xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision d29a4a381073d403b3a19dd85dc5c7e736aaf272)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CGOpenMPRuntime.h"
22 #include "CodeGenFunction.h"
23 #include "CodeGenPGO.h"
24 #include "CodeGenTBAA.h"
25 #include "CoverageMappingGen.h"
26 #include "TargetInfo.h"
27 #include "clang/AST/ASTContext.h"
28 #include "clang/AST/CharUnits.h"
29 #include "clang/AST/DeclCXX.h"
30 #include "clang/AST/DeclObjC.h"
31 #include "clang/AST/DeclTemplate.h"
32 #include "clang/AST/Mangle.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/RecursiveASTVisitor.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/CharInfo.h"
37 #include "clang/Basic/Diagnostic.h"
38 #include "clang/Basic/Module.h"
39 #include "clang/Basic/SourceManager.h"
40 #include "clang/Basic/TargetInfo.h"
41 #include "clang/Basic/Version.h"
42 #include "clang/Frontend/CodeGenOptions.h"
43 #include "clang/Sema/SemaDiagnostic.h"
44 #include "llvm/ADT/APSInt.h"
45 #include "llvm/ADT/Triple.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/CallingConv.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/ProfileData/InstrProfReader.h"
53 #include "llvm/Support/ConvertUTF.h"
54 #include "llvm/Support/ErrorHandling.h"
55 
56 using namespace clang;
57 using namespace CodeGen;
58 
59 static const char AnnotationSection[] = "llvm.metadata";
60 
61 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
62   switch (CGM.getTarget().getCXXABI().getKind()) {
63   case TargetCXXABI::GenericAArch64:
64   case TargetCXXABI::GenericARM:
65   case TargetCXXABI::iOS:
66   case TargetCXXABI::iOS64:
67   case TargetCXXABI::GenericItanium:
68     return CreateItaniumCXXABI(CGM);
69   case TargetCXXABI::Microsoft:
70     return CreateMicrosoftCXXABI(CGM);
71   }
72 
73   llvm_unreachable("invalid C++ ABI kind");
74 }
75 
76 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
77                              llvm::Module &M, const llvm::DataLayout &TD,
78                              DiagnosticsEngine &diags,
79                              CoverageSourceInfo *CoverageInfo)
80     : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
81       Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
82       ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr),
83       TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this),
84       ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr),
85       CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr),
86       NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr),
87       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
88       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
89       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
90       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
91       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
92       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
93 
94   // Initialize the type cache.
95   llvm::LLVMContext &LLVMContext = M.getContext();
96   VoidTy = llvm::Type::getVoidTy(LLVMContext);
97   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101   FloatTy = llvm::Type::getFloatTy(LLVMContext);
102   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104   PointerAlignInBytes =
105   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108   Int8PtrTy = Int8Ty->getPointerTo(0);
109   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110 
111   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
113 
114   if (LangOpts.ObjC1)
115     createObjCRuntime();
116   if (LangOpts.OpenCL)
117     createOpenCLRuntime();
118   if (LangOpts.OpenMP)
119     createOpenMPRuntime();
120   if (LangOpts.CUDA)
121     createCUDARuntime();
122 
123   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
124   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
125       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
126     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
127                            getCXXABI().getMangleContext());
128 
129   // If debug info or coverage generation is enabled, create the CGDebugInfo
130   // object.
131   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
132       CodeGenOpts.EmitGcovArcs ||
133       CodeGenOpts.EmitGcovNotes)
134     DebugInfo = new CGDebugInfo(*this);
135 
136   Block.GlobalUniqueCount = 0;
137 
138   if (C.getLangOpts().ObjCAutoRefCount)
139     ARCData = new ARCEntrypoints();
140   RRData = new RREntrypoints();
141 
142   if (!CodeGenOpts.InstrProfileInput.empty()) {
143     auto ReaderOrErr =
144         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
145     if (std::error_code EC = ReaderOrErr.getError()) {
146       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
147                                               "Could not read profile: %0");
148       getDiags().Report(DiagID) << EC.message();
149     }
150     PGOReader = std::move(ReaderOrErr.get());
151   }
152 
153   // If coverage mapping generation is enabled, create the
154   // CoverageMappingModuleGen object.
155   if (CodeGenOpts.CoverageMapping)
156     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
157 }
158 
159 CodeGenModule::~CodeGenModule() {
160   delete ObjCRuntime;
161   delete OpenCLRuntime;
162   delete OpenMPRuntime;
163   delete CUDARuntime;
164   delete TheTargetCodeGenInfo;
165   delete TBAA;
166   delete DebugInfo;
167   delete ARCData;
168   delete RRData;
169 }
170 
171 void CodeGenModule::createObjCRuntime() {
172   // This is just isGNUFamily(), but we want to force implementors of
173   // new ABIs to decide how best to do this.
174   switch (LangOpts.ObjCRuntime.getKind()) {
175   case ObjCRuntime::GNUstep:
176   case ObjCRuntime::GCC:
177   case ObjCRuntime::ObjFW:
178     ObjCRuntime = CreateGNUObjCRuntime(*this);
179     return;
180 
181   case ObjCRuntime::FragileMacOSX:
182   case ObjCRuntime::MacOSX:
183   case ObjCRuntime::iOS:
184     ObjCRuntime = CreateMacObjCRuntime(*this);
185     return;
186   }
187   llvm_unreachable("bad runtime kind");
188 }
189 
190 void CodeGenModule::createOpenCLRuntime() {
191   OpenCLRuntime = new CGOpenCLRuntime(*this);
192 }
193 
194 void CodeGenModule::createOpenMPRuntime() {
195   OpenMPRuntime = new CGOpenMPRuntime(*this);
196 }
197 
198 void CodeGenModule::createCUDARuntime() {
199   CUDARuntime = CreateNVCUDARuntime(*this);
200 }
201 
202 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
203   Replacements[Name] = C;
204 }
205 
206 void CodeGenModule::applyReplacements() {
207   for (ReplacementsTy::iterator I = Replacements.begin(),
208                                 E = Replacements.end();
209        I != E; ++I) {
210     StringRef MangledName = I->first();
211     llvm::Constant *Replacement = I->second;
212     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
213     if (!Entry)
214       continue;
215     auto *OldF = cast<llvm::Function>(Entry);
216     auto *NewF = dyn_cast<llvm::Function>(Replacement);
217     if (!NewF) {
218       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
219         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
220       } else {
221         auto *CE = cast<llvm::ConstantExpr>(Replacement);
222         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
223                CE->getOpcode() == llvm::Instruction::GetElementPtr);
224         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
225       }
226     }
227 
228     // Replace old with new, but keep the old order.
229     OldF->replaceAllUsesWith(Replacement);
230     if (NewF) {
231       NewF->removeFromParent();
232       OldF->getParent()->getFunctionList().insertAfter(OldF, NewF);
233     }
234     OldF->eraseFromParent();
235   }
236 }
237 
238 // This is only used in aliases that we created and we know they have a
239 // linear structure.
240 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
241   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
242   const llvm::Constant *C = &GA;
243   for (;;) {
244     C = C->stripPointerCasts();
245     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
246       return GO;
247     // stripPointerCasts will not walk over weak aliases.
248     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
249     if (!GA2)
250       return nullptr;
251     if (!Visited.insert(GA2).second)
252       return nullptr;
253     C = GA2->getAliasee();
254   }
255 }
256 
257 void CodeGenModule::checkAliases() {
258   // Check if the constructed aliases are well formed. It is really unfortunate
259   // that we have to do this in CodeGen, but we only construct mangled names
260   // and aliases during codegen.
261   bool Error = false;
262   DiagnosticsEngine &Diags = getDiags();
263   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
264          E = Aliases.end(); I != E; ++I) {
265     const GlobalDecl &GD = *I;
266     const auto *D = cast<ValueDecl>(GD.getDecl());
267     const AliasAttr *AA = D->getAttr<AliasAttr>();
268     StringRef MangledName = getMangledName(GD);
269     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
270     auto *Alias = cast<llvm::GlobalAlias>(Entry);
271     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
272     if (!GV) {
273       Error = true;
274       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
275     } else if (GV->isDeclaration()) {
276       Error = true;
277       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
278     }
279 
280     llvm::Constant *Aliasee = Alias->getAliasee();
281     llvm::GlobalValue *AliaseeGV;
282     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
283       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
284     else
285       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
286 
287     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
288       StringRef AliasSection = SA->getName();
289       if (AliasSection != AliaseeGV->getSection())
290         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
291             << AliasSection;
292     }
293 
294     // We have to handle alias to weak aliases in here. LLVM itself disallows
295     // this since the object semantics would not match the IL one. For
296     // compatibility with gcc we implement it by just pointing the alias
297     // to its aliasee's aliasee. We also warn, since the user is probably
298     // expecting the link to be weak.
299     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
300       if (GA->mayBeOverridden()) {
301         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
302             << GV->getName() << GA->getName();
303         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
304             GA->getAliasee(), Alias->getType());
305         Alias->setAliasee(Aliasee);
306       }
307     }
308   }
309   if (!Error)
310     return;
311 
312   for (std::vector<GlobalDecl>::iterator I = Aliases.begin(),
313          E = Aliases.end(); I != E; ++I) {
314     const GlobalDecl &GD = *I;
315     StringRef MangledName = getMangledName(GD);
316     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
317     auto *Alias = cast<llvm::GlobalAlias>(Entry);
318     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
319     Alias->eraseFromParent();
320   }
321 }
322 
323 void CodeGenModule::clear() {
324   DeferredDeclsToEmit.clear();
325 }
326 
327 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
328                                        StringRef MainFile) {
329   if (!hasDiagnostics())
330     return;
331   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
332     if (MainFile.empty())
333       MainFile = "<stdin>";
334     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
335   } else
336     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
337                                                       << Mismatched;
338 }
339 
340 void CodeGenModule::Release() {
341   EmitDeferred();
342   applyReplacements();
343   checkAliases();
344   EmitCXXGlobalInitFunc();
345   EmitCXXGlobalDtorFunc();
346   EmitCXXThreadLocalInitFunc();
347   if (ObjCRuntime)
348     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
349       AddGlobalCtor(ObjCInitFunction);
350   if (PGOReader && PGOStats.hasDiagnostics())
351     PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
352   EmitCtorList(GlobalCtors, "llvm.global_ctors");
353   EmitCtorList(GlobalDtors, "llvm.global_dtors");
354   EmitGlobalAnnotations();
355   EmitStaticExternCAliases();
356   EmitDeferredUnusedCoverageMappings();
357   if (CoverageMapping)
358     CoverageMapping->emit();
359   emitLLVMUsed();
360 
361   if (CodeGenOpts.Autolink &&
362       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
363     EmitModuleLinkOptions();
364   }
365   if (CodeGenOpts.DwarfVersion)
366     // We actually want the latest version when there are conflicts.
367     // We can change from Warning to Latest if such mode is supported.
368     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
369                               CodeGenOpts.DwarfVersion);
370   if (DebugInfo)
371     // We support a single version in the linked module. The LLVM
372     // parser will drop debug info with a different version number
373     // (and warn about it, too).
374     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
375                               llvm::DEBUG_METADATA_VERSION);
376 
377   // We need to record the widths of enums and wchar_t, so that we can generate
378   // the correct build attributes in the ARM backend.
379   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
380   if (   Arch == llvm::Triple::arm
381       || Arch == llvm::Triple::armeb
382       || Arch == llvm::Triple::thumb
383       || Arch == llvm::Triple::thumbeb) {
384     // Width of wchar_t in bytes
385     uint64_t WCharWidth =
386         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
387     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
388 
389     // The minimum width of an enum in bytes
390     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
391     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
392   }
393 
394   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
395     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
396     switch (PLevel) {
397     case 0: break;
398     case 1: PL = llvm::PICLevel::Small; break;
399     case 2: PL = llvm::PICLevel::Large; break;
400     default: llvm_unreachable("Invalid PIC Level");
401     }
402 
403     getModule().setPICLevel(PL);
404   }
405 
406   SimplifyPersonality();
407 
408   if (getCodeGenOpts().EmitDeclMetadata)
409     EmitDeclMetadata();
410 
411   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
412     EmitCoverageFile();
413 
414   if (DebugInfo)
415     DebugInfo->finalize();
416 
417   EmitVersionIdentMetadata();
418 
419   EmitTargetMetadata();
420 }
421 
422 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
423   // Make sure that this type is translated.
424   Types.UpdateCompletedType(TD);
425 }
426 
427 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
428   if (!TBAA)
429     return nullptr;
430   return TBAA->getTBAAInfo(QTy);
431 }
432 
433 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
434   if (!TBAA)
435     return nullptr;
436   return TBAA->getTBAAInfoForVTablePtr();
437 }
438 
439 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
440   if (!TBAA)
441     return nullptr;
442   return TBAA->getTBAAStructInfo(QTy);
443 }
444 
445 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
446   if (!TBAA)
447     return nullptr;
448   return TBAA->getTBAAStructTypeInfo(QTy);
449 }
450 
451 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
452                                                   llvm::MDNode *AccessN,
453                                                   uint64_t O) {
454   if (!TBAA)
455     return nullptr;
456   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
457 }
458 
459 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
460 /// and struct-path aware TBAA, the tag has the same format:
461 /// base type, access type and offset.
462 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
463 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
464                                         llvm::MDNode *TBAAInfo,
465                                         bool ConvertTypeToTag) {
466   if (ConvertTypeToTag && TBAA)
467     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
468                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
469   else
470     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
471 }
472 
473 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
474   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
475   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
476 }
477 
478 /// ErrorUnsupported - Print out an error that codegen doesn't support the
479 /// specified stmt yet.
480 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
481   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
482                                                "cannot compile this %0 yet");
483   std::string Msg = Type;
484   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
485     << Msg << S->getSourceRange();
486 }
487 
488 /// ErrorUnsupported - Print out an error that codegen doesn't support the
489 /// specified decl yet.
490 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
491   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
492                                                "cannot compile this %0 yet");
493   std::string Msg = Type;
494   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
495 }
496 
497 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
498   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
499 }
500 
501 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
502                                         const NamedDecl *D) const {
503   // Internal definitions always have default visibility.
504   if (GV->hasLocalLinkage()) {
505     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
506     return;
507   }
508 
509   // Set visibility for definitions.
510   LinkageInfo LV = D->getLinkageAndVisibility();
511   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
512     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
513 }
514 
515 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
516   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
517       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
518       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
519       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
520       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
521 }
522 
523 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
524     CodeGenOptions::TLSModel M) {
525   switch (M) {
526   case CodeGenOptions::GeneralDynamicTLSModel:
527     return llvm::GlobalVariable::GeneralDynamicTLSModel;
528   case CodeGenOptions::LocalDynamicTLSModel:
529     return llvm::GlobalVariable::LocalDynamicTLSModel;
530   case CodeGenOptions::InitialExecTLSModel:
531     return llvm::GlobalVariable::InitialExecTLSModel;
532   case CodeGenOptions::LocalExecTLSModel:
533     return llvm::GlobalVariable::LocalExecTLSModel;
534   }
535   llvm_unreachable("Invalid TLS model!");
536 }
537 
538 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
539   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
540 
541   llvm::GlobalValue::ThreadLocalMode TLM;
542   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
543 
544   // Override the TLS model if it is explicitly specified.
545   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
546     TLM = GetLLVMTLSModel(Attr->getModel());
547   }
548 
549   GV->setThreadLocalMode(TLM);
550 }
551 
552 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
553   StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()];
554   if (!FoundStr.empty())
555     return FoundStr;
556 
557   const auto *ND = cast<NamedDecl>(GD.getDecl());
558   SmallString<256> Buffer;
559   StringRef Str;
560   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
561     llvm::raw_svector_ostream Out(Buffer);
562     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
563       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
564     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
565       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
566     else
567       getCXXABI().getMangleContext().mangleName(ND, Out);
568     Str = Out.str();
569   } else {
570     IdentifierInfo *II = ND->getIdentifier();
571     assert(II && "Attempt to mangle unnamed decl.");
572     Str = II->getName();
573   }
574 
575   // Keep the first result in the case of a mangling collision.
576   auto Result = Manglings.insert(std::make_pair(Str, GD));
577   return FoundStr = Result.first->first();
578 }
579 
580 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
581                                              const BlockDecl *BD) {
582   MangleContext &MangleCtx = getCXXABI().getMangleContext();
583   const Decl *D = GD.getDecl();
584 
585   SmallString<256> Buffer;
586   llvm::raw_svector_ostream Out(Buffer);
587   if (!D)
588     MangleCtx.mangleGlobalBlock(BD,
589       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
590   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
591     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
592   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
593     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
594   else
595     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
596 
597   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
598   return Result.first->first();
599 }
600 
601 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
602   return getModule().getNamedValue(Name);
603 }
604 
605 /// AddGlobalCtor - Add a function to the list that will be called before
606 /// main() runs.
607 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
608                                   llvm::Constant *AssociatedData) {
609   // FIXME: Type coercion of void()* types.
610   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
611 }
612 
613 /// AddGlobalDtor - Add a function to the list that will be called
614 /// when the module is unloaded.
615 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
616   // FIXME: Type coercion of void()* types.
617   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
618 }
619 
620 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
621   // Ctor function type is void()*.
622   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
623   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
624 
625   // Get the type of a ctor entry, { i32, void ()*, i8* }.
626   llvm::StructType *CtorStructTy = llvm::StructType::get(
627       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
628 
629   // Construct the constructor and destructor arrays.
630   SmallVector<llvm::Constant*, 8> Ctors;
631   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
632     llvm::Constant *S[] = {
633       llvm::ConstantInt::get(Int32Ty, I->Priority, false),
634       llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy),
635       (I->AssociatedData
636            ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy)
637            : llvm::Constant::getNullValue(VoidPtrTy))
638     };
639     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
640   }
641 
642   if (!Ctors.empty()) {
643     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
644     new llvm::GlobalVariable(TheModule, AT, false,
645                              llvm::GlobalValue::AppendingLinkage,
646                              llvm::ConstantArray::get(AT, Ctors),
647                              GlobalName);
648   }
649 }
650 
651 llvm::GlobalValue::LinkageTypes
652 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
653   const auto *D = cast<FunctionDecl>(GD.getDecl());
654 
655   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
656 
657   if (isa<CXXDestructorDecl>(D) &&
658       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
659                                          GD.getDtorType())) {
660     // Destructor variants in the Microsoft C++ ABI are always internal or
661     // linkonce_odr thunks emitted on an as-needed basis.
662     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
663                                    : llvm::GlobalValue::LinkOnceODRLinkage;
664   }
665 
666   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
667 }
668 
669 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
670                                                     llvm::Function *F) {
671   setNonAliasAttributes(D, F);
672 }
673 
674 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
675                                               const CGFunctionInfo &Info,
676                                               llvm::Function *F) {
677   unsigned CallingConv;
678   AttributeListType AttributeList;
679   ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
680   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
681   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
682 }
683 
684 /// Determines whether the language options require us to model
685 /// unwind exceptions.  We treat -fexceptions as mandating this
686 /// except under the fragile ObjC ABI with only ObjC exceptions
687 /// enabled.  This means, for example, that C with -fexceptions
688 /// enables this.
689 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
690   // If exceptions are completely disabled, obviously this is false.
691   if (!LangOpts.Exceptions) return false;
692 
693   // If C++ exceptions are enabled, this is true.
694   if (LangOpts.CXXExceptions) return true;
695 
696   // If ObjC exceptions are enabled, this depends on the ABI.
697   if (LangOpts.ObjCExceptions) {
698     return LangOpts.ObjCRuntime.hasUnwindExceptions();
699   }
700 
701   return true;
702 }
703 
704 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
705                                                            llvm::Function *F) {
706   llvm::AttrBuilder B;
707 
708   if (CodeGenOpts.UnwindTables)
709     B.addAttribute(llvm::Attribute::UWTable);
710 
711   if (!hasUnwindExceptions(LangOpts))
712     B.addAttribute(llvm::Attribute::NoUnwind);
713 
714   if (D->hasAttr<NakedAttr>()) {
715     // Naked implies noinline: we should not be inlining such functions.
716     B.addAttribute(llvm::Attribute::Naked);
717     B.addAttribute(llvm::Attribute::NoInline);
718   } else if (D->hasAttr<NoDuplicateAttr>()) {
719     B.addAttribute(llvm::Attribute::NoDuplicate);
720   } else if (D->hasAttr<NoInlineAttr>()) {
721     B.addAttribute(llvm::Attribute::NoInline);
722   } else if (D->hasAttr<AlwaysInlineAttr>() &&
723              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
724                                               llvm::Attribute::NoInline)) {
725     // (noinline wins over always_inline, and we can't specify both in IR)
726     B.addAttribute(llvm::Attribute::AlwaysInline);
727   }
728 
729   if (D->hasAttr<ColdAttr>()) {
730     if (!D->hasAttr<OptimizeNoneAttr>())
731       B.addAttribute(llvm::Attribute::OptimizeForSize);
732     B.addAttribute(llvm::Attribute::Cold);
733   }
734 
735   if (D->hasAttr<MinSizeAttr>())
736     B.addAttribute(llvm::Attribute::MinSize);
737 
738   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
739     B.addAttribute(llvm::Attribute::StackProtect);
740   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
741     B.addAttribute(llvm::Attribute::StackProtectStrong);
742   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
743     B.addAttribute(llvm::Attribute::StackProtectReq);
744 
745   // Add sanitizer attributes if function is not blacklisted.
746   if (!isInSanitizerBlacklist(F, D->getLocation())) {
747     // When AddressSanitizer is enabled, set SanitizeAddress attribute
748     // unless __attribute__((no_sanitize_address)) is used.
749     if (LangOpts.Sanitize.has(SanitizerKind::Address) &&
750         !D->hasAttr<NoSanitizeAddressAttr>())
751       B.addAttribute(llvm::Attribute::SanitizeAddress);
752     // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
753     if (LangOpts.Sanitize.has(SanitizerKind::Thread) &&
754         !D->hasAttr<NoSanitizeThreadAttr>())
755       B.addAttribute(llvm::Attribute::SanitizeThread);
756     // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
757     if (LangOpts.Sanitize.has(SanitizerKind::Memory) &&
758         !D->hasAttr<NoSanitizeMemoryAttr>())
759       B.addAttribute(llvm::Attribute::SanitizeMemory);
760   }
761 
762   F->addAttributes(llvm::AttributeSet::FunctionIndex,
763                    llvm::AttributeSet::get(
764                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
765 
766   if (D->hasAttr<OptimizeNoneAttr>()) {
767     // OptimizeNone implies noinline; we should not be inlining such functions.
768     F->addFnAttr(llvm::Attribute::OptimizeNone);
769     F->addFnAttr(llvm::Attribute::NoInline);
770 
771     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
772     assert(!F->hasFnAttribute(llvm::Attribute::OptimizeForSize) &&
773            "OptimizeNone and OptimizeForSize on same function!");
774     assert(!F->hasFnAttribute(llvm::Attribute::MinSize) &&
775            "OptimizeNone and MinSize on same function!");
776     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
777            "OptimizeNone and AlwaysInline on same function!");
778 
779     // Attribute 'inlinehint' has no effect on 'optnone' functions.
780     // Explicitly remove it from the set of function attributes.
781     F->removeFnAttr(llvm::Attribute::InlineHint);
782   }
783 
784   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
785     F->setUnnamedAddr(true);
786   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
787     if (MD->isVirtual())
788       F->setUnnamedAddr(true);
789 
790   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
791   if (alignment)
792     F->setAlignment(alignment);
793 
794   // C++ ABI requires 2-byte alignment for member functions.
795   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
796     F->setAlignment(2);
797 }
798 
799 void CodeGenModule::SetCommonAttributes(const Decl *D,
800                                         llvm::GlobalValue *GV) {
801   if (const auto *ND = dyn_cast<NamedDecl>(D))
802     setGlobalVisibility(GV, ND);
803   else
804     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
805 
806   if (D->hasAttr<UsedAttr>())
807     addUsedGlobal(GV);
808 }
809 
810 void CodeGenModule::setAliasAttributes(const Decl *D,
811                                        llvm::GlobalValue *GV) {
812   SetCommonAttributes(D, GV);
813 
814   // Process the dllexport attribute based on whether the original definition
815   // (not necessarily the aliasee) was exported.
816   if (D->hasAttr<DLLExportAttr>())
817     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
818 }
819 
820 void CodeGenModule::setNonAliasAttributes(const Decl *D,
821                                           llvm::GlobalObject *GO) {
822   SetCommonAttributes(D, GO);
823 
824   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
825     GO->setSection(SA->getName());
826 
827   getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this);
828 }
829 
830 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
831                                                   llvm::Function *F,
832                                                   const CGFunctionInfo &FI) {
833   SetLLVMFunctionAttributes(D, FI, F);
834   SetLLVMFunctionAttributesForDefinition(D, F);
835 
836   F->setLinkage(llvm::Function::InternalLinkage);
837 
838   setNonAliasAttributes(D, F);
839 }
840 
841 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
842                                          const NamedDecl *ND) {
843   // Set linkage and visibility in case we never see a definition.
844   LinkageInfo LV = ND->getLinkageAndVisibility();
845   if (LV.getLinkage() != ExternalLinkage) {
846     // Don't set internal linkage on declarations.
847   } else {
848     if (ND->hasAttr<DLLImportAttr>()) {
849       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
850       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
851     } else if (ND->hasAttr<DLLExportAttr>()) {
852       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
853       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
854     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
855       // "extern_weak" is overloaded in LLVM; we probably should have
856       // separate linkage types for this.
857       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
858     }
859 
860     // Set visibility on a declaration only if it's explicit.
861     if (LV.isVisibilityExplicit())
862       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
863   }
864 }
865 
866 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
867                                           bool IsIncompleteFunction,
868                                           bool IsThunk) {
869   if (unsigned IID = F->getIntrinsicID()) {
870     // If this is an intrinsic function, set the function's attributes
871     // to the intrinsic's attributes.
872     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
873                                                     (llvm::Intrinsic::ID)IID));
874     return;
875   }
876 
877   const auto *FD = cast<FunctionDecl>(GD.getDecl());
878 
879   if (!IsIncompleteFunction)
880     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
881 
882   // Add the Returned attribute for "this", except for iOS 5 and earlier
883   // where substantial code, including the libstdc++ dylib, was compiled with
884   // GCC and does not actually return "this".
885   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
886       !(getTarget().getTriple().isiOS() &&
887         getTarget().getTriple().isOSVersionLT(6))) {
888     assert(!F->arg_empty() &&
889            F->arg_begin()->getType()
890              ->canLosslesslyBitCastTo(F->getReturnType()) &&
891            "unexpected this return");
892     F->addAttribute(1, llvm::Attribute::Returned);
893   }
894 
895   // Only a few attributes are set on declarations; these may later be
896   // overridden by a definition.
897 
898   setLinkageAndVisibilityForGV(F, FD);
899 
900   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
901     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
902       // Don't dllexport/import destructor thunks.
903       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
904     }
905   }
906 
907   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
908     F->setSection(SA->getName());
909 
910   // A replaceable global allocation function does not act like a builtin by
911   // default, only if it is invoked by a new-expression or delete-expression.
912   if (FD->isReplaceableGlobalAllocationFunction())
913     F->addAttribute(llvm::AttributeSet::FunctionIndex,
914                     llvm::Attribute::NoBuiltin);
915 }
916 
917 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
918   assert(!GV->isDeclaration() &&
919          "Only globals with definition can force usage.");
920   LLVMUsed.push_back(GV);
921 }
922 
923 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
924   assert(!GV->isDeclaration() &&
925          "Only globals with definition can force usage.");
926   LLVMCompilerUsed.push_back(GV);
927 }
928 
929 static void emitUsed(CodeGenModule &CGM, StringRef Name,
930                      std::vector<llvm::WeakVH> &List) {
931   // Don't create llvm.used if there is no need.
932   if (List.empty())
933     return;
934 
935   // Convert List to what ConstantArray needs.
936   SmallVector<llvm::Constant*, 8> UsedArray;
937   UsedArray.resize(List.size());
938   for (unsigned i = 0, e = List.size(); i != e; ++i) {
939     UsedArray[i] =
940         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
941             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
942   }
943 
944   if (UsedArray.empty())
945     return;
946   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
947 
948   auto *GV = new llvm::GlobalVariable(
949       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
950       llvm::ConstantArray::get(ATy, UsedArray), Name);
951 
952   GV->setSection("llvm.metadata");
953 }
954 
955 void CodeGenModule::emitLLVMUsed() {
956   emitUsed(*this, "llvm.used", LLVMUsed);
957   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
958 }
959 
960 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
961   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
962   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
963 }
964 
965 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
966   llvm::SmallString<32> Opt;
967   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
968   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
969   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
970 }
971 
972 void CodeGenModule::AddDependentLib(StringRef Lib) {
973   llvm::SmallString<24> Opt;
974   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
975   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
976   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
977 }
978 
979 /// \brief Add link options implied by the given module, including modules
980 /// it depends on, using a postorder walk.
981 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
982                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
983                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
984   // Import this module's parent.
985   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
986     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
987   }
988 
989   // Import this module's dependencies.
990   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
991     if (Visited.insert(Mod->Imports[I - 1]).second)
992       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
993   }
994 
995   // Add linker options to link against the libraries/frameworks
996   // described by this module.
997   llvm::LLVMContext &Context = CGM.getLLVMContext();
998   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
999     // Link against a framework.  Frameworks are currently Darwin only, so we
1000     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1001     if (Mod->LinkLibraries[I-1].IsFramework) {
1002       llvm::Metadata *Args[2] = {
1003           llvm::MDString::get(Context, "-framework"),
1004           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1005 
1006       Metadata.push_back(llvm::MDNode::get(Context, Args));
1007       continue;
1008     }
1009 
1010     // Link against a library.
1011     llvm::SmallString<24> Opt;
1012     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1013       Mod->LinkLibraries[I-1].Library, Opt);
1014     auto *OptString = llvm::MDString::get(Context, Opt);
1015     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1016   }
1017 }
1018 
1019 void CodeGenModule::EmitModuleLinkOptions() {
1020   // Collect the set of all of the modules we want to visit to emit link
1021   // options, which is essentially the imported modules and all of their
1022   // non-explicit child modules.
1023   llvm::SetVector<clang::Module *> LinkModules;
1024   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1025   SmallVector<clang::Module *, 16> Stack;
1026 
1027   // Seed the stack with imported modules.
1028   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
1029                                                MEnd = ImportedModules.end();
1030        M != MEnd; ++M) {
1031     if (Visited.insert(*M).second)
1032       Stack.push_back(*M);
1033   }
1034 
1035   // Find all of the modules to import, making a little effort to prune
1036   // non-leaf modules.
1037   while (!Stack.empty()) {
1038     clang::Module *Mod = Stack.pop_back_val();
1039 
1040     bool AnyChildren = false;
1041 
1042     // Visit the submodules of this module.
1043     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1044                                         SubEnd = Mod->submodule_end();
1045          Sub != SubEnd; ++Sub) {
1046       // Skip explicit children; they need to be explicitly imported to be
1047       // linked against.
1048       if ((*Sub)->IsExplicit)
1049         continue;
1050 
1051       if (Visited.insert(*Sub).second) {
1052         Stack.push_back(*Sub);
1053         AnyChildren = true;
1054       }
1055     }
1056 
1057     // We didn't find any children, so add this module to the list of
1058     // modules to link against.
1059     if (!AnyChildren) {
1060       LinkModules.insert(Mod);
1061     }
1062   }
1063 
1064   // Add link options for all of the imported modules in reverse topological
1065   // order.  We don't do anything to try to order import link flags with respect
1066   // to linker options inserted by things like #pragma comment().
1067   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1068   Visited.clear();
1069   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
1070                                                MEnd = LinkModules.end();
1071        M != MEnd; ++M) {
1072     if (Visited.insert(*M).second)
1073       addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
1074   }
1075   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1076   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1077 
1078   // Add the linker options metadata flag.
1079   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1080                             llvm::MDNode::get(getLLVMContext(),
1081                                               LinkerOptionsMetadata));
1082 }
1083 
1084 void CodeGenModule::EmitDeferred() {
1085   // Emit code for any potentially referenced deferred decls.  Since a
1086   // previously unused static decl may become used during the generation of code
1087   // for a static function, iterate until no changes are made.
1088 
1089   if (!DeferredVTables.empty()) {
1090     EmitDeferredVTables();
1091 
1092     // Emitting a v-table doesn't directly cause more v-tables to
1093     // become deferred, although it can cause functions to be
1094     // emitted that then need those v-tables.
1095     assert(DeferredVTables.empty());
1096   }
1097 
1098   // Stop if we're out of both deferred v-tables and deferred declarations.
1099   if (DeferredDeclsToEmit.empty())
1100     return;
1101 
1102   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1103   // work, it will not interfere with this.
1104   std::vector<DeferredGlobal> CurDeclsToEmit;
1105   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1106 
1107   for (DeferredGlobal &G : CurDeclsToEmit) {
1108     GlobalDecl D = G.GD;
1109     llvm::GlobalValue *GV = G.GV;
1110     G.GV = nullptr;
1111 
1112     assert(!GV || GV == GetGlobalValue(getMangledName(D)));
1113     if (!GV)
1114       GV = GetGlobalValue(getMangledName(D));
1115 
1116     // Check to see if we've already emitted this.  This is necessary
1117     // for a couple of reasons: first, decls can end up in the
1118     // deferred-decls queue multiple times, and second, decls can end
1119     // up with definitions in unusual ways (e.g. by an extern inline
1120     // function acquiring a strong function redefinition).  Just
1121     // ignore these cases.
1122     if (GV && !GV->isDeclaration())
1123       continue;
1124 
1125     // Otherwise, emit the definition and move on to the next one.
1126     EmitGlobalDefinition(D, GV);
1127 
1128     // If we found out that we need to emit more decls, do that recursively.
1129     // This has the advantage that the decls are emitted in a DFS and related
1130     // ones are close together, which is convenient for testing.
1131     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1132       EmitDeferred();
1133       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1134     }
1135   }
1136 }
1137 
1138 void CodeGenModule::EmitGlobalAnnotations() {
1139   if (Annotations.empty())
1140     return;
1141 
1142   // Create a new global variable for the ConstantStruct in the Module.
1143   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1144     Annotations[0]->getType(), Annotations.size()), Annotations);
1145   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1146                                       llvm::GlobalValue::AppendingLinkage,
1147                                       Array, "llvm.global.annotations");
1148   gv->setSection(AnnotationSection);
1149 }
1150 
1151 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1152   llvm::Constant *&AStr = AnnotationStrings[Str];
1153   if (AStr)
1154     return AStr;
1155 
1156   // Not found yet, create a new global.
1157   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1158   auto *gv =
1159       new llvm::GlobalVariable(getModule(), s->getType(), true,
1160                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1161   gv->setSection(AnnotationSection);
1162   gv->setUnnamedAddr(true);
1163   AStr = gv;
1164   return gv;
1165 }
1166 
1167 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1168   SourceManager &SM = getContext().getSourceManager();
1169   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1170   if (PLoc.isValid())
1171     return EmitAnnotationString(PLoc.getFilename());
1172   return EmitAnnotationString(SM.getBufferName(Loc));
1173 }
1174 
1175 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1176   SourceManager &SM = getContext().getSourceManager();
1177   PresumedLoc PLoc = SM.getPresumedLoc(L);
1178   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1179     SM.getExpansionLineNumber(L);
1180   return llvm::ConstantInt::get(Int32Ty, LineNo);
1181 }
1182 
1183 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1184                                                 const AnnotateAttr *AA,
1185                                                 SourceLocation L) {
1186   // Get the globals for file name, annotation, and the line number.
1187   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1188                  *UnitGV = EmitAnnotationUnit(L),
1189                  *LineNoCst = EmitAnnotationLineNo(L);
1190 
1191   // Create the ConstantStruct for the global annotation.
1192   llvm::Constant *Fields[4] = {
1193     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1194     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1195     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1196     LineNoCst
1197   };
1198   return llvm::ConstantStruct::getAnon(Fields);
1199 }
1200 
1201 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1202                                          llvm::GlobalValue *GV) {
1203   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1204   // Get the struct elements for these annotations.
1205   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1206     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1207 }
1208 
1209 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1210                                            SourceLocation Loc) const {
1211   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1212   // Blacklist by function name.
1213   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1214     return true;
1215   // Blacklist by location.
1216   if (!Loc.isInvalid())
1217     return SanitizerBL.isBlacklistedLocation(Loc);
1218   // If location is unknown, this may be a compiler-generated function. Assume
1219   // it's located in the main file.
1220   auto &SM = Context.getSourceManager();
1221   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1222     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1223   }
1224   return false;
1225 }
1226 
1227 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1228                                            SourceLocation Loc, QualType Ty,
1229                                            StringRef Category) const {
1230   // For now globals can be blacklisted only in ASan.
1231   if (!LangOpts.Sanitize.has(SanitizerKind::Address))
1232     return false;
1233   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1234   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1235     return true;
1236   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1237     return true;
1238   // Check global type.
1239   if (!Ty.isNull()) {
1240     // Drill down the array types: if global variable of a fixed type is
1241     // blacklisted, we also don't instrument arrays of them.
1242     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1243       Ty = AT->getElementType();
1244     Ty = Ty.getCanonicalType().getUnqualifiedType();
1245     // We allow to blacklist only record types (classes, structs etc.)
1246     if (Ty->isRecordType()) {
1247       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1248       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1249         return true;
1250     }
1251   }
1252   return false;
1253 }
1254 
1255 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1256   // Never defer when EmitAllDecls is specified.
1257   if (LangOpts.EmitAllDecls)
1258     return true;
1259 
1260   return getContext().DeclMustBeEmitted(Global);
1261 }
1262 
1263 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1264   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1265     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1266       // Implicit template instantiations may change linkage if they are later
1267       // explicitly instantiated, so they should not be emitted eagerly.
1268       return false;
1269 
1270   return true;
1271 }
1272 
1273 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1274     const CXXUuidofExpr* E) {
1275   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1276   // well-formed.
1277   StringRef Uuid = E->getUuidAsStringRef(Context);
1278   std::string Name = "_GUID_" + Uuid.lower();
1279   std::replace(Name.begin(), Name.end(), '-', '_');
1280 
1281   // Look for an existing global.
1282   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1283     return GV;
1284 
1285   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1286   assert(Init && "failed to initialize as constant");
1287 
1288   auto *GV = new llvm::GlobalVariable(
1289       getModule(), Init->getType(),
1290       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1291   if (supportsCOMDAT())
1292     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1293   return GV;
1294 }
1295 
1296 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1297   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1298   assert(AA && "No alias?");
1299 
1300   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1301 
1302   // See if there is already something with the target's name in the module.
1303   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1304   if (Entry) {
1305     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1306     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1307   }
1308 
1309   llvm::Constant *Aliasee;
1310   if (isa<llvm::FunctionType>(DeclTy))
1311     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1312                                       GlobalDecl(cast<FunctionDecl>(VD)),
1313                                       /*ForVTable=*/false);
1314   else
1315     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1316                                     llvm::PointerType::getUnqual(DeclTy),
1317                                     nullptr);
1318 
1319   auto *F = cast<llvm::GlobalValue>(Aliasee);
1320   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1321   WeakRefReferences.insert(F);
1322 
1323   return Aliasee;
1324 }
1325 
1326 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1327   const auto *Global = cast<ValueDecl>(GD.getDecl());
1328 
1329   // Weak references don't produce any output by themselves.
1330   if (Global->hasAttr<WeakRefAttr>())
1331     return;
1332 
1333   // If this is an alias definition (which otherwise looks like a declaration)
1334   // emit it now.
1335   if (Global->hasAttr<AliasAttr>())
1336     return EmitAliasDefinition(GD);
1337 
1338   // If this is CUDA, be selective about which declarations we emit.
1339   if (LangOpts.CUDA) {
1340     if (CodeGenOpts.CUDAIsDevice) {
1341       if (!Global->hasAttr<CUDADeviceAttr>() &&
1342           !Global->hasAttr<CUDAGlobalAttr>() &&
1343           !Global->hasAttr<CUDAConstantAttr>() &&
1344           !Global->hasAttr<CUDASharedAttr>())
1345         return;
1346     } else {
1347       if (!Global->hasAttr<CUDAHostAttr>() && (
1348             Global->hasAttr<CUDADeviceAttr>() ||
1349             Global->hasAttr<CUDAConstantAttr>() ||
1350             Global->hasAttr<CUDASharedAttr>()))
1351         return;
1352     }
1353   }
1354 
1355   // Ignore declarations, they will be emitted on their first use.
1356   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1357     // Forward declarations are emitted lazily on first use.
1358     if (!FD->doesThisDeclarationHaveABody()) {
1359       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1360         return;
1361 
1362       StringRef MangledName = getMangledName(GD);
1363 
1364       // Compute the function info and LLVM type.
1365       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1366       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1367 
1368       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1369                               /*DontDefer=*/false);
1370       return;
1371     }
1372   } else {
1373     const auto *VD = cast<VarDecl>(Global);
1374     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1375 
1376     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1377         !Context.isMSStaticDataMemberInlineDefinition(VD))
1378       return;
1379   }
1380 
1381   // Defer code generation to first use when possible, e.g. if this is an inline
1382   // function. If the global must always be emitted, do it eagerly if possible
1383   // to benefit from cache locality.
1384   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1385     // Emit the definition if it can't be deferred.
1386     EmitGlobalDefinition(GD);
1387     return;
1388   }
1389 
1390   // If we're deferring emission of a C++ variable with an
1391   // initializer, remember the order in which it appeared in the file.
1392   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1393       cast<VarDecl>(Global)->hasInit()) {
1394     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1395     CXXGlobalInits.push_back(nullptr);
1396   }
1397 
1398   StringRef MangledName = getMangledName(GD);
1399   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1400     // The value has already been used and should therefore be emitted.
1401     addDeferredDeclToEmit(GV, GD);
1402   } else if (MustBeEmitted(Global)) {
1403     // The value must be emitted, but cannot be emitted eagerly.
1404     assert(!MayBeEmittedEagerly(Global));
1405     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1406   } else {
1407     // Otherwise, remember that we saw a deferred decl with this name.  The
1408     // first use of the mangled name will cause it to move into
1409     // DeferredDeclsToEmit.
1410     DeferredDecls[MangledName] = GD;
1411   }
1412 }
1413 
1414 namespace {
1415   struct FunctionIsDirectlyRecursive :
1416     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1417     const StringRef Name;
1418     const Builtin::Context &BI;
1419     bool Result;
1420     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1421       Name(N), BI(C), Result(false) {
1422     }
1423     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1424 
1425     bool TraverseCallExpr(CallExpr *E) {
1426       const FunctionDecl *FD = E->getDirectCallee();
1427       if (!FD)
1428         return true;
1429       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1430       if (Attr && Name == Attr->getLabel()) {
1431         Result = true;
1432         return false;
1433       }
1434       unsigned BuiltinID = FD->getBuiltinID();
1435       if (!BuiltinID)
1436         return true;
1437       StringRef BuiltinName = BI.GetName(BuiltinID);
1438       if (BuiltinName.startswith("__builtin_") &&
1439           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1440         Result = true;
1441         return false;
1442       }
1443       return true;
1444     }
1445   };
1446 }
1447 
1448 // isTriviallyRecursive - Check if this function calls another
1449 // decl that, because of the asm attribute or the other decl being a builtin,
1450 // ends up pointing to itself.
1451 bool
1452 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1453   StringRef Name;
1454   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1455     // asm labels are a special kind of mangling we have to support.
1456     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1457     if (!Attr)
1458       return false;
1459     Name = Attr->getLabel();
1460   } else {
1461     Name = FD->getName();
1462   }
1463 
1464   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1465   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1466   return Walker.Result;
1467 }
1468 
1469 bool
1470 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1471   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1472     return true;
1473   const auto *F = cast<FunctionDecl>(GD.getDecl());
1474   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1475     return false;
1476   // PR9614. Avoid cases where the source code is lying to us. An available
1477   // externally function should have an equivalent function somewhere else,
1478   // but a function that calls itself is clearly not equivalent to the real
1479   // implementation.
1480   // This happens in glibc's btowc and in some configure checks.
1481   return !isTriviallyRecursive(F);
1482 }
1483 
1484 /// If the type for the method's class was generated by
1485 /// CGDebugInfo::createContextChain(), the cache contains only a
1486 /// limited DIType without any declarations. Since EmitFunctionStart()
1487 /// needs to find the canonical declaration for each method, we need
1488 /// to construct the complete type prior to emitting the method.
1489 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1490   if (!D->isInstance())
1491     return;
1492 
1493   if (CGDebugInfo *DI = getModuleDebugInfo())
1494     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1495       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1496       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1497     }
1498 }
1499 
1500 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1501   const auto *D = cast<ValueDecl>(GD.getDecl());
1502 
1503   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1504                                  Context.getSourceManager(),
1505                                  "Generating code for declaration");
1506 
1507   if (isa<FunctionDecl>(D)) {
1508     // At -O0, don't generate IR for functions with available_externally
1509     // linkage.
1510     if (!shouldEmitFunction(GD))
1511       return;
1512 
1513     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1514       CompleteDIClassType(Method);
1515       // Make sure to emit the definition(s) before we emit the thunks.
1516       // This is necessary for the generation of certain thunks.
1517       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1518         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1519       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1520         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1521       else
1522         EmitGlobalFunctionDefinition(GD, GV);
1523 
1524       if (Method->isVirtual())
1525         getVTables().EmitThunks(GD);
1526 
1527       return;
1528     }
1529 
1530     return EmitGlobalFunctionDefinition(GD, GV);
1531   }
1532 
1533   if (const auto *VD = dyn_cast<VarDecl>(D))
1534     return EmitGlobalVarDefinition(VD);
1535 
1536   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1537 }
1538 
1539 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1540 /// module, create and return an llvm Function with the specified type. If there
1541 /// is something in the module with the specified name, return it potentially
1542 /// bitcasted to the right type.
1543 ///
1544 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1545 /// to set the attributes on the function when it is first created.
1546 llvm::Constant *
1547 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1548                                        llvm::Type *Ty,
1549                                        GlobalDecl GD, bool ForVTable,
1550                                        bool DontDefer, bool IsThunk,
1551                                        llvm::AttributeSet ExtraAttrs) {
1552   const Decl *D = GD.getDecl();
1553 
1554   // Lookup the entry, lazily creating it if necessary.
1555   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1556   if (Entry) {
1557     if (WeakRefReferences.erase(Entry)) {
1558       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1559       if (FD && !FD->hasAttr<WeakAttr>())
1560         Entry->setLinkage(llvm::Function::ExternalLinkage);
1561     }
1562 
1563     // Handle dropped DLL attributes.
1564     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1565       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1566 
1567     if (Entry->getType()->getElementType() == Ty)
1568       return Entry;
1569 
1570     // Make sure the result is of the correct type.
1571     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1572   }
1573 
1574   // This function doesn't have a complete type (for example, the return
1575   // type is an incomplete struct). Use a fake type instead, and make
1576   // sure not to try to set attributes.
1577   bool IsIncompleteFunction = false;
1578 
1579   llvm::FunctionType *FTy;
1580   if (isa<llvm::FunctionType>(Ty)) {
1581     FTy = cast<llvm::FunctionType>(Ty);
1582   } else {
1583     FTy = llvm::FunctionType::get(VoidTy, false);
1584     IsIncompleteFunction = true;
1585   }
1586 
1587   llvm::Function *F = llvm::Function::Create(FTy,
1588                                              llvm::Function::ExternalLinkage,
1589                                              MangledName, &getModule());
1590   assert(F->getName() == MangledName && "name was uniqued!");
1591   if (D)
1592     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1593   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1594     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1595     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1596                      llvm::AttributeSet::get(VMContext,
1597                                              llvm::AttributeSet::FunctionIndex,
1598                                              B));
1599   }
1600 
1601   if (!DontDefer) {
1602     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1603     // each other bottoming out with the base dtor.  Therefore we emit non-base
1604     // dtors on usage, even if there is no dtor definition in the TU.
1605     if (D && isa<CXXDestructorDecl>(D) &&
1606         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1607                                            GD.getDtorType()))
1608       addDeferredDeclToEmit(F, GD);
1609 
1610     // This is the first use or definition of a mangled name.  If there is a
1611     // deferred decl with this name, remember that we need to emit it at the end
1612     // of the file.
1613     auto DDI = DeferredDecls.find(MangledName);
1614     if (DDI != DeferredDecls.end()) {
1615       // Move the potentially referenced deferred decl to the
1616       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1617       // don't need it anymore).
1618       addDeferredDeclToEmit(F, DDI->second);
1619       DeferredDecls.erase(DDI);
1620 
1621       // Otherwise, if this is a sized deallocation function, emit a weak
1622       // definition for it at the end of the translation unit (if allowed),
1623       // unless the sized deallocation function is aliased.
1624     } else if (D &&
1625                cast<FunctionDecl>(D)
1626                   ->getCorrespondingUnsizedGlobalDeallocationFunction() &&
1627                getLangOpts().DefaultSizedDelete &&
1628                !D->hasAttr<AliasAttr>()) {
1629       addDeferredDeclToEmit(F, GD);
1630 
1631       // Otherwise, there are cases we have to worry about where we're
1632       // using a declaration for which we must emit a definition but where
1633       // we might not find a top-level definition:
1634       //   - member functions defined inline in their classes
1635       //   - friend functions defined inline in some class
1636       //   - special member functions with implicit definitions
1637       // If we ever change our AST traversal to walk into class methods,
1638       // this will be unnecessary.
1639       //
1640       // We also don't emit a definition for a function if it's going to be an
1641       // entry in a vtable, unless it's already marked as used.
1642     } else if (getLangOpts().CPlusPlus && D) {
1643       // Look for a declaration that's lexically in a record.
1644       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1645            FD = FD->getPreviousDecl()) {
1646         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1647           if (FD->doesThisDeclarationHaveABody()) {
1648             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1649             break;
1650           }
1651         }
1652       }
1653     }
1654   }
1655 
1656   // Make sure the result is of the requested type.
1657   if (!IsIncompleteFunction) {
1658     assert(F->getType()->getElementType() == Ty);
1659     return F;
1660   }
1661 
1662   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1663   return llvm::ConstantExpr::getBitCast(F, PTy);
1664 }
1665 
1666 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1667 /// non-null, then this function will use the specified type if it has to
1668 /// create it (this occurs when we see a definition of the function).
1669 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1670                                                  llvm::Type *Ty,
1671                                                  bool ForVTable,
1672                                                  bool DontDefer) {
1673   // If there was no specific requested type, just convert it now.
1674   if (!Ty)
1675     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1676 
1677   StringRef MangledName = getMangledName(GD);
1678   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer);
1679 }
1680 
1681 /// CreateRuntimeFunction - Create a new runtime function with the specified
1682 /// type and name.
1683 llvm::Constant *
1684 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1685                                      StringRef Name,
1686                                      llvm::AttributeSet ExtraAttrs) {
1687   llvm::Constant *C =
1688       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1689                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1690   if (auto *F = dyn_cast<llvm::Function>(C))
1691     if (F->empty())
1692       F->setCallingConv(getRuntimeCC());
1693   return C;
1694 }
1695 
1696 /// CreateBuiltinFunction - Create a new builtin function with the specified
1697 /// type and name.
1698 llvm::Constant *
1699 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1700                                      StringRef Name,
1701                                      llvm::AttributeSet ExtraAttrs) {
1702   llvm::Constant *C =
1703       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1704                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1705   if (auto *F = dyn_cast<llvm::Function>(C))
1706     if (F->empty())
1707       F->setCallingConv(getBuiltinCC());
1708   return C;
1709 }
1710 
1711 /// isTypeConstant - Determine whether an object of this type can be emitted
1712 /// as a constant.
1713 ///
1714 /// If ExcludeCtor is true, the duration when the object's constructor runs
1715 /// will not be considered. The caller will need to verify that the object is
1716 /// not written to during its construction.
1717 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1718   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1719     return false;
1720 
1721   if (Context.getLangOpts().CPlusPlus) {
1722     if (const CXXRecordDecl *Record
1723           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1724       return ExcludeCtor && !Record->hasMutableFields() &&
1725              Record->hasTrivialDestructor();
1726   }
1727 
1728   return true;
1729 }
1730 
1731 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1732 /// create and return an llvm GlobalVariable with the specified type.  If there
1733 /// is something in the module with the specified name, return it potentially
1734 /// bitcasted to the right type.
1735 ///
1736 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1737 /// to set the attributes on the global when it is first created.
1738 llvm::Constant *
1739 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1740                                      llvm::PointerType *Ty,
1741                                      const VarDecl *D) {
1742   // Lookup the entry, lazily creating it if necessary.
1743   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1744   if (Entry) {
1745     if (WeakRefReferences.erase(Entry)) {
1746       if (D && !D->hasAttr<WeakAttr>())
1747         Entry->setLinkage(llvm::Function::ExternalLinkage);
1748     }
1749 
1750     // Handle dropped DLL attributes.
1751     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1752       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1753 
1754     if (Entry->getType() == Ty)
1755       return Entry;
1756 
1757     // Make sure the result is of the correct type.
1758     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
1759       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
1760 
1761     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1762   }
1763 
1764   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1765   auto *GV = new llvm::GlobalVariable(
1766       getModule(), Ty->getElementType(), false,
1767       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
1768       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1769 
1770   // This is the first use or definition of a mangled name.  If there is a
1771   // deferred decl with this name, remember that we need to emit it at the end
1772   // of the file.
1773   auto DDI = DeferredDecls.find(MangledName);
1774   if (DDI != DeferredDecls.end()) {
1775     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1776     // list, and remove it from DeferredDecls (since we don't need it anymore).
1777     addDeferredDeclToEmit(GV, DDI->second);
1778     DeferredDecls.erase(DDI);
1779   }
1780 
1781   // Handle things which are present even on external declarations.
1782   if (D) {
1783     // FIXME: This code is overly simple and should be merged with other global
1784     // handling.
1785     GV->setConstant(isTypeConstant(D->getType(), false));
1786 
1787     setLinkageAndVisibilityForGV(GV, D);
1788 
1789     if (D->getTLSKind()) {
1790       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1791         CXXThreadLocals.push_back(std::make_pair(D, GV));
1792       setTLSMode(GV, *D);
1793     }
1794 
1795     // If required by the ABI, treat declarations of static data members with
1796     // inline initializers as definitions.
1797     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
1798       EmitGlobalVarDefinition(D);
1799     }
1800 
1801     // Handle XCore specific ABI requirements.
1802     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
1803         D->getLanguageLinkage() == CLanguageLinkage &&
1804         D->getType().isConstant(Context) &&
1805         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
1806       GV->setSection(".cp.rodata");
1807   }
1808 
1809   if (AddrSpace != Ty->getAddressSpace())
1810     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
1811 
1812   return GV;
1813 }
1814 
1815 
1816 llvm::GlobalVariable *
1817 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1818                                       llvm::Type *Ty,
1819                                       llvm::GlobalValue::LinkageTypes Linkage) {
1820   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1821   llvm::GlobalVariable *OldGV = nullptr;
1822 
1823   if (GV) {
1824     // Check if the variable has the right type.
1825     if (GV->getType()->getElementType() == Ty)
1826       return GV;
1827 
1828     // Because C++ name mangling, the only way we can end up with an already
1829     // existing global with the same name is if it has been declared extern "C".
1830     assert(GV->isDeclaration() && "Declaration has wrong type!");
1831     OldGV = GV;
1832   }
1833 
1834   // Create a new variable.
1835   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1836                                 Linkage, nullptr, Name);
1837 
1838   if (OldGV) {
1839     // Replace occurrences of the old variable if needed.
1840     GV->takeName(OldGV);
1841 
1842     if (!OldGV->use_empty()) {
1843       llvm::Constant *NewPtrForOldDecl =
1844       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1845       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1846     }
1847 
1848     OldGV->eraseFromParent();
1849   }
1850 
1851   if (supportsCOMDAT() && GV->isWeakForLinker())
1852     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1853 
1854   return GV;
1855 }
1856 
1857 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1858 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1859 /// then it will be created with the specified type instead of whatever the
1860 /// normal requested type would be.
1861 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1862                                                   llvm::Type *Ty) {
1863   assert(D->hasGlobalStorage() && "Not a global variable");
1864   QualType ASTTy = D->getType();
1865   if (!Ty)
1866     Ty = getTypes().ConvertTypeForMem(ASTTy);
1867 
1868   llvm::PointerType *PTy =
1869     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1870 
1871   StringRef MangledName = getMangledName(D);
1872   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1873 }
1874 
1875 /// CreateRuntimeVariable - Create a new runtime global variable with the
1876 /// specified type and name.
1877 llvm::Constant *
1878 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1879                                      StringRef Name) {
1880   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
1881 }
1882 
1883 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1884   assert(!D->getInit() && "Cannot emit definite definitions here!");
1885 
1886   if (!MustBeEmitted(D)) {
1887     // If we have not seen a reference to this variable yet, place it
1888     // into the deferred declarations table to be emitted if needed
1889     // later.
1890     StringRef MangledName = getMangledName(D);
1891     if (!GetGlobalValue(MangledName)) {
1892       DeferredDecls[MangledName] = D;
1893       return;
1894     }
1895   }
1896 
1897   // The tentative definition is the only definition.
1898   EmitGlobalVarDefinition(D);
1899 }
1900 
1901 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1902     return Context.toCharUnitsFromBits(
1903       TheDataLayout.getTypeStoreSizeInBits(Ty));
1904 }
1905 
1906 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1907                                                  unsigned AddrSpace) {
1908   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1909     if (D->hasAttr<CUDAConstantAttr>())
1910       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1911     else if (D->hasAttr<CUDASharedAttr>())
1912       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1913     else
1914       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1915   }
1916 
1917   return AddrSpace;
1918 }
1919 
1920 template<typename SomeDecl>
1921 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1922                                                llvm::GlobalValue *GV) {
1923   if (!getLangOpts().CPlusPlus)
1924     return;
1925 
1926   // Must have 'used' attribute, or else inline assembly can't rely on
1927   // the name existing.
1928   if (!D->template hasAttr<UsedAttr>())
1929     return;
1930 
1931   // Must have internal linkage and an ordinary name.
1932   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1933     return;
1934 
1935   // Must be in an extern "C" context. Entities declared directly within
1936   // a record are not extern "C" even if the record is in such a context.
1937   const SomeDecl *First = D->getFirstDecl();
1938   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1939     return;
1940 
1941   // OK, this is an internal linkage entity inside an extern "C" linkage
1942   // specification. Make a note of that so we can give it the "expected"
1943   // mangled name if nothing else is using that name.
1944   std::pair<StaticExternCMap::iterator, bool> R =
1945       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1946 
1947   // If we have multiple internal linkage entities with the same name
1948   // in extern "C" regions, none of them gets that name.
1949   if (!R.second)
1950     R.first->second = nullptr;
1951 }
1952 
1953 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
1954   if (!CGM.supportsCOMDAT())
1955     return false;
1956 
1957   if (D.hasAttr<SelectAnyAttr>())
1958     return true;
1959 
1960   GVALinkage Linkage;
1961   if (auto *VD = dyn_cast<VarDecl>(&D))
1962     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
1963   else
1964     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
1965 
1966   switch (Linkage) {
1967   case GVA_Internal:
1968   case GVA_AvailableExternally:
1969   case GVA_StrongExternal:
1970     return false;
1971   case GVA_DiscardableODR:
1972   case GVA_StrongODR:
1973     return true;
1974   }
1975   llvm_unreachable("No such linkage");
1976 }
1977 
1978 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
1979                                           llvm::GlobalObject &GO) {
1980   if (!shouldBeInCOMDAT(*this, D))
1981     return;
1982   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
1983 }
1984 
1985 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1986   llvm::Constant *Init = nullptr;
1987   QualType ASTTy = D->getType();
1988   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1989   bool NeedsGlobalCtor = false;
1990   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1991 
1992   const VarDecl *InitDecl;
1993   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1994 
1995   if (!InitExpr) {
1996     // This is a tentative definition; tentative definitions are
1997     // implicitly initialized with { 0 }.
1998     //
1999     // Note that tentative definitions are only emitted at the end of
2000     // a translation unit, so they should never have incomplete
2001     // type. In addition, EmitTentativeDefinition makes sure that we
2002     // never attempt to emit a tentative definition if a real one
2003     // exists. A use may still exists, however, so we still may need
2004     // to do a RAUW.
2005     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2006     Init = EmitNullConstant(D->getType());
2007   } else {
2008     initializedGlobalDecl = GlobalDecl(D);
2009     Init = EmitConstantInit(*InitDecl);
2010 
2011     if (!Init) {
2012       QualType T = InitExpr->getType();
2013       if (D->getType()->isReferenceType())
2014         T = D->getType();
2015 
2016       if (getLangOpts().CPlusPlus) {
2017         Init = EmitNullConstant(T);
2018         NeedsGlobalCtor = true;
2019       } else {
2020         ErrorUnsupported(D, "static initializer");
2021         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2022       }
2023     } else {
2024       // We don't need an initializer, so remove the entry for the delayed
2025       // initializer position (just in case this entry was delayed) if we
2026       // also don't need to register a destructor.
2027       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2028         DelayedCXXInitPosition.erase(D);
2029     }
2030   }
2031 
2032   llvm::Type* InitType = Init->getType();
2033   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
2034 
2035   // Strip off a bitcast if we got one back.
2036   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2037     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2038            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2039            // All zero index gep.
2040            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2041     Entry = CE->getOperand(0);
2042   }
2043 
2044   // Entry is now either a Function or GlobalVariable.
2045   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2046 
2047   // We have a definition after a declaration with the wrong type.
2048   // We must make a new GlobalVariable* and update everything that used OldGV
2049   // (a declaration or tentative definition) with the new GlobalVariable*
2050   // (which will be a definition).
2051   //
2052   // This happens if there is a prototype for a global (e.g.
2053   // "extern int x[];") and then a definition of a different type (e.g.
2054   // "int x[10];"). This also happens when an initializer has a different type
2055   // from the type of the global (this happens with unions).
2056   if (!GV ||
2057       GV->getType()->getElementType() != InitType ||
2058       GV->getType()->getAddressSpace() !=
2059        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2060 
2061     // Move the old entry aside so that we'll create a new one.
2062     Entry->setName(StringRef());
2063 
2064     // Make a new global with the correct type, this is now guaranteed to work.
2065     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
2066 
2067     // Replace all uses of the old global with the new global
2068     llvm::Constant *NewPtrForOldDecl =
2069         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2070     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2071 
2072     // Erase the old global, since it is no longer used.
2073     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2074   }
2075 
2076   MaybeHandleStaticInExternC(D, GV);
2077 
2078   if (D->hasAttr<AnnotateAttr>())
2079     AddGlobalAnnotations(D, GV);
2080 
2081   GV->setInitializer(Init);
2082 
2083   // If it is safe to mark the global 'constant', do so now.
2084   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2085                   isTypeConstant(D->getType(), true));
2086 
2087   // If it is in a read-only section, mark it 'constant'.
2088   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2089     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2090     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2091       GV->setConstant(true);
2092   }
2093 
2094   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2095 
2096   // Set the llvm linkage type as appropriate.
2097   llvm::GlobalValue::LinkageTypes Linkage =
2098       getLLVMLinkageVarDefinition(D, GV->isConstant());
2099 
2100   // On Darwin, the backing variable for a C++11 thread_local variable always
2101   // has internal linkage; all accesses should just be calls to the
2102   // Itanium-specified entry point, which has the normal linkage of the
2103   // variable.
2104   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2105       Context.getTargetInfo().getTriple().isMacOSX())
2106     Linkage = llvm::GlobalValue::InternalLinkage;
2107 
2108   GV->setLinkage(Linkage);
2109   if (D->hasAttr<DLLImportAttr>())
2110     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2111   else if (D->hasAttr<DLLExportAttr>())
2112     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2113   else
2114     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2115 
2116   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2117     // common vars aren't constant even if declared const.
2118     GV->setConstant(false);
2119 
2120   setNonAliasAttributes(D, GV);
2121 
2122   if (D->getTLSKind() && !GV->isThreadLocal()) {
2123     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2124       CXXThreadLocals.push_back(std::make_pair(D, GV));
2125     setTLSMode(GV, *D);
2126   }
2127 
2128   maybeSetTrivialComdat(*D, *GV);
2129 
2130   // Emit the initializer function if necessary.
2131   if (NeedsGlobalCtor || NeedsGlobalDtor)
2132     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2133 
2134   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2135 
2136   // Emit global variable debug information.
2137   if (CGDebugInfo *DI = getModuleDebugInfo())
2138     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2139       DI->EmitGlobalVariable(GV, D);
2140 }
2141 
2142 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2143                                       const VarDecl *D, bool NoCommon) {
2144   // Don't give variables common linkage if -fno-common was specified unless it
2145   // was overridden by a NoCommon attribute.
2146   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2147     return true;
2148 
2149   // C11 6.9.2/2:
2150   //   A declaration of an identifier for an object that has file scope without
2151   //   an initializer, and without a storage-class specifier or with the
2152   //   storage-class specifier static, constitutes a tentative definition.
2153   if (D->getInit() || D->hasExternalStorage())
2154     return true;
2155 
2156   // A variable cannot be both common and exist in a section.
2157   if (D->hasAttr<SectionAttr>())
2158     return true;
2159 
2160   // Thread local vars aren't considered common linkage.
2161   if (D->getTLSKind())
2162     return true;
2163 
2164   // Tentative definitions marked with WeakImportAttr are true definitions.
2165   if (D->hasAttr<WeakImportAttr>())
2166     return true;
2167 
2168   // Declarations with a required alignment do not have common linakge in MSVC
2169   // mode.
2170   if (Context.getLangOpts().MSVCCompat) {
2171     if (D->hasAttr<AlignedAttr>())
2172       return true;
2173     QualType VarType = D->getType();
2174     if (Context.isAlignmentRequired(VarType))
2175       return true;
2176 
2177     if (const auto *RT = VarType->getAs<RecordType>()) {
2178       const RecordDecl *RD = RT->getDecl();
2179       for (const FieldDecl *FD : RD->fields()) {
2180         if (FD->isBitField())
2181           continue;
2182         if (FD->hasAttr<AlignedAttr>())
2183           return true;
2184         if (Context.isAlignmentRequired(FD->getType()))
2185           return true;
2186       }
2187     }
2188   }
2189 
2190   return false;
2191 }
2192 
2193 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2194     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2195   if (Linkage == GVA_Internal)
2196     return llvm::Function::InternalLinkage;
2197 
2198   if (D->hasAttr<WeakAttr>()) {
2199     if (IsConstantVariable)
2200       return llvm::GlobalVariable::WeakODRLinkage;
2201     else
2202       return llvm::GlobalVariable::WeakAnyLinkage;
2203   }
2204 
2205   // We are guaranteed to have a strong definition somewhere else,
2206   // so we can use available_externally linkage.
2207   if (Linkage == GVA_AvailableExternally)
2208     return llvm::Function::AvailableExternallyLinkage;
2209 
2210   // Note that Apple's kernel linker doesn't support symbol
2211   // coalescing, so we need to avoid linkonce and weak linkages there.
2212   // Normally, this means we just map to internal, but for explicit
2213   // instantiations we'll map to external.
2214 
2215   // In C++, the compiler has to emit a definition in every translation unit
2216   // that references the function.  We should use linkonce_odr because
2217   // a) if all references in this translation unit are optimized away, we
2218   // don't need to codegen it.  b) if the function persists, it needs to be
2219   // merged with other definitions. c) C++ has the ODR, so we know the
2220   // definition is dependable.
2221   if (Linkage == GVA_DiscardableODR)
2222     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2223                                             : llvm::Function::InternalLinkage;
2224 
2225   // An explicit instantiation of a template has weak linkage, since
2226   // explicit instantiations can occur in multiple translation units
2227   // and must all be equivalent. However, we are not allowed to
2228   // throw away these explicit instantiations.
2229   if (Linkage == GVA_StrongODR)
2230     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2231                                             : llvm::Function::ExternalLinkage;
2232 
2233   // C++ doesn't have tentative definitions and thus cannot have common
2234   // linkage.
2235   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2236       !isVarDeclStrongDefinition(Context, cast<VarDecl>(D),
2237                                  CodeGenOpts.NoCommon))
2238     return llvm::GlobalVariable::CommonLinkage;
2239 
2240   // selectany symbols are externally visible, so use weak instead of
2241   // linkonce.  MSVC optimizes away references to const selectany globals, so
2242   // all definitions should be the same and ODR linkage should be used.
2243   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2244   if (D->hasAttr<SelectAnyAttr>())
2245     return llvm::GlobalVariable::WeakODRLinkage;
2246 
2247   // Otherwise, we have strong external linkage.
2248   assert(Linkage == GVA_StrongExternal);
2249   return llvm::GlobalVariable::ExternalLinkage;
2250 }
2251 
2252 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2253     const VarDecl *VD, bool IsConstant) {
2254   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2255   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2256 }
2257 
2258 /// Replace the uses of a function that was declared with a non-proto type.
2259 /// We want to silently drop extra arguments from call sites
2260 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2261                                           llvm::Function *newFn) {
2262   // Fast path.
2263   if (old->use_empty()) return;
2264 
2265   llvm::Type *newRetTy = newFn->getReturnType();
2266   SmallVector<llvm::Value*, 4> newArgs;
2267 
2268   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2269          ui != ue; ) {
2270     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2271     llvm::User *user = use->getUser();
2272 
2273     // Recognize and replace uses of bitcasts.  Most calls to
2274     // unprototyped functions will use bitcasts.
2275     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2276       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2277         replaceUsesOfNonProtoConstant(bitcast, newFn);
2278       continue;
2279     }
2280 
2281     // Recognize calls to the function.
2282     llvm::CallSite callSite(user);
2283     if (!callSite) continue;
2284     if (!callSite.isCallee(&*use)) continue;
2285 
2286     // If the return types don't match exactly, then we can't
2287     // transform this call unless it's dead.
2288     if (callSite->getType() != newRetTy && !callSite->use_empty())
2289       continue;
2290 
2291     // Get the call site's attribute list.
2292     SmallVector<llvm::AttributeSet, 8> newAttrs;
2293     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2294 
2295     // Collect any return attributes from the call.
2296     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2297       newAttrs.push_back(
2298         llvm::AttributeSet::get(newFn->getContext(),
2299                                 oldAttrs.getRetAttributes()));
2300 
2301     // If the function was passed too few arguments, don't transform.
2302     unsigned newNumArgs = newFn->arg_size();
2303     if (callSite.arg_size() < newNumArgs) continue;
2304 
2305     // If extra arguments were passed, we silently drop them.
2306     // If any of the types mismatch, we don't transform.
2307     unsigned argNo = 0;
2308     bool dontTransform = false;
2309     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2310            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2311       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2312         dontTransform = true;
2313         break;
2314       }
2315 
2316       // Add any parameter attributes.
2317       if (oldAttrs.hasAttributes(argNo + 1))
2318         newAttrs.
2319           push_back(llvm::
2320                     AttributeSet::get(newFn->getContext(),
2321                                       oldAttrs.getParamAttributes(argNo + 1)));
2322     }
2323     if (dontTransform)
2324       continue;
2325 
2326     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2327       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2328                                                  oldAttrs.getFnAttributes()));
2329 
2330     // Okay, we can transform this.  Create the new call instruction and copy
2331     // over the required information.
2332     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2333 
2334     llvm::CallSite newCall;
2335     if (callSite.isCall()) {
2336       newCall = llvm::CallInst::Create(newFn, newArgs, "",
2337                                        callSite.getInstruction());
2338     } else {
2339       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2340       newCall = llvm::InvokeInst::Create(newFn,
2341                                          oldInvoke->getNormalDest(),
2342                                          oldInvoke->getUnwindDest(),
2343                                          newArgs, "",
2344                                          callSite.getInstruction());
2345     }
2346     newArgs.clear(); // for the next iteration
2347 
2348     if (!newCall->getType()->isVoidTy())
2349       newCall->takeName(callSite.getInstruction());
2350     newCall.setAttributes(
2351                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2352     newCall.setCallingConv(callSite.getCallingConv());
2353 
2354     // Finally, remove the old call, replacing any uses with the new one.
2355     if (!callSite->use_empty())
2356       callSite->replaceAllUsesWith(newCall.getInstruction());
2357 
2358     // Copy debug location attached to CI.
2359     if (!callSite->getDebugLoc().isUnknown())
2360       newCall->setDebugLoc(callSite->getDebugLoc());
2361     callSite->eraseFromParent();
2362   }
2363 }
2364 
2365 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2366 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2367 /// existing call uses of the old function in the module, this adjusts them to
2368 /// call the new function directly.
2369 ///
2370 /// This is not just a cleanup: the always_inline pass requires direct calls to
2371 /// functions to be able to inline them.  If there is a bitcast in the way, it
2372 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2373 /// run at -O0.
2374 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2375                                                       llvm::Function *NewFn) {
2376   // If we're redefining a global as a function, don't transform it.
2377   if (!isa<llvm::Function>(Old)) return;
2378 
2379   replaceUsesOfNonProtoConstant(Old, NewFn);
2380 }
2381 
2382 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2383   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2384   // If we have a definition, this might be a deferred decl. If the
2385   // instantiation is explicit, make sure we emit it at the end.
2386   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2387     GetAddrOfGlobalVar(VD);
2388 
2389   EmitTopLevelDecl(VD);
2390 }
2391 
2392 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2393                                                  llvm::GlobalValue *GV) {
2394   const auto *D = cast<FunctionDecl>(GD.getDecl());
2395 
2396   // Compute the function info and LLVM type.
2397   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2398   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2399 
2400   // Get or create the prototype for the function.
2401   if (!GV) {
2402     llvm::Constant *C =
2403         GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true);
2404 
2405     // Strip off a bitcast if we got one back.
2406     if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) {
2407       assert(CE->getOpcode() == llvm::Instruction::BitCast);
2408       GV = cast<llvm::GlobalValue>(CE->getOperand(0));
2409     } else {
2410       GV = cast<llvm::GlobalValue>(C);
2411     }
2412   }
2413 
2414   if (!GV->isDeclaration()) {
2415     getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name);
2416     GlobalDecl OldGD = Manglings.lookup(GV->getName());
2417     if (auto *Prev = OldGD.getDecl())
2418       getDiags().Report(Prev->getLocation(), diag::note_previous_definition);
2419     return;
2420   }
2421 
2422   if (GV->getType()->getElementType() != Ty) {
2423     // If the types mismatch then we have to rewrite the definition.
2424     assert(GV->isDeclaration() && "Shouldn't replace non-declaration");
2425 
2426     // F is the Function* for the one with the wrong type, we must make a new
2427     // Function* and update everything that used F (a declaration) with the new
2428     // Function* (which will be a definition).
2429     //
2430     // This happens if there is a prototype for a function
2431     // (e.g. "int f()") and then a definition of a different type
2432     // (e.g. "int f(int x)").  Move the old function aside so that it
2433     // doesn't interfere with GetAddrOfFunction.
2434     GV->setName(StringRef());
2435     auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2436 
2437     // This might be an implementation of a function without a
2438     // prototype, in which case, try to do special replacement of
2439     // calls which match the new prototype.  The really key thing here
2440     // is that we also potentially drop arguments from the call site
2441     // so as to make a direct call, which makes the inliner happier
2442     // and suppresses a number of optimizer warnings (!) about
2443     // dropping arguments.
2444     if (!GV->use_empty()) {
2445       ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn);
2446       GV->removeDeadConstantUsers();
2447     }
2448 
2449     // Replace uses of F with the Function we will endow with a body.
2450     if (!GV->use_empty()) {
2451       llvm::Constant *NewPtrForOldDecl =
2452           llvm::ConstantExpr::getBitCast(NewFn, GV->getType());
2453       GV->replaceAllUsesWith(NewPtrForOldDecl);
2454     }
2455 
2456     // Ok, delete the old function now, which is dead.
2457     GV->eraseFromParent();
2458 
2459     GV = NewFn;
2460   }
2461 
2462   // We need to set linkage and visibility on the function before
2463   // generating code for it because various parts of IR generation
2464   // want to propagate this information down (e.g. to local static
2465   // declarations).
2466   auto *Fn = cast<llvm::Function>(GV);
2467   setFunctionLinkage(GD, Fn);
2468   if (D->hasAttr<DLLImportAttr>())
2469     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2470   else if (D->hasAttr<DLLExportAttr>())
2471     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2472   else
2473     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2474 
2475   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2476   setGlobalVisibility(Fn, D);
2477 
2478   MaybeHandleStaticInExternC(D, Fn);
2479 
2480   maybeSetTrivialComdat(*D, *Fn);
2481 
2482   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2483 
2484   setFunctionDefinitionAttributes(D, Fn);
2485   SetLLVMFunctionAttributesForDefinition(D, Fn);
2486 
2487   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2488     AddGlobalCtor(Fn, CA->getPriority());
2489   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2490     AddGlobalDtor(Fn, DA->getPriority());
2491   if (D->hasAttr<AnnotateAttr>())
2492     AddGlobalAnnotations(D, Fn);
2493 }
2494 
2495 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2496   const auto *D = cast<ValueDecl>(GD.getDecl());
2497   const AliasAttr *AA = D->getAttr<AliasAttr>();
2498   assert(AA && "Not an alias?");
2499 
2500   StringRef MangledName = getMangledName(GD);
2501 
2502   // If there is a definition in the module, then it wins over the alias.
2503   // This is dubious, but allow it to be safe.  Just ignore the alias.
2504   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2505   if (Entry && !Entry->isDeclaration())
2506     return;
2507 
2508   Aliases.push_back(GD);
2509 
2510   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2511 
2512   // Create a reference to the named value.  This ensures that it is emitted
2513   // if a deferred decl.
2514   llvm::Constant *Aliasee;
2515   if (isa<llvm::FunctionType>(DeclTy))
2516     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2517                                       /*ForVTable=*/false);
2518   else
2519     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2520                                     llvm::PointerType::getUnqual(DeclTy),
2521                                     /*D=*/nullptr);
2522 
2523   // Create the new alias itself, but don't set a name yet.
2524   auto *GA = llvm::GlobalAlias::create(
2525       cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0,
2526       llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2527 
2528   if (Entry) {
2529     if (GA->getAliasee() == Entry) {
2530       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2531       return;
2532     }
2533 
2534     assert(Entry->isDeclaration());
2535 
2536     // If there is a declaration in the module, then we had an extern followed
2537     // by the alias, as in:
2538     //   extern int test6();
2539     //   ...
2540     //   int test6() __attribute__((alias("test7")));
2541     //
2542     // Remove it and replace uses of it with the alias.
2543     GA->takeName(Entry);
2544 
2545     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2546                                                           Entry->getType()));
2547     Entry->eraseFromParent();
2548   } else {
2549     GA->setName(MangledName);
2550   }
2551 
2552   // Set attributes which are particular to an alias; this is a
2553   // specialization of the attributes which may be set on a global
2554   // variable/function.
2555   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2556       D->isWeakImported()) {
2557     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2558   }
2559 
2560   if (const auto *VD = dyn_cast<VarDecl>(D))
2561     if (VD->getTLSKind())
2562       setTLSMode(GA, *VD);
2563 
2564   setAliasAttributes(D, GA);
2565 }
2566 
2567 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2568                                             ArrayRef<llvm::Type*> Tys) {
2569   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2570                                          Tys);
2571 }
2572 
2573 static llvm::StringMapEntry<llvm::Constant*> &
2574 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2575                          const StringLiteral *Literal,
2576                          bool TargetIsLSB,
2577                          bool &IsUTF16,
2578                          unsigned &StringLength) {
2579   StringRef String = Literal->getString();
2580   unsigned NumBytes = String.size();
2581 
2582   // Check for simple case.
2583   if (!Literal->containsNonAsciiOrNull()) {
2584     StringLength = NumBytes;
2585     return *Map.insert(std::make_pair(String, nullptr)).first;
2586   }
2587 
2588   // Otherwise, convert the UTF8 literals into a string of shorts.
2589   IsUTF16 = true;
2590 
2591   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2592   const UTF8 *FromPtr = (const UTF8 *)String.data();
2593   UTF16 *ToPtr = &ToBuf[0];
2594 
2595   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2596                            &ToPtr, ToPtr + NumBytes,
2597                            strictConversion);
2598 
2599   // ConvertUTF8toUTF16 returns the length in ToPtr.
2600   StringLength = ToPtr - &ToBuf[0];
2601 
2602   // Add an explicit null.
2603   *ToPtr = 0;
2604   return *Map.insert(std::make_pair(
2605                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2606                                    (StringLength + 1) * 2),
2607                          nullptr)).first;
2608 }
2609 
2610 static llvm::StringMapEntry<llvm::Constant*> &
2611 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2612                        const StringLiteral *Literal,
2613                        unsigned &StringLength) {
2614   StringRef String = Literal->getString();
2615   StringLength = String.size();
2616   return *Map.insert(std::make_pair(String, nullptr)).first;
2617 }
2618 
2619 llvm::Constant *
2620 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2621   unsigned StringLength = 0;
2622   bool isUTF16 = false;
2623   llvm::StringMapEntry<llvm::Constant*> &Entry =
2624     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2625                              getDataLayout().isLittleEndian(),
2626                              isUTF16, StringLength);
2627 
2628   if (auto *C = Entry.second)
2629     return C;
2630 
2631   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2632   llvm::Constant *Zeros[] = { Zero, Zero };
2633   llvm::Value *V;
2634 
2635   // If we don't already have it, get __CFConstantStringClassReference.
2636   if (!CFConstantStringClassRef) {
2637     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2638     Ty = llvm::ArrayType::get(Ty, 0);
2639     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2640                                            "__CFConstantStringClassReference");
2641     // Decay array -> ptr
2642     V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2643     CFConstantStringClassRef = V;
2644   }
2645   else
2646     V = CFConstantStringClassRef;
2647 
2648   QualType CFTy = getContext().getCFConstantStringType();
2649 
2650   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2651 
2652   llvm::Constant *Fields[4];
2653 
2654   // Class pointer.
2655   Fields[0] = cast<llvm::ConstantExpr>(V);
2656 
2657   // Flags.
2658   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2659   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2660     llvm::ConstantInt::get(Ty, 0x07C8);
2661 
2662   // String pointer.
2663   llvm::Constant *C = nullptr;
2664   if (isUTF16) {
2665     ArrayRef<uint16_t> Arr = llvm::makeArrayRef<uint16_t>(
2666         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2667         Entry.first().size() / 2);
2668     C = llvm::ConstantDataArray::get(VMContext, Arr);
2669   } else {
2670     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2671   }
2672 
2673   // Note: -fwritable-strings doesn't make the backing store strings of
2674   // CFStrings writable. (See <rdar://problem/10657500>)
2675   auto *GV =
2676       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2677                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2678   GV->setUnnamedAddr(true);
2679   // Don't enforce the target's minimum global alignment, since the only use
2680   // of the string is via this class initializer.
2681   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
2682   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
2683   // that changes the section it ends in, which surprises ld64.
2684   if (isUTF16) {
2685     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2686     GV->setAlignment(Align.getQuantity());
2687     GV->setSection("__TEXT,__ustring");
2688   } else {
2689     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2690     GV->setAlignment(Align.getQuantity());
2691     GV->setSection("__TEXT,__cstring,cstring_literals");
2692   }
2693 
2694   // String.
2695   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2696 
2697   if (isUTF16)
2698     // Cast the UTF16 string to the correct type.
2699     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2700 
2701   // String length.
2702   Ty = getTypes().ConvertType(getContext().LongTy);
2703   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2704 
2705   // The struct.
2706   C = llvm::ConstantStruct::get(STy, Fields);
2707   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2708                                 llvm::GlobalVariable::PrivateLinkage, C,
2709                                 "_unnamed_cfstring_");
2710   GV->setSection("__DATA,__cfstring");
2711   Entry.second = GV;
2712 
2713   return GV;
2714 }
2715 
2716 llvm::Constant *
2717 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2718   unsigned StringLength = 0;
2719   llvm::StringMapEntry<llvm::Constant*> &Entry =
2720     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2721 
2722   if (auto *C = Entry.second)
2723     return C;
2724 
2725   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2726   llvm::Constant *Zeros[] = { Zero, Zero };
2727   llvm::Value *V;
2728   // If we don't already have it, get _NSConstantStringClassReference.
2729   if (!ConstantStringClassRef) {
2730     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2731     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2732     llvm::Constant *GV;
2733     if (LangOpts.ObjCRuntime.isNonFragile()) {
2734       std::string str =
2735         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2736                             : "OBJC_CLASS_$_" + StringClass;
2737       GV = getObjCRuntime().GetClassGlobal(str);
2738       // Make sure the result is of the correct type.
2739       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2740       V = llvm::ConstantExpr::getBitCast(GV, PTy);
2741       ConstantStringClassRef = V;
2742     } else {
2743       std::string str =
2744         StringClass.empty() ? "_NSConstantStringClassReference"
2745                             : "_" + StringClass + "ClassReference";
2746       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2747       GV = CreateRuntimeVariable(PTy, str);
2748       // Decay array -> ptr
2749       V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2750       ConstantStringClassRef = V;
2751     }
2752   }
2753   else
2754     V = ConstantStringClassRef;
2755 
2756   if (!NSConstantStringType) {
2757     // Construct the type for a constant NSString.
2758     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
2759     D->startDefinition();
2760 
2761     QualType FieldTypes[3];
2762 
2763     // const int *isa;
2764     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2765     // const char *str;
2766     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2767     // unsigned int length;
2768     FieldTypes[2] = Context.UnsignedIntTy;
2769 
2770     // Create fields
2771     for (unsigned i = 0; i < 3; ++i) {
2772       FieldDecl *Field = FieldDecl::Create(Context, D,
2773                                            SourceLocation(),
2774                                            SourceLocation(), nullptr,
2775                                            FieldTypes[i], /*TInfo=*/nullptr,
2776                                            /*BitWidth=*/nullptr,
2777                                            /*Mutable=*/false,
2778                                            ICIS_NoInit);
2779       Field->setAccess(AS_public);
2780       D->addDecl(Field);
2781     }
2782 
2783     D->completeDefinition();
2784     QualType NSTy = Context.getTagDeclType(D);
2785     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2786   }
2787 
2788   llvm::Constant *Fields[3];
2789 
2790   // Class pointer.
2791   Fields[0] = cast<llvm::ConstantExpr>(V);
2792 
2793   // String pointer.
2794   llvm::Constant *C =
2795       llvm::ConstantDataArray::getString(VMContext, Entry.first());
2796 
2797   llvm::GlobalValue::LinkageTypes Linkage;
2798   bool isConstant;
2799   Linkage = llvm::GlobalValue::PrivateLinkage;
2800   isConstant = !LangOpts.WritableStrings;
2801 
2802   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
2803                                       Linkage, C, ".str");
2804   GV->setUnnamedAddr(true);
2805   // Don't enforce the target's minimum global alignment, since the only use
2806   // of the string is via this class initializer.
2807   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2808   GV->setAlignment(Align.getQuantity());
2809   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2810 
2811   // String length.
2812   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2813   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2814 
2815   // The struct.
2816   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2817   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2818                                 llvm::GlobalVariable::PrivateLinkage, C,
2819                                 "_unnamed_nsstring_");
2820   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2821   const char *NSStringNonFragileABISection =
2822       "__DATA,__objc_stringobj,regular,no_dead_strip";
2823   // FIXME. Fix section.
2824   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
2825                      ? NSStringNonFragileABISection
2826                      : NSStringSection);
2827   Entry.second = GV;
2828 
2829   return GV;
2830 }
2831 
2832 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2833   if (ObjCFastEnumerationStateType.isNull()) {
2834     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
2835     D->startDefinition();
2836 
2837     QualType FieldTypes[] = {
2838       Context.UnsignedLongTy,
2839       Context.getPointerType(Context.getObjCIdType()),
2840       Context.getPointerType(Context.UnsignedLongTy),
2841       Context.getConstantArrayType(Context.UnsignedLongTy,
2842                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2843     };
2844 
2845     for (size_t i = 0; i < 4; ++i) {
2846       FieldDecl *Field = FieldDecl::Create(Context,
2847                                            D,
2848                                            SourceLocation(),
2849                                            SourceLocation(), nullptr,
2850                                            FieldTypes[i], /*TInfo=*/nullptr,
2851                                            /*BitWidth=*/nullptr,
2852                                            /*Mutable=*/false,
2853                                            ICIS_NoInit);
2854       Field->setAccess(AS_public);
2855       D->addDecl(Field);
2856     }
2857 
2858     D->completeDefinition();
2859     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2860   }
2861 
2862   return ObjCFastEnumerationStateType;
2863 }
2864 
2865 llvm::Constant *
2866 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2867   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2868 
2869   // Don't emit it as the address of the string, emit the string data itself
2870   // as an inline array.
2871   if (E->getCharByteWidth() == 1) {
2872     SmallString<64> Str(E->getString());
2873 
2874     // Resize the string to the right size, which is indicated by its type.
2875     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2876     Str.resize(CAT->getSize().getZExtValue());
2877     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2878   }
2879 
2880   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2881   llvm::Type *ElemTy = AType->getElementType();
2882   unsigned NumElements = AType->getNumElements();
2883 
2884   // Wide strings have either 2-byte or 4-byte elements.
2885   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2886     SmallVector<uint16_t, 32> Elements;
2887     Elements.reserve(NumElements);
2888 
2889     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2890       Elements.push_back(E->getCodeUnit(i));
2891     Elements.resize(NumElements);
2892     return llvm::ConstantDataArray::get(VMContext, Elements);
2893   }
2894 
2895   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2896   SmallVector<uint32_t, 32> Elements;
2897   Elements.reserve(NumElements);
2898 
2899   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2900     Elements.push_back(E->getCodeUnit(i));
2901   Elements.resize(NumElements);
2902   return llvm::ConstantDataArray::get(VMContext, Elements);
2903 }
2904 
2905 static llvm::GlobalVariable *
2906 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
2907                       CodeGenModule &CGM, StringRef GlobalName,
2908                       unsigned Alignment) {
2909   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
2910   unsigned AddrSpace = 0;
2911   if (CGM.getLangOpts().OpenCL)
2912     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
2913 
2914   llvm::Module &M = CGM.getModule();
2915   // Create a global variable for this string
2916   auto *GV = new llvm::GlobalVariable(
2917       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
2918       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2919   GV->setAlignment(Alignment);
2920   GV->setUnnamedAddr(true);
2921   if (GV->isWeakForLinker()) {
2922     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
2923     GV->setComdat(M.getOrInsertComdat(GV->getName()));
2924   }
2925 
2926   return GV;
2927 }
2928 
2929 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2930 /// constant array for the given string literal.
2931 llvm::GlobalVariable *
2932 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
2933                                                   StringRef Name) {
2934   auto Alignment =
2935       getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity();
2936 
2937   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2938   llvm::GlobalVariable **Entry = nullptr;
2939   if (!LangOpts.WritableStrings) {
2940     Entry = &ConstantStringMap[C];
2941     if (auto GV = *Entry) {
2942       if (Alignment > GV->getAlignment())
2943         GV->setAlignment(Alignment);
2944       return GV;
2945     }
2946   }
2947 
2948   SmallString<256> MangledNameBuffer;
2949   StringRef GlobalVariableName;
2950   llvm::GlobalValue::LinkageTypes LT;
2951 
2952   // Mangle the string literal if the ABI allows for it.  However, we cannot
2953   // do this if  we are compiling with ASan or -fwritable-strings because they
2954   // rely on strings having normal linkage.
2955   if (!LangOpts.WritableStrings &&
2956       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
2957       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
2958     llvm::raw_svector_ostream Out(MangledNameBuffer);
2959     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
2960     Out.flush();
2961 
2962     LT = llvm::GlobalValue::LinkOnceODRLinkage;
2963     GlobalVariableName = MangledNameBuffer;
2964   } else {
2965     LT = llvm::GlobalValue::PrivateLinkage;
2966     GlobalVariableName = Name;
2967   }
2968 
2969   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
2970   if (Entry)
2971     *Entry = GV;
2972 
2973   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
2974                                   QualType());
2975   return GV;
2976 }
2977 
2978 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2979 /// array for the given ObjCEncodeExpr node.
2980 llvm::GlobalVariable *
2981 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2982   std::string Str;
2983   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2984 
2985   return GetAddrOfConstantCString(Str);
2986 }
2987 
2988 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
2989 /// the literal and a terminating '\0' character.
2990 /// The result has pointer to array type.
2991 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString(
2992     const std::string &Str, const char *GlobalName, unsigned Alignment) {
2993   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2994   if (Alignment == 0) {
2995     Alignment = getContext()
2996                     .getAlignOfGlobalVarInChars(getContext().CharTy)
2997                     .getQuantity();
2998   }
2999 
3000   llvm::Constant *C =
3001       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3002 
3003   // Don't share any string literals if strings aren't constant.
3004   llvm::GlobalVariable **Entry = nullptr;
3005   if (!LangOpts.WritableStrings) {
3006     Entry = &ConstantStringMap[C];
3007     if (auto GV = *Entry) {
3008       if (Alignment > GV->getAlignment())
3009         GV->setAlignment(Alignment);
3010       return GV;
3011     }
3012   }
3013 
3014   // Get the default prefix if a name wasn't specified.
3015   if (!GlobalName)
3016     GlobalName = ".str";
3017   // Create a global variable for this.
3018   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3019                                   GlobalName, Alignment);
3020   if (Entry)
3021     *Entry = GV;
3022   return GV;
3023 }
3024 
3025 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary(
3026     const MaterializeTemporaryExpr *E, const Expr *Init) {
3027   assert((E->getStorageDuration() == SD_Static ||
3028           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3029   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3030 
3031   // If we're not materializing a subobject of the temporary, keep the
3032   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3033   QualType MaterializedType = Init->getType();
3034   if (Init == E->GetTemporaryExpr())
3035     MaterializedType = E->getType();
3036 
3037   llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E];
3038   if (Slot)
3039     return Slot;
3040 
3041   // FIXME: If an externally-visible declaration extends multiple temporaries,
3042   // we need to give each temporary the same name in every translation unit (and
3043   // we also need to make the temporaries externally-visible).
3044   SmallString<256> Name;
3045   llvm::raw_svector_ostream Out(Name);
3046   getCXXABI().getMangleContext().mangleReferenceTemporary(
3047       VD, E->getManglingNumber(), Out);
3048   Out.flush();
3049 
3050   APValue *Value = nullptr;
3051   if (E->getStorageDuration() == SD_Static) {
3052     // We might have a cached constant initializer for this temporary. Note
3053     // that this might have a different value from the value computed by
3054     // evaluating the initializer if the surrounding constant expression
3055     // modifies the temporary.
3056     Value = getContext().getMaterializedTemporaryValue(E, false);
3057     if (Value && Value->isUninit())
3058       Value = nullptr;
3059   }
3060 
3061   // Try evaluating it now, it might have a constant initializer.
3062   Expr::EvalResult EvalResult;
3063   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3064       !EvalResult.hasSideEffects())
3065     Value = &EvalResult.Val;
3066 
3067   llvm::Constant *InitialValue = nullptr;
3068   bool Constant = false;
3069   llvm::Type *Type;
3070   if (Value) {
3071     // The temporary has a constant initializer, use it.
3072     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3073     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3074     Type = InitialValue->getType();
3075   } else {
3076     // No initializer, the initialization will be provided when we
3077     // initialize the declaration which performed lifetime extension.
3078     Type = getTypes().ConvertTypeForMem(MaterializedType);
3079   }
3080 
3081   // Create a global variable for this lifetime-extended temporary.
3082   llvm::GlobalValue::LinkageTypes Linkage =
3083       getLLVMLinkageVarDefinition(VD, Constant);
3084   // There is no need for this temporary to have global linkage if the global
3085   // variable has external linkage.
3086   if (Linkage == llvm::GlobalVariable::ExternalLinkage)
3087     Linkage = llvm::GlobalVariable::PrivateLinkage;
3088   unsigned AddrSpace = GetGlobalVarAddressSpace(
3089       VD, getContext().getTargetAddressSpace(MaterializedType));
3090   auto *GV = new llvm::GlobalVariable(
3091       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3092       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3093       AddrSpace);
3094   setGlobalVisibility(GV, VD);
3095   GV->setAlignment(
3096       getContext().getTypeAlignInChars(MaterializedType).getQuantity());
3097   if (VD->getTLSKind())
3098     setTLSMode(GV, *VD);
3099   Slot = GV;
3100   return GV;
3101 }
3102 
3103 /// EmitObjCPropertyImplementations - Emit information for synthesized
3104 /// properties for an implementation.
3105 void CodeGenModule::EmitObjCPropertyImplementations(const
3106                                                     ObjCImplementationDecl *D) {
3107   for (const auto *PID : D->property_impls()) {
3108     // Dynamic is just for type-checking.
3109     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3110       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3111 
3112       // Determine which methods need to be implemented, some may have
3113       // been overridden. Note that ::isPropertyAccessor is not the method
3114       // we want, that just indicates if the decl came from a
3115       // property. What we want to know is if the method is defined in
3116       // this implementation.
3117       if (!D->getInstanceMethod(PD->getGetterName()))
3118         CodeGenFunction(*this).GenerateObjCGetter(
3119                                  const_cast<ObjCImplementationDecl *>(D), PID);
3120       if (!PD->isReadOnly() &&
3121           !D->getInstanceMethod(PD->getSetterName()))
3122         CodeGenFunction(*this).GenerateObjCSetter(
3123                                  const_cast<ObjCImplementationDecl *>(D), PID);
3124     }
3125   }
3126 }
3127 
3128 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3129   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3130   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3131        ivar; ivar = ivar->getNextIvar())
3132     if (ivar->getType().isDestructedType())
3133       return true;
3134 
3135   return false;
3136 }
3137 
3138 static bool AllTrivialInitializers(CodeGenModule &CGM,
3139                                    ObjCImplementationDecl *D) {
3140   CodeGenFunction CGF(CGM);
3141   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3142        E = D->init_end(); B != E; ++B) {
3143     CXXCtorInitializer *CtorInitExp = *B;
3144     Expr *Init = CtorInitExp->getInit();
3145     if (!CGF.isTrivialInitializer(Init))
3146       return false;
3147   }
3148   return true;
3149 }
3150 
3151 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3152 /// for an implementation.
3153 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3154   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3155   if (needsDestructMethod(D)) {
3156     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3157     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3158     ObjCMethodDecl *DTORMethod =
3159       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3160                              cxxSelector, getContext().VoidTy, nullptr, D,
3161                              /*isInstance=*/true, /*isVariadic=*/false,
3162                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3163                              /*isDefined=*/false, ObjCMethodDecl::Required);
3164     D->addInstanceMethod(DTORMethod);
3165     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3166     D->setHasDestructors(true);
3167   }
3168 
3169   // If the implementation doesn't have any ivar initializers, we don't need
3170   // a .cxx_construct.
3171   if (D->getNumIvarInitializers() == 0 ||
3172       AllTrivialInitializers(*this, D))
3173     return;
3174 
3175   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3176   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3177   // The constructor returns 'self'.
3178   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3179                                                 D->getLocation(),
3180                                                 D->getLocation(),
3181                                                 cxxSelector,
3182                                                 getContext().getObjCIdType(),
3183                                                 nullptr, D, /*isInstance=*/true,
3184                                                 /*isVariadic=*/false,
3185                                                 /*isPropertyAccessor=*/true,
3186                                                 /*isImplicitlyDeclared=*/true,
3187                                                 /*isDefined=*/false,
3188                                                 ObjCMethodDecl::Required);
3189   D->addInstanceMethod(CTORMethod);
3190   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3191   D->setHasNonZeroConstructors(true);
3192 }
3193 
3194 /// EmitNamespace - Emit all declarations in a namespace.
3195 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3196   for (auto *I : ND->decls()) {
3197     if (const auto *VD = dyn_cast<VarDecl>(I))
3198       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3199           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3200         continue;
3201     EmitTopLevelDecl(I);
3202   }
3203 }
3204 
3205 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3206 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3207   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3208       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3209     ErrorUnsupported(LSD, "linkage spec");
3210     return;
3211   }
3212 
3213   for (auto *I : LSD->decls()) {
3214     // Meta-data for ObjC class includes references to implemented methods.
3215     // Generate class's method definitions first.
3216     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3217       for (auto *M : OID->methods())
3218         EmitTopLevelDecl(M);
3219     }
3220     EmitTopLevelDecl(I);
3221   }
3222 }
3223 
3224 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3225 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3226   // Ignore dependent declarations.
3227   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3228     return;
3229 
3230   switch (D->getKind()) {
3231   case Decl::CXXConversion:
3232   case Decl::CXXMethod:
3233   case Decl::Function:
3234     // Skip function templates
3235     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3236         cast<FunctionDecl>(D)->isLateTemplateParsed())
3237       return;
3238 
3239     EmitGlobal(cast<FunctionDecl>(D));
3240     // Always provide some coverage mapping
3241     // even for the functions that aren't emitted.
3242     AddDeferredUnusedCoverageMapping(D);
3243     break;
3244 
3245   case Decl::Var:
3246     // Skip variable templates
3247     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3248       return;
3249   case Decl::VarTemplateSpecialization:
3250     EmitGlobal(cast<VarDecl>(D));
3251     break;
3252 
3253   // Indirect fields from global anonymous structs and unions can be
3254   // ignored; only the actual variable requires IR gen support.
3255   case Decl::IndirectField:
3256     break;
3257 
3258   // C++ Decls
3259   case Decl::Namespace:
3260     EmitNamespace(cast<NamespaceDecl>(D));
3261     break;
3262     // No code generation needed.
3263   case Decl::UsingShadow:
3264   case Decl::ClassTemplate:
3265   case Decl::VarTemplate:
3266   case Decl::VarTemplatePartialSpecialization:
3267   case Decl::FunctionTemplate:
3268   case Decl::TypeAliasTemplate:
3269   case Decl::Block:
3270   case Decl::Empty:
3271     break;
3272   case Decl::Using:          // using X; [C++]
3273     if (CGDebugInfo *DI = getModuleDebugInfo())
3274         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3275     return;
3276   case Decl::NamespaceAlias:
3277     if (CGDebugInfo *DI = getModuleDebugInfo())
3278         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3279     return;
3280   case Decl::UsingDirective: // using namespace X; [C++]
3281     if (CGDebugInfo *DI = getModuleDebugInfo())
3282       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3283     return;
3284   case Decl::CXXConstructor:
3285     // Skip function templates
3286     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3287         cast<FunctionDecl>(D)->isLateTemplateParsed())
3288       return;
3289 
3290     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3291     break;
3292   case Decl::CXXDestructor:
3293     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3294       return;
3295     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3296     break;
3297 
3298   case Decl::StaticAssert:
3299     // Nothing to do.
3300     break;
3301 
3302   // Objective-C Decls
3303 
3304   // Forward declarations, no (immediate) code generation.
3305   case Decl::ObjCInterface:
3306   case Decl::ObjCCategory:
3307     break;
3308 
3309   case Decl::ObjCProtocol: {
3310     auto *Proto = cast<ObjCProtocolDecl>(D);
3311     if (Proto->isThisDeclarationADefinition())
3312       ObjCRuntime->GenerateProtocol(Proto);
3313     break;
3314   }
3315 
3316   case Decl::ObjCCategoryImpl:
3317     // Categories have properties but don't support synthesize so we
3318     // can ignore them here.
3319     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3320     break;
3321 
3322   case Decl::ObjCImplementation: {
3323     auto *OMD = cast<ObjCImplementationDecl>(D);
3324     EmitObjCPropertyImplementations(OMD);
3325     EmitObjCIvarInitializations(OMD);
3326     ObjCRuntime->GenerateClass(OMD);
3327     // Emit global variable debug information.
3328     if (CGDebugInfo *DI = getModuleDebugInfo())
3329       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3330         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3331             OMD->getClassInterface()), OMD->getLocation());
3332     break;
3333   }
3334   case Decl::ObjCMethod: {
3335     auto *OMD = cast<ObjCMethodDecl>(D);
3336     // If this is not a prototype, emit the body.
3337     if (OMD->getBody())
3338       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3339     break;
3340   }
3341   case Decl::ObjCCompatibleAlias:
3342     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3343     break;
3344 
3345   case Decl::LinkageSpec:
3346     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3347     break;
3348 
3349   case Decl::FileScopeAsm: {
3350     auto *AD = cast<FileScopeAsmDecl>(D);
3351     StringRef AsmString = AD->getAsmString()->getString();
3352 
3353     const std::string &S = getModule().getModuleInlineAsm();
3354     if (S.empty())
3355       getModule().setModuleInlineAsm(AsmString);
3356     else if (S.end()[-1] == '\n')
3357       getModule().setModuleInlineAsm(S + AsmString.str());
3358     else
3359       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
3360     break;
3361   }
3362 
3363   case Decl::Import: {
3364     auto *Import = cast<ImportDecl>(D);
3365 
3366     // Ignore import declarations that come from imported modules.
3367     if (clang::Module *Owner = Import->getOwningModule()) {
3368       if (getLangOpts().CurrentModule.empty() ||
3369           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
3370         break;
3371     }
3372 
3373     ImportedModules.insert(Import->getImportedModule());
3374     break;
3375   }
3376 
3377   case Decl::OMPThreadPrivate:
3378     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3379     break;
3380 
3381   case Decl::ClassTemplateSpecialization: {
3382     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3383     if (DebugInfo &&
3384         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3385         Spec->hasDefinition())
3386       DebugInfo->completeTemplateDefinition(*Spec);
3387     break;
3388   }
3389 
3390   default:
3391     // Make sure we handled everything we should, every other kind is a
3392     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3393     // function. Need to recode Decl::Kind to do that easily.
3394     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3395     break;
3396   }
3397 }
3398 
3399 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3400   // Do we need to generate coverage mapping?
3401   if (!CodeGenOpts.CoverageMapping)
3402     return;
3403   switch (D->getKind()) {
3404   case Decl::CXXConversion:
3405   case Decl::CXXMethod:
3406   case Decl::Function:
3407   case Decl::ObjCMethod:
3408   case Decl::CXXConstructor:
3409   case Decl::CXXDestructor: {
3410     if (!cast<FunctionDecl>(D)->hasBody())
3411       return;
3412     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3413     if (I == DeferredEmptyCoverageMappingDecls.end())
3414       DeferredEmptyCoverageMappingDecls[D] = true;
3415     break;
3416   }
3417   default:
3418     break;
3419   };
3420 }
3421 
3422 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3423   // Do we need to generate coverage mapping?
3424   if (!CodeGenOpts.CoverageMapping)
3425     return;
3426   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3427     if (Fn->isTemplateInstantiation())
3428       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3429   }
3430   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3431   if (I == DeferredEmptyCoverageMappingDecls.end())
3432     DeferredEmptyCoverageMappingDecls[D] = false;
3433   else
3434     I->second = false;
3435 }
3436 
3437 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3438   std::vector<const Decl *> DeferredDecls;
3439   for (const auto I : DeferredEmptyCoverageMappingDecls) {
3440     if (!I.second)
3441       continue;
3442     DeferredDecls.push_back(I.first);
3443   }
3444   // Sort the declarations by their location to make sure that the tests get a
3445   // predictable order for the coverage mapping for the unused declarations.
3446   if (CodeGenOpts.DumpCoverageMapping)
3447     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3448               [] (const Decl *LHS, const Decl *RHS) {
3449       return LHS->getLocStart() < RHS->getLocStart();
3450     });
3451   for (const auto *D : DeferredDecls) {
3452     switch (D->getKind()) {
3453     case Decl::CXXConversion:
3454     case Decl::CXXMethod:
3455     case Decl::Function:
3456     case Decl::ObjCMethod: {
3457       CodeGenPGO PGO(*this);
3458       GlobalDecl GD(cast<FunctionDecl>(D));
3459       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3460                                   getFunctionLinkage(GD));
3461       break;
3462     }
3463     case Decl::CXXConstructor: {
3464       CodeGenPGO PGO(*this);
3465       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3466       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3467                                   getFunctionLinkage(GD));
3468       break;
3469     }
3470     case Decl::CXXDestructor: {
3471       CodeGenPGO PGO(*this);
3472       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3473       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3474                                   getFunctionLinkage(GD));
3475       break;
3476     }
3477     default:
3478       break;
3479     };
3480   }
3481 }
3482 
3483 /// Turns the given pointer into a constant.
3484 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3485                                           const void *Ptr) {
3486   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3487   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3488   return llvm::ConstantInt::get(i64, PtrInt);
3489 }
3490 
3491 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3492                                    llvm::NamedMDNode *&GlobalMetadata,
3493                                    GlobalDecl D,
3494                                    llvm::GlobalValue *Addr) {
3495   if (!GlobalMetadata)
3496     GlobalMetadata =
3497       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3498 
3499   // TODO: should we report variant information for ctors/dtors?
3500   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3501                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3502                                CGM.getLLVMContext(), D.getDecl()))};
3503   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3504 }
3505 
3506 /// For each function which is declared within an extern "C" region and marked
3507 /// as 'used', but has internal linkage, create an alias from the unmangled
3508 /// name to the mangled name if possible. People expect to be able to refer
3509 /// to such functions with an unmangled name from inline assembly within the
3510 /// same translation unit.
3511 void CodeGenModule::EmitStaticExternCAliases() {
3512   for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3513                                   E = StaticExternCValues.end();
3514        I != E; ++I) {
3515     IdentifierInfo *Name = I->first;
3516     llvm::GlobalValue *Val = I->second;
3517     if (Val && !getModule().getNamedValue(Name->getName()))
3518       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3519   }
3520 }
3521 
3522 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3523                                              GlobalDecl &Result) const {
3524   auto Res = Manglings.find(MangledName);
3525   if (Res == Manglings.end())
3526     return false;
3527   Result = Res->getValue();
3528   return true;
3529 }
3530 
3531 /// Emits metadata nodes associating all the global values in the
3532 /// current module with the Decls they came from.  This is useful for
3533 /// projects using IR gen as a subroutine.
3534 ///
3535 /// Since there's currently no way to associate an MDNode directly
3536 /// with an llvm::GlobalValue, we create a global named metadata
3537 /// with the name 'clang.global.decl.ptrs'.
3538 void CodeGenModule::EmitDeclMetadata() {
3539   llvm::NamedMDNode *GlobalMetadata = nullptr;
3540 
3541   // StaticLocalDeclMap
3542   for (auto &I : MangledDeclNames) {
3543     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3544     EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3545   }
3546 }
3547 
3548 /// Emits metadata nodes for all the local variables in the current
3549 /// function.
3550 void CodeGenFunction::EmitDeclMetadata() {
3551   if (LocalDeclMap.empty()) return;
3552 
3553   llvm::LLVMContext &Context = getLLVMContext();
3554 
3555   // Find the unique metadata ID for this name.
3556   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3557 
3558   llvm::NamedMDNode *GlobalMetadata = nullptr;
3559 
3560   for (auto &I : LocalDeclMap) {
3561     const Decl *D = I.first;
3562     llvm::Value *Addr = I.second;
3563     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3564       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3565       Alloca->setMetadata(
3566           DeclPtrKind, llvm::MDNode::get(
3567                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3568     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3569       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3570       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3571     }
3572   }
3573 }
3574 
3575 void CodeGenModule::EmitVersionIdentMetadata() {
3576   llvm::NamedMDNode *IdentMetadata =
3577     TheModule.getOrInsertNamedMetadata("llvm.ident");
3578   std::string Version = getClangFullVersion();
3579   llvm::LLVMContext &Ctx = TheModule.getContext();
3580 
3581   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3582   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3583 }
3584 
3585 void CodeGenModule::EmitTargetMetadata() {
3586   // Warning, new MangledDeclNames may be appended within this loop.
3587   // We rely on MapVector insertions adding new elements to the end
3588   // of the container.
3589   // FIXME: Move this loop into the one target that needs it, and only
3590   // loop over those declarations for which we couldn't emit the target
3591   // metadata when we emitted the declaration.
3592   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3593     auto Val = *(MangledDeclNames.begin() + I);
3594     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3595     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3596     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3597   }
3598 }
3599 
3600 void CodeGenModule::EmitCoverageFile() {
3601   if (!getCodeGenOpts().CoverageFile.empty()) {
3602     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3603       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3604       llvm::LLVMContext &Ctx = TheModule.getContext();
3605       llvm::MDString *CoverageFile =
3606           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3607       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3608         llvm::MDNode *CU = CUNode->getOperand(i);
3609         llvm::Metadata *Elts[] = {CoverageFile, CU};
3610         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3611       }
3612     }
3613   }
3614 }
3615 
3616 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3617   // Sema has checked that all uuid strings are of the form
3618   // "12345678-1234-1234-1234-1234567890ab".
3619   assert(Uuid.size() == 36);
3620   for (unsigned i = 0; i < 36; ++i) {
3621     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3622     else                                         assert(isHexDigit(Uuid[i]));
3623   }
3624 
3625   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3626   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3627 
3628   llvm::Constant *Field3[8];
3629   for (unsigned Idx = 0; Idx < 8; ++Idx)
3630     Field3[Idx] = llvm::ConstantInt::get(
3631         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3632 
3633   llvm::Constant *Fields[4] = {
3634     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3635     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3636     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3637     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3638   };
3639 
3640   return llvm::ConstantStruct::getAnon(Fields);
3641 }
3642 
3643 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3644                                                        bool ForEH) {
3645   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3646   // FIXME: should we even be calling this method if RTTI is disabled
3647   // and it's not for EH?
3648   if (!ForEH && !getLangOpts().RTTI)
3649     return llvm::Constant::getNullValue(Int8PtrTy);
3650 
3651   if (ForEH && Ty->isObjCObjectPointerType() &&
3652       LangOpts.ObjCRuntime.isGNUFamily())
3653     return ObjCRuntime->GetEHType(Ty);
3654 
3655   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3656 }
3657 
3658 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3659   for (auto RefExpr : D->varlists()) {
3660     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3661     bool PerformInit =
3662         VD->getAnyInitializer() &&
3663         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3664                                                         /*ForRef=*/false);
3665     if (auto InitFunction =
3666             getOpenMPRuntime().EmitOMPThreadPrivateVarDefinition(
3667                 VD, GetAddrOfGlobalVar(VD), RefExpr->getLocStart(),
3668                 PerformInit))
3669       CXXGlobalInits.push_back(InitFunction);
3670   }
3671 }
3672 
3673