1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 if (FTy->getNumParams()) 325 Diags.Report(Location, diag::err_ifunc_resolver_params); 326 } 327 328 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 329 llvm::GlobalValue *AliaseeGV; 330 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 331 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 332 else 333 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 334 335 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 336 StringRef AliasSection = SA->getName(); 337 if (AliasSection != AliaseeGV->getSection()) 338 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 339 << AliasSection << IsIFunc << IsIFunc; 340 } 341 342 // We have to handle alias to weak aliases in here. LLVM itself disallows 343 // this since the object semantics would not match the IL one. For 344 // compatibility with gcc we implement it by just pointing the alias 345 // to its aliasee's aliasee. We also warn, since the user is probably 346 // expecting the link to be weak. 347 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 348 if (GA->isInterposable()) { 349 Diags.Report(Location, diag::warn_alias_to_weak_alias) 350 << GV->getName() << GA->getName() << IsIFunc; 351 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 352 GA->getIndirectSymbol(), Alias->getType()); 353 Alias->setIndirectSymbol(Aliasee); 354 } 355 } 356 } 357 if (!Error) 358 return; 359 360 for (const GlobalDecl &GD : Aliases) { 361 StringRef MangledName = getMangledName(GD); 362 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 363 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 364 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 365 Alias->eraseFromParent(); 366 } 367 } 368 369 void CodeGenModule::clear() { 370 DeferredDeclsToEmit.clear(); 371 if (OpenMPRuntime) 372 OpenMPRuntime->clear(); 373 } 374 375 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 376 StringRef MainFile) { 377 if (!hasDiagnostics()) 378 return; 379 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 380 if (MainFile.empty()) 381 MainFile = "<stdin>"; 382 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 383 } else { 384 if (Mismatched > 0) 385 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 386 387 if (Missing > 0) 388 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 389 } 390 } 391 392 void CodeGenModule::Release() { 393 EmitDeferred(); 394 EmitVTablesOpportunistically(); 395 applyGlobalValReplacements(); 396 applyReplacements(); 397 checkAliases(); 398 EmitCXXGlobalInitFunc(); 399 EmitCXXGlobalDtorFunc(); 400 EmitCXXThreadLocalInitFunc(); 401 if (ObjCRuntime) 402 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 403 AddGlobalCtor(ObjCInitFunction); 404 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 405 CUDARuntime) { 406 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 407 AddGlobalCtor(CudaCtorFunction); 408 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 409 AddGlobalDtor(CudaDtorFunction); 410 } 411 if (OpenMPRuntime) 412 if (llvm::Function *OpenMPRegistrationFunction = 413 OpenMPRuntime->emitRegistrationFunction()) { 414 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 415 OpenMPRegistrationFunction : nullptr; 416 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 417 } 418 if (PGOReader) { 419 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 420 if (PGOStats.hasDiagnostics()) 421 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 422 } 423 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 424 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 425 EmitGlobalAnnotations(); 426 EmitStaticExternCAliases(); 427 EmitDeferredUnusedCoverageMappings(); 428 if (CoverageMapping) 429 CoverageMapping->emit(); 430 if (CodeGenOpts.SanitizeCfiCrossDso) { 431 CodeGenFunction(*this).EmitCfiCheckFail(); 432 CodeGenFunction(*this).EmitCfiCheckStub(); 433 } 434 emitAtAvailableLinkGuard(); 435 emitLLVMUsed(); 436 if (SanStats) 437 SanStats->finish(); 438 439 if (CodeGenOpts.Autolink && 440 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 441 EmitModuleLinkOptions(); 442 } 443 444 // Record mregparm value now so it is visible through rest of codegen. 445 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 446 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 447 CodeGenOpts.NumRegisterParameters); 448 449 if (CodeGenOpts.DwarfVersion) { 450 // We actually want the latest version when there are conflicts. 451 // We can change from Warning to Latest if such mode is supported. 452 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 453 CodeGenOpts.DwarfVersion); 454 } 455 if (CodeGenOpts.EmitCodeView) { 456 // Indicate that we want CodeView in the metadata. 457 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 458 } 459 if (CodeGenOpts.ControlFlowGuard) { 460 // We want function ID tables for Control Flow Guard. 461 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 462 } 463 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 464 // We don't support LTO with 2 with different StrictVTablePointers 465 // FIXME: we could support it by stripping all the information introduced 466 // by StrictVTablePointers. 467 468 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 469 470 llvm::Metadata *Ops[2] = { 471 llvm::MDString::get(VMContext, "StrictVTablePointers"), 472 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 473 llvm::Type::getInt32Ty(VMContext), 1))}; 474 475 getModule().addModuleFlag(llvm::Module::Require, 476 "StrictVTablePointersRequirement", 477 llvm::MDNode::get(VMContext, Ops)); 478 } 479 if (DebugInfo) 480 // We support a single version in the linked module. The LLVM 481 // parser will drop debug info with a different version number 482 // (and warn about it, too). 483 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 484 llvm::DEBUG_METADATA_VERSION); 485 486 // We need to record the widths of enums and wchar_t, so that we can generate 487 // the correct build attributes in the ARM backend. wchar_size is also used by 488 // TargetLibraryInfo. 489 uint64_t WCharWidth = 490 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 491 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 492 493 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 494 if ( Arch == llvm::Triple::arm 495 || Arch == llvm::Triple::armeb 496 || Arch == llvm::Triple::thumb 497 || Arch == llvm::Triple::thumbeb) { 498 // The minimum width of an enum in bytes 499 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 500 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 501 } 502 503 if (CodeGenOpts.SanitizeCfiCrossDso) { 504 // Indicate that we want cross-DSO control flow integrity checks. 505 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 506 } 507 508 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 509 // Indicate whether __nvvm_reflect should be configured to flush denormal 510 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 511 // property.) 512 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 513 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 514 } 515 516 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 517 if (LangOpts.OpenCL) { 518 EmitOpenCLMetadata(); 519 // Emit SPIR version. 520 if (getTriple().getArch() == llvm::Triple::spir || 521 getTriple().getArch() == llvm::Triple::spir64) { 522 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 523 // opencl.spir.version named metadata. 524 llvm::Metadata *SPIRVerElts[] = { 525 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 526 Int32Ty, LangOpts.OpenCLVersion / 100)), 527 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 528 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 529 llvm::NamedMDNode *SPIRVerMD = 530 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 531 llvm::LLVMContext &Ctx = TheModule.getContext(); 532 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 533 } 534 } 535 536 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 537 assert(PLevel < 3 && "Invalid PIC Level"); 538 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 539 if (Context.getLangOpts().PIE) 540 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 541 } 542 543 SimplifyPersonality(); 544 545 if (getCodeGenOpts().EmitDeclMetadata) 546 EmitDeclMetadata(); 547 548 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 549 EmitCoverageFile(); 550 551 if (DebugInfo) 552 DebugInfo->finalize(); 553 554 EmitVersionIdentMetadata(); 555 556 EmitTargetMetadata(); 557 } 558 559 void CodeGenModule::EmitOpenCLMetadata() { 560 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 561 // opencl.ocl.version named metadata node. 562 llvm::Metadata *OCLVerElts[] = { 563 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 564 Int32Ty, LangOpts.OpenCLVersion / 100)), 565 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 566 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 567 llvm::NamedMDNode *OCLVerMD = 568 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 569 llvm::LLVMContext &Ctx = TheModule.getContext(); 570 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 571 } 572 573 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 574 // Make sure that this type is translated. 575 Types.UpdateCompletedType(TD); 576 } 577 578 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 579 // Make sure that this type is translated. 580 Types.RefreshTypeCacheForClass(RD); 581 } 582 583 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 584 if (!TBAA) 585 return nullptr; 586 return TBAA->getTypeInfo(QTy); 587 } 588 589 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 590 // Pointee values may have incomplete types, but they shall never be 591 // dereferenced. 592 if (AccessType->isIncompleteType()) 593 return TBAAAccessInfo::getIncompleteInfo(); 594 595 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 596 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 597 } 598 599 TBAAAccessInfo 600 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 601 if (!TBAA) 602 return TBAAAccessInfo(); 603 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 604 } 605 606 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 607 if (!TBAA) 608 return nullptr; 609 return TBAA->getTBAAStructInfo(QTy); 610 } 611 612 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 613 if (!TBAA) 614 return nullptr; 615 return TBAA->getBaseTypeInfo(QTy); 616 } 617 618 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 619 if (!TBAA) 620 return nullptr; 621 return TBAA->getAccessTagInfo(Info); 622 } 623 624 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 625 TBAAAccessInfo TargetInfo) { 626 if (!TBAA) 627 return TBAAAccessInfo(); 628 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 629 } 630 631 TBAAAccessInfo 632 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 633 TBAAAccessInfo InfoB) { 634 if (!TBAA) 635 return TBAAAccessInfo(); 636 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 637 } 638 639 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 640 TBAAAccessInfo TBAAInfo) { 641 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 642 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 643 } 644 645 void CodeGenModule::DecorateInstructionWithInvariantGroup( 646 llvm::Instruction *I, const CXXRecordDecl *RD) { 647 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 648 llvm::MDNode::get(getLLVMContext(), {})); 649 } 650 651 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 652 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 653 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 654 } 655 656 /// ErrorUnsupported - Print out an error that codegen doesn't support the 657 /// specified stmt yet. 658 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 659 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 660 "cannot compile this %0 yet"); 661 std::string Msg = Type; 662 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 663 << Msg << S->getSourceRange(); 664 } 665 666 /// ErrorUnsupported - Print out an error that codegen doesn't support the 667 /// specified decl yet. 668 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 669 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 670 "cannot compile this %0 yet"); 671 std::string Msg = Type; 672 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 673 } 674 675 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 676 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 677 } 678 679 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 680 const NamedDecl *D, 681 ForDefinition_t IsForDefinition) const { 682 // Internal definitions always have default visibility. 683 if (GV->hasLocalLinkage()) { 684 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 685 return; 686 } 687 688 // Set visibility for definitions. 689 LinkageInfo LV = D->getLinkageAndVisibility(); 690 if (LV.isVisibilityExplicit() || 691 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 692 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 693 } 694 695 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 696 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 697 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 698 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 699 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 700 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 701 } 702 703 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 704 CodeGenOptions::TLSModel M) { 705 switch (M) { 706 case CodeGenOptions::GeneralDynamicTLSModel: 707 return llvm::GlobalVariable::GeneralDynamicTLSModel; 708 case CodeGenOptions::LocalDynamicTLSModel: 709 return llvm::GlobalVariable::LocalDynamicTLSModel; 710 case CodeGenOptions::InitialExecTLSModel: 711 return llvm::GlobalVariable::InitialExecTLSModel; 712 case CodeGenOptions::LocalExecTLSModel: 713 return llvm::GlobalVariable::LocalExecTLSModel; 714 } 715 llvm_unreachable("Invalid TLS model!"); 716 } 717 718 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 719 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 720 721 llvm::GlobalValue::ThreadLocalMode TLM; 722 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 723 724 // Override the TLS model if it is explicitly specified. 725 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 726 TLM = GetLLVMTLSModel(Attr->getModel()); 727 } 728 729 GV->setThreadLocalMode(TLM); 730 } 731 732 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 733 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 734 735 // Some ABIs don't have constructor variants. Make sure that base and 736 // complete constructors get mangled the same. 737 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 738 if (!getTarget().getCXXABI().hasConstructorVariants()) { 739 CXXCtorType OrigCtorType = GD.getCtorType(); 740 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 741 if (OrigCtorType == Ctor_Base) 742 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 743 } 744 } 745 746 auto FoundName = MangledDeclNames.find(CanonicalGD); 747 if (FoundName != MangledDeclNames.end()) 748 return FoundName->second; 749 750 const auto *ND = cast<NamedDecl>(GD.getDecl()); 751 SmallString<256> Buffer; 752 StringRef Str; 753 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 754 llvm::raw_svector_ostream Out(Buffer); 755 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 756 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 757 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 758 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 759 else 760 getCXXABI().getMangleContext().mangleName(ND, Out); 761 Str = Out.str(); 762 } else { 763 IdentifierInfo *II = ND->getIdentifier(); 764 assert(II && "Attempt to mangle unnamed decl."); 765 const auto *FD = dyn_cast<FunctionDecl>(ND); 766 767 if (FD && 768 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 769 llvm::raw_svector_ostream Out(Buffer); 770 Out << "__regcall3__" << II->getName(); 771 Str = Out.str(); 772 } else { 773 Str = II->getName(); 774 } 775 } 776 777 // Keep the first result in the case of a mangling collision. 778 auto Result = Manglings.insert(std::make_pair(Str, GD)); 779 return MangledDeclNames[CanonicalGD] = Result.first->first(); 780 } 781 782 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 783 const BlockDecl *BD) { 784 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 785 const Decl *D = GD.getDecl(); 786 787 SmallString<256> Buffer; 788 llvm::raw_svector_ostream Out(Buffer); 789 if (!D) 790 MangleCtx.mangleGlobalBlock(BD, 791 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 792 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 793 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 794 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 795 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 796 else 797 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 798 799 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 800 return Result.first->first(); 801 } 802 803 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 804 return getModule().getNamedValue(Name); 805 } 806 807 /// AddGlobalCtor - Add a function to the list that will be called before 808 /// main() runs. 809 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 810 llvm::Constant *AssociatedData) { 811 // FIXME: Type coercion of void()* types. 812 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 813 } 814 815 /// AddGlobalDtor - Add a function to the list that will be called 816 /// when the module is unloaded. 817 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 818 // FIXME: Type coercion of void()* types. 819 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 820 } 821 822 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 823 if (Fns.empty()) return; 824 825 // Ctor function type is void()*. 826 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 827 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 828 829 // Get the type of a ctor entry, { i32, void ()*, i8* }. 830 llvm::StructType *CtorStructTy = llvm::StructType::get( 831 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 832 833 // Construct the constructor and destructor arrays. 834 ConstantInitBuilder builder(*this); 835 auto ctors = builder.beginArray(CtorStructTy); 836 for (const auto &I : Fns) { 837 auto ctor = ctors.beginStruct(CtorStructTy); 838 ctor.addInt(Int32Ty, I.Priority); 839 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 840 if (I.AssociatedData) 841 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 842 else 843 ctor.addNullPointer(VoidPtrTy); 844 ctor.finishAndAddTo(ctors); 845 } 846 847 auto list = 848 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 849 /*constant*/ false, 850 llvm::GlobalValue::AppendingLinkage); 851 852 // The LTO linker doesn't seem to like it when we set an alignment 853 // on appending variables. Take it off as a workaround. 854 list->setAlignment(0); 855 856 Fns.clear(); 857 } 858 859 llvm::GlobalValue::LinkageTypes 860 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 861 const auto *D = cast<FunctionDecl>(GD.getDecl()); 862 863 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 864 865 if (isa<CXXDestructorDecl>(D) && 866 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 867 GD.getDtorType())) { 868 // Destructor variants in the Microsoft C++ ABI are always internal or 869 // linkonce_odr thunks emitted on an as-needed basis. 870 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 871 : llvm::GlobalValue::LinkOnceODRLinkage; 872 } 873 874 if (isa<CXXConstructorDecl>(D) && 875 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 876 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 877 // Our approach to inheriting constructors is fundamentally different from 878 // that used by the MS ABI, so keep our inheriting constructor thunks 879 // internal rather than trying to pick an unambiguous mangling for them. 880 return llvm::GlobalValue::InternalLinkage; 881 } 882 883 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 884 } 885 886 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 887 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 888 889 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 890 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 891 // Don't dllexport/import destructor thunks. 892 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 893 return; 894 } 895 } 896 897 if (FD->hasAttr<DLLImportAttr>()) 898 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 899 else if (FD->hasAttr<DLLExportAttr>()) 900 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 901 else 902 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 903 } 904 905 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 906 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 907 if (!MDS) return nullptr; 908 909 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 910 } 911 912 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 913 llvm::Function *F) { 914 setNonAliasAttributes(D, F); 915 } 916 917 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 918 const CGFunctionInfo &Info, 919 llvm::Function *F) { 920 unsigned CallingConv; 921 llvm::AttributeList PAL; 922 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 923 F->setAttributes(PAL); 924 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 925 } 926 927 /// Determines whether the language options require us to model 928 /// unwind exceptions. We treat -fexceptions as mandating this 929 /// except under the fragile ObjC ABI with only ObjC exceptions 930 /// enabled. This means, for example, that C with -fexceptions 931 /// enables this. 932 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 933 // If exceptions are completely disabled, obviously this is false. 934 if (!LangOpts.Exceptions) return false; 935 936 // If C++ exceptions are enabled, this is true. 937 if (LangOpts.CXXExceptions) return true; 938 939 // If ObjC exceptions are enabled, this depends on the ABI. 940 if (LangOpts.ObjCExceptions) { 941 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 942 } 943 944 return true; 945 } 946 947 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 948 llvm::Function *F) { 949 llvm::AttrBuilder B; 950 951 if (CodeGenOpts.UnwindTables) 952 B.addAttribute(llvm::Attribute::UWTable); 953 954 if (!hasUnwindExceptions(LangOpts)) 955 B.addAttribute(llvm::Attribute::NoUnwind); 956 957 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 958 B.addAttribute(llvm::Attribute::StackProtect); 959 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 960 B.addAttribute(llvm::Attribute::StackProtectStrong); 961 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 962 B.addAttribute(llvm::Attribute::StackProtectReq); 963 964 if (!D) { 965 // If we don't have a declaration to control inlining, the function isn't 966 // explicitly marked as alwaysinline for semantic reasons, and inlining is 967 // disabled, mark the function as noinline. 968 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 969 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 970 B.addAttribute(llvm::Attribute::NoInline); 971 972 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 973 return; 974 } 975 976 // Track whether we need to add the optnone LLVM attribute, 977 // starting with the default for this optimization level. 978 bool ShouldAddOptNone = 979 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 980 // We can't add optnone in the following cases, it won't pass the verifier. 981 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 982 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 983 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 984 985 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 986 B.addAttribute(llvm::Attribute::OptimizeNone); 987 988 // OptimizeNone implies noinline; we should not be inlining such functions. 989 B.addAttribute(llvm::Attribute::NoInline); 990 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 991 "OptimizeNone and AlwaysInline on same function!"); 992 993 // We still need to handle naked functions even though optnone subsumes 994 // much of their semantics. 995 if (D->hasAttr<NakedAttr>()) 996 B.addAttribute(llvm::Attribute::Naked); 997 998 // OptimizeNone wins over OptimizeForSize and MinSize. 999 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1000 F->removeFnAttr(llvm::Attribute::MinSize); 1001 } else if (D->hasAttr<NakedAttr>()) { 1002 // Naked implies noinline: we should not be inlining such functions. 1003 B.addAttribute(llvm::Attribute::Naked); 1004 B.addAttribute(llvm::Attribute::NoInline); 1005 } else if (D->hasAttr<NoDuplicateAttr>()) { 1006 B.addAttribute(llvm::Attribute::NoDuplicate); 1007 } else if (D->hasAttr<NoInlineAttr>()) { 1008 B.addAttribute(llvm::Attribute::NoInline); 1009 } else if (D->hasAttr<AlwaysInlineAttr>() && 1010 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1011 // (noinline wins over always_inline, and we can't specify both in IR) 1012 B.addAttribute(llvm::Attribute::AlwaysInline); 1013 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1014 // If we're not inlining, then force everything that isn't always_inline to 1015 // carry an explicit noinline attribute. 1016 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1017 B.addAttribute(llvm::Attribute::NoInline); 1018 } else { 1019 // Otherwise, propagate the inline hint attribute and potentially use its 1020 // absence to mark things as noinline. 1021 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1022 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1023 return Redecl->isInlineSpecified(); 1024 })) { 1025 B.addAttribute(llvm::Attribute::InlineHint); 1026 } else if (CodeGenOpts.getInlining() == 1027 CodeGenOptions::OnlyHintInlining && 1028 !FD->isInlined() && 1029 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1030 B.addAttribute(llvm::Attribute::NoInline); 1031 } 1032 } 1033 } 1034 1035 // Add other optimization related attributes if we are optimizing this 1036 // function. 1037 if (!D->hasAttr<OptimizeNoneAttr>()) { 1038 if (D->hasAttr<ColdAttr>()) { 1039 if (!ShouldAddOptNone) 1040 B.addAttribute(llvm::Attribute::OptimizeForSize); 1041 B.addAttribute(llvm::Attribute::Cold); 1042 } 1043 1044 if (D->hasAttr<MinSizeAttr>()) 1045 B.addAttribute(llvm::Attribute::MinSize); 1046 } 1047 1048 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1049 1050 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1051 if (alignment) 1052 F->setAlignment(alignment); 1053 1054 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1055 // reserve a bit for differentiating between virtual and non-virtual member 1056 // functions. If the current target's C++ ABI requires this and this is a 1057 // member function, set its alignment accordingly. 1058 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1059 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1060 F->setAlignment(2); 1061 } 1062 1063 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1064 if (CodeGenOpts.SanitizeCfiCrossDso) 1065 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1066 CreateFunctionTypeMetadata(FD, F); 1067 } 1068 1069 void CodeGenModule::SetCommonAttributes(const Decl *D, 1070 llvm::GlobalValue *GV) { 1071 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1072 setGlobalVisibility(GV, ND, ForDefinition); 1073 else 1074 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1075 1076 if (D && D->hasAttr<UsedAttr>()) 1077 addUsedGlobal(GV); 1078 } 1079 1080 void CodeGenModule::setAliasAttributes(const Decl *D, 1081 llvm::GlobalValue *GV) { 1082 SetCommonAttributes(D, GV); 1083 1084 // Process the dllexport attribute based on whether the original definition 1085 // (not necessarily the aliasee) was exported. 1086 if (D->hasAttr<DLLExportAttr>()) 1087 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1088 } 1089 1090 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1091 llvm::GlobalObject *GO) { 1092 SetCommonAttributes(D, GO); 1093 1094 if (D) { 1095 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1096 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1097 GV->addAttribute("bss-section", SA->getName()); 1098 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1099 GV->addAttribute("data-section", SA->getName()); 1100 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1101 GV->addAttribute("rodata-section", SA->getName()); 1102 } 1103 1104 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1105 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1106 if (!D->getAttr<SectionAttr>()) 1107 F->addFnAttr("implicit-section-name", SA->getName()); 1108 } 1109 1110 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1111 GO->setSection(SA->getName()); 1112 } 1113 1114 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1115 } 1116 1117 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1118 llvm::Function *F, 1119 const CGFunctionInfo &FI) { 1120 SetLLVMFunctionAttributes(D, FI, F); 1121 SetLLVMFunctionAttributesForDefinition(D, F); 1122 1123 F->setLinkage(llvm::Function::InternalLinkage); 1124 1125 setNonAliasAttributes(D, F); 1126 } 1127 1128 static void setLinkageForGV(llvm::GlobalValue *GV, 1129 const NamedDecl *ND) { 1130 // Set linkage and visibility in case we never see a definition. 1131 LinkageInfo LV = ND->getLinkageAndVisibility(); 1132 if (!isExternallyVisible(LV.getLinkage())) { 1133 // Don't set internal linkage on declarations. 1134 } else { 1135 if (ND->hasAttr<DLLImportAttr>()) { 1136 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1137 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1138 } else if (ND->hasAttr<DLLExportAttr>()) { 1139 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1140 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1141 // "extern_weak" is overloaded in LLVM; we probably should have 1142 // separate linkage types for this. 1143 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1144 } 1145 } 1146 } 1147 1148 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1149 llvm::Function *F) { 1150 // Only if we are checking indirect calls. 1151 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1152 return; 1153 1154 // Non-static class methods are handled via vtable pointer checks elsewhere. 1155 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1156 return; 1157 1158 // Additionally, if building with cross-DSO support... 1159 if (CodeGenOpts.SanitizeCfiCrossDso) { 1160 // Skip available_externally functions. They won't be codegen'ed in the 1161 // current module anyway. 1162 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1163 return; 1164 } 1165 1166 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1167 F->addTypeMetadata(0, MD); 1168 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1169 1170 // Emit a hash-based bit set entry for cross-DSO calls. 1171 if (CodeGenOpts.SanitizeCfiCrossDso) 1172 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1173 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1174 } 1175 1176 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1177 bool IsIncompleteFunction, 1178 bool IsThunk, 1179 ForDefinition_t IsForDefinition) { 1180 1181 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1182 // If this is an intrinsic function, set the function's attributes 1183 // to the intrinsic's attributes. 1184 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1185 return; 1186 } 1187 1188 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1189 1190 if (!IsIncompleteFunction) { 1191 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1192 // Setup target-specific attributes. 1193 if (!IsForDefinition) 1194 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1195 NotForDefinition); 1196 } 1197 1198 // Add the Returned attribute for "this", except for iOS 5 and earlier 1199 // where substantial code, including the libstdc++ dylib, was compiled with 1200 // GCC and does not actually return "this". 1201 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1202 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1203 assert(!F->arg_empty() && 1204 F->arg_begin()->getType() 1205 ->canLosslesslyBitCastTo(F->getReturnType()) && 1206 "unexpected this return"); 1207 F->addAttribute(1, llvm::Attribute::Returned); 1208 } 1209 1210 // Only a few attributes are set on declarations; these may later be 1211 // overridden by a definition. 1212 1213 setLinkageForGV(F, FD); 1214 setGlobalVisibility(F, FD, NotForDefinition); 1215 1216 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1217 F->addFnAttr("implicit-section-name"); 1218 } 1219 1220 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1221 F->setSection(SA->getName()); 1222 1223 if (FD->isReplaceableGlobalAllocationFunction()) { 1224 // A replaceable global allocation function does not act like a builtin by 1225 // default, only if it is invoked by a new-expression or delete-expression. 1226 F->addAttribute(llvm::AttributeList::FunctionIndex, 1227 llvm::Attribute::NoBuiltin); 1228 1229 // A sane operator new returns a non-aliasing pointer. 1230 // FIXME: Also add NonNull attribute to the return value 1231 // for the non-nothrow forms? 1232 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1233 if (getCodeGenOpts().AssumeSaneOperatorNew && 1234 (Kind == OO_New || Kind == OO_Array_New)) 1235 F->addAttribute(llvm::AttributeList::ReturnIndex, 1236 llvm::Attribute::NoAlias); 1237 } 1238 1239 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1240 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1241 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1242 if (MD->isVirtual()) 1243 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1244 1245 // Don't emit entries for function declarations in the cross-DSO mode. This 1246 // is handled with better precision by the receiving DSO. 1247 if (!CodeGenOpts.SanitizeCfiCrossDso) 1248 CreateFunctionTypeMetadata(FD, F); 1249 1250 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1251 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1252 } 1253 1254 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1255 assert(!GV->isDeclaration() && 1256 "Only globals with definition can force usage."); 1257 LLVMUsed.emplace_back(GV); 1258 } 1259 1260 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1261 assert(!GV->isDeclaration() && 1262 "Only globals with definition can force usage."); 1263 LLVMCompilerUsed.emplace_back(GV); 1264 } 1265 1266 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1267 std::vector<llvm::WeakTrackingVH> &List) { 1268 // Don't create llvm.used if there is no need. 1269 if (List.empty()) 1270 return; 1271 1272 // Convert List to what ConstantArray needs. 1273 SmallVector<llvm::Constant*, 8> UsedArray; 1274 UsedArray.resize(List.size()); 1275 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1276 UsedArray[i] = 1277 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1278 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1279 } 1280 1281 if (UsedArray.empty()) 1282 return; 1283 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1284 1285 auto *GV = new llvm::GlobalVariable( 1286 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1287 llvm::ConstantArray::get(ATy, UsedArray), Name); 1288 1289 GV->setSection("llvm.metadata"); 1290 } 1291 1292 void CodeGenModule::emitLLVMUsed() { 1293 emitUsed(*this, "llvm.used", LLVMUsed); 1294 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1295 } 1296 1297 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1298 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1299 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1300 } 1301 1302 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1303 llvm::SmallString<32> Opt; 1304 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1305 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1306 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1307 } 1308 1309 void CodeGenModule::AddDependentLib(StringRef Lib) { 1310 llvm::SmallString<24> Opt; 1311 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1312 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1313 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1314 } 1315 1316 /// \brief Add link options implied by the given module, including modules 1317 /// it depends on, using a postorder walk. 1318 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1319 SmallVectorImpl<llvm::MDNode *> &Metadata, 1320 llvm::SmallPtrSet<Module *, 16> &Visited) { 1321 // Import this module's parent. 1322 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1323 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1324 } 1325 1326 // Import this module's dependencies. 1327 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1328 if (Visited.insert(Mod->Imports[I - 1]).second) 1329 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1330 } 1331 1332 // Add linker options to link against the libraries/frameworks 1333 // described by this module. 1334 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1335 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1336 // Link against a framework. Frameworks are currently Darwin only, so we 1337 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1338 if (Mod->LinkLibraries[I-1].IsFramework) { 1339 llvm::Metadata *Args[2] = { 1340 llvm::MDString::get(Context, "-framework"), 1341 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1342 1343 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1344 continue; 1345 } 1346 1347 // Link against a library. 1348 llvm::SmallString<24> Opt; 1349 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1350 Mod->LinkLibraries[I-1].Library, Opt); 1351 auto *OptString = llvm::MDString::get(Context, Opt); 1352 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1353 } 1354 } 1355 1356 void CodeGenModule::EmitModuleLinkOptions() { 1357 // Collect the set of all of the modules we want to visit to emit link 1358 // options, which is essentially the imported modules and all of their 1359 // non-explicit child modules. 1360 llvm::SetVector<clang::Module *> LinkModules; 1361 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1362 SmallVector<clang::Module *, 16> Stack; 1363 1364 // Seed the stack with imported modules. 1365 for (Module *M : ImportedModules) { 1366 // Do not add any link flags when an implementation TU of a module imports 1367 // a header of that same module. 1368 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1369 !getLangOpts().isCompilingModule()) 1370 continue; 1371 if (Visited.insert(M).second) 1372 Stack.push_back(M); 1373 } 1374 1375 // Find all of the modules to import, making a little effort to prune 1376 // non-leaf modules. 1377 while (!Stack.empty()) { 1378 clang::Module *Mod = Stack.pop_back_val(); 1379 1380 bool AnyChildren = false; 1381 1382 // Visit the submodules of this module. 1383 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1384 SubEnd = Mod->submodule_end(); 1385 Sub != SubEnd; ++Sub) { 1386 // Skip explicit children; they need to be explicitly imported to be 1387 // linked against. 1388 if ((*Sub)->IsExplicit) 1389 continue; 1390 1391 if (Visited.insert(*Sub).second) { 1392 Stack.push_back(*Sub); 1393 AnyChildren = true; 1394 } 1395 } 1396 1397 // We didn't find any children, so add this module to the list of 1398 // modules to link against. 1399 if (!AnyChildren) { 1400 LinkModules.insert(Mod); 1401 } 1402 } 1403 1404 // Add link options for all of the imported modules in reverse topological 1405 // order. We don't do anything to try to order import link flags with respect 1406 // to linker options inserted by things like #pragma comment(). 1407 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1408 Visited.clear(); 1409 for (Module *M : LinkModules) 1410 if (Visited.insert(M).second) 1411 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1412 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1413 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1414 1415 // Add the linker options metadata flag. 1416 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1417 for (auto *MD : LinkerOptionsMetadata) 1418 NMD->addOperand(MD); 1419 } 1420 1421 void CodeGenModule::EmitDeferred() { 1422 // Emit code for any potentially referenced deferred decls. Since a 1423 // previously unused static decl may become used during the generation of code 1424 // for a static function, iterate until no changes are made. 1425 1426 if (!DeferredVTables.empty()) { 1427 EmitDeferredVTables(); 1428 1429 // Emitting a vtable doesn't directly cause more vtables to 1430 // become deferred, although it can cause functions to be 1431 // emitted that then need those vtables. 1432 assert(DeferredVTables.empty()); 1433 } 1434 1435 // Stop if we're out of both deferred vtables and deferred declarations. 1436 if (DeferredDeclsToEmit.empty()) 1437 return; 1438 1439 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1440 // work, it will not interfere with this. 1441 std::vector<GlobalDecl> CurDeclsToEmit; 1442 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1443 1444 for (GlobalDecl &D : CurDeclsToEmit) { 1445 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1446 // to get GlobalValue with exactly the type we need, not something that 1447 // might had been created for another decl with the same mangled name but 1448 // different type. 1449 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1450 GetAddrOfGlobal(D, ForDefinition)); 1451 1452 // In case of different address spaces, we may still get a cast, even with 1453 // IsForDefinition equal to true. Query mangled names table to get 1454 // GlobalValue. 1455 if (!GV) 1456 GV = GetGlobalValue(getMangledName(D)); 1457 1458 // Make sure GetGlobalValue returned non-null. 1459 assert(GV); 1460 1461 // Check to see if we've already emitted this. This is necessary 1462 // for a couple of reasons: first, decls can end up in the 1463 // deferred-decls queue multiple times, and second, decls can end 1464 // up with definitions in unusual ways (e.g. by an extern inline 1465 // function acquiring a strong function redefinition). Just 1466 // ignore these cases. 1467 if (!GV->isDeclaration()) 1468 continue; 1469 1470 // Otherwise, emit the definition and move on to the next one. 1471 EmitGlobalDefinition(D, GV); 1472 1473 // If we found out that we need to emit more decls, do that recursively. 1474 // This has the advantage that the decls are emitted in a DFS and related 1475 // ones are close together, which is convenient for testing. 1476 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1477 EmitDeferred(); 1478 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1479 } 1480 } 1481 } 1482 1483 void CodeGenModule::EmitVTablesOpportunistically() { 1484 // Try to emit external vtables as available_externally if they have emitted 1485 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1486 // is not allowed to create new references to things that need to be emitted 1487 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1488 1489 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1490 && "Only emit opportunistic vtables with optimizations"); 1491 1492 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1493 assert(getVTables().isVTableExternal(RD) && 1494 "This queue should only contain external vtables"); 1495 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1496 VTables.GenerateClassData(RD); 1497 } 1498 OpportunisticVTables.clear(); 1499 } 1500 1501 void CodeGenModule::EmitGlobalAnnotations() { 1502 if (Annotations.empty()) 1503 return; 1504 1505 // Create a new global variable for the ConstantStruct in the Module. 1506 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1507 Annotations[0]->getType(), Annotations.size()), Annotations); 1508 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1509 llvm::GlobalValue::AppendingLinkage, 1510 Array, "llvm.global.annotations"); 1511 gv->setSection(AnnotationSection); 1512 } 1513 1514 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1515 llvm::Constant *&AStr = AnnotationStrings[Str]; 1516 if (AStr) 1517 return AStr; 1518 1519 // Not found yet, create a new global. 1520 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1521 auto *gv = 1522 new llvm::GlobalVariable(getModule(), s->getType(), true, 1523 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1524 gv->setSection(AnnotationSection); 1525 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1526 AStr = gv; 1527 return gv; 1528 } 1529 1530 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1531 SourceManager &SM = getContext().getSourceManager(); 1532 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1533 if (PLoc.isValid()) 1534 return EmitAnnotationString(PLoc.getFilename()); 1535 return EmitAnnotationString(SM.getBufferName(Loc)); 1536 } 1537 1538 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1539 SourceManager &SM = getContext().getSourceManager(); 1540 PresumedLoc PLoc = SM.getPresumedLoc(L); 1541 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1542 SM.getExpansionLineNumber(L); 1543 return llvm::ConstantInt::get(Int32Ty, LineNo); 1544 } 1545 1546 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1547 const AnnotateAttr *AA, 1548 SourceLocation L) { 1549 // Get the globals for file name, annotation, and the line number. 1550 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1551 *UnitGV = EmitAnnotationUnit(L), 1552 *LineNoCst = EmitAnnotationLineNo(L); 1553 1554 // Create the ConstantStruct for the global annotation. 1555 llvm::Constant *Fields[4] = { 1556 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1557 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1558 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1559 LineNoCst 1560 }; 1561 return llvm::ConstantStruct::getAnon(Fields); 1562 } 1563 1564 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1565 llvm::GlobalValue *GV) { 1566 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1567 // Get the struct elements for these annotations. 1568 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1569 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1570 } 1571 1572 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1573 llvm::Function *Fn, 1574 SourceLocation Loc) const { 1575 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1576 // Blacklist by function name. 1577 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1578 return true; 1579 // Blacklist by location. 1580 if (Loc.isValid()) 1581 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1582 // If location is unknown, this may be a compiler-generated function. Assume 1583 // it's located in the main file. 1584 auto &SM = Context.getSourceManager(); 1585 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1586 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1587 } 1588 return false; 1589 } 1590 1591 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1592 SourceLocation Loc, QualType Ty, 1593 StringRef Category) const { 1594 // For now globals can be blacklisted only in ASan and KASan. 1595 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1596 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1597 if (!EnabledAsanMask) 1598 return false; 1599 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1600 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1601 return true; 1602 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1603 return true; 1604 // Check global type. 1605 if (!Ty.isNull()) { 1606 // Drill down the array types: if global variable of a fixed type is 1607 // blacklisted, we also don't instrument arrays of them. 1608 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1609 Ty = AT->getElementType(); 1610 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1611 // We allow to blacklist only record types (classes, structs etc.) 1612 if (Ty->isRecordType()) { 1613 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1614 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1615 return true; 1616 } 1617 } 1618 return false; 1619 } 1620 1621 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1622 StringRef Category) const { 1623 if (!LangOpts.XRayInstrument) 1624 return false; 1625 const auto &XRayFilter = getContext().getXRayFilter(); 1626 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1627 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1628 if (Loc.isValid()) 1629 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1630 if (Attr == ImbueAttr::NONE) 1631 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1632 switch (Attr) { 1633 case ImbueAttr::NONE: 1634 return false; 1635 case ImbueAttr::ALWAYS: 1636 Fn->addFnAttr("function-instrument", "xray-always"); 1637 break; 1638 case ImbueAttr::ALWAYS_ARG1: 1639 Fn->addFnAttr("function-instrument", "xray-always"); 1640 Fn->addFnAttr("xray-log-args", "1"); 1641 break; 1642 case ImbueAttr::NEVER: 1643 Fn->addFnAttr("function-instrument", "xray-never"); 1644 break; 1645 } 1646 return true; 1647 } 1648 1649 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1650 // Never defer when EmitAllDecls is specified. 1651 if (LangOpts.EmitAllDecls) 1652 return true; 1653 1654 return getContext().DeclMustBeEmitted(Global); 1655 } 1656 1657 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1658 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1659 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1660 // Implicit template instantiations may change linkage if they are later 1661 // explicitly instantiated, so they should not be emitted eagerly. 1662 return false; 1663 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1664 if (Context.getInlineVariableDefinitionKind(VD) == 1665 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1666 // A definition of an inline constexpr static data member may change 1667 // linkage later if it's redeclared outside the class. 1668 return false; 1669 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1670 // codegen for global variables, because they may be marked as threadprivate. 1671 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1672 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1673 return false; 1674 1675 return true; 1676 } 1677 1678 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1679 const CXXUuidofExpr* E) { 1680 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1681 // well-formed. 1682 StringRef Uuid = E->getUuidStr(); 1683 std::string Name = "_GUID_" + Uuid.lower(); 1684 std::replace(Name.begin(), Name.end(), '-', '_'); 1685 1686 // The UUID descriptor should be pointer aligned. 1687 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1688 1689 // Look for an existing global. 1690 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1691 return ConstantAddress(GV, Alignment); 1692 1693 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1694 assert(Init && "failed to initialize as constant"); 1695 1696 auto *GV = new llvm::GlobalVariable( 1697 getModule(), Init->getType(), 1698 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1699 if (supportsCOMDAT()) 1700 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1701 return ConstantAddress(GV, Alignment); 1702 } 1703 1704 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1705 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1706 assert(AA && "No alias?"); 1707 1708 CharUnits Alignment = getContext().getDeclAlign(VD); 1709 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1710 1711 // See if there is already something with the target's name in the module. 1712 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1713 if (Entry) { 1714 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1715 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1716 return ConstantAddress(Ptr, Alignment); 1717 } 1718 1719 llvm::Constant *Aliasee; 1720 if (isa<llvm::FunctionType>(DeclTy)) 1721 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1722 GlobalDecl(cast<FunctionDecl>(VD)), 1723 /*ForVTable=*/false); 1724 else 1725 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1726 llvm::PointerType::getUnqual(DeclTy), 1727 nullptr); 1728 1729 auto *F = cast<llvm::GlobalValue>(Aliasee); 1730 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1731 WeakRefReferences.insert(F); 1732 1733 return ConstantAddress(Aliasee, Alignment); 1734 } 1735 1736 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1737 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1738 1739 // Weak references don't produce any output by themselves. 1740 if (Global->hasAttr<WeakRefAttr>()) 1741 return; 1742 1743 // If this is an alias definition (which otherwise looks like a declaration) 1744 // emit it now. 1745 if (Global->hasAttr<AliasAttr>()) 1746 return EmitAliasDefinition(GD); 1747 1748 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1749 if (Global->hasAttr<IFuncAttr>()) 1750 return emitIFuncDefinition(GD); 1751 1752 // If this is CUDA, be selective about which declarations we emit. 1753 if (LangOpts.CUDA) { 1754 if (LangOpts.CUDAIsDevice) { 1755 if (!Global->hasAttr<CUDADeviceAttr>() && 1756 !Global->hasAttr<CUDAGlobalAttr>() && 1757 !Global->hasAttr<CUDAConstantAttr>() && 1758 !Global->hasAttr<CUDASharedAttr>()) 1759 return; 1760 } else { 1761 // We need to emit host-side 'shadows' for all global 1762 // device-side variables because the CUDA runtime needs their 1763 // size and host-side address in order to provide access to 1764 // their device-side incarnations. 1765 1766 // So device-only functions are the only things we skip. 1767 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1768 Global->hasAttr<CUDADeviceAttr>()) 1769 return; 1770 1771 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1772 "Expected Variable or Function"); 1773 } 1774 } 1775 1776 if (LangOpts.OpenMP) { 1777 // If this is OpenMP device, check if it is legal to emit this global 1778 // normally. 1779 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1780 return; 1781 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1782 if (MustBeEmitted(Global)) 1783 EmitOMPDeclareReduction(DRD); 1784 return; 1785 } 1786 } 1787 1788 // Ignore declarations, they will be emitted on their first use. 1789 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1790 // Forward declarations are emitted lazily on first use. 1791 if (!FD->doesThisDeclarationHaveABody()) { 1792 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1793 return; 1794 1795 StringRef MangledName = getMangledName(GD); 1796 1797 // Compute the function info and LLVM type. 1798 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1799 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1800 1801 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1802 /*DontDefer=*/false); 1803 return; 1804 } 1805 } else { 1806 const auto *VD = cast<VarDecl>(Global); 1807 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1808 // We need to emit device-side global CUDA variables even if a 1809 // variable does not have a definition -- we still need to define 1810 // host-side shadow for it. 1811 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1812 !VD->hasDefinition() && 1813 (VD->hasAttr<CUDAConstantAttr>() || 1814 VD->hasAttr<CUDADeviceAttr>()); 1815 if (!MustEmitForCuda && 1816 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1817 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1818 // If this declaration may have caused an inline variable definition to 1819 // change linkage, make sure that it's emitted. 1820 if (Context.getInlineVariableDefinitionKind(VD) == 1821 ASTContext::InlineVariableDefinitionKind::Strong) 1822 GetAddrOfGlobalVar(VD); 1823 return; 1824 } 1825 } 1826 1827 // Defer code generation to first use when possible, e.g. if this is an inline 1828 // function. If the global must always be emitted, do it eagerly if possible 1829 // to benefit from cache locality. 1830 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1831 // Emit the definition if it can't be deferred. 1832 EmitGlobalDefinition(GD); 1833 return; 1834 } 1835 1836 // If we're deferring emission of a C++ variable with an 1837 // initializer, remember the order in which it appeared in the file. 1838 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1839 cast<VarDecl>(Global)->hasInit()) { 1840 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1841 CXXGlobalInits.push_back(nullptr); 1842 } 1843 1844 StringRef MangledName = getMangledName(GD); 1845 if (GetGlobalValue(MangledName) != nullptr) { 1846 // The value has already been used and should therefore be emitted. 1847 addDeferredDeclToEmit(GD); 1848 } else if (MustBeEmitted(Global)) { 1849 // The value must be emitted, but cannot be emitted eagerly. 1850 assert(!MayBeEmittedEagerly(Global)); 1851 addDeferredDeclToEmit(GD); 1852 } else { 1853 // Otherwise, remember that we saw a deferred decl with this name. The 1854 // first use of the mangled name will cause it to move into 1855 // DeferredDeclsToEmit. 1856 DeferredDecls[MangledName] = GD; 1857 } 1858 } 1859 1860 // Check if T is a class type with a destructor that's not dllimport. 1861 static bool HasNonDllImportDtor(QualType T) { 1862 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1863 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1864 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1865 return true; 1866 1867 return false; 1868 } 1869 1870 namespace { 1871 struct FunctionIsDirectlyRecursive : 1872 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1873 const StringRef Name; 1874 const Builtin::Context &BI; 1875 bool Result; 1876 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1877 Name(N), BI(C), Result(false) { 1878 } 1879 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1880 1881 bool TraverseCallExpr(CallExpr *E) { 1882 const FunctionDecl *FD = E->getDirectCallee(); 1883 if (!FD) 1884 return true; 1885 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1886 if (Attr && Name == Attr->getLabel()) { 1887 Result = true; 1888 return false; 1889 } 1890 unsigned BuiltinID = FD->getBuiltinID(); 1891 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1892 return true; 1893 StringRef BuiltinName = BI.getName(BuiltinID); 1894 if (BuiltinName.startswith("__builtin_") && 1895 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1896 Result = true; 1897 return false; 1898 } 1899 return true; 1900 } 1901 }; 1902 1903 // Make sure we're not referencing non-imported vars or functions. 1904 struct DLLImportFunctionVisitor 1905 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1906 bool SafeToInline = true; 1907 1908 bool shouldVisitImplicitCode() const { return true; } 1909 1910 bool VisitVarDecl(VarDecl *VD) { 1911 if (VD->getTLSKind()) { 1912 // A thread-local variable cannot be imported. 1913 SafeToInline = false; 1914 return SafeToInline; 1915 } 1916 1917 // A variable definition might imply a destructor call. 1918 if (VD->isThisDeclarationADefinition()) 1919 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1920 1921 return SafeToInline; 1922 } 1923 1924 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1925 if (const auto *D = E->getTemporary()->getDestructor()) 1926 SafeToInline = D->hasAttr<DLLImportAttr>(); 1927 return SafeToInline; 1928 } 1929 1930 bool VisitDeclRefExpr(DeclRefExpr *E) { 1931 ValueDecl *VD = E->getDecl(); 1932 if (isa<FunctionDecl>(VD)) 1933 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1934 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1935 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1936 return SafeToInline; 1937 } 1938 1939 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1940 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1941 return SafeToInline; 1942 } 1943 1944 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1945 CXXMethodDecl *M = E->getMethodDecl(); 1946 if (!M) { 1947 // Call through a pointer to member function. This is safe to inline. 1948 SafeToInline = true; 1949 } else { 1950 SafeToInline = M->hasAttr<DLLImportAttr>(); 1951 } 1952 return SafeToInline; 1953 } 1954 1955 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1956 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1957 return SafeToInline; 1958 } 1959 1960 bool VisitCXXNewExpr(CXXNewExpr *E) { 1961 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1962 return SafeToInline; 1963 } 1964 }; 1965 } 1966 1967 // isTriviallyRecursive - Check if this function calls another 1968 // decl that, because of the asm attribute or the other decl being a builtin, 1969 // ends up pointing to itself. 1970 bool 1971 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1972 StringRef Name; 1973 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1974 // asm labels are a special kind of mangling we have to support. 1975 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1976 if (!Attr) 1977 return false; 1978 Name = Attr->getLabel(); 1979 } else { 1980 Name = FD->getName(); 1981 } 1982 1983 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1984 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1985 return Walker.Result; 1986 } 1987 1988 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1989 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1990 return true; 1991 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1992 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1993 return false; 1994 1995 if (F->hasAttr<DLLImportAttr>()) { 1996 // Check whether it would be safe to inline this dllimport function. 1997 DLLImportFunctionVisitor Visitor; 1998 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1999 if (!Visitor.SafeToInline) 2000 return false; 2001 2002 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2003 // Implicit destructor invocations aren't captured in the AST, so the 2004 // check above can't see them. Check for them manually here. 2005 for (const Decl *Member : Dtor->getParent()->decls()) 2006 if (isa<FieldDecl>(Member)) 2007 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2008 return false; 2009 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2010 if (HasNonDllImportDtor(B.getType())) 2011 return false; 2012 } 2013 } 2014 2015 // PR9614. Avoid cases where the source code is lying to us. An available 2016 // externally function should have an equivalent function somewhere else, 2017 // but a function that calls itself is clearly not equivalent to the real 2018 // implementation. 2019 // This happens in glibc's btowc and in some configure checks. 2020 return !isTriviallyRecursive(F); 2021 } 2022 2023 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2024 return CodeGenOpts.OptimizationLevel > 0; 2025 } 2026 2027 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2028 const auto *D = cast<ValueDecl>(GD.getDecl()); 2029 2030 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2031 Context.getSourceManager(), 2032 "Generating code for declaration"); 2033 2034 if (isa<FunctionDecl>(D)) { 2035 // At -O0, don't generate IR for functions with available_externally 2036 // linkage. 2037 if (!shouldEmitFunction(GD)) 2038 return; 2039 2040 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2041 // Make sure to emit the definition(s) before we emit the thunks. 2042 // This is necessary for the generation of certain thunks. 2043 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2044 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2045 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2046 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2047 else 2048 EmitGlobalFunctionDefinition(GD, GV); 2049 2050 if (Method->isVirtual()) 2051 getVTables().EmitThunks(GD); 2052 2053 return; 2054 } 2055 2056 return EmitGlobalFunctionDefinition(GD, GV); 2057 } 2058 2059 if (const auto *VD = dyn_cast<VarDecl>(D)) 2060 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2061 2062 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2063 } 2064 2065 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2066 llvm::Function *NewFn); 2067 2068 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2069 /// module, create and return an llvm Function with the specified type. If there 2070 /// is something in the module with the specified name, return it potentially 2071 /// bitcasted to the right type. 2072 /// 2073 /// If D is non-null, it specifies a decl that correspond to this. This is used 2074 /// to set the attributes on the function when it is first created. 2075 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2076 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2077 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2078 ForDefinition_t IsForDefinition) { 2079 const Decl *D = GD.getDecl(); 2080 2081 // Lookup the entry, lazily creating it if necessary. 2082 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2083 if (Entry) { 2084 if (WeakRefReferences.erase(Entry)) { 2085 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2086 if (FD && !FD->hasAttr<WeakAttr>()) 2087 Entry->setLinkage(llvm::Function::ExternalLinkage); 2088 } 2089 2090 // Handle dropped DLL attributes. 2091 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2092 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2093 2094 // If there are two attempts to define the same mangled name, issue an 2095 // error. 2096 if (IsForDefinition && !Entry->isDeclaration()) { 2097 GlobalDecl OtherGD; 2098 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2099 // to make sure that we issue an error only once. 2100 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2101 (GD.getCanonicalDecl().getDecl() != 2102 OtherGD.getCanonicalDecl().getDecl()) && 2103 DiagnosedConflictingDefinitions.insert(GD).second) { 2104 getDiags().Report(D->getLocation(), 2105 diag::err_duplicate_mangled_name); 2106 getDiags().Report(OtherGD.getDecl()->getLocation(), 2107 diag::note_previous_definition); 2108 } 2109 } 2110 2111 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2112 (Entry->getType()->getElementType() == Ty)) { 2113 return Entry; 2114 } 2115 2116 // Make sure the result is of the correct type. 2117 // (If function is requested for a definition, we always need to create a new 2118 // function, not just return a bitcast.) 2119 if (!IsForDefinition) 2120 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2121 } 2122 2123 // This function doesn't have a complete type (for example, the return 2124 // type is an incomplete struct). Use a fake type instead, and make 2125 // sure not to try to set attributes. 2126 bool IsIncompleteFunction = false; 2127 2128 llvm::FunctionType *FTy; 2129 if (isa<llvm::FunctionType>(Ty)) { 2130 FTy = cast<llvm::FunctionType>(Ty); 2131 } else { 2132 FTy = llvm::FunctionType::get(VoidTy, false); 2133 IsIncompleteFunction = true; 2134 } 2135 2136 llvm::Function *F = 2137 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2138 Entry ? StringRef() : MangledName, &getModule()); 2139 2140 // If we already created a function with the same mangled name (but different 2141 // type) before, take its name and add it to the list of functions to be 2142 // replaced with F at the end of CodeGen. 2143 // 2144 // This happens if there is a prototype for a function (e.g. "int f()") and 2145 // then a definition of a different type (e.g. "int f(int x)"). 2146 if (Entry) { 2147 F->takeName(Entry); 2148 2149 // This might be an implementation of a function without a prototype, in 2150 // which case, try to do special replacement of calls which match the new 2151 // prototype. The really key thing here is that we also potentially drop 2152 // arguments from the call site so as to make a direct call, which makes the 2153 // inliner happier and suppresses a number of optimizer warnings (!) about 2154 // dropping arguments. 2155 if (!Entry->use_empty()) { 2156 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2157 Entry->removeDeadConstantUsers(); 2158 } 2159 2160 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2161 F, Entry->getType()->getElementType()->getPointerTo()); 2162 addGlobalValReplacement(Entry, BC); 2163 } 2164 2165 assert(F->getName() == MangledName && "name was uniqued!"); 2166 if (D) 2167 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2168 IsForDefinition); 2169 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2170 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2171 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2172 } 2173 2174 if (!DontDefer) { 2175 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2176 // each other bottoming out with the base dtor. Therefore we emit non-base 2177 // dtors on usage, even if there is no dtor definition in the TU. 2178 if (D && isa<CXXDestructorDecl>(D) && 2179 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2180 GD.getDtorType())) 2181 addDeferredDeclToEmit(GD); 2182 2183 // This is the first use or definition of a mangled name. If there is a 2184 // deferred decl with this name, remember that we need to emit it at the end 2185 // of the file. 2186 auto DDI = DeferredDecls.find(MangledName); 2187 if (DDI != DeferredDecls.end()) { 2188 // Move the potentially referenced deferred decl to the 2189 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2190 // don't need it anymore). 2191 addDeferredDeclToEmit(DDI->second); 2192 DeferredDecls.erase(DDI); 2193 2194 // Otherwise, there are cases we have to worry about where we're 2195 // using a declaration for which we must emit a definition but where 2196 // we might not find a top-level definition: 2197 // - member functions defined inline in their classes 2198 // - friend functions defined inline in some class 2199 // - special member functions with implicit definitions 2200 // If we ever change our AST traversal to walk into class methods, 2201 // this will be unnecessary. 2202 // 2203 // We also don't emit a definition for a function if it's going to be an 2204 // entry in a vtable, unless it's already marked as used. 2205 } else if (getLangOpts().CPlusPlus && D) { 2206 // Look for a declaration that's lexically in a record. 2207 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2208 FD = FD->getPreviousDecl()) { 2209 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2210 if (FD->doesThisDeclarationHaveABody()) { 2211 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2212 break; 2213 } 2214 } 2215 } 2216 } 2217 } 2218 2219 // Make sure the result is of the requested type. 2220 if (!IsIncompleteFunction) { 2221 assert(F->getType()->getElementType() == Ty); 2222 return F; 2223 } 2224 2225 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2226 return llvm::ConstantExpr::getBitCast(F, PTy); 2227 } 2228 2229 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2230 /// non-null, then this function will use the specified type if it has to 2231 /// create it (this occurs when we see a definition of the function). 2232 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2233 llvm::Type *Ty, 2234 bool ForVTable, 2235 bool DontDefer, 2236 ForDefinition_t IsForDefinition) { 2237 // If there was no specific requested type, just convert it now. 2238 if (!Ty) { 2239 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2240 auto CanonTy = Context.getCanonicalType(FD->getType()); 2241 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2242 } 2243 2244 StringRef MangledName = getMangledName(GD); 2245 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2246 /*IsThunk=*/false, llvm::AttributeList(), 2247 IsForDefinition); 2248 } 2249 2250 static const FunctionDecl * 2251 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2252 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2253 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2254 2255 IdentifierInfo &CII = C.Idents.get(Name); 2256 for (const auto &Result : DC->lookup(&CII)) 2257 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2258 return FD; 2259 2260 if (!C.getLangOpts().CPlusPlus) 2261 return nullptr; 2262 2263 // Demangle the premangled name from getTerminateFn() 2264 IdentifierInfo &CXXII = 2265 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2266 ? C.Idents.get("terminate") 2267 : C.Idents.get(Name); 2268 2269 for (const auto &N : {"__cxxabiv1", "std"}) { 2270 IdentifierInfo &NS = C.Idents.get(N); 2271 for (const auto &Result : DC->lookup(&NS)) { 2272 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2273 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2274 for (const auto &Result : LSD->lookup(&NS)) 2275 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2276 break; 2277 2278 if (ND) 2279 for (const auto &Result : ND->lookup(&CXXII)) 2280 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2281 return FD; 2282 } 2283 } 2284 2285 return nullptr; 2286 } 2287 2288 /// CreateRuntimeFunction - Create a new runtime function with the specified 2289 /// type and name. 2290 llvm::Constant * 2291 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2292 llvm::AttributeList ExtraAttrs, 2293 bool Local) { 2294 llvm::Constant *C = 2295 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2296 /*DontDefer=*/false, /*IsThunk=*/false, 2297 ExtraAttrs); 2298 2299 if (auto *F = dyn_cast<llvm::Function>(C)) { 2300 if (F->empty()) { 2301 F->setCallingConv(getRuntimeCC()); 2302 2303 if (!Local && getTriple().isOSBinFormatCOFF() && 2304 !getCodeGenOpts().LTOVisibilityPublicStd && 2305 !getTriple().isWindowsGNUEnvironment()) { 2306 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2307 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2308 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2309 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2310 } 2311 } 2312 } 2313 } 2314 2315 return C; 2316 } 2317 2318 /// CreateBuiltinFunction - Create a new builtin function with the specified 2319 /// type and name. 2320 llvm::Constant * 2321 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2322 llvm::AttributeList ExtraAttrs) { 2323 llvm::Constant *C = 2324 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2325 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2326 if (auto *F = dyn_cast<llvm::Function>(C)) 2327 if (F->empty()) 2328 F->setCallingConv(getBuiltinCC()); 2329 return C; 2330 } 2331 2332 /// isTypeConstant - Determine whether an object of this type can be emitted 2333 /// as a constant. 2334 /// 2335 /// If ExcludeCtor is true, the duration when the object's constructor runs 2336 /// will not be considered. The caller will need to verify that the object is 2337 /// not written to during its construction. 2338 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2339 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2340 return false; 2341 2342 if (Context.getLangOpts().CPlusPlus) { 2343 if (const CXXRecordDecl *Record 2344 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2345 return ExcludeCtor && !Record->hasMutableFields() && 2346 Record->hasTrivialDestructor(); 2347 } 2348 2349 return true; 2350 } 2351 2352 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2353 /// create and return an llvm GlobalVariable with the specified type. If there 2354 /// is something in the module with the specified name, return it potentially 2355 /// bitcasted to the right type. 2356 /// 2357 /// If D is non-null, it specifies a decl that correspond to this. This is used 2358 /// to set the attributes on the global when it is first created. 2359 /// 2360 /// If IsForDefinition is true, it is guranteed that an actual global with 2361 /// type Ty will be returned, not conversion of a variable with the same 2362 /// mangled name but some other type. 2363 llvm::Constant * 2364 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2365 llvm::PointerType *Ty, 2366 const VarDecl *D, 2367 ForDefinition_t IsForDefinition) { 2368 // Lookup the entry, lazily creating it if necessary. 2369 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2370 if (Entry) { 2371 if (WeakRefReferences.erase(Entry)) { 2372 if (D && !D->hasAttr<WeakAttr>()) 2373 Entry->setLinkage(llvm::Function::ExternalLinkage); 2374 } 2375 2376 // Handle dropped DLL attributes. 2377 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2378 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2379 2380 if (Entry->getType() == Ty) 2381 return Entry; 2382 2383 // If there are two attempts to define the same mangled name, issue an 2384 // error. 2385 if (IsForDefinition && !Entry->isDeclaration()) { 2386 GlobalDecl OtherGD; 2387 const VarDecl *OtherD; 2388 2389 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2390 // to make sure that we issue an error only once. 2391 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2392 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2393 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2394 OtherD->hasInit() && 2395 DiagnosedConflictingDefinitions.insert(D).second) { 2396 getDiags().Report(D->getLocation(), 2397 diag::err_duplicate_mangled_name); 2398 getDiags().Report(OtherGD.getDecl()->getLocation(), 2399 diag::note_previous_definition); 2400 } 2401 } 2402 2403 // Make sure the result is of the correct type. 2404 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2405 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2406 2407 // (If global is requested for a definition, we always need to create a new 2408 // global, not just return a bitcast.) 2409 if (!IsForDefinition) 2410 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2411 } 2412 2413 auto AddrSpace = GetGlobalVarAddressSpace(D); 2414 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2415 2416 auto *GV = new llvm::GlobalVariable( 2417 getModule(), Ty->getElementType(), false, 2418 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2419 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2420 2421 // If we already created a global with the same mangled name (but different 2422 // type) before, take its name and remove it from its parent. 2423 if (Entry) { 2424 GV->takeName(Entry); 2425 2426 if (!Entry->use_empty()) { 2427 llvm::Constant *NewPtrForOldDecl = 2428 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2429 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2430 } 2431 2432 Entry->eraseFromParent(); 2433 } 2434 2435 // This is the first use or definition of a mangled name. If there is a 2436 // deferred decl with this name, remember that we need to emit it at the end 2437 // of the file. 2438 auto DDI = DeferredDecls.find(MangledName); 2439 if (DDI != DeferredDecls.end()) { 2440 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2441 // list, and remove it from DeferredDecls (since we don't need it anymore). 2442 addDeferredDeclToEmit(DDI->second); 2443 DeferredDecls.erase(DDI); 2444 } 2445 2446 // Handle things which are present even on external declarations. 2447 if (D) { 2448 // FIXME: This code is overly simple and should be merged with other global 2449 // handling. 2450 GV->setConstant(isTypeConstant(D->getType(), false)); 2451 2452 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2453 2454 setLinkageForGV(GV, D); 2455 setGlobalVisibility(GV, D, NotForDefinition); 2456 2457 if (D->getTLSKind()) { 2458 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2459 CXXThreadLocals.push_back(D); 2460 setTLSMode(GV, *D); 2461 } 2462 2463 // If required by the ABI, treat declarations of static data members with 2464 // inline initializers as definitions. 2465 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2466 EmitGlobalVarDefinition(D); 2467 } 2468 2469 // Emit section information for extern variables. 2470 if (D->hasExternalStorage()) { 2471 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2472 GV->setSection(SA->getName()); 2473 } 2474 2475 // Handle XCore specific ABI requirements. 2476 if (getTriple().getArch() == llvm::Triple::xcore && 2477 D->getLanguageLinkage() == CLanguageLinkage && 2478 D->getType().isConstant(Context) && 2479 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2480 GV->setSection(".cp.rodata"); 2481 2482 // Check if we a have a const declaration with an initializer, we may be 2483 // able to emit it as available_externally to expose it's value to the 2484 // optimizer. 2485 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2486 D->getType().isConstQualified() && !GV->hasInitializer() && 2487 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2488 const auto *Record = 2489 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2490 bool HasMutableFields = Record && Record->hasMutableFields(); 2491 if (!HasMutableFields) { 2492 const VarDecl *InitDecl; 2493 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2494 if (InitExpr) { 2495 ConstantEmitter emitter(*this); 2496 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2497 if (Init) { 2498 auto *InitType = Init->getType(); 2499 if (GV->getType()->getElementType() != InitType) { 2500 // The type of the initializer does not match the definition. 2501 // This happens when an initializer has a different type from 2502 // the type of the global (because of padding at the end of a 2503 // structure for instance). 2504 GV->setName(StringRef()); 2505 // Make a new global with the correct type, this is now guaranteed 2506 // to work. 2507 auto *NewGV = cast<llvm::GlobalVariable>( 2508 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2509 2510 // Erase the old global, since it is no longer used. 2511 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2512 GV = NewGV; 2513 } else { 2514 GV->setInitializer(Init); 2515 GV->setConstant(true); 2516 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2517 } 2518 emitter.finalize(GV); 2519 } 2520 } 2521 } 2522 } 2523 } 2524 2525 LangAS ExpectedAS = 2526 D ? D->getType().getAddressSpace() 2527 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2528 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2529 Ty->getPointerAddressSpace()); 2530 if (AddrSpace != ExpectedAS) 2531 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2532 ExpectedAS, Ty); 2533 2534 return GV; 2535 } 2536 2537 llvm::Constant * 2538 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2539 ForDefinition_t IsForDefinition) { 2540 const Decl *D = GD.getDecl(); 2541 if (isa<CXXConstructorDecl>(D)) 2542 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2543 getFromCtorType(GD.getCtorType()), 2544 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2545 /*DontDefer=*/false, IsForDefinition); 2546 else if (isa<CXXDestructorDecl>(D)) 2547 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2548 getFromDtorType(GD.getDtorType()), 2549 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2550 /*DontDefer=*/false, IsForDefinition); 2551 else if (isa<CXXMethodDecl>(D)) { 2552 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2553 cast<CXXMethodDecl>(D)); 2554 auto Ty = getTypes().GetFunctionType(*FInfo); 2555 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2556 IsForDefinition); 2557 } else if (isa<FunctionDecl>(D)) { 2558 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2559 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2560 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2561 IsForDefinition); 2562 } else 2563 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2564 IsForDefinition); 2565 } 2566 2567 llvm::GlobalVariable * 2568 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2569 llvm::Type *Ty, 2570 llvm::GlobalValue::LinkageTypes Linkage) { 2571 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2572 llvm::GlobalVariable *OldGV = nullptr; 2573 2574 if (GV) { 2575 // Check if the variable has the right type. 2576 if (GV->getType()->getElementType() == Ty) 2577 return GV; 2578 2579 // Because C++ name mangling, the only way we can end up with an already 2580 // existing global with the same name is if it has been declared extern "C". 2581 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2582 OldGV = GV; 2583 } 2584 2585 // Create a new variable. 2586 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2587 Linkage, nullptr, Name); 2588 2589 if (OldGV) { 2590 // Replace occurrences of the old variable if needed. 2591 GV->takeName(OldGV); 2592 2593 if (!OldGV->use_empty()) { 2594 llvm::Constant *NewPtrForOldDecl = 2595 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2596 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2597 } 2598 2599 OldGV->eraseFromParent(); 2600 } 2601 2602 if (supportsCOMDAT() && GV->isWeakForLinker() && 2603 !GV->hasAvailableExternallyLinkage()) 2604 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2605 2606 return GV; 2607 } 2608 2609 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2610 /// given global variable. If Ty is non-null and if the global doesn't exist, 2611 /// then it will be created with the specified type instead of whatever the 2612 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2613 /// that an actual global with type Ty will be returned, not conversion of a 2614 /// variable with the same mangled name but some other type. 2615 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2616 llvm::Type *Ty, 2617 ForDefinition_t IsForDefinition) { 2618 assert(D->hasGlobalStorage() && "Not a global variable"); 2619 QualType ASTTy = D->getType(); 2620 if (!Ty) 2621 Ty = getTypes().ConvertTypeForMem(ASTTy); 2622 2623 llvm::PointerType *PTy = 2624 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2625 2626 StringRef MangledName = getMangledName(D); 2627 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2628 } 2629 2630 /// CreateRuntimeVariable - Create a new runtime global variable with the 2631 /// specified type and name. 2632 llvm::Constant * 2633 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2634 StringRef Name) { 2635 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2636 } 2637 2638 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2639 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2640 2641 StringRef MangledName = getMangledName(D); 2642 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2643 2644 // We already have a definition, not declaration, with the same mangled name. 2645 // Emitting of declaration is not required (and actually overwrites emitted 2646 // definition). 2647 if (GV && !GV->isDeclaration()) 2648 return; 2649 2650 // If we have not seen a reference to this variable yet, place it into the 2651 // deferred declarations table to be emitted if needed later. 2652 if (!MustBeEmitted(D) && !GV) { 2653 DeferredDecls[MangledName] = D; 2654 return; 2655 } 2656 2657 // The tentative definition is the only definition. 2658 EmitGlobalVarDefinition(D); 2659 } 2660 2661 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2662 return Context.toCharUnitsFromBits( 2663 getDataLayout().getTypeStoreSizeInBits(Ty)); 2664 } 2665 2666 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2667 LangAS AddrSpace = LangAS::Default; 2668 if (LangOpts.OpenCL) { 2669 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2670 assert(AddrSpace == LangAS::opencl_global || 2671 AddrSpace == LangAS::opencl_constant || 2672 AddrSpace == LangAS::opencl_local || 2673 AddrSpace >= LangAS::FirstTargetAddressSpace); 2674 return AddrSpace; 2675 } 2676 2677 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2678 if (D && D->hasAttr<CUDAConstantAttr>()) 2679 return LangAS::cuda_constant; 2680 else if (D && D->hasAttr<CUDASharedAttr>()) 2681 return LangAS::cuda_shared; 2682 else 2683 return LangAS::cuda_device; 2684 } 2685 2686 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2687 } 2688 2689 template<typename SomeDecl> 2690 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2691 llvm::GlobalValue *GV) { 2692 if (!getLangOpts().CPlusPlus) 2693 return; 2694 2695 // Must have 'used' attribute, or else inline assembly can't rely on 2696 // the name existing. 2697 if (!D->template hasAttr<UsedAttr>()) 2698 return; 2699 2700 // Must have internal linkage and an ordinary name. 2701 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2702 return; 2703 2704 // Must be in an extern "C" context. Entities declared directly within 2705 // a record are not extern "C" even if the record is in such a context. 2706 const SomeDecl *First = D->getFirstDecl(); 2707 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2708 return; 2709 2710 // OK, this is an internal linkage entity inside an extern "C" linkage 2711 // specification. Make a note of that so we can give it the "expected" 2712 // mangled name if nothing else is using that name. 2713 std::pair<StaticExternCMap::iterator, bool> R = 2714 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2715 2716 // If we have multiple internal linkage entities with the same name 2717 // in extern "C" regions, none of them gets that name. 2718 if (!R.second) 2719 R.first->second = nullptr; 2720 } 2721 2722 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2723 if (!CGM.supportsCOMDAT()) 2724 return false; 2725 2726 if (D.hasAttr<SelectAnyAttr>()) 2727 return true; 2728 2729 GVALinkage Linkage; 2730 if (auto *VD = dyn_cast<VarDecl>(&D)) 2731 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2732 else 2733 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2734 2735 switch (Linkage) { 2736 case GVA_Internal: 2737 case GVA_AvailableExternally: 2738 case GVA_StrongExternal: 2739 return false; 2740 case GVA_DiscardableODR: 2741 case GVA_StrongODR: 2742 return true; 2743 } 2744 llvm_unreachable("No such linkage"); 2745 } 2746 2747 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2748 llvm::GlobalObject &GO) { 2749 if (!shouldBeInCOMDAT(*this, D)) 2750 return; 2751 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2752 } 2753 2754 /// Pass IsTentative as true if you want to create a tentative definition. 2755 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2756 bool IsTentative) { 2757 // OpenCL global variables of sampler type are translated to function calls, 2758 // therefore no need to be translated. 2759 QualType ASTTy = D->getType(); 2760 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2761 return; 2762 2763 llvm::Constant *Init = nullptr; 2764 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2765 bool NeedsGlobalCtor = false; 2766 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2767 2768 const VarDecl *InitDecl; 2769 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2770 2771 Optional<ConstantEmitter> emitter; 2772 2773 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2774 // as part of their declaration." Sema has already checked for 2775 // error cases, so we just need to set Init to UndefValue. 2776 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2777 D->hasAttr<CUDASharedAttr>()) 2778 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2779 else if (!InitExpr) { 2780 // This is a tentative definition; tentative definitions are 2781 // implicitly initialized with { 0 }. 2782 // 2783 // Note that tentative definitions are only emitted at the end of 2784 // a translation unit, so they should never have incomplete 2785 // type. In addition, EmitTentativeDefinition makes sure that we 2786 // never attempt to emit a tentative definition if a real one 2787 // exists. A use may still exists, however, so we still may need 2788 // to do a RAUW. 2789 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2790 Init = EmitNullConstant(D->getType()); 2791 } else { 2792 initializedGlobalDecl = GlobalDecl(D); 2793 emitter.emplace(*this); 2794 Init = emitter->tryEmitForInitializer(*InitDecl); 2795 2796 if (!Init) { 2797 QualType T = InitExpr->getType(); 2798 if (D->getType()->isReferenceType()) 2799 T = D->getType(); 2800 2801 if (getLangOpts().CPlusPlus) { 2802 Init = EmitNullConstant(T); 2803 NeedsGlobalCtor = true; 2804 } else { 2805 ErrorUnsupported(D, "static initializer"); 2806 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2807 } 2808 } else { 2809 // We don't need an initializer, so remove the entry for the delayed 2810 // initializer position (just in case this entry was delayed) if we 2811 // also don't need to register a destructor. 2812 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2813 DelayedCXXInitPosition.erase(D); 2814 } 2815 } 2816 2817 llvm::Type* InitType = Init->getType(); 2818 llvm::Constant *Entry = 2819 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2820 2821 // Strip off a bitcast if we got one back. 2822 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2823 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2824 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2825 // All zero index gep. 2826 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2827 Entry = CE->getOperand(0); 2828 } 2829 2830 // Entry is now either a Function or GlobalVariable. 2831 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2832 2833 // We have a definition after a declaration with the wrong type. 2834 // We must make a new GlobalVariable* and update everything that used OldGV 2835 // (a declaration or tentative definition) with the new GlobalVariable* 2836 // (which will be a definition). 2837 // 2838 // This happens if there is a prototype for a global (e.g. 2839 // "extern int x[];") and then a definition of a different type (e.g. 2840 // "int x[10];"). This also happens when an initializer has a different type 2841 // from the type of the global (this happens with unions). 2842 if (!GV || GV->getType()->getElementType() != InitType || 2843 GV->getType()->getAddressSpace() != 2844 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2845 2846 // Move the old entry aside so that we'll create a new one. 2847 Entry->setName(StringRef()); 2848 2849 // Make a new global with the correct type, this is now guaranteed to work. 2850 GV = cast<llvm::GlobalVariable>( 2851 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2852 2853 // Replace all uses of the old global with the new global 2854 llvm::Constant *NewPtrForOldDecl = 2855 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2856 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2857 2858 // Erase the old global, since it is no longer used. 2859 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2860 } 2861 2862 MaybeHandleStaticInExternC(D, GV); 2863 2864 if (D->hasAttr<AnnotateAttr>()) 2865 AddGlobalAnnotations(D, GV); 2866 2867 // Set the llvm linkage type as appropriate. 2868 llvm::GlobalValue::LinkageTypes Linkage = 2869 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2870 2871 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2872 // the device. [...]" 2873 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2874 // __device__, declares a variable that: [...] 2875 // Is accessible from all the threads within the grid and from the host 2876 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2877 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2878 if (GV && LangOpts.CUDA) { 2879 if (LangOpts.CUDAIsDevice) { 2880 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2881 GV->setExternallyInitialized(true); 2882 } else { 2883 // Host-side shadows of external declarations of device-side 2884 // global variables become internal definitions. These have to 2885 // be internal in order to prevent name conflicts with global 2886 // host variables with the same name in a different TUs. 2887 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2888 Linkage = llvm::GlobalValue::InternalLinkage; 2889 2890 // Shadow variables and their properties must be registered 2891 // with CUDA runtime. 2892 unsigned Flags = 0; 2893 if (!D->hasDefinition()) 2894 Flags |= CGCUDARuntime::ExternDeviceVar; 2895 if (D->hasAttr<CUDAConstantAttr>()) 2896 Flags |= CGCUDARuntime::ConstantDeviceVar; 2897 getCUDARuntime().registerDeviceVar(*GV, Flags); 2898 } else if (D->hasAttr<CUDASharedAttr>()) 2899 // __shared__ variables are odd. Shadows do get created, but 2900 // they are not registered with the CUDA runtime, so they 2901 // can't really be used to access their device-side 2902 // counterparts. It's not clear yet whether it's nvcc's bug or 2903 // a feature, but we've got to do the same for compatibility. 2904 Linkage = llvm::GlobalValue::InternalLinkage; 2905 } 2906 } 2907 2908 GV->setInitializer(Init); 2909 if (emitter) emitter->finalize(GV); 2910 2911 // If it is safe to mark the global 'constant', do so now. 2912 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2913 isTypeConstant(D->getType(), true)); 2914 2915 // If it is in a read-only section, mark it 'constant'. 2916 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2917 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2918 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2919 GV->setConstant(true); 2920 } 2921 2922 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2923 2924 2925 // On Darwin, if the normal linkage of a C++ thread_local variable is 2926 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2927 // copies within a linkage unit; otherwise, the backing variable has 2928 // internal linkage and all accesses should just be calls to the 2929 // Itanium-specified entry point, which has the normal linkage of the 2930 // variable. This is to preserve the ability to change the implementation 2931 // behind the scenes. 2932 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2933 Context.getTargetInfo().getTriple().isOSDarwin() && 2934 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2935 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2936 Linkage = llvm::GlobalValue::InternalLinkage; 2937 2938 GV->setLinkage(Linkage); 2939 if (D->hasAttr<DLLImportAttr>()) 2940 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2941 else if (D->hasAttr<DLLExportAttr>()) 2942 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2943 else 2944 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2945 2946 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2947 // common vars aren't constant even if declared const. 2948 GV->setConstant(false); 2949 // Tentative definition of global variables may be initialized with 2950 // non-zero null pointers. In this case they should have weak linkage 2951 // since common linkage must have zero initializer and must not have 2952 // explicit section therefore cannot have non-zero initial value. 2953 if (!GV->getInitializer()->isNullValue()) 2954 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2955 } 2956 2957 setNonAliasAttributes(D, GV); 2958 2959 if (D->getTLSKind() && !GV->isThreadLocal()) { 2960 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2961 CXXThreadLocals.push_back(D); 2962 setTLSMode(GV, *D); 2963 } 2964 2965 maybeSetTrivialComdat(*D, *GV); 2966 2967 // Emit the initializer function if necessary. 2968 if (NeedsGlobalCtor || NeedsGlobalDtor) 2969 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2970 2971 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2972 2973 // Emit global variable debug information. 2974 if (CGDebugInfo *DI = getModuleDebugInfo()) 2975 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2976 DI->EmitGlobalVariable(GV, D); 2977 } 2978 2979 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2980 CodeGenModule &CGM, const VarDecl *D, 2981 bool NoCommon) { 2982 // Don't give variables common linkage if -fno-common was specified unless it 2983 // was overridden by a NoCommon attribute. 2984 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2985 return true; 2986 2987 // C11 6.9.2/2: 2988 // A declaration of an identifier for an object that has file scope without 2989 // an initializer, and without a storage-class specifier or with the 2990 // storage-class specifier static, constitutes a tentative definition. 2991 if (D->getInit() || D->hasExternalStorage()) 2992 return true; 2993 2994 // A variable cannot be both common and exist in a section. 2995 if (D->hasAttr<SectionAttr>()) 2996 return true; 2997 2998 // A variable cannot be both common and exist in a section. 2999 // We dont try to determine which is the right section in the front-end. 3000 // If no specialized section name is applicable, it will resort to default. 3001 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3002 D->hasAttr<PragmaClangDataSectionAttr>() || 3003 D->hasAttr<PragmaClangRodataSectionAttr>()) 3004 return true; 3005 3006 // Thread local vars aren't considered common linkage. 3007 if (D->getTLSKind()) 3008 return true; 3009 3010 // Tentative definitions marked with WeakImportAttr are true definitions. 3011 if (D->hasAttr<WeakImportAttr>()) 3012 return true; 3013 3014 // A variable cannot be both common and exist in a comdat. 3015 if (shouldBeInCOMDAT(CGM, *D)) 3016 return true; 3017 3018 // Declarations with a required alignment do not have common linkage in MSVC 3019 // mode. 3020 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3021 if (D->hasAttr<AlignedAttr>()) 3022 return true; 3023 QualType VarType = D->getType(); 3024 if (Context.isAlignmentRequired(VarType)) 3025 return true; 3026 3027 if (const auto *RT = VarType->getAs<RecordType>()) { 3028 const RecordDecl *RD = RT->getDecl(); 3029 for (const FieldDecl *FD : RD->fields()) { 3030 if (FD->isBitField()) 3031 continue; 3032 if (FD->hasAttr<AlignedAttr>()) 3033 return true; 3034 if (Context.isAlignmentRequired(FD->getType())) 3035 return true; 3036 } 3037 } 3038 } 3039 3040 return false; 3041 } 3042 3043 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3044 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3045 if (Linkage == GVA_Internal) 3046 return llvm::Function::InternalLinkage; 3047 3048 if (D->hasAttr<WeakAttr>()) { 3049 if (IsConstantVariable) 3050 return llvm::GlobalVariable::WeakODRLinkage; 3051 else 3052 return llvm::GlobalVariable::WeakAnyLinkage; 3053 } 3054 3055 // We are guaranteed to have a strong definition somewhere else, 3056 // so we can use available_externally linkage. 3057 if (Linkage == GVA_AvailableExternally) 3058 return llvm::GlobalValue::AvailableExternallyLinkage; 3059 3060 // Note that Apple's kernel linker doesn't support symbol 3061 // coalescing, so we need to avoid linkonce and weak linkages there. 3062 // Normally, this means we just map to internal, but for explicit 3063 // instantiations we'll map to external. 3064 3065 // In C++, the compiler has to emit a definition in every translation unit 3066 // that references the function. We should use linkonce_odr because 3067 // a) if all references in this translation unit are optimized away, we 3068 // don't need to codegen it. b) if the function persists, it needs to be 3069 // merged with other definitions. c) C++ has the ODR, so we know the 3070 // definition is dependable. 3071 if (Linkage == GVA_DiscardableODR) 3072 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3073 : llvm::Function::InternalLinkage; 3074 3075 // An explicit instantiation of a template has weak linkage, since 3076 // explicit instantiations can occur in multiple translation units 3077 // and must all be equivalent. However, we are not allowed to 3078 // throw away these explicit instantiations. 3079 // 3080 // We don't currently support CUDA device code spread out across multiple TUs, 3081 // so say that CUDA templates are either external (for kernels) or internal. 3082 // This lets llvm perform aggressive inter-procedural optimizations. 3083 if (Linkage == GVA_StrongODR) { 3084 if (Context.getLangOpts().AppleKext) 3085 return llvm::Function::ExternalLinkage; 3086 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3087 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3088 : llvm::Function::InternalLinkage; 3089 return llvm::Function::WeakODRLinkage; 3090 } 3091 3092 // C++ doesn't have tentative definitions and thus cannot have common 3093 // linkage. 3094 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3095 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3096 CodeGenOpts.NoCommon)) 3097 return llvm::GlobalVariable::CommonLinkage; 3098 3099 // selectany symbols are externally visible, so use weak instead of 3100 // linkonce. MSVC optimizes away references to const selectany globals, so 3101 // all definitions should be the same and ODR linkage should be used. 3102 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3103 if (D->hasAttr<SelectAnyAttr>()) 3104 return llvm::GlobalVariable::WeakODRLinkage; 3105 3106 // Otherwise, we have strong external linkage. 3107 assert(Linkage == GVA_StrongExternal); 3108 return llvm::GlobalVariable::ExternalLinkage; 3109 } 3110 3111 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3112 const VarDecl *VD, bool IsConstant) { 3113 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3114 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3115 } 3116 3117 /// Replace the uses of a function that was declared with a non-proto type. 3118 /// We want to silently drop extra arguments from call sites 3119 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3120 llvm::Function *newFn) { 3121 // Fast path. 3122 if (old->use_empty()) return; 3123 3124 llvm::Type *newRetTy = newFn->getReturnType(); 3125 SmallVector<llvm::Value*, 4> newArgs; 3126 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3127 3128 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3129 ui != ue; ) { 3130 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3131 llvm::User *user = use->getUser(); 3132 3133 // Recognize and replace uses of bitcasts. Most calls to 3134 // unprototyped functions will use bitcasts. 3135 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3136 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3137 replaceUsesOfNonProtoConstant(bitcast, newFn); 3138 continue; 3139 } 3140 3141 // Recognize calls to the function. 3142 llvm::CallSite callSite(user); 3143 if (!callSite) continue; 3144 if (!callSite.isCallee(&*use)) continue; 3145 3146 // If the return types don't match exactly, then we can't 3147 // transform this call unless it's dead. 3148 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3149 continue; 3150 3151 // Get the call site's attribute list. 3152 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3153 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3154 3155 // If the function was passed too few arguments, don't transform. 3156 unsigned newNumArgs = newFn->arg_size(); 3157 if (callSite.arg_size() < newNumArgs) continue; 3158 3159 // If extra arguments were passed, we silently drop them. 3160 // If any of the types mismatch, we don't transform. 3161 unsigned argNo = 0; 3162 bool dontTransform = false; 3163 for (llvm::Argument &A : newFn->args()) { 3164 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3165 dontTransform = true; 3166 break; 3167 } 3168 3169 // Add any parameter attributes. 3170 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3171 argNo++; 3172 } 3173 if (dontTransform) 3174 continue; 3175 3176 // Okay, we can transform this. Create the new call instruction and copy 3177 // over the required information. 3178 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3179 3180 // Copy over any operand bundles. 3181 callSite.getOperandBundlesAsDefs(newBundles); 3182 3183 llvm::CallSite newCall; 3184 if (callSite.isCall()) { 3185 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3186 callSite.getInstruction()); 3187 } else { 3188 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3189 newCall = llvm::InvokeInst::Create(newFn, 3190 oldInvoke->getNormalDest(), 3191 oldInvoke->getUnwindDest(), 3192 newArgs, newBundles, "", 3193 callSite.getInstruction()); 3194 } 3195 newArgs.clear(); // for the next iteration 3196 3197 if (!newCall->getType()->isVoidTy()) 3198 newCall->takeName(callSite.getInstruction()); 3199 newCall.setAttributes(llvm::AttributeList::get( 3200 newFn->getContext(), oldAttrs.getFnAttributes(), 3201 oldAttrs.getRetAttributes(), newArgAttrs)); 3202 newCall.setCallingConv(callSite.getCallingConv()); 3203 3204 // Finally, remove the old call, replacing any uses with the new one. 3205 if (!callSite->use_empty()) 3206 callSite->replaceAllUsesWith(newCall.getInstruction()); 3207 3208 // Copy debug location attached to CI. 3209 if (callSite->getDebugLoc()) 3210 newCall->setDebugLoc(callSite->getDebugLoc()); 3211 3212 callSite->eraseFromParent(); 3213 } 3214 } 3215 3216 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3217 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3218 /// existing call uses of the old function in the module, this adjusts them to 3219 /// call the new function directly. 3220 /// 3221 /// This is not just a cleanup: the always_inline pass requires direct calls to 3222 /// functions to be able to inline them. If there is a bitcast in the way, it 3223 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3224 /// run at -O0. 3225 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3226 llvm::Function *NewFn) { 3227 // If we're redefining a global as a function, don't transform it. 3228 if (!isa<llvm::Function>(Old)) return; 3229 3230 replaceUsesOfNonProtoConstant(Old, NewFn); 3231 } 3232 3233 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3234 auto DK = VD->isThisDeclarationADefinition(); 3235 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3236 return; 3237 3238 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3239 // If we have a definition, this might be a deferred decl. If the 3240 // instantiation is explicit, make sure we emit it at the end. 3241 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3242 GetAddrOfGlobalVar(VD); 3243 3244 EmitTopLevelDecl(VD); 3245 } 3246 3247 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3248 llvm::GlobalValue *GV) { 3249 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3250 3251 // Compute the function info and LLVM type. 3252 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3253 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3254 3255 // Get or create the prototype for the function. 3256 if (!GV || (GV->getType()->getElementType() != Ty)) 3257 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3258 /*DontDefer=*/true, 3259 ForDefinition)); 3260 3261 // Already emitted. 3262 if (!GV->isDeclaration()) 3263 return; 3264 3265 // We need to set linkage and visibility on the function before 3266 // generating code for it because various parts of IR generation 3267 // want to propagate this information down (e.g. to local static 3268 // declarations). 3269 auto *Fn = cast<llvm::Function>(GV); 3270 setFunctionLinkage(GD, Fn); 3271 setFunctionDLLStorageClass(GD, Fn); 3272 3273 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3274 setGlobalVisibility(Fn, D, ForDefinition); 3275 3276 MaybeHandleStaticInExternC(D, Fn); 3277 3278 maybeSetTrivialComdat(*D, *Fn); 3279 3280 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3281 3282 setFunctionDefinitionAttributes(D, Fn); 3283 SetLLVMFunctionAttributesForDefinition(D, Fn); 3284 3285 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3286 AddGlobalCtor(Fn, CA->getPriority()); 3287 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3288 AddGlobalDtor(Fn, DA->getPriority()); 3289 if (D->hasAttr<AnnotateAttr>()) 3290 AddGlobalAnnotations(D, Fn); 3291 } 3292 3293 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3294 const auto *D = cast<ValueDecl>(GD.getDecl()); 3295 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3296 assert(AA && "Not an alias?"); 3297 3298 StringRef MangledName = getMangledName(GD); 3299 3300 if (AA->getAliasee() == MangledName) { 3301 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3302 return; 3303 } 3304 3305 // If there is a definition in the module, then it wins over the alias. 3306 // This is dubious, but allow it to be safe. Just ignore the alias. 3307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3308 if (Entry && !Entry->isDeclaration()) 3309 return; 3310 3311 Aliases.push_back(GD); 3312 3313 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3314 3315 // Create a reference to the named value. This ensures that it is emitted 3316 // if a deferred decl. 3317 llvm::Constant *Aliasee; 3318 if (isa<llvm::FunctionType>(DeclTy)) 3319 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3320 /*ForVTable=*/false); 3321 else 3322 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3323 llvm::PointerType::getUnqual(DeclTy), 3324 /*D=*/nullptr); 3325 3326 // Create the new alias itself, but don't set a name yet. 3327 auto *GA = llvm::GlobalAlias::create( 3328 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3329 3330 if (Entry) { 3331 if (GA->getAliasee() == Entry) { 3332 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3333 return; 3334 } 3335 3336 assert(Entry->isDeclaration()); 3337 3338 // If there is a declaration in the module, then we had an extern followed 3339 // by the alias, as in: 3340 // extern int test6(); 3341 // ... 3342 // int test6() __attribute__((alias("test7"))); 3343 // 3344 // Remove it and replace uses of it with the alias. 3345 GA->takeName(Entry); 3346 3347 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3348 Entry->getType())); 3349 Entry->eraseFromParent(); 3350 } else { 3351 GA->setName(MangledName); 3352 } 3353 3354 // Set attributes which are particular to an alias; this is a 3355 // specialization of the attributes which may be set on a global 3356 // variable/function. 3357 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3358 D->isWeakImported()) { 3359 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3360 } 3361 3362 if (const auto *VD = dyn_cast<VarDecl>(D)) 3363 if (VD->getTLSKind()) 3364 setTLSMode(GA, *VD); 3365 3366 setAliasAttributes(D, GA); 3367 } 3368 3369 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3370 const auto *D = cast<ValueDecl>(GD.getDecl()); 3371 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3372 assert(IFA && "Not an ifunc?"); 3373 3374 StringRef MangledName = getMangledName(GD); 3375 3376 if (IFA->getResolver() == MangledName) { 3377 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3378 return; 3379 } 3380 3381 // Report an error if some definition overrides ifunc. 3382 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3383 if (Entry && !Entry->isDeclaration()) { 3384 GlobalDecl OtherGD; 3385 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3386 DiagnosedConflictingDefinitions.insert(GD).second) { 3387 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3388 Diags.Report(OtherGD.getDecl()->getLocation(), 3389 diag::note_previous_definition); 3390 } 3391 return; 3392 } 3393 3394 Aliases.push_back(GD); 3395 3396 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3397 llvm::Constant *Resolver = 3398 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3399 /*ForVTable=*/false); 3400 llvm::GlobalIFunc *GIF = 3401 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3402 "", Resolver, &getModule()); 3403 if (Entry) { 3404 if (GIF->getResolver() == Entry) { 3405 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3406 return; 3407 } 3408 assert(Entry->isDeclaration()); 3409 3410 // If there is a declaration in the module, then we had an extern followed 3411 // by the ifunc, as in: 3412 // extern int test(); 3413 // ... 3414 // int test() __attribute__((ifunc("resolver"))); 3415 // 3416 // Remove it and replace uses of it with the ifunc. 3417 GIF->takeName(Entry); 3418 3419 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3420 Entry->getType())); 3421 Entry->eraseFromParent(); 3422 } else 3423 GIF->setName(MangledName); 3424 3425 SetCommonAttributes(D, GIF); 3426 } 3427 3428 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3429 ArrayRef<llvm::Type*> Tys) { 3430 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3431 Tys); 3432 } 3433 3434 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3435 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3436 const StringLiteral *Literal, bool TargetIsLSB, 3437 bool &IsUTF16, unsigned &StringLength) { 3438 StringRef String = Literal->getString(); 3439 unsigned NumBytes = String.size(); 3440 3441 // Check for simple case. 3442 if (!Literal->containsNonAsciiOrNull()) { 3443 StringLength = NumBytes; 3444 return *Map.insert(std::make_pair(String, nullptr)).first; 3445 } 3446 3447 // Otherwise, convert the UTF8 literals into a string of shorts. 3448 IsUTF16 = true; 3449 3450 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3451 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3452 llvm::UTF16 *ToPtr = &ToBuf[0]; 3453 3454 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3455 ToPtr + NumBytes, llvm::strictConversion); 3456 3457 // ConvertUTF8toUTF16 returns the length in ToPtr. 3458 StringLength = ToPtr - &ToBuf[0]; 3459 3460 // Add an explicit null. 3461 *ToPtr = 0; 3462 return *Map.insert(std::make_pair( 3463 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3464 (StringLength + 1) * 2), 3465 nullptr)).first; 3466 } 3467 3468 ConstantAddress 3469 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3470 unsigned StringLength = 0; 3471 bool isUTF16 = false; 3472 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3473 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3474 getDataLayout().isLittleEndian(), isUTF16, 3475 StringLength); 3476 3477 if (auto *C = Entry.second) 3478 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3479 3480 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3481 llvm::Constant *Zeros[] = { Zero, Zero }; 3482 3483 // If we don't already have it, get __CFConstantStringClassReference. 3484 if (!CFConstantStringClassRef) { 3485 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3486 Ty = llvm::ArrayType::get(Ty, 0); 3487 llvm::Constant *GV = 3488 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3489 3490 if (getTriple().isOSBinFormatCOFF()) { 3491 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3492 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3493 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3494 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3495 3496 const VarDecl *VD = nullptr; 3497 for (const auto &Result : DC->lookup(&II)) 3498 if ((VD = dyn_cast<VarDecl>(Result))) 3499 break; 3500 3501 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3502 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3503 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3504 } else { 3505 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3506 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3507 } 3508 } 3509 3510 // Decay array -> ptr 3511 CFConstantStringClassRef = 3512 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3513 } 3514 3515 QualType CFTy = getContext().getCFConstantStringType(); 3516 3517 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3518 3519 ConstantInitBuilder Builder(*this); 3520 auto Fields = Builder.beginStruct(STy); 3521 3522 // Class pointer. 3523 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3524 3525 // Flags. 3526 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3527 3528 // String pointer. 3529 llvm::Constant *C = nullptr; 3530 if (isUTF16) { 3531 auto Arr = llvm::makeArrayRef( 3532 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3533 Entry.first().size() / 2); 3534 C = llvm::ConstantDataArray::get(VMContext, Arr); 3535 } else { 3536 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3537 } 3538 3539 // Note: -fwritable-strings doesn't make the backing store strings of 3540 // CFStrings writable. (See <rdar://problem/10657500>) 3541 auto *GV = 3542 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3543 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3544 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3545 // Don't enforce the target's minimum global alignment, since the only use 3546 // of the string is via this class initializer. 3547 CharUnits Align = isUTF16 3548 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3549 : getContext().getTypeAlignInChars(getContext().CharTy); 3550 GV->setAlignment(Align.getQuantity()); 3551 3552 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3553 // Without it LLVM can merge the string with a non unnamed_addr one during 3554 // LTO. Doing that changes the section it ends in, which surprises ld64. 3555 if (getTriple().isOSBinFormatMachO()) 3556 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3557 : "__TEXT,__cstring,cstring_literals"); 3558 3559 // String. 3560 llvm::Constant *Str = 3561 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3562 3563 if (isUTF16) 3564 // Cast the UTF16 string to the correct type. 3565 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3566 Fields.add(Str); 3567 3568 // String length. 3569 auto Ty = getTypes().ConvertType(getContext().LongTy); 3570 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3571 3572 CharUnits Alignment = getPointerAlign(); 3573 3574 // The struct. 3575 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3576 /*isConstant=*/false, 3577 llvm::GlobalVariable::PrivateLinkage); 3578 switch (getTriple().getObjectFormat()) { 3579 case llvm::Triple::UnknownObjectFormat: 3580 llvm_unreachable("unknown file format"); 3581 case llvm::Triple::COFF: 3582 case llvm::Triple::ELF: 3583 case llvm::Triple::Wasm: 3584 GV->setSection("cfstring"); 3585 break; 3586 case llvm::Triple::MachO: 3587 GV->setSection("__DATA,__cfstring"); 3588 break; 3589 } 3590 Entry.second = GV; 3591 3592 return ConstantAddress(GV, Alignment); 3593 } 3594 3595 bool CodeGenModule::getExpressionLocationsEnabled() const { 3596 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3597 } 3598 3599 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3600 if (ObjCFastEnumerationStateType.isNull()) { 3601 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3602 D->startDefinition(); 3603 3604 QualType FieldTypes[] = { 3605 Context.UnsignedLongTy, 3606 Context.getPointerType(Context.getObjCIdType()), 3607 Context.getPointerType(Context.UnsignedLongTy), 3608 Context.getConstantArrayType(Context.UnsignedLongTy, 3609 llvm::APInt(32, 5), ArrayType::Normal, 0) 3610 }; 3611 3612 for (size_t i = 0; i < 4; ++i) { 3613 FieldDecl *Field = FieldDecl::Create(Context, 3614 D, 3615 SourceLocation(), 3616 SourceLocation(), nullptr, 3617 FieldTypes[i], /*TInfo=*/nullptr, 3618 /*BitWidth=*/nullptr, 3619 /*Mutable=*/false, 3620 ICIS_NoInit); 3621 Field->setAccess(AS_public); 3622 D->addDecl(Field); 3623 } 3624 3625 D->completeDefinition(); 3626 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3627 } 3628 3629 return ObjCFastEnumerationStateType; 3630 } 3631 3632 llvm::Constant * 3633 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3634 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3635 3636 // Don't emit it as the address of the string, emit the string data itself 3637 // as an inline array. 3638 if (E->getCharByteWidth() == 1) { 3639 SmallString<64> Str(E->getString()); 3640 3641 // Resize the string to the right size, which is indicated by its type. 3642 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3643 Str.resize(CAT->getSize().getZExtValue()); 3644 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3645 } 3646 3647 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3648 llvm::Type *ElemTy = AType->getElementType(); 3649 unsigned NumElements = AType->getNumElements(); 3650 3651 // Wide strings have either 2-byte or 4-byte elements. 3652 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3653 SmallVector<uint16_t, 32> Elements; 3654 Elements.reserve(NumElements); 3655 3656 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3657 Elements.push_back(E->getCodeUnit(i)); 3658 Elements.resize(NumElements); 3659 return llvm::ConstantDataArray::get(VMContext, Elements); 3660 } 3661 3662 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3663 SmallVector<uint32_t, 32> Elements; 3664 Elements.reserve(NumElements); 3665 3666 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3667 Elements.push_back(E->getCodeUnit(i)); 3668 Elements.resize(NumElements); 3669 return llvm::ConstantDataArray::get(VMContext, Elements); 3670 } 3671 3672 static llvm::GlobalVariable * 3673 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3674 CodeGenModule &CGM, StringRef GlobalName, 3675 CharUnits Alignment) { 3676 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3677 unsigned AddrSpace = 0; 3678 if (CGM.getLangOpts().OpenCL) 3679 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3680 3681 llvm::Module &M = CGM.getModule(); 3682 // Create a global variable for this string 3683 auto *GV = new llvm::GlobalVariable( 3684 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3685 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3686 GV->setAlignment(Alignment.getQuantity()); 3687 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3688 if (GV->isWeakForLinker()) { 3689 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3690 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3691 } 3692 3693 return GV; 3694 } 3695 3696 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3697 /// constant array for the given string literal. 3698 ConstantAddress 3699 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3700 StringRef Name) { 3701 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3702 3703 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3704 llvm::GlobalVariable **Entry = nullptr; 3705 if (!LangOpts.WritableStrings) { 3706 Entry = &ConstantStringMap[C]; 3707 if (auto GV = *Entry) { 3708 if (Alignment.getQuantity() > GV->getAlignment()) 3709 GV->setAlignment(Alignment.getQuantity()); 3710 return ConstantAddress(GV, Alignment); 3711 } 3712 } 3713 3714 SmallString<256> MangledNameBuffer; 3715 StringRef GlobalVariableName; 3716 llvm::GlobalValue::LinkageTypes LT; 3717 3718 // Mangle the string literal if the ABI allows for it. However, we cannot 3719 // do this if we are compiling with ASan or -fwritable-strings because they 3720 // rely on strings having normal linkage. 3721 if (!LangOpts.WritableStrings && 3722 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3723 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3724 llvm::raw_svector_ostream Out(MangledNameBuffer); 3725 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3726 3727 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3728 GlobalVariableName = MangledNameBuffer; 3729 } else { 3730 LT = llvm::GlobalValue::PrivateLinkage; 3731 GlobalVariableName = Name; 3732 } 3733 3734 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3735 if (Entry) 3736 *Entry = GV; 3737 3738 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3739 QualType()); 3740 return ConstantAddress(GV, Alignment); 3741 } 3742 3743 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3744 /// array for the given ObjCEncodeExpr node. 3745 ConstantAddress 3746 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3747 std::string Str; 3748 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3749 3750 return GetAddrOfConstantCString(Str); 3751 } 3752 3753 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3754 /// the literal and a terminating '\0' character. 3755 /// The result has pointer to array type. 3756 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3757 const std::string &Str, const char *GlobalName) { 3758 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3759 CharUnits Alignment = 3760 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3761 3762 llvm::Constant *C = 3763 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3764 3765 // Don't share any string literals if strings aren't constant. 3766 llvm::GlobalVariable **Entry = nullptr; 3767 if (!LangOpts.WritableStrings) { 3768 Entry = &ConstantStringMap[C]; 3769 if (auto GV = *Entry) { 3770 if (Alignment.getQuantity() > GV->getAlignment()) 3771 GV->setAlignment(Alignment.getQuantity()); 3772 return ConstantAddress(GV, Alignment); 3773 } 3774 } 3775 3776 // Get the default prefix if a name wasn't specified. 3777 if (!GlobalName) 3778 GlobalName = ".str"; 3779 // Create a global variable for this. 3780 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3781 GlobalName, Alignment); 3782 if (Entry) 3783 *Entry = GV; 3784 return ConstantAddress(GV, Alignment); 3785 } 3786 3787 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3788 const MaterializeTemporaryExpr *E, const Expr *Init) { 3789 assert((E->getStorageDuration() == SD_Static || 3790 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3791 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3792 3793 // If we're not materializing a subobject of the temporary, keep the 3794 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3795 QualType MaterializedType = Init->getType(); 3796 if (Init == E->GetTemporaryExpr()) 3797 MaterializedType = E->getType(); 3798 3799 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3800 3801 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3802 return ConstantAddress(Slot, Align); 3803 3804 // FIXME: If an externally-visible declaration extends multiple temporaries, 3805 // we need to give each temporary the same name in every translation unit (and 3806 // we also need to make the temporaries externally-visible). 3807 SmallString<256> Name; 3808 llvm::raw_svector_ostream Out(Name); 3809 getCXXABI().getMangleContext().mangleReferenceTemporary( 3810 VD, E->getManglingNumber(), Out); 3811 3812 APValue *Value = nullptr; 3813 if (E->getStorageDuration() == SD_Static) { 3814 // We might have a cached constant initializer for this temporary. Note 3815 // that this might have a different value from the value computed by 3816 // evaluating the initializer if the surrounding constant expression 3817 // modifies the temporary. 3818 Value = getContext().getMaterializedTemporaryValue(E, false); 3819 if (Value && Value->isUninit()) 3820 Value = nullptr; 3821 } 3822 3823 // Try evaluating it now, it might have a constant initializer. 3824 Expr::EvalResult EvalResult; 3825 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3826 !EvalResult.hasSideEffects()) 3827 Value = &EvalResult.Val; 3828 3829 LangAS AddrSpace = 3830 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3831 3832 Optional<ConstantEmitter> emitter; 3833 llvm::Constant *InitialValue = nullptr; 3834 bool Constant = false; 3835 llvm::Type *Type; 3836 if (Value) { 3837 // The temporary has a constant initializer, use it. 3838 emitter.emplace(*this); 3839 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3840 MaterializedType); 3841 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3842 Type = InitialValue->getType(); 3843 } else { 3844 // No initializer, the initialization will be provided when we 3845 // initialize the declaration which performed lifetime extension. 3846 Type = getTypes().ConvertTypeForMem(MaterializedType); 3847 } 3848 3849 // Create a global variable for this lifetime-extended temporary. 3850 llvm::GlobalValue::LinkageTypes Linkage = 3851 getLLVMLinkageVarDefinition(VD, Constant); 3852 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3853 const VarDecl *InitVD; 3854 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3855 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3856 // Temporaries defined inside a class get linkonce_odr linkage because the 3857 // class can be defined in multipe translation units. 3858 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3859 } else { 3860 // There is no need for this temporary to have external linkage if the 3861 // VarDecl has external linkage. 3862 Linkage = llvm::GlobalVariable::InternalLinkage; 3863 } 3864 } 3865 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3866 auto *GV = new llvm::GlobalVariable( 3867 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3868 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3869 if (emitter) emitter->finalize(GV); 3870 setGlobalVisibility(GV, VD, ForDefinition); 3871 GV->setAlignment(Align.getQuantity()); 3872 if (supportsCOMDAT() && GV->isWeakForLinker()) 3873 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3874 if (VD->getTLSKind()) 3875 setTLSMode(GV, *VD); 3876 llvm::Constant *CV = GV; 3877 if (AddrSpace != LangAS::Default) 3878 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3879 *this, GV, AddrSpace, LangAS::Default, 3880 Type->getPointerTo( 3881 getContext().getTargetAddressSpace(LangAS::Default))); 3882 MaterializedGlobalTemporaryMap[E] = CV; 3883 return ConstantAddress(CV, Align); 3884 } 3885 3886 /// EmitObjCPropertyImplementations - Emit information for synthesized 3887 /// properties for an implementation. 3888 void CodeGenModule::EmitObjCPropertyImplementations(const 3889 ObjCImplementationDecl *D) { 3890 for (const auto *PID : D->property_impls()) { 3891 // Dynamic is just for type-checking. 3892 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3893 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3894 3895 // Determine which methods need to be implemented, some may have 3896 // been overridden. Note that ::isPropertyAccessor is not the method 3897 // we want, that just indicates if the decl came from a 3898 // property. What we want to know is if the method is defined in 3899 // this implementation. 3900 if (!D->getInstanceMethod(PD->getGetterName())) 3901 CodeGenFunction(*this).GenerateObjCGetter( 3902 const_cast<ObjCImplementationDecl *>(D), PID); 3903 if (!PD->isReadOnly() && 3904 !D->getInstanceMethod(PD->getSetterName())) 3905 CodeGenFunction(*this).GenerateObjCSetter( 3906 const_cast<ObjCImplementationDecl *>(D), PID); 3907 } 3908 } 3909 } 3910 3911 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3912 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3913 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3914 ivar; ivar = ivar->getNextIvar()) 3915 if (ivar->getType().isDestructedType()) 3916 return true; 3917 3918 return false; 3919 } 3920 3921 static bool AllTrivialInitializers(CodeGenModule &CGM, 3922 ObjCImplementationDecl *D) { 3923 CodeGenFunction CGF(CGM); 3924 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3925 E = D->init_end(); B != E; ++B) { 3926 CXXCtorInitializer *CtorInitExp = *B; 3927 Expr *Init = CtorInitExp->getInit(); 3928 if (!CGF.isTrivialInitializer(Init)) 3929 return false; 3930 } 3931 return true; 3932 } 3933 3934 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3935 /// for an implementation. 3936 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3937 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3938 if (needsDestructMethod(D)) { 3939 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3940 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3941 ObjCMethodDecl *DTORMethod = 3942 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3943 cxxSelector, getContext().VoidTy, nullptr, D, 3944 /*isInstance=*/true, /*isVariadic=*/false, 3945 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3946 /*isDefined=*/false, ObjCMethodDecl::Required); 3947 D->addInstanceMethod(DTORMethod); 3948 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3949 D->setHasDestructors(true); 3950 } 3951 3952 // If the implementation doesn't have any ivar initializers, we don't need 3953 // a .cxx_construct. 3954 if (D->getNumIvarInitializers() == 0 || 3955 AllTrivialInitializers(*this, D)) 3956 return; 3957 3958 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3959 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3960 // The constructor returns 'self'. 3961 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3962 D->getLocation(), 3963 D->getLocation(), 3964 cxxSelector, 3965 getContext().getObjCIdType(), 3966 nullptr, D, /*isInstance=*/true, 3967 /*isVariadic=*/false, 3968 /*isPropertyAccessor=*/true, 3969 /*isImplicitlyDeclared=*/true, 3970 /*isDefined=*/false, 3971 ObjCMethodDecl::Required); 3972 D->addInstanceMethod(CTORMethod); 3973 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3974 D->setHasNonZeroConstructors(true); 3975 } 3976 3977 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3978 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3979 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3980 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3981 ErrorUnsupported(LSD, "linkage spec"); 3982 return; 3983 } 3984 3985 EmitDeclContext(LSD); 3986 } 3987 3988 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3989 for (auto *I : DC->decls()) { 3990 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3991 // are themselves considered "top-level", so EmitTopLevelDecl on an 3992 // ObjCImplDecl does not recursively visit them. We need to do that in 3993 // case they're nested inside another construct (LinkageSpecDecl / 3994 // ExportDecl) that does stop them from being considered "top-level". 3995 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3996 for (auto *M : OID->methods()) 3997 EmitTopLevelDecl(M); 3998 } 3999 4000 EmitTopLevelDecl(I); 4001 } 4002 } 4003 4004 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4005 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4006 // Ignore dependent declarations. 4007 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 4008 return; 4009 4010 switch (D->getKind()) { 4011 case Decl::CXXConversion: 4012 case Decl::CXXMethod: 4013 case Decl::Function: 4014 // Skip function templates 4015 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4016 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4017 return; 4018 4019 EmitGlobal(cast<FunctionDecl>(D)); 4020 // Always provide some coverage mapping 4021 // even for the functions that aren't emitted. 4022 AddDeferredUnusedCoverageMapping(D); 4023 break; 4024 4025 case Decl::CXXDeductionGuide: 4026 // Function-like, but does not result in code emission. 4027 break; 4028 4029 case Decl::Var: 4030 case Decl::Decomposition: 4031 // Skip variable templates 4032 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 4033 return; 4034 LLVM_FALLTHROUGH; 4035 case Decl::VarTemplateSpecialization: 4036 EmitGlobal(cast<VarDecl>(D)); 4037 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4038 for (auto *B : DD->bindings()) 4039 if (auto *HD = B->getHoldingVar()) 4040 EmitGlobal(HD); 4041 break; 4042 4043 // Indirect fields from global anonymous structs and unions can be 4044 // ignored; only the actual variable requires IR gen support. 4045 case Decl::IndirectField: 4046 break; 4047 4048 // C++ Decls 4049 case Decl::Namespace: 4050 EmitDeclContext(cast<NamespaceDecl>(D)); 4051 break; 4052 case Decl::ClassTemplateSpecialization: { 4053 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4054 if (DebugInfo && 4055 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4056 Spec->hasDefinition()) 4057 DebugInfo->completeTemplateDefinition(*Spec); 4058 } LLVM_FALLTHROUGH; 4059 case Decl::CXXRecord: 4060 if (DebugInfo) { 4061 if (auto *ES = D->getASTContext().getExternalSource()) 4062 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4063 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4064 } 4065 // Emit any static data members, they may be definitions. 4066 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4067 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4068 EmitTopLevelDecl(I); 4069 break; 4070 // No code generation needed. 4071 case Decl::UsingShadow: 4072 case Decl::ClassTemplate: 4073 case Decl::VarTemplate: 4074 case Decl::VarTemplatePartialSpecialization: 4075 case Decl::FunctionTemplate: 4076 case Decl::TypeAliasTemplate: 4077 case Decl::Block: 4078 case Decl::Empty: 4079 break; 4080 case Decl::Using: // using X; [C++] 4081 if (CGDebugInfo *DI = getModuleDebugInfo()) 4082 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4083 return; 4084 case Decl::NamespaceAlias: 4085 if (CGDebugInfo *DI = getModuleDebugInfo()) 4086 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4087 return; 4088 case Decl::UsingDirective: // using namespace X; [C++] 4089 if (CGDebugInfo *DI = getModuleDebugInfo()) 4090 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4091 return; 4092 case Decl::CXXConstructor: 4093 // Skip function templates 4094 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 4095 cast<FunctionDecl>(D)->isLateTemplateParsed()) 4096 return; 4097 4098 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4099 break; 4100 case Decl::CXXDestructor: 4101 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 4102 return; 4103 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4104 break; 4105 4106 case Decl::StaticAssert: 4107 // Nothing to do. 4108 break; 4109 4110 // Objective-C Decls 4111 4112 // Forward declarations, no (immediate) code generation. 4113 case Decl::ObjCInterface: 4114 case Decl::ObjCCategory: 4115 break; 4116 4117 case Decl::ObjCProtocol: { 4118 auto *Proto = cast<ObjCProtocolDecl>(D); 4119 if (Proto->isThisDeclarationADefinition()) 4120 ObjCRuntime->GenerateProtocol(Proto); 4121 break; 4122 } 4123 4124 case Decl::ObjCCategoryImpl: 4125 // Categories have properties but don't support synthesize so we 4126 // can ignore them here. 4127 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4128 break; 4129 4130 case Decl::ObjCImplementation: { 4131 auto *OMD = cast<ObjCImplementationDecl>(D); 4132 EmitObjCPropertyImplementations(OMD); 4133 EmitObjCIvarInitializations(OMD); 4134 ObjCRuntime->GenerateClass(OMD); 4135 // Emit global variable debug information. 4136 if (CGDebugInfo *DI = getModuleDebugInfo()) 4137 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4138 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4139 OMD->getClassInterface()), OMD->getLocation()); 4140 break; 4141 } 4142 case Decl::ObjCMethod: { 4143 auto *OMD = cast<ObjCMethodDecl>(D); 4144 // If this is not a prototype, emit the body. 4145 if (OMD->getBody()) 4146 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4147 break; 4148 } 4149 case Decl::ObjCCompatibleAlias: 4150 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4151 break; 4152 4153 case Decl::PragmaComment: { 4154 const auto *PCD = cast<PragmaCommentDecl>(D); 4155 switch (PCD->getCommentKind()) { 4156 case PCK_Unknown: 4157 llvm_unreachable("unexpected pragma comment kind"); 4158 case PCK_Linker: 4159 AppendLinkerOptions(PCD->getArg()); 4160 break; 4161 case PCK_Lib: 4162 AddDependentLib(PCD->getArg()); 4163 break; 4164 case PCK_Compiler: 4165 case PCK_ExeStr: 4166 case PCK_User: 4167 break; // We ignore all of these. 4168 } 4169 break; 4170 } 4171 4172 case Decl::PragmaDetectMismatch: { 4173 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4174 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4175 break; 4176 } 4177 4178 case Decl::LinkageSpec: 4179 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4180 break; 4181 4182 case Decl::FileScopeAsm: { 4183 // File-scope asm is ignored during device-side CUDA compilation. 4184 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4185 break; 4186 // File-scope asm is ignored during device-side OpenMP compilation. 4187 if (LangOpts.OpenMPIsDevice) 4188 break; 4189 auto *AD = cast<FileScopeAsmDecl>(D); 4190 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4191 break; 4192 } 4193 4194 case Decl::Import: { 4195 auto *Import = cast<ImportDecl>(D); 4196 4197 // If we've already imported this module, we're done. 4198 if (!ImportedModules.insert(Import->getImportedModule())) 4199 break; 4200 4201 // Emit debug information for direct imports. 4202 if (!Import->getImportedOwningModule()) { 4203 if (CGDebugInfo *DI = getModuleDebugInfo()) 4204 DI->EmitImportDecl(*Import); 4205 } 4206 4207 // Find all of the submodules and emit the module initializers. 4208 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4209 SmallVector<clang::Module *, 16> Stack; 4210 Visited.insert(Import->getImportedModule()); 4211 Stack.push_back(Import->getImportedModule()); 4212 4213 while (!Stack.empty()) { 4214 clang::Module *Mod = Stack.pop_back_val(); 4215 if (!EmittedModuleInitializers.insert(Mod).second) 4216 continue; 4217 4218 for (auto *D : Context.getModuleInitializers(Mod)) 4219 EmitTopLevelDecl(D); 4220 4221 // Visit the submodules of this module. 4222 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4223 SubEnd = Mod->submodule_end(); 4224 Sub != SubEnd; ++Sub) { 4225 // Skip explicit children; they need to be explicitly imported to emit 4226 // the initializers. 4227 if ((*Sub)->IsExplicit) 4228 continue; 4229 4230 if (Visited.insert(*Sub).second) 4231 Stack.push_back(*Sub); 4232 } 4233 } 4234 break; 4235 } 4236 4237 case Decl::Export: 4238 EmitDeclContext(cast<ExportDecl>(D)); 4239 break; 4240 4241 case Decl::OMPThreadPrivate: 4242 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4243 break; 4244 4245 case Decl::OMPDeclareReduction: 4246 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4247 break; 4248 4249 default: 4250 // Make sure we handled everything we should, every other kind is a 4251 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4252 // function. Need to recode Decl::Kind to do that easily. 4253 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4254 break; 4255 } 4256 } 4257 4258 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4259 // Do we need to generate coverage mapping? 4260 if (!CodeGenOpts.CoverageMapping) 4261 return; 4262 switch (D->getKind()) { 4263 case Decl::CXXConversion: 4264 case Decl::CXXMethod: 4265 case Decl::Function: 4266 case Decl::ObjCMethod: 4267 case Decl::CXXConstructor: 4268 case Decl::CXXDestructor: { 4269 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4270 return; 4271 SourceManager &SM = getContext().getSourceManager(); 4272 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4273 return; 4274 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4275 if (I == DeferredEmptyCoverageMappingDecls.end()) 4276 DeferredEmptyCoverageMappingDecls[D] = true; 4277 break; 4278 } 4279 default: 4280 break; 4281 }; 4282 } 4283 4284 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4285 // Do we need to generate coverage mapping? 4286 if (!CodeGenOpts.CoverageMapping) 4287 return; 4288 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4289 if (Fn->isTemplateInstantiation()) 4290 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4291 } 4292 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4293 if (I == DeferredEmptyCoverageMappingDecls.end()) 4294 DeferredEmptyCoverageMappingDecls[D] = false; 4295 else 4296 I->second = false; 4297 } 4298 4299 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4300 // We call takeVector() here to avoid use-after-free. 4301 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4302 // we deserialize function bodies to emit coverage info for them, and that 4303 // deserializes more declarations. How should we handle that case? 4304 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4305 if (!Entry.second) 4306 continue; 4307 const Decl *D = Entry.first; 4308 switch (D->getKind()) { 4309 case Decl::CXXConversion: 4310 case Decl::CXXMethod: 4311 case Decl::Function: 4312 case Decl::ObjCMethod: { 4313 CodeGenPGO PGO(*this); 4314 GlobalDecl GD(cast<FunctionDecl>(D)); 4315 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4316 getFunctionLinkage(GD)); 4317 break; 4318 } 4319 case Decl::CXXConstructor: { 4320 CodeGenPGO PGO(*this); 4321 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4322 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4323 getFunctionLinkage(GD)); 4324 break; 4325 } 4326 case Decl::CXXDestructor: { 4327 CodeGenPGO PGO(*this); 4328 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4329 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4330 getFunctionLinkage(GD)); 4331 break; 4332 } 4333 default: 4334 break; 4335 }; 4336 } 4337 } 4338 4339 /// Turns the given pointer into a constant. 4340 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4341 const void *Ptr) { 4342 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4343 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4344 return llvm::ConstantInt::get(i64, PtrInt); 4345 } 4346 4347 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4348 llvm::NamedMDNode *&GlobalMetadata, 4349 GlobalDecl D, 4350 llvm::GlobalValue *Addr) { 4351 if (!GlobalMetadata) 4352 GlobalMetadata = 4353 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4354 4355 // TODO: should we report variant information for ctors/dtors? 4356 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4357 llvm::ConstantAsMetadata::get(GetPointerConstant( 4358 CGM.getLLVMContext(), D.getDecl()))}; 4359 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4360 } 4361 4362 /// For each function which is declared within an extern "C" region and marked 4363 /// as 'used', but has internal linkage, create an alias from the unmangled 4364 /// name to the mangled name if possible. People expect to be able to refer 4365 /// to such functions with an unmangled name from inline assembly within the 4366 /// same translation unit. 4367 void CodeGenModule::EmitStaticExternCAliases() { 4368 // Don't do anything if we're generating CUDA device code -- the NVPTX 4369 // assembly target doesn't support aliases. 4370 if (Context.getTargetInfo().getTriple().isNVPTX()) 4371 return; 4372 for (auto &I : StaticExternCValues) { 4373 IdentifierInfo *Name = I.first; 4374 llvm::GlobalValue *Val = I.second; 4375 if (Val && !getModule().getNamedValue(Name->getName())) 4376 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4377 } 4378 } 4379 4380 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4381 GlobalDecl &Result) const { 4382 auto Res = Manglings.find(MangledName); 4383 if (Res == Manglings.end()) 4384 return false; 4385 Result = Res->getValue(); 4386 return true; 4387 } 4388 4389 /// Emits metadata nodes associating all the global values in the 4390 /// current module with the Decls they came from. This is useful for 4391 /// projects using IR gen as a subroutine. 4392 /// 4393 /// Since there's currently no way to associate an MDNode directly 4394 /// with an llvm::GlobalValue, we create a global named metadata 4395 /// with the name 'clang.global.decl.ptrs'. 4396 void CodeGenModule::EmitDeclMetadata() { 4397 llvm::NamedMDNode *GlobalMetadata = nullptr; 4398 4399 for (auto &I : MangledDeclNames) { 4400 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4401 // Some mangled names don't necessarily have an associated GlobalValue 4402 // in this module, e.g. if we mangled it for DebugInfo. 4403 if (Addr) 4404 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4405 } 4406 } 4407 4408 /// Emits metadata nodes for all the local variables in the current 4409 /// function. 4410 void CodeGenFunction::EmitDeclMetadata() { 4411 if (LocalDeclMap.empty()) return; 4412 4413 llvm::LLVMContext &Context = getLLVMContext(); 4414 4415 // Find the unique metadata ID for this name. 4416 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4417 4418 llvm::NamedMDNode *GlobalMetadata = nullptr; 4419 4420 for (auto &I : LocalDeclMap) { 4421 const Decl *D = I.first; 4422 llvm::Value *Addr = I.second.getPointer(); 4423 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4424 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4425 Alloca->setMetadata( 4426 DeclPtrKind, llvm::MDNode::get( 4427 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4428 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4429 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4430 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4431 } 4432 } 4433 } 4434 4435 void CodeGenModule::EmitVersionIdentMetadata() { 4436 llvm::NamedMDNode *IdentMetadata = 4437 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4438 std::string Version = getClangFullVersion(); 4439 llvm::LLVMContext &Ctx = TheModule.getContext(); 4440 4441 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4442 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4443 } 4444 4445 void CodeGenModule::EmitTargetMetadata() { 4446 // Warning, new MangledDeclNames may be appended within this loop. 4447 // We rely on MapVector insertions adding new elements to the end 4448 // of the container. 4449 // FIXME: Move this loop into the one target that needs it, and only 4450 // loop over those declarations for which we couldn't emit the target 4451 // metadata when we emitted the declaration. 4452 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4453 auto Val = *(MangledDeclNames.begin() + I); 4454 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4455 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4456 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4457 } 4458 } 4459 4460 void CodeGenModule::EmitCoverageFile() { 4461 if (getCodeGenOpts().CoverageDataFile.empty() && 4462 getCodeGenOpts().CoverageNotesFile.empty()) 4463 return; 4464 4465 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4466 if (!CUNode) 4467 return; 4468 4469 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4470 llvm::LLVMContext &Ctx = TheModule.getContext(); 4471 auto *CoverageDataFile = 4472 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4473 auto *CoverageNotesFile = 4474 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4475 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4476 llvm::MDNode *CU = CUNode->getOperand(i); 4477 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4478 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4479 } 4480 } 4481 4482 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4483 // Sema has checked that all uuid strings are of the form 4484 // "12345678-1234-1234-1234-1234567890ab". 4485 assert(Uuid.size() == 36); 4486 for (unsigned i = 0; i < 36; ++i) { 4487 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4488 else assert(isHexDigit(Uuid[i])); 4489 } 4490 4491 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4492 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4493 4494 llvm::Constant *Field3[8]; 4495 for (unsigned Idx = 0; Idx < 8; ++Idx) 4496 Field3[Idx] = llvm::ConstantInt::get( 4497 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4498 4499 llvm::Constant *Fields[4] = { 4500 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4501 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4502 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4503 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4504 }; 4505 4506 return llvm::ConstantStruct::getAnon(Fields); 4507 } 4508 4509 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4510 bool ForEH) { 4511 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4512 // FIXME: should we even be calling this method if RTTI is disabled 4513 // and it's not for EH? 4514 if (!ForEH && !getLangOpts().RTTI) 4515 return llvm::Constant::getNullValue(Int8PtrTy); 4516 4517 if (ForEH && Ty->isObjCObjectPointerType() && 4518 LangOpts.ObjCRuntime.isGNUFamily()) 4519 return ObjCRuntime->GetEHType(Ty); 4520 4521 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4522 } 4523 4524 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4525 // Do not emit threadprivates in simd-only mode. 4526 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4527 return; 4528 for (auto RefExpr : D->varlists()) { 4529 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4530 bool PerformInit = 4531 VD->getAnyInitializer() && 4532 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4533 /*ForRef=*/false); 4534 4535 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4536 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4537 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4538 CXXGlobalInits.push_back(InitFunction); 4539 } 4540 } 4541 4542 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4543 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4544 if (InternalId) 4545 return InternalId; 4546 4547 if (isExternallyVisible(T->getLinkage())) { 4548 std::string OutName; 4549 llvm::raw_string_ostream Out(OutName); 4550 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4551 4552 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4553 } else { 4554 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4555 llvm::ArrayRef<llvm::Metadata *>()); 4556 } 4557 4558 return InternalId; 4559 } 4560 4561 // Generalize pointer types to a void pointer with the qualifiers of the 4562 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4563 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4564 // 'void *'. 4565 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4566 if (!Ty->isPointerType()) 4567 return Ty; 4568 4569 return Ctx.getPointerType( 4570 QualType(Ctx.VoidTy).withCVRQualifiers( 4571 Ty->getPointeeType().getCVRQualifiers())); 4572 } 4573 4574 // Apply type generalization to a FunctionType's return and argument types 4575 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4576 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4577 SmallVector<QualType, 8> GeneralizedParams; 4578 for (auto &Param : FnType->param_types()) 4579 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4580 4581 return Ctx.getFunctionType( 4582 GeneralizeType(Ctx, FnType->getReturnType()), 4583 GeneralizedParams, FnType->getExtProtoInfo()); 4584 } 4585 4586 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4587 return Ctx.getFunctionNoProtoType( 4588 GeneralizeType(Ctx, FnType->getReturnType())); 4589 4590 llvm_unreachable("Encountered unknown FunctionType"); 4591 } 4592 4593 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4594 T = GeneralizeFunctionType(getContext(), T); 4595 4596 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4597 if (InternalId) 4598 return InternalId; 4599 4600 if (isExternallyVisible(T->getLinkage())) { 4601 std::string OutName; 4602 llvm::raw_string_ostream Out(OutName); 4603 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4604 Out << ".generalized"; 4605 4606 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4607 } else { 4608 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4609 llvm::ArrayRef<llvm::Metadata *>()); 4610 } 4611 4612 return InternalId; 4613 } 4614 4615 /// Returns whether this module needs the "all-vtables" type identifier. 4616 bool CodeGenModule::NeedAllVtablesTypeId() const { 4617 // Returns true if at least one of vtable-based CFI checkers is enabled and 4618 // is not in the trapping mode. 4619 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4620 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4621 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4622 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4623 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4624 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4625 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4626 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4627 } 4628 4629 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4630 CharUnits Offset, 4631 const CXXRecordDecl *RD) { 4632 llvm::Metadata *MD = 4633 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4634 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4635 4636 if (CodeGenOpts.SanitizeCfiCrossDso) 4637 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4638 VTable->addTypeMetadata(Offset.getQuantity(), 4639 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4640 4641 if (NeedAllVtablesTypeId()) { 4642 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4643 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4644 } 4645 } 4646 4647 // Fills in the supplied string map with the set of target features for the 4648 // passed in function. 4649 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4650 const FunctionDecl *FD) { 4651 StringRef TargetCPU = Target.getTargetOpts().CPU; 4652 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4653 // If we have a TargetAttr build up the feature map based on that. 4654 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4655 4656 ParsedAttr.Features.erase( 4657 llvm::remove_if(ParsedAttr.Features, 4658 [&](const std::string &Feat) { 4659 return !Target.isValidFeatureName( 4660 StringRef{Feat}.substr(1)); 4661 }), 4662 ParsedAttr.Features.end()); 4663 4664 // Make a copy of the features as passed on the command line into the 4665 // beginning of the additional features from the function to override. 4666 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4667 Target.getTargetOpts().FeaturesAsWritten.begin(), 4668 Target.getTargetOpts().FeaturesAsWritten.end()); 4669 4670 if (ParsedAttr.Architecture != "" && 4671 Target.isValidCPUName(ParsedAttr.Architecture)) 4672 TargetCPU = ParsedAttr.Architecture; 4673 4674 // Now populate the feature map, first with the TargetCPU which is either 4675 // the default or a new one from the target attribute string. Then we'll use 4676 // the passed in features (FeaturesAsWritten) along with the new ones from 4677 // the attribute. 4678 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4679 ParsedAttr.Features); 4680 } else { 4681 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4682 Target.getTargetOpts().Features); 4683 } 4684 } 4685 4686 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4687 if (!SanStats) 4688 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4689 4690 return *SanStats; 4691 } 4692 llvm::Value * 4693 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4694 CodeGenFunction &CGF) { 4695 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4696 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4697 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4698 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4699 "__translate_sampler_initializer"), 4700 {C}); 4701 } 4702