(CudaCtorFunction); 839 } 840 if (OpenMPRuntime) { 841 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 842 OpenMPRuntime->clear(); 843 } 844 if (PGOReader) { 845 getModule().setProfileSummary( 846 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 847 llvm::ProfileSummary::PSK_Instr); 848 if (PGOStats.hasDiagnostics()) 849 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 850 } 851 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 852 return L.LexOrder < R.LexOrder; 853 }); 854 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 855 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 856 EmitGlobalAnnotations(); 857 EmitStaticExternCAliases(); 858 checkAliases(); 859 EmitDeferredUnusedCoverageMappings(); 860 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 861 CodeGenPGO(*this).setProfileVersion(getModule()); 862 if (CoverageMapping) 863 CoverageMapping->emit(); 864 if (CodeGenOpts.SanitizeCfiCrossDso) { 865 CodeGenFunction(*this).EmitCfiCheckFail(); 866 CodeGenFunction(*this).EmitCfiCheckStub(); 867 } 868 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 869 finalizeKCFITypes(); 870 emitAtAvailableLinkGuard(); 871 if (Context.getTargetInfo().getTriple().isWasm()) 872 EmitMainVoidAlias(); 873 874 if (getTriple().isAMDGPU()) { 875 // Emit amdgpu_code_object_version module flag, which is code object version 876 // times 100. 877 if (getTarget().getTargetOpts().CodeObjectVersion != 878 llvm::CodeObjectVersionKind::COV_None) { 879 getModule().addModuleFlag(llvm::Module::Error, 880 "amdgpu_code_object_version", 881 getTarget().getTargetOpts().CodeObjectVersion); 882 } 883 884 // Currently, "-mprintf-kind" option is only supported for HIP 885 if (LangOpts.HIP) { 886 auto *MDStr = llvm::MDString::get( 887 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 888 TargetOptions::AMDGPUPrintfKind::Hostcall) 889 ? "hostcall" 890 : "buffered"); 891 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 892 MDStr); 893 } 894 } 895 896 // Emit a global array containing all external kernels or device variables 897 // used by host functions and mark it as used for CUDA/HIP. This is necessary 898 // to get kernels or device variables in archives linked in even if these 899 // kernels or device variables are only used in host functions. 900 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 901 SmallVector<llvm::Constant *, 8> UsedArray; 902 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 903 GlobalDecl GD; 904 if (auto *FD = dyn_cast<FunctionDecl>(D)) 905 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 906 else 907 GD = GlobalDecl(D); 908 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 909 GetAddrOfGlobal(GD), Int8PtrTy)); 910 } 911 912 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 913 914 auto *GV = new llvm::GlobalVariable( 915 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 916 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 917 addCompilerUsedGlobal(GV); 918 } 919 if (LangOpts.HIP) { 920 // Emit a unique ID so that host and device binaries from the same 921 // compilation unit can be associated. 922 auto *GV = new llvm::GlobalVariable( 923 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage, 924 llvm::Constant::getNullValue(Int8Ty), 925 "__hip_cuid_" + getContext().getCUIDHash()); 926 addCompilerUsedGlobal(GV); 927 } 928 emitLLVMUsed(); 929 if (SanStats) 930 SanStats->finish(); 931 932 if (CodeGenOpts.Autolink && 933 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 934 EmitModuleLinkOptions(); 935 } 936 937 // On ELF we pass the dependent library specifiers directly to the linker 938 // without manipulating them. This is in contrast to other platforms where 939 // they are mapped to a specific linker option by the compiler. This 940 // difference is a result of the greater variety of ELF linkers and the fact 941 // that ELF linkers tend to handle libraries in a more complicated fashion 942 // than on other platforms. This forces us to defer handling the dependent 943 // libs to the linker. 944 // 945 // CUDA/HIP device and host libraries are different. Currently there is no 946 // way to differentiate dependent libraries for host or device. Existing 947 // usage of #pragma comment(lib, *) is intended for host libraries on 948 // Windows. Therefore emit llvm.dependent-libraries only for host. 949 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 950 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 951 for (auto *MD : ELFDependentLibraries) 952 NMD->addOperand(MD); 953 } 954 955 // Record mregparm value now so it is visible through rest of codegen. 956 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 957 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 958 CodeGenOpts.NumRegisterParameters); 959 960 if (CodeGenOpts.DwarfVersion) { 961 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 962 CodeGenOpts.DwarfVersion); 963 } 964 965 if (CodeGenOpts.Dwarf64) 966 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 967 968 if (Context.getLangOpts().SemanticInterposition) 969 // Require various optimization to respect semantic interposition. 970 getModule().setSemanticInterposition(true); 971 972 if (CodeGenOpts.EmitCodeView) { 973 // Indicate that we want CodeView in the metadata. 974 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 975 } 976 if (CodeGenOpts.CodeViewGHash) { 977 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 978 } 979 if (CodeGenOpts.ControlFlowGuard) { 980 // Function ID tables and checks for Control Flow Guard (cfguard=2). 981 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 982 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 983 // Function ID tables for Control Flow Guard (cfguard=1). 984 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 985 } 986 if (CodeGenOpts.EHContGuard) { 987 // Function ID tables for EH Continuation Guard. 988 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 989 } 990 if (Context.getLangOpts().Kernel) { 991 // Note if we are compiling with /kernel. 992 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 993 } 994 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 995 // We don't support LTO with 2 with different StrictVTablePointers 996 // FIXME: we could support it by stripping all the information introduced 997 // by StrictVTablePointers. 998 999 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 1000 1001 llvm::Metadata *Ops[2] = { 1002 llvm::MDString::get(VMContext, "StrictVTablePointers"), 1003 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1004 llvm::Type::getInt32Ty(VMContext), 1))}; 1005 1006 getModule().addModuleFlag(llvm::Module::Require, 1007 "StrictVTablePointersRequirement", 1008 llvm::MDNode::get(VMContext, Ops)); 1009 } 1010 if (getModuleDebugInfo()) 1011 // We support a single version in the linked module. The LLVM 1012 // parser will drop debug info with a different version number 1013 // (and warn about it, too). 1014 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1015 llvm::DEBUG_METADATA_VERSION); 1016 1017 // We need to record the widths of enums and wchar_t, so that we can generate 1018 // the correct build attributes in the ARM backend. wchar_size is also used by 1019 // TargetLibraryInfo. 1020 uint64_t WCharWidth = 1021 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1022 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1023 1024 if (getTriple().isOSzOS()) { 1025 getModule().addModuleFlag(llvm::Module::Warning, 1026 "zos_product_major_version", 1027 uint32_t(CLANG_VERSION_MAJOR)); 1028 getModule().addModuleFlag(llvm::Module::Warning, 1029 "zos_product_minor_version", 1030 uint32_t(CLANG_VERSION_MINOR)); 1031 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1032 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1033 std::string ProductId = getClangVendor() + "clang"; 1034 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1035 llvm::MDString::get(VMContext, ProductId)); 1036 1037 // Record the language because we need it for the PPA2. 1038 StringRef lang_str = languageToString( 1039 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1040 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1041 llvm::MDString::get(VMContext, lang_str)); 1042 1043 time_t TT = PreprocessorOpts.SourceDateEpoch 1044 ? *PreprocessorOpts.SourceDateEpoch 1045 : std::time(nullptr); 1046 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1047 static_cast<uint64_t>(TT)); 1048 1049 // Multiple modes will be supported here. 1050 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1051 llvm::MDString::get(VMContext, "ascii")); 1052 } 1053 1054 llvm::Triple T = Context.getTargetInfo().getTriple(); 1055 if (T.isARM() || T.isThumb()) { 1056 // The minimum width of an enum in bytes 1057 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1058 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1059 } 1060 1061 if (T.isRISCV()) { 1062 StringRef ABIStr = Target.getABI(); 1063 llvm::LLVMContext &Ctx = TheModule.getContext(); 1064 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1065 llvm::MDString::get(Ctx, ABIStr)); 1066 1067 // Add the canonical ISA string as metadata so the backend can set the ELF 1068 // attributes correctly. We use AppendUnique so LTO will keep all of the 1069 // unique ISA strings that were linked together. 1070 const std::vector<std::string> &Features = 1071 getTarget().getTargetOpts().Features; 1072 auto ParseResult = 1073 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features); 1074 if (!errorToBool(ParseResult.takeError())) 1075 getModule().addModuleFlag( 1076 llvm::Module::AppendUnique, "riscv-isa", 1077 llvm::MDNode::get( 1078 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); 1079 } 1080 1081 if (CodeGenOpts.SanitizeCfiCrossDso) { 1082 // Indicate that we want cross-DSO control flow integrity checks. 1083 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1084 } 1085 1086 if (CodeGenOpts.WholeProgramVTables) { 1087 // Indicate whether VFE was enabled for this module, so that the 1088 // vcall_visibility metadata added under whole program vtables is handled 1089 // appropriately in the optimizer. 1090 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1091 CodeGenOpts.VirtualFunctionElimination); 1092 } 1093 1094 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1095 getModule().addModuleFlag(llvm::Module::Override, 1096 "CFI Canonical Jump Tables", 1097 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1098 } 1099 1100 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1101 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1102 // KCFI assumes patchable-function-prefix is the same for all indirectly 1103 // called functions. Store the expected offset for code generation. 1104 if (CodeGenOpts.PatchableFunctionEntryOffset) 1105 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1106 CodeGenOpts.PatchableFunctionEntryOffset); 1107 } 1108 1109 if (CodeGenOpts.CFProtectionReturn && 1110 Target.checkCFProtectionReturnSupported(getDiags())) { 1111 // Indicate that we want to instrument return control flow protection. 1112 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1113 1); 1114 } 1115 1116 if (CodeGenOpts.CFProtectionBranch && 1117 Target.checkCFProtectionBranchSupported(getDiags())) { 1118 // Indicate that we want to instrument branch control flow protection. 1119 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1120 1); 1121 } 1122 1123 if (CodeGenOpts.FunctionReturnThunks) 1124 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1125 1126 if (CodeGenOpts.IndirectBranchCSPrefix) 1127 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1128 1129 // Add module metadata for return address signing (ignoring 1130 // non-leaf/all) and stack tagging. These are actually turned on by function 1131 // attributes, but we use module metadata to emit build attributes. This is 1132 // needed for LTO, where the function attributes are inside bitcode 1133 // serialised into a global variable by the time build attributes are 1134 // emitted, so we can't access them. LTO objects could be compiled with 1135 // different flags therefore module flags are set to "Min" behavior to achieve 1136 // the same end result of the normal build where e.g BTI is off if any object 1137 // doesn't support it. 1138 if (Context.getTargetInfo().hasFeature("ptrauth") && 1139 LangOpts.getSignReturnAddressScope() != 1140 LangOptions::SignReturnAddressScopeKind::None) 1141 getModule().addModuleFlag(llvm::Module::Override, 1142 "sign-return-address-buildattr", 1); 1143 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1144 getModule().addModuleFlag(llvm::Module::Override, 1145 "tag-stack-memory-buildattr", 1); 1146 1147 if (T.isARM() || T.isThumb() || T.isAArch64()) { 1148 if (LangOpts.BranchTargetEnforcement) 1149 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1150 1); 1151 if (LangOpts.BranchProtectionPAuthLR) 1152 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1153 1); 1154 if (LangOpts.GuardedControlStack) 1155 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1156 if (LangOpts.hasSignReturnAddress()) 1157 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1158 if (LangOpts.isSignReturnAddressScopeAll()) 1159 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1160 1); 1161 if (!LangOpts.isSignReturnAddressWithAKey()) 1162 getModule().addModuleFlag(llvm::Module::Min, 1163 "sign-return-address-with-bkey", 1); 1164 } 1165 1166 if (CodeGenOpts.StackClashProtector) 1167 getModule().addModuleFlag( 1168 llvm::Module::Override, "probe-stack", 1169 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1170 1171 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1172 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1173 CodeGenOpts.StackProbeSize); 1174 1175 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1176 llvm::LLVMContext &Ctx = TheModule.getContext(); 1177 getModule().addModuleFlag( 1178 llvm::Module::Error, "MemProfProfileFilename", 1179 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1180 } 1181 1182 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1183 // Indicate whether __nvvm_reflect should be configured to flush denormal 1184 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1185 // property.) 1186 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1187 CodeGenOpts.FP32DenormalMode.Output != 1188 llvm::DenormalMode::IEEE); 1189 } 1190 1191 if (LangOpts.EHAsynch) 1192 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1193 1194 // Indicate whether this Module was compiled with -fopenmp 1195 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1196 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1197 if (getLangOpts().OpenMPIsTargetDevice) 1198 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1199 LangOpts.OpenMP); 1200 1201 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1202 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1203 EmitOpenCLMetadata(); 1204 // Emit SPIR version. 1205 if (getTriple().isSPIR()) { 1206 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1207 // opencl.spir.version named metadata. 1208 // C++ for OpenCL has a distinct mapping for version compatibility with 1209 // OpenCL. 1210 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1211 llvm::Metadata *SPIRVerElts[] = { 1212 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1213 Int32Ty, Version / 100)), 1214 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1215 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1216 llvm::NamedMDNode *SPIRVerMD = 1217 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1218 llvm::LLVMContext &Ctx = TheModule.getContext(); 1219 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1220 } 1221 } 1222 1223 // HLSL related end of code gen work items. 1224 if (LangOpts.HLSL) 1225 getHLSLRuntime().finishCodeGen(); 1226 1227 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1228 assert(PLevel < 3 && "Invalid PIC Level"); 1229 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1230 if (Context.getLangOpts().PIE) 1231 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1232 } 1233 1234 if (getCodeGenOpts().CodeModel.size() > 0) { 1235 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1236 .Case("tiny", llvm::CodeModel::Tiny) 1237 .Case("small", llvm::CodeModel::Small) 1238 .Case("kernel", llvm::CodeModel::Kernel) 1239 .Case("medium", llvm::CodeModel::Medium) 1240 .Case("large", llvm::CodeModel::Large) 1241 .Default(~0u); 1242 if (CM != ~0u) { 1243 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1244 getModule().setCodeModel(codeModel); 1245 1246 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1247 Context.getTargetInfo().getTriple().getArch() == 1248 llvm::Triple::x86_64) { 1249 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1250 } 1251 } 1252 } 1253 1254 if (CodeGenOpts.NoPLT) 1255 getModule().setRtLibUseGOT(); 1256 if (getTriple().isOSBinFormatELF() && 1257 CodeGenOpts.DirectAccessExternalData != 1258 getModule().getDirectAccessExternalData()) { 1259 getModule().setDirectAccessExternalData( 1260 CodeGenOpts.DirectAccessExternalData); 1261 } 1262 if (CodeGenOpts.UnwindTables) 1263 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1264 1265 switch (CodeGenOpts.getFramePointer()) { 1266 case CodeGenOptions::FramePointerKind::None: 1267 // 0 ("none") is the default. 1268 break; 1269 case CodeGenOptions::FramePointerKind::NonLeaf: 1270 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1271 break; 1272 case CodeGenOptions::FramePointerKind::All: 1273 getModule().setFramePointer(llvm::FramePointerKind::All); 1274 break; 1275 } 1276 1277 SimplifyPersonality(); 1278 1279 if (getCodeGenOpts().EmitDeclMetadata) 1280 EmitDeclMetadata(); 1281 1282 if (getCodeGenOpts().CoverageNotesFile.size() || 1283 getCodeGenOpts().CoverageDataFile.size()) 1284 EmitCoverageFile(); 1285 1286 if (CGDebugInfo *DI = getModuleDebugInfo()) 1287 DI->finalize(); 1288 1289 if (getCodeGenOpts().EmitVersionIdentMetadata) 1290 EmitVersionIdentMetadata(); 1291 1292 if (!getCodeGenOpts().RecordCommandLine.empty()) 1293 EmitCommandLineMetadata(); 1294 1295 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1296 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1297 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1298 getModule().setStackProtectorGuardReg( 1299 getCodeGenOpts().StackProtectorGuardReg); 1300 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1301 getModule().setStackProtectorGuardSymbol( 1302 getCodeGenOpts().StackProtectorGuardSymbol); 1303 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1304 getModule().setStackProtectorGuardOffset( 1305 getCodeGenOpts().StackProtectorGuardOffset); 1306 if (getCodeGenOpts().StackAlignment) 1307 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1308 if (getCodeGenOpts().SkipRaxSetup) 1309 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1310 if (getLangOpts().RegCall4) 1311 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1312 1313 if (getContext().getTargetInfo().getMaxTLSAlign()) 1314 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1315 getContext().getTargetInfo().getMaxTLSAlign()); 1316 1317 getTargetCodeGenInfo().emitTargetGlobals(*this); 1318 1319 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1320 1321 EmitBackendOptionsMetadata(getCodeGenOpts()); 1322 1323 // If there is device offloading code embed it in the host now. 1324 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1325 1326 // Set visibility from DLL storage class 1327 // We do this at the end of LLVM IR generation; after any operation 1328 // that might affect the DLL storage class or the visibility, and 1329 // before anything that might act on these. 1330 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1331 } 1332 1333 void CodeGenModule::EmitOpenCLMetadata() { 1334 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1335 // opencl.ocl.version named metadata node. 1336 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1337 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1338 llvm::Metadata *OCLVerElts[] = { 1339 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1340 Int32Ty, Version / 100)), 1341 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1342 Int32Ty, (Version % 100) / 10))}; 1343 llvm::NamedMDNode *OCLVerMD = 1344 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1345 llvm::LLVMContext &Ctx = TheModule.getContext(); 1346 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1347 } 1348 1349 void CodeGenModule::EmitBackendOptionsMetadata( 1350 const CodeGenOptions &CodeGenOpts) { 1351 if (getTriple().isRISCV()) { 1352 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1353 CodeGenOpts.SmallDataLimit); 1354 } 1355 } 1356 1357 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1358 // Make sure that this type is translated. 1359 Types.UpdateCompletedType(TD); 1360 } 1361 1362 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1363 // Make sure that this type is translated. 1364 Types.RefreshTypeCacheForClass(RD); 1365 } 1366 1367 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1368 if (!TBAA) 1369 return nullptr; 1370 return TBAA->getTypeInfo(QTy); 1371 } 1372 1373 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1374 if (!TBAA) 1375 return TBAAAccessInfo(); 1376 if (getLangOpts().CUDAIsDevice) { 1377 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1378 // access info. 1379 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1380 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1381 nullptr) 1382 return TBAAAccessInfo(); 1383 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1384 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1385 nullptr) 1386 return TBAAAccessInfo(); 1387 } 1388 } 1389 return TBAA->getAccessInfo(AccessType); 1390 } 1391 1392 TBAAAccessInfo 1393 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1394 if (!TBAA) 1395 return TBAAAccessInfo(); 1396 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1397 } 1398 1399 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1400 if (!TBAA) 1401 return nullptr; 1402 return TBAA->getTBAAStructInfo(QTy); 1403 } 1404 1405 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1406 if (!TBAA) 1407 return nullptr; 1408 return TBAA->getBaseTypeInfo(QTy); 1409 } 1410 1411 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1412 if (!TBAA) 1413 return nullptr; 1414 return TBAA->getAccessTagInfo(Info); 1415 } 1416 1417 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1418 TBAAAccessInfo TargetInfo) { 1419 if (!TBAA) 1420 return TBAAAccessInfo(); 1421 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1422 } 1423 1424 TBAAAccessInfo 1425 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1426 TBAAAccessInfo InfoB) { 1427 if (!TBAA) 1428 return TBAAAccessInfo(); 1429 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1430 } 1431 1432 TBAAAccessInfo 1433 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1434 TBAAAccessInfo SrcInfo) { 1435 if (!TBAA) 1436 return TBAAAccessInfo(); 1437 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1438 } 1439 1440 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1441 TBAAAccessInfo TBAAInfo) { 1442 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1443 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1444 } 1445 1446 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1447 llvm::Instruction *I, const CXXRecordDecl *RD) { 1448 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1449 llvm::MDNode::get(getLLVMContext(), {})); 1450 } 1451 1452 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1453 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1454 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1455 } 1456 1457 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1458 /// specified stmt yet. 1459 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1460 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1461 "cannot compile this %0 yet"); 1462 std::string Msg = Type; 1463 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1464 << Msg << S->getSourceRange(); 1465 } 1466 1467 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1468 /// specified decl yet. 1469 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1470 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1471 "cannot compile this %0 yet"); 1472 std::string Msg = Type; 1473 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1474 } 1475 1476 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1477 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1478 } 1479 1480 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1481 const NamedDecl *D) const { 1482 // Internal definitions always have default visibility. 1483 if (GV->hasLocalLinkage()) { 1484 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1485 return; 1486 } 1487 if (!D) 1488 return; 1489 1490 // Set visibility for definitions, and for declarations if requested globally 1491 // or set explicitly. 1492 LinkageInfo LV = D->getLinkageAndVisibility(); 1493 1494 // OpenMP declare target variables must be visible to the host so they can 1495 // be registered. We require protected visibility unless the variable has 1496 // the DT_nohost modifier and does not need to be registered. 1497 if (Context.getLangOpts().OpenMP && 1498 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1499 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1500 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1501 OMPDeclareTargetDeclAttr::DT_NoHost && 1502 LV.getVisibility() == HiddenVisibility) { 1503 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1504 return; 1505 } 1506 1507 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1508 // Reject incompatible dlllstorage and visibility annotations. 1509 if (!LV.isVisibilityExplicit()) 1510 return; 1511 if (GV->hasDLLExportStorageClass()) { 1512 if (LV.getVisibility() == HiddenVisibility) 1513 getDiags().Report(D->getLocation(), 1514 diag::err_hidden_visibility_dllexport); 1515 } else if (LV.getVisibility() != DefaultVisibility) { 1516 getDiags().Report(D->getLocation(), 1517 diag::err_non_default_visibility_dllimport); 1518 } 1519 return; 1520 } 1521 1522 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1523 !GV->isDeclarationForLinker()) 1524 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1525 } 1526 1527 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1528 llvm::GlobalValue *GV) { 1529 if (GV->hasLocalLinkage()) 1530 return true; 1531 1532 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1533 return true; 1534 1535 // DLLImport explicitly marks the GV as external. 1536 if (GV->hasDLLImportStorageClass()) 1537 return false; 1538 1539 const llvm::Triple &TT = CGM.getTriple(); 1540 const auto &CGOpts = CGM.getCodeGenOpts(); 1541 if (TT.isWindowsGNUEnvironment()) { 1542 // In MinGW, variables without DLLImport can still be automatically 1543 // imported from a DLL by the linker; don't mark variables that 1544 // potentially could come from another DLL as DSO local. 1545 1546 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1547 // (and this actually happens in the public interface of libstdc++), so 1548 // such variables can't be marked as DSO local. (Native TLS variables 1549 // can't be dllimported at all, though.) 1550 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1551 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1552 CGOpts.AutoImport) 1553 return false; 1554 } 1555 1556 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1557 // remain unresolved in the link, they can be resolved to zero, which is 1558 // outside the current DSO. 1559 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1560 return false; 1561 1562 // Every other GV is local on COFF. 1563 // Make an exception for windows OS in the triple: Some firmware builds use 1564 // *-win32-macho triples. This (accidentally?) produced windows relocations 1565 // without GOT tables in older clang versions; Keep this behaviour. 1566 // FIXME: even thread local variables? 1567 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1568 return true; 1569 1570 // Only handle COFF and ELF for now. 1571 if (!TT.isOSBinFormatELF()) 1572 return false; 1573 1574 // If this is not an executable, don't assume anything is local. 1575 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1576 const auto &LOpts = CGM.getLangOpts(); 1577 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1578 // On ELF, if -fno-semantic-interposition is specified and the target 1579 // supports local aliases, there will be neither CC1 1580 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1581 // dso_local on the function if using a local alias is preferable (can avoid 1582 // PLT indirection). 1583 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1584 return false; 1585 return !(CGM.getLangOpts().SemanticInterposition || 1586 CGM.getLangOpts().HalfNoSemanticInterposition); 1587 } 1588 1589 // A definition cannot be preempted from an executable. 1590 if (!GV->isDeclarationForLinker()) 1591 return true; 1592 1593 // Most PIC code sequences that assume that a symbol is local cannot produce a 1594 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1595 // depended, it seems worth it to handle it here. 1596 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1597 return false; 1598 1599 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1600 if (TT.isPPC64()) 1601 return false; 1602 1603 if (CGOpts.DirectAccessExternalData) { 1604 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1605 // for non-thread-local variables. If the symbol is not defined in the 1606 // executable, a copy relocation will be needed at link time. dso_local is 1607 // excluded for thread-local variables because they generally don't support 1608 // copy relocations. 1609 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1610 if (!Var->isThreadLocal()) 1611 return true; 1612 1613 // -fno-pic sets dso_local on a function declaration to allow direct 1614 // accesses when taking its address (similar to a data symbol). If the 1615 // function is not defined in the executable, a canonical PLT entry will be 1616 // needed at link time. -fno-direct-access-external-data can avoid the 1617 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1618 // it could just cause trouble without providing perceptible benefits. 1619 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1620 return true; 1621 } 1622 1623 // If we can use copy relocations we can assume it is local. 1624 1625 // Otherwise don't assume it is local. 1626 return false; 1627 } 1628 1629 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1630 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1631 } 1632 1633 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1634 GlobalDecl GD) const { 1635 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1636 // C++ destructors have a few C++ ABI specific special cases. 1637 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1638 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1639 return; 1640 } 1641 setDLLImportDLLExport(GV, D); 1642 } 1643 1644 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1645 const NamedDecl *D) const { 1646 if (D && D->isExternallyVisible()) { 1647 if (D->hasAttr<DLLImportAttr>()) 1648 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1649 else if ((D->hasAttr<DLLExportAttr>() || 1650 shouldMapVisibilityToDLLExport(D)) && 1651 !GV->isDeclarationForLinker()) 1652 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1653 } 1654 } 1655 1656 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1657 GlobalDecl GD) const { 1658 setDLLImportDLLExport(GV, GD); 1659 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1660 } 1661 1662 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1663 const NamedDecl *D) const { 1664 setDLLImportDLLExport(GV, D); 1665 setGVPropertiesAux(GV, D); 1666 } 1667 1668 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1669 const NamedDecl *D) const { 1670 setGlobalVisibility(GV, D); 1671 setDSOLocal(GV); 1672 GV->setPartition(CodeGenOpts.SymbolPartition); 1673 } 1674 1675 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1676 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1677 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1678 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1679 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1680 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1681 } 1682 1683 llvm::GlobalVariable::ThreadLocalMode 1684 CodeGenModule::GetDefaultLLVMTLSModel() const { 1685 switch (CodeGenOpts.getDefaultTLSModel()) { 1686 case CodeGenOptions::GeneralDynamicTLSModel: 1687 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1688 case CodeGenOptions::LocalDynamicTLSModel: 1689 return llvm::GlobalVariable::LocalDynamicTLSModel; 1690 case CodeGenOptions::InitialExecTLSModel: 1691 return llvm::GlobalVariable::InitialExecTLSModel; 1692 case CodeGenOptions::LocalExecTLSModel: 1693 return llvm::GlobalVariable::LocalExecTLSModel; 1694 } 1695 llvm_unreachable("Invalid TLS model!"); 1696 } 1697 1698 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1699 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1700 1701 llvm::GlobalValue::ThreadLocalMode TLM; 1702 TLM = GetDefaultLLVMTLSModel(); 1703 1704 // Override the TLS model if it is explicitly specified. 1705 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1706 TLM = GetLLVMTLSModel(Attr->getModel()); 1707 } 1708 1709 GV->setThreadLocalMode(TLM); 1710 } 1711 1712 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1713 StringRef Name) { 1714 const TargetInfo &Target = CGM.getTarget(); 1715 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1716 } 1717 1718 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1719 const CPUSpecificAttr *Attr, 1720 unsigned CPUIndex, 1721 raw_ostream &Out) { 1722 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1723 // supported. 1724 if (Attr) 1725 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1726 else if (CGM.getTarget().supportsIFunc()) 1727 Out << ".resolver"; 1728 } 1729 1730 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1731 const TargetVersionAttr *Attr, 1732 raw_ostream &Out) { 1733 if (Attr->isDefaultVersion()) { 1734 Out << ".default"; 1735 return; 1736 } 1737 Out << "._"; 1738 const TargetInfo &TI = CGM.getTarget(); 1739 llvm::SmallVector<StringRef, 8> Feats; 1740 Attr->getFeatures(Feats); 1741 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1742 return TI.multiVersionSortPriority(FeatL) < 1743 TI.multiVersionSortPriority(FeatR); 1744 }); 1745 for (const auto &Feat : Feats) { 1746 Out << 'M'; 1747 Out << Feat; 1748 } 1749 } 1750 1751 static void AppendTargetMangling(const CodeGenModule &CGM, 1752 const TargetAttr *Attr, raw_ostream &Out) { 1753 if (Attr->isDefaultVersion()) 1754 return; 1755 1756 Out << '.'; 1757 const TargetInfo &Target = CGM.getTarget(); 1758 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1759 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1760 // Multiversioning doesn't allow "no-${feature}", so we can 1761 // only have "+" prefixes here. 1762 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1763 "Features should always have a prefix."); 1764 return Target.multiVersionSortPriority(LHS.substr(1)) > 1765 Target.multiVersionSortPriority(RHS.substr(1)); 1766 }); 1767 1768 bool IsFirst = true; 1769 1770 if (!Info.CPU.empty()) { 1771 IsFirst = false; 1772 Out << "arch_" << Info.CPU; 1773 } 1774 1775 for (StringRef Feat : Info.Features) { 1776 if (!IsFirst) 1777 Out << '_'; 1778 IsFirst = false; 1779 Out << Feat.substr(1); 1780 } 1781 } 1782 1783 // Returns true if GD is a function decl with internal linkage and 1784 // needs a unique suffix after the mangled name. 1785 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1786 CodeGenModule &CGM) { 1787 const Decl *D = GD.getDecl(); 1788 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1789 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1790 } 1791 1792 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1793 const TargetClonesAttr *Attr, 1794 unsigned VersionIndex, 1795 raw_ostream &Out) { 1796 const TargetInfo &TI = CGM.getTarget(); 1797 if (TI.getTriple().isAArch64()) { 1798 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1799 if (FeatureStr == "default") { 1800 Out << ".default"; 1801 return; 1802 } 1803 Out << "._"; 1804 SmallVector<StringRef, 8> Features; 1805 FeatureStr.split(Features, "+"); 1806 llvm::stable_sort(Features, 1807 [&TI](const StringRef FeatL, const StringRef FeatR) { 1808 return TI.multiVersionSortPriority(FeatL) < 1809 TI.multiVersionSortPriority(FeatR); 1810 }); 1811 for (auto &Feat : Features) { 1812 Out << 'M'; 1813 Out << Feat; 1814 } 1815 } else { 1816 Out << '.'; 1817 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1818 if (FeatureStr.starts_with("arch=")) 1819 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1820 else 1821 Out << FeatureStr; 1822 1823 Out << '.' << Attr->getMangledIndex(VersionIndex); 1824 } 1825 } 1826 1827 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1828 const NamedDecl *ND, 1829 bool OmitMultiVersionMangling = false) { 1830 SmallString<256> Buffer; 1831 llvm::raw_svector_ostream Out(Buffer); 1832 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1833 if (!CGM.getModuleNameHash().empty()) 1834 MC.needsUniqueInternalLinkageNames(); 1835 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1836 if (ShouldMangle) 1837 MC.mangleName(GD.getWithDecl(ND), Out); 1838 else { 1839 IdentifierInfo *II = ND->getIdentifier(); 1840 assert(II && "Attempt to mangle unnamed decl."); 1841 const auto *FD = dyn_cast<FunctionDecl>(ND); 1842 1843 if (FD && 1844 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1845 if (CGM.getLangOpts().RegCall4) 1846 Out << "__regcall4__" << II->getName(); 1847 else 1848 Out << "__regcall3__" << II->getName(); 1849 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1850 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1851 Out << "__device_stub__" << II->getName(); 1852 } else { 1853 Out << II->getName(); 1854 } 1855 } 1856 1857 // Check if the module name hash should be appended for internal linkage 1858 // symbols. This should come before multi-version target suffixes are 1859 // appended. This is to keep the name and module hash suffix of the 1860 // internal linkage function together. The unique suffix should only be 1861 // added when name mangling is done to make sure that the final name can 1862 // be properly demangled. For example, for C functions without prototypes, 1863 // name mangling is not done and the unique suffix should not be appeneded 1864 // then. 1865 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1866 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1867 "Hash computed when not explicitly requested"); 1868 Out << CGM.getModuleNameHash(); 1869 } 1870 1871 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1872 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1873 switch (FD->getMultiVersionKind()) { 1874 case MultiVersionKind::CPUDispatch: 1875 case MultiVersionKind::CPUSpecific: 1876 AppendCPUSpecificCPUDispatchMangling(CGM, 1877 FD->getAttr<CPUSpecificAttr>(), 1878 GD.getMultiVersionIndex(), Out); 1879 break; 1880 case MultiVersionKind::Target: 1881 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1882 break; 1883 case MultiVersionKind::TargetVersion: 1884 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1885 break; 1886 case MultiVersionKind::TargetClones: 1887 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1888 GD.getMultiVersionIndex(), Out); 1889 break; 1890 case MultiVersionKind::None: 1891 llvm_unreachable("None multiversion type isn't valid here"); 1892 } 1893 } 1894 1895 // Make unique name for device side static file-scope variable for HIP. 1896 if (CGM.getContext().shouldExternalize(ND) && 1897 CGM.getLangOpts().GPURelocatableDeviceCode && 1898 CGM.getLangOpts().CUDAIsDevice) 1899 CGM.printPostfixForExternalizedDecl(Out, ND); 1900 1901 return std::string(Out.str()); 1902 } 1903 1904 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1905 const FunctionDecl *FD, 1906 StringRef &CurName) { 1907 if (!FD->isMultiVersion()) 1908 return; 1909 1910 // Get the name of what this would be without the 'target' attribute. This 1911 // allows us to lookup the version that was emitted when this wasn't a 1912 // multiversion function. 1913 std::string NonTargetName = 1914 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1915 GlobalDecl OtherGD; 1916 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1917 assert(OtherGD.getCanonicalDecl() 1918 .getDecl() 1919 ->getAsFunction() 1920 ->isMultiVersion() && 1921 "Other GD should now be a multiversioned function"); 1922 // OtherFD is the version of this function that was mangled BEFORE 1923 // becoming a MultiVersion function. It potentially needs to be updated. 1924 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1925 .getDecl() 1926 ->getAsFunction() 1927 ->getMostRecentDecl(); 1928 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1929 // This is so that if the initial version was already the 'default' 1930 // version, we don't try to update it. 1931 if (OtherName != NonTargetName) { 1932 // Remove instead of erase, since others may have stored the StringRef 1933 // to this. 1934 const auto ExistingRecord = Manglings.find(NonTargetName); 1935 if (ExistingRecord != std::end(Manglings)) 1936 Manglings.remove(&(*ExistingRecord)); 1937 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1938 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1939 Result.first->first(); 1940 // If this is the current decl is being created, make sure we update the name. 1941 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1942 CurName = OtherNameRef; 1943 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1944 Entry->setName(OtherName); 1945 } 1946 } 1947 } 1948 1949 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1950 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1951 1952 // Some ABIs don't have constructor variants. Make sure that base and 1953 // complete constructors get mangled the same. 1954 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1955 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1956 CXXCtorType OrigCtorType = GD.getCtorType(); 1957 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1958 if (OrigCtorType == Ctor_Base) 1959 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1960 } 1961 } 1962 1963 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1964 // static device variable depends on whether the variable is referenced by 1965 // a host or device host function. Therefore the mangled name cannot be 1966 // cached. 1967 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1968 auto FoundName = MangledDeclNames.find(CanonicalGD); 1969 if (FoundName != MangledDeclNames.end()) 1970 return FoundName->second; 1971 } 1972 1973 // Keep the first result in the case of a mangling collision. 1974 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1975 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1976 1977 // Ensure either we have different ABIs between host and device compilations, 1978 // says host compilation following MSVC ABI but device compilation follows 1979 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1980 // mangling should be the same after name stubbing. The later checking is 1981 // very important as the device kernel name being mangled in host-compilation 1982 // is used to resolve the device binaries to be executed. Inconsistent naming 1983 // result in undefined behavior. Even though we cannot check that naming 1984 // directly between host- and device-compilations, the host- and 1985 // device-mangling in host compilation could help catching certain ones. 1986 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1987 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1988 (getContext().getAuxTargetInfo() && 1989 (getContext().getAuxTargetInfo()->getCXXABI() != 1990 getContext().getTargetInfo().getCXXABI())) || 1991 getCUDARuntime().getDeviceSideName(ND) == 1992 getMangledNameImpl( 1993 *this, 1994 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1995 ND)); 1996 1997 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1998 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1999 } 2000 2001 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 2002 const BlockDecl *BD) { 2003 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 2004 const Decl *D = GD.getDecl(); 2005 2006 SmallString<256> Buffer; 2007 llvm::raw_svector_ostream Out(Buffer); 2008 if (!D) 2009 MangleCtx.mangleGlobalBlock(BD, 2010 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 2011 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 2012 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 2013 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 2014 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 2015 else 2016 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 2017 2018 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2019 return Result.first->first(); 2020 } 2021 2022 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2023 auto it = MangledDeclNames.begin(); 2024 while (it != MangledDeclNames.end()) { 2025 if (it->second == Name) 2026 return it->first; 2027 it++; 2028 } 2029 return GlobalDecl(); 2030 } 2031 2032 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2033 return getModule().getNamedValue(Name); 2034 } 2035 2036 /// AddGlobalCtor - Add a function to the list that will be called before 2037 /// main() runs. 2038 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2039 unsigned LexOrder, 2040 llvm::Constant *AssociatedData) { 2041 // FIXME: Type coercion of void()* types. 2042 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2043 } 2044 2045 /// AddGlobalDtor - Add a function to the list that will be called 2046 /// when the module is unloaded. 2047 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2048 bool IsDtorAttrFunc) { 2049 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2050 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2051 DtorsUsingAtExit[Priority].push_back(Dtor); 2052 return; 2053 } 2054 2055 // FIXME: Type coercion of void()* types. 2056 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2057 } 2058 2059 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2060 if (Fns.empty()) return; 2061 2062 // Ctor function type is void()*. 2063 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2064 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2065 TheModule.getDataLayout().getProgramAddressSpace()); 2066 2067 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2068 llvm::StructType *CtorStructTy = llvm::StructType::get( 2069 Int32Ty, CtorPFTy, VoidPtrTy); 2070 2071 // Construct the constructor and destructor arrays. 2072 ConstantInitBuilder builder(*this); 2073 auto ctors = builder.beginArray(CtorStructTy); 2074 for (const auto &I : Fns) { 2075 auto ctor = ctors.beginStruct(CtorStructTy); 2076 ctor.addInt(Int32Ty, I.Priority); 2077 ctor.add(I.Initializer); 2078 if (I.AssociatedData) 2079 ctor.add(I.AssociatedData); 2080 else 2081 ctor.addNullPointer(VoidPtrTy); 2082 ctor.finishAndAddTo(ctors); 2083 } 2084 2085 auto list = 2086 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2087 /*constant*/ false, 2088 llvm::GlobalValue::AppendingLinkage); 2089 2090 // The LTO linker doesn't seem to like it when we set an alignment 2091 // on appending variables. Take it off as a workaround. 2092 list->setAlignment(std::nullopt); 2093 2094 Fns.clear(); 2095 } 2096 2097 llvm::GlobalValue::LinkageTypes 2098 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2099 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2100 2101 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2102 2103 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2104 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2105 2106 return getLLVMLinkageForDeclarator(D, Linkage); 2107 } 2108 2109 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2110 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2111 if (!MDS) return nullptr; 2112 2113 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2114 } 2115 2116 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2117 if (auto *FnType = T->getAs<FunctionProtoType>()) 2118 T = getContext().getFunctionType( 2119 FnType->getReturnType(), FnType->getParamTypes(), 2120 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2121 2122 std::string OutName; 2123 llvm::raw_string_ostream Out(OutName); 2124 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2125 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2126 2127 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2128 Out << ".normalized"; 2129 2130 return llvm::ConstantInt::get(Int32Ty, 2131 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2132 } 2133 2134 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2135 const CGFunctionInfo &Info, 2136 llvm::Function *F, bool IsThunk) { 2137 unsigned CallingConv; 2138 llvm::AttributeList PAL; 2139 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2140 /*AttrOnCallSite=*/false, IsThunk); 2141 F->setAttributes(PAL); 2142 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2143 } 2144 2145 static void removeImageAccessQualifier(std::string& TyName) { 2146 std::string ReadOnlyQual("__read_only"); 2147 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2148 if (ReadOnlyPos != std::string::npos) 2149 // "+ 1" for the space after access qualifier. 2150 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2151 else { 2152 std::string WriteOnlyQual("__write_only"); 2153 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2154 if (WriteOnlyPos != std::string::npos) 2155 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2156 else { 2157 std::string ReadWriteQual("__read_write"); 2158 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2159 if (ReadWritePos != std::string::npos) 2160 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2161 } 2162 } 2163 } 2164 2165 // Returns the address space id that should be produced to the 2166 // kernel_arg_addr_space metadata. This is always fixed to the ids 2167 // as specified in the SPIR 2.0 specification in order to differentiate 2168 // for example in clGetKernelArgInfo() implementation between the address 2169 // spaces with targets without unique mapping to the OpenCL address spaces 2170 // (basically all single AS CPUs). 2171 static unsigned ArgInfoAddressSpace(LangAS AS) { 2172 switch (AS) { 2173 case LangAS::opencl_global: 2174 return 1; 2175 case LangAS::opencl_constant: 2176 return 2; 2177 case LangAS::opencl_local: 2178 return 3; 2179 case LangAS::opencl_generic: 2180 return 4; // Not in SPIR 2.0 specs. 2181 case LangAS::opencl_global_device: 2182 return 5; 2183 case LangAS::opencl_global_host: 2184 return 6; 2185 default: 2186 return 0; // Assume private. 2187 } 2188 } 2189 2190 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2191 const FunctionDecl *FD, 2192 CodeGenFunction *CGF) { 2193 assert(((FD && CGF) || (!FD && !CGF)) && 2194 "Incorrect use - FD and CGF should either be both null or not!"); 2195 // Create MDNodes that represent the kernel arg metadata. 2196 // Each MDNode is a list in the form of "key", N number of values which is 2197 // the same number of values as their are kernel arguments. 2198 2199 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2200 2201 // MDNode for the kernel argument address space qualifiers. 2202 SmallVector<llvm::Metadata *, 8> addressQuals; 2203 2204 // MDNode for the kernel argument access qualifiers (images only). 2205 SmallVector<llvm::Metadata *, 8> accessQuals; 2206 2207 // MDNode for the kernel argument type names. 2208 SmallVector<llvm::Metadata *, 8> argTypeNames; 2209 2210 // MDNode for the kernel argument base type names. 2211 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2212 2213 // MDNode for the kernel argument type qualifiers. 2214 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2215 2216 // MDNode for the kernel argument names. 2217 SmallVector<llvm::Metadata *, 8> argNames; 2218 2219 if (FD && CGF) 2220 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2221 const ParmVarDecl *parm = FD->getParamDecl(i); 2222 // Get argument name. 2223 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2224 2225 if (!getLangOpts().OpenCL) 2226 continue; 2227 QualType ty = parm->getType(); 2228 std::string typeQuals; 2229 2230 // Get image and pipe access qualifier: 2231 if (ty->isImageType() || ty->isPipeType()) { 2232 const Decl *PDecl = parm; 2233 if (const auto *TD = ty->getAs<TypedefType>()) 2234 PDecl = TD->getDecl(); 2235 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2236 if (A && A->isWriteOnly()) 2237 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2238 else if (A && A->isReadWrite()) 2239 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2240 else 2241 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2242 } else 2243 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2244 2245 auto getTypeSpelling = [&](QualType Ty) { 2246 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2247 2248 if (Ty.isCanonical()) { 2249 StringRef typeNameRef = typeName; 2250 // Turn "unsigned type" to "utype" 2251 if (typeNameRef.consume_front("unsigned ")) 2252 return std::string("u") + typeNameRef.str(); 2253 if (typeNameRef.consume_front("signed ")) 2254 return typeNameRef.str(); 2255 } 2256 2257 return typeName; 2258 }; 2259 2260 if (ty->isPointerType()) { 2261 QualType pointeeTy = ty->getPointeeType(); 2262 2263 // Get address qualifier. 2264 addressQuals.push_back( 2265 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2266 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2267 2268 // Get argument type name. 2269 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2270 std::string baseTypeName = 2271 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2272 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2273 argBaseTypeNames.push_back( 2274 llvm::MDString::get(VMContext, baseTypeName)); 2275 2276 // Get argument type qualifiers: 2277 if (ty.isRestrictQualified()) 2278 typeQuals = "restrict"; 2279 if (pointeeTy.isConstQualified() || 2280 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2281 typeQuals += typeQuals.empty() ? "const" : " const"; 2282 if (pointeeTy.isVolatileQualified()) 2283 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2284 } else { 2285 uint32_t AddrSpc = 0; 2286 bool isPipe = ty->isPipeType(); 2287 if (ty->isImageType() || isPipe) 2288 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2289 2290 addressQuals.push_back( 2291 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2292 2293 // Get argument type name. 2294 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2295 std::string typeName = getTypeSpelling(ty); 2296 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2297 2298 // Remove access qualifiers on images 2299 // (as they are inseparable from type in clang implementation, 2300 // but OpenCL spec provides a special query to get access qualifier 2301 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2302 if (ty->isImageType()) { 2303 removeImageAccessQualifier(typeName); 2304 removeImageAccessQualifier(baseTypeName); 2305 } 2306 2307 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2308 argBaseTypeNames.push_back( 2309 llvm::MDString::get(VMContext, baseTypeName)); 2310 2311 if (isPipe) 2312 typeQuals = "pipe"; 2313 } 2314 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2315 } 2316 2317 if (getLangOpts().OpenCL) { 2318 Fn->setMetadata("kernel_arg_addr_space", 2319 llvm::MDNode::get(VMContext, addressQuals)); 2320 Fn->setMetadata("kernel_arg_access_qual", 2321 llvm::MDNode::get(VMContext, accessQuals)); 2322 Fn->setMetadata("kernel_arg_type", 2323 llvm::MDNode::get(VMContext, argTypeNames)); 2324 Fn->setMetadata("kernel_arg_base_type", 2325 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2326 Fn->setMetadata("kernel_arg_type_qual", 2327 llvm::MDNode::get(VMContext, argTypeQuals)); 2328 } 2329 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2330 getCodeGenOpts().HIPSaveKernelArgName) 2331 Fn->setMetadata("kernel_arg_name", 2332 llvm::MDNode::get(VMContext, argNames)); 2333 } 2334 2335 /// Determines whether the language options require us to model 2336 /// unwind exceptions. We treat -fexceptions as mandating this 2337 /// except under the fragile ObjC ABI with only ObjC exceptions 2338 /// enabled. This means, for example, that C with -fexceptions 2339 /// enables this. 2340 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2341 // If exceptions are completely disabled, obviously this is false. 2342 if (!LangOpts.Exceptions) return false; 2343 2344 // If C++ exceptions are enabled, this is true. 2345 if (LangOpts.CXXExceptions) return true; 2346 2347 // If ObjC exceptions are enabled, this depends on the ABI. 2348 if (LangOpts.ObjCExceptions) { 2349 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2350 } 2351 2352 return true; 2353 } 2354 2355 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2356 const CXXMethodDecl *MD) { 2357 // Check that the type metadata can ever actually be used by a call. 2358 if (!CGM.getCodeGenOpts().LTOUnit || 2359 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2360 return false; 2361 2362 // Only functions whose address can be taken with a member function pointer 2363 // need this sort of type metadata. 2364 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2365 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2366 } 2367 2368 SmallVector<const CXXRecordDecl *, 0> 2369 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2370 llvm::SetVector<const CXXRecordDecl *> MostBases; 2371 2372 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2373 CollectMostBases = [&](const CXXRecordDecl *RD) { 2374 if (RD->getNumBases() == 0) 2375 MostBases.insert(RD); 2376 for (const CXXBaseSpecifier &B : RD->bases()) 2377 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2378 }; 2379 CollectMostBases(RD); 2380 return MostBases.takeVector(); 2381 } 2382 2383 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2384 llvm::Function *F) { 2385 llvm::AttrBuilder B(F->getContext()); 2386 2387 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2388 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2389 2390 if (CodeGenOpts.StackClashProtector) 2391 B.addAttribute("probe-stack", "inline-asm"); 2392 2393 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2394 B.addAttribute("stack-probe-size", 2395 std::to_string(CodeGenOpts.StackProbeSize)); 2396 2397 if (!hasUnwindExceptions(LangOpts)) 2398 B.addAttribute(llvm::Attribute::NoUnwind); 2399 2400 if (D && D->hasAttr<NoStackProtectorAttr>()) 2401 ; // Do nothing. 2402 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2403 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2404 B.addAttribute(llvm::Attribute::StackProtectStrong); 2405 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2406 B.addAttribute(llvm::Attribute::StackProtect); 2407 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2408 B.addAttribute(llvm::Attribute::StackProtectStrong); 2409 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2410 B.addAttribute(llvm::Attribute::StackProtectReq); 2411 2412 if (!D) { 2413 // If we don't have a declaration to control inlining, the function isn't 2414 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2415 // disabled, mark the function as noinline. 2416 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2417 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2418 B.addAttribute(llvm::Attribute::NoInline); 2419 2420 F->addFnAttrs(B); 2421 return; 2422 } 2423 2424 // Handle SME attributes that apply to function definitions, 2425 // rather than to function prototypes. 2426 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2427 B.addAttribute("aarch64_pstate_sm_body"); 2428 2429 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2430 if (Attr->isNewZA()) 2431 B.addAttribute("aarch64_new_za"); 2432 if (Attr->isNewZT0()) 2433 B.addAttribute("aarch64_new_zt0"); 2434 } 2435 2436 // Track whether we need to add the optnone LLVM attribute, 2437 // starting with the default for this optimization level. 2438 bool ShouldAddOptNone = 2439 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2440 // We can't add optnone in the following cases, it won't pass the verifier. 2441 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2442 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2443 2444 // Add optnone, but do so only if the function isn't always_inline. 2445 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2446 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2447 B.addAttribute(llvm::Attribute::OptimizeNone); 2448 2449 // OptimizeNone implies noinline; we should not be inlining such functions. 2450 B.addAttribute(llvm::Attribute::NoInline); 2451 2452 // We still need to handle naked functions even though optnone subsumes 2453 // much of their semantics. 2454 if (D->hasAttr<NakedAttr>()) 2455 B.addAttribute(llvm::Attribute::Naked); 2456 2457 // OptimizeNone wins over OptimizeForSize and MinSize. 2458 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2459 F->removeFnAttr(llvm::Attribute::MinSize); 2460 } else if (D->hasAttr<NakedAttr>()) { 2461 // Naked implies noinline: we should not be inlining such functions. 2462 B.addAttribute(llvm::Attribute::Naked); 2463 B.addAttribute(llvm::Attribute::NoInline); 2464 } else if (D->hasAttr<NoDuplicateAttr>()) { 2465 B.addAttribute(llvm::Attribute::NoDuplicate); 2466 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2467 // Add noinline if the function isn't always_inline. 2468 B.addAttribute(llvm::Attribute::NoInline); 2469 } else if (D->hasAttr<AlwaysInlineAttr>() && 2470 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2471 // (noinline wins over always_inline, and we can't specify both in IR) 2472 B.addAttribute(llvm::Attribute::AlwaysInline); 2473 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2474 // If we're not inlining, then force everything that isn't always_inline to 2475 // carry an explicit noinline attribute. 2476 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2477 B.addAttribute(llvm::Attribute::NoInline); 2478 } else { 2479 // Otherwise, propagate the inline hint attribute and potentially use its 2480 // absence to mark things as noinline. 2481 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2482 // Search function and template pattern redeclarations for inline. 2483 auto CheckForInline = [](const FunctionDecl *FD) { 2484 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2485 return Redecl->isInlineSpecified(); 2486 }; 2487 if (any_of(FD->redecls(), CheckRedeclForInline)) 2488 return true; 2489 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2490 if (!Pattern) 2491 return false; 2492 return any_of(Pattern->redecls(), CheckRedeclForInline); 2493 }; 2494 if (CheckForInline(FD)) { 2495 B.addAttribute(llvm::Attribute::InlineHint); 2496 } else if (CodeGenOpts.getInlining() == 2497 CodeGenOptions::OnlyHintInlining && 2498 !FD->isInlined() && 2499 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2500 B.addAttribute(llvm::Attribute::NoInline); 2501 } 2502 } 2503 } 2504 2505 // Add other optimization related attributes if we are optimizing this 2506 // function. 2507 if (!D->hasAttr<OptimizeNoneAttr>()) { 2508 if (D->hasAttr<ColdAttr>()) { 2509 if (!ShouldAddOptNone) 2510 B.addAttribute(llvm::Attribute::OptimizeForSize); 2511 B.addAttribute(llvm::Attribute::Cold); 2512 } 2513 if (D->hasAttr<HotAttr>()) 2514 B.addAttribute(llvm::Attribute::Hot); 2515 if (D->hasAttr<MinSizeAttr>()) 2516 B.addAttribute(llvm::Attribute::MinSize); 2517 } 2518 2519 F->addFnAttrs(B); 2520 2521 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2522 if (alignment) 2523 F->setAlignment(llvm::Align(alignment)); 2524 2525 if (!D->hasAttr<AlignedAttr>()) 2526 if (LangOpts.FunctionAlignment) 2527 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2528 2529 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2530 // reserve a bit for differentiating between virtual and non-virtual member 2531 // functions. If the current target's C++ ABI requires this and this is a 2532 // member function, set its alignment accordingly. 2533 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2534 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2535 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2536 } 2537 2538 // In the cross-dso CFI mode with canonical jump tables, we want !type 2539 // attributes on definitions only. 2540 if (CodeGenOpts.SanitizeCfiCrossDso && 2541 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2542 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2543 // Skip available_externally functions. They won't be codegen'ed in the 2544 // current module anyway. 2545 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2546 CreateFunctionTypeMetadataForIcall(FD, F); 2547 } 2548 } 2549 2550 // Emit type metadata on member functions for member function pointer checks. 2551 // These are only ever necessary on definitions; we're guaranteed that the 2552 // definition will be present in the LTO unit as a result of LTO visibility. 2553 auto *MD = dyn_cast<CXXMethodDecl>(D); 2554 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2555 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2556 llvm::Metadata *Id = 2557 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2558 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2559 F->addTypeMetadata(0, Id); 2560 } 2561 } 2562 } 2563 2564 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2565 const Decl *D = GD.getDecl(); 2566 if (isa_and_nonnull<NamedDecl>(D)) 2567 setGVProperties(GV, GD); 2568 else 2569 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2570 2571 if (D && D->hasAttr<UsedAttr>()) 2572 addUsedOrCompilerUsedGlobal(GV); 2573 2574 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2575 VD && 2576 ((CodeGenOpts.KeepPersistentStorageVariables && 2577 (VD->getStorageDuration() == SD_Static || 2578 VD->getStorageDuration() == SD_Thread)) || 2579 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2580 VD->getType().isConstQualified()))) 2581 addUsedOrCompilerUsedGlobal(GV); 2582 } 2583 2584 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2585 llvm::AttrBuilder &Attrs, 2586 bool SetTargetFeatures) { 2587 // Add target-cpu and target-features attributes to functions. If 2588 // we have a decl for the function and it has a target attribute then 2589 // parse that and add it to the feature set. 2590 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2591 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2592 std::vector<std::string> Features; 2593 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2594 FD = FD ? FD->getMostRecentDecl() : FD; 2595 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2596 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2597 assert((!TD || !TV) && "both target_version and target specified"); 2598 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2599 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2600 bool AddedAttr = false; 2601 if (TD || TV || SD || TC) { 2602 llvm::StringMap<bool> FeatureMap; 2603 getContext().getFunctionFeatureMap(FeatureMap, GD); 2604 2605 // Produce the canonical string for this set of features. 2606 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2607 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2608 2609 // Now add the target-cpu and target-features to the function. 2610 // While we populated the feature map above, we still need to 2611 // get and parse the target attribute so we can get the cpu for 2612 // the function. 2613 if (TD) { 2614 ParsedTargetAttr ParsedAttr = 2615 Target.parseTargetAttr(TD->getFeaturesStr()); 2616 if (!ParsedAttr.CPU.empty() && 2617 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2618 TargetCPU = ParsedAttr.CPU; 2619 TuneCPU = ""; // Clear the tune CPU. 2620 } 2621 if (!ParsedAttr.Tune.empty() && 2622 getTarget().isValidCPUName(ParsedAttr.Tune)) 2623 TuneCPU = ParsedAttr.Tune; 2624 } 2625 2626 if (SD) { 2627 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2628 // favor this processor. 2629 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2630 } 2631 } else { 2632 // Otherwise just add the existing target cpu and target features to the 2633 // function. 2634 Features = getTarget().getTargetOpts().Features; 2635 } 2636 2637 if (!TargetCPU.empty()) { 2638 Attrs.addAttribute("target-cpu", TargetCPU); 2639 AddedAttr = true; 2640 } 2641 if (!TuneCPU.empty()) { 2642 Attrs.addAttribute("tune-cpu", TuneCPU); 2643 AddedAttr = true; 2644 } 2645 if (!Features.empty() && SetTargetFeatures) { 2646 llvm::erase_if(Features, [&](const std::string& F) { 2647 return getTarget().isReadOnlyFeature(F.substr(1)); 2648 }); 2649 llvm::sort(Features); 2650 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2651 AddedAttr = true; 2652 } 2653 2654 return AddedAttr; 2655 } 2656 2657 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2658 llvm::GlobalObject *GO) { 2659 const Decl *D = GD.getDecl(); 2660 SetCommonAttributes(GD, GO); 2661 2662 if (D) { 2663 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2664 if (D->hasAttr<RetainAttr>()) 2665 addUsedGlobal(GV); 2666 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2667 GV->addAttribute("bss-section", SA->getName()); 2668 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2669 GV->addAttribute("data-section", SA->getName()); 2670 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2671 GV->addAttribute("rodata-section", SA->getName()); 2672 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2673 GV->addAttribute("relro-section", SA->getName()); 2674 } 2675 2676 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2677 if (D->hasAttr<RetainAttr>()) 2678 addUsedGlobal(F); 2679 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2680 if (!D->getAttr<SectionAttr>()) 2681 F->addFnAttr("implicit-section-name", SA->getName()); 2682 2683 llvm::AttrBuilder Attrs(F->getContext()); 2684 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2685 // We know that GetCPUAndFeaturesAttributes will always have the 2686 // newest set, since it has the newest possible FunctionDecl, so the 2687 // new ones should replace the old. 2688 llvm::AttributeMask RemoveAttrs; 2689 RemoveAttrs.addAttribute("target-cpu"); 2690 RemoveAttrs.addAttribute("target-features"); 2691 RemoveAttrs.addAttribute("tune-cpu"); 2692 F->removeFnAttrs(RemoveAttrs); 2693 F->addFnAttrs(Attrs); 2694 } 2695 } 2696 2697 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2698 GO->setSection(CSA->getName()); 2699 else if (const auto *SA = D->getAttr<SectionAttr>()) 2700 GO->setSection(SA->getName()); 2701 } 2702 2703 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2704 } 2705 2706 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2707 llvm::Function *F, 2708 const CGFunctionInfo &FI) { 2709 const Decl *D = GD.getDecl(); 2710 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2711 SetLLVMFunctionAttributesForDefinition(D, F); 2712 2713 F->setLinkage(llvm::Function::InternalLinkage); 2714 2715 setNonAliasAttributes(GD, F); 2716 } 2717 2718 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2719 // Set linkage and visibility in case we never see a definition. 2720 LinkageInfo LV = ND->getLinkageAndVisibility(); 2721 // Don't set internal linkage on declarations. 2722 // "extern_weak" is overloaded in LLVM; we probably should have 2723 // separate linkage types for this. 2724 if (isExternallyVisible(LV.getLinkage()) && 2725 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2726 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2727 } 2728 2729 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2730 llvm::Function *F) { 2731 // Only if we are checking indirect calls. 2732 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2733 return; 2734 2735 // Non-static class methods are handled via vtable or member function pointer 2736 // checks elsewhere. 2737 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2738 return; 2739 2740 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2741 F->addTypeMetadata(0, MD); 2742 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2743 2744 // Emit a hash-based bit set entry for cross-DSO calls. 2745 if (CodeGenOpts.SanitizeCfiCrossDso) 2746 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2747 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2748 } 2749 2750 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2751 llvm::LLVMContext &Ctx = F->getContext(); 2752 llvm::MDBuilder MDB(Ctx); 2753 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2754 llvm::MDNode::get( 2755 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2756 } 2757 2758 static bool allowKCFIIdentifier(StringRef Name) { 2759 // KCFI type identifier constants are only necessary for external assembly 2760 // functions, which means it's safe to skip unusual names. Subset of 2761 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2762 return llvm::all_of(Name, [](const char &C) { 2763 return llvm::isAlnum(C) || C == '_' || C == '.'; 2764 }); 2765 } 2766 2767 void CodeGenModule::finalizeKCFITypes() { 2768 llvm::Module &M = getModule(); 2769 for (auto &F : M.functions()) { 2770 // Remove KCFI type metadata from non-address-taken local functions. 2771 bool AddressTaken = F.hasAddressTaken(); 2772 if (!AddressTaken && F.hasLocalLinkage()) 2773 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2774 2775 // Generate a constant with the expected KCFI type identifier for all 2776 // address-taken function declarations to support annotating indirectly 2777 // called assembly functions. 2778 if (!AddressTaken || !F.isDeclaration()) 2779 continue; 2780 2781 const llvm::ConstantInt *Type; 2782 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2783 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2784 else 2785 continue; 2786 2787 StringRef Name = F.getName(); 2788 if (!allowKCFIIdentifier(Name)) 2789 continue; 2790 2791 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2792 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2793 .str(); 2794 M.appendModuleInlineAsm(Asm); 2795 } 2796 } 2797 2798 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2799 bool IsIncompleteFunction, 2800 bool IsThunk) { 2801 2802 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2803 // If this is an intrinsic function, set the function's attributes 2804 // to the intrinsic's attributes. 2805 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2806 return; 2807 } 2808 2809 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2810 2811 if (!IsIncompleteFunction) 2812 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2813 IsThunk); 2814 2815 // Add the Returned attribute for "this", except for iOS 5 and earlier 2816 // where substantial code, including the libstdc++ dylib, was compiled with 2817 // GCC and does not actually return "this". 2818 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2819 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2820 assert(!F->arg_empty() && 2821 F->arg_begin()->getType() 2822 ->canLosslesslyBitCastTo(F->getReturnType()) && 2823 "unexpected this return"); 2824 F->addParamAttr(0, llvm::Attribute::Returned); 2825 } 2826 2827 // Only a few attributes are set on declarations; these may later be 2828 // overridden by a definition. 2829 2830 setLinkageForGV(F, FD); 2831 setGVProperties(F, FD); 2832 2833 // Setup target-specific attributes. 2834 if (!IsIncompleteFunction && F->isDeclaration()) 2835 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2836 2837 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2838 F->setSection(CSA->getName()); 2839 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2840 F->setSection(SA->getName()); 2841 2842 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2843 if (EA->isError()) 2844 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2845 else if (EA->isWarning()) 2846 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2847 } 2848 2849 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2850 if (FD->isInlineBuiltinDeclaration()) { 2851 const FunctionDecl *FDBody; 2852 bool HasBody = FD->hasBody(FDBody); 2853 (void)HasBody; 2854 assert(HasBody && "Inline builtin declarations should always have an " 2855 "available body!"); 2856 if (shouldEmitFunction(FDBody)) 2857 F->addFnAttr(llvm::Attribute::NoBuiltin); 2858 } 2859 2860 if (FD->isReplaceableGlobalAllocationFunction()) { 2861 // A replaceable global allocation function does not act like a builtin by 2862 // default, only if it is invoked by a new-expression or delete-expression. 2863 F->addFnAttr(llvm::Attribute::NoBuiltin); 2864 } 2865 2866 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2867 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2868 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2869 if (MD->isVirtual()) 2870 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2871 2872 // Don't emit entries for function declarations in the cross-DSO mode. This 2873 // is handled with better precision by the receiving DSO. But if jump tables 2874 // are non-canonical then we need type metadata in order to produce the local 2875 // jump table. 2876 if (!CodeGenOpts.SanitizeCfiCrossDso || 2877 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2878 CreateFunctionTypeMetadataForIcall(FD, F); 2879 2880 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2881 setKCFIType(FD, F); 2882 2883 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2884 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2885 2886 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2887 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2888 2889 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2890 // Annotate the callback behavior as metadata: 2891 // - The callback callee (as argument number). 2892 // - The callback payloads (as argument numbers). 2893 llvm::LLVMContext &Ctx = F->getContext(); 2894 llvm::MDBuilder MDB(Ctx); 2895 2896 // The payload indices are all but the first one in the encoding. The first 2897 // identifies the callback callee. 2898 int CalleeIdx = *CB->encoding_begin(); 2899 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2900 F->addMetadata(llvm::LLVMContext::MD_callback, 2901 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2902 CalleeIdx, PayloadIndices, 2903 /* VarArgsArePassed */ false)})); 2904 } 2905 } 2906 2907 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2908 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2909 "Only globals with definition can force usage."); 2910 LLVMUsed.emplace_back(GV); 2911 } 2912 2913 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2914 assert(!GV->isDeclaration() && 2915 "Only globals with definition can force usage."); 2916 LLVMCompilerUsed.emplace_back(GV); 2917 } 2918 2919 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2920 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2921 "Only globals with definition can force usage."); 2922 if (getTriple().isOSBinFormatELF()) 2923 LLVMCompilerUsed.emplace_back(GV); 2924 else 2925 LLVMUsed.emplace_back(GV); 2926 } 2927 2928 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2929 std::vector<llvm::WeakTrackingVH> &List) { 2930 // Don't create llvm.used if there is no need. 2931 if (List.empty()) 2932 return; 2933 2934 // Convert List to what ConstantArray needs. 2935 SmallVector<llvm::Constant*, 8> UsedArray; 2936 UsedArray.resize(List.size()); 2937 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2938 UsedArray[i] = 2939 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2940 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2941 } 2942 2943 if (UsedArray.empty()) 2944 return; 2945 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2946 2947 auto *GV = new llvm::GlobalVariable( 2948 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2949 llvm::ConstantArray::get(ATy, UsedArray), Name); 2950 2951 GV->setSection("llvm.metadata"); 2952 } 2953 2954 void CodeGenModule::emitLLVMUsed() { 2955 emitUsed(*this, "llvm.used", LLVMUsed); 2956 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2957 } 2958 2959 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2960 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2961 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2962 } 2963 2964 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2965 llvm::SmallString<32> Opt; 2966 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2967 if (Opt.empty()) 2968 return; 2969 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2970 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2971 } 2972 2973 void CodeGenModule::AddDependentLib(StringRef Lib) { 2974 auto &C = getLLVMContext(); 2975 if (getTarget().getTriple().isOSBinFormatELF()) { 2976 ELFDependentLibraries.push_back( 2977 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2978 return; 2979 } 2980 2981 llvm::SmallString<24> Opt; 2982 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2983 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2984 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2985 } 2986 2987 /// Add link options implied by the given module, including modules 2988 /// it depends on, using a postorder walk. 2989 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2990 SmallVectorImpl<llvm::MDNode *> &Metadata, 2991 llvm::SmallPtrSet<Module *, 16> &Visited) { 2992 // Import this module's parent. 2993 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2994 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2995 } 2996 2997 // Import this module's dependencies. 2998 for (Module *Import : llvm::reverse(Mod->Imports)) { 2999 if (Visited.insert(Import).second) 3000 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 3001 } 3002 3003 // Add linker options to link against the libraries/frameworks 3004 // described by this module. 3005 llvm::LLVMContext &Context = CGM.getLLVMContext(); 3006 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 3007 3008 // For modules that use export_as for linking, use that module 3009 // name instead. 3010 if (Mod->UseExportAsModuleLinkName) 3011 return; 3012 3013 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 3014 // Link against a framework. Frameworks are currently Darwin only, so we 3015 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 3016 if (LL.IsFramework) { 3017 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 3018 llvm::MDString::get(Context, LL.Library)}; 3019 3020 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3021 continue; 3022 } 3023 3024 // Link against a library. 3025 if (IsELF) { 3026 llvm::Metadata *Args[2] = { 3027 llvm::MDString::get(Context, "lib"), 3028 llvm::MDString::get(Context, LL.Library), 3029 }; 3030 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3031 } else { 3032 llvm::SmallString<24> Opt; 3033 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3034 auto *OptString = llvm::MDString::get(Context, Opt); 3035 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3036 } 3037 } 3038 } 3039 3040 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3041 assert(Primary->isNamedModuleUnit() && 3042 "We should only emit module initializers for named modules."); 3043 3044 // Emit the initializers in the order that sub-modules appear in the 3045 // source, first Global Module Fragments, if present. 3046 if (auto GMF = Primary->getGlobalModuleFragment()) { 3047 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3048 if (isa<ImportDecl>(D)) 3049 continue; 3050 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3051 EmitTopLevelDecl(D); 3052 } 3053 } 3054 // Second any associated with the module, itself. 3055 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3056 // Skip import decls, the inits for those are called explicitly. 3057 if (isa<ImportDecl>(D)) 3058 continue; 3059 EmitTopLevelDecl(D); 3060 } 3061 // Third any associated with the Privat eMOdule Fragment, if present. 3062 if (auto PMF = Primary->getPrivateModuleFragment()) { 3063 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3064 // Skip import decls, the inits for those are called explicitly. 3065 if (isa<ImportDecl>(D)) 3066 continue; 3067 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3068 EmitTopLevelDecl(D); 3069 } 3070 } 3071 } 3072 3073 void CodeGenModule::EmitModuleLinkOptions() { 3074 // Collect the set of all of the modules we want to visit to emit link 3075 // options, which is essentially the imported modules and all of their 3076 // non-explicit child modules. 3077 llvm::SetVector<clang::Module *> LinkModules; 3078 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3079 SmallVector<clang::Module *, 16> Stack; 3080 3081 // Seed the stack with imported modules. 3082 for (Module *M : ImportedModules) { 3083 // Do not add any link flags when an implementation TU of a module imports 3084 // a header of that same module. 3085 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3086 !getLangOpts().isCompilingModule()) 3087 continue; 3088 if (Visited.insert(M).second) 3089 Stack.push_back(M); 3090 } 3091 3092 // Find all of the modules to import, making a little effort to prune 3093 // non-leaf modules. 3094 while (!Stack.empty()) { 3095 clang::Module *Mod = Stack.pop_back_val(); 3096 3097 bool AnyChildren = false; 3098 3099 // Visit the submodules of this module. 3100 for (const auto &SM : Mod->submodules()) { 3101 // Skip explicit children; they need to be explicitly imported to be 3102 // linked against. 3103 if (SM->IsExplicit) 3104 continue; 3105 3106 if (Visited.insert(SM).second) { 3107 Stack.push_back(SM); 3108 AnyChildren = true; 3109 } 3110 } 3111 3112 // We didn't find any children, so add this module to the list of 3113 // modules to link against. 3114 if (!AnyChildren) { 3115 LinkModules.insert(Mod); 3116 } 3117 } 3118 3119 // Add link options for all of the imported modules in reverse topological 3120 // order. We don't do anything to try to order import link flags with respect 3121 // to linker options inserted by things like #pragma comment(). 3122 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3123 Visited.clear(); 3124 for (Module *M : LinkModules) 3125 if (Visited.insert(M).second) 3126 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3127 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3128 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3129 3130 // Add the linker options metadata flag. 3131 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3132 for (auto *MD : LinkerOptionsMetadata) 3133 NMD->addOperand(MD); 3134 } 3135 3136 void CodeGenModule::EmitDeferred() { 3137 // Emit deferred declare target declarations. 3138 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3139 getOpenMPRuntime().emitDeferredTargetDecls(); 3140 3141 // Emit code for any potentially referenced deferred decls. Since a 3142 // previously unused static decl may become used during the generation of code 3143 // for a static function, iterate until no changes are made. 3144 3145 if (!DeferredVTables.empty()) { 3146 EmitDeferredVTables(); 3147 3148 // Emitting a vtable doesn't directly cause more vtables to 3149 // become deferred, although it can cause functions to be 3150 // emitted that then need those vtables. 3151 assert(DeferredVTables.empty()); 3152 } 3153 3154 // Emit CUDA/HIP static device variables referenced by host code only. 3155 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3156 // needed for further handling. 3157 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3158 llvm::append_range(DeferredDeclsToEmit, 3159 getContext().CUDADeviceVarODRUsedByHost); 3160 3161 // Stop if we're out of both deferred vtables and deferred declarations. 3162 if (DeferredDeclsToEmit.empty()) 3163 return; 3164 3165 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3166 // work, it will not interfere with this. 3167 std::vector<GlobalDecl> CurDeclsToEmit; 3168 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3169 3170 for (GlobalDecl &D : CurDeclsToEmit) { 3171 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3172 // to get GlobalValue with exactly the type we need, not something that 3173 // might had been created for another decl with the same mangled name but 3174 // different type. 3175 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3176 GetAddrOfGlobal(D, ForDefinition)); 3177 3178 // In case of different address spaces, we may still get a cast, even with 3179 // IsForDefinition equal to true. Query mangled names table to get 3180 // GlobalValue. 3181 if (!GV) 3182 GV = GetGlobalValue(getMangledName(D)); 3183 3184 // Make sure GetGlobalValue returned non-null. 3185 assert(GV); 3186 3187 // Check to see if we've already emitted this. This is necessary 3188 // for a couple of reasons: first, decls can end up in the 3189 // deferred-decls queue multiple times, and second, decls can end 3190 // up with definitions in unusual ways (e.g. by an extern inline 3191 // function acquiring a strong function redefinition). Just 3192 // ignore these cases. 3193 if (!GV->isDeclaration()) 3194 continue; 3195 3196 // If this is OpenMP, check if it is legal to emit this global normally. 3197 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3198 continue; 3199 3200 // Otherwise, emit the definition and move on to the next one. 3201 EmitGlobalDefinition(D, GV); 3202 3203 // If we found out that we need to emit more decls, do that recursively. 3204 // This has the advantage that the decls are emitted in a DFS and related 3205 // ones are close together, which is convenient for testing. 3206 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3207 EmitDeferred(); 3208 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3209 } 3210 } 3211 } 3212 3213 void CodeGenModule::EmitVTablesOpportunistically() { 3214 // Try to emit external vtables as available_externally if they have emitted 3215 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3216 // is not allowed to create new references to things that need to be emitted 3217 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3218 3219 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3220 && "Only emit opportunistic vtables with optimizations"); 3221 3222 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3223 assert(getVTables().isVTableExternal(RD) && 3224 "This queue should only contain external vtables"); 3225 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3226 VTables.GenerateClassData(RD); 3227 } 3228 OpportunisticVTables.clear(); 3229 } 3230 3231 void CodeGenModule::EmitGlobalAnnotations() { 3232 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3233 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3234 if (GV) 3235 AddGlobalAnnotations(VD, GV); 3236 } 3237 DeferredAnnotations.clear(); 3238 3239 if (Annotations.empty()) 3240 return; 3241 3242 // Create a new global variable for the ConstantStruct in the Module. 3243 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3244 Annotations[0]->getType(), Annotations.size()), Annotations); 3245 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3246 llvm::GlobalValue::AppendingLinkage, 3247 Array, "llvm.global.annotations"); 3248 gv->setSection(AnnotationSection); 3249 } 3250 3251 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3252 llvm::Constant *&AStr = AnnotationStrings[Str]; 3253 if (AStr) 3254 return AStr; 3255 3256 // Not found yet, create a new global. 3257 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3258 auto *gv = new llvm::GlobalVariable( 3259 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3260 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3261 ConstGlobalsPtrTy->getAddressSpace()); 3262 gv->setSection(AnnotationSection); 3263 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3264 AStr = gv; 3265 return gv; 3266 } 3267 3268 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3269 SourceManager &SM = getContext().getSourceManager(); 3270 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3271 if (PLoc.isValid()) 3272 return EmitAnnotationString(PLoc.getFilename()); 3273 return EmitAnnotationString(SM.getBufferName(Loc)); 3274 } 3275 3276 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3277 SourceManager &SM = getContext().getSourceManager(); 3278 PresumedLoc PLoc = SM.getPresumedLoc(L); 3279 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3280 SM.getExpansionLineNumber(L); 3281 return llvm::ConstantInt::get(Int32Ty, LineNo); 3282 } 3283 3284 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3285 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3286 if (Exprs.empty()) 3287 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3288 3289 llvm::FoldingSetNodeID ID; 3290 for (Expr *E : Exprs) { 3291 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3292 } 3293 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3294 if (Lookup) 3295 return Lookup; 3296 3297 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3298 LLVMArgs.reserve(Exprs.size()); 3299 ConstantEmitter ConstEmiter(*this); 3300 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3301 const auto *CE = cast<clang::ConstantExpr>(E); 3302 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3303 CE->getType()); 3304 }); 3305 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3306 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3307 llvm::GlobalValue::PrivateLinkage, Struct, 3308 ".args"); 3309 GV->setSection(AnnotationSection); 3310 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3311 3312 Lookup = GV; 3313 return GV; 3314 } 3315 3316 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3317 const AnnotateAttr *AA, 3318 SourceLocation L) { 3319 // Get the globals for file name, annotation, and the line number. 3320 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3321 *UnitGV = EmitAnnotationUnit(L), 3322 *LineNoCst = EmitAnnotationLineNo(L), 3323 *Args = EmitAnnotationArgs(AA); 3324 3325 llvm::Constant *GVInGlobalsAS = GV; 3326 if (GV->getAddressSpace() != 3327 getDataLayout().getDefaultGlobalsAddressSpace()) { 3328 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3329 GV, 3330 llvm::PointerType::get( 3331 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3332 } 3333 3334 // Create the ConstantStruct for the global annotation. 3335 llvm::Constant *Fields[] = { 3336 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3337 }; 3338 return llvm::ConstantStruct::getAnon(Fields); 3339 } 3340 3341 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3342 llvm::GlobalValue *GV) { 3343 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3344 // Get the struct elements for these annotations. 3345 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3346 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3347 } 3348 3349 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3350 SourceLocation Loc) const { 3351 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3352 // NoSanitize by function name. 3353 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3354 return true; 3355 // NoSanitize by location. Check "mainfile" prefix. 3356 auto &SM = Context.getSourceManager(); 3357 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3358 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3359 return true; 3360 3361 // Check "src" prefix. 3362 if (Loc.isValid()) 3363 return NoSanitizeL.containsLocation(Kind, Loc); 3364 // If location is unknown, this may be a compiler-generated function. Assume 3365 // it's located in the main file. 3366 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3367 } 3368 3369 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3370 llvm::GlobalVariable *GV, 3371 SourceLocation Loc, QualType Ty, 3372 StringRef Category) const { 3373 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3374 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3375 return true; 3376 auto &SM = Context.getSourceManager(); 3377 if (NoSanitizeL.containsMainFile( 3378 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3379 Category)) 3380 return true; 3381 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3382 return true; 3383 3384 // Check global type. 3385 if (!Ty.isNull()) { 3386 // Drill down the array types: if global variable of a fixed type is 3387 // not sanitized, we also don't instrument arrays of them. 3388 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3389 Ty = AT->getElementType(); 3390 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3391 // Only record types (classes, structs etc.) are ignored. 3392 if (Ty->isRecordType()) { 3393 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3394 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3395 return true; 3396 } 3397 } 3398 return false; 3399 } 3400 3401 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3402 StringRef Category) const { 3403 const auto &XRayFilter = getContext().getXRayFilter(); 3404 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3405 auto Attr = ImbueAttr::NONE; 3406 if (Loc.isValid()) 3407 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3408 if (Attr == ImbueAttr::NONE) 3409 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3410 switch (Attr) { 3411 case ImbueAttr::NONE: 3412 return false; 3413 case ImbueAttr::ALWAYS: 3414 Fn->addFnAttr("function-instrument", "xray-always"); 3415 break; 3416 case ImbueAttr::ALWAYS_ARG1: 3417 Fn->addFnAttr("function-instrument", "xray-always"); 3418 Fn->addFnAttr("xray-log-args", "1"); 3419 break; 3420 case ImbueAttr::NEVER: 3421 Fn->addFnAttr("function-instrument", "xray-never"); 3422 break; 3423 } 3424 return true; 3425 } 3426 3427 ProfileList::ExclusionType 3428 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3429 SourceLocation Loc) const { 3430 const auto &ProfileList = getContext().getProfileList(); 3431 // If the profile list is empty, then instrument everything. 3432 if (ProfileList.isEmpty()) 3433 return ProfileList::Allow; 3434 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3435 // First, check the function name. 3436 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3437 return *V; 3438 // Next, check the source location. 3439 if (Loc.isValid()) 3440 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3441 return *V; 3442 // If location is unknown, this may be a compiler-generated function. Assume 3443 // it's located in the main file. 3444 auto &SM = Context.getSourceManager(); 3445 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3446 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3447 return *V; 3448 return ProfileList.getDefault(Kind); 3449 } 3450 3451 ProfileList::ExclusionType 3452 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3453 SourceLocation Loc) const { 3454 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3455 if (V != ProfileList::Allow) 3456 return V; 3457 3458 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3459 if (NumGroups > 1) { 3460 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3461 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3462 return ProfileList::Skip; 3463 } 3464 return ProfileList::Allow; 3465 } 3466 3467 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3468 // Never defer when EmitAllDecls is specified. 3469 if (LangOpts.EmitAllDecls) 3470 return true; 3471 3472 const auto *VD = dyn_cast<VarDecl>(Global); 3473 if (VD && 3474 ((CodeGenOpts.KeepPersistentStorageVariables && 3475 (VD->getStorageDuration() == SD_Static || 3476 VD->getStorageDuration() == SD_Thread)) || 3477 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3478 VD->getType().isConstQualified()))) 3479 return true; 3480 3481 return getContext().DeclMustBeEmitted(Global); 3482 } 3483 3484 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3485 // In OpenMP 5.0 variables and function may be marked as 3486 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3487 // that they must be emitted on the host/device. To be sure we need to have 3488 // seen a declare target with an explicit mentioning of the function, we know 3489 // we have if the level of the declare target attribute is -1. Note that we 3490 // check somewhere else if we should emit this at all. 3491 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3492 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3493 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3494 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3495 return false; 3496 } 3497 3498 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3499 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3500 // Implicit template instantiations may change linkage if they are later 3501 // explicitly instantiated, so they should not be emitted eagerly. 3502 return false; 3503 } 3504 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3505 if (Context.getInlineVariableDefinitionKind(VD) == 3506 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3507 // A definition of an inline constexpr static data member may change 3508 // linkage later if it's redeclared outside the class. 3509 return false; 3510 if (CXX20ModuleInits && VD->getOwningModule() && 3511 !VD->getOwningModule()->isModuleMapModule()) { 3512 // For CXX20, module-owned initializers need to be deferred, since it is 3513 // not known at this point if they will be run for the current module or 3514 // as part of the initializer for an imported one. 3515 return false; 3516 } 3517 } 3518 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3519 // codegen for global variables, because they may be marked as threadprivate. 3520 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3521 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3522 !Global->getType().isConstantStorage(getContext(), false, false) && 3523 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3524 return false; 3525 3526 return true; 3527 } 3528 3529 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3530 StringRef Name = getMangledName(GD); 3531 3532 // The UUID descriptor should be pointer aligned. 3533 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3534 3535 // Look for an existing global. 3536 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3537 return ConstantAddress(GV, GV->getValueType(), Alignment); 3538 3539 ConstantEmitter Emitter(*this); 3540 llvm::Constant *Init; 3541 3542 APValue &V = GD->getAsAPValue(); 3543 if (!V.isAbsent()) { 3544 // If possible, emit the APValue version of the initializer. In particular, 3545 // this gets the type of the constant right. 3546 Init = Emitter.emitForInitializer( 3547 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3548 } else { 3549 // As a fallback, directly construct the constant. 3550 // FIXME: This may get padding wrong under esoteric struct layout rules. 3551 // MSVC appears to create a complete type 'struct __s_GUID' that it 3552 // presumably uses to represent these constants. 3553 MSGuidDecl::Parts Parts = GD->getParts(); 3554 llvm::Constant *Fields[4] = { 3555 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3556 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3557 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3558 llvm::ConstantDataArray::getRaw( 3559 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3560 Int8Ty)}; 3561 Init = llvm::ConstantStruct::getAnon(Fields); 3562 } 3563 3564 auto *GV = new llvm::GlobalVariable( 3565 getModule(), Init->getType(), 3566 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3567 if (supportsCOMDAT()) 3568 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3569 setDSOLocal(GV); 3570 3571 if (!V.isAbsent()) { 3572 Emitter.finalize(GV); 3573 return ConstantAddress(GV, GV->getValueType(), Alignment); 3574 } 3575 3576 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3577 return ConstantAddress(GV, Ty, Alignment); 3578 } 3579 3580 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3581 const UnnamedGlobalConstantDecl *GCD) { 3582 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3583 3584 llvm::GlobalVariable **Entry = nullptr; 3585 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3586 if (*Entry) 3587 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3588 3589 ConstantEmitter Emitter(*this); 3590 llvm::Constant *Init; 3591 3592 const APValue &V = GCD->getValue(); 3593 3594 assert(!V.isAbsent()); 3595 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3596 GCD->getType()); 3597 3598 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3599 /*isConstant=*/true, 3600 llvm::GlobalValue::PrivateLinkage, Init, 3601 ".constant"); 3602 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3603 GV->setAlignment(Alignment.getAsAlign()); 3604 3605 Emitter.finalize(GV); 3606 3607 *Entry = GV; 3608 return ConstantAddress(GV, GV->getValueType(), Alignment); 3609 } 3610 3611 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3612 const TemplateParamObjectDecl *TPO) { 3613 StringRef Name = getMangledName(TPO); 3614 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3615 3616 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3617 return ConstantAddress(GV, GV->getValueType(), Alignment); 3618 3619 ConstantEmitter Emitter(*this); 3620 llvm::Constant *Init = Emitter.emitForInitializer( 3621 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3622 3623 if (!Init) { 3624 ErrorUnsupported(TPO, "template parameter object"); 3625 return ConstantAddress::invalid(); 3626 } 3627 3628 llvm::GlobalValue::LinkageTypes Linkage = 3629 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3630 ? llvm::GlobalValue::LinkOnceODRLinkage 3631 : llvm::GlobalValue::InternalLinkage; 3632 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3633 /*isConstant=*/true, Linkage, Init, Name); 3634 setGVProperties(GV, TPO); 3635 if (supportsCOMDAT()) 3636 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3637 Emitter.finalize(GV); 3638 3639 return ConstantAddress(GV, GV->getValueType(), Alignment); 3640 } 3641 3642 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3643 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3644 assert(AA && "No alias?"); 3645 3646 CharUnits Alignment = getContext().getDeclAlign(VD); 3647 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3648 3649 // See if there is already something with the target's name in the module. 3650 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3651 if (Entry) 3652 return ConstantAddress(Entry, DeclTy, Alignment); 3653 3654 llvm::Constant *Aliasee; 3655 if (isa<llvm::FunctionType>(DeclTy)) 3656 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3657 GlobalDecl(cast<FunctionDecl>(VD)), 3658 /*ForVTable=*/false); 3659 else 3660 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3661 nullptr); 3662 3663 auto *F = cast<llvm::GlobalValue>(Aliasee); 3664 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3665 WeakRefReferences.insert(F); 3666 3667 return ConstantAddress(Aliasee, DeclTy, Alignment); 3668 } 3669 3670 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3671 if (!D) 3672 return false; 3673 if (auto *A = D->getAttr<AttrT>()) 3674 return A->isImplicit(); 3675 return D->isImplicit(); 3676 } 3677 3678 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3679 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3680 3681 // Weak references don't produce any output by themselves. 3682 if (Global->hasAttr<WeakRefAttr>()) 3683 return; 3684 3685 // If this is an alias definition (which otherwise looks like a declaration) 3686 // emit it now. 3687 if (Global->hasAttr<AliasAttr>()) 3688 return EmitAliasDefinition(GD); 3689 3690 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3691 if (Global->hasAttr<IFuncAttr>()) 3692 return emitIFuncDefinition(GD); 3693 3694 // If this is a cpu_dispatch multiversion function, emit the resolver. 3695 if (Global->hasAttr<CPUDispatchAttr>()) 3696 return emitCPUDispatchDefinition(GD); 3697 3698 // If this is CUDA, be selective about which declarations we emit. 3699 // Non-constexpr non-lambda implicit host device functions are not emitted 3700 // unless they are used on device side. 3701 if (LangOpts.CUDA) { 3702 if (LangOpts.CUDAIsDevice) { 3703 const auto *FD = dyn_cast<FunctionDecl>(Global); 3704 if ((!Global->hasAttr<CUDADeviceAttr>() || 3705 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3706 hasImplicitAttr<CUDAHostAttr>(FD) && 3707 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3708 !isLambdaCallOperator(FD) && 3709 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3710 !Global->hasAttr<CUDAGlobalAttr>() && 3711 !Global->hasAttr<CUDAConstantAttr>() && 3712 !Global->hasAttr<CUDASharedAttr>() && 3713 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3714 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3715 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3716 !Global->hasAttr<CUDAHostAttr>())) 3717 return; 3718 } else { 3719 // We need to emit host-side 'shadows' for all global 3720 // device-side variables because the CUDA runtime needs their 3721 // size and host-side address in order to provide access to 3722 // their device-side incarnations. 3723 3724 // So device-only functions are the only things we skip. 3725 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3726 Global->hasAttr<CUDADeviceAttr>()) 3727 return; 3728 3729 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3730 "Expected Variable or Function"); 3731 } 3732 } 3733 3734 if (LangOpts.OpenMP) { 3735 // If this is OpenMP, check if it is legal to emit this global normally. 3736 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3737 return; 3738 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3739 if (MustBeEmitted(Global)) 3740 EmitOMPDeclareReduction(DRD); 3741 return; 3742 } 3743 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3744 if (MustBeEmitted(Global)) 3745 EmitOMPDeclareMapper(DMD); 3746 return; 3747 } 3748 } 3749 3750 // Ignore declarations, they will be emitted on their first use. 3751 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3752 // Update deferred annotations with the latest declaration if the function 3753 // function was already used or defined. 3754 if (FD->hasAttr<AnnotateAttr>()) { 3755 StringRef MangledName = getMangledName(GD); 3756 if (GetGlobalValue(MangledName)) 3757 DeferredAnnotations[MangledName] = FD; 3758 } 3759 3760 // Forward declarations are emitted lazily on first use. 3761 if (!FD->doesThisDeclarationHaveABody()) { 3762 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3763 return; 3764 3765 StringRef MangledName = getMangledName(GD); 3766 3767 // Compute the function info and LLVM type. 3768 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3769 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3770 3771 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3772 /*DontDefer=*/false); 3773 return; 3774 } 3775 } else { 3776 const auto *VD = cast<VarDecl>(Global); 3777 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3778 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3779 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3780 if (LangOpts.OpenMP) { 3781 // Emit declaration of the must-be-emitted declare target variable. 3782 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3783 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3784 3785 // If this variable has external storage and doesn't require special 3786 // link handling we defer to its canonical definition. 3787 if (VD->hasExternalStorage() && 3788 Res != OMPDeclareTargetDeclAttr::MT_Link) 3789 return; 3790 3791 bool UnifiedMemoryEnabled = 3792 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3793 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3794 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3795 !UnifiedMemoryEnabled) { 3796 (void)GetAddrOfGlobalVar(VD); 3797 } else { 3798 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3799 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3800 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3801 UnifiedMemoryEnabled)) && 3802 "Link clause or to clause with unified memory expected."); 3803 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3804 } 3805 3806 return; 3807 } 3808 } 3809 // If this declaration may have caused an inline variable definition to 3810 // change linkage, make sure that it's emitted. 3811 if (Context.getInlineVariableDefinitionKind(VD) == 3812 ASTContext::InlineVariableDefinitionKind::Strong) 3813 GetAddrOfGlobalVar(VD); 3814 return; 3815 } 3816 } 3817 3818 // Defer code generation to first use when possible, e.g. if this is an inline 3819 // function. If the global must always be emitted, do it eagerly if possible 3820 // to benefit from cache locality. 3821 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3822 // Emit the definition if it can't be deferred. 3823 EmitGlobalDefinition(GD); 3824 addEmittedDeferredDecl(GD); 3825 return; 3826 } 3827 3828 // If we're deferring emission of a C++ variable with an 3829 // initializer, remember the order in which it appeared in the file. 3830 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3831 cast<VarDecl>(Global)->hasInit()) { 3832 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3833 CXXGlobalInits.push_back(nullptr); 3834 } 3835 3836 StringRef MangledName = getMangledName(GD); 3837 if (GetGlobalValue(MangledName) != nullptr) { 3838 // The value has already been used and should therefore be emitted. 3839 addDeferredDeclToEmit(GD); 3840 } else if (MustBeEmitted(Global)) { 3841 // The value must be emitted, but cannot be emitted eagerly. 3842 assert(!MayBeEmittedEagerly(Global)); 3843 addDeferredDeclToEmit(GD); 3844 } else { 3845 // Otherwise, remember that we saw a deferred decl with this name. The 3846 // first use of the mangled name will cause it to move into 3847 // DeferredDeclsToEmit. 3848 DeferredDecls[MangledName] = GD; 3849 } 3850 } 3851 3852 // Check if T is a class type with a destructor that's not dllimport. 3853 static bool HasNonDllImportDtor(QualType T) { 3854 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3855 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3856 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3857 return true; 3858 3859 return false; 3860 } 3861 3862 namespace { 3863 struct FunctionIsDirectlyRecursive 3864 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3865 const StringRef Name; 3866 const Builtin::Context &BI; 3867 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3868 : Name(N), BI(C) {} 3869 3870 bool VisitCallExpr(const CallExpr *E) { 3871 const FunctionDecl *FD = E->getDirectCallee(); 3872 if (!FD) 3873 return false; 3874 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3875 if (Attr && Name == Attr->getLabel()) 3876 return true; 3877 unsigned BuiltinID = FD->getBuiltinID(); 3878 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3879 return false; 3880 StringRef BuiltinName = BI.getName(BuiltinID); 3881 if (BuiltinName.starts_with("__builtin_") && 3882 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3883 return true; 3884 } 3885 return false; 3886 } 3887 3888 bool VisitStmt(const Stmt *S) { 3889 for (const Stmt *Child : S->children()) 3890 if (Child && this->Visit(Child)) 3891 return true; 3892 return false; 3893 } 3894 }; 3895 3896 // Make sure we're not referencing non-imported vars or functions. 3897 struct DLLImportFunctionVisitor 3898 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3899 bool SafeToInline = true; 3900 3901 bool shouldVisitImplicitCode() const { return true; } 3902 3903 bool VisitVarDecl(VarDecl *VD) { 3904 if (VD->getTLSKind()) { 3905 // A thread-local variable cannot be imported. 3906 SafeToInline = false; 3907 return SafeToInline; 3908 } 3909 3910 // A variable definition might imply a destructor call. 3911 if (VD->isThisDeclarationADefinition()) 3912 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3913 3914 return SafeToInline; 3915 } 3916 3917 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3918 if (const auto *D = E->getTemporary()->getDestructor()) 3919 SafeToInline = D->hasAttr<DLLImportAttr>(); 3920 return SafeToInline; 3921 } 3922 3923 bool VisitDeclRefExpr(DeclRefExpr *E) { 3924 ValueDecl *VD = E->getDecl(); 3925 if (isa<FunctionDecl>(VD)) 3926 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3927 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3928 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3929 return SafeToInline; 3930 } 3931 3932 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3933 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3934 return SafeToInline; 3935 } 3936 3937 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3938 CXXMethodDecl *M = E->getMethodDecl(); 3939 if (!M) { 3940 // Call through a pointer to member function. This is safe to inline. 3941 SafeToInline = true; 3942 } else { 3943 SafeToInline = M->hasAttr<DLLImportAttr>(); 3944 } 3945 return SafeToInline; 3946 } 3947 3948 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3949 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3950 return SafeToInline; 3951 } 3952 3953 bool VisitCXXNewExpr(CXXNewExpr *E) { 3954 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3955 return SafeToInline; 3956 } 3957 }; 3958 } 3959 3960 // isTriviallyRecursive - Check if this function calls another 3961 // decl that, because of the asm attribute or the other decl being a builtin, 3962 // ends up pointing to itself. 3963 bool 3964 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3965 StringRef Name; 3966 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3967 // asm labels are a special kind of mangling we have to support. 3968 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3969 if (!Attr) 3970 return false; 3971 Name = Attr->getLabel(); 3972 } else { 3973 Name = FD->getName(); 3974 } 3975 3976 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3977 const Stmt *Body = FD->getBody(); 3978 return Body ? Walker.Visit(Body) : false; 3979 } 3980 3981 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3982 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3983 return true; 3984 3985 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3986 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3987 return false; 3988 3989 // We don't import function bodies from other named module units since that 3990 // behavior may break ABI compatibility of the current unit. 3991 if (const Module *M = F->getOwningModule(); 3992 M && M->getTopLevelModule()->isNamedModule() && 3993 getContext().getCurrentNamedModule() != M->getTopLevelModule()) 3994 return false; 3995 3996 if (F->hasAttr<NoInlineAttr>()) 3997 return false; 3998 3999 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 4000 // Check whether it would be safe to inline this dllimport function. 4001 DLLImportFunctionVisitor Visitor; 4002 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 4003 if (!Visitor.SafeToInline) 4004 return false; 4005 4006 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 4007 // Implicit destructor invocations aren't captured in the AST, so the 4008 // check above can't see them. Check for them manually here. 4009 for (const Decl *Member : Dtor->getParent()->decls()) 4010 if (isa<FieldDecl>(Member)) 4011 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 4012 return false; 4013 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 4014 if (HasNonDllImportDtor(B.getType())) 4015 return false; 4016 } 4017 } 4018 4019 // Inline builtins declaration must be emitted. They often are fortified 4020 // functions. 4021 if (F->isInlineBuiltinDeclaration()) 4022 return true; 4023 4024 // PR9614. Avoid cases where the source code is lying to us. An available 4025 // externally function should have an equivalent function somewhere else, 4026 // but a function that calls itself through asm label/`__builtin_` trickery is 4027 // clearly not equivalent to the real implementation. 4028 // This happens in glibc's btowc and in some configure checks. 4029 return !isTriviallyRecursive(F); 4030 } 4031 4032 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4033 return CodeGenOpts.OptimizationLevel > 0; 4034 } 4035 4036 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4037 llvm::GlobalValue *GV) { 4038 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4039 4040 if (FD->isCPUSpecificMultiVersion()) { 4041 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4042 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4043 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4044 } else if (FD->isTargetClonesMultiVersion()) { 4045 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4046 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4047 if (Clone->isFirstOfVersion(I)) 4048 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4049 // Ensure that the resolver function is also emitted. 4050 GetOrCreateMultiVersionResolver(GD); 4051 } else if (FD->hasAttr<TargetVersionAttr>()) { 4052 GetOrCreateMultiVersionResolver(GD); 4053 } else 4054 EmitGlobalFunctionDefinition(GD, GV); 4055 } 4056 4057 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4058 const auto *D = cast<ValueDecl>(GD.getDecl()); 4059 4060 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4061 Context.getSourceManager(), 4062 "Generating code for declaration"); 4063 4064 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4065 // At -O0, don't generate IR for functions with available_externally 4066 // linkage. 4067 if (!shouldEmitFunction(GD)) 4068 return; 4069 4070 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4071 std::string Name; 4072 llvm::raw_string_ostream OS(Name); 4073 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4074 /*Qualified=*/true); 4075 return Name; 4076 }); 4077 4078 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4079 // Make sure to emit the definition(s) before we emit the thunks. 4080 // This is necessary for the generation of certain thunks. 4081 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4082 ABI->emitCXXStructor(GD); 4083 else if (FD->isMultiVersion()) 4084 EmitMultiVersionFunctionDefinition(GD, GV); 4085 else 4086 EmitGlobalFunctionDefinition(GD, GV); 4087 4088 if (Method->isVirtual()) 4089 getVTables().EmitThunks(GD); 4090 4091 return; 4092 } 4093 4094 if (FD->isMultiVersion()) 4095 return EmitMultiVersionFunctionDefinition(GD, GV); 4096 return EmitGlobalFunctionDefinition(GD, GV); 4097 } 4098 4099 if (const auto *VD = dyn_cast<VarDecl>(D)) 4100 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4101 4102 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4103 } 4104 4105 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4106 llvm::Function *NewFn); 4107 4108 static unsigned 4109 TargetMVPriority(const TargetInfo &TI, 4110 const CodeGenFunction::MultiVersionResolverOption &RO) { 4111 unsigned Priority = 0; 4112 unsigned NumFeatures = 0; 4113 for (StringRef Feat : RO.Conditions.Features) { 4114 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4115 NumFeatures++; 4116 } 4117 4118 if (!RO.Conditions.Architecture.empty()) 4119 Priority = std::max( 4120 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4121 4122 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4123 4124 return Priority; 4125 } 4126 4127 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4128 // TU can forward declare the function without causing problems. Particularly 4129 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4130 // work with internal linkage functions, so that the same function name can be 4131 // used with internal linkage in multiple TUs. 4132 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4133 GlobalDecl GD) { 4134 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4135 if (FD->getFormalLinkage() == Linkage::Internal) 4136 return llvm::GlobalValue::InternalLinkage; 4137 return llvm::GlobalValue::WeakODRLinkage; 4138 } 4139 4140 void CodeGenModule::emitMultiVersionFunctions() { 4141 std::vector<GlobalDecl> MVFuncsToEmit; 4142 MultiVersionFuncs.swap(MVFuncsToEmit); 4143 for (GlobalDecl GD : MVFuncsToEmit) { 4144 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4145 assert(FD && "Expected a FunctionDecl"); 4146 4147 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4148 if (FD->isTargetMultiVersion()) { 4149 getContext().forEachMultiversionedFunctionVersion( 4150 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4151 GlobalDecl CurGD{ 4152 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4153 StringRef MangledName = getMangledName(CurGD); 4154 llvm::Constant *Func = GetGlobalValue(MangledName); 4155 if (!Func) { 4156 if (CurFD->isDefined()) { 4157 EmitGlobalFunctionDefinition(CurGD, nullptr); 4158 Func = GetGlobalValue(MangledName); 4159 } else { 4160 const CGFunctionInfo &FI = 4161 getTypes().arrangeGlobalDeclaration(GD); 4162 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4163 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4164 /*DontDefer=*/false, ForDefinition); 4165 } 4166 assert(Func && "This should have just been created"); 4167 } 4168 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4169 const auto *TA = CurFD->getAttr<TargetAttr>(); 4170 llvm::SmallVector<StringRef, 8> Feats; 4171 TA->getAddedFeatures(Feats); 4172 Options.emplace_back(cast<llvm::Function>(Func), 4173 TA->getArchitecture(), Feats); 4174 } else { 4175 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4176 llvm::SmallVector<StringRef, 8> Feats; 4177 TVA->getFeatures(Feats); 4178 Options.emplace_back(cast<llvm::Function>(Func), 4179 /*Architecture*/ "", Feats); 4180 } 4181 }); 4182 } else if (FD->isTargetClonesMultiVersion()) { 4183 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4184 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4185 ++VersionIndex) { 4186 if (!TC->isFirstOfVersion(VersionIndex)) 4187 continue; 4188 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4189 VersionIndex}; 4190 StringRef Version = TC->getFeatureStr(VersionIndex); 4191 StringRef MangledName = getMangledName(CurGD); 4192 llvm::Constant *Func = GetGlobalValue(MangledName); 4193 if (!Func) { 4194 if (FD->isDefined()) { 4195 EmitGlobalFunctionDefinition(CurGD, nullptr); 4196 Func = GetGlobalValue(MangledName); 4197 } else { 4198 const CGFunctionInfo &FI = 4199 getTypes().arrangeGlobalDeclaration(CurGD); 4200 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4201 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4202 /*DontDefer=*/false, ForDefinition); 4203 } 4204 assert(Func && "This should have just been created"); 4205 } 4206 4207 StringRef Architecture; 4208 llvm::SmallVector<StringRef, 1> Feature; 4209 4210 if (getTarget().getTriple().isAArch64()) { 4211 if (Version != "default") { 4212 llvm::SmallVector<StringRef, 8> VerFeats; 4213 Version.split(VerFeats, "+"); 4214 for (auto &CurFeat : VerFeats) 4215 Feature.push_back(CurFeat.trim()); 4216 } 4217 } else { 4218 if (Version.starts_with("arch=")) 4219 Architecture = Version.drop_front(sizeof("arch=") - 1); 4220 else if (Version != "default") 4221 Feature.push_back(Version); 4222 } 4223 4224 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4225 } 4226 } else { 4227 assert(0 && "Expected a target or target_clones multiversion function"); 4228 continue; 4229 } 4230 4231 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4232 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4233 ResolverConstant = IFunc->getResolver(); 4234 if (FD->isTargetClonesMultiVersion() || 4235 FD->isTargetVersionMultiVersion()) { 4236 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4237 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4238 std::string MangledName = getMangledNameImpl( 4239 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4240 // In prior versions of Clang, the mangling for ifuncs incorrectly 4241 // included an .ifunc suffix. This alias is generated for backward 4242 // compatibility. It is deprecated, and may be removed in the future. 4243 auto *Alias = llvm::GlobalAlias::create( 4244 DeclTy, 0, getMultiversionLinkage(*this, GD), 4245 MangledName + ".ifunc", IFunc, &getModule()); 4246 SetCommonAttributes(FD, Alias); 4247 } 4248 } 4249 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4250 4251 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4252 4253 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4254 ResolverFunc->setComdat( 4255 getModule().getOrInsertComdat(ResolverFunc->getName())); 4256 4257 const TargetInfo &TI = getTarget(); 4258 llvm::stable_sort( 4259 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4260 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4261 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4262 }); 4263 CodeGenFunction CGF(*this); 4264 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4265 } 4266 4267 // Ensure that any additions to the deferred decls list caused by emitting a 4268 // variant are emitted. This can happen when the variant itself is inline and 4269 // calls a function without linkage. 4270 if (!MVFuncsToEmit.empty()) 4271 EmitDeferred(); 4272 4273 // Ensure that any additions to the multiversion funcs list from either the 4274 // deferred decls or the multiversion functions themselves are emitted. 4275 if (!MultiVersionFuncs.empty()) 4276 emitMultiVersionFunctions(); 4277 } 4278 4279 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4280 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4281 assert(FD && "Not a FunctionDecl?"); 4282 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4283 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4284 assert(DD && "Not a cpu_dispatch Function?"); 4285 4286 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4287 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4288 4289 StringRef ResolverName = getMangledName(GD); 4290 UpdateMultiVersionNames(GD, FD, ResolverName); 4291 4292 llvm::Type *ResolverType; 4293 GlobalDecl ResolverGD; 4294 if (getTarget().supportsIFunc()) { 4295 ResolverType = llvm::FunctionType::get( 4296 llvm::PointerType::get(DeclTy, 4297 getTypes().getTargetAddressSpace(FD->getType())), 4298 false); 4299 } 4300 else { 4301 ResolverType = DeclTy; 4302 ResolverGD = GD; 4303 } 4304 4305 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4306 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4307 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4308 if (supportsCOMDAT()) 4309 ResolverFunc->setComdat( 4310 getModule().getOrInsertComdat(ResolverFunc->getName())); 4311 4312 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4313 const TargetInfo &Target = getTarget(); 4314 unsigned Index = 0; 4315 for (const IdentifierInfo *II : DD->cpus()) { 4316 // Get the name of the target function so we can look it up/create it. 4317 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4318 getCPUSpecificMangling(*this, II->getName()); 4319 4320 llvm::Constant *Func = GetGlobalValue(MangledName); 4321 4322 if (!Func) { 4323 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4324 if (ExistingDecl.getDecl() && 4325 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4326 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4327 Func = GetGlobalValue(MangledName); 4328 } else { 4329 if (!ExistingDecl.getDecl()) 4330 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4331 4332 Func = GetOrCreateLLVMFunction( 4333 MangledName, DeclTy, ExistingDecl, 4334 /*ForVTable=*/false, /*DontDefer=*/true, 4335 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4336 } 4337 } 4338 4339 llvm::SmallVector<StringRef, 32> Features; 4340 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4341 llvm::transform(Features, Features.begin(), 4342 [](StringRef Str) { return Str.substr(1); }); 4343 llvm::erase_if(Features, [&Target](StringRef Feat) { 4344 return !Target.validateCpuSupports(Feat); 4345 }); 4346 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4347 ++Index; 4348 } 4349 4350 llvm::stable_sort( 4351 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4352 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4353 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4354 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4355 }); 4356 4357 // If the list contains multiple 'default' versions, such as when it contains 4358 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4359 // always run on at least a 'pentium'). We do this by deleting the 'least 4360 // advanced' (read, lowest mangling letter). 4361 while (Options.size() > 1 && 4362 llvm::all_of(llvm::X86::getCpuSupportsMask( 4363 (Options.end() - 2)->Conditions.Features), 4364 [](auto X) { return X == 0; })) { 4365 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4366 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4367 if (LHSName.compare(RHSName) < 0) 4368 Options.erase(Options.end() - 2); 4369 else 4370 Options.erase(Options.end() - 1); 4371 } 4372 4373 CodeGenFunction CGF(*this); 4374 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4375 4376 if (getTarget().supportsIFunc()) { 4377 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4378 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4379 4380 // Fix up function declarations that were created for cpu_specific before 4381 // cpu_dispatch was known 4382 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4383 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4384 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4385 &getModule()); 4386 GI->takeName(IFunc); 4387 IFunc->replaceAllUsesWith(GI); 4388 IFunc->eraseFromParent(); 4389 IFunc = GI; 4390 } 4391 4392 std::string AliasName = getMangledNameImpl( 4393 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4394 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4395 if (!AliasFunc) { 4396 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4397 &getModule()); 4398 SetCommonAttributes(GD, GA); 4399 } 4400 } 4401 } 4402 4403 /// If a dispatcher for the specified mangled name is not in the module, create 4404 /// and return an llvm Function with the specified type. 4405 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4406 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4407 assert(FD && "Not a FunctionDecl?"); 4408 4409 std::string MangledName = 4410 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4411 4412 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4413 // a separate resolver). 4414 std::string ResolverName = MangledName; 4415 if (getTarget().supportsIFunc()) { 4416 switch (FD->getMultiVersionKind()) { 4417 case MultiVersionKind::None: 4418 llvm_unreachable("unexpected MultiVersionKind::None for resolver"); 4419 case MultiVersionKind::Target: 4420 case MultiVersionKind::CPUSpecific: 4421 case MultiVersionKind::CPUDispatch: 4422 ResolverName += ".ifunc"; 4423 break; 4424 case MultiVersionKind::TargetClones: 4425 case MultiVersionKind::TargetVersion: 4426 break; 4427 } 4428 } else if (FD->isTargetMultiVersion()) { 4429 ResolverName += ".resolver"; 4430 } 4431 4432 // If the resolver has already been created, just return it. 4433 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4434 return ResolverGV; 4435 4436 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4437 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4438 4439 // The resolver needs to be created. For target and target_clones, defer 4440 // creation until the end of the TU. 4441 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4442 MultiVersionFuncs.push_back(GD); 4443 4444 // For cpu_specific, don't create an ifunc yet because we don't know if the 4445 // cpu_dispatch will be emitted in this translation unit. 4446 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4447 llvm::Type *ResolverType = llvm::FunctionType::get( 4448 llvm::PointerType::get(DeclTy, 4449 getTypes().getTargetAddressSpace(FD->getType())), 4450 false); 4451 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4452 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4453 /*ForVTable=*/false); 4454 llvm::GlobalIFunc *GIF = 4455 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4456 "", Resolver, &getModule()); 4457 GIF->setName(ResolverName); 4458 SetCommonAttributes(FD, GIF); 4459 4460 return GIF; 4461 } 4462 4463 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4464 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4465 assert(isa<llvm::GlobalValue>(Resolver) && 4466 "Resolver should be created for the first time"); 4467 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4468 return Resolver; 4469 } 4470 4471 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4472 /// module, create and return an llvm Function with the specified type. If there 4473 /// is something in the module with the specified name, return it potentially 4474 /// bitcasted to the right type. 4475 /// 4476 /// If D is non-null, it specifies a decl that correspond to this. This is used 4477 /// to set the attributes on the function when it is first created. 4478 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4479 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4480 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4481 ForDefinition_t IsForDefinition) { 4482 const Decl *D = GD.getDecl(); 4483 4484 // Any attempts to use a MultiVersion function should result in retrieving 4485 // the iFunc instead. Name Mangling will handle the rest of the changes. 4486 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4487 // For the device mark the function as one that should be emitted. 4488 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4489 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4490 !DontDefer && !IsForDefinition) { 4491 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4492 GlobalDecl GDDef; 4493 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4494 GDDef = GlobalDecl(CD, GD.getCtorType()); 4495 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4496 GDDef = GlobalDecl(DD, GD.getDtorType()); 4497 else 4498 GDDef = GlobalDecl(FDDef); 4499 EmitGlobal(GDDef); 4500 } 4501 } 4502 4503 if (FD->isMultiVersion()) { 4504 UpdateMultiVersionNames(GD, FD, MangledName); 4505 if (!IsForDefinition) 4506 return GetOrCreateMultiVersionResolver(GD); 4507 } 4508 } 4509 4510 // Lookup the entry, lazily creating it if necessary. 4511 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4512 if (Entry) { 4513 if (WeakRefReferences.erase(Entry)) { 4514 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4515 if (FD && !FD->hasAttr<WeakAttr>()) 4516 Entry->setLinkage(llvm::Function::ExternalLinkage); 4517 } 4518 4519 // Handle dropped DLL attributes. 4520 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4521 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4522 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4523 setDSOLocal(Entry); 4524 } 4525 4526 // If there are two attempts to define the same mangled name, issue an 4527 // error. 4528 if (IsForDefinition && !Entry->isDeclaration()) { 4529 GlobalDecl OtherGD; 4530 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4531 // to make sure that we issue an error only once. 4532 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4533 (GD.getCanonicalDecl().getDecl() != 4534 OtherGD.getCanonicalDecl().getDecl()) && 4535 DiagnosedConflictingDefinitions.insert(GD).second) { 4536 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4537 << MangledName; 4538 getDiags().Report(OtherGD.getDecl()->getLocation(), 4539 diag::note_previous_definition); 4540 } 4541 } 4542 4543 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4544 (Entry->getValueType() == Ty)) { 4545 return Entry; 4546 } 4547 4548 // Make sure the result is of the correct type. 4549 // (If function is requested for a definition, we always need to create a new 4550 // function, not just return a bitcast.) 4551 if (!IsForDefinition) 4552 return Entry; 4553 } 4554 4555 // This function doesn't have a complete type (for example, the return 4556 // type is an incomplete struct). Use a fake type instead, and make 4557 // sure not to try to set attributes. 4558 bool IsIncompleteFunction = false; 4559 4560 llvm::FunctionType *FTy; 4561 if (isa<llvm::FunctionType>(Ty)) { 4562 FTy = cast<llvm::FunctionType>(Ty); 4563 } else { 4564 FTy = llvm::FunctionType::get(VoidTy, false); 4565 IsIncompleteFunction = true; 4566 } 4567 4568 llvm::Function *F = 4569 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4570 Entry ? StringRef() : MangledName, &getModule()); 4571 4572 // Store the declaration associated with this function so it is potentially 4573 // updated by further declarations or definitions and emitted at the end. 4574 if (D && D->hasAttr<AnnotateAttr>()) 4575 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4576 4577 // If we already created a function with the same mangled name (but different 4578 // type) before, take its name and add it to the list of functions to be 4579 // replaced with F at the end of CodeGen. 4580 // 4581 // This happens if there is a prototype for a function (e.g. "int f()") and 4582 // then a definition of a different type (e.g. "int f(int x)"). 4583 if (Entry) { 4584 F->takeName(Entry); 4585 4586 // This might be an implementation of a function without a prototype, in 4587 // which case, try to do special replacement of calls which match the new 4588 // prototype. The really key thing here is that we also potentially drop 4589 // arguments from the call site so as to make a direct call, which makes the 4590 // inliner happier and suppresses a number of optimizer warnings (!) about 4591 // dropping arguments. 4592 if (!Entry->use_empty()) { 4593 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4594 Entry->removeDeadConstantUsers(); 4595 } 4596 4597 addGlobalValReplacement(Entry, F); 4598 } 4599 4600 assert(F->getName() == MangledName && "name was uniqued!"); 4601 if (D) 4602 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4603 if (ExtraAttrs.hasFnAttrs()) { 4604 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4605 F->addFnAttrs(B); 4606 } 4607 4608 if (!DontDefer) { 4609 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4610 // each other bottoming out with the base dtor. Therefore we emit non-base 4611 // dtors on usage, even if there is no dtor definition in the TU. 4612 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4613 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4614 GD.getDtorType())) 4615 addDeferredDeclToEmit(GD); 4616 4617 // This is the first use or definition of a mangled name. If there is a 4618 // deferred decl with this name, remember that we need to emit it at the end 4619 // of the file. 4620 auto DDI = DeferredDecls.find(MangledName); 4621 if (DDI != DeferredDecls.end()) { 4622 // Move the potentially referenced deferred decl to the 4623 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4624 // don't need it anymore). 4625 addDeferredDeclToEmit(DDI->second); 4626 DeferredDecls.erase(DDI); 4627 4628 // Otherwise, there are cases we have to worry about where we're 4629 // using a declaration for which we must emit a definition but where 4630 // we might not find a top-level definition: 4631 // - member functions defined inline in their classes 4632 // - friend functions defined inline in some class 4633 // - special member functions with implicit definitions 4634 // If we ever change our AST traversal to walk into class methods, 4635 // this will be unnecessary. 4636 // 4637 // We also don't emit a definition for a function if it's going to be an 4638 // entry in a vtable, unless it's already marked as used. 4639 } else if (getLangOpts().CPlusPlus && D) { 4640 // Look for a declaration that's lexically in a record. 4641 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4642 FD = FD->getPreviousDecl()) { 4643 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4644 if (FD->doesThisDeclarationHaveABody()) { 4645 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4646 break; 4647 } 4648 } 4649 } 4650 } 4651 } 4652 4653 // Make sure the result is of the requested type. 4654 if (!IsIncompleteFunction) { 4655 assert(F->getFunctionType() == Ty); 4656 return F; 4657 } 4658 4659 return F; 4660 } 4661 4662 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4663 /// non-null, then this function will use the specified type if it has to 4664 /// create it (this occurs when we see a definition of the function). 4665 llvm::Constant * 4666 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4667 bool DontDefer, 4668 ForDefinition_t IsForDefinition) { 4669 // If there was no specific requested type, just convert it now. 4670 if (!Ty) { 4671 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4672 Ty = getTypes().ConvertType(FD->getType()); 4673 } 4674 4675 // Devirtualized destructor calls may come through here instead of via 4676 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4677 // of the complete destructor when necessary. 4678 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4679 if (getTarget().getCXXABI().isMicrosoft() && 4680 GD.getDtorType() == Dtor_Complete && 4681 DD->getParent()->getNumVBases() == 0) 4682 GD = GlobalDecl(DD, Dtor_Base); 4683 } 4684 4685 StringRef MangledName = getMangledName(GD); 4686 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4687 /*IsThunk=*/false, llvm::AttributeList(), 4688 IsForDefinition); 4689 // Returns kernel handle for HIP kernel stub function. 4690 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4691 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4692 auto *Handle = getCUDARuntime().getKernelHandle( 4693 cast<llvm::Function>(F->stripPointerCasts()), GD); 4694 if (IsForDefinition) 4695 return F; 4696 return Handle; 4697 } 4698 return F; 4699 } 4700 4701 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4702 llvm::GlobalValue *F = 4703 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4704 4705 return llvm::NoCFIValue::get(F); 4706 } 4707 4708 static const FunctionDecl * 4709 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4710 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4711 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4712 4713 IdentifierInfo &CII = C.Idents.get(Name); 4714 for (const auto *Result : DC->lookup(&CII)) 4715 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4716 return FD; 4717 4718 if (!C.getLangOpts().CPlusPlus) 4719 return nullptr; 4720 4721 // Demangle the premangled name from getTerminateFn() 4722 IdentifierInfo &CXXII = 4723 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4724 ? C.Idents.get("terminate") 4725 : C.Idents.get(Name); 4726 4727 for (const auto &N : {"__cxxabiv1", "std"}) { 4728 IdentifierInfo &NS = C.Idents.get(N); 4729 for (const auto *Result : DC->lookup(&NS)) { 4730 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4731 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4732 for (const auto *Result : LSD->lookup(&NS)) 4733 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4734 break; 4735 4736 if (ND) 4737 for (const auto *Result : ND->lookup(&CXXII)) 4738 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4739 return FD; 4740 } 4741 } 4742 4743 return nullptr; 4744 } 4745 4746 /// CreateRuntimeFunction - Create a new runtime function with the specified 4747 /// type and name. 4748 llvm::FunctionCallee 4749 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4750 llvm::AttributeList ExtraAttrs, bool Local, 4751 bool AssumeConvergent) { 4752 if (AssumeConvergent) { 4753 ExtraAttrs = 4754 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4755 } 4756 4757 llvm::Constant *C = 4758 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4759 /*DontDefer=*/false, /*IsThunk=*/false, 4760 ExtraAttrs); 4761 4762 if (auto *F = dyn_cast<llvm::Function>(C)) { 4763 if (F->empty()) { 4764 F->setCallingConv(getRuntimeCC()); 4765 4766 // In Windows Itanium environments, try to mark runtime functions 4767 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4768 // will link their standard library statically or dynamically. Marking 4769 // functions imported when they are not imported can cause linker errors 4770 // and warnings. 4771 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4772 !getCodeGenOpts().LTOVisibilityPublicStd) { 4773 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4774 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4775 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4776 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4777 } 4778 } 4779 setDSOLocal(F); 4780 } 4781 } 4782 4783 return {FTy, C}; 4784 } 4785 4786 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4787 /// create and return an llvm GlobalVariable with the specified type and address 4788 /// space. If there is something in the module with the specified name, return 4789 /// it potentially bitcasted to the right type. 4790 /// 4791 /// If D is non-null, it specifies a decl that correspond to this. This is used 4792 /// to set the attributes on the global when it is first created. 4793 /// 4794 /// If IsForDefinition is true, it is guaranteed that an actual global with 4795 /// type Ty will be returned, not conversion of a variable with the same 4796 /// mangled name but some other type. 4797 llvm::Constant * 4798 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4799 LangAS AddrSpace, const VarDecl *D, 4800 ForDefinition_t IsForDefinition) { 4801 // Lookup the entry, lazily creating it if necessary. 4802 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4803 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4804 if (Entry) { 4805 if (WeakRefReferences.erase(Entry)) { 4806 if (D && !D->hasAttr<WeakAttr>()) 4807 Entry->setLinkage(llvm::Function::ExternalLinkage); 4808 } 4809 4810 // Handle dropped DLL attributes. 4811 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4812 !shouldMapVisibilityToDLLExport(D)) 4813 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4814 4815 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4816 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4817 4818 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4819 return Entry; 4820 4821 // If there are two attempts to define the same mangled name, issue an 4822 // error. 4823 if (IsForDefinition && !Entry->isDeclaration()) { 4824 GlobalDecl OtherGD; 4825 const VarDecl *OtherD; 4826 4827 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4828 // to make sure that we issue an error only once. 4829 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4830 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4831 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4832 OtherD->hasInit() && 4833 DiagnosedConflictingDefinitions.insert(D).second) { 4834 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4835 << MangledName; 4836 getDiags().Report(OtherGD.getDecl()->getLocation(), 4837 diag::note_previous_definition); 4838 } 4839 } 4840 4841 // Make sure the result is of the correct type. 4842 if (Entry->getType()->getAddressSpace() != TargetAS) 4843 return llvm::ConstantExpr::getAddrSpaceCast( 4844 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4845 4846 // (If global is requested for a definition, we always need to create a new 4847 // global, not just return a bitcast.) 4848 if (!IsForDefinition) 4849 return Entry; 4850 } 4851 4852 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4853 4854 auto *GV = new llvm::GlobalVariable( 4855 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4856 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4857 getContext().getTargetAddressSpace(DAddrSpace)); 4858 4859 // If we already created a global with the same mangled name (but different 4860 // type) before, take its name and remove it from its parent. 4861 if (Entry) { 4862 GV->takeName(Entry); 4863 4864 if (!Entry->use_empty()) { 4865 Entry->replaceAllUsesWith(GV); 4866 } 4867 4868 Entry->eraseFromParent(); 4869 } 4870 4871 // This is the first use or definition of a mangled name. If there is a 4872 // deferred decl with this name, remember that we need to emit it at the end 4873 // of the file. 4874 auto DDI = DeferredDecls.find(MangledName); 4875 if (DDI != DeferredDecls.end()) { 4876 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4877 // list, and remove it from DeferredDecls (since we don't need it anymore). 4878 addDeferredDeclToEmit(DDI->second); 4879 DeferredDecls.erase(DDI); 4880 } 4881 4882 // Handle things which are present even on external declarations. 4883 if (D) { 4884 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4885 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4886 4887 // FIXME: This code is overly simple and should be merged with other global 4888 // handling. 4889 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4890 4891 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4892 4893 setLinkageForGV(GV, D); 4894 4895 if (D->getTLSKind()) { 4896 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4897 CXXThreadLocals.push_back(D); 4898 setTLSMode(GV, *D); 4899 } 4900 4901 setGVProperties(GV, D); 4902 4903 // If required by the ABI, treat declarations of static data members with 4904 // inline initializers as definitions. 4905 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4906 EmitGlobalVarDefinition(D); 4907 } 4908 4909 // Emit section information for extern variables. 4910 if (D->hasExternalStorage()) { 4911 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4912 GV->setSection(SA->getName()); 4913 } 4914 4915 // Handle XCore specific ABI requirements. 4916 if (getTriple().getArch() == llvm::Triple::xcore && 4917 D->getLanguageLinkage() == CLanguageLinkage && 4918 D->getType().isConstant(Context) && 4919 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4920 GV->setSection(".cp.rodata"); 4921 4922 // Handle code model attribute 4923 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4924 GV->setCodeModel(CMA->getModel()); 4925 4926 // Check if we a have a const declaration with an initializer, we may be 4927 // able to emit it as available_externally to expose it's value to the 4928 // optimizer. 4929 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4930 D->getType().isConstQualified() && !GV->hasInitializer() && 4931 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4932 const auto *Record = 4933 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4934 bool HasMutableFields = Record && Record->hasMutableFields(); 4935 if (!HasMutableFields) { 4936 const VarDecl *InitDecl; 4937 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4938 if (InitExpr) { 4939 ConstantEmitter emitter(*this); 4940 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4941 if (Init) { 4942 auto *InitType = Init->getType(); 4943 if (GV->getValueType() != InitType) { 4944 // The type of the initializer does not match the definition. 4945 // This happens when an initializer has a different type from 4946 // the type of the global (because of padding at the end of a 4947 // structure for instance). 4948 GV->setName(StringRef()); 4949 // Make a new global with the correct type, this is now guaranteed 4950 // to work. 4951 auto *NewGV = cast<llvm::GlobalVariable>( 4952 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4953 ->stripPointerCasts()); 4954 4955 // Erase the old global, since it is no longer used. 4956 GV->eraseFromParent(); 4957 GV = NewGV; 4958 } else { 4959 GV->setInitializer(Init); 4960 GV->setConstant(true); 4961 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4962 } 4963 emitter.finalize(GV); 4964 } 4965 } 4966 } 4967 } 4968 } 4969 4970 if (D && 4971 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4972 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4973 // External HIP managed variables needed to be recorded for transformation 4974 // in both device and host compilations. 4975 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4976 D->hasExternalStorage()) 4977 getCUDARuntime().handleVarRegistration(D, *GV); 4978 } 4979 4980 if (D) 4981 SanitizerMD->reportGlobal(GV, *D); 4982 4983 LangAS ExpectedAS = 4984 D ? D->getType().getAddressSpace() 4985 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4986 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4987 if (DAddrSpace != ExpectedAS) { 4988 return getTargetCodeGenInfo().performAddrSpaceCast( 4989 *this, GV, DAddrSpace, ExpectedAS, 4990 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4991 } 4992 4993 return GV; 4994 } 4995 4996 llvm::Constant * 4997 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4998 const Decl *D = GD.getDecl(); 4999 5000 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 5001 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 5002 /*DontDefer=*/false, IsForDefinition); 5003 5004 if (isa<CXXMethodDecl>(D)) { 5005 auto FInfo = 5006 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 5007 auto Ty = getTypes().GetFunctionType(*FInfo); 5008 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5009 IsForDefinition); 5010 } 5011 5012 if (isa<FunctionDecl>(D)) { 5013 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5014 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5015 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 5016 IsForDefinition); 5017 } 5018 5019 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5020 } 5021 5022 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5023 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5024 llvm::Align Alignment) { 5025 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5026 llvm::GlobalVariable *OldGV = nullptr; 5027 5028 if (GV) { 5029 // Check if the variable has the right type. 5030 if (GV->getValueType() == Ty) 5031 return GV; 5032 5033 // Because C++ name mangling, the only way we can end up with an already 5034 // existing global with the same name is if it has been declared extern "C". 5035 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5036 OldGV = GV; 5037 } 5038 5039 // Create a new variable. 5040 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5041 Linkage, nullptr, Name); 5042 5043 if (OldGV) { 5044 // Replace occurrences of the old variable if needed. 5045 GV->takeName(OldGV); 5046 5047 if (!OldGV->use_empty()) { 5048 OldGV->replaceAllUsesWith(GV); 5049 } 5050 5051 OldGV->eraseFromParent(); 5052 } 5053 5054 if (supportsCOMDAT() && GV->isWeakForLinker() && 5055 !GV->hasAvailableExternallyLinkage()) 5056 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5057 5058 GV->setAlignment(Alignment); 5059 5060 return GV; 5061 } 5062 5063 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5064 /// given global variable. If Ty is non-null and if the global doesn't exist, 5065 /// then it will be created with the specified type instead of whatever the 5066 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5067 /// that an actual global with type Ty will be returned, not conversion of a 5068 /// variable with the same mangled name but some other type. 5069 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5070 llvm::Type *Ty, 5071 ForDefinition_t IsForDefinition) { 5072 assert(D->hasGlobalStorage() && "Not a global variable"); 5073 QualType ASTTy = D->getType(); 5074 if (!Ty) 5075 Ty = getTypes().ConvertTypeForMem(ASTTy); 5076 5077 StringRef MangledName = getMangledName(D); 5078 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5079 IsForDefinition); 5080 } 5081 5082 /// CreateRuntimeVariable - Create a new runtime global variable with the 5083 /// specified type and name. 5084 llvm::Constant * 5085 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5086 StringRef Name) { 5087 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5088 : LangAS::Default; 5089 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5090 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5091 return Ret; 5092 } 5093 5094 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5095 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5096 5097 StringRef MangledName = getMangledName(D); 5098 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5099 5100 // We already have a definition, not declaration, with the same mangled name. 5101 // Emitting of declaration is not required (and actually overwrites emitted 5102 // definition). 5103 if (GV && !GV->isDeclaration()) 5104 return; 5105 5106 // If we have not seen a reference to this variable yet, place it into the 5107 // deferred declarations table to be emitted if needed later. 5108 if (!MustBeEmitted(D) && !GV) { 5109 DeferredDecls[MangledName] = D; 5110 return; 5111 } 5112 5113 // The tentative definition is the only definition. 5114 EmitGlobalVarDefinition(D); 5115 } 5116 5117 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5118 EmitExternalVarDeclaration(D); 5119 } 5120 5121 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5122 return Context.toCharUnitsFromBits( 5123 getDataLayout().getTypeStoreSizeInBits(Ty)); 5124 } 5125 5126 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5127 if (LangOpts.OpenCL) { 5128 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5129 assert(AS == LangAS::opencl_global || 5130 AS == LangAS::opencl_global_device || 5131 AS == LangAS::opencl_global_host || 5132 AS == LangAS::opencl_constant || 5133 AS == LangAS::opencl_local || 5134 AS >= LangAS::FirstTargetAddressSpace); 5135 return AS; 5136 } 5137 5138 if (LangOpts.SYCLIsDevice && 5139 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5140 return LangAS::sycl_global; 5141 5142 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5143 if (D) { 5144 if (D->hasAttr<CUDAConstantAttr>()) 5145 return LangAS::cuda_constant; 5146 if (D->hasAttr<CUDASharedAttr>()) 5147 return LangAS::cuda_shared; 5148 if (D->hasAttr<CUDADeviceAttr>()) 5149 return LangAS::cuda_device; 5150 if (D->getType().isConstQualified()) 5151 return LangAS::cuda_constant; 5152 } 5153 return LangAS::cuda_device; 5154 } 5155 5156 if (LangOpts.OpenMP) { 5157 LangAS AS; 5158 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5159 return AS; 5160 } 5161 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5162 } 5163 5164 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5165 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5166 if (LangOpts.OpenCL) 5167 return LangAS::opencl_constant; 5168 if (LangOpts.SYCLIsDevice) 5169 return LangAS::sycl_global; 5170 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5171 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5172 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5173 // with OpVariable instructions with Generic storage class which is not 5174 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5175 // UniformConstant storage class is not viable as pointers to it may not be 5176 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5177 return LangAS::cuda_device; 5178 if (auto AS = getTarget().getConstantAddressSpace()) 5179 return *AS; 5180 return LangAS::Default; 5181 } 5182 5183 // In address space agnostic languages, string literals are in default address 5184 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5185 // emitted in constant address space in LLVM IR. To be consistent with other 5186 // parts of AST, string literal global variables in constant address space 5187 // need to be casted to default address space before being put into address 5188 // map and referenced by other part of CodeGen. 5189 // In OpenCL, string literals are in constant address space in AST, therefore 5190 // they should not be casted to default address space. 5191 static llvm::Constant * 5192 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5193 llvm::GlobalVariable *GV) { 5194 llvm::Constant *Cast = GV; 5195 if (!CGM.getLangOpts().OpenCL) { 5196 auto AS = CGM.GetGlobalConstantAddressSpace(); 5197 if (AS != LangAS::Default) 5198 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5199 CGM, GV, AS, LangAS::Default, 5200 llvm::PointerType::get( 5201 CGM.getLLVMContext(), 5202 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5203 } 5204 return Cast; 5205 } 5206 5207 template<typename SomeDecl> 5208 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5209 llvm::GlobalValue *GV) { 5210 if (!getLangOpts().CPlusPlus) 5211 return; 5212 5213 // Must have 'used' attribute, or else inline assembly can't rely on 5214 // the name existing. 5215 if (!D->template hasAttr<UsedAttr>()) 5216 return; 5217 5218 // Must have internal linkage and an ordinary name. 5219 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5220 return; 5221 5222 // Must be in an extern "C" context. Entities declared directly within 5223 // a record are not extern "C" even if the record is in such a context. 5224 const SomeDecl *First = D->getFirstDecl(); 5225 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5226 return; 5227 5228 // OK, this is an internal linkage entity inside an extern "C" linkage 5229 // specification. Make a note of that so we can give it the "expected" 5230 // mangled name if nothing else is using that name. 5231 std::pair<StaticExternCMap::iterator, bool> R = 5232 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5233 5234 // If we have multiple internal linkage entities with the same name 5235 // in extern "C" regions, none of them gets that name. 5236 if (!R.second) 5237 R.first->second = nullptr; 5238 } 5239 5240 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5241 if (!CGM.supportsCOMDAT()) 5242 return false; 5243 5244 if (D.hasAttr<SelectAnyAttr>()) 5245 return true; 5246 5247 GVALinkage Linkage; 5248 if (auto *VD = dyn_cast<VarDecl>(&D)) 5249 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5250 else 5251 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5252 5253 switch (Linkage) { 5254 case GVA_Internal: 5255 case GVA_AvailableExternally: 5256 case GVA_StrongExternal: 5257 return false; 5258 case GVA_DiscardableODR: 5259 case GVA_StrongODR: 5260 return true; 5261 } 5262 llvm_unreachable("No such linkage"); 5263 } 5264 5265 bool CodeGenModule::supportsCOMDAT() const { 5266 return getTriple().supportsCOMDAT(); 5267 } 5268 5269 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5270 llvm::GlobalObject &GO) { 5271 if (!shouldBeInCOMDAT(*this, D)) 5272 return; 5273 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5274 } 5275 5276 /// Pass IsTentative as true if you want to create a tentative definition. 5277 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5278 bool IsTentative) { 5279 // OpenCL global variables of sampler type are translated to function calls, 5280 // therefore no need to be translated. 5281 QualType ASTTy = D->getType(); 5282 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5283 return; 5284 5285 // If this is OpenMP device, check if it is legal to emit this global 5286 // normally. 5287 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5288 OpenMPRuntime->emitTargetGlobalVariable(D)) 5289 return; 5290 5291 llvm::TrackingVH<llvm::Constant> Init; 5292 bool NeedsGlobalCtor = false; 5293 // Whether the definition of the variable is available externally. 5294 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5295 // since this is the job for its original source. 5296 bool IsDefinitionAvailableExternally = 5297 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5298 bool NeedsGlobalDtor = 5299 !IsDefinitionAvailableExternally && 5300 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5301 5302 const VarDecl *InitDecl; 5303 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5304 5305 std::optional<ConstantEmitter> emitter; 5306 5307 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5308 // as part of their declaration." Sema has already checked for 5309 // error cases, so we just need to set Init to UndefValue. 5310 bool IsCUDASharedVar = 5311 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5312 // Shadows of initialized device-side global variables are also left 5313 // undefined. 5314 // Managed Variables should be initialized on both host side and device side. 5315 bool IsCUDAShadowVar = 5316 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5317 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5318 D->hasAttr<CUDASharedAttr>()); 5319 bool IsCUDADeviceShadowVar = 5320 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5321 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5322 D->getType()->isCUDADeviceBuiltinTextureType()); 5323 if (getLangOpts().CUDA && 5324 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5325 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5326 else if (D->hasAttr<LoaderUninitializedAttr>()) 5327 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5328 else if (!InitExpr) { 5329 // This is a tentative definition; tentative definitions are 5330 // implicitly initialized with { 0 }. 5331 // 5332 // Note that tentative definitions are only emitted at the end of 5333 // a translation unit, so they should never have incomplete 5334 // type. In addition, EmitTentativeDefinition makes sure that we 5335 // never attempt to emit a tentative definition if a real one 5336 // exists. A use may still exists, however, so we still may need 5337 // to do a RAUW. 5338 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5339 Init = EmitNullConstant(D->getType()); 5340 } else { 5341 initializedGlobalDecl = GlobalDecl(D); 5342 emitter.emplace(*this); 5343 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5344 if (!Initializer) { 5345 QualType T = InitExpr->getType(); 5346 if (D->getType()->isReferenceType()) 5347 T = D->getType(); 5348 5349 if (getLangOpts().CPlusPlus) { 5350 if (InitDecl->hasFlexibleArrayInit(getContext())) 5351 ErrorUnsupported(D, "flexible array initializer"); 5352 Init = EmitNullConstant(T); 5353 5354 if (!IsDefinitionAvailableExternally) 5355 NeedsGlobalCtor = true; 5356 } else { 5357 ErrorUnsupported(D, "static initializer"); 5358 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5359 } 5360 } else { 5361 Init = Initializer; 5362 // We don't need an initializer, so remove the entry for the delayed 5363 // initializer position (just in case this entry was delayed) if we 5364 // also don't need to register a destructor. 5365 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5366 DelayedCXXInitPosition.erase(D); 5367 5368 #ifndef NDEBUG 5369 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5370 InitDecl->getFlexibleArrayInitChars(getContext()); 5371 CharUnits CstSize = CharUnits::fromQuantity( 5372 getDataLayout().getTypeAllocSize(Init->getType())); 5373 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5374 #endif 5375 } 5376 } 5377 5378 llvm::Type* InitType = Init->getType(); 5379 llvm::Constant *Entry = 5380 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5381 5382 // Strip off pointer casts if we got them. 5383 Entry = Entry->stripPointerCasts(); 5384 5385 // Entry is now either a Function or GlobalVariable. 5386 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5387 5388 // We have a definition after a declaration with the wrong type. 5389 // We must make a new GlobalVariable* and update everything that used OldGV 5390 // (a declaration or tentative definition) with the new GlobalVariable* 5391 // (which will be a definition). 5392 // 5393 // This happens if there is a prototype for a global (e.g. 5394 // "extern int x[];") and then a definition of a different type (e.g. 5395 // "int x[10];"). This also happens when an initializer has a different type 5396 // from the type of the global (this happens with unions). 5397 if (!GV || GV->getValueType() != InitType || 5398 GV->getType()->getAddressSpace() != 5399 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5400 5401 // Move the old entry aside so that we'll create a new one. 5402 Entry->setName(StringRef()); 5403 5404 // Make a new global with the correct type, this is now guaranteed to work. 5405 GV = cast<llvm::GlobalVariable>( 5406 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5407 ->stripPointerCasts()); 5408 5409 // Replace all uses of the old global with the new global 5410 llvm::Constant *NewPtrForOldDecl = 5411 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5412 Entry->getType()); 5413 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5414 5415 // Erase the old global, since it is no longer used. 5416 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5417 } 5418 5419 MaybeHandleStaticInExternC(D, GV); 5420 5421 if (D->hasAttr<AnnotateAttr>()) 5422 AddGlobalAnnotations(D, GV); 5423 5424 // Set the llvm linkage type as appropriate. 5425 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5426 5427 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5428 // the device. [...]" 5429 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5430 // __device__, declares a variable that: [...] 5431 // Is accessible from all the threads within the grid and from the host 5432 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5433 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5434 if (LangOpts.CUDA) { 5435 if (LangOpts.CUDAIsDevice) { 5436 if (Linkage != llvm::GlobalValue::InternalLinkage && 5437 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5438 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5439 D->getType()->isCUDADeviceBuiltinTextureType())) 5440 GV->setExternallyInitialized(true); 5441 } else { 5442 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5443 } 5444 getCUDARuntime().handleVarRegistration(D, *GV); 5445 } 5446 5447 GV->setInitializer(Init); 5448 if (emitter) 5449 emitter->finalize(GV); 5450 5451 // If it is safe to mark the global 'constant', do so now. 5452 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5453 D->getType().isConstantStorage(getContext(), true, true)); 5454 5455 // If it is in a read-only section, mark it 'constant'. 5456 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5457 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5458 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5459 GV->setConstant(true); 5460 } 5461 5462 CharUnits AlignVal = getContext().getDeclAlign(D); 5463 // Check for alignment specifed in an 'omp allocate' directive. 5464 if (std::optional<CharUnits> AlignValFromAllocate = 5465 getOMPAllocateAlignment(D)) 5466 AlignVal = *AlignValFromAllocate; 5467 GV->setAlignment(AlignVal.getAsAlign()); 5468 5469 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5470 // function is only defined alongside the variable, not also alongside 5471 // callers. Normally, all accesses to a thread_local go through the 5472 // thread-wrapper in order to ensure initialization has occurred, underlying 5473 // variable will never be used other than the thread-wrapper, so it can be 5474 // converted to internal linkage. 5475 // 5476 // However, if the variable has the 'constinit' attribute, it _can_ be 5477 // referenced directly, without calling the thread-wrapper, so the linkage 5478 // must not be changed. 5479 // 5480 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5481 // weak or linkonce, the de-duplication semantics are important to preserve, 5482 // so we don't change the linkage. 5483 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5484 Linkage == llvm::GlobalValue::ExternalLinkage && 5485 Context.getTargetInfo().getTriple().isOSDarwin() && 5486 !D->hasAttr<ConstInitAttr>()) 5487 Linkage = llvm::GlobalValue::InternalLinkage; 5488 5489 GV->setLinkage(Linkage); 5490 if (D->hasAttr<DLLImportAttr>()) 5491 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5492 else if (D->hasAttr<DLLExportAttr>()) 5493 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5494 else 5495 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5496 5497 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5498 // common vars aren't constant even if declared const. 5499 GV->setConstant(false); 5500 // Tentative definition of global variables may be initialized with 5501 // non-zero null pointers. In this case they should have weak linkage 5502 // since common linkage must have zero initializer and must not have 5503 // explicit section therefore cannot have non-zero initial value. 5504 if (!GV->getInitializer()->isNullValue()) 5505 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5506 } 5507 5508 setNonAliasAttributes(D, GV); 5509 5510 if (D->getTLSKind() && !GV->isThreadLocal()) { 5511 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5512 CXXThreadLocals.push_back(D); 5513 setTLSMode(GV, *D); 5514 } 5515 5516 maybeSetTrivialComdat(*D, *GV); 5517 5518 // Emit the initializer function if necessary. 5519 if (NeedsGlobalCtor || NeedsGlobalDtor) 5520 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5521 5522 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5523 5524 // Emit global variable debug information. 5525 if (CGDebugInfo *DI = getModuleDebugInfo()) 5526 if (getCodeGenOpts().hasReducedDebugInfo()) 5527 DI->EmitGlobalVariable(GV, D); 5528 } 5529 5530 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5531 if (CGDebugInfo *DI = getModuleDebugInfo()) 5532 if (getCodeGenOpts().hasReducedDebugInfo()) { 5533 QualType ASTTy = D->getType(); 5534 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5535 llvm::Constant *GV = 5536 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5537 DI->EmitExternalVariable( 5538 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5539 } 5540 } 5541 5542 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5543 CodeGenModule &CGM, const VarDecl *D, 5544 bool NoCommon) { 5545 // Don't give variables common linkage if -fno-common was specified unless it 5546 // was overridden by a NoCommon attribute. 5547 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5548 return true; 5549 5550 // C11 6.9.2/2: 5551 // A declaration of an identifier for an object that has file scope without 5552 // an initializer, and without a storage-class specifier or with the 5553 // storage-class specifier static, constitutes a tentative definition. 5554 if (D->getInit() || D->hasExternalStorage()) 5555 return true; 5556 5557 // A variable cannot be both common and exist in a section. 5558 if (D->hasAttr<SectionAttr>()) 5559 return true; 5560 5561 // A variable cannot be both common and exist in a section. 5562 // We don't try to determine which is the right section in the front-end. 5563 // If no specialized section name is applicable, it will resort to default. 5564 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5565 D->hasAttr<PragmaClangDataSectionAttr>() || 5566 D->hasAttr<PragmaClangRelroSectionAttr>() || 5567 D->hasAttr<PragmaClangRodataSectionAttr>()) 5568 return true; 5569 5570 // Thread local vars aren't considered common linkage. 5571 if (D->getTLSKind()) 5572 return true; 5573 5574 // Tentative definitions marked with WeakImportAttr are true definitions. 5575 if (D->hasAttr<WeakImportAttr>()) 5576 return true; 5577 5578 // A variable cannot be both common and exist in a comdat. 5579 if (shouldBeInCOMDAT(CGM, *D)) 5580 return true; 5581 5582 // Declarations with a required alignment do not have common linkage in MSVC 5583 // mode. 5584 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5585 if (D->hasAttr<AlignedAttr>()) 5586 return true; 5587 QualType VarType = D->getType(); 5588 if (Context.isAlignmentRequired(VarType)) 5589 return true; 5590 5591 if (const auto *RT = VarType->getAs<RecordType>()) { 5592 const RecordDecl *RD = RT->getDecl(); 5593 for (const FieldDecl *FD : RD->fields()) { 5594 if (FD->isBitField()) 5595 continue; 5596 if (FD->hasAttr<AlignedAttr>()) 5597 return true; 5598 if (Context.isAlignmentRequired(FD->getType())) 5599 return true; 5600 } 5601 } 5602 } 5603 5604 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5605 // common symbols, so symbols with greater alignment requirements cannot be 5606 // common. 5607 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5608 // alignments for common symbols via the aligncomm directive, so this 5609 // restriction only applies to MSVC environments. 5610 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5611 Context.getTypeAlignIfKnown(D->getType()) > 5612 Context.toBits(CharUnits::fromQuantity(32))) 5613 return true; 5614 5615 return false; 5616 } 5617 5618 llvm::GlobalValue::LinkageTypes 5619 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5620 GVALinkage Linkage) { 5621 if (Linkage == GVA_Internal) 5622 return llvm::Function::InternalLinkage; 5623 5624 if (D->hasAttr<WeakAttr>()) 5625 return llvm::GlobalVariable::WeakAnyLinkage; 5626 5627 if (const auto *FD = D->getAsFunction()) 5628 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5629 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5630 5631 // We are guaranteed to have a strong definition somewhere else, 5632 // so we can use available_externally linkage. 5633 if (Linkage == GVA_AvailableExternally) 5634 return llvm::GlobalValue::AvailableExternallyLinkage; 5635 5636 // Note that Apple's kernel linker doesn't support symbol 5637 // coalescing, so we need to avoid linkonce and weak linkages there. 5638 // Normally, this means we just map to internal, but for explicit 5639 // instantiations we'll map to external. 5640 5641 // In C++, the compiler has to emit a definition in every translation unit 5642 // that references the function. We should use linkonce_odr because 5643 // a) if all references in this translation unit are optimized away, we 5644 // don't need to codegen it. b) if the function persists, it needs to be 5645 // merged with other definitions. c) C++ has the ODR, so we know the 5646 // definition is dependable. 5647 if (Linkage == GVA_DiscardableODR) 5648 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5649 : llvm::Function::InternalLinkage; 5650 5651 // An explicit instantiation of a template has weak linkage, since 5652 // explicit instantiations can occur in multiple translation units 5653 // and must all be equivalent. However, we are not allowed to 5654 // throw away these explicit instantiations. 5655 // 5656 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5657 // so say that CUDA templates are either external (for kernels) or internal. 5658 // This lets llvm perform aggressive inter-procedural optimizations. For 5659 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5660 // therefore we need to follow the normal linkage paradigm. 5661 if (Linkage == GVA_StrongODR) { 5662 if (getLangOpts().AppleKext) 5663 return llvm::Function::ExternalLinkage; 5664 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5665 !getLangOpts().GPURelocatableDeviceCode) 5666 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5667 : llvm::Function::InternalLinkage; 5668 return llvm::Function::WeakODRLinkage; 5669 } 5670 5671 // C++ doesn't have tentative definitions and thus cannot have common 5672 // linkage. 5673 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5674 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5675 CodeGenOpts.NoCommon)) 5676 return llvm::GlobalVariable::CommonLinkage; 5677 5678 // selectany symbols are externally visible, so use weak instead of 5679 // linkonce. MSVC optimizes away references to const selectany globals, so 5680 // all definitions should be the same and ODR linkage should be used. 5681 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5682 if (D->hasAttr<SelectAnyAttr>()) 5683 return llvm::GlobalVariable::WeakODRLinkage; 5684 5685 // Otherwise, we have strong external linkage. 5686 assert(Linkage == GVA_StrongExternal); 5687 return llvm::GlobalVariable::ExternalLinkage; 5688 } 5689 5690 llvm::GlobalValue::LinkageTypes 5691 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5692 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5693 return getLLVMLinkageForDeclarator(VD, Linkage); 5694 } 5695 5696 /// Replace the uses of a function that was declared with a non-proto type. 5697 /// We want to silently drop extra arguments from call sites 5698 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5699 llvm::Function *newFn) { 5700 // Fast path. 5701 if (old->use_empty()) return; 5702 5703 llvm::Type *newRetTy = newFn->getReturnType(); 5704 SmallVector<llvm::Value*, 4> newArgs; 5705 5706 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5707 ui != ue; ) { 5708 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5709 llvm::User *user = use->getUser(); 5710 5711 // Recognize and replace uses of bitcasts. Most calls to 5712 // unprototyped functions will use bitcasts. 5713 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5714 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5715 replaceUsesOfNonProtoConstant(bitcast, newFn); 5716 continue; 5717 } 5718 5719 // Recognize calls to the function. 5720 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5721 if (!callSite) continue; 5722 if (!callSite->isCallee(&*use)) 5723 continue; 5724 5725 // If the return types don't match exactly, then we can't 5726 // transform this call unless it's dead. 5727 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5728 continue; 5729 5730 // Get the call site's attribute list. 5731 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5732 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5733 5734 // If the function was passed too few arguments, don't transform. 5735 unsigned newNumArgs = newFn->arg_size(); 5736 if (callSite->arg_size() < newNumArgs) 5737 continue; 5738 5739 // If extra arguments were passed, we silently drop them. 5740 // If any of the types mismatch, we don't transform. 5741 unsigned argNo = 0; 5742 bool dontTransform = false; 5743 for (llvm::Argument &A : newFn->args()) { 5744 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5745 dontTransform = true; 5746 break; 5747 } 5748 5749 // Add any parameter attributes. 5750 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5751 argNo++; 5752 } 5753 if (dontTransform) 5754 continue; 5755 5756 // Okay, we can transform this. Create the new call instruction and copy 5757 // over the required information. 5758 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5759 5760 // Copy over any operand bundles. 5761 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5762 callSite->getOperandBundlesAsDefs(newBundles); 5763 5764 llvm::CallBase *newCall; 5765 if (isa<llvm::CallInst>(callSite)) { 5766 newCall = 5767 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5768 } else { 5769 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5770 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5771 oldInvoke->getUnwindDest(), newArgs, 5772 newBundles, "", callSite); 5773 } 5774 newArgs.clear(); // for the next iteration 5775 5776 if (!newCall->getType()->isVoidTy()) 5777 newCall->takeName(callSite); 5778 newCall->setAttributes( 5779 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5780 oldAttrs.getRetAttrs(), newArgAttrs)); 5781 newCall->setCallingConv(callSite->getCallingConv()); 5782 5783 // Finally, remove the old call, replacing any uses with the new one. 5784 if (!callSite->use_empty()) 5785 callSite->replaceAllUsesWith(newCall); 5786 5787 // Copy debug location attached to CI. 5788 if (callSite->getDebugLoc()) 5789 newCall->setDebugLoc(callSite->getDebugLoc()); 5790 5791 callSite->eraseFromParent(); 5792 } 5793 } 5794 5795 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5796 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5797 /// existing call uses of the old function in the module, this adjusts them to 5798 /// call the new function directly. 5799 /// 5800 /// This is not just a cleanup: the always_inline pass requires direct calls to 5801 /// functions to be able to inline them. If there is a bitcast in the way, it 5802 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5803 /// run at -O0. 5804 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5805 llvm::Function *NewFn) { 5806 // If we're redefining a global as a function, don't transform it. 5807 if (!isa<llvm::Function>(Old)) return; 5808 5809 replaceUsesOfNonProtoConstant(Old, NewFn); 5810 } 5811 5812 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5813 auto DK = VD->isThisDeclarationADefinition(); 5814 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5815 return; 5816 5817 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5818 // If we have a definition, this might be a deferred decl. If the 5819 // instantiation is explicit, make sure we emit it at the end. 5820 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5821 GetAddrOfGlobalVar(VD); 5822 5823 EmitTopLevelDecl(VD); 5824 } 5825 5826 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5827 llvm::GlobalValue *GV) { 5828 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5829 5830 // Compute the function info and LLVM type. 5831 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5832 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5833 5834 // Get or create the prototype for the function. 5835 if (!GV || (GV->getValueType() != Ty)) 5836 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5837 /*DontDefer=*/true, 5838 ForDefinition)); 5839 5840 // Already emitted. 5841 if (!GV->isDeclaration()) 5842 return; 5843 5844 // We need to set linkage and visibility on the function before 5845 // generating code for it because various parts of IR generation 5846 // want to propagate this information down (e.g. to local static 5847 // declarations). 5848 auto *Fn = cast<llvm::Function>(GV); 5849 setFunctionLinkage(GD, Fn); 5850 5851 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5852 setGVProperties(Fn, GD); 5853 5854 MaybeHandleStaticInExternC(D, Fn); 5855 5856 maybeSetTrivialComdat(*D, *Fn); 5857 5858 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5859 5860 setNonAliasAttributes(GD, Fn); 5861 SetLLVMFunctionAttributesForDefinition(D, Fn); 5862 5863 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5864 AddGlobalCtor(Fn, CA->getPriority()); 5865 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5866 AddGlobalDtor(Fn, DA->getPriority(), true); 5867 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5868 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5869 } 5870 5871 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5872 const auto *D = cast<ValueDecl>(GD.getDecl()); 5873 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5874 assert(AA && "Not an alias?"); 5875 5876 StringRef MangledName = getMangledName(GD); 5877 5878 if (AA->getAliasee() == MangledName) { 5879 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5880 return; 5881 } 5882 5883 // If there is a definition in the module, then it wins over the alias. 5884 // This is dubious, but allow it to be safe. Just ignore the alias. 5885 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5886 if (Entry && !Entry->isDeclaration()) 5887 return; 5888 5889 Aliases.push_back(GD); 5890 5891 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5892 5893 // Create a reference to the named value. This ensures that it is emitted 5894 // if a deferred decl. 5895 llvm::Constant *Aliasee; 5896 llvm::GlobalValue::LinkageTypes LT; 5897 if (isa<llvm::FunctionType>(DeclTy)) { 5898 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5899 /*ForVTable=*/false); 5900 LT = getFunctionLinkage(GD); 5901 } else { 5902 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5903 /*D=*/nullptr); 5904 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5905 LT = getLLVMLinkageVarDefinition(VD); 5906 else 5907 LT = getFunctionLinkage(GD); 5908 } 5909 5910 // Create the new alias itself, but don't set a name yet. 5911 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5912 auto *GA = 5913 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5914 5915 if (Entry) { 5916 if (GA->getAliasee() == Entry) { 5917 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5918 return; 5919 } 5920 5921 assert(Entry->isDeclaration()); 5922 5923 // If there is a declaration in the module, then we had an extern followed 5924 // by the alias, as in: 5925 // extern int test6(); 5926 // ... 5927 // int test6() __attribute__((alias("test7"))); 5928 // 5929 // Remove it and replace uses of it with the alias. 5930 GA->takeName(Entry); 5931 5932 Entry->replaceAllUsesWith(GA); 5933 Entry->eraseFromParent(); 5934 } else { 5935 GA->setName(MangledName); 5936 } 5937 5938 // Set attributes which are particular to an alias; this is a 5939 // specialization of the attributes which may be set on a global 5940 // variable/function. 5941 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5942 D->isWeakImported()) { 5943 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5944 } 5945 5946 if (const auto *VD = dyn_cast<VarDecl>(D)) 5947 if (VD->getTLSKind()) 5948 setTLSMode(GA, *VD); 5949 5950 SetCommonAttributes(GD, GA); 5951 5952 // Emit global alias debug information. 5953 if (isa<VarDecl>(D)) 5954 if (CGDebugInfo *DI = getModuleDebugInfo()) 5955 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5956 } 5957 5958 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5959 const auto *D = cast<ValueDecl>(GD.getDecl()); 5960 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5961 assert(IFA && "Not an ifunc?"); 5962 5963 StringRef MangledName = getMangledName(GD); 5964 5965 if (IFA->getResolver() == MangledName) { 5966 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5967 return; 5968 } 5969 5970 // Report an error if some definition overrides ifunc. 5971 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5972 if (Entry && !Entry->isDeclaration()) { 5973 GlobalDecl OtherGD; 5974 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5975 DiagnosedConflictingDefinitions.insert(GD).second) { 5976 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5977 << MangledName; 5978 Diags.Report(OtherGD.getDecl()->getLocation(), 5979 diag::note_previous_definition); 5980 } 5981 return; 5982 } 5983 5984 Aliases.push_back(GD); 5985 5986 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5987 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5988 llvm::Constant *Resolver = 5989 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5990 /*ForVTable=*/false); 5991 llvm::GlobalIFunc *GIF = 5992 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5993 "", Resolver, &getModule()); 5994 if (Entry) { 5995 if (GIF->getResolver() == Entry) { 5996 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5997 return; 5998 } 5999 assert(Entry->isDeclaration()); 6000 6001 // If there is a declaration in the module, then we had an extern followed 6002 // by the ifunc, as in: 6003 // extern int test(); 6004 // ... 6005 // int test() __attribute__((ifunc("resolver"))); 6006 // 6007 // Remove it and replace uses of it with the ifunc. 6008 GIF->takeName(Entry); 6009 6010 Entry->replaceAllUsesWith(GIF); 6011 Entry->eraseFromParent(); 6012 } else 6013 GIF->setName(MangledName); 6014 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 6015 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 6016 } 6017 SetCommonAttributes(GD, GIF); 6018 } 6019 6020 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6021 ArrayRef<llvm::Type*> Tys) { 6022 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6023 Tys); 6024 } 6025 6026 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6027 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6028 const StringLiteral *Literal, bool TargetIsLSB, 6029 bool &IsUTF16, unsigned &StringLength) { 6030 StringRef String = Literal->getString(); 6031 unsigned NumBytes = String.size(); 6032 6033 // Check for simple case. 6034 if (!Literal->containsNonAsciiOrNull()) { 6035 StringLength = NumBytes; 6036 return *Map.insert(std::make_pair(String, nullptr)).first; 6037 } 6038 6039 // Otherwise, convert the UTF8 literals into a string of shorts. 6040 IsUTF16 = true; 6041 6042 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6043 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6044 llvm::UTF16 *ToPtr = &ToBuf[0]; 6045 6046 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6047 ToPtr + NumBytes, llvm::strictConversion); 6048 6049 // ConvertUTF8toUTF16 returns the length in ToPtr. 6050 StringLength = ToPtr - &ToBuf[0]; 6051 6052 // Add an explicit null. 6053 *ToPtr = 0; 6054 return *Map.insert(std::make_pair( 6055 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6056 (StringLength + 1) * 2), 6057 nullptr)).first; 6058 } 6059 6060 ConstantAddress 6061 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6062 unsigned StringLength = 0; 6063 bool isUTF16 = false; 6064 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6065 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6066 getDataLayout().isLittleEndian(), isUTF16, 6067 StringLength); 6068 6069 if (auto *C = Entry.second) 6070 return ConstantAddress( 6071 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6072 6073 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6074 llvm::Constant *Zeros[] = { Zero, Zero }; 6075 6076 const ASTContext &Context = getContext(); 6077 const llvm::Triple &Triple = getTriple(); 6078 6079 const auto CFRuntime = getLangOpts().CFRuntime; 6080 const bool IsSwiftABI = 6081 static_cast<unsigned>(CFRuntime) >= 6082 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6083 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6084 6085 // If we don't already have it, get __CFConstantStringClassReference. 6086 if (!CFConstantStringClassRef) { 6087 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6088 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6089 Ty = llvm::ArrayType::get(Ty, 0); 6090 6091 switch (CFRuntime) { 6092 default: break; 6093 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6094 case LangOptions::CoreFoundationABI::Swift5_0: 6095 CFConstantStringClassName = 6096 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6097 : "$s10Foundation19_NSCFConstantStringCN"; 6098 Ty = IntPtrTy; 6099 break; 6100 case LangOptions::CoreFoundationABI::Swift4_2: 6101 CFConstantStringClassName = 6102 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6103 : "$S10Foundation19_NSCFConstantStringCN"; 6104 Ty = IntPtrTy; 6105 break; 6106 case LangOptions::CoreFoundationABI::Swift4_1: 6107 CFConstantStringClassName = 6108 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6109 : "__T010Foundation19_NSCFConstantStringCN"; 6110 Ty = IntPtrTy; 6111 break; 6112 } 6113 6114 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6115 6116 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6117 llvm::GlobalValue *GV = nullptr; 6118 6119 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6120 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6121 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6122 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6123 6124 const VarDecl *VD = nullptr; 6125 for (const auto *Result : DC->lookup(&II)) 6126 if ((VD = dyn_cast<VarDecl>(Result))) 6127 break; 6128 6129 if (Triple.isOSBinFormatELF()) { 6130 if (!VD) 6131 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6132 } else { 6133 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6134 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6135 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6136 else 6137 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6138 } 6139 6140 setDSOLocal(GV); 6141 } 6142 } 6143 6144 // Decay array -> ptr 6145 CFConstantStringClassRef = 6146 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6147 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6148 } 6149 6150 QualType CFTy = Context.getCFConstantStringType(); 6151 6152 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6153 6154 ConstantInitBuilder Builder(*this); 6155 auto Fields = Builder.beginStruct(STy); 6156 6157 // Class pointer. 6158 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6159 6160 // Flags. 6161 if (IsSwiftABI) { 6162 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6163 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6164 } else { 6165 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6166 } 6167 6168 // String pointer. 6169 llvm::Constant *C = nullptr; 6170 if (isUTF16) { 6171 auto Arr = llvm::ArrayRef( 6172 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6173 Entry.first().size() / 2); 6174 C = llvm::ConstantDataArray::get(VMContext, Arr); 6175 } else { 6176 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6177 } 6178 6179 // Note: -fwritable-strings doesn't make the backing store strings of 6180 // CFStrings writable. 6181 auto *GV = 6182 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6183 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6184 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6185 // Don't enforce the target's minimum global alignment, since the only use 6186 // of the string is via this class initializer. 6187 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6188 : Context.getTypeAlignInChars(Context.CharTy); 6189 GV->setAlignment(Align.getAsAlign()); 6190 6191 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6192 // Without it LLVM can merge the string with a non unnamed_addr one during 6193 // LTO. Doing that changes the section it ends in, which surprises ld64. 6194 if (Triple.isOSBinFormatMachO()) 6195 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6196 : "__TEXT,__cstring,cstring_literals"); 6197 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6198 // the static linker to adjust permissions to read-only later on. 6199 else if (Triple.isOSBinFormatELF()) 6200 GV->setSection(".rodata"); 6201 6202 // String. 6203 llvm::Constant *Str = 6204 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6205 6206 Fields.add(Str); 6207 6208 // String length. 6209 llvm::IntegerType *LengthTy = 6210 llvm::IntegerType::get(getModule().getContext(), 6211 Context.getTargetInfo().getLongWidth()); 6212 if (IsSwiftABI) { 6213 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6214 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6215 LengthTy = Int32Ty; 6216 else 6217 LengthTy = IntPtrTy; 6218 } 6219 Fields.addInt(LengthTy, StringLength); 6220 6221 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6222 // properly aligned on 32-bit platforms. 6223 CharUnits Alignment = 6224 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6225 6226 // The struct. 6227 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6228 /*isConstant=*/false, 6229 llvm::GlobalVariable::PrivateLinkage); 6230 GV->addAttribute("objc_arc_inert"); 6231 switch (Triple.getObjectFormat()) { 6232 case llvm::Triple::UnknownObjectFormat: 6233 llvm_unreachable("unknown file format"); 6234 case llvm::Triple::DXContainer: 6235 case llvm::Triple::GOFF: 6236 case llvm::Triple::SPIRV: 6237 case llvm::Triple::XCOFF: 6238 llvm_unreachable("unimplemented"); 6239 case llvm::Triple::COFF: 6240 case llvm::Triple::ELF: 6241 case llvm::Triple::Wasm: 6242 GV->setSection("cfstring"); 6243 break; 6244 case llvm::Triple::MachO: 6245 GV->setSection("__DATA,__cfstring"); 6246 break; 6247 } 6248 Entry.second = GV; 6249 6250 return ConstantAddress(GV, GV->getValueType(), Alignment); 6251 } 6252 6253 bool CodeGenModule::getExpressionLocationsEnabled() const { 6254 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6255 } 6256 6257 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6258 if (ObjCFastEnumerationStateType.isNull()) { 6259 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6260 D->startDefinition(); 6261 6262 QualType FieldTypes[] = { 6263 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6264 Context.getPointerType(Context.UnsignedLongTy), 6265 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6266 nullptr, ArraySizeModifier::Normal, 0)}; 6267 6268 for (size_t i = 0; i < 4; ++i) { 6269 FieldDecl *Field = FieldDecl::Create(Context, 6270 D, 6271 SourceLocation(), 6272 SourceLocation(), nullptr, 6273 FieldTypes[i], /*TInfo=*/nullptr, 6274 /*BitWidth=*/nullptr, 6275 /*Mutable=*/false, 6276 ICIS_NoInit); 6277 Field->setAccess(AS_public); 6278 D->addDecl(Field); 6279 } 6280 6281 D->completeDefinition(); 6282 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6283 } 6284 6285 return ObjCFastEnumerationStateType; 6286 } 6287 6288 llvm::Constant * 6289 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6290 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6291 6292 // Don't emit it as the address of the string, emit the string data itself 6293 // as an inline array. 6294 if (E->getCharByteWidth() == 1) { 6295 SmallString<64> Str(E->getString()); 6296 6297 // Resize the string to the right size, which is indicated by its type. 6298 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6299 assert(CAT && "String literal not of constant array type!"); 6300 Str.resize(CAT->getSize().getZExtValue()); 6301 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6302 } 6303 6304 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6305 llvm::Type *ElemTy = AType->getElementType(); 6306 unsigned NumElements = AType->getNumElements(); 6307 6308 // Wide strings have either 2-byte or 4-byte elements. 6309 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6310 SmallVector<uint16_t, 32> Elements; 6311 Elements.reserve(NumElements); 6312 6313 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6314 Elements.push_back(E->getCodeUnit(i)); 6315 Elements.resize(NumElements); 6316 return llvm::ConstantDataArray::get(VMContext, Elements); 6317 } 6318 6319 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6320 SmallVector<uint32_t, 32> Elements; 6321 Elements.reserve(NumElements); 6322 6323 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6324 Elements.push_back(E->getCodeUnit(i)); 6325 Elements.resize(NumElements); 6326 return llvm::ConstantDataArray::get(VMContext, Elements); 6327 } 6328 6329 static llvm::GlobalVariable * 6330 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6331 CodeGenModule &CGM, StringRef GlobalName, 6332 CharUnits Alignment) { 6333 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6334 CGM.GetGlobalConstantAddressSpace()); 6335 6336 llvm::Module &M = CGM.getModule(); 6337 // Create a global variable for this string 6338 auto *GV = new llvm::GlobalVariable( 6339 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6340 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6341 GV->setAlignment(Alignment.getAsAlign()); 6342 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6343 if (GV->isWeakForLinker()) { 6344 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6345 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6346 } 6347 CGM.setDSOLocal(GV); 6348 6349 return GV; 6350 } 6351 6352 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6353 /// constant array for the given string literal. 6354 ConstantAddress 6355 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6356 StringRef Name) { 6357 CharUnits Alignment = 6358 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr); 6359 6360 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6361 llvm::GlobalVariable **Entry = nullptr; 6362 if (!LangOpts.WritableStrings) { 6363 Entry = &ConstantStringMap[C]; 6364 if (auto GV = *Entry) { 6365 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6366 GV->setAlignment(Alignment.getAsAlign()); 6367 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6368 GV->getValueType(), Alignment); 6369 } 6370 } 6371 6372 SmallString<256> MangledNameBuffer; 6373 StringRef GlobalVariableName; 6374 llvm::GlobalValue::LinkageTypes LT; 6375 6376 // Mangle the string literal if that's how the ABI merges duplicate strings. 6377 // Don't do it if they are writable, since we don't want writes in one TU to 6378 // affect strings in another. 6379 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6380 !LangOpts.WritableStrings) { 6381 llvm::raw_svector_ostream Out(MangledNameBuffer); 6382 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6383 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6384 GlobalVariableName = MangledNameBuffer; 6385 } else { 6386 LT = llvm::GlobalValue::PrivateLinkage; 6387 GlobalVariableName = Name; 6388 } 6389 6390 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6391 6392 CGDebugInfo *DI = getModuleDebugInfo(); 6393 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6394 DI->AddStringLiteralDebugInfo(GV, S); 6395 6396 if (Entry) 6397 *Entry = GV; 6398 6399 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6400 6401 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6402 GV->getValueType(), Alignment); 6403 } 6404 6405 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6406 /// array for the given ObjCEncodeExpr node. 6407 ConstantAddress 6408 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6409 std::string Str; 6410 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6411 6412 return GetAddrOfConstantCString(Str); 6413 } 6414 6415 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6416 /// the literal and a terminating '\0' character. 6417 /// The result has pointer to array type. 6418 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6419 const std::string &Str, const char *GlobalName) { 6420 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6421 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars( 6422 getContext().CharTy, /*VD=*/nullptr); 6423 6424 llvm::Constant *C = 6425 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6426 6427 // Don't share any string literals if strings aren't constant. 6428 llvm::GlobalVariable **Entry = nullptr; 6429 if (!LangOpts.WritableStrings) { 6430 Entry = &ConstantStringMap[C]; 6431 if (auto GV = *Entry) { 6432 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6433 GV->setAlignment(Alignment.getAsAlign()); 6434 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6435 GV->getValueType(), Alignment); 6436 } 6437 } 6438 6439 // Get the default prefix if a name wasn't specified. 6440 if (!GlobalName) 6441 GlobalName = ".str"; 6442 // Create a global variable for this. 6443 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6444 GlobalName, Alignment); 6445 if (Entry) 6446 *Entry = GV; 6447 6448 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6449 GV->getValueType(), Alignment); 6450 } 6451 6452 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6453 const MaterializeTemporaryExpr *E, const Expr *Init) { 6454 assert((E->getStorageDuration() == SD_Static || 6455 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6456 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6457 6458 // If we're not materializing a subobject of the temporary, keep the 6459 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6460 QualType MaterializedType = Init->getType(); 6461 if (Init == E->getSubExpr()) 6462 MaterializedType = E->getType(); 6463 6464 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6465 6466 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6467 if (!InsertResult.second) { 6468 // We've seen this before: either we already created it or we're in the 6469 // process of doing so. 6470 if (!InsertResult.first->second) { 6471 // We recursively re-entered this function, probably during emission of 6472 // the initializer. Create a placeholder. We'll clean this up in the 6473 // outer call, at the end of this function. 6474 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6475 InsertResult.first->second = new llvm::GlobalVariable( 6476 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6477 nullptr); 6478 } 6479 return ConstantAddress(InsertResult.first->second, 6480 llvm::cast<llvm::GlobalVariable>( 6481 InsertResult.first->second->stripPointerCasts()) 6482 ->getValueType(), 6483 Align); 6484 } 6485 6486 // FIXME: If an externally-visible declaration extends multiple temporaries, 6487 // we need to give each temporary the same name in every translation unit (and 6488 // we also need to make the temporaries externally-visible). 6489 SmallString<256> Name; 6490 llvm::raw_svector_ostream Out(Name); 6491 getCXXABI().getMangleContext().mangleReferenceTemporary( 6492 VD, E->getManglingNumber(), Out); 6493 6494 APValue *Value = nullptr; 6495 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6496 // If the initializer of the extending declaration is a constant 6497 // initializer, we should have a cached constant initializer for this 6498 // temporary. Note that this might have a different value from the value 6499 // computed by evaluating the initializer if the surrounding constant 6500 // expression modifies the temporary. 6501 Value = E->getOrCreateValue(false); 6502 } 6503 6504 // Try evaluating it now, it might have a constant initializer. 6505 Expr::EvalResult EvalResult; 6506 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6507 !EvalResult.hasSideEffects()) 6508 Value = &EvalResult.Val; 6509 6510 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6511 6512 std::optional<ConstantEmitter> emitter; 6513 llvm::Constant *InitialValue = nullptr; 6514 bool Constant = false; 6515 llvm::Type *Type; 6516 if (Value) { 6517 // The temporary has a constant initializer, use it. 6518 emitter.emplace(*this); 6519 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6520 MaterializedType); 6521 Constant = 6522 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6523 /*ExcludeDtor*/ false); 6524 Type = InitialValue->getType(); 6525 } else { 6526 // No initializer, the initialization will be provided when we 6527 // initialize the declaration which performed lifetime extension. 6528 Type = getTypes().ConvertTypeForMem(MaterializedType); 6529 } 6530 6531 // Create a global variable for this lifetime-extended temporary. 6532 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6533 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6534 const VarDecl *InitVD; 6535 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6536 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6537 // Temporaries defined inside a class get linkonce_odr linkage because the 6538 // class can be defined in multiple translation units. 6539 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6540 } else { 6541 // There is no need for this temporary to have external linkage if the 6542 // VarDecl has external linkage. 6543 Linkage = llvm::GlobalVariable::InternalLinkage; 6544 } 6545 } 6546 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6547 auto *GV = new llvm::GlobalVariable( 6548 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6549 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6550 if (emitter) emitter->finalize(GV); 6551 // Don't assign dllimport or dllexport to local linkage globals. 6552 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6553 setGVProperties(GV, VD); 6554 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6555 // The reference temporary should never be dllexport. 6556 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6557 } 6558 GV->setAlignment(Align.getAsAlign()); 6559 if (supportsCOMDAT() && GV->isWeakForLinker()) 6560 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6561 if (VD->getTLSKind()) 6562 setTLSMode(GV, *VD); 6563 llvm::Constant *CV = GV; 6564 if (AddrSpace != LangAS::Default) 6565 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6566 *this, GV, AddrSpace, LangAS::Default, 6567 llvm::PointerType::get( 6568 getLLVMContext(), 6569 getContext().getTargetAddressSpace(LangAS::Default))); 6570 6571 // Update the map with the new temporary. If we created a placeholder above, 6572 // replace it with the new global now. 6573 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6574 if (Entry) { 6575 Entry->replaceAllUsesWith(CV); 6576 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6577 } 6578 Entry = CV; 6579 6580 return ConstantAddress(CV, Type, Align); 6581 } 6582 6583 /// EmitObjCPropertyImplementations - Emit information for synthesized 6584 /// properties for an implementation. 6585 void CodeGenModule::EmitObjCPropertyImplementations(const 6586 ObjCImplementationDecl *D) { 6587 for (const auto *PID : D->property_impls()) { 6588 // Dynamic is just for type-checking. 6589 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6590 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6591 6592 // Determine which methods need to be implemented, some may have 6593 // been overridden. Note that ::isPropertyAccessor is not the method 6594 // we want, that just indicates if the decl came from a 6595 // property. What we want to know is if the method is defined in 6596 // this implementation. 6597 auto *Getter = PID->getGetterMethodDecl(); 6598 if (!Getter || Getter->isSynthesizedAccessorStub()) 6599 CodeGenFunction(*this).GenerateObjCGetter( 6600 const_cast<ObjCImplementationDecl *>(D), PID); 6601 auto *Setter = PID->getSetterMethodDecl(); 6602 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6603 CodeGenFunction(*this).GenerateObjCSetter( 6604 const_cast<ObjCImplementationDecl *>(D), PID); 6605 } 6606 } 6607 } 6608 6609 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6610 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6611 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6612 ivar; ivar = ivar->getNextIvar()) 6613 if (ivar->getType().isDestructedType()) 6614 return true; 6615 6616 return false; 6617 } 6618 6619 static bool AllTrivialInitializers(CodeGenModule &CGM, 6620 ObjCImplementationDecl *D) { 6621 CodeGenFunction CGF(CGM); 6622 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6623 E = D->init_end(); B != E; ++B) { 6624 CXXCtorInitializer *CtorInitExp = *B; 6625 Expr *Init = CtorInitExp->getInit(); 6626 if (!CGF.isTrivialInitializer(Init)) 6627 return false; 6628 } 6629 return true; 6630 } 6631 6632 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6633 /// for an implementation. 6634 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6635 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6636 if (needsDestructMethod(D)) { 6637 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6638 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6639 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6640 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6641 getContext().VoidTy, nullptr, D, 6642 /*isInstance=*/true, /*isVariadic=*/false, 6643 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6644 /*isImplicitlyDeclared=*/true, 6645 /*isDefined=*/false, ObjCImplementationControl::Required); 6646 D->addInstanceMethod(DTORMethod); 6647 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6648 D->setHasDestructors(true); 6649 } 6650 6651 // If the implementation doesn't have any ivar initializers, we don't need 6652 // a .cxx_construct. 6653 if (D->getNumIvarInitializers() == 0 || 6654 AllTrivialInitializers(*this, D)) 6655 return; 6656 6657 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6658 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6659 // The constructor returns 'self'. 6660 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6661 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6662 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6663 /*isVariadic=*/false, 6664 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6665 /*isImplicitlyDeclared=*/true, 6666 /*isDefined=*/false, ObjCImplementationControl::Required); 6667 D->addInstanceMethod(CTORMethod); 6668 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6669 D->setHasNonZeroConstructors(true); 6670 } 6671 6672 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6673 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6674 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6675 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6676 ErrorUnsupported(LSD, "linkage spec"); 6677 return; 6678 } 6679 6680 EmitDeclContext(LSD); 6681 } 6682 6683 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6684 // Device code should not be at top level. 6685 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6686 return; 6687 6688 std::unique_ptr<CodeGenFunction> &CurCGF = 6689 GlobalTopLevelStmtBlockInFlight.first; 6690 6691 // We emitted a top-level stmt but after it there is initialization. 6692 // Stop squashing the top-level stmts into a single function. 6693 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6694 CurCGF->FinishFunction(D->getEndLoc()); 6695 CurCGF = nullptr; 6696 } 6697 6698 if (!CurCGF) { 6699 // void __stmts__N(void) 6700 // FIXME: Ask the ABI name mangler to pick a name. 6701 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6702 FunctionArgList Args; 6703 QualType RetTy = getContext().VoidTy; 6704 const CGFunctionInfo &FnInfo = 6705 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6706 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6707 llvm::Function *Fn = llvm::Function::Create( 6708 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6709 6710 CurCGF.reset(new CodeGenFunction(*this)); 6711 GlobalTopLevelStmtBlockInFlight.second = D; 6712 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6713 D->getBeginLoc(), D->getBeginLoc()); 6714 CXXGlobalInits.push_back(Fn); 6715 } 6716 6717 CurCGF->EmitStmt(D->getStmt()); 6718 } 6719 6720 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6721 for (auto *I : DC->decls()) { 6722 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6723 // are themselves considered "top-level", so EmitTopLevelDecl on an 6724 // ObjCImplDecl does not recursively visit them. We need to do that in 6725 // case they're nested inside another construct (LinkageSpecDecl / 6726 // ExportDecl) that does stop them from being considered "top-level". 6727 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6728 for (auto *M : OID->methods()) 6729 EmitTopLevelDecl(M); 6730 } 6731 6732 EmitTopLevelDecl(I); 6733 } 6734 } 6735 6736 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6737 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6738 // Ignore dependent declarations. 6739 if (D->isTemplated()) 6740 return; 6741 6742 // Consteval function shouldn't be emitted. 6743 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6744 return; 6745 6746 switch (D->getKind()) { 6747 case Decl::CXXConversion: 6748 case Decl::CXXMethod: 6749 case Decl::Function: 6750 EmitGlobal(cast<FunctionDecl>(D)); 6751 // Always provide some coverage mapping 6752 // even for the functions that aren't emitted. 6753 AddDeferredUnusedCoverageMapping(D); 6754 break; 6755 6756 case Decl::CXXDeductionGuide: 6757 // Function-like, but does not result in code emission. 6758 break; 6759 6760 case Decl::Var: 6761 case Decl::Decomposition: 6762 case Decl::VarTemplateSpecialization: 6763 EmitGlobal(cast<VarDecl>(D)); 6764 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6765 for (auto *B : DD->bindings()) 6766 if (auto *HD = B->getHoldingVar()) 6767 EmitGlobal(HD); 6768 break; 6769 6770 // Indirect fields from global anonymous structs and unions can be 6771 // ignored; only the actual variable requires IR gen support. 6772 case Decl::IndirectField: 6773 break; 6774 6775 // C++ Decls 6776 case Decl::Namespace: 6777 EmitDeclContext(cast<NamespaceDecl>(D)); 6778 break; 6779 case Decl::ClassTemplateSpecialization: { 6780 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6781 if (CGDebugInfo *DI = getModuleDebugInfo()) 6782 if (Spec->getSpecializationKind() == 6783 TSK_ExplicitInstantiationDefinition && 6784 Spec->hasDefinition()) 6785 DI->completeTemplateDefinition(*Spec); 6786 } [[fallthrough]]; 6787 case Decl::CXXRecord: { 6788 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6789 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6790 if (CRD->hasDefinition()) 6791 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6792 if (auto *ES = D->getASTContext().getExternalSource()) 6793 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6794 DI->completeUnusedClass(*CRD); 6795 } 6796 // Emit any static data members, they may be definitions. 6797 for (auto *I : CRD->decls()) 6798 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6799 EmitTopLevelDecl(I); 6800 break; 6801 } 6802 // No code generation needed. 6803 case Decl::UsingShadow: 6804 case Decl::ClassTemplate: 6805 case Decl::VarTemplate: 6806 case Decl::Concept: 6807 case Decl::VarTemplatePartialSpecialization: 6808 case Decl::FunctionTemplate: 6809 case Decl::TypeAliasTemplate: 6810 case Decl::Block: 6811 case Decl::Empty: 6812 case Decl::Binding: 6813 break; 6814 case Decl::Using: // using X; [C++] 6815 if (CGDebugInfo *DI = getModuleDebugInfo()) 6816 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6817 break; 6818 case Decl::UsingEnum: // using enum X; [C++] 6819 if (CGDebugInfo *DI = getModuleDebugInfo()) 6820 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6821 break; 6822 case Decl::NamespaceAlias: 6823 if (CGDebugInfo *DI = getModuleDebugInfo()) 6824 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6825 break; 6826 case Decl::UsingDirective: // using namespace X; [C++] 6827 if (CGDebugInfo *DI = getModuleDebugInfo()) 6828 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6829 break; 6830 case Decl::CXXConstructor: 6831 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6832 break; 6833 case Decl::CXXDestructor: 6834 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6835 break; 6836 6837 case Decl::StaticAssert: 6838 // Nothing to do. 6839 break; 6840 6841 // Objective-C Decls 6842 6843 // Forward declarations, no (immediate) code generation. 6844 case Decl::ObjCInterface: 6845 case Decl::ObjCCategory: 6846 break; 6847 6848 case Decl::ObjCProtocol: { 6849 auto *Proto = cast<ObjCProtocolDecl>(D); 6850 if (Proto->isThisDeclarationADefinition()) 6851 ObjCRuntime->GenerateProtocol(Proto); 6852 break; 6853 } 6854 6855 case Decl::ObjCCategoryImpl: 6856 // Categories have properties but don't support synthesize so we 6857 // can ignore them here. 6858 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6859 break; 6860 6861 case Decl::ObjCImplementation: { 6862 auto *OMD = cast<ObjCImplementationDecl>(D); 6863 EmitObjCPropertyImplementations(OMD); 6864 EmitObjCIvarInitializations(OMD); 6865 ObjCRuntime->GenerateClass(OMD); 6866 // Emit global variable debug information. 6867 if (CGDebugInfo *DI = getModuleDebugInfo()) 6868 if (getCodeGenOpts().hasReducedDebugInfo()) 6869 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6870 OMD->getClassInterface()), OMD->getLocation()); 6871 break; 6872 } 6873 case Decl::ObjCMethod: { 6874 auto *OMD = cast<ObjCMethodDecl>(D); 6875 // If this is not a prototype, emit the body. 6876 if (OMD->getBody()) 6877 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6878 break; 6879 } 6880 case Decl::ObjCCompatibleAlias: 6881 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6882 break; 6883 6884 case Decl::PragmaComment: { 6885 const auto *PCD = cast<PragmaCommentDecl>(D); 6886 switch (PCD->getCommentKind()) { 6887 case PCK_Unknown: 6888 llvm_unreachable("unexpected pragma comment kind"); 6889 case PCK_Linker: 6890 AppendLinkerOptions(PCD->getArg()); 6891 break; 6892 case PCK_Lib: 6893 AddDependentLib(PCD->getArg()); 6894 break; 6895 case PCK_Compiler: 6896 case PCK_ExeStr: 6897 case PCK_User: 6898 break; // We ignore all of these. 6899 } 6900 break; 6901 } 6902 6903 case Decl::PragmaDetectMismatch: { 6904 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6905 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6906 break; 6907 } 6908 6909 case Decl::LinkageSpec: 6910 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6911 break; 6912 6913 case Decl::FileScopeAsm: { 6914 // File-scope asm is ignored during device-side CUDA compilation. 6915 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6916 break; 6917 // File-scope asm is ignored during device-side OpenMP compilation. 6918 if (LangOpts.OpenMPIsTargetDevice) 6919 break; 6920 // File-scope asm is ignored during device-side SYCL compilation. 6921 if (LangOpts.SYCLIsDevice) 6922 break; 6923 auto *AD = cast<FileScopeAsmDecl>(D); 6924 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6925 break; 6926 } 6927 6928 case Decl::TopLevelStmt: 6929 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6930 break; 6931 6932 case Decl::Import: { 6933 auto *Import = cast<ImportDecl>(D); 6934 6935 // If we've already imported this module, we're done. 6936 if (!ImportedModules.insert(Import->getImportedModule())) 6937 break; 6938 6939 // Emit debug information for direct imports. 6940 if (!Import->getImportedOwningModule()) { 6941 if (CGDebugInfo *DI = getModuleDebugInfo()) 6942 DI->EmitImportDecl(*Import); 6943 } 6944 6945 // For C++ standard modules we are done - we will call the module 6946 // initializer for imported modules, and that will likewise call those for 6947 // any imports it has. 6948 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6949 !Import->getImportedOwningModule()->isModuleMapModule()) 6950 break; 6951 6952 // For clang C++ module map modules the initializers for sub-modules are 6953 // emitted here. 6954 6955 // Find all of the submodules and emit the module initializers. 6956 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6957 SmallVector<clang::Module *, 16> Stack; 6958 Visited.insert(Import->getImportedModule()); 6959 Stack.push_back(Import->getImportedModule()); 6960 6961 while (!Stack.empty()) { 6962 clang::Module *Mod = Stack.pop_back_val(); 6963 if (!EmittedModuleInitializers.insert(Mod).second) 6964 continue; 6965 6966 for (auto *D : Context.getModuleInitializers(Mod)) 6967 EmitTopLevelDecl(D); 6968 6969 // Visit the submodules of this module. 6970 for (auto *Submodule : Mod->submodules()) { 6971 // Skip explicit children; they need to be explicitly imported to emit 6972 // the initializers. 6973 if (Submodule->IsExplicit) 6974 continue; 6975 6976 if (Visited.insert(Submodule).second) 6977 Stack.push_back(Submodule); 6978 } 6979 } 6980 break; 6981 } 6982 6983 case Decl::Export: 6984 EmitDeclContext(cast<ExportDecl>(D)); 6985 break; 6986 6987 case Decl::OMPThreadPrivate: 6988 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6989 break; 6990 6991 case Decl::OMPAllocate: 6992 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6993 break; 6994 6995 case Decl::OMPDeclareReduction: 6996 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6997 break; 6998 6999 case Decl::OMPDeclareMapper: 7000 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 7001 break; 7002 7003 case Decl::OMPRequires: 7004 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 7005 break; 7006 7007 case Decl::Typedef: 7008 case Decl::TypeAlias: // using foo = bar; [C++11] 7009 if (CGDebugInfo *DI = getModuleDebugInfo()) 7010 DI->EmitAndRetainType( 7011 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 7012 break; 7013 7014 case Decl::Record: 7015 if (CGDebugInfo *DI = getModuleDebugInfo()) 7016 if (cast<RecordDecl>(D)->getDefinition()) 7017 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 7018 break; 7019 7020 case Decl::Enum: 7021 if (CGDebugInfo *DI = getModuleDebugInfo()) 7022 if (cast<EnumDecl>(D)->getDefinition()) 7023 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7024 break; 7025 7026 case Decl::HLSLBuffer: 7027 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7028 break; 7029 7030 default: 7031 // Make sure we handled everything we should, every other kind is a 7032 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7033 // function. Need to recode Decl::Kind to do that easily. 7034 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7035 break; 7036 } 7037 } 7038 7039 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7040 // Do we need to generate coverage mapping? 7041 if (!CodeGenOpts.CoverageMapping) 7042 return; 7043 switch (D->getKind()) { 7044 case Decl::CXXConversion: 7045 case Decl::CXXMethod: 7046 case Decl::Function: 7047 case Decl::ObjCMethod: 7048 case Decl::CXXConstructor: 7049 case Decl::CXXDestructor: { 7050 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7051 break; 7052 SourceManager &SM = getContext().getSourceManager(); 7053 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7054 break; 7055 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7056 break; 7057 } 7058 default: 7059 break; 7060 }; 7061 } 7062 7063 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7064 // Do we need to generate coverage mapping? 7065 if (!CodeGenOpts.CoverageMapping) 7066 return; 7067 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7068 if (Fn->isTemplateInstantiation()) 7069 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7070 } 7071 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7072 } 7073 7074 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7075 // We call takeVector() here to avoid use-after-free. 7076 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7077 // we deserialize function bodies to emit coverage info for them, and that 7078 // deserializes more declarations. How should we handle that case? 7079 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7080 if (!Entry.second) 7081 continue; 7082 const Decl *D = Entry.first; 7083 switch (D->getKind()) { 7084 case Decl::CXXConversion: 7085 case Decl::CXXMethod: 7086 case Decl::Function: 7087 case Decl::ObjCMethod: { 7088 CodeGenPGO PGO(*this); 7089 GlobalDecl GD(cast<FunctionDecl>(D)); 7090 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7091 getFunctionLinkage(GD)); 7092 break; 7093 } 7094 case Decl::CXXConstructor: { 7095 CodeGenPGO PGO(*this); 7096 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7097 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7098 getFunctionLinkage(GD)); 7099 break; 7100 } 7101 case Decl::CXXDestructor: { 7102 CodeGenPGO PGO(*this); 7103 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7104 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7105 getFunctionLinkage(GD)); 7106 break; 7107 } 7108 default: 7109 break; 7110 }; 7111 } 7112 } 7113 7114 void CodeGenModule::EmitMainVoidAlias() { 7115 // In order to transition away from "__original_main" gracefully, emit an 7116 // alias for "main" in the no-argument case so that libc can detect when 7117 // new-style no-argument main is in used. 7118 if (llvm::Function *F = getModule().getFunction("main")) { 7119 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7120 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7121 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7122 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7123 } 7124 } 7125 } 7126 7127 /// Turns the given pointer into a constant. 7128 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7129 const void *Ptr) { 7130 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7131 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7132 return llvm::ConstantInt::get(i64, PtrInt); 7133 } 7134 7135 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7136 llvm::NamedMDNode *&GlobalMetadata, 7137 GlobalDecl D, 7138 llvm::GlobalValue *Addr) { 7139 if (!GlobalMetadata) 7140 GlobalMetadata = 7141 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7142 7143 // TODO: should we report variant information for ctors/dtors? 7144 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7145 llvm::ConstantAsMetadata::get(GetPointerConstant( 7146 CGM.getLLVMContext(), D.getDecl()))}; 7147 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7148 } 7149 7150 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7151 llvm::GlobalValue *CppFunc) { 7152 // Store the list of ifuncs we need to replace uses in. 7153 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7154 // List of ConstantExprs that we should be able to delete when we're done 7155 // here. 7156 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7157 7158 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7159 if (Elem == CppFunc) 7160 return false; 7161 7162 // First make sure that all users of this are ifuncs (or ifuncs via a 7163 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7164 // later. 7165 for (llvm::User *User : Elem->users()) { 7166 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7167 // ifunc directly. In any other case, just give up, as we don't know what we 7168 // could break by changing those. 7169 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7170 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7171 return false; 7172 7173 for (llvm::User *CEUser : ConstExpr->users()) { 7174 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7175 IFuncs.push_back(IFunc); 7176 } else { 7177 return false; 7178 } 7179 } 7180 CEs.push_back(ConstExpr); 7181 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7182 IFuncs.push_back(IFunc); 7183 } else { 7184 // This user is one we don't know how to handle, so fail redirection. This 7185 // will result in an ifunc retaining a resolver name that will ultimately 7186 // fail to be resolved to a defined function. 7187 return false; 7188 } 7189 } 7190 7191 // Now we know this is a valid case where we can do this alias replacement, we 7192 // need to remove all of the references to Elem (and the bitcasts!) so we can 7193 // delete it. 7194 for (llvm::GlobalIFunc *IFunc : IFuncs) 7195 IFunc->setResolver(nullptr); 7196 for (llvm::ConstantExpr *ConstExpr : CEs) 7197 ConstExpr->destroyConstant(); 7198 7199 // We should now be out of uses for the 'old' version of this function, so we 7200 // can erase it as well. 7201 Elem->eraseFromParent(); 7202 7203 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7204 // The type of the resolver is always just a function-type that returns the 7205 // type of the IFunc, so create that here. If the type of the actual 7206 // resolver doesn't match, it just gets bitcast to the right thing. 7207 auto *ResolverTy = 7208 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7209 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7210 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7211 IFunc->setResolver(Resolver); 7212 } 7213 return true; 7214 } 7215 7216 /// For each function which is declared within an extern "C" region and marked 7217 /// as 'used', but has internal linkage, create an alias from the unmangled 7218 /// name to the mangled name if possible. People expect to be able to refer 7219 /// to such functions with an unmangled name from inline assembly within the 7220 /// same translation unit. 7221 void CodeGenModule::EmitStaticExternCAliases() { 7222 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7223 return; 7224 for (auto &I : StaticExternCValues) { 7225 IdentifierInfo *Name = I.first; 7226 llvm::GlobalValue *Val = I.second; 7227 7228 // If Val is null, that implies there were multiple declarations that each 7229 // had a claim to the unmangled name. In this case, generation of the alias 7230 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7231 if (!Val) 7232 break; 7233 7234 llvm::GlobalValue *ExistingElem = 7235 getModule().getNamedValue(Name->getName()); 7236 7237 // If there is either not something already by this name, or we were able to 7238 // replace all uses from IFuncs, create the alias. 7239 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7240 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7241 } 7242 } 7243 7244 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7245 GlobalDecl &Result) const { 7246 auto Res = Manglings.find(MangledName); 7247 if (Res == Manglings.end()) 7248 return false; 7249 Result = Res->getValue(); 7250 return true; 7251 } 7252 7253 /// Emits metadata nodes associating all the global values in the 7254 /// current module with the Decls they came from. This is useful for 7255 /// projects using IR gen as a subroutine. 7256 /// 7257 /// Since there's currently no way to associate an MDNode directly 7258 /// with an llvm::GlobalValue, we create a global named metadata 7259 /// with the name 'clang.global.decl.ptrs'. 7260 void CodeGenModule::EmitDeclMetadata() { 7261 llvm::NamedMDNode *GlobalMetadata = nullptr; 7262 7263 for (auto &I : MangledDeclNames) { 7264 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7265 // Some mangled names don't necessarily have an associated GlobalValue 7266 // in this module, e.g. if we mangled it for DebugInfo. 7267 if (Addr) 7268 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7269 } 7270 } 7271 7272 /// Emits metadata nodes for all the local variables in the current 7273 /// function. 7274 void CodeGenFunction::EmitDeclMetadata() { 7275 if (LocalDeclMap.empty()) return; 7276 7277 llvm::LLVMContext &Context = getLLVMContext(); 7278 7279 // Find the unique metadata ID for this name. 7280 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7281 7282 llvm::NamedMDNode *GlobalMetadata = nullptr; 7283 7284 for (auto &I : LocalDeclMap) { 7285 const Decl *D = I.first; 7286 llvm::Value *Addr = I.second.getPointer(); 7287 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7288 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7289 Alloca->setMetadata( 7290 DeclPtrKind, llvm::MDNode::get( 7291 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7292 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7293 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7294 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7295 } 7296 } 7297 } 7298 7299 void CodeGenModule::EmitVersionIdentMetadata() { 7300 llvm::NamedMDNode *IdentMetadata = 7301 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7302 std::string Version = getClangFullVersion(); 7303 llvm::LLVMContext &Ctx = TheModule.getContext(); 7304 7305 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7306 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7307 } 7308 7309 void CodeGenModule::EmitCommandLineMetadata() { 7310 llvm::NamedMDNode *CommandLineMetadata = 7311 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7312 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7313 llvm::LLVMContext &Ctx = TheModule.getContext(); 7314 7315 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7316 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7317 } 7318 7319 void CodeGenModule::EmitCoverageFile() { 7320 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7321 if (!CUNode) 7322 return; 7323 7324 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7325 llvm::LLVMContext &Ctx = TheModule.getContext(); 7326 auto *CoverageDataFile = 7327 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7328 auto *CoverageNotesFile = 7329 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7330 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7331 llvm::MDNode *CU = CUNode->getOperand(i); 7332 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7333 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7334 } 7335 } 7336 7337 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7338 bool ForEH) { 7339 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7340 // FIXME: should we even be calling this method if RTTI is disabled 7341 // and it's not for EH? 7342 if (!shouldEmitRTTI(ForEH)) 7343 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7344 7345 if (ForEH && Ty->isObjCObjectPointerType() && 7346 LangOpts.ObjCRuntime.isGNUFamily()) 7347 return ObjCRuntime->GetEHType(Ty); 7348 7349 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7350 } 7351 7352 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7353 // Do not emit threadprivates in simd-only mode. 7354 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7355 return; 7356 for (auto RefExpr : D->varlists()) { 7357 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7358 bool PerformInit = 7359 VD->getAnyInitializer() && 7360 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7361 /*ForRef=*/false); 7362 7363 Address Addr(GetAddrOfGlobalVar(VD), 7364 getTypes().ConvertTypeForMem(VD->getType()), 7365 getContext().getDeclAlign(VD)); 7366 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7367 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7368 CXXGlobalInits.push_back(InitFunction); 7369 } 7370 } 7371 7372 llvm::Metadata * 7373 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7374 StringRef Suffix) { 7375 if (auto *FnType = T->getAs<FunctionProtoType>()) 7376 T = getContext().getFunctionType( 7377 FnType->getReturnType(), FnType->getParamTypes(), 7378 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7379 7380 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7381 if (InternalId) 7382 return InternalId; 7383 7384 if (isExternallyVisible(T->getLinkage())) { 7385 std::string OutName; 7386 llvm::raw_string_ostream Out(OutName); 7387 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7388 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7389 7390 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7391 Out << ".normalized"; 7392 7393 Out << Suffix; 7394 7395 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7396 } else { 7397 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7398 llvm::ArrayRef<llvm::Metadata *>()); 7399 } 7400 7401 return InternalId; 7402 } 7403 7404 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7405 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7406 } 7407 7408 llvm::Metadata * 7409 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7410 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7411 } 7412 7413 // Generalize pointer types to a void pointer with the qualifiers of the 7414 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7415 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7416 // 'void *'. 7417 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7418 if (!Ty->isPointerType()) 7419 return Ty; 7420 7421 return Ctx.getPointerType( 7422 QualType(Ctx.VoidTy).withCVRQualifiers( 7423 Ty->getPointeeType().getCVRQualifiers())); 7424 } 7425 7426 // Apply type generalization to a FunctionType's return and argument types 7427 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7428 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7429 SmallVector<QualType, 8> GeneralizedParams; 7430 for (auto &Param : FnType->param_types()) 7431 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7432 7433 return Ctx.getFunctionType( 7434 GeneralizeType(Ctx, FnType->getReturnType()), 7435 GeneralizedParams, FnType->getExtProtoInfo()); 7436 } 7437 7438 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7439 return Ctx.getFunctionNoProtoType( 7440 GeneralizeType(Ctx, FnType->getReturnType())); 7441 7442 llvm_unreachable("Encountered unknown FunctionType"); 7443 } 7444 7445 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7446 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7447 GeneralizedMetadataIdMap, ".generalized"); 7448 } 7449 7450 /// Returns whether this module needs the "all-vtables" type identifier. 7451 bool CodeGenModule::NeedAllVtablesTypeId() const { 7452 // Returns true if at least one of vtable-based CFI checkers is enabled and 7453 // is not in the trapping mode. 7454 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7455 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7456 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7457 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7458 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7459 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7460 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7461 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7462 } 7463 7464 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7465 CharUnits Offset, 7466 const CXXRecordDecl *RD) { 7467 llvm::Metadata *MD = 7468 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7469 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7470 7471 if (CodeGenOpts.SanitizeCfiCrossDso) 7472 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7473 VTable->addTypeMetadata(Offset.getQuantity(), 7474 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7475 7476 if (NeedAllVtablesTypeId()) { 7477 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7478 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7479 } 7480 } 7481 7482 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7483 if (!SanStats) 7484 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7485 7486 return *SanStats; 7487 } 7488 7489 llvm::Value * 7490 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7491 CodeGenFunction &CGF) { 7492 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7493 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7494 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7495 auto *Call = CGF.EmitRuntimeCall( 7496 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7497 return Call; 7498 } 7499 7500 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7501 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7502 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7503 /* forPointeeType= */ true); 7504 } 7505 7506 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7507 LValueBaseInfo *BaseInfo, 7508 TBAAAccessInfo *TBAAInfo, 7509 bool forPointeeType) { 7510 if (TBAAInfo) 7511 *TBAAInfo = getTBAAAccessInfo(T); 7512 7513 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7514 // that doesn't return the information we need to compute BaseInfo. 7515 7516 // Honor alignment typedef attributes even on incomplete types. 7517 // We also honor them straight for C++ class types, even as pointees; 7518 // there's an expressivity gap here. 7519 if (auto TT = T->getAs<TypedefType>()) { 7520 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7521 if (BaseInfo) 7522 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7523 return getContext().toCharUnitsFromBits(Align); 7524 } 7525 } 7526 7527 bool AlignForArray = T->isArrayType(); 7528 7529 // Analyze the base element type, so we don't get confused by incomplete 7530 // array types. 7531 T = getContext().getBaseElementType(T); 7532 7533 if (T->isIncompleteType()) { 7534 // We could try to replicate the logic from 7535 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7536 // type is incomplete, so it's impossible to test. We could try to reuse 7537 // getTypeAlignIfKnown, but that doesn't return the information we need 7538 // to set BaseInfo. So just ignore the possibility that the alignment is 7539 // greater than one. 7540 if (BaseInfo) 7541 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7542 return CharUnits::One(); 7543 } 7544 7545 if (BaseInfo) 7546 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7547 7548 CharUnits Alignment; 7549 const CXXRecordDecl *RD; 7550 if (T.getQualifiers().hasUnaligned()) { 7551 Alignment = CharUnits::One(); 7552 } else if (forPointeeType && !AlignForArray && 7553 (RD = T->getAsCXXRecordDecl())) { 7554 // For C++ class pointees, we don't know whether we're pointing at a 7555 // base or a complete object, so we generally need to use the 7556 // non-virtual alignment. 7557 Alignment = getClassPointerAlignment(RD); 7558 } else { 7559 Alignment = getContext().getTypeAlignInChars(T); 7560 } 7561 7562 // Cap to the global maximum type alignment unless the alignment 7563 // was somehow explicit on the type. 7564 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7565 if (Alignment.getQuantity() > MaxAlign && 7566 !getContext().isAlignmentRequired(T)) 7567 Alignment = CharUnits::fromQuantity(MaxAlign); 7568 } 7569 return Alignment; 7570 } 7571 7572 bool CodeGenModule::stopAutoInit() { 7573 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7574 if (StopAfter) { 7575 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7576 // used 7577 if (NumAutoVarInit >= StopAfter) { 7578 return true; 7579 } 7580 if (!NumAutoVarInit) { 7581 unsigned DiagID = getDiags().getCustomDiagID( 7582 DiagnosticsEngine::Warning, 7583 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7584 "number of times ftrivial-auto-var-init=%1 gets applied."); 7585 getDiags().Report(DiagID) 7586 << StopAfter 7587 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7588 LangOptions::TrivialAutoVarInitKind::Zero 7589 ? "zero" 7590 : "pattern"); 7591 } 7592 ++NumAutoVarInit; 7593 } 7594 return false; 7595 } 7596 7597 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7598 const Decl *D) const { 7599 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7600 // postfix beginning with '.' since the symbol name can be demangled. 7601 if (LangOpts.HIP) 7602 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7603 else 7604 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7605 7606 // If the CUID is not specified we try to generate a unique postfix. 7607 if (getLangOpts().CUID.empty()) { 7608 SourceManager &SM = getContext().getSourceManager(); 7609 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7610 assert(PLoc.isValid() && "Source location is expected to be valid."); 7611 7612 // Get the hash of the user defined macros. 7613 llvm::MD5 Hash; 7614 llvm::MD5::MD5Result Result; 7615 for (const auto &Arg : PreprocessorOpts.Macros) 7616 Hash.update(Arg.first); 7617 Hash.final(Result); 7618 7619 // Get the UniqueID for the file containing the decl. 7620 llvm::sys::fs::UniqueID ID; 7621 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7622 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7623 assert(PLoc.isValid() && "Source location is expected to be valid."); 7624 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7625 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7626 << PLoc.getFilename() << EC.message(); 7627 } 7628 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7629 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7630 } else { 7631 OS << getContext().getCUIDHash(); 7632 } 7633 } 7634 7635 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7636 assert(DeferredDeclsToEmit.empty() && 7637 "Should have emitted all decls deferred to emit."); 7638 assert(NewBuilder->DeferredDecls.empty() && 7639 "Newly created module should not have deferred decls"); 7640 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7641 assert(EmittedDeferredDecls.empty() && 7642 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7643 7644 assert(NewBuilder->DeferredVTables.empty() && 7645 "Newly created module should not have deferred vtables"); 7646 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7647 7648 assert(NewBuilder->MangledDeclNames.empty() && 7649 "Newly created module should not have mangled decl names"); 7650 assert(NewBuilder->Manglings.empty() && 7651 "Newly created module should not have manglings"); 7652 NewBuilder->Manglings = std::move(Manglings); 7653 7654 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7655 7656 NewBuilder->TBAA = std::move(TBAA); 7657 7658 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7659 } 7660