1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCXXABI.h" 20 #include "CGObjCRuntime.h" 21 #include "Mangle.h" 22 #include "TargetInfo.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/CharUnits.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/DeclTemplate.h" 29 #include "clang/AST/RecordLayout.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/Diagnostic.h" 32 #include "clang/Basic/SourceManager.h" 33 #include "clang/Basic/TargetInfo.h" 34 #include "clang/Basic/ConvertUTF.h" 35 #include "llvm/CallingConv.h" 36 #include "llvm/Module.h" 37 #include "llvm/Intrinsics.h" 38 #include "llvm/LLVMContext.h" 39 #include "llvm/ADT/Triple.h" 40 #include "llvm/Target/TargetData.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/ErrorHandling.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 47 switch (CGM.getContext().Target.getCXXABI()) { 48 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 49 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 50 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 51 } 52 53 llvm_unreachable("invalid C++ ABI kind"); 54 return *CreateItaniumCXXABI(CGM); 55 } 56 57 58 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 59 llvm::Module &M, const llvm::TargetData &TD, 60 Diagnostic &diags) 61 : BlockModule(C, M, TD, Types, *this), Context(C), 62 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 63 TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), 64 ABI(createCXXABI(*this)), 65 Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI), 66 TBAA(0), 67 VTables(*this), Runtime(0), 68 CFConstantStringClassRef(0), NSConstantStringClassRef(0), 69 VMContext(M.getContext()), 70 NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0), 71 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 72 BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0), 73 BlockObjectAssign(0), BlockObjectDispose(0){ 74 75 if (!Features.ObjC1) 76 Runtime = 0; 77 else if (!Features.NeXTRuntime) 78 Runtime = CreateGNUObjCRuntime(*this); 79 else if (Features.ObjCNonFragileABI) 80 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 81 else 82 Runtime = CreateMacObjCRuntime(*this); 83 84 // Enable TBAA unless it's suppressed. 85 if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0) 86 TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions()); 87 88 // If debug info generation is enabled, create the CGDebugInfo object. 89 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 90 } 91 92 CodeGenModule::~CodeGenModule() { 93 delete Runtime; 94 delete &ABI; 95 delete TBAA; 96 delete DebugInfo; 97 } 98 99 void CodeGenModule::createObjCRuntime() { 100 if (!Features.NeXTRuntime) 101 Runtime = CreateGNUObjCRuntime(*this); 102 else if (Features.ObjCNonFragileABI) 103 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 104 else 105 Runtime = CreateMacObjCRuntime(*this); 106 } 107 108 void CodeGenModule::Release() { 109 EmitDeferred(); 110 EmitCXXGlobalInitFunc(); 111 EmitCXXGlobalDtorFunc(); 112 if (Runtime) 113 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 114 AddGlobalCtor(ObjCInitFunction); 115 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 116 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 117 EmitAnnotations(); 118 EmitLLVMUsed(); 119 120 SimplifyPersonality(); 121 122 if (getCodeGenOpts().EmitDeclMetadata) 123 EmitDeclMetadata(); 124 } 125 126 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 127 if (!TBAA) 128 return 0; 129 return TBAA->getTBAAInfo(QTy); 130 } 131 132 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 133 llvm::MDNode *TBAAInfo) { 134 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 135 } 136 137 bool CodeGenModule::isTargetDarwin() const { 138 return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; 139 } 140 141 /// ErrorUnsupported - Print out an error that codegen doesn't support the 142 /// specified stmt yet. 143 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 144 bool OmitOnError) { 145 if (OmitOnError && getDiags().hasErrorOccurred()) 146 return; 147 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 148 "cannot compile this %0 yet"); 149 std::string Msg = Type; 150 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 151 << Msg << S->getSourceRange(); 152 } 153 154 /// ErrorUnsupported - Print out an error that codegen doesn't support the 155 /// specified decl yet. 156 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 157 bool OmitOnError) { 158 if (OmitOnError && getDiags().hasErrorOccurred()) 159 return; 160 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 161 "cannot compile this %0 yet"); 162 std::string Msg = Type; 163 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 164 } 165 166 LangOptions::VisibilityMode 167 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 168 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 169 if (VD->getStorageClass() == SC_PrivateExtern) 170 return LangOptions::Hidden; 171 172 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 173 switch (attr->getVisibility()) { 174 default: assert(0 && "Unknown visibility!"); 175 case VisibilityAttr::Default: 176 return LangOptions::Default; 177 case VisibilityAttr::Hidden: 178 return LangOptions::Hidden; 179 case VisibilityAttr::Protected: 180 return LangOptions::Protected; 181 } 182 } 183 184 if (getLangOptions().CPlusPlus) { 185 // Entities subject to an explicit instantiation declaration get default 186 // visibility. 187 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 188 if (Function->getTemplateSpecializationKind() 189 == TSK_ExplicitInstantiationDeclaration) 190 return LangOptions::Default; 191 } else if (const ClassTemplateSpecializationDecl *ClassSpec 192 = dyn_cast<ClassTemplateSpecializationDecl>(D)) { 193 if (ClassSpec->getSpecializationKind() 194 == TSK_ExplicitInstantiationDeclaration) 195 return LangOptions::Default; 196 } else if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { 197 if (Record->getTemplateSpecializationKind() 198 == TSK_ExplicitInstantiationDeclaration) 199 return LangOptions::Default; 200 } else if (const VarDecl *Var = dyn_cast<VarDecl>(D)) { 201 if (Var->isStaticDataMember() && 202 (Var->getTemplateSpecializationKind() 203 == TSK_ExplicitInstantiationDeclaration)) 204 return LangOptions::Default; 205 } 206 207 // If -fvisibility-inlines-hidden was provided, then inline C++ member 208 // functions get "hidden" visibility by default. 209 if (getLangOptions().InlineVisibilityHidden) 210 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) 211 if (Method->isInlined()) 212 return LangOptions::Hidden; 213 } 214 215 // If this decl is contained in a class, it should have the same visibility 216 // as the parent class. 217 if (const DeclContext *DC = D->getDeclContext()) 218 if (DC->isRecord()) 219 return getDeclVisibilityMode(cast<Decl>(DC)); 220 221 return getLangOptions().getVisibilityMode(); 222 } 223 224 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 225 const Decl *D) const { 226 // Internal definitions always have default visibility. 227 if (GV->hasLocalLinkage()) { 228 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 229 return; 230 } 231 232 switch (getDeclVisibilityMode(D)) { 233 default: assert(0 && "Unknown visibility!"); 234 case LangOptions::Default: 235 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 236 case LangOptions::Hidden: 237 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 238 case LangOptions::Protected: 239 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 240 } 241 } 242 243 /// Set the symbol visibility of type information (vtable and RTTI) 244 /// associated with the given type. 245 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 246 const CXXRecordDecl *RD, 247 bool IsForRTTI) const { 248 setGlobalVisibility(GV, RD); 249 250 if (!CodeGenOpts.HiddenWeakVTables) 251 return; 252 253 // We want to drop the visibility to hidden for weak type symbols. 254 // This isn't possible if there might be unresolved references 255 // elsewhere that rely on this symbol being visible. 256 257 // This should be kept roughly in sync with setThunkVisibility 258 // in CGVTables.cpp. 259 260 // Preconditions. 261 if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage || 262 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 263 return; 264 265 // Don't override an explicit visibility attribute. 266 if (RD->hasAttr<VisibilityAttr>()) 267 return; 268 269 switch (RD->getTemplateSpecializationKind()) { 270 // We have to disable the optimization if this is an EI definition 271 // because there might be EI declarations in other shared objects. 272 case TSK_ExplicitInstantiationDefinition: 273 case TSK_ExplicitInstantiationDeclaration: 274 return; 275 276 // Every use of a non-template class's type information has to emit it. 277 case TSK_Undeclared: 278 break; 279 280 // In theory, implicit instantiations can ignore the possibility of 281 // an explicit instantiation declaration because there necessarily 282 // must be an EI definition somewhere with default visibility. In 283 // practice, it's possible to have an explicit instantiation for 284 // an arbitrary template class, and linkers aren't necessarily able 285 // to deal with mixed-visibility symbols. 286 case TSK_ExplicitSpecialization: 287 case TSK_ImplicitInstantiation: 288 if (!CodeGenOpts.HiddenWeakTemplateVTables) 289 return; 290 break; 291 } 292 293 // If there's a key function, there may be translation units 294 // that don't have the key function's definition. But ignore 295 // this if we're emitting RTTI under -fno-rtti. 296 if (!IsForRTTI || Features.RTTI) 297 if (Context.getKeyFunction(RD)) 298 return; 299 300 // Otherwise, drop the visibility to hidden. 301 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 302 } 303 304 llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 305 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 306 307 llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 308 if (!Str.empty()) 309 return Str; 310 311 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 312 IdentifierInfo *II = ND->getIdentifier(); 313 assert(II && "Attempt to mangle unnamed decl."); 314 315 Str = II->getName(); 316 return Str; 317 } 318 319 llvm::SmallString<256> Buffer; 320 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 321 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer); 322 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 323 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer); 324 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 325 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer); 326 else 327 getCXXABI().getMangleContext().mangleName(ND, Buffer); 328 329 // Allocate space for the mangled name. 330 size_t Length = Buffer.size(); 331 char *Name = MangledNamesAllocator.Allocate<char>(Length); 332 std::copy(Buffer.begin(), Buffer.end(), Name); 333 334 Str = llvm::StringRef(Name, Length); 335 336 return Str; 337 } 338 339 void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer, 340 const BlockDecl *BD) { 341 getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer()); 342 } 343 344 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { 345 return getModule().getNamedValue(Name); 346 } 347 348 /// AddGlobalCtor - Add a function to the list that will be called before 349 /// main() runs. 350 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 351 // FIXME: Type coercion of void()* types. 352 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 353 } 354 355 /// AddGlobalDtor - Add a function to the list that will be called 356 /// when the module is unloaded. 357 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 358 // FIXME: Type coercion of void()* types. 359 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 360 } 361 362 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 363 // Ctor function type is void()*. 364 llvm::FunctionType* CtorFTy = 365 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 366 std::vector<const llvm::Type*>(), 367 false); 368 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 369 370 // Get the type of a ctor entry, { i32, void ()* }. 371 llvm::StructType* CtorStructTy = 372 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 373 llvm::PointerType::getUnqual(CtorFTy), NULL); 374 375 // Construct the constructor and destructor arrays. 376 std::vector<llvm::Constant*> Ctors; 377 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 378 std::vector<llvm::Constant*> S; 379 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 380 I->second, false)); 381 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 382 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 383 } 384 385 if (!Ctors.empty()) { 386 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 387 new llvm::GlobalVariable(TheModule, AT, false, 388 llvm::GlobalValue::AppendingLinkage, 389 llvm::ConstantArray::get(AT, Ctors), 390 GlobalName); 391 } 392 } 393 394 void CodeGenModule::EmitAnnotations() { 395 if (Annotations.empty()) 396 return; 397 398 // Create a new global variable for the ConstantStruct in the Module. 399 llvm::Constant *Array = 400 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 401 Annotations.size()), 402 Annotations); 403 llvm::GlobalValue *gv = 404 new llvm::GlobalVariable(TheModule, Array->getType(), false, 405 llvm::GlobalValue::AppendingLinkage, Array, 406 "llvm.global.annotations"); 407 gv->setSection("llvm.metadata"); 408 } 409 410 llvm::GlobalValue::LinkageTypes 411 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 412 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 413 414 if (Linkage == GVA_Internal) 415 return llvm::Function::InternalLinkage; 416 417 if (D->hasAttr<DLLExportAttr>()) 418 return llvm::Function::DLLExportLinkage; 419 420 if (D->hasAttr<WeakAttr>()) 421 return llvm::Function::WeakAnyLinkage; 422 423 // In C99 mode, 'inline' functions are guaranteed to have a strong 424 // definition somewhere else, so we can use available_externally linkage. 425 if (Linkage == GVA_C99Inline) 426 return llvm::Function::AvailableExternallyLinkage; 427 428 // In C++, the compiler has to emit a definition in every translation unit 429 // that references the function. We should use linkonce_odr because 430 // a) if all references in this translation unit are optimized away, we 431 // don't need to codegen it. b) if the function persists, it needs to be 432 // merged with other definitions. c) C++ has the ODR, so we know the 433 // definition is dependable. 434 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 435 return llvm::Function::LinkOnceODRLinkage; 436 437 // An explicit instantiation of a template has weak linkage, since 438 // explicit instantiations can occur in multiple translation units 439 // and must all be equivalent. However, we are not allowed to 440 // throw away these explicit instantiations. 441 if (Linkage == GVA_ExplicitTemplateInstantiation) 442 return llvm::Function::WeakODRLinkage; 443 444 // Otherwise, we have strong external linkage. 445 assert(Linkage == GVA_StrongExternal); 446 return llvm::Function::ExternalLinkage; 447 } 448 449 450 /// SetFunctionDefinitionAttributes - Set attributes for a global. 451 /// 452 /// FIXME: This is currently only done for aliases and functions, but not for 453 /// variables (these details are set in EmitGlobalVarDefinition for variables). 454 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 455 llvm::GlobalValue *GV) { 456 SetCommonAttributes(D, GV); 457 } 458 459 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 460 const CGFunctionInfo &Info, 461 llvm::Function *F) { 462 unsigned CallingConv; 463 AttributeListType AttributeList; 464 ConstructAttributeList(Info, D, AttributeList, CallingConv); 465 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 466 AttributeList.size())); 467 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 468 } 469 470 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 471 llvm::Function *F) { 472 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 473 F->addFnAttr(llvm::Attribute::NoUnwind); 474 475 if (D->hasAttr<AlwaysInlineAttr>()) 476 F->addFnAttr(llvm::Attribute::AlwaysInline); 477 478 if (D->hasAttr<NakedAttr>()) 479 F->addFnAttr(llvm::Attribute::Naked); 480 481 if (D->hasAttr<NoInlineAttr>()) 482 F->addFnAttr(llvm::Attribute::NoInline); 483 484 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 485 F->addFnAttr(llvm::Attribute::StackProtect); 486 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 487 F->addFnAttr(llvm::Attribute::StackProtectReq); 488 489 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 490 if (alignment) 491 F->setAlignment(alignment); 492 493 // C++ ABI requires 2-byte alignment for member functions. 494 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 495 F->setAlignment(2); 496 } 497 498 void CodeGenModule::SetCommonAttributes(const Decl *D, 499 llvm::GlobalValue *GV) { 500 setGlobalVisibility(GV, D); 501 502 if (D->hasAttr<UsedAttr>()) 503 AddUsedGlobal(GV); 504 505 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 506 GV->setSection(SA->getName()); 507 508 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 509 } 510 511 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 512 llvm::Function *F, 513 const CGFunctionInfo &FI) { 514 SetLLVMFunctionAttributes(D, FI, F); 515 SetLLVMFunctionAttributesForDefinition(D, F); 516 517 F->setLinkage(llvm::Function::InternalLinkage); 518 519 SetCommonAttributes(D, F); 520 } 521 522 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 523 llvm::Function *F, 524 bool IsIncompleteFunction) { 525 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 526 527 if (!IsIncompleteFunction) 528 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); 529 530 // Only a few attributes are set on declarations; these may later be 531 // overridden by a definition. 532 533 if (FD->hasAttr<DLLImportAttr>()) { 534 F->setLinkage(llvm::Function::DLLImportLinkage); 535 } else if (FD->hasAttr<WeakAttr>() || 536 FD->hasAttr<WeakImportAttr>()) { 537 // "extern_weak" is overloaded in LLVM; we probably should have 538 // separate linkage types for this. 539 F->setLinkage(llvm::Function::ExternalWeakLinkage); 540 } else { 541 F->setLinkage(llvm::Function::ExternalLinkage); 542 } 543 544 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 545 F->setSection(SA->getName()); 546 } 547 548 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 549 assert(!GV->isDeclaration() && 550 "Only globals with definition can force usage."); 551 LLVMUsed.push_back(GV); 552 } 553 554 void CodeGenModule::EmitLLVMUsed() { 555 // Don't create llvm.used if there is no need. 556 if (LLVMUsed.empty()) 557 return; 558 559 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 560 561 // Convert LLVMUsed to what ConstantArray needs. 562 std::vector<llvm::Constant*> UsedArray; 563 UsedArray.resize(LLVMUsed.size()); 564 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 565 UsedArray[i] = 566 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 567 i8PTy); 568 } 569 570 if (UsedArray.empty()) 571 return; 572 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 573 574 llvm::GlobalVariable *GV = 575 new llvm::GlobalVariable(getModule(), ATy, false, 576 llvm::GlobalValue::AppendingLinkage, 577 llvm::ConstantArray::get(ATy, UsedArray), 578 "llvm.used"); 579 580 GV->setSection("llvm.metadata"); 581 } 582 583 void CodeGenModule::EmitDeferred() { 584 // Emit code for any potentially referenced deferred decls. Since a 585 // previously unused static decl may become used during the generation of code 586 // for a static function, iterate until no changes are made. 587 588 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 589 if (!DeferredVTables.empty()) { 590 const CXXRecordDecl *RD = DeferredVTables.back(); 591 DeferredVTables.pop_back(); 592 getVTables().GenerateClassData(getVTableLinkage(RD), RD); 593 continue; 594 } 595 596 GlobalDecl D = DeferredDeclsToEmit.back(); 597 DeferredDeclsToEmit.pop_back(); 598 599 // Check to see if we've already emitted this. This is necessary 600 // for a couple of reasons: first, decls can end up in the 601 // deferred-decls queue multiple times, and second, decls can end 602 // up with definitions in unusual ways (e.g. by an extern inline 603 // function acquiring a strong function redefinition). Just 604 // ignore these cases. 605 // 606 // TODO: That said, looking this up multiple times is very wasteful. 607 llvm::StringRef Name = getMangledName(D); 608 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 609 assert(CGRef && "Deferred decl wasn't referenced?"); 610 611 if (!CGRef->isDeclaration()) 612 continue; 613 614 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 615 // purposes an alias counts as a definition. 616 if (isa<llvm::GlobalAlias>(CGRef)) 617 continue; 618 619 // Otherwise, emit the definition and move on to the next one. 620 EmitGlobalDefinition(D); 621 } 622 } 623 624 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 625 /// annotation information for a given GlobalValue. The annotation struct is 626 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 627 /// GlobalValue being annotated. The second field is the constant string 628 /// created from the AnnotateAttr's annotation. The third field is a constant 629 /// string containing the name of the translation unit. The fourth field is 630 /// the line number in the file of the annotated value declaration. 631 /// 632 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 633 /// appears to. 634 /// 635 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 636 const AnnotateAttr *AA, 637 unsigned LineNo) { 638 llvm::Module *M = &getModule(); 639 640 // get [N x i8] constants for the annotation string, and the filename string 641 // which are the 2nd and 3rd elements of the global annotation structure. 642 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 643 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 644 AA->getAnnotation(), true); 645 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 646 M->getModuleIdentifier(), 647 true); 648 649 // Get the two global values corresponding to the ConstantArrays we just 650 // created to hold the bytes of the strings. 651 llvm::GlobalValue *annoGV = 652 new llvm::GlobalVariable(*M, anno->getType(), false, 653 llvm::GlobalValue::PrivateLinkage, anno, 654 GV->getName()); 655 // translation unit name string, emitted into the llvm.metadata section. 656 llvm::GlobalValue *unitGV = 657 new llvm::GlobalVariable(*M, unit->getType(), false, 658 llvm::GlobalValue::PrivateLinkage, unit, 659 ".str"); 660 661 // Create the ConstantStruct for the global annotation. 662 llvm::Constant *Fields[4] = { 663 llvm::ConstantExpr::getBitCast(GV, SBP), 664 llvm::ConstantExpr::getBitCast(annoGV, SBP), 665 llvm::ConstantExpr::getBitCast(unitGV, SBP), 666 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 667 }; 668 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 669 } 670 671 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 672 // Never defer when EmitAllDecls is specified. 673 if (Features.EmitAllDecls) 674 return false; 675 676 return !getContext().DeclMustBeEmitted(Global); 677 } 678 679 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 680 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 681 assert(AA && "No alias?"); 682 683 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 684 685 // See if there is already something with the target's name in the module. 686 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 687 688 llvm::Constant *Aliasee; 689 if (isa<llvm::FunctionType>(DeclTy)) 690 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 691 else 692 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 693 llvm::PointerType::getUnqual(DeclTy), 0); 694 if (!Entry) { 695 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 696 F->setLinkage(llvm::Function::ExternalWeakLinkage); 697 WeakRefReferences.insert(F); 698 } 699 700 return Aliasee; 701 } 702 703 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 704 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 705 706 // Weak references don't produce any output by themselves. 707 if (Global->hasAttr<WeakRefAttr>()) 708 return; 709 710 // If this is an alias definition (which otherwise looks like a declaration) 711 // emit it now. 712 if (Global->hasAttr<AliasAttr>()) 713 return EmitAliasDefinition(GD); 714 715 // Ignore declarations, they will be emitted on their first use. 716 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 717 if (FD->getIdentifier()) { 718 llvm::StringRef Name = FD->getName(); 719 if (Name == "_Block_object_assign") { 720 BlockObjectAssignDecl = FD; 721 } else if (Name == "_Block_object_dispose") { 722 BlockObjectDisposeDecl = FD; 723 } 724 } 725 726 // Forward declarations are emitted lazily on first use. 727 if (!FD->isThisDeclarationADefinition()) 728 return; 729 } else { 730 const VarDecl *VD = cast<VarDecl>(Global); 731 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 732 733 if (VD->getIdentifier()) { 734 llvm::StringRef Name = VD->getName(); 735 if (Name == "_NSConcreteGlobalBlock") { 736 NSConcreteGlobalBlockDecl = VD; 737 } else if (Name == "_NSConcreteStackBlock") { 738 NSConcreteStackBlockDecl = VD; 739 } 740 } 741 742 743 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 744 return; 745 } 746 747 // Defer code generation when possible if this is a static definition, inline 748 // function etc. These we only want to emit if they are used. 749 if (!MayDeferGeneration(Global)) { 750 // Emit the definition if it can't be deferred. 751 EmitGlobalDefinition(GD); 752 return; 753 } 754 755 // If we're deferring emission of a C++ variable with an 756 // initializer, remember the order in which it appeared in the file. 757 if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) && 758 cast<VarDecl>(Global)->hasInit()) { 759 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 760 CXXGlobalInits.push_back(0); 761 } 762 763 // If the value has already been used, add it directly to the 764 // DeferredDeclsToEmit list. 765 llvm::StringRef MangledName = getMangledName(GD); 766 if (GetGlobalValue(MangledName)) 767 DeferredDeclsToEmit.push_back(GD); 768 else { 769 // Otherwise, remember that we saw a deferred decl with this name. The 770 // first use of the mangled name will cause it to move into 771 // DeferredDeclsToEmit. 772 DeferredDecls[MangledName] = GD; 773 } 774 } 775 776 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 777 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 778 779 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 780 Context.getSourceManager(), 781 "Generating code for declaration"); 782 783 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 784 // At -O0, don't generate IR for functions with available_externally 785 // linkage. 786 if (CodeGenOpts.OptimizationLevel == 0 && 787 !Function->hasAttr<AlwaysInlineAttr>() && 788 getFunctionLinkage(Function) 789 == llvm::Function::AvailableExternallyLinkage) 790 return; 791 792 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 793 if (Method->isVirtual()) 794 getVTables().EmitThunks(GD); 795 796 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 797 return EmitCXXConstructor(CD, GD.getCtorType()); 798 799 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method)) 800 return EmitCXXDestructor(DD, GD.getDtorType()); 801 } 802 803 return EmitGlobalFunctionDefinition(GD); 804 } 805 806 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 807 return EmitGlobalVarDefinition(VD); 808 809 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 810 } 811 812 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 813 /// module, create and return an llvm Function with the specified type. If there 814 /// is something in the module with the specified name, return it potentially 815 /// bitcasted to the right type. 816 /// 817 /// If D is non-null, it specifies a decl that correspond to this. This is used 818 /// to set the attributes on the function when it is first created. 819 llvm::Constant * 820 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, 821 const llvm::Type *Ty, 822 GlobalDecl D) { 823 // Lookup the entry, lazily creating it if necessary. 824 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 825 if (Entry) { 826 if (WeakRefReferences.count(Entry)) { 827 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 828 if (FD && !FD->hasAttr<WeakAttr>()) 829 Entry->setLinkage(llvm::Function::ExternalLinkage); 830 831 WeakRefReferences.erase(Entry); 832 } 833 834 if (Entry->getType()->getElementType() == Ty) 835 return Entry; 836 837 // Make sure the result is of the correct type. 838 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 839 return llvm::ConstantExpr::getBitCast(Entry, PTy); 840 } 841 842 // This function doesn't have a complete type (for example, the return 843 // type is an incomplete struct). Use a fake type instead, and make 844 // sure not to try to set attributes. 845 bool IsIncompleteFunction = false; 846 847 const llvm::FunctionType *FTy; 848 if (isa<llvm::FunctionType>(Ty)) { 849 FTy = cast<llvm::FunctionType>(Ty); 850 } else { 851 FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 852 std::vector<const llvm::Type*>(), false); 853 IsIncompleteFunction = true; 854 } 855 856 llvm::Function *F = llvm::Function::Create(FTy, 857 llvm::Function::ExternalLinkage, 858 MangledName, &getModule()); 859 assert(F->getName() == MangledName && "name was uniqued!"); 860 if (D.getDecl()) 861 SetFunctionAttributes(D, F, IsIncompleteFunction); 862 863 // This is the first use or definition of a mangled name. If there is a 864 // deferred decl with this name, remember that we need to emit it at the end 865 // of the file. 866 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 867 if (DDI != DeferredDecls.end()) { 868 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 869 // list, and remove it from DeferredDecls (since we don't need it anymore). 870 DeferredDeclsToEmit.push_back(DDI->second); 871 DeferredDecls.erase(DDI); 872 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 873 // If this the first reference to a C++ inline function in a class, queue up 874 // the deferred function body for emission. These are not seen as 875 // top-level declarations. 876 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 877 DeferredDeclsToEmit.push_back(D); 878 // A called constructor which has no definition or declaration need be 879 // synthesized. 880 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 881 if (CD->isImplicit()) { 882 assert(CD->isUsed() && "Sema doesn't consider constructor as used."); 883 DeferredDeclsToEmit.push_back(D); 884 } 885 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 886 if (DD->isImplicit()) { 887 assert(DD->isUsed() && "Sema doesn't consider destructor as used."); 888 DeferredDeclsToEmit.push_back(D); 889 } 890 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 891 if (MD->isImplicit() && MD->isCopyAssignmentOperator()) { 892 assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); 893 DeferredDeclsToEmit.push_back(D); 894 } 895 } 896 } 897 898 // Make sure the result is of the requested type. 899 if (!IsIncompleteFunction) { 900 assert(F->getType()->getElementType() == Ty); 901 return F; 902 } 903 904 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 905 return llvm::ConstantExpr::getBitCast(F, PTy); 906 } 907 908 /// GetAddrOfFunction - Return the address of the given function. If Ty is 909 /// non-null, then this function will use the specified type if it has to 910 /// create it (this occurs when we see a definition of the function). 911 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 912 const llvm::Type *Ty) { 913 // If there was no specific requested type, just convert it now. 914 if (!Ty) 915 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 916 917 llvm::StringRef MangledName = getMangledName(GD); 918 return GetOrCreateLLVMFunction(MangledName, Ty, GD); 919 } 920 921 /// CreateRuntimeFunction - Create a new runtime function with the specified 922 /// type and name. 923 llvm::Constant * 924 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 925 llvm::StringRef Name) { 926 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 927 } 928 929 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { 930 if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) 931 return false; 932 if (Context.getLangOptions().CPlusPlus && 933 Context.getBaseElementType(D->getType())->getAs<RecordType>()) { 934 // FIXME: We should do something fancier here! 935 return false; 936 } 937 return true; 938 } 939 940 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 941 /// create and return an llvm GlobalVariable with the specified type. If there 942 /// is something in the module with the specified name, return it potentially 943 /// bitcasted to the right type. 944 /// 945 /// If D is non-null, it specifies a decl that correspond to this. This is used 946 /// to set the attributes on the global when it is first created. 947 llvm::Constant * 948 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, 949 const llvm::PointerType *Ty, 950 const VarDecl *D) { 951 // Lookup the entry, lazily creating it if necessary. 952 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 953 if (Entry) { 954 if (WeakRefReferences.count(Entry)) { 955 if (D && !D->hasAttr<WeakAttr>()) 956 Entry->setLinkage(llvm::Function::ExternalLinkage); 957 958 WeakRefReferences.erase(Entry); 959 } 960 961 if (Entry->getType() == Ty) 962 return Entry; 963 964 // Make sure the result is of the correct type. 965 return llvm::ConstantExpr::getBitCast(Entry, Ty); 966 } 967 968 // This is the first use or definition of a mangled name. If there is a 969 // deferred decl with this name, remember that we need to emit it at the end 970 // of the file. 971 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 972 if (DDI != DeferredDecls.end()) { 973 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 974 // list, and remove it from DeferredDecls (since we don't need it anymore). 975 DeferredDeclsToEmit.push_back(DDI->second); 976 DeferredDecls.erase(DDI); 977 } 978 979 llvm::GlobalVariable *GV = 980 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 981 llvm::GlobalValue::ExternalLinkage, 982 0, MangledName, 0, 983 false, Ty->getAddressSpace()); 984 985 // Handle things which are present even on external declarations. 986 if (D) { 987 // FIXME: This code is overly simple and should be merged with other global 988 // handling. 989 GV->setConstant(DeclIsConstantGlobal(Context, D)); 990 991 // FIXME: Merge with other attribute handling code. 992 if (D->getStorageClass() == SC_PrivateExtern) 993 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 994 995 if (D->hasAttr<DLLImportAttr>()) 996 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 997 else if (D->hasAttr<WeakAttr>() || 998 D->hasAttr<WeakImportAttr>()) 999 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1000 1001 GV->setThreadLocal(D->isThreadSpecified()); 1002 } 1003 1004 return GV; 1005 } 1006 1007 1008 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1009 /// given global variable. If Ty is non-null and if the global doesn't exist, 1010 /// then it will be greated with the specified type instead of whatever the 1011 /// normal requested type would be. 1012 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1013 const llvm::Type *Ty) { 1014 assert(D->hasGlobalStorage() && "Not a global variable"); 1015 QualType ASTTy = D->getType(); 1016 if (Ty == 0) 1017 Ty = getTypes().ConvertTypeForMem(ASTTy); 1018 1019 const llvm::PointerType *PTy = 1020 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 1021 1022 llvm::StringRef MangledName = getMangledName(D); 1023 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1024 } 1025 1026 /// CreateRuntimeVariable - Create a new runtime global variable with the 1027 /// specified type and name. 1028 llvm::Constant * 1029 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 1030 llvm::StringRef Name) { 1031 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 1032 } 1033 1034 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1035 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1036 1037 if (MayDeferGeneration(D)) { 1038 // If we have not seen a reference to this variable yet, place it 1039 // into the deferred declarations table to be emitted if needed 1040 // later. 1041 llvm::StringRef MangledName = getMangledName(D); 1042 if (!GetGlobalValue(MangledName)) { 1043 DeferredDecls[MangledName] = D; 1044 return; 1045 } 1046 } 1047 1048 // The tentative definition is the only definition. 1049 EmitGlobalVarDefinition(D); 1050 } 1051 1052 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1053 if (DefinitionRequired) 1054 getVTables().GenerateClassData(getVTableLinkage(Class), Class); 1055 } 1056 1057 llvm::GlobalVariable::LinkageTypes 1058 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1059 if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) 1060 return llvm::GlobalVariable::InternalLinkage; 1061 1062 if (const CXXMethodDecl *KeyFunction 1063 = RD->getASTContext().getKeyFunction(RD)) { 1064 // If this class has a key function, use that to determine the linkage of 1065 // the vtable. 1066 const FunctionDecl *Def = 0; 1067 if (KeyFunction->hasBody(Def)) 1068 KeyFunction = cast<CXXMethodDecl>(Def); 1069 1070 switch (KeyFunction->getTemplateSpecializationKind()) { 1071 case TSK_Undeclared: 1072 case TSK_ExplicitSpecialization: 1073 if (KeyFunction->isInlined()) 1074 return llvm::GlobalVariable::WeakODRLinkage; 1075 1076 return llvm::GlobalVariable::ExternalLinkage; 1077 1078 case TSK_ImplicitInstantiation: 1079 case TSK_ExplicitInstantiationDefinition: 1080 return llvm::GlobalVariable::WeakODRLinkage; 1081 1082 case TSK_ExplicitInstantiationDeclaration: 1083 // FIXME: Use available_externally linkage. However, this currently 1084 // breaks LLVM's build due to undefined symbols. 1085 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1086 return llvm::GlobalVariable::WeakODRLinkage; 1087 } 1088 } 1089 1090 switch (RD->getTemplateSpecializationKind()) { 1091 case TSK_Undeclared: 1092 case TSK_ExplicitSpecialization: 1093 case TSK_ImplicitInstantiation: 1094 case TSK_ExplicitInstantiationDefinition: 1095 return llvm::GlobalVariable::WeakODRLinkage; 1096 1097 case TSK_ExplicitInstantiationDeclaration: 1098 // FIXME: Use available_externally linkage. However, this currently 1099 // breaks LLVM's build due to undefined symbols. 1100 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1101 return llvm::GlobalVariable::WeakODRLinkage; 1102 } 1103 1104 // Silence GCC warning. 1105 return llvm::GlobalVariable::WeakODRLinkage; 1106 } 1107 1108 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { 1109 return CharUnits::fromQuantity( 1110 TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); 1111 } 1112 1113 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1114 llvm::Constant *Init = 0; 1115 QualType ASTTy = D->getType(); 1116 bool NonConstInit = false; 1117 1118 const Expr *InitExpr = D->getAnyInitializer(); 1119 1120 if (!InitExpr) { 1121 // This is a tentative definition; tentative definitions are 1122 // implicitly initialized with { 0 }. 1123 // 1124 // Note that tentative definitions are only emitted at the end of 1125 // a translation unit, so they should never have incomplete 1126 // type. In addition, EmitTentativeDefinition makes sure that we 1127 // never attempt to emit a tentative definition if a real one 1128 // exists. A use may still exists, however, so we still may need 1129 // to do a RAUW. 1130 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1131 Init = EmitNullConstant(D->getType()); 1132 } else { 1133 Init = EmitConstantExpr(InitExpr, D->getType()); 1134 if (!Init) { 1135 QualType T = InitExpr->getType(); 1136 if (D->getType()->isReferenceType()) 1137 T = D->getType(); 1138 1139 if (getLangOptions().CPlusPlus) { 1140 EmitCXXGlobalVarDeclInitFunc(D); 1141 Init = EmitNullConstant(T); 1142 NonConstInit = true; 1143 } else { 1144 ErrorUnsupported(D, "static initializer"); 1145 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1146 } 1147 } else { 1148 // We don't need an initializer, so remove the entry for the delayed 1149 // initializer position (just in case this entry was delayed). 1150 if (getLangOptions().CPlusPlus) 1151 DelayedCXXInitPosition.erase(D); 1152 } 1153 } 1154 1155 const llvm::Type* InitType = Init->getType(); 1156 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1157 1158 // Strip off a bitcast if we got one back. 1159 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1160 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1161 // all zero index gep. 1162 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1163 Entry = CE->getOperand(0); 1164 } 1165 1166 // Entry is now either a Function or GlobalVariable. 1167 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1168 1169 // We have a definition after a declaration with the wrong type. 1170 // We must make a new GlobalVariable* and update everything that used OldGV 1171 // (a declaration or tentative definition) with the new GlobalVariable* 1172 // (which will be a definition). 1173 // 1174 // This happens if there is a prototype for a global (e.g. 1175 // "extern int x[];") and then a definition of a different type (e.g. 1176 // "int x[10];"). This also happens when an initializer has a different type 1177 // from the type of the global (this happens with unions). 1178 if (GV == 0 || 1179 GV->getType()->getElementType() != InitType || 1180 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 1181 1182 // Move the old entry aside so that we'll create a new one. 1183 Entry->setName(llvm::StringRef()); 1184 1185 // Make a new global with the correct type, this is now guaranteed to work. 1186 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1187 1188 // Replace all uses of the old global with the new global 1189 llvm::Constant *NewPtrForOldDecl = 1190 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1191 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1192 1193 // Erase the old global, since it is no longer used. 1194 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1195 } 1196 1197 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 1198 SourceManager &SM = Context.getSourceManager(); 1199 AddAnnotation(EmitAnnotateAttr(GV, AA, 1200 SM.getInstantiationLineNumber(D->getLocation()))); 1201 } 1202 1203 GV->setInitializer(Init); 1204 1205 // If it is safe to mark the global 'constant', do so now. 1206 GV->setConstant(false); 1207 if (!NonConstInit && DeclIsConstantGlobal(Context, D)) 1208 GV->setConstant(true); 1209 1210 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1211 1212 // Set the llvm linkage type as appropriate. 1213 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1214 if (Linkage == GVA_Internal) 1215 GV->setLinkage(llvm::Function::InternalLinkage); 1216 else if (D->hasAttr<DLLImportAttr>()) 1217 GV->setLinkage(llvm::Function::DLLImportLinkage); 1218 else if (D->hasAttr<DLLExportAttr>()) 1219 GV->setLinkage(llvm::Function::DLLExportLinkage); 1220 else if (D->hasAttr<WeakAttr>()) { 1221 if (GV->isConstant()) 1222 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1223 else 1224 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1225 } else if (Linkage == GVA_TemplateInstantiation || 1226 Linkage == GVA_ExplicitTemplateInstantiation) 1227 // FIXME: It seems like we can provide more specific linkage here 1228 // (LinkOnceODR, WeakODR). 1229 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1230 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 1231 !D->hasExternalStorage() && !D->getInit() && 1232 !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) { 1233 // Thread local vars aren't considered common linkage. 1234 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1235 // common vars aren't constant even if declared const. 1236 GV->setConstant(false); 1237 } else 1238 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1239 1240 SetCommonAttributes(D, GV); 1241 1242 // Emit global variable debug information. 1243 if (CGDebugInfo *DI = getDebugInfo()) { 1244 DI->setLocation(D->getLocation()); 1245 DI->EmitGlobalVariable(GV, D); 1246 } 1247 } 1248 1249 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1250 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1251 /// existing call uses of the old function in the module, this adjusts them to 1252 /// call the new function directly. 1253 /// 1254 /// This is not just a cleanup: the always_inline pass requires direct calls to 1255 /// functions to be able to inline them. If there is a bitcast in the way, it 1256 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1257 /// run at -O0. 1258 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1259 llvm::Function *NewFn) { 1260 // If we're redefining a global as a function, don't transform it. 1261 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1262 if (OldFn == 0) return; 1263 1264 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1265 llvm::SmallVector<llvm::Value*, 4> ArgList; 1266 1267 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1268 UI != E; ) { 1269 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1270 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1271 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1272 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1273 llvm::CallSite CS(CI); 1274 if (!CI || !CS.isCallee(I)) continue; 1275 1276 // If the return types don't match exactly, and if the call isn't dead, then 1277 // we can't transform this call. 1278 if (CI->getType() != NewRetTy && !CI->use_empty()) 1279 continue; 1280 1281 // If the function was passed too few arguments, don't transform. If extra 1282 // arguments were passed, we silently drop them. If any of the types 1283 // mismatch, we don't transform. 1284 unsigned ArgNo = 0; 1285 bool DontTransform = false; 1286 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1287 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1288 if (CS.arg_size() == ArgNo || 1289 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1290 DontTransform = true; 1291 break; 1292 } 1293 } 1294 if (DontTransform) 1295 continue; 1296 1297 // Okay, we can transform this. Create the new call instruction and copy 1298 // over the required information. 1299 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1300 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1301 ArgList.end(), "", CI); 1302 ArgList.clear(); 1303 if (!NewCall->getType()->isVoidTy()) 1304 NewCall->takeName(CI); 1305 NewCall->setAttributes(CI->getAttributes()); 1306 NewCall->setCallingConv(CI->getCallingConv()); 1307 1308 // Finally, remove the old call, replacing any uses with the new one. 1309 if (!CI->use_empty()) 1310 CI->replaceAllUsesWith(NewCall); 1311 1312 // Copy debug location attached to CI. 1313 if (!CI->getDebugLoc().isUnknown()) 1314 NewCall->setDebugLoc(CI->getDebugLoc()); 1315 CI->eraseFromParent(); 1316 } 1317 } 1318 1319 1320 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1321 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1322 const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); 1323 getCXXABI().getMangleContext().mangleInitDiscriminator(); 1324 // Get or create the prototype for the function. 1325 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1326 1327 // Strip off a bitcast if we got one back. 1328 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1329 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1330 Entry = CE->getOperand(0); 1331 } 1332 1333 1334 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1335 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1336 1337 // If the types mismatch then we have to rewrite the definition. 1338 assert(OldFn->isDeclaration() && 1339 "Shouldn't replace non-declaration"); 1340 1341 // F is the Function* for the one with the wrong type, we must make a new 1342 // Function* and update everything that used F (a declaration) with the new 1343 // Function* (which will be a definition). 1344 // 1345 // This happens if there is a prototype for a function 1346 // (e.g. "int f()") and then a definition of a different type 1347 // (e.g. "int f(int x)"). Move the old function aside so that it 1348 // doesn't interfere with GetAddrOfFunction. 1349 OldFn->setName(llvm::StringRef()); 1350 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1351 1352 // If this is an implementation of a function without a prototype, try to 1353 // replace any existing uses of the function (which may be calls) with uses 1354 // of the new function 1355 if (D->getType()->isFunctionNoProtoType()) { 1356 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1357 OldFn->removeDeadConstantUsers(); 1358 } 1359 1360 // Replace uses of F with the Function we will endow with a body. 1361 if (!Entry->use_empty()) { 1362 llvm::Constant *NewPtrForOldDecl = 1363 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1364 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1365 } 1366 1367 // Ok, delete the old function now, which is dead. 1368 OldFn->eraseFromParent(); 1369 1370 Entry = NewFn; 1371 } 1372 1373 llvm::Function *Fn = cast<llvm::Function>(Entry); 1374 setFunctionLinkage(D, Fn); 1375 1376 CodeGenFunction(*this).GenerateCode(D, Fn); 1377 1378 SetFunctionDefinitionAttributes(D, Fn); 1379 SetLLVMFunctionAttributesForDefinition(D, Fn); 1380 1381 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1382 AddGlobalCtor(Fn, CA->getPriority()); 1383 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1384 AddGlobalDtor(Fn, DA->getPriority()); 1385 } 1386 1387 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1388 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1389 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1390 assert(AA && "Not an alias?"); 1391 1392 llvm::StringRef MangledName = getMangledName(GD); 1393 1394 // If there is a definition in the module, then it wins over the alias. 1395 // This is dubious, but allow it to be safe. Just ignore the alias. 1396 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1397 if (Entry && !Entry->isDeclaration()) 1398 return; 1399 1400 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1401 1402 // Create a reference to the named value. This ensures that it is emitted 1403 // if a deferred decl. 1404 llvm::Constant *Aliasee; 1405 if (isa<llvm::FunctionType>(DeclTy)) 1406 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); 1407 else 1408 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1409 llvm::PointerType::getUnqual(DeclTy), 0); 1410 1411 // Create the new alias itself, but don't set a name yet. 1412 llvm::GlobalValue *GA = 1413 new llvm::GlobalAlias(Aliasee->getType(), 1414 llvm::Function::ExternalLinkage, 1415 "", Aliasee, &getModule()); 1416 1417 if (Entry) { 1418 assert(Entry->isDeclaration()); 1419 1420 // If there is a declaration in the module, then we had an extern followed 1421 // by the alias, as in: 1422 // extern int test6(); 1423 // ... 1424 // int test6() __attribute__((alias("test7"))); 1425 // 1426 // Remove it and replace uses of it with the alias. 1427 GA->takeName(Entry); 1428 1429 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1430 Entry->getType())); 1431 Entry->eraseFromParent(); 1432 } else { 1433 GA->setName(MangledName); 1434 } 1435 1436 // Set attributes which are particular to an alias; this is a 1437 // specialization of the attributes which may be set on a global 1438 // variable/function. 1439 if (D->hasAttr<DLLExportAttr>()) { 1440 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1441 // The dllexport attribute is ignored for undefined symbols. 1442 if (FD->hasBody()) 1443 GA->setLinkage(llvm::Function::DLLExportLinkage); 1444 } else { 1445 GA->setLinkage(llvm::Function::DLLExportLinkage); 1446 } 1447 } else if (D->hasAttr<WeakAttr>() || 1448 D->hasAttr<WeakRefAttr>() || 1449 D->hasAttr<WeakImportAttr>()) { 1450 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1451 } 1452 1453 SetCommonAttributes(D, GA); 1454 } 1455 1456 /// getBuiltinLibFunction - Given a builtin id for a function like 1457 /// "__builtin_fabsf", return a Function* for "fabsf". 1458 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1459 unsigned BuiltinID) { 1460 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1461 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1462 "isn't a lib fn"); 1463 1464 // Get the name, skip over the __builtin_ prefix (if necessary). 1465 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1466 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1467 Name += 10; 1468 1469 const llvm::FunctionType *Ty = 1470 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 1471 1472 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1473 } 1474 1475 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1476 unsigned NumTys) { 1477 return llvm::Intrinsic::getDeclaration(&getModule(), 1478 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1479 } 1480 1481 1482 llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, 1483 const llvm::Type *SrcType, 1484 const llvm::Type *SizeType) { 1485 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1486 return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); 1487 } 1488 1489 llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, 1490 const llvm::Type *SrcType, 1491 const llvm::Type *SizeType) { 1492 const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; 1493 return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); 1494 } 1495 1496 llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, 1497 const llvm::Type *SizeType) { 1498 const llvm::Type *ArgTypes[2] = { DestType, SizeType }; 1499 return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); 1500 } 1501 1502 static llvm::StringMapEntry<llvm::Constant*> & 1503 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1504 const StringLiteral *Literal, 1505 bool TargetIsLSB, 1506 bool &IsUTF16, 1507 unsigned &StringLength) { 1508 llvm::StringRef String = Literal->getString(); 1509 unsigned NumBytes = String.size(); 1510 1511 // Check for simple case. 1512 if (!Literal->containsNonAsciiOrNull()) { 1513 StringLength = NumBytes; 1514 return Map.GetOrCreateValue(String); 1515 } 1516 1517 // Otherwise, convert the UTF8 literals into a byte string. 1518 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1519 const UTF8 *FromPtr = (UTF8 *)String.data(); 1520 UTF16 *ToPtr = &ToBuf[0]; 1521 1522 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1523 &ToPtr, ToPtr + NumBytes, 1524 strictConversion); 1525 1526 // ConvertUTF8toUTF16 returns the length in ToPtr. 1527 StringLength = ToPtr - &ToBuf[0]; 1528 1529 // Render the UTF-16 string into a byte array and convert to the target byte 1530 // order. 1531 // 1532 // FIXME: This isn't something we should need to do here. 1533 llvm::SmallString<128> AsBytes; 1534 AsBytes.reserve(StringLength * 2); 1535 for (unsigned i = 0; i != StringLength; ++i) { 1536 unsigned short Val = ToBuf[i]; 1537 if (TargetIsLSB) { 1538 AsBytes.push_back(Val & 0xFF); 1539 AsBytes.push_back(Val >> 8); 1540 } else { 1541 AsBytes.push_back(Val >> 8); 1542 AsBytes.push_back(Val & 0xFF); 1543 } 1544 } 1545 // Append one extra null character, the second is automatically added by our 1546 // caller. 1547 AsBytes.push_back(0); 1548 1549 IsUTF16 = true; 1550 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1551 } 1552 1553 llvm::Constant * 1554 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1555 unsigned StringLength = 0; 1556 bool isUTF16 = false; 1557 llvm::StringMapEntry<llvm::Constant*> &Entry = 1558 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1559 getTargetData().isLittleEndian(), 1560 isUTF16, StringLength); 1561 1562 if (llvm::Constant *C = Entry.getValue()) 1563 return C; 1564 1565 llvm::Constant *Zero = 1566 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1567 llvm::Constant *Zeros[] = { Zero, Zero }; 1568 1569 // If we don't already have it, get __CFConstantStringClassReference. 1570 if (!CFConstantStringClassRef) { 1571 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1572 Ty = llvm::ArrayType::get(Ty, 0); 1573 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1574 "__CFConstantStringClassReference"); 1575 // Decay array -> ptr 1576 CFConstantStringClassRef = 1577 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1578 } 1579 1580 QualType CFTy = getContext().getCFConstantStringType(); 1581 1582 const llvm::StructType *STy = 1583 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1584 1585 std::vector<llvm::Constant*> Fields(4); 1586 1587 // Class pointer. 1588 Fields[0] = CFConstantStringClassRef; 1589 1590 // Flags. 1591 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1592 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1593 llvm::ConstantInt::get(Ty, 0x07C8); 1594 1595 // String pointer. 1596 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1597 1598 llvm::GlobalValue::LinkageTypes Linkage; 1599 bool isConstant; 1600 if (isUTF16) { 1601 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1602 Linkage = llvm::GlobalValue::InternalLinkage; 1603 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1604 // does make plain ascii ones writable. 1605 isConstant = true; 1606 } else { 1607 Linkage = llvm::GlobalValue::PrivateLinkage; 1608 isConstant = !Features.WritableStrings; 1609 } 1610 1611 llvm::GlobalVariable *GV = 1612 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1613 ".str"); 1614 if (isUTF16) { 1615 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1616 GV->setAlignment(Align.getQuantity()); 1617 } 1618 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1619 1620 // String length. 1621 Ty = getTypes().ConvertType(getContext().LongTy); 1622 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1623 1624 // The struct. 1625 C = llvm::ConstantStruct::get(STy, Fields); 1626 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1627 llvm::GlobalVariable::PrivateLinkage, C, 1628 "_unnamed_cfstring_"); 1629 if (const char *Sect = getContext().Target.getCFStringSection()) 1630 GV->setSection(Sect); 1631 Entry.setValue(GV); 1632 1633 return GV; 1634 } 1635 1636 llvm::Constant * 1637 CodeGenModule::GetAddrOfConstantNSString(const StringLiteral *Literal) { 1638 unsigned StringLength = 0; 1639 bool isUTF16 = false; 1640 llvm::StringMapEntry<llvm::Constant*> &Entry = 1641 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1642 getTargetData().isLittleEndian(), 1643 isUTF16, StringLength); 1644 1645 if (llvm::Constant *C = Entry.getValue()) 1646 return C; 1647 1648 llvm::Constant *Zero = 1649 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1650 llvm::Constant *Zeros[] = { Zero, Zero }; 1651 1652 // If we don't already have it, get _NSConstantStringClassReference. 1653 if (!NSConstantStringClassRef) { 1654 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1655 Ty = llvm::ArrayType::get(Ty, 0); 1656 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1657 Features.ObjCNonFragileABI ? 1658 "OBJC_CLASS_$_NSConstantString" : 1659 "_NSConstantStringClassReference"); 1660 // Decay array -> ptr 1661 NSConstantStringClassRef = 1662 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1663 } 1664 1665 QualType NSTy = getContext().getNSConstantStringType(); 1666 1667 const llvm::StructType *STy = 1668 cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 1669 1670 std::vector<llvm::Constant*> Fields(3); 1671 1672 // Class pointer. 1673 Fields[0] = NSConstantStringClassRef; 1674 1675 // String pointer. 1676 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1677 1678 llvm::GlobalValue::LinkageTypes Linkage; 1679 bool isConstant; 1680 if (isUTF16) { 1681 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1682 Linkage = llvm::GlobalValue::InternalLinkage; 1683 // Note: -fwritable-strings doesn't make unicode NSStrings writable, but 1684 // does make plain ascii ones writable. 1685 isConstant = true; 1686 } else { 1687 Linkage = llvm::GlobalValue::PrivateLinkage; 1688 isConstant = !Features.WritableStrings; 1689 } 1690 1691 llvm::GlobalVariable *GV = 1692 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1693 ".str"); 1694 if (isUTF16) { 1695 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 1696 GV->setAlignment(Align.getQuantity()); 1697 } 1698 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1699 1700 // String length. 1701 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1702 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 1703 1704 // The struct. 1705 C = llvm::ConstantStruct::get(STy, Fields); 1706 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1707 llvm::GlobalVariable::PrivateLinkage, C, 1708 "_unnamed_nsstring_"); 1709 // FIXME. Fix section. 1710 if (const char *Sect = 1711 Features.ObjCNonFragileABI 1712 ? getContext().Target.getNSStringNonFragileABISection() 1713 : getContext().Target.getNSStringSection()) 1714 GV->setSection(Sect); 1715 Entry.setValue(GV); 1716 1717 return GV; 1718 } 1719 1720 /// GetStringForStringLiteral - Return the appropriate bytes for a 1721 /// string literal, properly padded to match the literal type. 1722 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1723 const ConstantArrayType *CAT = 1724 getContext().getAsConstantArrayType(E->getType()); 1725 assert(CAT && "String isn't pointer or array!"); 1726 1727 // Resize the string to the right size. 1728 uint64_t RealLen = CAT->getSize().getZExtValue(); 1729 1730 if (E->isWide()) 1731 RealLen *= getContext().Target.getWCharWidth()/8; 1732 1733 std::string Str = E->getString().str(); 1734 Str.resize(RealLen, '\0'); 1735 1736 return Str; 1737 } 1738 1739 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1740 /// constant array for the given string literal. 1741 llvm::Constant * 1742 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1743 // FIXME: This can be more efficient. 1744 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1745 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1746 if (S->isWide()) { 1747 llvm::Type *DestTy = 1748 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1749 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1750 } 1751 return C; 1752 } 1753 1754 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1755 /// array for the given ObjCEncodeExpr node. 1756 llvm::Constant * 1757 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1758 std::string Str; 1759 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1760 1761 return GetAddrOfConstantCString(Str); 1762 } 1763 1764 1765 /// GenerateWritableString -- Creates storage for a string literal. 1766 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1767 bool constant, 1768 CodeGenModule &CGM, 1769 const char *GlobalName) { 1770 // Create Constant for this string literal. Don't add a '\0'. 1771 llvm::Constant *C = 1772 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1773 1774 // Create a global variable for this string 1775 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1776 llvm::GlobalValue::PrivateLinkage, 1777 C, GlobalName); 1778 } 1779 1780 /// GetAddrOfConstantString - Returns a pointer to a character array 1781 /// containing the literal. This contents are exactly that of the 1782 /// given string, i.e. it will not be null terminated automatically; 1783 /// see GetAddrOfConstantCString. Note that whether the result is 1784 /// actually a pointer to an LLVM constant depends on 1785 /// Feature.WriteableStrings. 1786 /// 1787 /// The result has pointer to array type. 1788 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1789 const char *GlobalName) { 1790 bool IsConstant = !Features.WritableStrings; 1791 1792 // Get the default prefix if a name wasn't specified. 1793 if (!GlobalName) 1794 GlobalName = ".str"; 1795 1796 // Don't share any string literals if strings aren't constant. 1797 if (!IsConstant) 1798 return GenerateStringLiteral(str, false, *this, GlobalName); 1799 1800 llvm::StringMapEntry<llvm::Constant *> &Entry = 1801 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1802 1803 if (Entry.getValue()) 1804 return Entry.getValue(); 1805 1806 // Create a global variable for this. 1807 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1808 Entry.setValue(C); 1809 return C; 1810 } 1811 1812 /// GetAddrOfConstantCString - Returns a pointer to a character 1813 /// array containing the literal and a terminating '\-' 1814 /// character. The result has pointer to array type. 1815 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1816 const char *GlobalName){ 1817 return GetAddrOfConstantString(str + '\0', GlobalName); 1818 } 1819 1820 /// EmitObjCPropertyImplementations - Emit information for synthesized 1821 /// properties for an implementation. 1822 void CodeGenModule::EmitObjCPropertyImplementations(const 1823 ObjCImplementationDecl *D) { 1824 for (ObjCImplementationDecl::propimpl_iterator 1825 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1826 ObjCPropertyImplDecl *PID = *i; 1827 1828 // Dynamic is just for type-checking. 1829 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1830 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1831 1832 // Determine which methods need to be implemented, some may have 1833 // been overridden. Note that ::isSynthesized is not the method 1834 // we want, that just indicates if the decl came from a 1835 // property. What we want to know is if the method is defined in 1836 // this implementation. 1837 if (!D->getInstanceMethod(PD->getGetterName())) 1838 CodeGenFunction(*this).GenerateObjCGetter( 1839 const_cast<ObjCImplementationDecl *>(D), PID); 1840 if (!PD->isReadOnly() && 1841 !D->getInstanceMethod(PD->getSetterName())) 1842 CodeGenFunction(*this).GenerateObjCSetter( 1843 const_cast<ObjCImplementationDecl *>(D), PID); 1844 } 1845 } 1846 } 1847 1848 /// EmitObjCIvarInitializations - Emit information for ivar initialization 1849 /// for an implementation. 1850 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 1851 if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0) 1852 return; 1853 DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D)); 1854 assert(DC && "EmitObjCIvarInitializations - null DeclContext"); 1855 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 1856 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 1857 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(), 1858 D->getLocation(), 1859 D->getLocation(), cxxSelector, 1860 getContext().VoidTy, 0, 1861 DC, true, false, true, false, 1862 ObjCMethodDecl::Required); 1863 D->addInstanceMethod(DTORMethod); 1864 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 1865 1866 II = &getContext().Idents.get(".cxx_construct"); 1867 cxxSelector = getContext().Selectors.getSelector(0, &II); 1868 // The constructor returns 'self'. 1869 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 1870 D->getLocation(), 1871 D->getLocation(), cxxSelector, 1872 getContext().getObjCIdType(), 0, 1873 DC, true, false, true, false, 1874 ObjCMethodDecl::Required); 1875 D->addInstanceMethod(CTORMethod); 1876 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 1877 1878 1879 } 1880 1881 /// EmitNamespace - Emit all declarations in a namespace. 1882 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1883 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1884 I != E; ++I) 1885 EmitTopLevelDecl(*I); 1886 } 1887 1888 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1889 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1890 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1891 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1892 ErrorUnsupported(LSD, "linkage spec"); 1893 return; 1894 } 1895 1896 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1897 I != E; ++I) 1898 EmitTopLevelDecl(*I); 1899 } 1900 1901 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1902 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1903 // If an error has occurred, stop code generation, but continue 1904 // parsing and semantic analysis (to ensure all warnings and errors 1905 // are emitted). 1906 if (Diags.hasErrorOccurred()) 1907 return; 1908 1909 // Ignore dependent declarations. 1910 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1911 return; 1912 1913 switch (D->getKind()) { 1914 case Decl::CXXConversion: 1915 case Decl::CXXMethod: 1916 case Decl::Function: 1917 // Skip function templates 1918 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1919 return; 1920 1921 EmitGlobal(cast<FunctionDecl>(D)); 1922 break; 1923 1924 case Decl::Var: 1925 EmitGlobal(cast<VarDecl>(D)); 1926 break; 1927 1928 // C++ Decls 1929 case Decl::Namespace: 1930 EmitNamespace(cast<NamespaceDecl>(D)); 1931 break; 1932 // No code generation needed. 1933 case Decl::UsingShadow: 1934 case Decl::Using: 1935 case Decl::UsingDirective: 1936 case Decl::ClassTemplate: 1937 case Decl::FunctionTemplate: 1938 case Decl::NamespaceAlias: 1939 break; 1940 case Decl::CXXConstructor: 1941 // Skip function templates 1942 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1943 return; 1944 1945 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1946 break; 1947 case Decl::CXXDestructor: 1948 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1949 break; 1950 1951 case Decl::StaticAssert: 1952 // Nothing to do. 1953 break; 1954 1955 // Objective-C Decls 1956 1957 // Forward declarations, no (immediate) code generation. 1958 case Decl::ObjCClass: 1959 case Decl::ObjCForwardProtocol: 1960 case Decl::ObjCInterface: 1961 break; 1962 1963 case Decl::ObjCCategory: { 1964 ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D); 1965 if (CD->IsClassExtension() && CD->hasSynthBitfield()) 1966 Context.ResetObjCLayout(CD->getClassInterface()); 1967 break; 1968 } 1969 1970 1971 case Decl::ObjCProtocol: 1972 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1973 break; 1974 1975 case Decl::ObjCCategoryImpl: 1976 // Categories have properties but don't support synthesize so we 1977 // can ignore them here. 1978 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1979 break; 1980 1981 case Decl::ObjCImplementation: { 1982 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1983 if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield()) 1984 Context.ResetObjCLayout(OMD->getClassInterface()); 1985 EmitObjCPropertyImplementations(OMD); 1986 EmitObjCIvarInitializations(OMD); 1987 Runtime->GenerateClass(OMD); 1988 break; 1989 } 1990 case Decl::ObjCMethod: { 1991 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1992 // If this is not a prototype, emit the body. 1993 if (OMD->getBody()) 1994 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1995 break; 1996 } 1997 case Decl::ObjCCompatibleAlias: 1998 // compatibility-alias is a directive and has no code gen. 1999 break; 2000 2001 case Decl::LinkageSpec: 2002 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2003 break; 2004 2005 case Decl::FileScopeAsm: { 2006 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2007 llvm::StringRef AsmString = AD->getAsmString()->getString(); 2008 2009 const std::string &S = getModule().getModuleInlineAsm(); 2010 if (S.empty()) 2011 getModule().setModuleInlineAsm(AsmString); 2012 else 2013 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2014 break; 2015 } 2016 2017 default: 2018 // Make sure we handled everything we should, every other kind is a 2019 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2020 // function. Need to recode Decl::Kind to do that easily. 2021 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2022 } 2023 } 2024 2025 /// Turns the given pointer into a constant. 2026 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2027 const void *Ptr) { 2028 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2029 const llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2030 return llvm::ConstantInt::get(i64, PtrInt); 2031 } 2032 2033 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2034 llvm::NamedMDNode *&GlobalMetadata, 2035 GlobalDecl D, 2036 llvm::GlobalValue *Addr) { 2037 if (!GlobalMetadata) 2038 GlobalMetadata = 2039 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2040 2041 // TODO: should we report variant information for ctors/dtors? 2042 llvm::Value *Ops[] = { 2043 Addr, 2044 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2045 }; 2046 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2)); 2047 } 2048 2049 /// Emits metadata nodes associating all the global values in the 2050 /// current module with the Decls they came from. This is useful for 2051 /// projects using IR gen as a subroutine. 2052 /// 2053 /// Since there's currently no way to associate an MDNode directly 2054 /// with an llvm::GlobalValue, we create a global named metadata 2055 /// with the name 'clang.global.decl.ptrs'. 2056 void CodeGenModule::EmitDeclMetadata() { 2057 llvm::NamedMDNode *GlobalMetadata = 0; 2058 2059 // StaticLocalDeclMap 2060 for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator 2061 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2062 I != E; ++I) { 2063 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2064 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2065 } 2066 } 2067 2068 /// Emits metadata nodes for all the local variables in the current 2069 /// function. 2070 void CodeGenFunction::EmitDeclMetadata() { 2071 if (LocalDeclMap.empty()) return; 2072 2073 llvm::LLVMContext &Context = getLLVMContext(); 2074 2075 // Find the unique metadata ID for this name. 2076 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2077 2078 llvm::NamedMDNode *GlobalMetadata = 0; 2079 2080 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2081 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2082 const Decl *D = I->first; 2083 llvm::Value *Addr = I->second; 2084 2085 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2086 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2087 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1)); 2088 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2089 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2090 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2091 } 2092 } 2093 } 2094 2095 ///@name Custom Runtime Function Interfaces 2096 ///@{ 2097 // 2098 // FIXME: These can be eliminated once we can have clients just get the required 2099 // AST nodes from the builtin tables. 2100 2101 llvm::Constant *CodeGenModule::getBlockObjectDispose() { 2102 if (BlockObjectDispose) 2103 return BlockObjectDispose; 2104 2105 // If we saw an explicit decl, use that. 2106 if (BlockObjectDisposeDecl) { 2107 return BlockObjectDispose = GetAddrOfFunction( 2108 BlockObjectDisposeDecl, 2109 getTypes().GetFunctionType(BlockObjectDisposeDecl)); 2110 } 2111 2112 // Otherwise construct the function by hand. 2113 const llvm::FunctionType *FTy; 2114 std::vector<const llvm::Type*> ArgTys; 2115 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2116 ArgTys.push_back(PtrToInt8Ty); 2117 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2118 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2119 return BlockObjectDispose = 2120 CreateRuntimeFunction(FTy, "_Block_object_dispose"); 2121 } 2122 2123 llvm::Constant *CodeGenModule::getBlockObjectAssign() { 2124 if (BlockObjectAssign) 2125 return BlockObjectAssign; 2126 2127 // If we saw an explicit decl, use that. 2128 if (BlockObjectAssignDecl) { 2129 return BlockObjectAssign = GetAddrOfFunction( 2130 BlockObjectAssignDecl, 2131 getTypes().GetFunctionType(BlockObjectAssignDecl)); 2132 } 2133 2134 // Otherwise construct the function by hand. 2135 const llvm::FunctionType *FTy; 2136 std::vector<const llvm::Type*> ArgTys; 2137 const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext); 2138 ArgTys.push_back(PtrToInt8Ty); 2139 ArgTys.push_back(PtrToInt8Ty); 2140 ArgTys.push_back(llvm::Type::getInt32Ty(VMContext)); 2141 FTy = llvm::FunctionType::get(ResultType, ArgTys, false); 2142 return BlockObjectAssign = 2143 CreateRuntimeFunction(FTy, "_Block_object_assign"); 2144 } 2145 2146 llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() { 2147 if (NSConcreteGlobalBlock) 2148 return NSConcreteGlobalBlock; 2149 2150 // If we saw an explicit decl, use that. 2151 if (NSConcreteGlobalBlockDecl) { 2152 return NSConcreteGlobalBlock = GetAddrOfGlobalVar( 2153 NSConcreteGlobalBlockDecl, 2154 getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType())); 2155 } 2156 2157 // Otherwise construct the variable by hand. 2158 return NSConcreteGlobalBlock = CreateRuntimeVariable( 2159 PtrToInt8Ty, "_NSConcreteGlobalBlock"); 2160 } 2161 2162 llvm::Constant *CodeGenModule::getNSConcreteStackBlock() { 2163 if (NSConcreteStackBlock) 2164 return NSConcreteStackBlock; 2165 2166 // If we saw an explicit decl, use that. 2167 if (NSConcreteStackBlockDecl) { 2168 return NSConcreteStackBlock = GetAddrOfGlobalVar( 2169 NSConcreteStackBlockDecl, 2170 getTypes().ConvertType(NSConcreteStackBlockDecl->getType())); 2171 } 2172 2173 // Otherwise construct the variable by hand. 2174 return NSConcreteStackBlock = CreateRuntimeVariable( 2175 PtrToInt8Ty, "_NSConcreteStackBlock"); 2176 } 2177 2178 ///@} 2179