1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 FloatTy = llvm::Type::getFloatTy(LLVMContext); 107 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 108 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 109 PointerAlignInBytes = 110 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 111 SizeSizeInBytes = 112 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 113 IntAlignInBytes = 114 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 115 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 116 IntPtrTy = llvm::IntegerType::get(LLVMContext, 117 C.getTargetInfo().getMaxPointerWidth()); 118 Int8PtrTy = Int8Ty->getPointerTo(0); 119 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 120 AllocaInt8PtrTy = Int8Ty->getPointerTo( 121 M.getDataLayout().getAllocaAddrSpace()); 122 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 123 124 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 125 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 211 break; 212 } 213 } 214 215 void CodeGenModule::createCUDARuntime() { 216 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 217 } 218 219 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 220 Replacements[Name] = C; 221 } 222 223 void CodeGenModule::applyReplacements() { 224 for (auto &I : Replacements) { 225 StringRef MangledName = I.first(); 226 llvm::Constant *Replacement = I.second; 227 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 228 if (!Entry) 229 continue; 230 auto *OldF = cast<llvm::Function>(Entry); 231 auto *NewF = dyn_cast<llvm::Function>(Replacement); 232 if (!NewF) { 233 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 234 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 235 } else { 236 auto *CE = cast<llvm::ConstantExpr>(Replacement); 237 assert(CE->getOpcode() == llvm::Instruction::BitCast || 238 CE->getOpcode() == llvm::Instruction::GetElementPtr); 239 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 240 } 241 } 242 243 // Replace old with new, but keep the old order. 244 OldF->replaceAllUsesWith(Replacement); 245 if (NewF) { 246 NewF->removeFromParent(); 247 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 248 NewF); 249 } 250 OldF->eraseFromParent(); 251 } 252 } 253 254 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 255 GlobalValReplacements.push_back(std::make_pair(GV, C)); 256 } 257 258 void CodeGenModule::applyGlobalValReplacements() { 259 for (auto &I : GlobalValReplacements) { 260 llvm::GlobalValue *GV = I.first; 261 llvm::Constant *C = I.second; 262 263 GV->replaceAllUsesWith(C); 264 GV->eraseFromParent(); 265 } 266 } 267 268 // This is only used in aliases that we created and we know they have a 269 // linear structure. 270 static const llvm::GlobalObject *getAliasedGlobal( 271 const llvm::GlobalIndirectSymbol &GIS) { 272 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 273 const llvm::Constant *C = &GIS; 274 for (;;) { 275 C = C->stripPointerCasts(); 276 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 277 return GO; 278 // stripPointerCasts will not walk over weak aliases. 279 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 280 if (!GIS2) 281 return nullptr; 282 if (!Visited.insert(GIS2).second) 283 return nullptr; 284 C = GIS2->getIndirectSymbol(); 285 } 286 } 287 288 void CodeGenModule::checkAliases() { 289 // Check if the constructed aliases are well formed. It is really unfortunate 290 // that we have to do this in CodeGen, but we only construct mangled names 291 // and aliases during codegen. 292 bool Error = false; 293 DiagnosticsEngine &Diags = getDiags(); 294 for (const GlobalDecl &GD : Aliases) { 295 const auto *D = cast<ValueDecl>(GD.getDecl()); 296 SourceLocation Location; 297 bool IsIFunc = D->hasAttr<IFuncAttr>(); 298 if (const Attr *A = D->getDefiningAttr()) 299 Location = A->getLocation(); 300 else 301 llvm_unreachable("Not an alias or ifunc?"); 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 305 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 306 if (!GV) { 307 Error = true; 308 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 309 } else if (GV->isDeclaration()) { 310 Error = true; 311 Diags.Report(Location, diag::err_alias_to_undefined) 312 << IsIFunc << IsIFunc; 313 } else if (IsIFunc) { 314 // Check resolver function type. 315 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 316 GV->getType()->getPointerElementType()); 317 assert(FTy); 318 if (!FTy->getReturnType()->isPointerTy()) 319 Diags.Report(Location, diag::err_ifunc_resolver_return); 320 if (FTy->getNumParams()) 321 Diags.Report(Location, diag::err_ifunc_resolver_params); 322 } 323 324 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 325 llvm::GlobalValue *AliaseeGV; 326 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 327 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 328 else 329 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 330 331 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 332 StringRef AliasSection = SA->getName(); 333 if (AliasSection != AliaseeGV->getSection()) 334 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 335 << AliasSection << IsIFunc << IsIFunc; 336 } 337 338 // We have to handle alias to weak aliases in here. LLVM itself disallows 339 // this since the object semantics would not match the IL one. For 340 // compatibility with gcc we implement it by just pointing the alias 341 // to its aliasee's aliasee. We also warn, since the user is probably 342 // expecting the link to be weak. 343 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 344 if (GA->isInterposable()) { 345 Diags.Report(Location, diag::warn_alias_to_weak_alias) 346 << GV->getName() << GA->getName() << IsIFunc; 347 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 348 GA->getIndirectSymbol(), Alias->getType()); 349 Alias->setIndirectSymbol(Aliasee); 350 } 351 } 352 } 353 if (!Error) 354 return; 355 356 for (const GlobalDecl &GD : Aliases) { 357 StringRef MangledName = getMangledName(GD); 358 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 359 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 360 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 361 Alias->eraseFromParent(); 362 } 363 } 364 365 void CodeGenModule::clear() { 366 DeferredDeclsToEmit.clear(); 367 if (OpenMPRuntime) 368 OpenMPRuntime->clear(); 369 } 370 371 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 372 StringRef MainFile) { 373 if (!hasDiagnostics()) 374 return; 375 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 376 if (MainFile.empty()) 377 MainFile = "<stdin>"; 378 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 379 } else { 380 if (Mismatched > 0) 381 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 382 383 if (Missing > 0) 384 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 385 } 386 } 387 388 void CodeGenModule::Release() { 389 EmitDeferred(); 390 EmitVTablesOpportunistically(); 391 applyGlobalValReplacements(); 392 applyReplacements(); 393 checkAliases(); 394 EmitCXXGlobalInitFunc(); 395 EmitCXXGlobalDtorFunc(); 396 EmitCXXThreadLocalInitFunc(); 397 if (ObjCRuntime) 398 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 399 AddGlobalCtor(ObjCInitFunction); 400 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 401 CUDARuntime) { 402 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 403 AddGlobalCtor(CudaCtorFunction); 404 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 405 AddGlobalDtor(CudaDtorFunction); 406 } 407 if (OpenMPRuntime) 408 if (llvm::Function *OpenMPRegistrationFunction = 409 OpenMPRuntime->emitRegistrationFunction()) { 410 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 411 OpenMPRegistrationFunction : nullptr; 412 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 413 } 414 if (PGOReader) { 415 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 416 if (PGOStats.hasDiagnostics()) 417 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 418 } 419 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 420 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 421 EmitGlobalAnnotations(); 422 EmitStaticExternCAliases(); 423 EmitDeferredUnusedCoverageMappings(); 424 if (CoverageMapping) 425 CoverageMapping->emit(); 426 if (CodeGenOpts.SanitizeCfiCrossDso) { 427 CodeGenFunction(*this).EmitCfiCheckFail(); 428 CodeGenFunction(*this).EmitCfiCheckStub(); 429 } 430 emitAtAvailableLinkGuard(); 431 emitLLVMUsed(); 432 if (SanStats) 433 SanStats->finish(); 434 435 if (CodeGenOpts.Autolink && 436 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 437 EmitModuleLinkOptions(); 438 } 439 440 // Record mregparm value now so it is visible through rest of codegen. 441 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 442 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 443 CodeGenOpts.NumRegisterParameters); 444 445 if (CodeGenOpts.DwarfVersion) { 446 // We actually want the latest version when there are conflicts. 447 // We can change from Warning to Latest if such mode is supported. 448 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 449 CodeGenOpts.DwarfVersion); 450 } 451 if (CodeGenOpts.EmitCodeView) { 452 // Indicate that we want CodeView in the metadata. 453 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 454 } 455 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 456 // We don't support LTO with 2 with different StrictVTablePointers 457 // FIXME: we could support it by stripping all the information introduced 458 // by StrictVTablePointers. 459 460 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 461 462 llvm::Metadata *Ops[2] = { 463 llvm::MDString::get(VMContext, "StrictVTablePointers"), 464 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 465 llvm::Type::getInt32Ty(VMContext), 1))}; 466 467 getModule().addModuleFlag(llvm::Module::Require, 468 "StrictVTablePointersRequirement", 469 llvm::MDNode::get(VMContext, Ops)); 470 } 471 if (DebugInfo) 472 // We support a single version in the linked module. The LLVM 473 // parser will drop debug info with a different version number 474 // (and warn about it, too). 475 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 476 llvm::DEBUG_METADATA_VERSION); 477 478 // We need to record the widths of enums and wchar_t, so that we can generate 479 // the correct build attributes in the ARM backend. wchar_size is also used by 480 // TargetLibraryInfo. 481 uint64_t WCharWidth = 482 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 483 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 484 485 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 486 if ( Arch == llvm::Triple::arm 487 || Arch == llvm::Triple::armeb 488 || Arch == llvm::Triple::thumb 489 || Arch == llvm::Triple::thumbeb) { 490 // The minimum width of an enum in bytes 491 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 492 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 493 } 494 495 if (CodeGenOpts.SanitizeCfiCrossDso) { 496 // Indicate that we want cross-DSO control flow integrity checks. 497 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 498 } 499 500 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 501 // Indicate whether __nvvm_reflect should be configured to flush denormal 502 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 503 // property.) 504 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 505 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 506 } 507 508 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 509 if (LangOpts.OpenCL) { 510 EmitOpenCLMetadata(); 511 // Emit SPIR version. 512 if (getTriple().getArch() == llvm::Triple::spir || 513 getTriple().getArch() == llvm::Triple::spir64) { 514 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 515 // opencl.spir.version named metadata. 516 llvm::Metadata *SPIRVerElts[] = { 517 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 518 Int32Ty, LangOpts.OpenCLVersion / 100)), 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 521 llvm::NamedMDNode *SPIRVerMD = 522 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 523 llvm::LLVMContext &Ctx = TheModule.getContext(); 524 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 525 } 526 } 527 528 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 529 assert(PLevel < 3 && "Invalid PIC Level"); 530 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 531 if (Context.getLangOpts().PIE) 532 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 533 } 534 535 SimplifyPersonality(); 536 537 if (getCodeGenOpts().EmitDeclMetadata) 538 EmitDeclMetadata(); 539 540 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 541 EmitCoverageFile(); 542 543 if (DebugInfo) 544 DebugInfo->finalize(); 545 546 EmitVersionIdentMetadata(); 547 548 EmitTargetMetadata(); 549 } 550 551 void CodeGenModule::EmitOpenCLMetadata() { 552 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 553 // opencl.ocl.version named metadata node. 554 llvm::Metadata *OCLVerElts[] = { 555 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 556 Int32Ty, LangOpts.OpenCLVersion / 100)), 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 559 llvm::NamedMDNode *OCLVerMD = 560 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 561 llvm::LLVMContext &Ctx = TheModule.getContext(); 562 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 563 } 564 565 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 566 // Make sure that this type is translated. 567 Types.UpdateCompletedType(TD); 568 } 569 570 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 571 // Make sure that this type is translated. 572 Types.RefreshTypeCacheForClass(RD); 573 } 574 575 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 576 if (!TBAA) 577 return nullptr; 578 return TBAA->getTypeInfo(QTy); 579 } 580 581 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 582 return TBAAAccessInfo(getTBAATypeInfo(AccessType)); 583 } 584 585 TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo() { 586 if (!TBAA) 587 return TBAAAccessInfo(); 588 return TBAA->getVTablePtrAccessInfo(); 589 } 590 591 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 592 if (!TBAA) 593 return nullptr; 594 return TBAA->getTBAAStructInfo(QTy); 595 } 596 597 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 598 if (!TBAA) 599 return nullptr; 600 return TBAA->getBaseTypeInfo(QTy); 601 } 602 603 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 604 if (!TBAA) 605 return nullptr; 606 return TBAA->getAccessTagInfo(Info); 607 } 608 609 TBAAAccessInfo CodeGenModule::getTBAAMayAliasAccessInfo() { 610 if (!TBAA) 611 return TBAAAccessInfo(); 612 return TBAA->getMayAliasAccessInfo(); 613 } 614 615 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 616 TBAAAccessInfo TargetInfo) { 617 if (!TBAA) 618 return TBAAAccessInfo(); 619 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 620 } 621 622 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 623 TBAAAccessInfo TBAAInfo) { 624 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 625 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 626 } 627 628 void CodeGenModule::DecorateInstructionWithInvariantGroup( 629 llvm::Instruction *I, const CXXRecordDecl *RD) { 630 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 631 llvm::MDNode::get(getLLVMContext(), {})); 632 } 633 634 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 635 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 636 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 637 } 638 639 /// ErrorUnsupported - Print out an error that codegen doesn't support the 640 /// specified stmt yet. 641 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 642 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 643 "cannot compile this %0 yet"); 644 std::string Msg = Type; 645 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 646 << Msg << S->getSourceRange(); 647 } 648 649 /// ErrorUnsupported - Print out an error that codegen doesn't support the 650 /// specified decl yet. 651 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 652 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 653 "cannot compile this %0 yet"); 654 std::string Msg = Type; 655 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 656 } 657 658 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 659 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 660 } 661 662 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 663 const NamedDecl *D) const { 664 // Internal definitions always have default visibility. 665 if (GV->hasLocalLinkage()) { 666 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 667 return; 668 } 669 670 // Set visibility for definitions. 671 LinkageInfo LV = D->getLinkageAndVisibility(); 672 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 673 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 674 } 675 676 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 677 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 678 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 679 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 680 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 681 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 682 } 683 684 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 685 CodeGenOptions::TLSModel M) { 686 switch (M) { 687 case CodeGenOptions::GeneralDynamicTLSModel: 688 return llvm::GlobalVariable::GeneralDynamicTLSModel; 689 case CodeGenOptions::LocalDynamicTLSModel: 690 return llvm::GlobalVariable::LocalDynamicTLSModel; 691 case CodeGenOptions::InitialExecTLSModel: 692 return llvm::GlobalVariable::InitialExecTLSModel; 693 case CodeGenOptions::LocalExecTLSModel: 694 return llvm::GlobalVariable::LocalExecTLSModel; 695 } 696 llvm_unreachable("Invalid TLS model!"); 697 } 698 699 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 700 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 701 702 llvm::GlobalValue::ThreadLocalMode TLM; 703 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 704 705 // Override the TLS model if it is explicitly specified. 706 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 707 TLM = GetLLVMTLSModel(Attr->getModel()); 708 } 709 710 GV->setThreadLocalMode(TLM); 711 } 712 713 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 714 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 715 716 // Some ABIs don't have constructor variants. Make sure that base and 717 // complete constructors get mangled the same. 718 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 719 if (!getTarget().getCXXABI().hasConstructorVariants()) { 720 CXXCtorType OrigCtorType = GD.getCtorType(); 721 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 722 if (OrigCtorType == Ctor_Base) 723 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 724 } 725 } 726 727 auto FoundName = MangledDeclNames.find(CanonicalGD); 728 if (FoundName != MangledDeclNames.end()) 729 return FoundName->second; 730 731 const auto *ND = cast<NamedDecl>(GD.getDecl()); 732 SmallString<256> Buffer; 733 StringRef Str; 734 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 735 llvm::raw_svector_ostream Out(Buffer); 736 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 737 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 738 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 739 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 740 else 741 getCXXABI().getMangleContext().mangleName(ND, Out); 742 Str = Out.str(); 743 } else { 744 IdentifierInfo *II = ND->getIdentifier(); 745 assert(II && "Attempt to mangle unnamed decl."); 746 const auto *FD = dyn_cast<FunctionDecl>(ND); 747 748 if (FD && 749 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 750 llvm::raw_svector_ostream Out(Buffer); 751 Out << "__regcall3__" << II->getName(); 752 Str = Out.str(); 753 } else { 754 Str = II->getName(); 755 } 756 } 757 758 // Keep the first result in the case of a mangling collision. 759 auto Result = Manglings.insert(std::make_pair(Str, GD)); 760 return MangledDeclNames[CanonicalGD] = Result.first->first(); 761 } 762 763 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 764 const BlockDecl *BD) { 765 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 766 const Decl *D = GD.getDecl(); 767 768 SmallString<256> Buffer; 769 llvm::raw_svector_ostream Out(Buffer); 770 if (!D) 771 MangleCtx.mangleGlobalBlock(BD, 772 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 773 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 774 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 775 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 776 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 777 else 778 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 779 780 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 781 return Result.first->first(); 782 } 783 784 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 785 return getModule().getNamedValue(Name); 786 } 787 788 /// AddGlobalCtor - Add a function to the list that will be called before 789 /// main() runs. 790 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 791 llvm::Constant *AssociatedData) { 792 // FIXME: Type coercion of void()* types. 793 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 794 } 795 796 /// AddGlobalDtor - Add a function to the list that will be called 797 /// when the module is unloaded. 798 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 799 // FIXME: Type coercion of void()* types. 800 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 801 } 802 803 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 804 if (Fns.empty()) return; 805 806 // Ctor function type is void()*. 807 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 808 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 809 810 // Get the type of a ctor entry, { i32, void ()*, i8* }. 811 llvm::StructType *CtorStructTy = llvm::StructType::get( 812 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 813 814 // Construct the constructor and destructor arrays. 815 ConstantInitBuilder builder(*this); 816 auto ctors = builder.beginArray(CtorStructTy); 817 for (const auto &I : Fns) { 818 auto ctor = ctors.beginStruct(CtorStructTy); 819 ctor.addInt(Int32Ty, I.Priority); 820 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 821 if (I.AssociatedData) 822 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 823 else 824 ctor.addNullPointer(VoidPtrTy); 825 ctor.finishAndAddTo(ctors); 826 } 827 828 auto list = 829 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 830 /*constant*/ false, 831 llvm::GlobalValue::AppendingLinkage); 832 833 // The LTO linker doesn't seem to like it when we set an alignment 834 // on appending variables. Take it off as a workaround. 835 list->setAlignment(0); 836 837 Fns.clear(); 838 } 839 840 llvm::GlobalValue::LinkageTypes 841 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 842 const auto *D = cast<FunctionDecl>(GD.getDecl()); 843 844 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 845 846 if (isa<CXXDestructorDecl>(D) && 847 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 848 GD.getDtorType())) { 849 // Destructor variants in the Microsoft C++ ABI are always internal or 850 // linkonce_odr thunks emitted on an as-needed basis. 851 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 852 : llvm::GlobalValue::LinkOnceODRLinkage; 853 } 854 855 if (isa<CXXConstructorDecl>(D) && 856 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 857 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 858 // Our approach to inheriting constructors is fundamentally different from 859 // that used by the MS ABI, so keep our inheriting constructor thunks 860 // internal rather than trying to pick an unambiguous mangling for them. 861 return llvm::GlobalValue::InternalLinkage; 862 } 863 864 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 865 } 866 867 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 868 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 869 870 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 871 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 872 // Don't dllexport/import destructor thunks. 873 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 874 return; 875 } 876 } 877 878 if (FD->hasAttr<DLLImportAttr>()) 879 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 880 else if (FD->hasAttr<DLLExportAttr>()) 881 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 882 else 883 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 884 } 885 886 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 887 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 888 if (!MDS) return nullptr; 889 890 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 891 } 892 893 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 894 llvm::Function *F) { 895 setNonAliasAttributes(D, F); 896 } 897 898 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 899 const CGFunctionInfo &Info, 900 llvm::Function *F) { 901 unsigned CallingConv; 902 llvm::AttributeList PAL; 903 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 904 F->setAttributes(PAL); 905 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 906 } 907 908 /// Determines whether the language options require us to model 909 /// unwind exceptions. We treat -fexceptions as mandating this 910 /// except under the fragile ObjC ABI with only ObjC exceptions 911 /// enabled. This means, for example, that C with -fexceptions 912 /// enables this. 913 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 914 // If exceptions are completely disabled, obviously this is false. 915 if (!LangOpts.Exceptions) return false; 916 917 // If C++ exceptions are enabled, this is true. 918 if (LangOpts.CXXExceptions) return true; 919 920 // If ObjC exceptions are enabled, this depends on the ABI. 921 if (LangOpts.ObjCExceptions) { 922 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 923 } 924 925 return true; 926 } 927 928 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 929 llvm::Function *F) { 930 llvm::AttrBuilder B; 931 932 if (CodeGenOpts.UnwindTables) 933 B.addAttribute(llvm::Attribute::UWTable); 934 935 if (!hasUnwindExceptions(LangOpts)) 936 B.addAttribute(llvm::Attribute::NoUnwind); 937 938 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 939 B.addAttribute(llvm::Attribute::StackProtect); 940 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 941 B.addAttribute(llvm::Attribute::StackProtectStrong); 942 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 943 B.addAttribute(llvm::Attribute::StackProtectReq); 944 945 if (!D) { 946 // If we don't have a declaration to control inlining, the function isn't 947 // explicitly marked as alwaysinline for semantic reasons, and inlining is 948 // disabled, mark the function as noinline. 949 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 950 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 951 B.addAttribute(llvm::Attribute::NoInline); 952 953 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 954 return; 955 } 956 957 // Track whether we need to add the optnone LLVM attribute, 958 // starting with the default for this optimization level. 959 bool ShouldAddOptNone = 960 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 961 // We can't add optnone in the following cases, it won't pass the verifier. 962 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 963 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 964 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 965 966 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 967 B.addAttribute(llvm::Attribute::OptimizeNone); 968 969 // OptimizeNone implies noinline; we should not be inlining such functions. 970 B.addAttribute(llvm::Attribute::NoInline); 971 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 972 "OptimizeNone and AlwaysInline on same function!"); 973 974 // We still need to handle naked functions even though optnone subsumes 975 // much of their semantics. 976 if (D->hasAttr<NakedAttr>()) 977 B.addAttribute(llvm::Attribute::Naked); 978 979 // OptimizeNone wins over OptimizeForSize and MinSize. 980 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 981 F->removeFnAttr(llvm::Attribute::MinSize); 982 } else if (D->hasAttr<NakedAttr>()) { 983 // Naked implies noinline: we should not be inlining such functions. 984 B.addAttribute(llvm::Attribute::Naked); 985 B.addAttribute(llvm::Attribute::NoInline); 986 } else if (D->hasAttr<NoDuplicateAttr>()) { 987 B.addAttribute(llvm::Attribute::NoDuplicate); 988 } else if (D->hasAttr<NoInlineAttr>()) { 989 B.addAttribute(llvm::Attribute::NoInline); 990 } else if (D->hasAttr<AlwaysInlineAttr>() && 991 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 992 // (noinline wins over always_inline, and we can't specify both in IR) 993 B.addAttribute(llvm::Attribute::AlwaysInline); 994 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 995 // If we're not inlining, then force everything that isn't always_inline to 996 // carry an explicit noinline attribute. 997 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 998 B.addAttribute(llvm::Attribute::NoInline); 999 } else { 1000 // Otherwise, propagate the inline hint attribute and potentially use its 1001 // absence to mark things as noinline. 1002 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1003 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1004 return Redecl->isInlineSpecified(); 1005 })) { 1006 B.addAttribute(llvm::Attribute::InlineHint); 1007 } else if (CodeGenOpts.getInlining() == 1008 CodeGenOptions::OnlyHintInlining && 1009 !FD->isInlined() && 1010 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1011 B.addAttribute(llvm::Attribute::NoInline); 1012 } 1013 } 1014 } 1015 1016 // Add other optimization related attributes if we are optimizing this 1017 // function. 1018 if (!D->hasAttr<OptimizeNoneAttr>()) { 1019 if (D->hasAttr<ColdAttr>()) { 1020 if (!ShouldAddOptNone) 1021 B.addAttribute(llvm::Attribute::OptimizeForSize); 1022 B.addAttribute(llvm::Attribute::Cold); 1023 } 1024 1025 if (D->hasAttr<MinSizeAttr>()) 1026 B.addAttribute(llvm::Attribute::MinSize); 1027 } 1028 1029 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1030 1031 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1032 if (alignment) 1033 F->setAlignment(alignment); 1034 1035 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1036 // reserve a bit for differentiating between virtual and non-virtual member 1037 // functions. If the current target's C++ ABI requires this and this is a 1038 // member function, set its alignment accordingly. 1039 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1040 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1041 F->setAlignment(2); 1042 } 1043 1044 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1045 if (CodeGenOpts.SanitizeCfiCrossDso) 1046 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1047 CreateFunctionTypeMetadata(FD, F); 1048 } 1049 1050 void CodeGenModule::SetCommonAttributes(const Decl *D, 1051 llvm::GlobalValue *GV) { 1052 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1053 setGlobalVisibility(GV, ND); 1054 else 1055 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1056 1057 if (D && D->hasAttr<UsedAttr>()) 1058 addUsedGlobal(GV); 1059 } 1060 1061 void CodeGenModule::setAliasAttributes(const Decl *D, 1062 llvm::GlobalValue *GV) { 1063 SetCommonAttributes(D, GV); 1064 1065 // Process the dllexport attribute based on whether the original definition 1066 // (not necessarily the aliasee) was exported. 1067 if (D->hasAttr<DLLExportAttr>()) 1068 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1069 } 1070 1071 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1072 llvm::GlobalObject *GO) { 1073 SetCommonAttributes(D, GO); 1074 1075 if (D) { 1076 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1077 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1078 GV->addAttribute("bss-section", SA->getName()); 1079 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1080 GV->addAttribute("data-section", SA->getName()); 1081 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1082 GV->addAttribute("rodata-section", SA->getName()); 1083 } 1084 1085 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1086 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1087 if (!D->getAttr<SectionAttr>()) 1088 F->addFnAttr("implicit-section-name", SA->getName()); 1089 } 1090 1091 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1092 GO->setSection(SA->getName()); 1093 } 1094 1095 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1096 } 1097 1098 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1099 llvm::Function *F, 1100 const CGFunctionInfo &FI) { 1101 SetLLVMFunctionAttributes(D, FI, F); 1102 SetLLVMFunctionAttributesForDefinition(D, F); 1103 1104 F->setLinkage(llvm::Function::InternalLinkage); 1105 1106 setNonAliasAttributes(D, F); 1107 } 1108 1109 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 1110 const NamedDecl *ND) { 1111 // Set linkage and visibility in case we never see a definition. 1112 LinkageInfo LV = ND->getLinkageAndVisibility(); 1113 if (!isExternallyVisible(LV.getLinkage())) { 1114 // Don't set internal linkage on declarations. 1115 } else { 1116 if (ND->hasAttr<DLLImportAttr>()) { 1117 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1118 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1119 } else if (ND->hasAttr<DLLExportAttr>()) { 1120 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1121 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1122 // "extern_weak" is overloaded in LLVM; we probably should have 1123 // separate linkage types for this. 1124 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1125 } 1126 1127 // Set visibility on a declaration only if it's explicit. 1128 if (LV.isVisibilityExplicit()) 1129 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 1130 } 1131 } 1132 1133 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1134 llvm::Function *F) { 1135 // Only if we are checking indirect calls. 1136 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1137 return; 1138 1139 // Non-static class methods are handled via vtable pointer checks elsewhere. 1140 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1141 return; 1142 1143 // Additionally, if building with cross-DSO support... 1144 if (CodeGenOpts.SanitizeCfiCrossDso) { 1145 // Skip available_externally functions. They won't be codegen'ed in the 1146 // current module anyway. 1147 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1148 return; 1149 } 1150 1151 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1152 F->addTypeMetadata(0, MD); 1153 1154 // Emit a hash-based bit set entry for cross-DSO calls. 1155 if (CodeGenOpts.SanitizeCfiCrossDso) 1156 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1157 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1158 } 1159 1160 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1161 bool IsIncompleteFunction, 1162 bool IsThunk, 1163 ForDefinition_t IsForDefinition) { 1164 1165 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1166 // If this is an intrinsic function, set the function's attributes 1167 // to the intrinsic's attributes. 1168 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1169 return; 1170 } 1171 1172 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1173 1174 if (!IsIncompleteFunction) { 1175 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1176 // Setup target-specific attributes. 1177 if (!IsForDefinition) 1178 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1179 NotForDefinition); 1180 } 1181 1182 // Add the Returned attribute for "this", except for iOS 5 and earlier 1183 // where substantial code, including the libstdc++ dylib, was compiled with 1184 // GCC and does not actually return "this". 1185 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1186 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1187 assert(!F->arg_empty() && 1188 F->arg_begin()->getType() 1189 ->canLosslesslyBitCastTo(F->getReturnType()) && 1190 "unexpected this return"); 1191 F->addAttribute(1, llvm::Attribute::Returned); 1192 } 1193 1194 // Only a few attributes are set on declarations; these may later be 1195 // overridden by a definition. 1196 1197 setLinkageAndVisibilityForGV(F, FD); 1198 1199 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1200 F->addFnAttr("implicit-section-name"); 1201 } 1202 1203 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1204 F->setSection(SA->getName()); 1205 1206 if (FD->isReplaceableGlobalAllocationFunction()) { 1207 // A replaceable global allocation function does not act like a builtin by 1208 // default, only if it is invoked by a new-expression or delete-expression. 1209 F->addAttribute(llvm::AttributeList::FunctionIndex, 1210 llvm::Attribute::NoBuiltin); 1211 1212 // A sane operator new returns a non-aliasing pointer. 1213 // FIXME: Also add NonNull attribute to the return value 1214 // for the non-nothrow forms? 1215 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1216 if (getCodeGenOpts().AssumeSaneOperatorNew && 1217 (Kind == OO_New || Kind == OO_Array_New)) 1218 F->addAttribute(llvm::AttributeList::ReturnIndex, 1219 llvm::Attribute::NoAlias); 1220 } 1221 1222 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1223 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1224 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1225 if (MD->isVirtual()) 1226 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1227 1228 // Don't emit entries for function declarations in the cross-DSO mode. This 1229 // is handled with better precision by the receiving DSO. 1230 if (!CodeGenOpts.SanitizeCfiCrossDso) 1231 CreateFunctionTypeMetadata(FD, F); 1232 } 1233 1234 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1235 assert(!GV->isDeclaration() && 1236 "Only globals with definition can force usage."); 1237 LLVMUsed.emplace_back(GV); 1238 } 1239 1240 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1241 assert(!GV->isDeclaration() && 1242 "Only globals with definition can force usage."); 1243 LLVMCompilerUsed.emplace_back(GV); 1244 } 1245 1246 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1247 std::vector<llvm::WeakTrackingVH> &List) { 1248 // Don't create llvm.used if there is no need. 1249 if (List.empty()) 1250 return; 1251 1252 // Convert List to what ConstantArray needs. 1253 SmallVector<llvm::Constant*, 8> UsedArray; 1254 UsedArray.resize(List.size()); 1255 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1256 UsedArray[i] = 1257 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1258 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1259 } 1260 1261 if (UsedArray.empty()) 1262 return; 1263 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1264 1265 auto *GV = new llvm::GlobalVariable( 1266 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1267 llvm::ConstantArray::get(ATy, UsedArray), Name); 1268 1269 GV->setSection("llvm.metadata"); 1270 } 1271 1272 void CodeGenModule::emitLLVMUsed() { 1273 emitUsed(*this, "llvm.used", LLVMUsed); 1274 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1275 } 1276 1277 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1278 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1279 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1280 } 1281 1282 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1283 llvm::SmallString<32> Opt; 1284 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1285 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1286 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1287 } 1288 1289 void CodeGenModule::AddDependentLib(StringRef Lib) { 1290 llvm::SmallString<24> Opt; 1291 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1292 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1293 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1294 } 1295 1296 /// \brief Add link options implied by the given module, including modules 1297 /// it depends on, using a postorder walk. 1298 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1299 SmallVectorImpl<llvm::MDNode *> &Metadata, 1300 llvm::SmallPtrSet<Module *, 16> &Visited) { 1301 // Import this module's parent. 1302 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1303 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1304 } 1305 1306 // Import this module's dependencies. 1307 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1308 if (Visited.insert(Mod->Imports[I - 1]).second) 1309 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1310 } 1311 1312 // Add linker options to link against the libraries/frameworks 1313 // described by this module. 1314 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1315 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1316 // Link against a framework. Frameworks are currently Darwin only, so we 1317 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1318 if (Mod->LinkLibraries[I-1].IsFramework) { 1319 llvm::Metadata *Args[2] = { 1320 llvm::MDString::get(Context, "-framework"), 1321 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1322 1323 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1324 continue; 1325 } 1326 1327 // Link against a library. 1328 llvm::SmallString<24> Opt; 1329 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1330 Mod->LinkLibraries[I-1].Library, Opt); 1331 auto *OptString = llvm::MDString::get(Context, Opt); 1332 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1333 } 1334 } 1335 1336 void CodeGenModule::EmitModuleLinkOptions() { 1337 // Collect the set of all of the modules we want to visit to emit link 1338 // options, which is essentially the imported modules and all of their 1339 // non-explicit child modules. 1340 llvm::SetVector<clang::Module *> LinkModules; 1341 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1342 SmallVector<clang::Module *, 16> Stack; 1343 1344 // Seed the stack with imported modules. 1345 for (Module *M : ImportedModules) { 1346 // Do not add any link flags when an implementation TU of a module imports 1347 // a header of that same module. 1348 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1349 !getLangOpts().isCompilingModule()) 1350 continue; 1351 if (Visited.insert(M).second) 1352 Stack.push_back(M); 1353 } 1354 1355 // Find all of the modules to import, making a little effort to prune 1356 // non-leaf modules. 1357 while (!Stack.empty()) { 1358 clang::Module *Mod = Stack.pop_back_val(); 1359 1360 bool AnyChildren = false; 1361 1362 // Visit the submodules of this module. 1363 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1364 SubEnd = Mod->submodule_end(); 1365 Sub != SubEnd; ++Sub) { 1366 // Skip explicit children; they need to be explicitly imported to be 1367 // linked against. 1368 if ((*Sub)->IsExplicit) 1369 continue; 1370 1371 if (Visited.insert(*Sub).second) { 1372 Stack.push_back(*Sub); 1373 AnyChildren = true; 1374 } 1375 } 1376 1377 // We didn't find any children, so add this module to the list of 1378 // modules to link against. 1379 if (!AnyChildren) { 1380 LinkModules.insert(Mod); 1381 } 1382 } 1383 1384 // Add link options for all of the imported modules in reverse topological 1385 // order. We don't do anything to try to order import link flags with respect 1386 // to linker options inserted by things like #pragma comment(). 1387 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1388 Visited.clear(); 1389 for (Module *M : LinkModules) 1390 if (Visited.insert(M).second) 1391 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1392 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1393 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1394 1395 // Add the linker options metadata flag. 1396 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1397 for (auto *MD : LinkerOptionsMetadata) 1398 NMD->addOperand(MD); 1399 } 1400 1401 void CodeGenModule::EmitDeferred() { 1402 // Emit code for any potentially referenced deferred decls. Since a 1403 // previously unused static decl may become used during the generation of code 1404 // for a static function, iterate until no changes are made. 1405 1406 if (!DeferredVTables.empty()) { 1407 EmitDeferredVTables(); 1408 1409 // Emitting a vtable doesn't directly cause more vtables to 1410 // become deferred, although it can cause functions to be 1411 // emitted that then need those vtables. 1412 assert(DeferredVTables.empty()); 1413 } 1414 1415 // Stop if we're out of both deferred vtables and deferred declarations. 1416 if (DeferredDeclsToEmit.empty()) 1417 return; 1418 1419 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1420 // work, it will not interfere with this. 1421 std::vector<GlobalDecl> CurDeclsToEmit; 1422 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1423 1424 for (GlobalDecl &D : CurDeclsToEmit) { 1425 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1426 // to get GlobalValue with exactly the type we need, not something that 1427 // might had been created for another decl with the same mangled name but 1428 // different type. 1429 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1430 GetAddrOfGlobal(D, ForDefinition)); 1431 1432 // In case of different address spaces, we may still get a cast, even with 1433 // IsForDefinition equal to true. Query mangled names table to get 1434 // GlobalValue. 1435 if (!GV) 1436 GV = GetGlobalValue(getMangledName(D)); 1437 1438 // Make sure GetGlobalValue returned non-null. 1439 assert(GV); 1440 1441 // Check to see if we've already emitted this. This is necessary 1442 // for a couple of reasons: first, decls can end up in the 1443 // deferred-decls queue multiple times, and second, decls can end 1444 // up with definitions in unusual ways (e.g. by an extern inline 1445 // function acquiring a strong function redefinition). Just 1446 // ignore these cases. 1447 if (!GV->isDeclaration()) 1448 continue; 1449 1450 // Otherwise, emit the definition and move on to the next one. 1451 EmitGlobalDefinition(D, GV); 1452 1453 // If we found out that we need to emit more decls, do that recursively. 1454 // This has the advantage that the decls are emitted in a DFS and related 1455 // ones are close together, which is convenient for testing. 1456 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1457 EmitDeferred(); 1458 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1459 } 1460 } 1461 } 1462 1463 void CodeGenModule::EmitVTablesOpportunistically() { 1464 // Try to emit external vtables as available_externally if they have emitted 1465 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1466 // is not allowed to create new references to things that need to be emitted 1467 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1468 1469 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1470 && "Only emit opportunistic vtables with optimizations"); 1471 1472 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1473 assert(getVTables().isVTableExternal(RD) && 1474 "This queue should only contain external vtables"); 1475 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1476 VTables.GenerateClassData(RD); 1477 } 1478 OpportunisticVTables.clear(); 1479 } 1480 1481 void CodeGenModule::EmitGlobalAnnotations() { 1482 if (Annotations.empty()) 1483 return; 1484 1485 // Create a new global variable for the ConstantStruct in the Module. 1486 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1487 Annotations[0]->getType(), Annotations.size()), Annotations); 1488 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1489 llvm::GlobalValue::AppendingLinkage, 1490 Array, "llvm.global.annotations"); 1491 gv->setSection(AnnotationSection); 1492 } 1493 1494 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1495 llvm::Constant *&AStr = AnnotationStrings[Str]; 1496 if (AStr) 1497 return AStr; 1498 1499 // Not found yet, create a new global. 1500 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1501 auto *gv = 1502 new llvm::GlobalVariable(getModule(), s->getType(), true, 1503 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1504 gv->setSection(AnnotationSection); 1505 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1506 AStr = gv; 1507 return gv; 1508 } 1509 1510 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1511 SourceManager &SM = getContext().getSourceManager(); 1512 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1513 if (PLoc.isValid()) 1514 return EmitAnnotationString(PLoc.getFilename()); 1515 return EmitAnnotationString(SM.getBufferName(Loc)); 1516 } 1517 1518 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1519 SourceManager &SM = getContext().getSourceManager(); 1520 PresumedLoc PLoc = SM.getPresumedLoc(L); 1521 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1522 SM.getExpansionLineNumber(L); 1523 return llvm::ConstantInt::get(Int32Ty, LineNo); 1524 } 1525 1526 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1527 const AnnotateAttr *AA, 1528 SourceLocation L) { 1529 // Get the globals for file name, annotation, and the line number. 1530 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1531 *UnitGV = EmitAnnotationUnit(L), 1532 *LineNoCst = EmitAnnotationLineNo(L); 1533 1534 // Create the ConstantStruct for the global annotation. 1535 llvm::Constant *Fields[4] = { 1536 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1537 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1538 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1539 LineNoCst 1540 }; 1541 return llvm::ConstantStruct::getAnon(Fields); 1542 } 1543 1544 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1545 llvm::GlobalValue *GV) { 1546 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1547 // Get the struct elements for these annotations. 1548 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1549 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1550 } 1551 1552 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1553 llvm::Function *Fn, 1554 SourceLocation Loc) const { 1555 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1556 // Blacklist by function name. 1557 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1558 return true; 1559 // Blacklist by location. 1560 if (Loc.isValid()) 1561 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1562 // If location is unknown, this may be a compiler-generated function. Assume 1563 // it's located in the main file. 1564 auto &SM = Context.getSourceManager(); 1565 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1566 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1567 } 1568 return false; 1569 } 1570 1571 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1572 SourceLocation Loc, QualType Ty, 1573 StringRef Category) const { 1574 // For now globals can be blacklisted only in ASan and KASan. 1575 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1576 (SanitizerKind::Address | SanitizerKind::KernelAddress); 1577 if (!EnabledAsanMask) 1578 return false; 1579 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1580 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1581 return true; 1582 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1583 return true; 1584 // Check global type. 1585 if (!Ty.isNull()) { 1586 // Drill down the array types: if global variable of a fixed type is 1587 // blacklisted, we also don't instrument arrays of them. 1588 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1589 Ty = AT->getElementType(); 1590 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1591 // We allow to blacklist only record types (classes, structs etc.) 1592 if (Ty->isRecordType()) { 1593 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1594 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1595 return true; 1596 } 1597 } 1598 return false; 1599 } 1600 1601 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1602 StringRef Category) const { 1603 if (!LangOpts.XRayInstrument) 1604 return false; 1605 const auto &XRayFilter = getContext().getXRayFilter(); 1606 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1607 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1608 if (Loc.isValid()) 1609 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1610 if (Attr == ImbueAttr::NONE) 1611 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1612 switch (Attr) { 1613 case ImbueAttr::NONE: 1614 return false; 1615 case ImbueAttr::ALWAYS: 1616 Fn->addFnAttr("function-instrument", "xray-always"); 1617 break; 1618 case ImbueAttr::ALWAYS_ARG1: 1619 Fn->addFnAttr("function-instrument", "xray-always"); 1620 Fn->addFnAttr("xray-log-args", "1"); 1621 break; 1622 case ImbueAttr::NEVER: 1623 Fn->addFnAttr("function-instrument", "xray-never"); 1624 break; 1625 } 1626 return true; 1627 } 1628 1629 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1630 // Never defer when EmitAllDecls is specified. 1631 if (LangOpts.EmitAllDecls) 1632 return true; 1633 1634 return getContext().DeclMustBeEmitted(Global); 1635 } 1636 1637 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1638 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1639 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1640 // Implicit template instantiations may change linkage if they are later 1641 // explicitly instantiated, so they should not be emitted eagerly. 1642 return false; 1643 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1644 if (Context.getInlineVariableDefinitionKind(VD) == 1645 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1646 // A definition of an inline constexpr static data member may change 1647 // linkage later if it's redeclared outside the class. 1648 return false; 1649 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1650 // codegen for global variables, because they may be marked as threadprivate. 1651 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1652 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1653 return false; 1654 1655 return true; 1656 } 1657 1658 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1659 const CXXUuidofExpr* E) { 1660 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1661 // well-formed. 1662 StringRef Uuid = E->getUuidStr(); 1663 std::string Name = "_GUID_" + Uuid.lower(); 1664 std::replace(Name.begin(), Name.end(), '-', '_'); 1665 1666 // The UUID descriptor should be pointer aligned. 1667 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1668 1669 // Look for an existing global. 1670 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1671 return ConstantAddress(GV, Alignment); 1672 1673 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1674 assert(Init && "failed to initialize as constant"); 1675 1676 auto *GV = new llvm::GlobalVariable( 1677 getModule(), Init->getType(), 1678 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1679 if (supportsCOMDAT()) 1680 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1681 return ConstantAddress(GV, Alignment); 1682 } 1683 1684 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1685 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1686 assert(AA && "No alias?"); 1687 1688 CharUnits Alignment = getContext().getDeclAlign(VD); 1689 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1690 1691 // See if there is already something with the target's name in the module. 1692 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1693 if (Entry) { 1694 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1695 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1696 return ConstantAddress(Ptr, Alignment); 1697 } 1698 1699 llvm::Constant *Aliasee; 1700 if (isa<llvm::FunctionType>(DeclTy)) 1701 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1702 GlobalDecl(cast<FunctionDecl>(VD)), 1703 /*ForVTable=*/false); 1704 else 1705 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1706 llvm::PointerType::getUnqual(DeclTy), 1707 nullptr); 1708 1709 auto *F = cast<llvm::GlobalValue>(Aliasee); 1710 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1711 WeakRefReferences.insert(F); 1712 1713 return ConstantAddress(Aliasee, Alignment); 1714 } 1715 1716 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1717 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1718 1719 // Weak references don't produce any output by themselves. 1720 if (Global->hasAttr<WeakRefAttr>()) 1721 return; 1722 1723 // If this is an alias definition (which otherwise looks like a declaration) 1724 // emit it now. 1725 if (Global->hasAttr<AliasAttr>()) 1726 return EmitAliasDefinition(GD); 1727 1728 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1729 if (Global->hasAttr<IFuncAttr>()) 1730 return emitIFuncDefinition(GD); 1731 1732 // If this is CUDA, be selective about which declarations we emit. 1733 if (LangOpts.CUDA) { 1734 if (LangOpts.CUDAIsDevice) { 1735 if (!Global->hasAttr<CUDADeviceAttr>() && 1736 !Global->hasAttr<CUDAGlobalAttr>() && 1737 !Global->hasAttr<CUDAConstantAttr>() && 1738 !Global->hasAttr<CUDASharedAttr>()) 1739 return; 1740 } else { 1741 // We need to emit host-side 'shadows' for all global 1742 // device-side variables because the CUDA runtime needs their 1743 // size and host-side address in order to provide access to 1744 // their device-side incarnations. 1745 1746 // So device-only functions are the only things we skip. 1747 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1748 Global->hasAttr<CUDADeviceAttr>()) 1749 return; 1750 1751 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1752 "Expected Variable or Function"); 1753 } 1754 } 1755 1756 if (LangOpts.OpenMP) { 1757 // If this is OpenMP device, check if it is legal to emit this global 1758 // normally. 1759 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1760 return; 1761 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1762 if (MustBeEmitted(Global)) 1763 EmitOMPDeclareReduction(DRD); 1764 return; 1765 } 1766 } 1767 1768 // Ignore declarations, they will be emitted on their first use. 1769 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1770 // Forward declarations are emitted lazily on first use. 1771 if (!FD->doesThisDeclarationHaveABody()) { 1772 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1773 return; 1774 1775 StringRef MangledName = getMangledName(GD); 1776 1777 // Compute the function info and LLVM type. 1778 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1779 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1780 1781 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1782 /*DontDefer=*/false); 1783 return; 1784 } 1785 } else { 1786 const auto *VD = cast<VarDecl>(Global); 1787 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1788 // We need to emit device-side global CUDA variables even if a 1789 // variable does not have a definition -- we still need to define 1790 // host-side shadow for it. 1791 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1792 !VD->hasDefinition() && 1793 (VD->hasAttr<CUDAConstantAttr>() || 1794 VD->hasAttr<CUDADeviceAttr>()); 1795 if (!MustEmitForCuda && 1796 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1797 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1798 // If this declaration may have caused an inline variable definition to 1799 // change linkage, make sure that it's emitted. 1800 if (Context.getInlineVariableDefinitionKind(VD) == 1801 ASTContext::InlineVariableDefinitionKind::Strong) 1802 GetAddrOfGlobalVar(VD); 1803 return; 1804 } 1805 } 1806 1807 // Defer code generation to first use when possible, e.g. if this is an inline 1808 // function. If the global must always be emitted, do it eagerly if possible 1809 // to benefit from cache locality. 1810 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1811 // Emit the definition if it can't be deferred. 1812 EmitGlobalDefinition(GD); 1813 return; 1814 } 1815 1816 // If we're deferring emission of a C++ variable with an 1817 // initializer, remember the order in which it appeared in the file. 1818 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1819 cast<VarDecl>(Global)->hasInit()) { 1820 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1821 CXXGlobalInits.push_back(nullptr); 1822 } 1823 1824 StringRef MangledName = getMangledName(GD); 1825 if (GetGlobalValue(MangledName) != nullptr) { 1826 // The value has already been used and should therefore be emitted. 1827 addDeferredDeclToEmit(GD); 1828 } else if (MustBeEmitted(Global)) { 1829 // The value must be emitted, but cannot be emitted eagerly. 1830 assert(!MayBeEmittedEagerly(Global)); 1831 addDeferredDeclToEmit(GD); 1832 } else { 1833 // Otherwise, remember that we saw a deferred decl with this name. The 1834 // first use of the mangled name will cause it to move into 1835 // DeferredDeclsToEmit. 1836 DeferredDecls[MangledName] = GD; 1837 } 1838 } 1839 1840 // Check if T is a class type with a destructor that's not dllimport. 1841 static bool HasNonDllImportDtor(QualType T) { 1842 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1843 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1844 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1845 return true; 1846 1847 return false; 1848 } 1849 1850 namespace { 1851 struct FunctionIsDirectlyRecursive : 1852 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1853 const StringRef Name; 1854 const Builtin::Context &BI; 1855 bool Result; 1856 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1857 Name(N), BI(C), Result(false) { 1858 } 1859 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1860 1861 bool TraverseCallExpr(CallExpr *E) { 1862 const FunctionDecl *FD = E->getDirectCallee(); 1863 if (!FD) 1864 return true; 1865 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1866 if (Attr && Name == Attr->getLabel()) { 1867 Result = true; 1868 return false; 1869 } 1870 unsigned BuiltinID = FD->getBuiltinID(); 1871 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1872 return true; 1873 StringRef BuiltinName = BI.getName(BuiltinID); 1874 if (BuiltinName.startswith("__builtin_") && 1875 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1876 Result = true; 1877 return false; 1878 } 1879 return true; 1880 } 1881 }; 1882 1883 // Make sure we're not referencing non-imported vars or functions. 1884 struct DLLImportFunctionVisitor 1885 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1886 bool SafeToInline = true; 1887 1888 bool shouldVisitImplicitCode() const { return true; } 1889 1890 bool VisitVarDecl(VarDecl *VD) { 1891 if (VD->getTLSKind()) { 1892 // A thread-local variable cannot be imported. 1893 SafeToInline = false; 1894 return SafeToInline; 1895 } 1896 1897 // A variable definition might imply a destructor call. 1898 if (VD->isThisDeclarationADefinition()) 1899 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1900 1901 return SafeToInline; 1902 } 1903 1904 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1905 if (const auto *D = E->getTemporary()->getDestructor()) 1906 SafeToInline = D->hasAttr<DLLImportAttr>(); 1907 return SafeToInline; 1908 } 1909 1910 bool VisitDeclRefExpr(DeclRefExpr *E) { 1911 ValueDecl *VD = E->getDecl(); 1912 if (isa<FunctionDecl>(VD)) 1913 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1914 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1915 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1916 return SafeToInline; 1917 } 1918 1919 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1920 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1921 return SafeToInline; 1922 } 1923 1924 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1925 CXXMethodDecl *M = E->getMethodDecl(); 1926 if (!M) { 1927 // Call through a pointer to member function. This is safe to inline. 1928 SafeToInline = true; 1929 } else { 1930 SafeToInline = M->hasAttr<DLLImportAttr>(); 1931 } 1932 return SafeToInline; 1933 } 1934 1935 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1936 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1937 return SafeToInline; 1938 } 1939 1940 bool VisitCXXNewExpr(CXXNewExpr *E) { 1941 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1942 return SafeToInline; 1943 } 1944 }; 1945 } 1946 1947 // isTriviallyRecursive - Check if this function calls another 1948 // decl that, because of the asm attribute or the other decl being a builtin, 1949 // ends up pointing to itself. 1950 bool 1951 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1952 StringRef Name; 1953 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1954 // asm labels are a special kind of mangling we have to support. 1955 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1956 if (!Attr) 1957 return false; 1958 Name = Attr->getLabel(); 1959 } else { 1960 Name = FD->getName(); 1961 } 1962 1963 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1964 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1965 return Walker.Result; 1966 } 1967 1968 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1969 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1970 return true; 1971 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1972 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1973 return false; 1974 1975 if (F->hasAttr<DLLImportAttr>()) { 1976 // Check whether it would be safe to inline this dllimport function. 1977 DLLImportFunctionVisitor Visitor; 1978 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1979 if (!Visitor.SafeToInline) 1980 return false; 1981 1982 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1983 // Implicit destructor invocations aren't captured in the AST, so the 1984 // check above can't see them. Check for them manually here. 1985 for (const Decl *Member : Dtor->getParent()->decls()) 1986 if (isa<FieldDecl>(Member)) 1987 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 1988 return false; 1989 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 1990 if (HasNonDllImportDtor(B.getType())) 1991 return false; 1992 } 1993 } 1994 1995 // PR9614. Avoid cases where the source code is lying to us. An available 1996 // externally function should have an equivalent function somewhere else, 1997 // but a function that calls itself is clearly not equivalent to the real 1998 // implementation. 1999 // This happens in glibc's btowc and in some configure checks. 2000 return !isTriviallyRecursive(F); 2001 } 2002 2003 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2004 return CodeGenOpts.OptimizationLevel > 0; 2005 } 2006 2007 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2008 const auto *D = cast<ValueDecl>(GD.getDecl()); 2009 2010 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2011 Context.getSourceManager(), 2012 "Generating code for declaration"); 2013 2014 if (isa<FunctionDecl>(D)) { 2015 // At -O0, don't generate IR for functions with available_externally 2016 // linkage. 2017 if (!shouldEmitFunction(GD)) 2018 return; 2019 2020 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2021 // Make sure to emit the definition(s) before we emit the thunks. 2022 // This is necessary for the generation of certain thunks. 2023 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2024 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2025 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2026 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2027 else 2028 EmitGlobalFunctionDefinition(GD, GV); 2029 2030 if (Method->isVirtual()) 2031 getVTables().EmitThunks(GD); 2032 2033 return; 2034 } 2035 2036 return EmitGlobalFunctionDefinition(GD, GV); 2037 } 2038 2039 if (const auto *VD = dyn_cast<VarDecl>(D)) 2040 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2041 2042 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2043 } 2044 2045 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2046 llvm::Function *NewFn); 2047 2048 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2049 /// module, create and return an llvm Function with the specified type. If there 2050 /// is something in the module with the specified name, return it potentially 2051 /// bitcasted to the right type. 2052 /// 2053 /// If D is non-null, it specifies a decl that correspond to this. This is used 2054 /// to set the attributes on the function when it is first created. 2055 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2056 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2057 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2058 ForDefinition_t IsForDefinition) { 2059 const Decl *D = GD.getDecl(); 2060 2061 // Lookup the entry, lazily creating it if necessary. 2062 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2063 if (Entry) { 2064 if (WeakRefReferences.erase(Entry)) { 2065 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2066 if (FD && !FD->hasAttr<WeakAttr>()) 2067 Entry->setLinkage(llvm::Function::ExternalLinkage); 2068 } 2069 2070 // Handle dropped DLL attributes. 2071 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2072 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2073 2074 // If there are two attempts to define the same mangled name, issue an 2075 // error. 2076 if (IsForDefinition && !Entry->isDeclaration()) { 2077 GlobalDecl OtherGD; 2078 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2079 // to make sure that we issue an error only once. 2080 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2081 (GD.getCanonicalDecl().getDecl() != 2082 OtherGD.getCanonicalDecl().getDecl()) && 2083 DiagnosedConflictingDefinitions.insert(GD).second) { 2084 getDiags().Report(D->getLocation(), 2085 diag::err_duplicate_mangled_name); 2086 getDiags().Report(OtherGD.getDecl()->getLocation(), 2087 diag::note_previous_definition); 2088 } 2089 } 2090 2091 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2092 (Entry->getType()->getElementType() == Ty)) { 2093 return Entry; 2094 } 2095 2096 // Make sure the result is of the correct type. 2097 // (If function is requested for a definition, we always need to create a new 2098 // function, not just return a bitcast.) 2099 if (!IsForDefinition) 2100 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2101 } 2102 2103 // This function doesn't have a complete type (for example, the return 2104 // type is an incomplete struct). Use a fake type instead, and make 2105 // sure not to try to set attributes. 2106 bool IsIncompleteFunction = false; 2107 2108 llvm::FunctionType *FTy; 2109 if (isa<llvm::FunctionType>(Ty)) { 2110 FTy = cast<llvm::FunctionType>(Ty); 2111 } else { 2112 FTy = llvm::FunctionType::get(VoidTy, false); 2113 IsIncompleteFunction = true; 2114 } 2115 2116 llvm::Function *F = 2117 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2118 Entry ? StringRef() : MangledName, &getModule()); 2119 2120 // If we already created a function with the same mangled name (but different 2121 // type) before, take its name and add it to the list of functions to be 2122 // replaced with F at the end of CodeGen. 2123 // 2124 // This happens if there is a prototype for a function (e.g. "int f()") and 2125 // then a definition of a different type (e.g. "int f(int x)"). 2126 if (Entry) { 2127 F->takeName(Entry); 2128 2129 // This might be an implementation of a function without a prototype, in 2130 // which case, try to do special replacement of calls which match the new 2131 // prototype. The really key thing here is that we also potentially drop 2132 // arguments from the call site so as to make a direct call, which makes the 2133 // inliner happier and suppresses a number of optimizer warnings (!) about 2134 // dropping arguments. 2135 if (!Entry->use_empty()) { 2136 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2137 Entry->removeDeadConstantUsers(); 2138 } 2139 2140 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2141 F, Entry->getType()->getElementType()->getPointerTo()); 2142 addGlobalValReplacement(Entry, BC); 2143 } 2144 2145 assert(F->getName() == MangledName && "name was uniqued!"); 2146 if (D) 2147 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2148 IsForDefinition); 2149 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2150 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2151 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2152 } 2153 2154 if (!DontDefer) { 2155 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2156 // each other bottoming out with the base dtor. Therefore we emit non-base 2157 // dtors on usage, even if there is no dtor definition in the TU. 2158 if (D && isa<CXXDestructorDecl>(D) && 2159 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2160 GD.getDtorType())) 2161 addDeferredDeclToEmit(GD); 2162 2163 // This is the first use or definition of a mangled name. If there is a 2164 // deferred decl with this name, remember that we need to emit it at the end 2165 // of the file. 2166 auto DDI = DeferredDecls.find(MangledName); 2167 if (DDI != DeferredDecls.end()) { 2168 // Move the potentially referenced deferred decl to the 2169 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2170 // don't need it anymore). 2171 addDeferredDeclToEmit(DDI->second); 2172 DeferredDecls.erase(DDI); 2173 2174 // Otherwise, there are cases we have to worry about where we're 2175 // using a declaration for which we must emit a definition but where 2176 // we might not find a top-level definition: 2177 // - member functions defined inline in their classes 2178 // - friend functions defined inline in some class 2179 // - special member functions with implicit definitions 2180 // If we ever change our AST traversal to walk into class methods, 2181 // this will be unnecessary. 2182 // 2183 // We also don't emit a definition for a function if it's going to be an 2184 // entry in a vtable, unless it's already marked as used. 2185 } else if (getLangOpts().CPlusPlus && D) { 2186 // Look for a declaration that's lexically in a record. 2187 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2188 FD = FD->getPreviousDecl()) { 2189 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2190 if (FD->doesThisDeclarationHaveABody()) { 2191 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2192 break; 2193 } 2194 } 2195 } 2196 } 2197 } 2198 2199 // Make sure the result is of the requested type. 2200 if (!IsIncompleteFunction) { 2201 assert(F->getType()->getElementType() == Ty); 2202 return F; 2203 } 2204 2205 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2206 return llvm::ConstantExpr::getBitCast(F, PTy); 2207 } 2208 2209 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2210 /// non-null, then this function will use the specified type if it has to 2211 /// create it (this occurs when we see a definition of the function). 2212 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2213 llvm::Type *Ty, 2214 bool ForVTable, 2215 bool DontDefer, 2216 ForDefinition_t IsForDefinition) { 2217 // If there was no specific requested type, just convert it now. 2218 if (!Ty) { 2219 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2220 auto CanonTy = Context.getCanonicalType(FD->getType()); 2221 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2222 } 2223 2224 StringRef MangledName = getMangledName(GD); 2225 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2226 /*IsThunk=*/false, llvm::AttributeList(), 2227 IsForDefinition); 2228 } 2229 2230 static const FunctionDecl * 2231 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2232 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2233 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2234 2235 IdentifierInfo &CII = C.Idents.get(Name); 2236 for (const auto &Result : DC->lookup(&CII)) 2237 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2238 return FD; 2239 2240 if (!C.getLangOpts().CPlusPlus) 2241 return nullptr; 2242 2243 // Demangle the premangled name from getTerminateFn() 2244 IdentifierInfo &CXXII = 2245 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2246 ? C.Idents.get("terminate") 2247 : C.Idents.get(Name); 2248 2249 for (const auto &N : {"__cxxabiv1", "std"}) { 2250 IdentifierInfo &NS = C.Idents.get(N); 2251 for (const auto &Result : DC->lookup(&NS)) { 2252 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2253 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2254 for (const auto &Result : LSD->lookup(&NS)) 2255 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2256 break; 2257 2258 if (ND) 2259 for (const auto &Result : ND->lookup(&CXXII)) 2260 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2261 return FD; 2262 } 2263 } 2264 2265 return nullptr; 2266 } 2267 2268 /// CreateRuntimeFunction - Create a new runtime function with the specified 2269 /// type and name. 2270 llvm::Constant * 2271 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2272 llvm::AttributeList ExtraAttrs, 2273 bool Local) { 2274 llvm::Constant *C = 2275 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2276 /*DontDefer=*/false, /*IsThunk=*/false, 2277 ExtraAttrs); 2278 2279 if (auto *F = dyn_cast<llvm::Function>(C)) { 2280 if (F->empty()) { 2281 F->setCallingConv(getRuntimeCC()); 2282 2283 if (!Local && getTriple().isOSBinFormatCOFF() && 2284 !getCodeGenOpts().LTOVisibilityPublicStd) { 2285 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2286 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2287 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2288 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2289 } 2290 } 2291 } 2292 } 2293 2294 return C; 2295 } 2296 2297 /// CreateBuiltinFunction - Create a new builtin function with the specified 2298 /// type and name. 2299 llvm::Constant * 2300 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2301 llvm::AttributeList ExtraAttrs) { 2302 llvm::Constant *C = 2303 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2304 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2305 if (auto *F = dyn_cast<llvm::Function>(C)) 2306 if (F->empty()) 2307 F->setCallingConv(getBuiltinCC()); 2308 return C; 2309 } 2310 2311 /// isTypeConstant - Determine whether an object of this type can be emitted 2312 /// as a constant. 2313 /// 2314 /// If ExcludeCtor is true, the duration when the object's constructor runs 2315 /// will not be considered. The caller will need to verify that the object is 2316 /// not written to during its construction. 2317 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2318 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2319 return false; 2320 2321 if (Context.getLangOpts().CPlusPlus) { 2322 if (const CXXRecordDecl *Record 2323 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2324 return ExcludeCtor && !Record->hasMutableFields() && 2325 Record->hasTrivialDestructor(); 2326 } 2327 2328 return true; 2329 } 2330 2331 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2332 /// create and return an llvm GlobalVariable with the specified type. If there 2333 /// is something in the module with the specified name, return it potentially 2334 /// bitcasted to the right type. 2335 /// 2336 /// If D is non-null, it specifies a decl that correspond to this. This is used 2337 /// to set the attributes on the global when it is first created. 2338 /// 2339 /// If IsForDefinition is true, it is guranteed that an actual global with 2340 /// type Ty will be returned, not conversion of a variable with the same 2341 /// mangled name but some other type. 2342 llvm::Constant * 2343 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2344 llvm::PointerType *Ty, 2345 const VarDecl *D, 2346 ForDefinition_t IsForDefinition) { 2347 // Lookup the entry, lazily creating it if necessary. 2348 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2349 if (Entry) { 2350 if (WeakRefReferences.erase(Entry)) { 2351 if (D && !D->hasAttr<WeakAttr>()) 2352 Entry->setLinkage(llvm::Function::ExternalLinkage); 2353 } 2354 2355 // Handle dropped DLL attributes. 2356 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2357 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2358 2359 if (Entry->getType() == Ty) 2360 return Entry; 2361 2362 // If there are two attempts to define the same mangled name, issue an 2363 // error. 2364 if (IsForDefinition && !Entry->isDeclaration()) { 2365 GlobalDecl OtherGD; 2366 const VarDecl *OtherD; 2367 2368 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2369 // to make sure that we issue an error only once. 2370 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2371 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2372 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2373 OtherD->hasInit() && 2374 DiagnosedConflictingDefinitions.insert(D).second) { 2375 getDiags().Report(D->getLocation(), 2376 diag::err_duplicate_mangled_name); 2377 getDiags().Report(OtherGD.getDecl()->getLocation(), 2378 diag::note_previous_definition); 2379 } 2380 } 2381 2382 // Make sure the result is of the correct type. 2383 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2384 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2385 2386 // (If global is requested for a definition, we always need to create a new 2387 // global, not just return a bitcast.) 2388 if (!IsForDefinition) 2389 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2390 } 2391 2392 auto AddrSpace = GetGlobalVarAddressSpace(D); 2393 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2394 2395 auto *GV = new llvm::GlobalVariable( 2396 getModule(), Ty->getElementType(), false, 2397 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2398 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2399 2400 // If we already created a global with the same mangled name (but different 2401 // type) before, take its name and remove it from its parent. 2402 if (Entry) { 2403 GV->takeName(Entry); 2404 2405 if (!Entry->use_empty()) { 2406 llvm::Constant *NewPtrForOldDecl = 2407 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2408 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2409 } 2410 2411 Entry->eraseFromParent(); 2412 } 2413 2414 // This is the first use or definition of a mangled name. If there is a 2415 // deferred decl with this name, remember that we need to emit it at the end 2416 // of the file. 2417 auto DDI = DeferredDecls.find(MangledName); 2418 if (DDI != DeferredDecls.end()) { 2419 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2420 // list, and remove it from DeferredDecls (since we don't need it anymore). 2421 addDeferredDeclToEmit(DDI->second); 2422 DeferredDecls.erase(DDI); 2423 } 2424 2425 // Handle things which are present even on external declarations. 2426 if (D) { 2427 // FIXME: This code is overly simple and should be merged with other global 2428 // handling. 2429 GV->setConstant(isTypeConstant(D->getType(), false)); 2430 2431 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2432 2433 setLinkageAndVisibilityForGV(GV, D); 2434 2435 if (D->getTLSKind()) { 2436 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2437 CXXThreadLocals.push_back(D); 2438 setTLSMode(GV, *D); 2439 } 2440 2441 // If required by the ABI, treat declarations of static data members with 2442 // inline initializers as definitions. 2443 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2444 EmitGlobalVarDefinition(D); 2445 } 2446 2447 // Emit section information for extern variables. 2448 if (D->hasExternalStorage()) { 2449 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2450 GV->setSection(SA->getName()); 2451 } 2452 2453 // Handle XCore specific ABI requirements. 2454 if (getTriple().getArch() == llvm::Triple::xcore && 2455 D->getLanguageLinkage() == CLanguageLinkage && 2456 D->getType().isConstant(Context) && 2457 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2458 GV->setSection(".cp.rodata"); 2459 2460 // Check if we a have a const declaration with an initializer, we may be 2461 // able to emit it as available_externally to expose it's value to the 2462 // optimizer. 2463 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2464 D->getType().isConstQualified() && !GV->hasInitializer() && 2465 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2466 const auto *Record = 2467 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2468 bool HasMutableFields = Record && Record->hasMutableFields(); 2469 if (!HasMutableFields) { 2470 const VarDecl *InitDecl; 2471 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2472 if (InitExpr) { 2473 ConstantEmitter emitter(*this); 2474 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2475 if (Init) { 2476 auto *InitType = Init->getType(); 2477 if (GV->getType()->getElementType() != InitType) { 2478 // The type of the initializer does not match the definition. 2479 // This happens when an initializer has a different type from 2480 // the type of the global (because of padding at the end of a 2481 // structure for instance). 2482 GV->setName(StringRef()); 2483 // Make a new global with the correct type, this is now guaranteed 2484 // to work. 2485 auto *NewGV = cast<llvm::GlobalVariable>( 2486 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2487 2488 // Erase the old global, since it is no longer used. 2489 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2490 GV = NewGV; 2491 } else { 2492 GV->setInitializer(Init); 2493 GV->setConstant(true); 2494 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2495 } 2496 emitter.finalize(GV); 2497 } 2498 } 2499 } 2500 } 2501 } 2502 2503 LangAS ExpectedAS = 2504 D ? D->getType().getAddressSpace() 2505 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2506 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2507 Ty->getPointerAddressSpace()); 2508 if (AddrSpace != ExpectedAS) 2509 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2510 ExpectedAS, Ty); 2511 2512 return GV; 2513 } 2514 2515 llvm::Constant * 2516 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2517 ForDefinition_t IsForDefinition) { 2518 const Decl *D = GD.getDecl(); 2519 if (isa<CXXConstructorDecl>(D)) 2520 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2521 getFromCtorType(GD.getCtorType()), 2522 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2523 /*DontDefer=*/false, IsForDefinition); 2524 else if (isa<CXXDestructorDecl>(D)) 2525 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2526 getFromDtorType(GD.getDtorType()), 2527 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2528 /*DontDefer=*/false, IsForDefinition); 2529 else if (isa<CXXMethodDecl>(D)) { 2530 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2531 cast<CXXMethodDecl>(D)); 2532 auto Ty = getTypes().GetFunctionType(*FInfo); 2533 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2534 IsForDefinition); 2535 } else if (isa<FunctionDecl>(D)) { 2536 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2537 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2538 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2539 IsForDefinition); 2540 } else 2541 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2542 IsForDefinition); 2543 } 2544 2545 llvm::GlobalVariable * 2546 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2547 llvm::Type *Ty, 2548 llvm::GlobalValue::LinkageTypes Linkage) { 2549 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2550 llvm::GlobalVariable *OldGV = nullptr; 2551 2552 if (GV) { 2553 // Check if the variable has the right type. 2554 if (GV->getType()->getElementType() == Ty) 2555 return GV; 2556 2557 // Because C++ name mangling, the only way we can end up with an already 2558 // existing global with the same name is if it has been declared extern "C". 2559 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2560 OldGV = GV; 2561 } 2562 2563 // Create a new variable. 2564 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2565 Linkage, nullptr, Name); 2566 2567 if (OldGV) { 2568 // Replace occurrences of the old variable if needed. 2569 GV->takeName(OldGV); 2570 2571 if (!OldGV->use_empty()) { 2572 llvm::Constant *NewPtrForOldDecl = 2573 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2574 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2575 } 2576 2577 OldGV->eraseFromParent(); 2578 } 2579 2580 if (supportsCOMDAT() && GV->isWeakForLinker() && 2581 !GV->hasAvailableExternallyLinkage()) 2582 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2583 2584 return GV; 2585 } 2586 2587 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2588 /// given global variable. If Ty is non-null and if the global doesn't exist, 2589 /// then it will be created with the specified type instead of whatever the 2590 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2591 /// that an actual global with type Ty will be returned, not conversion of a 2592 /// variable with the same mangled name but some other type. 2593 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2594 llvm::Type *Ty, 2595 ForDefinition_t IsForDefinition) { 2596 assert(D->hasGlobalStorage() && "Not a global variable"); 2597 QualType ASTTy = D->getType(); 2598 if (!Ty) 2599 Ty = getTypes().ConvertTypeForMem(ASTTy); 2600 2601 llvm::PointerType *PTy = 2602 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2603 2604 StringRef MangledName = getMangledName(D); 2605 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2606 } 2607 2608 /// CreateRuntimeVariable - Create a new runtime global variable with the 2609 /// specified type and name. 2610 llvm::Constant * 2611 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2612 StringRef Name) { 2613 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2614 } 2615 2616 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2617 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2618 2619 StringRef MangledName = getMangledName(D); 2620 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2621 2622 // We already have a definition, not declaration, with the same mangled name. 2623 // Emitting of declaration is not required (and actually overwrites emitted 2624 // definition). 2625 if (GV && !GV->isDeclaration()) 2626 return; 2627 2628 // If we have not seen a reference to this variable yet, place it into the 2629 // deferred declarations table to be emitted if needed later. 2630 if (!MustBeEmitted(D) && !GV) { 2631 DeferredDecls[MangledName] = D; 2632 return; 2633 } 2634 2635 // The tentative definition is the only definition. 2636 EmitGlobalVarDefinition(D); 2637 } 2638 2639 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2640 return Context.toCharUnitsFromBits( 2641 getDataLayout().getTypeStoreSizeInBits(Ty)); 2642 } 2643 2644 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2645 LangAS AddrSpace = LangAS::Default; 2646 if (LangOpts.OpenCL) { 2647 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2648 assert(AddrSpace == LangAS::opencl_global || 2649 AddrSpace == LangAS::opencl_constant || 2650 AddrSpace == LangAS::opencl_local || 2651 AddrSpace >= LangAS::FirstTargetAddressSpace); 2652 return AddrSpace; 2653 } 2654 2655 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2656 if (D && D->hasAttr<CUDAConstantAttr>()) 2657 return LangAS::cuda_constant; 2658 else if (D && D->hasAttr<CUDASharedAttr>()) 2659 return LangAS::cuda_shared; 2660 else 2661 return LangAS::cuda_device; 2662 } 2663 2664 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2665 } 2666 2667 template<typename SomeDecl> 2668 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2669 llvm::GlobalValue *GV) { 2670 if (!getLangOpts().CPlusPlus) 2671 return; 2672 2673 // Must have 'used' attribute, or else inline assembly can't rely on 2674 // the name existing. 2675 if (!D->template hasAttr<UsedAttr>()) 2676 return; 2677 2678 // Must have internal linkage and an ordinary name. 2679 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2680 return; 2681 2682 // Must be in an extern "C" context. Entities declared directly within 2683 // a record are not extern "C" even if the record is in such a context. 2684 const SomeDecl *First = D->getFirstDecl(); 2685 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2686 return; 2687 2688 // OK, this is an internal linkage entity inside an extern "C" linkage 2689 // specification. Make a note of that so we can give it the "expected" 2690 // mangled name if nothing else is using that name. 2691 std::pair<StaticExternCMap::iterator, bool> R = 2692 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2693 2694 // If we have multiple internal linkage entities with the same name 2695 // in extern "C" regions, none of them gets that name. 2696 if (!R.second) 2697 R.first->second = nullptr; 2698 } 2699 2700 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2701 if (!CGM.supportsCOMDAT()) 2702 return false; 2703 2704 if (D.hasAttr<SelectAnyAttr>()) 2705 return true; 2706 2707 GVALinkage Linkage; 2708 if (auto *VD = dyn_cast<VarDecl>(&D)) 2709 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2710 else 2711 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2712 2713 switch (Linkage) { 2714 case GVA_Internal: 2715 case GVA_AvailableExternally: 2716 case GVA_StrongExternal: 2717 return false; 2718 case GVA_DiscardableODR: 2719 case GVA_StrongODR: 2720 return true; 2721 } 2722 llvm_unreachable("No such linkage"); 2723 } 2724 2725 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2726 llvm::GlobalObject &GO) { 2727 if (!shouldBeInCOMDAT(*this, D)) 2728 return; 2729 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2730 } 2731 2732 /// Pass IsTentative as true if you want to create a tentative definition. 2733 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2734 bool IsTentative) { 2735 // OpenCL global variables of sampler type are translated to function calls, 2736 // therefore no need to be translated. 2737 QualType ASTTy = D->getType(); 2738 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2739 return; 2740 2741 llvm::Constant *Init = nullptr; 2742 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2743 bool NeedsGlobalCtor = false; 2744 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2745 2746 const VarDecl *InitDecl; 2747 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2748 2749 Optional<ConstantEmitter> emitter; 2750 2751 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2752 // as part of their declaration." Sema has already checked for 2753 // error cases, so we just need to set Init to UndefValue. 2754 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2755 D->hasAttr<CUDASharedAttr>()) 2756 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2757 else if (!InitExpr) { 2758 // This is a tentative definition; tentative definitions are 2759 // implicitly initialized with { 0 }. 2760 // 2761 // Note that tentative definitions are only emitted at the end of 2762 // a translation unit, so they should never have incomplete 2763 // type. In addition, EmitTentativeDefinition makes sure that we 2764 // never attempt to emit a tentative definition if a real one 2765 // exists. A use may still exists, however, so we still may need 2766 // to do a RAUW. 2767 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2768 Init = EmitNullConstant(D->getType()); 2769 } else { 2770 initializedGlobalDecl = GlobalDecl(D); 2771 emitter.emplace(*this); 2772 Init = emitter->tryEmitForInitializer(*InitDecl); 2773 2774 if (!Init) { 2775 QualType T = InitExpr->getType(); 2776 if (D->getType()->isReferenceType()) 2777 T = D->getType(); 2778 2779 if (getLangOpts().CPlusPlus) { 2780 Init = EmitNullConstant(T); 2781 NeedsGlobalCtor = true; 2782 } else { 2783 ErrorUnsupported(D, "static initializer"); 2784 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2785 } 2786 } else { 2787 // We don't need an initializer, so remove the entry for the delayed 2788 // initializer position (just in case this entry was delayed) if we 2789 // also don't need to register a destructor. 2790 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2791 DelayedCXXInitPosition.erase(D); 2792 } 2793 } 2794 2795 llvm::Type* InitType = Init->getType(); 2796 llvm::Constant *Entry = 2797 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2798 2799 // Strip off a bitcast if we got one back. 2800 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2801 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2802 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2803 // All zero index gep. 2804 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2805 Entry = CE->getOperand(0); 2806 } 2807 2808 // Entry is now either a Function or GlobalVariable. 2809 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2810 2811 // We have a definition after a declaration with the wrong type. 2812 // We must make a new GlobalVariable* and update everything that used OldGV 2813 // (a declaration or tentative definition) with the new GlobalVariable* 2814 // (which will be a definition). 2815 // 2816 // This happens if there is a prototype for a global (e.g. 2817 // "extern int x[];") and then a definition of a different type (e.g. 2818 // "int x[10];"). This also happens when an initializer has a different type 2819 // from the type of the global (this happens with unions). 2820 if (!GV || GV->getType()->getElementType() != InitType || 2821 GV->getType()->getAddressSpace() != 2822 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2823 2824 // Move the old entry aside so that we'll create a new one. 2825 Entry->setName(StringRef()); 2826 2827 // Make a new global with the correct type, this is now guaranteed to work. 2828 GV = cast<llvm::GlobalVariable>( 2829 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2830 2831 // Replace all uses of the old global with the new global 2832 llvm::Constant *NewPtrForOldDecl = 2833 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2834 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2835 2836 // Erase the old global, since it is no longer used. 2837 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2838 } 2839 2840 MaybeHandleStaticInExternC(D, GV); 2841 2842 if (D->hasAttr<AnnotateAttr>()) 2843 AddGlobalAnnotations(D, GV); 2844 2845 // Set the llvm linkage type as appropriate. 2846 llvm::GlobalValue::LinkageTypes Linkage = 2847 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2848 2849 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2850 // the device. [...]" 2851 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2852 // __device__, declares a variable that: [...] 2853 // Is accessible from all the threads within the grid and from the host 2854 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2855 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2856 if (GV && LangOpts.CUDA) { 2857 if (LangOpts.CUDAIsDevice) { 2858 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2859 GV->setExternallyInitialized(true); 2860 } else { 2861 // Host-side shadows of external declarations of device-side 2862 // global variables become internal definitions. These have to 2863 // be internal in order to prevent name conflicts with global 2864 // host variables with the same name in a different TUs. 2865 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2866 Linkage = llvm::GlobalValue::InternalLinkage; 2867 2868 // Shadow variables and their properties must be registered 2869 // with CUDA runtime. 2870 unsigned Flags = 0; 2871 if (!D->hasDefinition()) 2872 Flags |= CGCUDARuntime::ExternDeviceVar; 2873 if (D->hasAttr<CUDAConstantAttr>()) 2874 Flags |= CGCUDARuntime::ConstantDeviceVar; 2875 getCUDARuntime().registerDeviceVar(*GV, Flags); 2876 } else if (D->hasAttr<CUDASharedAttr>()) 2877 // __shared__ variables are odd. Shadows do get created, but 2878 // they are not registered with the CUDA runtime, so they 2879 // can't really be used to access their device-side 2880 // counterparts. It's not clear yet whether it's nvcc's bug or 2881 // a feature, but we've got to do the same for compatibility. 2882 Linkage = llvm::GlobalValue::InternalLinkage; 2883 } 2884 } 2885 2886 GV->setInitializer(Init); 2887 if (emitter) emitter->finalize(GV); 2888 2889 // If it is safe to mark the global 'constant', do so now. 2890 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2891 isTypeConstant(D->getType(), true)); 2892 2893 // If it is in a read-only section, mark it 'constant'. 2894 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2895 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2896 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2897 GV->setConstant(true); 2898 } 2899 2900 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2901 2902 2903 // On Darwin, if the normal linkage of a C++ thread_local variable is 2904 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2905 // copies within a linkage unit; otherwise, the backing variable has 2906 // internal linkage and all accesses should just be calls to the 2907 // Itanium-specified entry point, which has the normal linkage of the 2908 // variable. This is to preserve the ability to change the implementation 2909 // behind the scenes. 2910 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2911 Context.getTargetInfo().getTriple().isOSDarwin() && 2912 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2913 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2914 Linkage = llvm::GlobalValue::InternalLinkage; 2915 2916 GV->setLinkage(Linkage); 2917 if (D->hasAttr<DLLImportAttr>()) 2918 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2919 else if (D->hasAttr<DLLExportAttr>()) 2920 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2921 else 2922 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2923 2924 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2925 // common vars aren't constant even if declared const. 2926 GV->setConstant(false); 2927 // Tentative definition of global variables may be initialized with 2928 // non-zero null pointers. In this case they should have weak linkage 2929 // since common linkage must have zero initializer and must not have 2930 // explicit section therefore cannot have non-zero initial value. 2931 if (!GV->getInitializer()->isNullValue()) 2932 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2933 } 2934 2935 setNonAliasAttributes(D, GV); 2936 2937 if (D->getTLSKind() && !GV->isThreadLocal()) { 2938 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2939 CXXThreadLocals.push_back(D); 2940 setTLSMode(GV, *D); 2941 } 2942 2943 maybeSetTrivialComdat(*D, *GV); 2944 2945 // Emit the initializer function if necessary. 2946 if (NeedsGlobalCtor || NeedsGlobalDtor) 2947 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2948 2949 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2950 2951 // Emit global variable debug information. 2952 if (CGDebugInfo *DI = getModuleDebugInfo()) 2953 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2954 DI->EmitGlobalVariable(GV, D); 2955 } 2956 2957 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2958 CodeGenModule &CGM, const VarDecl *D, 2959 bool NoCommon) { 2960 // Don't give variables common linkage if -fno-common was specified unless it 2961 // was overridden by a NoCommon attribute. 2962 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2963 return true; 2964 2965 // C11 6.9.2/2: 2966 // A declaration of an identifier for an object that has file scope without 2967 // an initializer, and without a storage-class specifier or with the 2968 // storage-class specifier static, constitutes a tentative definition. 2969 if (D->getInit() || D->hasExternalStorage()) 2970 return true; 2971 2972 // A variable cannot be both common and exist in a section. 2973 if (D->hasAttr<SectionAttr>()) 2974 return true; 2975 2976 // A variable cannot be both common and exist in a section. 2977 // We dont try to determine which is the right section in the front-end. 2978 // If no specialized section name is applicable, it will resort to default. 2979 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2980 D->hasAttr<PragmaClangDataSectionAttr>() || 2981 D->hasAttr<PragmaClangRodataSectionAttr>()) 2982 return true; 2983 2984 // Thread local vars aren't considered common linkage. 2985 if (D->getTLSKind()) 2986 return true; 2987 2988 // Tentative definitions marked with WeakImportAttr are true definitions. 2989 if (D->hasAttr<WeakImportAttr>()) 2990 return true; 2991 2992 // A variable cannot be both common and exist in a comdat. 2993 if (shouldBeInCOMDAT(CGM, *D)) 2994 return true; 2995 2996 // Declarations with a required alignment do not have common linkage in MSVC 2997 // mode. 2998 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2999 if (D->hasAttr<AlignedAttr>()) 3000 return true; 3001 QualType VarType = D->getType(); 3002 if (Context.isAlignmentRequired(VarType)) 3003 return true; 3004 3005 if (const auto *RT = VarType->getAs<RecordType>()) { 3006 const RecordDecl *RD = RT->getDecl(); 3007 for (const FieldDecl *FD : RD->fields()) { 3008 if (FD->isBitField()) 3009 continue; 3010 if (FD->hasAttr<AlignedAttr>()) 3011 return true; 3012 if (Context.isAlignmentRequired(FD->getType())) 3013 return true; 3014 } 3015 } 3016 } 3017 3018 return false; 3019 } 3020 3021 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3022 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3023 if (Linkage == GVA_Internal) 3024 return llvm::Function::InternalLinkage; 3025 3026 if (D->hasAttr<WeakAttr>()) { 3027 if (IsConstantVariable) 3028 return llvm::GlobalVariable::WeakODRLinkage; 3029 else 3030 return llvm::GlobalVariable::WeakAnyLinkage; 3031 } 3032 3033 // We are guaranteed to have a strong definition somewhere else, 3034 // so we can use available_externally linkage. 3035 if (Linkage == GVA_AvailableExternally) 3036 return llvm::GlobalValue::AvailableExternallyLinkage; 3037 3038 // Note that Apple's kernel linker doesn't support symbol 3039 // coalescing, so we need to avoid linkonce and weak linkages there. 3040 // Normally, this means we just map to internal, but for explicit 3041 // instantiations we'll map to external. 3042 3043 // In C++, the compiler has to emit a definition in every translation unit 3044 // that references the function. We should use linkonce_odr because 3045 // a) if all references in this translation unit are optimized away, we 3046 // don't need to codegen it. b) if the function persists, it needs to be 3047 // merged with other definitions. c) C++ has the ODR, so we know the 3048 // definition is dependable. 3049 if (Linkage == GVA_DiscardableODR) 3050 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3051 : llvm::Function::InternalLinkage; 3052 3053 // An explicit instantiation of a template has weak linkage, since 3054 // explicit instantiations can occur in multiple translation units 3055 // and must all be equivalent. However, we are not allowed to 3056 // throw away these explicit instantiations. 3057 // 3058 // We don't currently support CUDA device code spread out across multiple TUs, 3059 // so say that CUDA templates are either external (for kernels) or internal. 3060 // This lets llvm perform aggressive inter-procedural optimizations. 3061 if (Linkage == GVA_StrongODR) { 3062 if (Context.getLangOpts().AppleKext) 3063 return llvm::Function::ExternalLinkage; 3064 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3065 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3066 : llvm::Function::InternalLinkage; 3067 return llvm::Function::WeakODRLinkage; 3068 } 3069 3070 // C++ doesn't have tentative definitions and thus cannot have common 3071 // linkage. 3072 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3073 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3074 CodeGenOpts.NoCommon)) 3075 return llvm::GlobalVariable::CommonLinkage; 3076 3077 // selectany symbols are externally visible, so use weak instead of 3078 // linkonce. MSVC optimizes away references to const selectany globals, so 3079 // all definitions should be the same and ODR linkage should be used. 3080 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3081 if (D->hasAttr<SelectAnyAttr>()) 3082 return llvm::GlobalVariable::WeakODRLinkage; 3083 3084 // Otherwise, we have strong external linkage. 3085 assert(Linkage == GVA_StrongExternal); 3086 return llvm::GlobalVariable::ExternalLinkage; 3087 } 3088 3089 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3090 const VarDecl *VD, bool IsConstant) { 3091 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3092 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3093 } 3094 3095 /// Replace the uses of a function that was declared with a non-proto type. 3096 /// We want to silently drop extra arguments from call sites 3097 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3098 llvm::Function *newFn) { 3099 // Fast path. 3100 if (old->use_empty()) return; 3101 3102 llvm::Type *newRetTy = newFn->getReturnType(); 3103 SmallVector<llvm::Value*, 4> newArgs; 3104 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3105 3106 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3107 ui != ue; ) { 3108 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3109 llvm::User *user = use->getUser(); 3110 3111 // Recognize and replace uses of bitcasts. Most calls to 3112 // unprototyped functions will use bitcasts. 3113 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3114 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3115 replaceUsesOfNonProtoConstant(bitcast, newFn); 3116 continue; 3117 } 3118 3119 // Recognize calls to the function. 3120 llvm::CallSite callSite(user); 3121 if (!callSite) continue; 3122 if (!callSite.isCallee(&*use)) continue; 3123 3124 // If the return types don't match exactly, then we can't 3125 // transform this call unless it's dead. 3126 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3127 continue; 3128 3129 // Get the call site's attribute list. 3130 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3131 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3132 3133 // If the function was passed too few arguments, don't transform. 3134 unsigned newNumArgs = newFn->arg_size(); 3135 if (callSite.arg_size() < newNumArgs) continue; 3136 3137 // If extra arguments were passed, we silently drop them. 3138 // If any of the types mismatch, we don't transform. 3139 unsigned argNo = 0; 3140 bool dontTransform = false; 3141 for (llvm::Argument &A : newFn->args()) { 3142 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3143 dontTransform = true; 3144 break; 3145 } 3146 3147 // Add any parameter attributes. 3148 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3149 argNo++; 3150 } 3151 if (dontTransform) 3152 continue; 3153 3154 // Okay, we can transform this. Create the new call instruction and copy 3155 // over the required information. 3156 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3157 3158 // Copy over any operand bundles. 3159 callSite.getOperandBundlesAsDefs(newBundles); 3160 3161 llvm::CallSite newCall; 3162 if (callSite.isCall()) { 3163 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3164 callSite.getInstruction()); 3165 } else { 3166 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3167 newCall = llvm::InvokeInst::Create(newFn, 3168 oldInvoke->getNormalDest(), 3169 oldInvoke->getUnwindDest(), 3170 newArgs, newBundles, "", 3171 callSite.getInstruction()); 3172 } 3173 newArgs.clear(); // for the next iteration 3174 3175 if (!newCall->getType()->isVoidTy()) 3176 newCall->takeName(callSite.getInstruction()); 3177 newCall.setAttributes(llvm::AttributeList::get( 3178 newFn->getContext(), oldAttrs.getFnAttributes(), 3179 oldAttrs.getRetAttributes(), newArgAttrs)); 3180 newCall.setCallingConv(callSite.getCallingConv()); 3181 3182 // Finally, remove the old call, replacing any uses with the new one. 3183 if (!callSite->use_empty()) 3184 callSite->replaceAllUsesWith(newCall.getInstruction()); 3185 3186 // Copy debug location attached to CI. 3187 if (callSite->getDebugLoc()) 3188 newCall->setDebugLoc(callSite->getDebugLoc()); 3189 3190 callSite->eraseFromParent(); 3191 } 3192 } 3193 3194 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3195 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3196 /// existing call uses of the old function in the module, this adjusts them to 3197 /// call the new function directly. 3198 /// 3199 /// This is not just a cleanup: the always_inline pass requires direct calls to 3200 /// functions to be able to inline them. If there is a bitcast in the way, it 3201 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3202 /// run at -O0. 3203 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3204 llvm::Function *NewFn) { 3205 // If we're redefining a global as a function, don't transform it. 3206 if (!isa<llvm::Function>(Old)) return; 3207 3208 replaceUsesOfNonProtoConstant(Old, NewFn); 3209 } 3210 3211 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3212 auto DK = VD->isThisDeclarationADefinition(); 3213 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3214 return; 3215 3216 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3217 // If we have a definition, this might be a deferred decl. If the 3218 // instantiation is explicit, make sure we emit it at the end. 3219 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3220 GetAddrOfGlobalVar(VD); 3221 3222 EmitTopLevelDecl(VD); 3223 } 3224 3225 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3226 llvm::GlobalValue *GV) { 3227 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3228 3229 // Compute the function info and LLVM type. 3230 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3231 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3232 3233 // Get or create the prototype for the function. 3234 if (!GV || (GV->getType()->getElementType() != Ty)) 3235 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3236 /*DontDefer=*/true, 3237 ForDefinition)); 3238 3239 // Already emitted. 3240 if (!GV->isDeclaration()) 3241 return; 3242 3243 // We need to set linkage and visibility on the function before 3244 // generating code for it because various parts of IR generation 3245 // want to propagate this information down (e.g. to local static 3246 // declarations). 3247 auto *Fn = cast<llvm::Function>(GV); 3248 setFunctionLinkage(GD, Fn); 3249 setFunctionDLLStorageClass(GD, Fn); 3250 3251 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3252 setGlobalVisibility(Fn, D); 3253 3254 MaybeHandleStaticInExternC(D, Fn); 3255 3256 maybeSetTrivialComdat(*D, *Fn); 3257 3258 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3259 3260 setFunctionDefinitionAttributes(D, Fn); 3261 SetLLVMFunctionAttributesForDefinition(D, Fn); 3262 3263 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3264 AddGlobalCtor(Fn, CA->getPriority()); 3265 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3266 AddGlobalDtor(Fn, DA->getPriority()); 3267 if (D->hasAttr<AnnotateAttr>()) 3268 AddGlobalAnnotations(D, Fn); 3269 } 3270 3271 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3272 const auto *D = cast<ValueDecl>(GD.getDecl()); 3273 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3274 assert(AA && "Not an alias?"); 3275 3276 StringRef MangledName = getMangledName(GD); 3277 3278 if (AA->getAliasee() == MangledName) { 3279 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3280 return; 3281 } 3282 3283 // If there is a definition in the module, then it wins over the alias. 3284 // This is dubious, but allow it to be safe. Just ignore the alias. 3285 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3286 if (Entry && !Entry->isDeclaration()) 3287 return; 3288 3289 Aliases.push_back(GD); 3290 3291 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3292 3293 // Create a reference to the named value. This ensures that it is emitted 3294 // if a deferred decl. 3295 llvm::Constant *Aliasee; 3296 if (isa<llvm::FunctionType>(DeclTy)) 3297 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3298 /*ForVTable=*/false); 3299 else 3300 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3301 llvm::PointerType::getUnqual(DeclTy), 3302 /*D=*/nullptr); 3303 3304 // Create the new alias itself, but don't set a name yet. 3305 auto *GA = llvm::GlobalAlias::create( 3306 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3307 3308 if (Entry) { 3309 if (GA->getAliasee() == Entry) { 3310 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3311 return; 3312 } 3313 3314 assert(Entry->isDeclaration()); 3315 3316 // If there is a declaration in the module, then we had an extern followed 3317 // by the alias, as in: 3318 // extern int test6(); 3319 // ... 3320 // int test6() __attribute__((alias("test7"))); 3321 // 3322 // Remove it and replace uses of it with the alias. 3323 GA->takeName(Entry); 3324 3325 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3326 Entry->getType())); 3327 Entry->eraseFromParent(); 3328 } else { 3329 GA->setName(MangledName); 3330 } 3331 3332 // Set attributes which are particular to an alias; this is a 3333 // specialization of the attributes which may be set on a global 3334 // variable/function. 3335 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3336 D->isWeakImported()) { 3337 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3338 } 3339 3340 if (const auto *VD = dyn_cast<VarDecl>(D)) 3341 if (VD->getTLSKind()) 3342 setTLSMode(GA, *VD); 3343 3344 setAliasAttributes(D, GA); 3345 } 3346 3347 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3348 const auto *D = cast<ValueDecl>(GD.getDecl()); 3349 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3350 assert(IFA && "Not an ifunc?"); 3351 3352 StringRef MangledName = getMangledName(GD); 3353 3354 if (IFA->getResolver() == MangledName) { 3355 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3356 return; 3357 } 3358 3359 // Report an error if some definition overrides ifunc. 3360 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3361 if (Entry && !Entry->isDeclaration()) { 3362 GlobalDecl OtherGD; 3363 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3364 DiagnosedConflictingDefinitions.insert(GD).second) { 3365 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3366 Diags.Report(OtherGD.getDecl()->getLocation(), 3367 diag::note_previous_definition); 3368 } 3369 return; 3370 } 3371 3372 Aliases.push_back(GD); 3373 3374 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3375 llvm::Constant *Resolver = 3376 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3377 /*ForVTable=*/false); 3378 llvm::GlobalIFunc *GIF = 3379 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3380 "", Resolver, &getModule()); 3381 if (Entry) { 3382 if (GIF->getResolver() == Entry) { 3383 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3384 return; 3385 } 3386 assert(Entry->isDeclaration()); 3387 3388 // If there is a declaration in the module, then we had an extern followed 3389 // by the ifunc, as in: 3390 // extern int test(); 3391 // ... 3392 // int test() __attribute__((ifunc("resolver"))); 3393 // 3394 // Remove it and replace uses of it with the ifunc. 3395 GIF->takeName(Entry); 3396 3397 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3398 Entry->getType())); 3399 Entry->eraseFromParent(); 3400 } else 3401 GIF->setName(MangledName); 3402 3403 SetCommonAttributes(D, GIF); 3404 } 3405 3406 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3407 ArrayRef<llvm::Type*> Tys) { 3408 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3409 Tys); 3410 } 3411 3412 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3413 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3414 const StringLiteral *Literal, bool TargetIsLSB, 3415 bool &IsUTF16, unsigned &StringLength) { 3416 StringRef String = Literal->getString(); 3417 unsigned NumBytes = String.size(); 3418 3419 // Check for simple case. 3420 if (!Literal->containsNonAsciiOrNull()) { 3421 StringLength = NumBytes; 3422 return *Map.insert(std::make_pair(String, nullptr)).first; 3423 } 3424 3425 // Otherwise, convert the UTF8 literals into a string of shorts. 3426 IsUTF16 = true; 3427 3428 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3429 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3430 llvm::UTF16 *ToPtr = &ToBuf[0]; 3431 3432 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3433 ToPtr + NumBytes, llvm::strictConversion); 3434 3435 // ConvertUTF8toUTF16 returns the length in ToPtr. 3436 StringLength = ToPtr - &ToBuf[0]; 3437 3438 // Add an explicit null. 3439 *ToPtr = 0; 3440 return *Map.insert(std::make_pair( 3441 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3442 (StringLength + 1) * 2), 3443 nullptr)).first; 3444 } 3445 3446 ConstantAddress 3447 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3448 unsigned StringLength = 0; 3449 bool isUTF16 = false; 3450 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3451 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3452 getDataLayout().isLittleEndian(), isUTF16, 3453 StringLength); 3454 3455 if (auto *C = Entry.second) 3456 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3457 3458 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3459 llvm::Constant *Zeros[] = { Zero, Zero }; 3460 3461 // If we don't already have it, get __CFConstantStringClassReference. 3462 if (!CFConstantStringClassRef) { 3463 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3464 Ty = llvm::ArrayType::get(Ty, 0); 3465 llvm::Constant *GV = 3466 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3467 3468 if (getTriple().isOSBinFormatCOFF()) { 3469 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3470 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3471 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3472 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3473 3474 const VarDecl *VD = nullptr; 3475 for (const auto &Result : DC->lookup(&II)) 3476 if ((VD = dyn_cast<VarDecl>(Result))) 3477 break; 3478 3479 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3480 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3481 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3482 } else { 3483 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3484 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3485 } 3486 } 3487 3488 // Decay array -> ptr 3489 CFConstantStringClassRef = 3490 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3491 } 3492 3493 QualType CFTy = getContext().getCFConstantStringType(); 3494 3495 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3496 3497 ConstantInitBuilder Builder(*this); 3498 auto Fields = Builder.beginStruct(STy); 3499 3500 // Class pointer. 3501 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3502 3503 // Flags. 3504 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3505 3506 // String pointer. 3507 llvm::Constant *C = nullptr; 3508 if (isUTF16) { 3509 auto Arr = llvm::makeArrayRef( 3510 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3511 Entry.first().size() / 2); 3512 C = llvm::ConstantDataArray::get(VMContext, Arr); 3513 } else { 3514 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3515 } 3516 3517 // Note: -fwritable-strings doesn't make the backing store strings of 3518 // CFStrings writable. (See <rdar://problem/10657500>) 3519 auto *GV = 3520 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3521 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3522 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3523 // Don't enforce the target's minimum global alignment, since the only use 3524 // of the string is via this class initializer. 3525 CharUnits Align = isUTF16 3526 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3527 : getContext().getTypeAlignInChars(getContext().CharTy); 3528 GV->setAlignment(Align.getQuantity()); 3529 3530 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3531 // Without it LLVM can merge the string with a non unnamed_addr one during 3532 // LTO. Doing that changes the section it ends in, which surprises ld64. 3533 if (getTriple().isOSBinFormatMachO()) 3534 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3535 : "__TEXT,__cstring,cstring_literals"); 3536 3537 // String. 3538 llvm::Constant *Str = 3539 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3540 3541 if (isUTF16) 3542 // Cast the UTF16 string to the correct type. 3543 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3544 Fields.add(Str); 3545 3546 // String length. 3547 auto Ty = getTypes().ConvertType(getContext().LongTy); 3548 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3549 3550 CharUnits Alignment = getPointerAlign(); 3551 3552 // The struct. 3553 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3554 /*isConstant=*/false, 3555 llvm::GlobalVariable::PrivateLinkage); 3556 switch (getTriple().getObjectFormat()) { 3557 case llvm::Triple::UnknownObjectFormat: 3558 llvm_unreachable("unknown file format"); 3559 case llvm::Triple::COFF: 3560 case llvm::Triple::ELF: 3561 case llvm::Triple::Wasm: 3562 GV->setSection("cfstring"); 3563 break; 3564 case llvm::Triple::MachO: 3565 GV->setSection("__DATA,__cfstring"); 3566 break; 3567 } 3568 Entry.second = GV; 3569 3570 return ConstantAddress(GV, Alignment); 3571 } 3572 3573 bool CodeGenModule::getExpressionLocationsEnabled() const { 3574 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3575 } 3576 3577 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3578 if (ObjCFastEnumerationStateType.isNull()) { 3579 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3580 D->startDefinition(); 3581 3582 QualType FieldTypes[] = { 3583 Context.UnsignedLongTy, 3584 Context.getPointerType(Context.getObjCIdType()), 3585 Context.getPointerType(Context.UnsignedLongTy), 3586 Context.getConstantArrayType(Context.UnsignedLongTy, 3587 llvm::APInt(32, 5), ArrayType::Normal, 0) 3588 }; 3589 3590 for (size_t i = 0; i < 4; ++i) { 3591 FieldDecl *Field = FieldDecl::Create(Context, 3592 D, 3593 SourceLocation(), 3594 SourceLocation(), nullptr, 3595 FieldTypes[i], /*TInfo=*/nullptr, 3596 /*BitWidth=*/nullptr, 3597 /*Mutable=*/false, 3598 ICIS_NoInit); 3599 Field->setAccess(AS_public); 3600 D->addDecl(Field); 3601 } 3602 3603 D->completeDefinition(); 3604 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3605 } 3606 3607 return ObjCFastEnumerationStateType; 3608 } 3609 3610 llvm::Constant * 3611 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3612 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3613 3614 // Don't emit it as the address of the string, emit the string data itself 3615 // as an inline array. 3616 if (E->getCharByteWidth() == 1) { 3617 SmallString<64> Str(E->getString()); 3618 3619 // Resize the string to the right size, which is indicated by its type. 3620 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3621 Str.resize(CAT->getSize().getZExtValue()); 3622 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3623 } 3624 3625 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3626 llvm::Type *ElemTy = AType->getElementType(); 3627 unsigned NumElements = AType->getNumElements(); 3628 3629 // Wide strings have either 2-byte or 4-byte elements. 3630 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3631 SmallVector<uint16_t, 32> Elements; 3632 Elements.reserve(NumElements); 3633 3634 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3635 Elements.push_back(E->getCodeUnit(i)); 3636 Elements.resize(NumElements); 3637 return llvm::ConstantDataArray::get(VMContext, Elements); 3638 } 3639 3640 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3641 SmallVector<uint32_t, 32> Elements; 3642 Elements.reserve(NumElements); 3643 3644 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3645 Elements.push_back(E->getCodeUnit(i)); 3646 Elements.resize(NumElements); 3647 return llvm::ConstantDataArray::get(VMContext, Elements); 3648 } 3649 3650 static llvm::GlobalVariable * 3651 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3652 CodeGenModule &CGM, StringRef GlobalName, 3653 CharUnits Alignment) { 3654 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3655 unsigned AddrSpace = 0; 3656 if (CGM.getLangOpts().OpenCL) 3657 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3658 3659 llvm::Module &M = CGM.getModule(); 3660 // Create a global variable for this string 3661 auto *GV = new llvm::GlobalVariable( 3662 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3663 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3664 GV->setAlignment(Alignment.getQuantity()); 3665 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3666 if (GV->isWeakForLinker()) { 3667 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3668 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3669 } 3670 3671 return GV; 3672 } 3673 3674 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3675 /// constant array for the given string literal. 3676 ConstantAddress 3677 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3678 StringRef Name) { 3679 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3680 3681 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3682 llvm::GlobalVariable **Entry = nullptr; 3683 if (!LangOpts.WritableStrings) { 3684 Entry = &ConstantStringMap[C]; 3685 if (auto GV = *Entry) { 3686 if (Alignment.getQuantity() > GV->getAlignment()) 3687 GV->setAlignment(Alignment.getQuantity()); 3688 return ConstantAddress(GV, Alignment); 3689 } 3690 } 3691 3692 SmallString<256> MangledNameBuffer; 3693 StringRef GlobalVariableName; 3694 llvm::GlobalValue::LinkageTypes LT; 3695 3696 // Mangle the string literal if the ABI allows for it. However, we cannot 3697 // do this if we are compiling with ASan or -fwritable-strings because they 3698 // rely on strings having normal linkage. 3699 if (!LangOpts.WritableStrings && 3700 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3701 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3702 llvm::raw_svector_ostream Out(MangledNameBuffer); 3703 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3704 3705 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3706 GlobalVariableName = MangledNameBuffer; 3707 } else { 3708 LT = llvm::GlobalValue::PrivateLinkage; 3709 GlobalVariableName = Name; 3710 } 3711 3712 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3713 if (Entry) 3714 *Entry = GV; 3715 3716 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3717 QualType()); 3718 return ConstantAddress(GV, Alignment); 3719 } 3720 3721 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3722 /// array for the given ObjCEncodeExpr node. 3723 ConstantAddress 3724 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3725 std::string Str; 3726 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3727 3728 return GetAddrOfConstantCString(Str); 3729 } 3730 3731 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3732 /// the literal and a terminating '\0' character. 3733 /// The result has pointer to array type. 3734 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3735 const std::string &Str, const char *GlobalName) { 3736 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3737 CharUnits Alignment = 3738 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3739 3740 llvm::Constant *C = 3741 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3742 3743 // Don't share any string literals if strings aren't constant. 3744 llvm::GlobalVariable **Entry = nullptr; 3745 if (!LangOpts.WritableStrings) { 3746 Entry = &ConstantStringMap[C]; 3747 if (auto GV = *Entry) { 3748 if (Alignment.getQuantity() > GV->getAlignment()) 3749 GV->setAlignment(Alignment.getQuantity()); 3750 return ConstantAddress(GV, Alignment); 3751 } 3752 } 3753 3754 // Get the default prefix if a name wasn't specified. 3755 if (!GlobalName) 3756 GlobalName = ".str"; 3757 // Create a global variable for this. 3758 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3759 GlobalName, Alignment); 3760 if (Entry) 3761 *Entry = GV; 3762 return ConstantAddress(GV, Alignment); 3763 } 3764 3765 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3766 const MaterializeTemporaryExpr *E, const Expr *Init) { 3767 assert((E->getStorageDuration() == SD_Static || 3768 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3769 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3770 3771 // If we're not materializing a subobject of the temporary, keep the 3772 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3773 QualType MaterializedType = Init->getType(); 3774 if (Init == E->GetTemporaryExpr()) 3775 MaterializedType = E->getType(); 3776 3777 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3778 3779 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3780 return ConstantAddress(Slot, Align); 3781 3782 // FIXME: If an externally-visible declaration extends multiple temporaries, 3783 // we need to give each temporary the same name in every translation unit (and 3784 // we also need to make the temporaries externally-visible). 3785 SmallString<256> Name; 3786 llvm::raw_svector_ostream Out(Name); 3787 getCXXABI().getMangleContext().mangleReferenceTemporary( 3788 VD, E->getManglingNumber(), Out); 3789 3790 APValue *Value = nullptr; 3791 if (E->getStorageDuration() == SD_Static) { 3792 // We might have a cached constant initializer for this temporary. Note 3793 // that this might have a different value from the value computed by 3794 // evaluating the initializer if the surrounding constant expression 3795 // modifies the temporary. 3796 Value = getContext().getMaterializedTemporaryValue(E, false); 3797 if (Value && Value->isUninit()) 3798 Value = nullptr; 3799 } 3800 3801 // Try evaluating it now, it might have a constant initializer. 3802 Expr::EvalResult EvalResult; 3803 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3804 !EvalResult.hasSideEffects()) 3805 Value = &EvalResult.Val; 3806 3807 LangAS AddrSpace = 3808 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3809 3810 Optional<ConstantEmitter> emitter; 3811 llvm::Constant *InitialValue = nullptr; 3812 bool Constant = false; 3813 llvm::Type *Type; 3814 if (Value) { 3815 // The temporary has a constant initializer, use it. 3816 emitter.emplace(*this); 3817 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3818 MaterializedType); 3819 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3820 Type = InitialValue->getType(); 3821 } else { 3822 // No initializer, the initialization will be provided when we 3823 // initialize the declaration which performed lifetime extension. 3824 Type = getTypes().ConvertTypeForMem(MaterializedType); 3825 } 3826 3827 // Create a global variable for this lifetime-extended temporary. 3828 llvm::GlobalValue::LinkageTypes Linkage = 3829 getLLVMLinkageVarDefinition(VD, Constant); 3830 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3831 const VarDecl *InitVD; 3832 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3833 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3834 // Temporaries defined inside a class get linkonce_odr linkage because the 3835 // class can be defined in multipe translation units. 3836 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3837 } else { 3838 // There is no need for this temporary to have external linkage if the 3839 // VarDecl has external linkage. 3840 Linkage = llvm::GlobalVariable::InternalLinkage; 3841 } 3842 } 3843 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3844 auto *GV = new llvm::GlobalVariable( 3845 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3846 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3847 if (emitter) emitter->finalize(GV); 3848 setGlobalVisibility(GV, VD); 3849 GV->setAlignment(Align.getQuantity()); 3850 if (supportsCOMDAT() && GV->isWeakForLinker()) 3851 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3852 if (VD->getTLSKind()) 3853 setTLSMode(GV, *VD); 3854 llvm::Constant *CV = GV; 3855 if (AddrSpace != LangAS::Default) 3856 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3857 *this, GV, AddrSpace, LangAS::Default, 3858 Type->getPointerTo( 3859 getContext().getTargetAddressSpace(LangAS::Default))); 3860 MaterializedGlobalTemporaryMap[E] = CV; 3861 return ConstantAddress(CV, Align); 3862 } 3863 3864 /// EmitObjCPropertyImplementations - Emit information for synthesized 3865 /// properties for an implementation. 3866 void CodeGenModule::EmitObjCPropertyImplementations(const 3867 ObjCImplementationDecl *D) { 3868 for (const auto *PID : D->property_impls()) { 3869 // Dynamic is just for type-checking. 3870 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3871 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3872 3873 // Determine which methods need to be implemented, some may have 3874 // been overridden. Note that ::isPropertyAccessor is not the method 3875 // we want, that just indicates if the decl came from a 3876 // property. What we want to know is if the method is defined in 3877 // this implementation. 3878 if (!D->getInstanceMethod(PD->getGetterName())) 3879 CodeGenFunction(*this).GenerateObjCGetter( 3880 const_cast<ObjCImplementationDecl *>(D), PID); 3881 if (!PD->isReadOnly() && 3882 !D->getInstanceMethod(PD->getSetterName())) 3883 CodeGenFunction(*this).GenerateObjCSetter( 3884 const_cast<ObjCImplementationDecl *>(D), PID); 3885 } 3886 } 3887 } 3888 3889 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3890 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3891 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3892 ivar; ivar = ivar->getNextIvar()) 3893 if (ivar->getType().isDestructedType()) 3894 return true; 3895 3896 return false; 3897 } 3898 3899 static bool AllTrivialInitializers(CodeGenModule &CGM, 3900 ObjCImplementationDecl *D) { 3901 CodeGenFunction CGF(CGM); 3902 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3903 E = D->init_end(); B != E; ++B) { 3904 CXXCtorInitializer *CtorInitExp = *B; 3905 Expr *Init = CtorInitExp->getInit(); 3906 if (!CGF.isTrivialInitializer(Init)) 3907 return false; 3908 } 3909 return true; 3910 } 3911 3912 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3913 /// for an implementation. 3914 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3915 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3916 if (needsDestructMethod(D)) { 3917 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3918 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3919 ObjCMethodDecl *DTORMethod = 3920 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3921 cxxSelector, getContext().VoidTy, nullptr, D, 3922 /*isInstance=*/true, /*isVariadic=*/false, 3923 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3924 /*isDefined=*/false, ObjCMethodDecl::Required); 3925 D->addInstanceMethod(DTORMethod); 3926 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3927 D->setHasDestructors(true); 3928 } 3929 3930 // If the implementation doesn't have any ivar initializers, we don't need 3931 // a .cxx_construct. 3932 if (D->getNumIvarInitializers() == 0 || 3933 AllTrivialInitializers(*this, D)) 3934 return; 3935 3936 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3937 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3938 // The constructor returns 'self'. 3939 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3940 D->getLocation(), 3941 D->getLocation(), 3942 cxxSelector, 3943 getContext().getObjCIdType(), 3944 nullptr, D, /*isInstance=*/true, 3945 /*isVariadic=*/false, 3946 /*isPropertyAccessor=*/true, 3947 /*isImplicitlyDeclared=*/true, 3948 /*isDefined=*/false, 3949 ObjCMethodDecl::Required); 3950 D->addInstanceMethod(CTORMethod); 3951 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3952 D->setHasNonZeroConstructors(true); 3953 } 3954 3955 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3956 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3957 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3958 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3959 ErrorUnsupported(LSD, "linkage spec"); 3960 return; 3961 } 3962 3963 EmitDeclContext(LSD); 3964 } 3965 3966 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3967 for (auto *I : DC->decls()) { 3968 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3969 // are themselves considered "top-level", so EmitTopLevelDecl on an 3970 // ObjCImplDecl does not recursively visit them. We need to do that in 3971 // case they're nested inside another construct (LinkageSpecDecl / 3972 // ExportDecl) that does stop them from being considered "top-level". 3973 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3974 for (auto *M : OID->methods()) 3975 EmitTopLevelDecl(M); 3976 } 3977 3978 EmitTopLevelDecl(I); 3979 } 3980 } 3981 3982 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3983 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3984 // Ignore dependent declarations. 3985 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3986 return; 3987 3988 switch (D->getKind()) { 3989 case Decl::CXXConversion: 3990 case Decl::CXXMethod: 3991 case Decl::Function: 3992 // Skip function templates 3993 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3994 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3995 return; 3996 3997 EmitGlobal(cast<FunctionDecl>(D)); 3998 // Always provide some coverage mapping 3999 // even for the functions that aren't emitted. 4000 AddDeferredUnusedCoverageMapping(D); 4001 break; 4002 4003 case Decl::CXXDeductionGuide: 4004 // Function-like, but does not result in code emission. 4005 break; 4006 4007 case Decl::Var: 4008 case Decl::Decomposition: 4009 // Skip variable templates 4010 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4011 return; 4012 LLVM_FALLTHROUGH; 4013 case Decl::VarTemplateSpecialization: 4014 EmitGlobal(cast<VarDecl>(D)); 4015 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4016 for (auto *B : DD->bindings()) 4017 if (auto *HD = B->getHoldingVar()) 4018 EmitGlobal(HD); 4019 break; 4020 4021 // Indirect fields from global anonymous structs and unions can be 4022 // ignored; only the actual variable requires IR gen support. 4023 case Decl::IndirectField: 4024 break; 4025 4026 // C++ Decls 4027 case Decl::Namespace: 4028 EmitDeclContext(cast<NamespaceDecl>(D)); 4029 break; 4030 case Decl::CXXRecord: 4031 if (DebugInfo) { 4032 if (auto *ES = D->getASTContext().getExternalSource()) 4033 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4034 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4035 } 4036 // Emit any static data members, they may be definitions. 4037 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4038 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4039 EmitTopLevelDecl(I); 4040 break; 4041 // No code generation needed. 4042 case Decl::UsingShadow: 4043 case Decl::ClassTemplate: 4044 case Decl::VarTemplate: 4045 case Decl::VarTemplatePartialSpecialization: 4046 case Decl::FunctionTemplate: 4047 case Decl::TypeAliasTemplate: 4048 case Decl::Block: 4049 case Decl::Empty: 4050 break; 4051 case Decl::Using: // using X; [C++] 4052 if (CGDebugInfo *DI = getModuleDebugInfo()) 4053 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4054 return; 4055 case Decl::NamespaceAlias: 4056 if (CGDebugInfo *DI = getModuleDebugInfo()) 4057 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4058 return; 4059 case Decl::UsingDirective: // using namespace X; [C++] 4060 if (CGDebugInfo *DI = getModuleDebugInfo()) 4061 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4062 return; 4063 case Decl::CXXConstructor: 4064 // Skip function templates 4065 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4066 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4067 return; 4068 4069 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4070 break; 4071 case Decl::CXXDestructor: 4072 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4073 return; 4074 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4075 break; 4076 4077 case Decl::StaticAssert: 4078 // Nothing to do. 4079 break; 4080 4081 // Objective-C Decls 4082 4083 // Forward declarations, no (immediate) code generation. 4084 case Decl::ObjCInterface: 4085 case Decl::ObjCCategory: 4086 break; 4087 4088 case Decl::ObjCProtocol: { 4089 auto *Proto = cast<ObjCProtocolDecl>(D); 4090 if (Proto->isThisDeclarationADefinition()) 4091 ObjCRuntime->GenerateProtocol(Proto); 4092 break; 4093 } 4094 4095 case Decl::ObjCCategoryImpl: 4096 // Categories have properties but don't support synthesize so we 4097 // can ignore them here. 4098 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4099 break; 4100 4101 case Decl::ObjCImplementation: { 4102 auto *OMD = cast<ObjCImplementationDecl>(D); 4103 EmitObjCPropertyImplementations(OMD); 4104 EmitObjCIvarInitializations(OMD); 4105 ObjCRuntime->GenerateClass(OMD); 4106 // Emit global variable debug information. 4107 if (CGDebugInfo *DI = getModuleDebugInfo()) 4108 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4109 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4110 OMD->getClassInterface()), OMD->getLocation()); 4111 break; 4112 } 4113 case Decl::ObjCMethod: { 4114 auto *OMD = cast<ObjCMethodDecl>(D); 4115 // If this is not a prototype, emit the body. 4116 if (OMD->getBody()) 4117 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4118 break; 4119 } 4120 case Decl::ObjCCompatibleAlias: 4121 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4122 break; 4123 4124 case Decl::PragmaComment: { 4125 const auto *PCD = cast<PragmaCommentDecl>(D); 4126 switch (PCD->getCommentKind()) { 4127 case PCK_Unknown: 4128 llvm_unreachable("unexpected pragma comment kind"); 4129 case PCK_Linker: 4130 AppendLinkerOptions(PCD->getArg()); 4131 break; 4132 case PCK_Lib: 4133 AddDependentLib(PCD->getArg()); 4134 break; 4135 case PCK_Compiler: 4136 case PCK_ExeStr: 4137 case PCK_User: 4138 break; // We ignore all of these. 4139 } 4140 break; 4141 } 4142 4143 case Decl::PragmaDetectMismatch: { 4144 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4145 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4146 break; 4147 } 4148 4149 case Decl::LinkageSpec: 4150 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4151 break; 4152 4153 case Decl::FileScopeAsm: { 4154 // File-scope asm is ignored during device-side CUDA compilation. 4155 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4156 break; 4157 // File-scope asm is ignored during device-side OpenMP compilation. 4158 if (LangOpts.OpenMPIsDevice) 4159 break; 4160 auto *AD = cast<FileScopeAsmDecl>(D); 4161 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4162 break; 4163 } 4164 4165 case Decl::Import: { 4166 auto *Import = cast<ImportDecl>(D); 4167 4168 // If we've already imported this module, we're done. 4169 if (!ImportedModules.insert(Import->getImportedModule())) 4170 break; 4171 4172 // Emit debug information for direct imports. 4173 if (!Import->getImportedOwningModule()) { 4174 if (CGDebugInfo *DI = getModuleDebugInfo()) 4175 DI->EmitImportDecl(*Import); 4176 } 4177 4178 // Find all of the submodules and emit the module initializers. 4179 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4180 SmallVector<clang::Module *, 16> Stack; 4181 Visited.insert(Import->getImportedModule()); 4182 Stack.push_back(Import->getImportedModule()); 4183 4184 while (!Stack.empty()) { 4185 clang::Module *Mod = Stack.pop_back_val(); 4186 if (!EmittedModuleInitializers.insert(Mod).second) 4187 continue; 4188 4189 for (auto *D : Context.getModuleInitializers(Mod)) 4190 EmitTopLevelDecl(D); 4191 4192 // Visit the submodules of this module. 4193 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4194 SubEnd = Mod->submodule_end(); 4195 Sub != SubEnd; ++Sub) { 4196 // Skip explicit children; they need to be explicitly imported to emit 4197 // the initializers. 4198 if ((*Sub)->IsExplicit) 4199 continue; 4200 4201 if (Visited.insert(*Sub).second) 4202 Stack.push_back(*Sub); 4203 } 4204 } 4205 break; 4206 } 4207 4208 case Decl::Export: 4209 EmitDeclContext(cast<ExportDecl>(D)); 4210 break; 4211 4212 case Decl::OMPThreadPrivate: 4213 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4214 break; 4215 4216 case Decl::ClassTemplateSpecialization: { 4217 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4218 if (DebugInfo && 4219 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4220 Spec->hasDefinition()) 4221 DebugInfo->completeTemplateDefinition(*Spec); 4222 break; 4223 } 4224 4225 case Decl::OMPDeclareReduction: 4226 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4227 break; 4228 4229 default: 4230 // Make sure we handled everything we should, every other kind is a 4231 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4232 // function. Need to recode Decl::Kind to do that easily. 4233 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4234 break; 4235 } 4236 } 4237 4238 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4239 // Do we need to generate coverage mapping? 4240 if (!CodeGenOpts.CoverageMapping) 4241 return; 4242 switch (D->getKind()) { 4243 case Decl::CXXConversion: 4244 case Decl::CXXMethod: 4245 case Decl::Function: 4246 case Decl::ObjCMethod: 4247 case Decl::CXXConstructor: 4248 case Decl::CXXDestructor: { 4249 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4250 return; 4251 SourceManager &SM = getContext().getSourceManager(); 4252 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4253 return; 4254 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4255 if (I == DeferredEmptyCoverageMappingDecls.end()) 4256 DeferredEmptyCoverageMappingDecls[D] = true; 4257 break; 4258 } 4259 default: 4260 break; 4261 }; 4262 } 4263 4264 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4265 // Do we need to generate coverage mapping? 4266 if (!CodeGenOpts.CoverageMapping) 4267 return; 4268 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4269 if (Fn->isTemplateInstantiation()) 4270 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4271 } 4272 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4273 if (I == DeferredEmptyCoverageMappingDecls.end()) 4274 DeferredEmptyCoverageMappingDecls[D] = false; 4275 else 4276 I->second = false; 4277 } 4278 4279 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4280 std::vector<const Decl *> DeferredDecls; 4281 for (const auto &I : DeferredEmptyCoverageMappingDecls) { 4282 if (!I.second) 4283 continue; 4284 DeferredDecls.push_back(I.first); 4285 } 4286 // Sort the declarations by their location to make sure that the tests get a 4287 // predictable order for the coverage mapping for the unused declarations. 4288 if (CodeGenOpts.DumpCoverageMapping) 4289 std::sort(DeferredDecls.begin(), DeferredDecls.end(), 4290 [] (const Decl *LHS, const Decl *RHS) { 4291 return LHS->getLocStart() < RHS->getLocStart(); 4292 }); 4293 for (const auto *D : DeferredDecls) { 4294 switch (D->getKind()) { 4295 case Decl::CXXConversion: 4296 case Decl::CXXMethod: 4297 case Decl::Function: 4298 case Decl::ObjCMethod: { 4299 CodeGenPGO PGO(*this); 4300 GlobalDecl GD(cast<FunctionDecl>(D)); 4301 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4302 getFunctionLinkage(GD)); 4303 break; 4304 } 4305 case Decl::CXXConstructor: { 4306 CodeGenPGO PGO(*this); 4307 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4308 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4309 getFunctionLinkage(GD)); 4310 break; 4311 } 4312 case Decl::CXXDestructor: { 4313 CodeGenPGO PGO(*this); 4314 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4315 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4316 getFunctionLinkage(GD)); 4317 break; 4318 } 4319 default: 4320 break; 4321 }; 4322 } 4323 } 4324 4325 /// Turns the given pointer into a constant. 4326 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4327 const void *Ptr) { 4328 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4329 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4330 return llvm::ConstantInt::get(i64, PtrInt); 4331 } 4332 4333 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4334 llvm::NamedMDNode *&GlobalMetadata, 4335 GlobalDecl D, 4336 llvm::GlobalValue *Addr) { 4337 if (!GlobalMetadata) 4338 GlobalMetadata = 4339 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4340 4341 // TODO: should we report variant information for ctors/dtors? 4342 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4343 llvm::ConstantAsMetadata::get(GetPointerConstant( 4344 CGM.getLLVMContext(), D.getDecl()))}; 4345 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4346 } 4347 4348 /// For each function which is declared within an extern "C" region and marked 4349 /// as 'used', but has internal linkage, create an alias from the unmangled 4350 /// name to the mangled name if possible. People expect to be able to refer 4351 /// to such functions with an unmangled name from inline assembly within the 4352 /// same translation unit. 4353 void CodeGenModule::EmitStaticExternCAliases() { 4354 // Don't do anything if we're generating CUDA device code -- the NVPTX 4355 // assembly target doesn't support aliases. 4356 if (Context.getTargetInfo().getTriple().isNVPTX()) 4357 return; 4358 for (auto &I : StaticExternCValues) { 4359 IdentifierInfo *Name = I.first; 4360 llvm::GlobalValue *Val = I.second; 4361 if (Val && !getModule().getNamedValue(Name->getName())) 4362 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4363 } 4364 } 4365 4366 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4367 GlobalDecl &Result) const { 4368 auto Res = Manglings.find(MangledName); 4369 if (Res == Manglings.end()) 4370 return false; 4371 Result = Res->getValue(); 4372 return true; 4373 } 4374 4375 /// Emits metadata nodes associating all the global values in the 4376 /// current module with the Decls they came from. This is useful for 4377 /// projects using IR gen as a subroutine. 4378 /// 4379 /// Since there's currently no way to associate an MDNode directly 4380 /// with an llvm::GlobalValue, we create a global named metadata 4381 /// with the name 'clang.global.decl.ptrs'. 4382 void CodeGenModule::EmitDeclMetadata() { 4383 llvm::NamedMDNode *GlobalMetadata = nullptr; 4384 4385 for (auto &I : MangledDeclNames) { 4386 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4387 // Some mangled names don't necessarily have an associated GlobalValue 4388 // in this module, e.g. if we mangled it for DebugInfo. 4389 if (Addr) 4390 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4391 } 4392 } 4393 4394 /// Emits metadata nodes for all the local variables in the current 4395 /// function. 4396 void CodeGenFunction::EmitDeclMetadata() { 4397 if (LocalDeclMap.empty()) return; 4398 4399 llvm::LLVMContext &Context = getLLVMContext(); 4400 4401 // Find the unique metadata ID for this name. 4402 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4403 4404 llvm::NamedMDNode *GlobalMetadata = nullptr; 4405 4406 for (auto &I : LocalDeclMap) { 4407 const Decl *D = I.first; 4408 llvm::Value *Addr = I.second.getPointer(); 4409 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4410 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4411 Alloca->setMetadata( 4412 DeclPtrKind, llvm::MDNode::get( 4413 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4414 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4415 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4416 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4417 } 4418 } 4419 } 4420 4421 void CodeGenModule::EmitVersionIdentMetadata() { 4422 llvm::NamedMDNode *IdentMetadata = 4423 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4424 std::string Version = getClangFullVersion(); 4425 llvm::LLVMContext &Ctx = TheModule.getContext(); 4426 4427 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4428 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4429 } 4430 4431 void CodeGenModule::EmitTargetMetadata() { 4432 // Warning, new MangledDeclNames may be appended within this loop. 4433 // We rely on MapVector insertions adding new elements to the end 4434 // of the container. 4435 // FIXME: Move this loop into the one target that needs it, and only 4436 // loop over those declarations for which we couldn't emit the target 4437 // metadata when we emitted the declaration. 4438 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4439 auto Val = *(MangledDeclNames.begin() + I); 4440 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4441 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4442 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4443 } 4444 } 4445 4446 void CodeGenModule::EmitCoverageFile() { 4447 if (getCodeGenOpts().CoverageDataFile.empty() && 4448 getCodeGenOpts().CoverageNotesFile.empty()) 4449 return; 4450 4451 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4452 if (!CUNode) 4453 return; 4454 4455 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4456 llvm::LLVMContext &Ctx = TheModule.getContext(); 4457 auto *CoverageDataFile = 4458 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4459 auto *CoverageNotesFile = 4460 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4461 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4462 llvm::MDNode *CU = CUNode->getOperand(i); 4463 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4464 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4465 } 4466 } 4467 4468 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4469 // Sema has checked that all uuid strings are of the form 4470 // "12345678-1234-1234-1234-1234567890ab". 4471 assert(Uuid.size() == 36); 4472 for (unsigned i = 0; i < 36; ++i) { 4473 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4474 else assert(isHexDigit(Uuid[i])); 4475 } 4476 4477 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4478 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4479 4480 llvm::Constant *Field3[8]; 4481 for (unsigned Idx = 0; Idx < 8; ++Idx) 4482 Field3[Idx] = llvm::ConstantInt::get( 4483 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4484 4485 llvm::Constant *Fields[4] = { 4486 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4487 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4488 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4489 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4490 }; 4491 4492 return llvm::ConstantStruct::getAnon(Fields); 4493 } 4494 4495 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4496 bool ForEH) { 4497 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4498 // FIXME: should we even be calling this method if RTTI is disabled 4499 // and it's not for EH? 4500 if (!ForEH && !getLangOpts().RTTI) 4501 return llvm::Constant::getNullValue(Int8PtrTy); 4502 4503 if (ForEH && Ty->isObjCObjectPointerType() && 4504 LangOpts.ObjCRuntime.isGNUFamily()) 4505 return ObjCRuntime->GetEHType(Ty); 4506 4507 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4508 } 4509 4510 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4511 for (auto RefExpr : D->varlists()) { 4512 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4513 bool PerformInit = 4514 VD->getAnyInitializer() && 4515 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4516 /*ForRef=*/false); 4517 4518 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4519 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4520 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4521 CXXGlobalInits.push_back(InitFunction); 4522 } 4523 } 4524 4525 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4526 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4527 if (InternalId) 4528 return InternalId; 4529 4530 if (isExternallyVisible(T->getLinkage())) { 4531 std::string OutName; 4532 llvm::raw_string_ostream Out(OutName); 4533 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4534 4535 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4536 } else { 4537 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4538 llvm::ArrayRef<llvm::Metadata *>()); 4539 } 4540 4541 return InternalId; 4542 } 4543 4544 /// Returns whether this module needs the "all-vtables" type identifier. 4545 bool CodeGenModule::NeedAllVtablesTypeId() const { 4546 // Returns true if at least one of vtable-based CFI checkers is enabled and 4547 // is not in the trapping mode. 4548 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4549 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4550 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4551 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4552 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4553 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4554 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4555 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4556 } 4557 4558 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4559 CharUnits Offset, 4560 const CXXRecordDecl *RD) { 4561 llvm::Metadata *MD = 4562 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4563 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4564 4565 if (CodeGenOpts.SanitizeCfiCrossDso) 4566 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4567 VTable->addTypeMetadata(Offset.getQuantity(), 4568 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4569 4570 if (NeedAllVtablesTypeId()) { 4571 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4572 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4573 } 4574 } 4575 4576 // Fills in the supplied string map with the set of target features for the 4577 // passed in function. 4578 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4579 const FunctionDecl *FD) { 4580 StringRef TargetCPU = Target.getTargetOpts().CPU; 4581 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4582 // If we have a TargetAttr build up the feature map based on that. 4583 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4584 4585 ParsedAttr.Features.erase( 4586 llvm::remove_if(ParsedAttr.Features, 4587 [&](const std::string &Feat) { 4588 return !Target.isValidFeatureName( 4589 StringRef{Feat}.substr(1)); 4590 }), 4591 ParsedAttr.Features.end()); 4592 4593 // Make a copy of the features as passed on the command line into the 4594 // beginning of the additional features from the function to override. 4595 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4596 Target.getTargetOpts().FeaturesAsWritten.begin(), 4597 Target.getTargetOpts().FeaturesAsWritten.end()); 4598 4599 if (ParsedAttr.Architecture != "" && 4600 Target.isValidCPUName(ParsedAttr.Architecture)) 4601 TargetCPU = ParsedAttr.Architecture; 4602 4603 // Now populate the feature map, first with the TargetCPU which is either 4604 // the default or a new one from the target attribute string. Then we'll use 4605 // the passed in features (FeaturesAsWritten) along with the new ones from 4606 // the attribute. 4607 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4608 ParsedAttr.Features); 4609 } else { 4610 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4611 Target.getTargetOpts().Features); 4612 } 4613 } 4614 4615 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4616 if (!SanStats) 4617 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4618 4619 return *SanStats; 4620 } 4621 llvm::Value * 4622 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4623 CodeGenFunction &CGF) { 4624 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4625 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4626 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4627 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4628 "__translate_sampler_initializer"), 4629 {C}); 4630 } 4631