1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CodeGenTBAA.h" 18 #include "CGCall.h" 19 #include "CGCUDARuntime.h" 20 #include "CGCXXABI.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/CharUnits.h" 27 #include "clang/AST/DeclObjC.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclTemplate.h" 30 #include "clang/AST/Mangle.h" 31 #include "clang/AST/RecordLayout.h" 32 #include "clang/AST/RecursiveASTVisitor.h" 33 #include "clang/Basic/Builtins.h" 34 #include "clang/Basic/Diagnostic.h" 35 #include "clang/Basic/SourceManager.h" 36 #include "clang/Basic/TargetInfo.h" 37 #include "clang/Basic/ConvertUTF.h" 38 #include "llvm/CallingConv.h" 39 #include "llvm/Module.h" 40 #include "llvm/Intrinsics.h" 41 #include "llvm/LLVMContext.h" 42 #include "llvm/ADT/APSInt.h" 43 #include "llvm/ADT/Triple.h" 44 #include "llvm/Target/Mangler.h" 45 #include "llvm/DataLayout.h" 46 #include "llvm/Support/CallSite.h" 47 #include "llvm/Support/ErrorHandling.h" 48 using namespace clang; 49 using namespace CodeGen; 50 51 static const char AnnotationSection[] = "llvm.metadata"; 52 53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) { 54 switch (CGM.getContext().getTargetInfo().getCXXABI()) { 55 case CXXABI_ARM: return *CreateARMCXXABI(CGM); 56 case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM); 57 case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM); 58 } 59 60 llvm_unreachable("invalid C++ ABI kind"); 61 } 62 63 64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 65 llvm::Module &M, const llvm::DataLayout &TD, 66 DiagnosticsEngine &diags) 67 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 68 TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags), 69 ABI(createCXXABI(*this)), 70 Types(*this), 71 TBAA(0), 72 VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0), 73 DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0), 74 RRData(0), CFConstantStringClassRef(0), 75 ConstantStringClassRef(0), NSConstantStringType(0), 76 VMContext(M.getContext()), 77 NSConcreteGlobalBlock(0), NSConcreteStackBlock(0), 78 BlockObjectAssign(0), BlockObjectDispose(0), 79 BlockDescriptorType(0), GenericBlockLiteralType(0) { 80 81 // Initialize the type cache. 82 llvm::LLVMContext &LLVMContext = M.getContext(); 83 VoidTy = llvm::Type::getVoidTy(LLVMContext); 84 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 85 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 86 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 87 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 88 FloatTy = llvm::Type::getFloatTy(LLVMContext); 89 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 90 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 91 PointerAlignInBytes = 92 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 93 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 94 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 95 Int8PtrTy = Int8Ty->getPointerTo(0); 96 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 97 98 if (LangOpts.ObjC1) 99 createObjCRuntime(); 100 if (LangOpts.OpenCL) 101 createOpenCLRuntime(); 102 if (LangOpts.CUDA) 103 createCUDARuntime(); 104 105 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 106 if (LangOpts.ThreadSanitizer || 107 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 108 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 109 ABI.getMangleContext()); 110 111 // If debug info or coverage generation is enabled, create the CGDebugInfo 112 // object. 113 if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo || 114 CodeGenOpts.EmitGcovArcs || 115 CodeGenOpts.EmitGcovNotes) 116 DebugInfo = new CGDebugInfo(*this); 117 118 Block.GlobalUniqueCount = 0; 119 120 if (C.getLangOpts().ObjCAutoRefCount) 121 ARCData = new ARCEntrypoints(); 122 RRData = new RREntrypoints(); 123 } 124 125 CodeGenModule::~CodeGenModule() { 126 delete ObjCRuntime; 127 delete OpenCLRuntime; 128 delete CUDARuntime; 129 delete TheTargetCodeGenInfo; 130 delete &ABI; 131 delete TBAA; 132 delete DebugInfo; 133 delete ARCData; 134 delete RRData; 135 } 136 137 void CodeGenModule::createObjCRuntime() { 138 // This is just isGNUFamily(), but we want to force implementors of 139 // new ABIs to decide how best to do this. 140 switch (LangOpts.ObjCRuntime.getKind()) { 141 case ObjCRuntime::GNUstep: 142 case ObjCRuntime::GCC: 143 case ObjCRuntime::ObjFW: 144 ObjCRuntime = CreateGNUObjCRuntime(*this); 145 return; 146 147 case ObjCRuntime::FragileMacOSX: 148 case ObjCRuntime::MacOSX: 149 case ObjCRuntime::iOS: 150 ObjCRuntime = CreateMacObjCRuntime(*this); 151 return; 152 } 153 llvm_unreachable("bad runtime kind"); 154 } 155 156 void CodeGenModule::createOpenCLRuntime() { 157 OpenCLRuntime = new CGOpenCLRuntime(*this); 158 } 159 160 void CodeGenModule::createCUDARuntime() { 161 CUDARuntime = CreateNVCUDARuntime(*this); 162 } 163 164 void CodeGenModule::Release() { 165 EmitDeferred(); 166 EmitCXXGlobalInitFunc(); 167 EmitCXXGlobalDtorFunc(); 168 if (ObjCRuntime) 169 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 170 AddGlobalCtor(ObjCInitFunction); 171 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 172 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 173 EmitGlobalAnnotations(); 174 EmitLLVMUsed(); 175 176 SimplifyPersonality(); 177 178 if (getCodeGenOpts().EmitDeclMetadata) 179 EmitDeclMetadata(); 180 181 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 182 EmitCoverageFile(); 183 184 if (DebugInfo) 185 DebugInfo->finalize(); 186 } 187 188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 189 // Make sure that this type is translated. 190 Types.UpdateCompletedType(TD); 191 } 192 193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 194 if (!TBAA) 195 return 0; 196 return TBAA->getTBAAInfo(QTy); 197 } 198 199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 200 if (!TBAA) 201 return 0; 202 return TBAA->getTBAAInfoForVTablePtr(); 203 } 204 205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 206 if (!TBAA) 207 return 0; 208 return TBAA->getTBAAStructInfo(QTy); 209 } 210 211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 212 llvm::MDNode *TBAAInfo) { 213 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 214 } 215 216 bool CodeGenModule::isTargetDarwin() const { 217 return getContext().getTargetInfo().getTriple().isOSDarwin(); 218 } 219 220 void CodeGenModule::Error(SourceLocation loc, StringRef error) { 221 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error); 222 getDiags().Report(Context.getFullLoc(loc), diagID); 223 } 224 225 /// ErrorUnsupported - Print out an error that codegen doesn't support the 226 /// specified stmt yet. 227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 228 bool OmitOnError) { 229 if (OmitOnError && getDiags().hasErrorOccurred()) 230 return; 231 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 232 "cannot compile this %0 yet"); 233 std::string Msg = Type; 234 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 235 << Msg << S->getSourceRange(); 236 } 237 238 /// ErrorUnsupported - Print out an error that codegen doesn't support the 239 /// specified decl yet. 240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 241 bool OmitOnError) { 242 if (OmitOnError && getDiags().hasErrorOccurred()) 243 return; 244 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 245 "cannot compile this %0 yet"); 246 std::string Msg = Type; 247 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 248 } 249 250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 251 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 252 } 253 254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 255 const NamedDecl *D) const { 256 // Internal definitions always have default visibility. 257 if (GV->hasLocalLinkage()) { 258 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 259 return; 260 } 261 262 // Set visibility for definitions. 263 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 264 if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 265 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 266 } 267 268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 269 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 270 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 271 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 272 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 273 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 274 } 275 276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 277 CodeGenOptions::TLSModel M) { 278 switch (M) { 279 case CodeGenOptions::GeneralDynamicTLSModel: 280 return llvm::GlobalVariable::GeneralDynamicTLSModel; 281 case CodeGenOptions::LocalDynamicTLSModel: 282 return llvm::GlobalVariable::LocalDynamicTLSModel; 283 case CodeGenOptions::InitialExecTLSModel: 284 return llvm::GlobalVariable::InitialExecTLSModel; 285 case CodeGenOptions::LocalExecTLSModel: 286 return llvm::GlobalVariable::LocalExecTLSModel; 287 } 288 llvm_unreachable("Invalid TLS model!"); 289 } 290 291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 292 const VarDecl &D) const { 293 assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!"); 294 295 llvm::GlobalVariable::ThreadLocalMode TLM; 296 TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel); 297 298 // Override the TLS model if it is explicitly specified. 299 if (D.hasAttr<TLSModelAttr>()) { 300 const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>(); 301 TLM = GetLLVMTLSModel(Attr->getModel()); 302 } 303 304 GV->setThreadLocalMode(TLM); 305 } 306 307 /// Set the symbol visibility of type information (vtable and RTTI) 308 /// associated with the given type. 309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV, 310 const CXXRecordDecl *RD, 311 TypeVisibilityKind TVK) const { 312 setGlobalVisibility(GV, RD); 313 314 if (!CodeGenOpts.HiddenWeakVTables) 315 return; 316 317 // We never want to drop the visibility for RTTI names. 318 if (TVK == TVK_ForRTTIName) 319 return; 320 321 // We want to drop the visibility to hidden for weak type symbols. 322 // This isn't possible if there might be unresolved references 323 // elsewhere that rely on this symbol being visible. 324 325 // This should be kept roughly in sync with setThunkVisibility 326 // in CGVTables.cpp. 327 328 // Preconditions. 329 if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage || 330 GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility) 331 return; 332 333 // Don't override an explicit visibility attribute. 334 if (RD->getExplicitVisibility()) 335 return; 336 337 switch (RD->getTemplateSpecializationKind()) { 338 // We have to disable the optimization if this is an EI definition 339 // because there might be EI declarations in other shared objects. 340 case TSK_ExplicitInstantiationDefinition: 341 case TSK_ExplicitInstantiationDeclaration: 342 return; 343 344 // Every use of a non-template class's type information has to emit it. 345 case TSK_Undeclared: 346 break; 347 348 // In theory, implicit instantiations can ignore the possibility of 349 // an explicit instantiation declaration because there necessarily 350 // must be an EI definition somewhere with default visibility. In 351 // practice, it's possible to have an explicit instantiation for 352 // an arbitrary template class, and linkers aren't necessarily able 353 // to deal with mixed-visibility symbols. 354 case TSK_ExplicitSpecialization: 355 case TSK_ImplicitInstantiation: 356 if (!CodeGenOpts.HiddenWeakTemplateVTables) 357 return; 358 break; 359 } 360 361 // If there's a key function, there may be translation units 362 // that don't have the key function's definition. But ignore 363 // this if we're emitting RTTI under -fno-rtti. 364 if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) { 365 if (Context.getKeyFunction(RD)) 366 return; 367 } 368 369 // Otherwise, drop the visibility to hidden. 370 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 371 GV->setUnnamedAddr(true); 372 } 373 374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 375 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 376 377 StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()]; 378 if (!Str.empty()) 379 return Str; 380 381 if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 382 IdentifierInfo *II = ND->getIdentifier(); 383 assert(II && "Attempt to mangle unnamed decl."); 384 385 Str = II->getName(); 386 return Str; 387 } 388 389 SmallString<256> Buffer; 390 llvm::raw_svector_ostream Out(Buffer); 391 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 392 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 393 else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 394 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 395 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND)) 396 getCXXABI().getMangleContext().mangleBlock(BD, Out, 397 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl())); 398 else 399 getCXXABI().getMangleContext().mangleName(ND, Out); 400 401 // Allocate space for the mangled name. 402 Out.flush(); 403 size_t Length = Buffer.size(); 404 char *Name = MangledNamesAllocator.Allocate<char>(Length); 405 std::copy(Buffer.begin(), Buffer.end(), Name); 406 407 Str = StringRef(Name, Length); 408 409 return Str; 410 } 411 412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer, 413 const BlockDecl *BD) { 414 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 415 const Decl *D = GD.getDecl(); 416 llvm::raw_svector_ostream Out(Buffer.getBuffer()); 417 if (D == 0) 418 MangleCtx.mangleGlobalBlock(BD, 419 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 420 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 421 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 422 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 423 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 424 else 425 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 426 } 427 428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 429 return getModule().getNamedValue(Name); 430 } 431 432 /// AddGlobalCtor - Add a function to the list that will be called before 433 /// main() runs. 434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 435 // FIXME: Type coercion of void()* types. 436 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 437 } 438 439 /// AddGlobalDtor - Add a function to the list that will be called 440 /// when the module is unloaded. 441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 442 // FIXME: Type coercion of void()* types. 443 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 444 } 445 446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 447 // Ctor function type is void()*. 448 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 449 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 450 451 // Get the type of a ctor entry, { i32, void ()* }. 452 llvm::StructType *CtorStructTy = 453 llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL); 454 455 // Construct the constructor and destructor arrays. 456 SmallVector<llvm::Constant*, 8> Ctors; 457 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 458 llvm::Constant *S[] = { 459 llvm::ConstantInt::get(Int32Ty, I->second, false), 460 llvm::ConstantExpr::getBitCast(I->first, CtorPFTy) 461 }; 462 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 463 } 464 465 if (!Ctors.empty()) { 466 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 467 new llvm::GlobalVariable(TheModule, AT, false, 468 llvm::GlobalValue::AppendingLinkage, 469 llvm::ConstantArray::get(AT, Ctors), 470 GlobalName); 471 } 472 } 473 474 llvm::GlobalValue::LinkageTypes 475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { 476 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 477 478 if (Linkage == GVA_Internal) 479 return llvm::Function::InternalLinkage; 480 481 if (D->hasAttr<DLLExportAttr>()) 482 return llvm::Function::DLLExportLinkage; 483 484 if (D->hasAttr<WeakAttr>()) 485 return llvm::Function::WeakAnyLinkage; 486 487 // In C99 mode, 'inline' functions are guaranteed to have a strong 488 // definition somewhere else, so we can use available_externally linkage. 489 if (Linkage == GVA_C99Inline) 490 return llvm::Function::AvailableExternallyLinkage; 491 492 // Note that Apple's kernel linker doesn't support symbol 493 // coalescing, so we need to avoid linkonce and weak linkages there. 494 // Normally, this means we just map to internal, but for explicit 495 // instantiations we'll map to external. 496 497 // In C++, the compiler has to emit a definition in every translation unit 498 // that references the function. We should use linkonce_odr because 499 // a) if all references in this translation unit are optimized away, we 500 // don't need to codegen it. b) if the function persists, it needs to be 501 // merged with other definitions. c) C++ has the ODR, so we know the 502 // definition is dependable. 503 if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) 504 return !Context.getLangOpts().AppleKext 505 ? llvm::Function::LinkOnceODRLinkage 506 : llvm::Function::InternalLinkage; 507 508 // An explicit instantiation of a template has weak linkage, since 509 // explicit instantiations can occur in multiple translation units 510 // and must all be equivalent. However, we are not allowed to 511 // throw away these explicit instantiations. 512 if (Linkage == GVA_ExplicitTemplateInstantiation) 513 return !Context.getLangOpts().AppleKext 514 ? llvm::Function::WeakODRLinkage 515 : llvm::Function::ExternalLinkage; 516 517 // Otherwise, we have strong external linkage. 518 assert(Linkage == GVA_StrongExternal); 519 return llvm::Function::ExternalLinkage; 520 } 521 522 523 /// SetFunctionDefinitionAttributes - Set attributes for a global. 524 /// 525 /// FIXME: This is currently only done for aliases and functions, but not for 526 /// variables (these details are set in EmitGlobalVarDefinition for variables). 527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 528 llvm::GlobalValue *GV) { 529 SetCommonAttributes(D, GV); 530 } 531 532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 533 const CGFunctionInfo &Info, 534 llvm::Function *F) { 535 unsigned CallingConv; 536 AttributeListType AttributeList; 537 ConstructAttributeList(Info, D, AttributeList, CallingConv); 538 F->setAttributes(llvm::AttrListPtr::get(AttributeList)); 539 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 540 } 541 542 /// Determines whether the language options require us to model 543 /// unwind exceptions. We treat -fexceptions as mandating this 544 /// except under the fragile ObjC ABI with only ObjC exceptions 545 /// enabled. This means, for example, that C with -fexceptions 546 /// enables this. 547 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 548 // If exceptions are completely disabled, obviously this is false. 549 if (!LangOpts.Exceptions) return false; 550 551 // If C++ exceptions are enabled, this is true. 552 if (LangOpts.CXXExceptions) return true; 553 554 // If ObjC exceptions are enabled, this depends on the ABI. 555 if (LangOpts.ObjCExceptions) { 556 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 557 } 558 559 return true; 560 } 561 562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 563 llvm::Function *F) { 564 if (CodeGenOpts.UnwindTables) 565 F->setHasUWTable(); 566 567 if (!hasUnwindExceptions(LangOpts)) 568 F->addFnAttr(llvm::Attributes::NoUnwind); 569 570 if (D->hasAttr<NakedAttr>()) { 571 // Naked implies noinline: we should not be inlining such functions. 572 F->addFnAttr(llvm::Attributes::Naked); 573 F->addFnAttr(llvm::Attributes::NoInline); 574 } 575 576 if (D->hasAttr<NoInlineAttr>()) 577 F->addFnAttr(llvm::Attributes::NoInline); 578 579 // (noinline wins over always_inline, and we can't specify both in IR) 580 if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) && 581 !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline)) 582 F->addFnAttr(llvm::Attributes::AlwaysInline); 583 584 // FIXME: Communicate hot and cold attributes to LLVM more directly. 585 if (D->hasAttr<ColdAttr>()) 586 F->addFnAttr(llvm::Attributes::OptimizeForSize); 587 588 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 589 F->setUnnamedAddr(true); 590 591 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) 592 if (MD->isVirtual()) 593 F->setUnnamedAddr(true); 594 595 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 596 F->addFnAttr(llvm::Attributes::StackProtect); 597 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 598 F->addFnAttr(llvm::Attributes::StackProtectReq); 599 600 if (LangOpts.AddressSanitizer) { 601 // When AddressSanitizer is enabled, set AddressSafety attribute 602 // unless __attribute__((no_address_safety_analysis)) is used. 603 if (!D->hasAttr<NoAddressSafetyAnalysisAttr>()) 604 F->addFnAttr(llvm::Attributes::AddressSafety); 605 } 606 607 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 608 if (alignment) 609 F->setAlignment(alignment); 610 611 // C++ ABI requires 2-byte alignment for member functions. 612 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 613 F->setAlignment(2); 614 } 615 616 void CodeGenModule::SetCommonAttributes(const Decl *D, 617 llvm::GlobalValue *GV) { 618 if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) 619 setGlobalVisibility(GV, ND); 620 else 621 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 622 623 if (D->hasAttr<UsedAttr>()) 624 AddUsedGlobal(GV); 625 626 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 627 GV->setSection(SA->getName()); 628 629 getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); 630 } 631 632 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 633 llvm::Function *F, 634 const CGFunctionInfo &FI) { 635 SetLLVMFunctionAttributes(D, FI, F); 636 SetLLVMFunctionAttributesForDefinition(D, F); 637 638 F->setLinkage(llvm::Function::InternalLinkage); 639 640 SetCommonAttributes(D, F); 641 } 642 643 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 644 llvm::Function *F, 645 bool IsIncompleteFunction) { 646 if (unsigned IID = F->getIntrinsicID()) { 647 // If this is an intrinsic function, set the function's attributes 648 // to the intrinsic's attributes. 649 F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID)); 650 return; 651 } 652 653 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 654 655 if (!IsIncompleteFunction) 656 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 657 658 // Only a few attributes are set on declarations; these may later be 659 // overridden by a definition. 660 661 if (FD->hasAttr<DLLImportAttr>()) { 662 F->setLinkage(llvm::Function::DLLImportLinkage); 663 } else if (FD->hasAttr<WeakAttr>() || 664 FD->isWeakImported()) { 665 // "extern_weak" is overloaded in LLVM; we probably should have 666 // separate linkage types for this. 667 F->setLinkage(llvm::Function::ExternalWeakLinkage); 668 } else { 669 F->setLinkage(llvm::Function::ExternalLinkage); 670 671 NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility(); 672 if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) { 673 F->setVisibility(GetLLVMVisibility(LV.visibility())); 674 } 675 } 676 677 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 678 F->setSection(SA->getName()); 679 } 680 681 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 682 assert(!GV->isDeclaration() && 683 "Only globals with definition can force usage."); 684 LLVMUsed.push_back(GV); 685 } 686 687 void CodeGenModule::EmitLLVMUsed() { 688 // Don't create llvm.used if there is no need. 689 if (LLVMUsed.empty()) 690 return; 691 692 // Convert LLVMUsed to what ConstantArray needs. 693 SmallVector<llvm::Constant*, 8> UsedArray; 694 UsedArray.resize(LLVMUsed.size()); 695 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 696 UsedArray[i] = 697 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 698 Int8PtrTy); 699 } 700 701 if (UsedArray.empty()) 702 return; 703 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 704 705 llvm::GlobalVariable *GV = 706 new llvm::GlobalVariable(getModule(), ATy, false, 707 llvm::GlobalValue::AppendingLinkage, 708 llvm::ConstantArray::get(ATy, UsedArray), 709 "llvm.used"); 710 711 GV->setSection("llvm.metadata"); 712 } 713 714 void CodeGenModule::EmitDeferred() { 715 // Emit code for any potentially referenced deferred decls. Since a 716 // previously unused static decl may become used during the generation of code 717 // for a static function, iterate until no changes are made. 718 719 while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { 720 if (!DeferredVTables.empty()) { 721 const CXXRecordDecl *RD = DeferredVTables.back(); 722 DeferredVTables.pop_back(); 723 getCXXABI().EmitVTables(RD); 724 continue; 725 } 726 727 GlobalDecl D = DeferredDeclsToEmit.back(); 728 DeferredDeclsToEmit.pop_back(); 729 730 // Check to see if we've already emitted this. This is necessary 731 // for a couple of reasons: first, decls can end up in the 732 // deferred-decls queue multiple times, and second, decls can end 733 // up with definitions in unusual ways (e.g. by an extern inline 734 // function acquiring a strong function redefinition). Just 735 // ignore these cases. 736 // 737 // TODO: That said, looking this up multiple times is very wasteful. 738 StringRef Name = getMangledName(D); 739 llvm::GlobalValue *CGRef = GetGlobalValue(Name); 740 assert(CGRef && "Deferred decl wasn't referenced?"); 741 742 if (!CGRef->isDeclaration()) 743 continue; 744 745 // GlobalAlias::isDeclaration() defers to the aliasee, but for our 746 // purposes an alias counts as a definition. 747 if (isa<llvm::GlobalAlias>(CGRef)) 748 continue; 749 750 // Otherwise, emit the definition and move on to the next one. 751 EmitGlobalDefinition(D); 752 } 753 } 754 755 void CodeGenModule::EmitGlobalAnnotations() { 756 if (Annotations.empty()) 757 return; 758 759 // Create a new global variable for the ConstantStruct in the Module. 760 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 761 Annotations[0]->getType(), Annotations.size()), Annotations); 762 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), 763 Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, 764 "llvm.global.annotations"); 765 gv->setSection(AnnotationSection); 766 } 767 768 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) { 769 llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str); 770 if (i != AnnotationStrings.end()) 771 return i->second; 772 773 // Not found yet, create a new global. 774 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 775 llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(), 776 true, llvm::GlobalValue::PrivateLinkage, s, ".str"); 777 gv->setSection(AnnotationSection); 778 gv->setUnnamedAddr(true); 779 AnnotationStrings[Str] = gv; 780 return gv; 781 } 782 783 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 784 SourceManager &SM = getContext().getSourceManager(); 785 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 786 if (PLoc.isValid()) 787 return EmitAnnotationString(PLoc.getFilename()); 788 return EmitAnnotationString(SM.getBufferName(Loc)); 789 } 790 791 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 792 SourceManager &SM = getContext().getSourceManager(); 793 PresumedLoc PLoc = SM.getPresumedLoc(L); 794 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 795 SM.getExpansionLineNumber(L); 796 return llvm::ConstantInt::get(Int32Ty, LineNo); 797 } 798 799 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 800 const AnnotateAttr *AA, 801 SourceLocation L) { 802 // Get the globals for file name, annotation, and the line number. 803 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 804 *UnitGV = EmitAnnotationUnit(L), 805 *LineNoCst = EmitAnnotationLineNo(L); 806 807 // Create the ConstantStruct for the global annotation. 808 llvm::Constant *Fields[4] = { 809 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 810 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 811 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 812 LineNoCst 813 }; 814 return llvm::ConstantStruct::getAnon(Fields); 815 } 816 817 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 818 llvm::GlobalValue *GV) { 819 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 820 // Get the struct elements for these annotations. 821 for (specific_attr_iterator<AnnotateAttr> 822 ai = D->specific_attr_begin<AnnotateAttr>(), 823 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 824 Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation())); 825 } 826 827 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 828 // Never defer when EmitAllDecls is specified. 829 if (LangOpts.EmitAllDecls) 830 return false; 831 832 return !getContext().DeclMustBeEmitted(Global); 833 } 834 835 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 836 const CXXUuidofExpr* E) { 837 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 838 // well-formed. 839 StringRef Uuid; 840 if (E->isTypeOperand()) 841 Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid(); 842 else { 843 // Special case: __uuidof(0) means an all-zero GUID. 844 Expr *Op = E->getExprOperand(); 845 if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 846 Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid(); 847 else 848 Uuid = "00000000-0000-0000-0000-000000000000"; 849 } 850 std::string Name = "__uuid_" + Uuid.str(); 851 852 // Look for an existing global. 853 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 854 return GV; 855 856 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 857 assert(Init && "failed to initialize as constant"); 858 859 // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the 860 // first field is declared as "long", which for many targets is 8 bytes. 861 // Those architectures are not supported. (With the MS abi, long is always 4 862 // bytes.) 863 llvm::Type *GuidType = getTypes().ConvertType(E->getType()); 864 if (Init->getType() != GuidType) { 865 DiagnosticsEngine &Diags = getDiags(); 866 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 867 "__uuidof codegen is not supported on this architecture"); 868 Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange(); 869 Init = llvm::UndefValue::get(GuidType); 870 } 871 872 llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType, 873 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name); 874 GV->setUnnamedAddr(true); 875 return GV; 876 } 877 878 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 879 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 880 assert(AA && "No alias?"); 881 882 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 883 884 // See if there is already something with the target's name in the module. 885 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 886 887 llvm::Constant *Aliasee; 888 if (isa<llvm::FunctionType>(DeclTy)) 889 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 890 GlobalDecl(cast<FunctionDecl>(VD)), 891 /*ForVTable=*/false); 892 else 893 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 894 llvm::PointerType::getUnqual(DeclTy), 0); 895 if (!Entry) { 896 llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); 897 F->setLinkage(llvm::Function::ExternalWeakLinkage); 898 WeakRefReferences.insert(F); 899 } 900 901 return Aliasee; 902 } 903 904 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 905 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 906 907 // Weak references don't produce any output by themselves. 908 if (Global->hasAttr<WeakRefAttr>()) 909 return; 910 911 // If this is an alias definition (which otherwise looks like a declaration) 912 // emit it now. 913 if (Global->hasAttr<AliasAttr>()) 914 return EmitAliasDefinition(GD); 915 916 // If this is CUDA, be selective about which declarations we emit. 917 if (LangOpts.CUDA) { 918 if (CodeGenOpts.CUDAIsDevice) { 919 if (!Global->hasAttr<CUDADeviceAttr>() && 920 !Global->hasAttr<CUDAGlobalAttr>() && 921 !Global->hasAttr<CUDAConstantAttr>() && 922 !Global->hasAttr<CUDASharedAttr>()) 923 return; 924 } else { 925 if (!Global->hasAttr<CUDAHostAttr>() && ( 926 Global->hasAttr<CUDADeviceAttr>() || 927 Global->hasAttr<CUDAConstantAttr>() || 928 Global->hasAttr<CUDASharedAttr>())) 929 return; 930 } 931 } 932 933 // Ignore declarations, they will be emitted on their first use. 934 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 935 // Forward declarations are emitted lazily on first use. 936 if (!FD->doesThisDeclarationHaveABody()) { 937 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 938 return; 939 940 const FunctionDecl *InlineDefinition = 0; 941 FD->getBody(InlineDefinition); 942 943 StringRef MangledName = getMangledName(GD); 944 DeferredDecls.erase(MangledName); 945 EmitGlobalDefinition(InlineDefinition); 946 return; 947 } 948 } else { 949 const VarDecl *VD = cast<VarDecl>(Global); 950 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 951 952 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) 953 return; 954 } 955 956 // Defer code generation when possible if this is a static definition, inline 957 // function etc. These we only want to emit if they are used. 958 if (!MayDeferGeneration(Global)) { 959 // Emit the definition if it can't be deferred. 960 EmitGlobalDefinition(GD); 961 return; 962 } 963 964 // If we're deferring emission of a C++ variable with an 965 // initializer, remember the order in which it appeared in the file. 966 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 967 cast<VarDecl>(Global)->hasInit()) { 968 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 969 CXXGlobalInits.push_back(0); 970 } 971 972 // If the value has already been used, add it directly to the 973 // DeferredDeclsToEmit list. 974 StringRef MangledName = getMangledName(GD); 975 if (GetGlobalValue(MangledName)) 976 DeferredDeclsToEmit.push_back(GD); 977 else { 978 // Otherwise, remember that we saw a deferred decl with this name. The 979 // first use of the mangled name will cause it to move into 980 // DeferredDeclsToEmit. 981 DeferredDecls[MangledName] = GD; 982 } 983 } 984 985 namespace { 986 struct FunctionIsDirectlyRecursive : 987 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 988 const StringRef Name; 989 const Builtin::Context &BI; 990 bool Result; 991 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 992 Name(N), BI(C), Result(false) { 993 } 994 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 995 996 bool TraverseCallExpr(CallExpr *E) { 997 const FunctionDecl *FD = E->getDirectCallee(); 998 if (!FD) 999 return true; 1000 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1001 if (Attr && Name == Attr->getLabel()) { 1002 Result = true; 1003 return false; 1004 } 1005 unsigned BuiltinID = FD->getBuiltinID(); 1006 if (!BuiltinID) 1007 return true; 1008 StringRef BuiltinName = BI.GetName(BuiltinID); 1009 if (BuiltinName.startswith("__builtin_") && 1010 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1011 Result = true; 1012 return false; 1013 } 1014 return true; 1015 } 1016 }; 1017 } 1018 1019 // isTriviallyRecursive - Check if this function calls another 1020 // decl that, because of the asm attribute or the other decl being a builtin, 1021 // ends up pointing to itself. 1022 bool 1023 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1024 StringRef Name; 1025 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1026 // asm labels are a special kind of mangling we have to support. 1027 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1028 if (!Attr) 1029 return false; 1030 Name = Attr->getLabel(); 1031 } else { 1032 Name = FD->getName(); 1033 } 1034 1035 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1036 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1037 return Walker.Result; 1038 } 1039 1040 bool 1041 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) { 1042 if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage) 1043 return true; 1044 if (CodeGenOpts.OptimizationLevel == 0 && 1045 !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>()) 1046 return false; 1047 // PR9614. Avoid cases where the source code is lying to us. An available 1048 // externally function should have an equivalent function somewhere else, 1049 // but a function that calls itself is clearly not equivalent to the real 1050 // implementation. 1051 // This happens in glibc's btowc and in some configure checks. 1052 return !isTriviallyRecursive(F); 1053 } 1054 1055 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 1056 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1057 1058 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1059 Context.getSourceManager(), 1060 "Generating code for declaration"); 1061 1062 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) { 1063 // At -O0, don't generate IR for functions with available_externally 1064 // linkage. 1065 if (!shouldEmitFunction(Function)) 1066 return; 1067 1068 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { 1069 // Make sure to emit the definition(s) before we emit the thunks. 1070 // This is necessary for the generation of certain thunks. 1071 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method)) 1072 EmitCXXConstructor(CD, GD.getCtorType()); 1073 else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method)) 1074 EmitCXXDestructor(DD, GD.getDtorType()); 1075 else 1076 EmitGlobalFunctionDefinition(GD); 1077 1078 if (Method->isVirtual()) 1079 getVTables().EmitThunks(GD); 1080 1081 return; 1082 } 1083 1084 return EmitGlobalFunctionDefinition(GD); 1085 } 1086 1087 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 1088 return EmitGlobalVarDefinition(VD); 1089 1090 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1091 } 1092 1093 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1094 /// module, create and return an llvm Function with the specified type. If there 1095 /// is something in the module with the specified name, return it potentially 1096 /// bitcasted to the right type. 1097 /// 1098 /// If D is non-null, it specifies a decl that correspond to this. This is used 1099 /// to set the attributes on the function when it is first created. 1100 llvm::Constant * 1101 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1102 llvm::Type *Ty, 1103 GlobalDecl D, bool ForVTable, 1104 llvm::Attributes ExtraAttrs) { 1105 // Lookup the entry, lazily creating it if necessary. 1106 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1107 if (Entry) { 1108 if (WeakRefReferences.erase(Entry)) { 1109 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); 1110 if (FD && !FD->hasAttr<WeakAttr>()) 1111 Entry->setLinkage(llvm::Function::ExternalLinkage); 1112 } 1113 1114 if (Entry->getType()->getElementType() == Ty) 1115 return Entry; 1116 1117 // Make sure the result is of the correct type. 1118 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1119 } 1120 1121 // This function doesn't have a complete type (for example, the return 1122 // type is an incomplete struct). Use a fake type instead, and make 1123 // sure not to try to set attributes. 1124 bool IsIncompleteFunction = false; 1125 1126 llvm::FunctionType *FTy; 1127 if (isa<llvm::FunctionType>(Ty)) { 1128 FTy = cast<llvm::FunctionType>(Ty); 1129 } else { 1130 FTy = llvm::FunctionType::get(VoidTy, false); 1131 IsIncompleteFunction = true; 1132 } 1133 1134 llvm::Function *F = llvm::Function::Create(FTy, 1135 llvm::Function::ExternalLinkage, 1136 MangledName, &getModule()); 1137 assert(F->getName() == MangledName && "name was uniqued!"); 1138 if (D.getDecl()) 1139 SetFunctionAttributes(D, F, IsIncompleteFunction); 1140 if (ExtraAttrs.hasAttributes()) 1141 F->addAttribute(~0, ExtraAttrs); 1142 1143 // This is the first use or definition of a mangled name. If there is a 1144 // deferred decl with this name, remember that we need to emit it at the end 1145 // of the file. 1146 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1147 if (DDI != DeferredDecls.end()) { 1148 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1149 // list, and remove it from DeferredDecls (since we don't need it anymore). 1150 DeferredDeclsToEmit.push_back(DDI->second); 1151 DeferredDecls.erase(DDI); 1152 1153 // Otherwise, there are cases we have to worry about where we're 1154 // using a declaration for which we must emit a definition but where 1155 // we might not find a top-level definition: 1156 // - member functions defined inline in their classes 1157 // - friend functions defined inline in some class 1158 // - special member functions with implicit definitions 1159 // If we ever change our AST traversal to walk into class methods, 1160 // this will be unnecessary. 1161 // 1162 // We also don't emit a definition for a function if it's going to be an entry 1163 // in a vtable, unless it's already marked as used. 1164 } else if (getLangOpts().CPlusPlus && D.getDecl()) { 1165 // Look for a declaration that's lexically in a record. 1166 const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl()); 1167 FD = FD->getMostRecentDecl(); 1168 do { 1169 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1170 if (FD->isImplicit() && !ForVTable) { 1171 assert(FD->isUsed() && "Sema didn't mark implicit function as used!"); 1172 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1173 break; 1174 } else if (FD->doesThisDeclarationHaveABody()) { 1175 DeferredDeclsToEmit.push_back(D.getWithDecl(FD)); 1176 break; 1177 } 1178 } 1179 FD = FD->getPreviousDecl(); 1180 } while (FD); 1181 } 1182 1183 // Make sure the result is of the requested type. 1184 if (!IsIncompleteFunction) { 1185 assert(F->getType()->getElementType() == Ty); 1186 return F; 1187 } 1188 1189 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1190 return llvm::ConstantExpr::getBitCast(F, PTy); 1191 } 1192 1193 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1194 /// non-null, then this function will use the specified type if it has to 1195 /// create it (this occurs when we see a definition of the function). 1196 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1197 llvm::Type *Ty, 1198 bool ForVTable) { 1199 // If there was no specific requested type, just convert it now. 1200 if (!Ty) 1201 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1202 1203 StringRef MangledName = getMangledName(GD); 1204 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable); 1205 } 1206 1207 /// CreateRuntimeFunction - Create a new runtime function with the specified 1208 /// type and name. 1209 llvm::Constant * 1210 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1211 StringRef Name, 1212 llvm::Attributes ExtraAttrs) { 1213 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1214 ExtraAttrs); 1215 } 1216 1217 /// isTypeConstant - Determine whether an object of this type can be emitted 1218 /// as a constant. 1219 /// 1220 /// If ExcludeCtor is true, the duration when the object's constructor runs 1221 /// will not be considered. The caller will need to verify that the object is 1222 /// not written to during its construction. 1223 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1224 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1225 return false; 1226 1227 if (Context.getLangOpts().CPlusPlus) { 1228 if (const CXXRecordDecl *Record 1229 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1230 return ExcludeCtor && !Record->hasMutableFields() && 1231 Record->hasTrivialDestructor(); 1232 } 1233 1234 return true; 1235 } 1236 1237 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1238 /// create and return an llvm GlobalVariable with the specified type. If there 1239 /// is something in the module with the specified name, return it potentially 1240 /// bitcasted to the right type. 1241 /// 1242 /// If D is non-null, it specifies a decl that correspond to this. This is used 1243 /// to set the attributes on the global when it is first created. 1244 llvm::Constant * 1245 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1246 llvm::PointerType *Ty, 1247 const VarDecl *D, 1248 bool UnnamedAddr) { 1249 // Lookup the entry, lazily creating it if necessary. 1250 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1251 if (Entry) { 1252 if (WeakRefReferences.erase(Entry)) { 1253 if (D && !D->hasAttr<WeakAttr>()) 1254 Entry->setLinkage(llvm::Function::ExternalLinkage); 1255 } 1256 1257 if (UnnamedAddr) 1258 Entry->setUnnamedAddr(true); 1259 1260 if (Entry->getType() == Ty) 1261 return Entry; 1262 1263 // Make sure the result is of the correct type. 1264 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1265 } 1266 1267 // This is the first use or definition of a mangled name. If there is a 1268 // deferred decl with this name, remember that we need to emit it at the end 1269 // of the file. 1270 llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); 1271 if (DDI != DeferredDecls.end()) { 1272 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1273 // list, and remove it from DeferredDecls (since we don't need it anymore). 1274 DeferredDeclsToEmit.push_back(DDI->second); 1275 DeferredDecls.erase(DDI); 1276 } 1277 1278 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1279 llvm::GlobalVariable *GV = 1280 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 1281 llvm::GlobalValue::ExternalLinkage, 1282 0, MangledName, 0, 1283 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1284 1285 // Handle things which are present even on external declarations. 1286 if (D) { 1287 // FIXME: This code is overly simple and should be merged with other global 1288 // handling. 1289 GV->setConstant(isTypeConstant(D->getType(), false)); 1290 1291 // Set linkage and visibility in case we never see a definition. 1292 NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility(); 1293 if (LV.linkage() != ExternalLinkage) { 1294 // Don't set internal linkage on declarations. 1295 } else { 1296 if (D->hasAttr<DLLImportAttr>()) 1297 GV->setLinkage(llvm::GlobalValue::DLLImportLinkage); 1298 else if (D->hasAttr<WeakAttr>() || D->isWeakImported()) 1299 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1300 1301 // Set visibility on a declaration only if it's explicit. 1302 if (LV.visibilityExplicit()) 1303 GV->setVisibility(GetLLVMVisibility(LV.visibility())); 1304 } 1305 1306 if (D->isThreadSpecified()) 1307 setTLSMode(GV, *D); 1308 } 1309 1310 if (AddrSpace != Ty->getAddressSpace()) 1311 return llvm::ConstantExpr::getBitCast(GV, Ty); 1312 else 1313 return GV; 1314 } 1315 1316 1317 llvm::GlobalVariable * 1318 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1319 llvm::Type *Ty, 1320 llvm::GlobalValue::LinkageTypes Linkage) { 1321 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1322 llvm::GlobalVariable *OldGV = 0; 1323 1324 1325 if (GV) { 1326 // Check if the variable has the right type. 1327 if (GV->getType()->getElementType() == Ty) 1328 return GV; 1329 1330 // Because C++ name mangling, the only way we can end up with an already 1331 // existing global with the same name is if it has been declared extern "C". 1332 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1333 OldGV = GV; 1334 } 1335 1336 // Create a new variable. 1337 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1338 Linkage, 0, Name); 1339 1340 if (OldGV) { 1341 // Replace occurrences of the old variable if needed. 1342 GV->takeName(OldGV); 1343 1344 if (!OldGV->use_empty()) { 1345 llvm::Constant *NewPtrForOldDecl = 1346 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1347 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1348 } 1349 1350 OldGV->eraseFromParent(); 1351 } 1352 1353 return GV; 1354 } 1355 1356 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1357 /// given global variable. If Ty is non-null and if the global doesn't exist, 1358 /// then it will be created with the specified type instead of whatever the 1359 /// normal requested type would be. 1360 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1361 llvm::Type *Ty) { 1362 assert(D->hasGlobalStorage() && "Not a global variable"); 1363 QualType ASTTy = D->getType(); 1364 if (Ty == 0) 1365 Ty = getTypes().ConvertTypeForMem(ASTTy); 1366 1367 llvm::PointerType *PTy = 1368 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1369 1370 StringRef MangledName = getMangledName(D); 1371 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1372 } 1373 1374 /// CreateRuntimeVariable - Create a new runtime global variable with the 1375 /// specified type and name. 1376 llvm::Constant * 1377 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1378 StringRef Name) { 1379 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0, 1380 true); 1381 } 1382 1383 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1384 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1385 1386 if (MayDeferGeneration(D)) { 1387 // If we have not seen a reference to this variable yet, place it 1388 // into the deferred declarations table to be emitted if needed 1389 // later. 1390 StringRef MangledName = getMangledName(D); 1391 if (!GetGlobalValue(MangledName)) { 1392 DeferredDecls[MangledName] = D; 1393 return; 1394 } 1395 } 1396 1397 // The tentative definition is the only definition. 1398 EmitGlobalVarDefinition(D); 1399 } 1400 1401 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) { 1402 if (DefinitionRequired) 1403 getCXXABI().EmitVTables(Class); 1404 } 1405 1406 llvm::GlobalVariable::LinkageTypes 1407 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 1408 if (RD->getLinkage() != ExternalLinkage) 1409 return llvm::GlobalVariable::InternalLinkage; 1410 1411 if (const CXXMethodDecl *KeyFunction 1412 = RD->getASTContext().getKeyFunction(RD)) { 1413 // If this class has a key function, use that to determine the linkage of 1414 // the vtable. 1415 const FunctionDecl *Def = 0; 1416 if (KeyFunction->hasBody(Def)) 1417 KeyFunction = cast<CXXMethodDecl>(Def); 1418 1419 switch (KeyFunction->getTemplateSpecializationKind()) { 1420 case TSK_Undeclared: 1421 case TSK_ExplicitSpecialization: 1422 // When compiling with optimizations turned on, we emit all vtables, 1423 // even if the key function is not defined in the current translation 1424 // unit. If this is the case, use available_externally linkage. 1425 if (!Def && CodeGenOpts.OptimizationLevel) 1426 return llvm::GlobalVariable::AvailableExternallyLinkage; 1427 1428 if (KeyFunction->isInlined()) 1429 return !Context.getLangOpts().AppleKext ? 1430 llvm::GlobalVariable::LinkOnceODRLinkage : 1431 llvm::Function::InternalLinkage; 1432 1433 return llvm::GlobalVariable::ExternalLinkage; 1434 1435 case TSK_ImplicitInstantiation: 1436 return !Context.getLangOpts().AppleKext ? 1437 llvm::GlobalVariable::LinkOnceODRLinkage : 1438 llvm::Function::InternalLinkage; 1439 1440 case TSK_ExplicitInstantiationDefinition: 1441 return !Context.getLangOpts().AppleKext ? 1442 llvm::GlobalVariable::WeakODRLinkage : 1443 llvm::Function::InternalLinkage; 1444 1445 case TSK_ExplicitInstantiationDeclaration: 1446 // FIXME: Use available_externally linkage. However, this currently 1447 // breaks LLVM's build due to undefined symbols. 1448 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1449 return !Context.getLangOpts().AppleKext ? 1450 llvm::GlobalVariable::LinkOnceODRLinkage : 1451 llvm::Function::InternalLinkage; 1452 } 1453 } 1454 1455 if (Context.getLangOpts().AppleKext) 1456 return llvm::Function::InternalLinkage; 1457 1458 switch (RD->getTemplateSpecializationKind()) { 1459 case TSK_Undeclared: 1460 case TSK_ExplicitSpecialization: 1461 case TSK_ImplicitInstantiation: 1462 // FIXME: Use available_externally linkage. However, this currently 1463 // breaks LLVM's build due to undefined symbols. 1464 // return llvm::GlobalVariable::AvailableExternallyLinkage; 1465 case TSK_ExplicitInstantiationDeclaration: 1466 return llvm::GlobalVariable::LinkOnceODRLinkage; 1467 1468 case TSK_ExplicitInstantiationDefinition: 1469 return llvm::GlobalVariable::WeakODRLinkage; 1470 } 1471 1472 llvm_unreachable("Invalid TemplateSpecializationKind!"); 1473 } 1474 1475 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1476 return Context.toCharUnitsFromBits( 1477 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1478 } 1479 1480 llvm::Constant * 1481 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D, 1482 const Expr *rawInit) { 1483 ArrayRef<ExprWithCleanups::CleanupObject> cleanups; 1484 if (const ExprWithCleanups *withCleanups = 1485 dyn_cast<ExprWithCleanups>(rawInit)) { 1486 cleanups = withCleanups->getObjects(); 1487 rawInit = withCleanups->getSubExpr(); 1488 } 1489 1490 const InitListExpr *init = dyn_cast<InitListExpr>(rawInit); 1491 if (!init || !init->initializesStdInitializerList() || 1492 init->getNumInits() == 0) 1493 return 0; 1494 1495 ASTContext &ctx = getContext(); 1496 unsigned numInits = init->getNumInits(); 1497 // FIXME: This check is here because we would otherwise silently miscompile 1498 // nested global std::initializer_lists. Better would be to have a real 1499 // implementation. 1500 for (unsigned i = 0; i < numInits; ++i) { 1501 const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i)); 1502 if (inner && inner->initializesStdInitializerList()) { 1503 ErrorUnsupported(inner, "nested global std::initializer_list"); 1504 return 0; 1505 } 1506 } 1507 1508 // Synthesize a fake VarDecl for the array and initialize that. 1509 QualType elementType = init->getInit(0)->getType(); 1510 llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits); 1511 QualType arrayType = ctx.getConstantArrayType(elementType, numElements, 1512 ArrayType::Normal, 0); 1513 1514 IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist"); 1515 TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo( 1516 arrayType, D->getLocation()); 1517 VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>( 1518 D->getDeclContext()), 1519 D->getLocStart(), D->getLocation(), 1520 name, arrayType, sourceInfo, 1521 SC_Static, SC_Static); 1522 1523 // Now clone the InitListExpr to initialize the array instead. 1524 // Incredible hack: we want to use the existing InitListExpr here, so we need 1525 // to tell it that it no longer initializes a std::initializer_list. 1526 ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(), 1527 init->getNumInits()); 1528 Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits, 1529 init->getRBraceLoc()); 1530 arrayInit->setType(arrayType); 1531 1532 if (!cleanups.empty()) 1533 arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups); 1534 1535 backingArray->setInit(arrayInit); 1536 1537 // Emit the definition of the array. 1538 EmitGlobalVarDefinition(backingArray); 1539 1540 // Inspect the initializer list to validate it and determine its type. 1541 // FIXME: doing this every time is probably inefficient; caching would be nice 1542 RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl(); 1543 RecordDecl::field_iterator field = record->field_begin(); 1544 if (field == record->field_end()) { 1545 ErrorUnsupported(D, "weird std::initializer_list"); 1546 return 0; 1547 } 1548 QualType elementPtr = ctx.getPointerType(elementType.withConst()); 1549 // Start pointer. 1550 if (!ctx.hasSameType(field->getType(), elementPtr)) { 1551 ErrorUnsupported(D, "weird std::initializer_list"); 1552 return 0; 1553 } 1554 ++field; 1555 if (field == record->field_end()) { 1556 ErrorUnsupported(D, "weird std::initializer_list"); 1557 return 0; 1558 } 1559 bool isStartEnd = false; 1560 if (ctx.hasSameType(field->getType(), elementPtr)) { 1561 // End pointer. 1562 isStartEnd = true; 1563 } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) { 1564 ErrorUnsupported(D, "weird std::initializer_list"); 1565 return 0; 1566 } 1567 1568 // Now build an APValue representing the std::initializer_list. 1569 APValue initListValue(APValue::UninitStruct(), 0, 2); 1570 APValue &startField = initListValue.getStructField(0); 1571 APValue::LValuePathEntry startOffsetPathEntry; 1572 startOffsetPathEntry.ArrayIndex = 0; 1573 startField = APValue(APValue::LValueBase(backingArray), 1574 CharUnits::fromQuantity(0), 1575 llvm::makeArrayRef(startOffsetPathEntry), 1576 /*IsOnePastTheEnd=*/false, 0); 1577 1578 if (isStartEnd) { 1579 APValue &endField = initListValue.getStructField(1); 1580 APValue::LValuePathEntry endOffsetPathEntry; 1581 endOffsetPathEntry.ArrayIndex = numInits; 1582 endField = APValue(APValue::LValueBase(backingArray), 1583 ctx.getTypeSizeInChars(elementType) * numInits, 1584 llvm::makeArrayRef(endOffsetPathEntry), 1585 /*IsOnePastTheEnd=*/true, 0); 1586 } else { 1587 APValue &sizeField = initListValue.getStructField(1); 1588 sizeField = APValue(llvm::APSInt(numElements)); 1589 } 1590 1591 // Emit the constant for the initializer_list. 1592 llvm::Constant *llvmInit = 1593 EmitConstantValueForMemory(initListValue, D->getType()); 1594 assert(llvmInit && "failed to initialize as constant"); 1595 return llvmInit; 1596 } 1597 1598 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1599 unsigned AddrSpace) { 1600 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1601 if (D->hasAttr<CUDAConstantAttr>()) 1602 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1603 else if (D->hasAttr<CUDASharedAttr>()) 1604 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1605 else 1606 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1607 } 1608 1609 return AddrSpace; 1610 } 1611 1612 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1613 llvm::Constant *Init = 0; 1614 QualType ASTTy = D->getType(); 1615 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1616 bool NeedsGlobalCtor = false; 1617 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1618 1619 const VarDecl *InitDecl; 1620 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1621 1622 if (!InitExpr) { 1623 // This is a tentative definition; tentative definitions are 1624 // implicitly initialized with { 0 }. 1625 // 1626 // Note that tentative definitions are only emitted at the end of 1627 // a translation unit, so they should never have incomplete 1628 // type. In addition, EmitTentativeDefinition makes sure that we 1629 // never attempt to emit a tentative definition if a real one 1630 // exists. A use may still exists, however, so we still may need 1631 // to do a RAUW. 1632 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1633 Init = EmitNullConstant(D->getType()); 1634 } else { 1635 // If this is a std::initializer_list, emit the special initializer. 1636 Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr); 1637 // An empty init list will perform zero-initialization, which happens 1638 // to be exactly what we want. 1639 // FIXME: It does so in a global constructor, which is *not* what we 1640 // want. 1641 1642 if (!Init) { 1643 initializedGlobalDecl = GlobalDecl(D); 1644 Init = EmitConstantInit(*InitDecl); 1645 } 1646 if (!Init) { 1647 QualType T = InitExpr->getType(); 1648 if (D->getType()->isReferenceType()) 1649 T = D->getType(); 1650 1651 if (getLangOpts().CPlusPlus) { 1652 Init = EmitNullConstant(T); 1653 NeedsGlobalCtor = true; 1654 } else { 1655 ErrorUnsupported(D, "static initializer"); 1656 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1657 } 1658 } else { 1659 // We don't need an initializer, so remove the entry for the delayed 1660 // initializer position (just in case this entry was delayed) if we 1661 // also don't need to register a destructor. 1662 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1663 DelayedCXXInitPosition.erase(D); 1664 } 1665 } 1666 1667 llvm::Type* InitType = Init->getType(); 1668 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1669 1670 // Strip off a bitcast if we got one back. 1671 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1672 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1673 // all zero index gep. 1674 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1675 Entry = CE->getOperand(0); 1676 } 1677 1678 // Entry is now either a Function or GlobalVariable. 1679 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1680 1681 // We have a definition after a declaration with the wrong type. 1682 // We must make a new GlobalVariable* and update everything that used OldGV 1683 // (a declaration or tentative definition) with the new GlobalVariable* 1684 // (which will be a definition). 1685 // 1686 // This happens if there is a prototype for a global (e.g. 1687 // "extern int x[];") and then a definition of a different type (e.g. 1688 // "int x[10];"). This also happens when an initializer has a different type 1689 // from the type of the global (this happens with unions). 1690 if (GV == 0 || 1691 GV->getType()->getElementType() != InitType || 1692 GV->getType()->getAddressSpace() != 1693 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1694 1695 // Move the old entry aside so that we'll create a new one. 1696 Entry->setName(StringRef()); 1697 1698 // Make a new global with the correct type, this is now guaranteed to work. 1699 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1700 1701 // Replace all uses of the old global with the new global 1702 llvm::Constant *NewPtrForOldDecl = 1703 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1704 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1705 1706 // Erase the old global, since it is no longer used. 1707 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1708 } 1709 1710 if (D->hasAttr<AnnotateAttr>()) 1711 AddGlobalAnnotations(D, GV); 1712 1713 GV->setInitializer(Init); 1714 1715 // If it is safe to mark the global 'constant', do so now. 1716 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1717 isTypeConstant(D->getType(), true)); 1718 1719 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1720 1721 // Set the llvm linkage type as appropriate. 1722 llvm::GlobalValue::LinkageTypes Linkage = 1723 GetLLVMLinkageVarDefinition(D, GV); 1724 GV->setLinkage(Linkage); 1725 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1726 // common vars aren't constant even if declared const. 1727 GV->setConstant(false); 1728 1729 SetCommonAttributes(D, GV); 1730 1731 // Emit the initializer function if necessary. 1732 if (NeedsGlobalCtor || NeedsGlobalDtor) 1733 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1734 1735 // If we are compiling with ASan, add metadata indicating dynamically 1736 // initialized globals. 1737 if (LangOpts.AddressSanitizer && NeedsGlobalCtor) { 1738 llvm::Module &M = getModule(); 1739 1740 llvm::NamedMDNode *DynamicInitializers = 1741 M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals"); 1742 llvm::Value *GlobalToAdd[] = { GV }; 1743 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd); 1744 DynamicInitializers->addOperand(ThisGlobal); 1745 } 1746 1747 // Emit global variable debug information. 1748 if (CGDebugInfo *DI = getModuleDebugInfo()) 1749 if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo) 1750 DI->EmitGlobalVariable(GV, D); 1751 } 1752 1753 llvm::GlobalValue::LinkageTypes 1754 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D, 1755 llvm::GlobalVariable *GV) { 1756 GVALinkage Linkage = getContext().GetGVALinkageForVariable(D); 1757 if (Linkage == GVA_Internal) 1758 return llvm::Function::InternalLinkage; 1759 else if (D->hasAttr<DLLImportAttr>()) 1760 return llvm::Function::DLLImportLinkage; 1761 else if (D->hasAttr<DLLExportAttr>()) 1762 return llvm::Function::DLLExportLinkage; 1763 else if (D->hasAttr<WeakAttr>()) { 1764 if (GV->isConstant()) 1765 return llvm::GlobalVariable::WeakODRLinkage; 1766 else 1767 return llvm::GlobalVariable::WeakAnyLinkage; 1768 } else if (Linkage == GVA_TemplateInstantiation || 1769 Linkage == GVA_ExplicitTemplateInstantiation) 1770 return llvm::GlobalVariable::WeakODRLinkage; 1771 else if (!getLangOpts().CPlusPlus && 1772 ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) || 1773 D->getAttr<CommonAttr>()) && 1774 !D->hasExternalStorage() && !D->getInit() && 1775 !D->getAttr<SectionAttr>() && !D->isThreadSpecified() && 1776 !D->getAttr<WeakImportAttr>()) { 1777 // Thread local vars aren't considered common linkage. 1778 return llvm::GlobalVariable::CommonLinkage; 1779 } 1780 return llvm::GlobalVariable::ExternalLinkage; 1781 } 1782 1783 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1784 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1785 /// existing call uses of the old function in the module, this adjusts them to 1786 /// call the new function directly. 1787 /// 1788 /// This is not just a cleanup: the always_inline pass requires direct calls to 1789 /// functions to be able to inline them. If there is a bitcast in the way, it 1790 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1791 /// run at -O0. 1792 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1793 llvm::Function *NewFn) { 1794 // If we're redefining a global as a function, don't transform it. 1795 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1796 if (OldFn == 0) return; 1797 1798 llvm::Type *NewRetTy = NewFn->getReturnType(); 1799 SmallVector<llvm::Value*, 4> ArgList; 1800 1801 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1802 UI != E; ) { 1803 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1804 llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. 1805 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); 1806 if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I) 1807 llvm::CallSite CS(CI); 1808 if (!CI || !CS.isCallee(I)) continue; 1809 1810 // If the return types don't match exactly, and if the call isn't dead, then 1811 // we can't transform this call. 1812 if (CI->getType() != NewRetTy && !CI->use_empty()) 1813 continue; 1814 1815 // Get the attribute list. 1816 llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec; 1817 llvm::AttrListPtr AttrList = CI->getAttributes(); 1818 1819 // Get any return attributes. 1820 llvm::Attributes RAttrs = AttrList.getRetAttributes(); 1821 1822 // Add the return attributes. 1823 if (RAttrs) 1824 AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs)); 1825 1826 // If the function was passed too few arguments, don't transform. If extra 1827 // arguments were passed, we silently drop them. If any of the types 1828 // mismatch, we don't transform. 1829 unsigned ArgNo = 0; 1830 bool DontTransform = false; 1831 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1832 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1833 if (CS.arg_size() == ArgNo || 1834 CS.getArgument(ArgNo)->getType() != AI->getType()) { 1835 DontTransform = true; 1836 break; 1837 } 1838 1839 // Add any parameter attributes. 1840 if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1)) 1841 AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs)); 1842 } 1843 if (DontTransform) 1844 continue; 1845 1846 if (llvm::Attributes FnAttrs = AttrList.getFnAttributes()) 1847 AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs)); 1848 1849 // Okay, we can transform this. Create the new call instruction and copy 1850 // over the required information. 1851 ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); 1852 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI); 1853 ArgList.clear(); 1854 if (!NewCall->getType()->isVoidTy()) 1855 NewCall->takeName(CI); 1856 NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec)); 1857 NewCall->setCallingConv(CI->getCallingConv()); 1858 1859 // Finally, remove the old call, replacing any uses with the new one. 1860 if (!CI->use_empty()) 1861 CI->replaceAllUsesWith(NewCall); 1862 1863 // Copy debug location attached to CI. 1864 if (!CI->getDebugLoc().isUnknown()) 1865 NewCall->setDebugLoc(CI->getDebugLoc()); 1866 CI->eraseFromParent(); 1867 } 1868 } 1869 1870 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 1871 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 1872 // If we have a definition, this might be a deferred decl. If the 1873 // instantiation is explicit, make sure we emit it at the end. 1874 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 1875 GetAddrOfGlobalVar(VD); 1876 } 1877 1878 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1879 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1880 1881 // Compute the function info and LLVM type. 1882 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1883 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 1884 1885 // Get or create the prototype for the function. 1886 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1887 1888 // Strip off a bitcast if we got one back. 1889 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1890 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1891 Entry = CE->getOperand(0); 1892 } 1893 1894 1895 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1896 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1897 1898 // If the types mismatch then we have to rewrite the definition. 1899 assert(OldFn->isDeclaration() && 1900 "Shouldn't replace non-declaration"); 1901 1902 // F is the Function* for the one with the wrong type, we must make a new 1903 // Function* and update everything that used F (a declaration) with the new 1904 // Function* (which will be a definition). 1905 // 1906 // This happens if there is a prototype for a function 1907 // (e.g. "int f()") and then a definition of a different type 1908 // (e.g. "int f(int x)"). Move the old function aside so that it 1909 // doesn't interfere with GetAddrOfFunction. 1910 OldFn->setName(StringRef()); 1911 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1912 1913 // If this is an implementation of a function without a prototype, try to 1914 // replace any existing uses of the function (which may be calls) with uses 1915 // of the new function 1916 if (D->getType()->isFunctionNoProtoType()) { 1917 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1918 OldFn->removeDeadConstantUsers(); 1919 } 1920 1921 // Replace uses of F with the Function we will endow with a body. 1922 if (!Entry->use_empty()) { 1923 llvm::Constant *NewPtrForOldDecl = 1924 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1925 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1926 } 1927 1928 // Ok, delete the old function now, which is dead. 1929 OldFn->eraseFromParent(); 1930 1931 Entry = NewFn; 1932 } 1933 1934 // We need to set linkage and visibility on the function before 1935 // generating code for it because various parts of IR generation 1936 // want to propagate this information down (e.g. to local static 1937 // declarations). 1938 llvm::Function *Fn = cast<llvm::Function>(Entry); 1939 setFunctionLinkage(D, Fn); 1940 1941 // FIXME: this is redundant with part of SetFunctionDefinitionAttributes 1942 setGlobalVisibility(Fn, D); 1943 1944 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 1945 1946 SetFunctionDefinitionAttributes(D, Fn); 1947 SetLLVMFunctionAttributesForDefinition(D, Fn); 1948 1949 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1950 AddGlobalCtor(Fn, CA->getPriority()); 1951 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1952 AddGlobalDtor(Fn, DA->getPriority()); 1953 if (D->hasAttr<AnnotateAttr>()) 1954 AddGlobalAnnotations(D, Fn); 1955 } 1956 1957 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 1958 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 1959 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1960 assert(AA && "Not an alias?"); 1961 1962 StringRef MangledName = getMangledName(GD); 1963 1964 // If there is a definition in the module, then it wins over the alias. 1965 // This is dubious, but allow it to be safe. Just ignore the alias. 1966 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1967 if (Entry && !Entry->isDeclaration()) 1968 return; 1969 1970 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1971 1972 // Create a reference to the named value. This ensures that it is emitted 1973 // if a deferred decl. 1974 llvm::Constant *Aliasee; 1975 if (isa<llvm::FunctionType>(DeclTy)) 1976 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 1977 /*ForVTable=*/false); 1978 else 1979 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1980 llvm::PointerType::getUnqual(DeclTy), 0); 1981 1982 // Create the new alias itself, but don't set a name yet. 1983 llvm::GlobalValue *GA = 1984 new llvm::GlobalAlias(Aliasee->getType(), 1985 llvm::Function::ExternalLinkage, 1986 "", Aliasee, &getModule()); 1987 1988 if (Entry) { 1989 assert(Entry->isDeclaration()); 1990 1991 // If there is a declaration in the module, then we had an extern followed 1992 // by the alias, as in: 1993 // extern int test6(); 1994 // ... 1995 // int test6() __attribute__((alias("test7"))); 1996 // 1997 // Remove it and replace uses of it with the alias. 1998 GA->takeName(Entry); 1999 2000 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2001 Entry->getType())); 2002 Entry->eraseFromParent(); 2003 } else { 2004 GA->setName(MangledName); 2005 } 2006 2007 // Set attributes which are particular to an alias; this is a 2008 // specialization of the attributes which may be set on a global 2009 // variable/function. 2010 if (D->hasAttr<DLLExportAttr>()) { 2011 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2012 // The dllexport attribute is ignored for undefined symbols. 2013 if (FD->hasBody()) 2014 GA->setLinkage(llvm::Function::DLLExportLinkage); 2015 } else { 2016 GA->setLinkage(llvm::Function::DLLExportLinkage); 2017 } 2018 } else if (D->hasAttr<WeakAttr>() || 2019 D->hasAttr<WeakRefAttr>() || 2020 D->isWeakImported()) { 2021 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2022 } 2023 2024 SetCommonAttributes(D, GA); 2025 } 2026 2027 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2028 ArrayRef<llvm::Type*> Tys) { 2029 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2030 Tys); 2031 } 2032 2033 static llvm::StringMapEntry<llvm::Constant*> & 2034 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2035 const StringLiteral *Literal, 2036 bool TargetIsLSB, 2037 bool &IsUTF16, 2038 unsigned &StringLength) { 2039 StringRef String = Literal->getString(); 2040 unsigned NumBytes = String.size(); 2041 2042 // Check for simple case. 2043 if (!Literal->containsNonAsciiOrNull()) { 2044 StringLength = NumBytes; 2045 return Map.GetOrCreateValue(String); 2046 } 2047 2048 // Otherwise, convert the UTF8 literals into a string of shorts. 2049 IsUTF16 = true; 2050 2051 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2052 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2053 UTF16 *ToPtr = &ToBuf[0]; 2054 2055 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2056 &ToPtr, ToPtr + NumBytes, 2057 strictConversion); 2058 2059 // ConvertUTF8toUTF16 returns the length in ToPtr. 2060 StringLength = ToPtr - &ToBuf[0]; 2061 2062 // Add an explicit null. 2063 *ToPtr = 0; 2064 return Map. 2065 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2066 (StringLength + 1) * 2)); 2067 } 2068 2069 static llvm::StringMapEntry<llvm::Constant*> & 2070 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2071 const StringLiteral *Literal, 2072 unsigned &StringLength) { 2073 StringRef String = Literal->getString(); 2074 StringLength = String.size(); 2075 return Map.GetOrCreateValue(String); 2076 } 2077 2078 llvm::Constant * 2079 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2080 unsigned StringLength = 0; 2081 bool isUTF16 = false; 2082 llvm::StringMapEntry<llvm::Constant*> &Entry = 2083 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2084 getDataLayout().isLittleEndian(), 2085 isUTF16, StringLength); 2086 2087 if (llvm::Constant *C = Entry.getValue()) 2088 return C; 2089 2090 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2091 llvm::Constant *Zeros[] = { Zero, Zero }; 2092 2093 // If we don't already have it, get __CFConstantStringClassReference. 2094 if (!CFConstantStringClassRef) { 2095 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2096 Ty = llvm::ArrayType::get(Ty, 0); 2097 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2098 "__CFConstantStringClassReference"); 2099 // Decay array -> ptr 2100 CFConstantStringClassRef = 2101 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2102 } 2103 2104 QualType CFTy = getContext().getCFConstantStringType(); 2105 2106 llvm::StructType *STy = 2107 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2108 2109 llvm::Constant *Fields[4]; 2110 2111 // Class pointer. 2112 Fields[0] = CFConstantStringClassRef; 2113 2114 // Flags. 2115 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2116 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2117 llvm::ConstantInt::get(Ty, 0x07C8); 2118 2119 // String pointer. 2120 llvm::Constant *C = 0; 2121 if (isUTF16) { 2122 ArrayRef<uint16_t> Arr = 2123 llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(), 2124 Entry.getKey().size() / 2); 2125 C = llvm::ConstantDataArray::get(VMContext, Arr); 2126 } else { 2127 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2128 } 2129 2130 llvm::GlobalValue::LinkageTypes Linkage; 2131 if (isUTF16) 2132 // FIXME: why do utf strings get "_" labels instead of "L" labels? 2133 Linkage = llvm::GlobalValue::InternalLinkage; 2134 else 2135 // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error 2136 // when using private linkage. It is not clear if this is a bug in ld 2137 // or a reasonable new restriction. 2138 Linkage = llvm::GlobalValue::LinkerPrivateLinkage; 2139 2140 // Note: -fwritable-strings doesn't make the backing store strings of 2141 // CFStrings writable. (See <rdar://problem/10657500>) 2142 llvm::GlobalVariable *GV = 2143 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2144 Linkage, C, ".str"); 2145 GV->setUnnamedAddr(true); 2146 if (isUTF16) { 2147 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2148 GV->setAlignment(Align.getQuantity()); 2149 } else { 2150 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2151 GV->setAlignment(Align.getQuantity()); 2152 } 2153 2154 // String. 2155 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2156 2157 if (isUTF16) 2158 // Cast the UTF16 string to the correct type. 2159 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2160 2161 // String length. 2162 Ty = getTypes().ConvertType(getContext().LongTy); 2163 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2164 2165 // The struct. 2166 C = llvm::ConstantStruct::get(STy, Fields); 2167 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2168 llvm::GlobalVariable::PrivateLinkage, C, 2169 "_unnamed_cfstring_"); 2170 if (const char *Sect = getContext().getTargetInfo().getCFStringSection()) 2171 GV->setSection(Sect); 2172 Entry.setValue(GV); 2173 2174 return GV; 2175 } 2176 2177 static RecordDecl * 2178 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK, 2179 DeclContext *DC, IdentifierInfo *Id) { 2180 SourceLocation Loc; 2181 if (Ctx.getLangOpts().CPlusPlus) 2182 return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2183 else 2184 return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id); 2185 } 2186 2187 llvm::Constant * 2188 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2189 unsigned StringLength = 0; 2190 llvm::StringMapEntry<llvm::Constant*> &Entry = 2191 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2192 2193 if (llvm::Constant *C = Entry.getValue()) 2194 return C; 2195 2196 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2197 llvm::Constant *Zeros[] = { Zero, Zero }; 2198 2199 // If we don't already have it, get _NSConstantStringClassReference. 2200 if (!ConstantStringClassRef) { 2201 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2202 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2203 llvm::Constant *GV; 2204 if (LangOpts.ObjCRuntime.isNonFragile()) { 2205 std::string str = 2206 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2207 : "OBJC_CLASS_$_" + StringClass; 2208 GV = getObjCRuntime().GetClassGlobal(str); 2209 // Make sure the result is of the correct type. 2210 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2211 ConstantStringClassRef = 2212 llvm::ConstantExpr::getBitCast(GV, PTy); 2213 } else { 2214 std::string str = 2215 StringClass.empty() ? "_NSConstantStringClassReference" 2216 : "_" + StringClass + "ClassReference"; 2217 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2218 GV = CreateRuntimeVariable(PTy, str); 2219 // Decay array -> ptr 2220 ConstantStringClassRef = 2221 llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2222 } 2223 } 2224 2225 if (!NSConstantStringType) { 2226 // Construct the type for a constant NSString. 2227 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2228 Context.getTranslationUnitDecl(), 2229 &Context.Idents.get("__builtin_NSString")); 2230 D->startDefinition(); 2231 2232 QualType FieldTypes[3]; 2233 2234 // const int *isa; 2235 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2236 // const char *str; 2237 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2238 // unsigned int length; 2239 FieldTypes[2] = Context.UnsignedIntTy; 2240 2241 // Create fields 2242 for (unsigned i = 0; i < 3; ++i) { 2243 FieldDecl *Field = FieldDecl::Create(Context, D, 2244 SourceLocation(), 2245 SourceLocation(), 0, 2246 FieldTypes[i], /*TInfo=*/0, 2247 /*BitWidth=*/0, 2248 /*Mutable=*/false, 2249 ICIS_NoInit); 2250 Field->setAccess(AS_public); 2251 D->addDecl(Field); 2252 } 2253 2254 D->completeDefinition(); 2255 QualType NSTy = Context.getTagDeclType(D); 2256 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2257 } 2258 2259 llvm::Constant *Fields[3]; 2260 2261 // Class pointer. 2262 Fields[0] = ConstantStringClassRef; 2263 2264 // String pointer. 2265 llvm::Constant *C = 2266 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2267 2268 llvm::GlobalValue::LinkageTypes Linkage; 2269 bool isConstant; 2270 Linkage = llvm::GlobalValue::PrivateLinkage; 2271 isConstant = !LangOpts.WritableStrings; 2272 2273 llvm::GlobalVariable *GV = 2274 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 2275 ".str"); 2276 GV->setUnnamedAddr(true); 2277 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2278 GV->setAlignment(Align.getQuantity()); 2279 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2280 2281 // String length. 2282 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2283 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2284 2285 // The struct. 2286 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2287 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2288 llvm::GlobalVariable::PrivateLinkage, C, 2289 "_unnamed_nsstring_"); 2290 // FIXME. Fix section. 2291 if (const char *Sect = 2292 LangOpts.ObjCRuntime.isNonFragile() 2293 ? getContext().getTargetInfo().getNSStringNonFragileABISection() 2294 : getContext().getTargetInfo().getNSStringSection()) 2295 GV->setSection(Sect); 2296 Entry.setValue(GV); 2297 2298 return GV; 2299 } 2300 2301 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2302 if (ObjCFastEnumerationStateType.isNull()) { 2303 RecordDecl *D = CreateRecordDecl(Context, TTK_Struct, 2304 Context.getTranslationUnitDecl(), 2305 &Context.Idents.get("__objcFastEnumerationState")); 2306 D->startDefinition(); 2307 2308 QualType FieldTypes[] = { 2309 Context.UnsignedLongTy, 2310 Context.getPointerType(Context.getObjCIdType()), 2311 Context.getPointerType(Context.UnsignedLongTy), 2312 Context.getConstantArrayType(Context.UnsignedLongTy, 2313 llvm::APInt(32, 5), ArrayType::Normal, 0) 2314 }; 2315 2316 for (size_t i = 0; i < 4; ++i) { 2317 FieldDecl *Field = FieldDecl::Create(Context, 2318 D, 2319 SourceLocation(), 2320 SourceLocation(), 0, 2321 FieldTypes[i], /*TInfo=*/0, 2322 /*BitWidth=*/0, 2323 /*Mutable=*/false, 2324 ICIS_NoInit); 2325 Field->setAccess(AS_public); 2326 D->addDecl(Field); 2327 } 2328 2329 D->completeDefinition(); 2330 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2331 } 2332 2333 return ObjCFastEnumerationStateType; 2334 } 2335 2336 llvm::Constant * 2337 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2338 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2339 2340 // Don't emit it as the address of the string, emit the string data itself 2341 // as an inline array. 2342 if (E->getCharByteWidth() == 1) { 2343 SmallString<64> Str(E->getString()); 2344 2345 // Resize the string to the right size, which is indicated by its type. 2346 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2347 Str.resize(CAT->getSize().getZExtValue()); 2348 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2349 } 2350 2351 llvm::ArrayType *AType = 2352 cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2353 llvm::Type *ElemTy = AType->getElementType(); 2354 unsigned NumElements = AType->getNumElements(); 2355 2356 // Wide strings have either 2-byte or 4-byte elements. 2357 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2358 SmallVector<uint16_t, 32> Elements; 2359 Elements.reserve(NumElements); 2360 2361 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2362 Elements.push_back(E->getCodeUnit(i)); 2363 Elements.resize(NumElements); 2364 return llvm::ConstantDataArray::get(VMContext, Elements); 2365 } 2366 2367 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2368 SmallVector<uint32_t, 32> Elements; 2369 Elements.reserve(NumElements); 2370 2371 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2372 Elements.push_back(E->getCodeUnit(i)); 2373 Elements.resize(NumElements); 2374 return llvm::ConstantDataArray::get(VMContext, Elements); 2375 } 2376 2377 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2378 /// constant array for the given string literal. 2379 llvm::Constant * 2380 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2381 CharUnits Align = getContext().getTypeAlignInChars(S->getType()); 2382 if (S->isAscii() || S->isUTF8()) { 2383 SmallString<64> Str(S->getString()); 2384 2385 // Resize the string to the right size, which is indicated by its type. 2386 const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType()); 2387 Str.resize(CAT->getSize().getZExtValue()); 2388 return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity()); 2389 } 2390 2391 // FIXME: the following does not memoize wide strings. 2392 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2393 llvm::GlobalVariable *GV = 2394 new llvm::GlobalVariable(getModule(),C->getType(), 2395 !LangOpts.WritableStrings, 2396 llvm::GlobalValue::PrivateLinkage, 2397 C,".str"); 2398 2399 GV->setAlignment(Align.getQuantity()); 2400 GV->setUnnamedAddr(true); 2401 return GV; 2402 } 2403 2404 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2405 /// array for the given ObjCEncodeExpr node. 2406 llvm::Constant * 2407 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2408 std::string Str; 2409 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2410 2411 return GetAddrOfConstantCString(Str); 2412 } 2413 2414 2415 /// GenerateWritableString -- Creates storage for a string literal. 2416 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str, 2417 bool constant, 2418 CodeGenModule &CGM, 2419 const char *GlobalName, 2420 unsigned Alignment) { 2421 // Create Constant for this string literal. Don't add a '\0'. 2422 llvm::Constant *C = 2423 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false); 2424 2425 // Create a global variable for this string 2426 llvm::GlobalVariable *GV = 2427 new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 2428 llvm::GlobalValue::PrivateLinkage, 2429 C, GlobalName); 2430 GV->setAlignment(Alignment); 2431 GV->setUnnamedAddr(true); 2432 return GV; 2433 } 2434 2435 /// GetAddrOfConstantString - Returns a pointer to a character array 2436 /// containing the literal. This contents are exactly that of the 2437 /// given string, i.e. it will not be null terminated automatically; 2438 /// see GetAddrOfConstantCString. Note that whether the result is 2439 /// actually a pointer to an LLVM constant depends on 2440 /// Feature.WriteableStrings. 2441 /// 2442 /// The result has pointer to array type. 2443 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str, 2444 const char *GlobalName, 2445 unsigned Alignment) { 2446 // Get the default prefix if a name wasn't specified. 2447 if (!GlobalName) 2448 GlobalName = ".str"; 2449 2450 // Don't share any string literals if strings aren't constant. 2451 if (LangOpts.WritableStrings) 2452 return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment); 2453 2454 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 2455 ConstantStringMap.GetOrCreateValue(Str); 2456 2457 if (llvm::GlobalVariable *GV = Entry.getValue()) { 2458 if (Alignment > GV->getAlignment()) { 2459 GV->setAlignment(Alignment); 2460 } 2461 return GV; 2462 } 2463 2464 // Create a global variable for this. 2465 llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, 2466 Alignment); 2467 Entry.setValue(GV); 2468 return GV; 2469 } 2470 2471 /// GetAddrOfConstantCString - Returns a pointer to a character 2472 /// array containing the literal and a terminating '\0' 2473 /// character. The result has pointer to array type. 2474 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str, 2475 const char *GlobalName, 2476 unsigned Alignment) { 2477 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2478 return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment); 2479 } 2480 2481 /// EmitObjCPropertyImplementations - Emit information for synthesized 2482 /// properties for an implementation. 2483 void CodeGenModule::EmitObjCPropertyImplementations(const 2484 ObjCImplementationDecl *D) { 2485 for (ObjCImplementationDecl::propimpl_iterator 2486 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 2487 ObjCPropertyImplDecl *PID = *i; 2488 2489 // Dynamic is just for type-checking. 2490 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2491 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2492 2493 // Determine which methods need to be implemented, some may have 2494 // been overridden. Note that ::isPropertyAccessor is not the method 2495 // we want, that just indicates if the decl came from a 2496 // property. What we want to know is if the method is defined in 2497 // this implementation. 2498 if (!D->getInstanceMethod(PD->getGetterName())) 2499 CodeGenFunction(*this).GenerateObjCGetter( 2500 const_cast<ObjCImplementationDecl *>(D), PID); 2501 if (!PD->isReadOnly() && 2502 !D->getInstanceMethod(PD->getSetterName())) 2503 CodeGenFunction(*this).GenerateObjCSetter( 2504 const_cast<ObjCImplementationDecl *>(D), PID); 2505 } 2506 } 2507 } 2508 2509 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2510 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2511 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2512 ivar; ivar = ivar->getNextIvar()) 2513 if (ivar->getType().isDestructedType()) 2514 return true; 2515 2516 return false; 2517 } 2518 2519 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2520 /// for an implementation. 2521 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2522 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2523 if (needsDestructMethod(D)) { 2524 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2525 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2526 ObjCMethodDecl *DTORMethod = 2527 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2528 cxxSelector, getContext().VoidTy, 0, D, 2529 /*isInstance=*/true, /*isVariadic=*/false, 2530 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2531 /*isDefined=*/false, ObjCMethodDecl::Required); 2532 D->addInstanceMethod(DTORMethod); 2533 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2534 D->setHasCXXStructors(true); 2535 } 2536 2537 // If the implementation doesn't have any ivar initializers, we don't need 2538 // a .cxx_construct. 2539 if (D->getNumIvarInitializers() == 0) 2540 return; 2541 2542 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2543 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2544 // The constructor returns 'self'. 2545 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2546 D->getLocation(), 2547 D->getLocation(), 2548 cxxSelector, 2549 getContext().getObjCIdType(), 0, 2550 D, /*isInstance=*/true, 2551 /*isVariadic=*/false, 2552 /*isPropertyAccessor=*/true, 2553 /*isImplicitlyDeclared=*/true, 2554 /*isDefined=*/false, 2555 ObjCMethodDecl::Required); 2556 D->addInstanceMethod(CTORMethod); 2557 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 2558 D->setHasCXXStructors(true); 2559 } 2560 2561 /// EmitNamespace - Emit all declarations in a namespace. 2562 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 2563 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 2564 I != E; ++I) 2565 EmitTopLevelDecl(*I); 2566 } 2567 2568 // EmitLinkageSpec - Emit all declarations in a linkage spec. 2569 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 2570 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 2571 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 2572 ErrorUnsupported(LSD, "linkage spec"); 2573 return; 2574 } 2575 2576 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 2577 I != E; ++I) 2578 EmitTopLevelDecl(*I); 2579 } 2580 2581 /// EmitTopLevelDecl - Emit code for a single top level declaration. 2582 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 2583 // If an error has occurred, stop code generation, but continue 2584 // parsing and semantic analysis (to ensure all warnings and errors 2585 // are emitted). 2586 if (Diags.hasErrorOccurred()) 2587 return; 2588 2589 // Ignore dependent declarations. 2590 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 2591 return; 2592 2593 switch (D->getKind()) { 2594 case Decl::CXXConversion: 2595 case Decl::CXXMethod: 2596 case Decl::Function: 2597 // Skip function templates 2598 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2599 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2600 return; 2601 2602 EmitGlobal(cast<FunctionDecl>(D)); 2603 break; 2604 2605 case Decl::Var: 2606 EmitGlobal(cast<VarDecl>(D)); 2607 break; 2608 2609 // Indirect fields from global anonymous structs and unions can be 2610 // ignored; only the actual variable requires IR gen support. 2611 case Decl::IndirectField: 2612 break; 2613 2614 // C++ Decls 2615 case Decl::Namespace: 2616 EmitNamespace(cast<NamespaceDecl>(D)); 2617 break; 2618 // No code generation needed. 2619 case Decl::UsingShadow: 2620 case Decl::Using: 2621 case Decl::UsingDirective: 2622 case Decl::ClassTemplate: 2623 case Decl::FunctionTemplate: 2624 case Decl::TypeAliasTemplate: 2625 case Decl::NamespaceAlias: 2626 case Decl::Block: 2627 case Decl::Import: 2628 break; 2629 case Decl::CXXConstructor: 2630 // Skip function templates 2631 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 2632 cast<FunctionDecl>(D)->isLateTemplateParsed()) 2633 return; 2634 2635 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 2636 break; 2637 case Decl::CXXDestructor: 2638 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 2639 return; 2640 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 2641 break; 2642 2643 case Decl::StaticAssert: 2644 // Nothing to do. 2645 break; 2646 2647 // Objective-C Decls 2648 2649 // Forward declarations, no (immediate) code generation. 2650 case Decl::ObjCInterface: 2651 case Decl::ObjCCategory: 2652 break; 2653 2654 case Decl::ObjCProtocol: { 2655 ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D); 2656 if (Proto->isThisDeclarationADefinition()) 2657 ObjCRuntime->GenerateProtocol(Proto); 2658 break; 2659 } 2660 2661 case Decl::ObjCCategoryImpl: 2662 // Categories have properties but don't support synthesize so we 2663 // can ignore them here. 2664 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 2665 break; 2666 2667 case Decl::ObjCImplementation: { 2668 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 2669 EmitObjCPropertyImplementations(OMD); 2670 EmitObjCIvarInitializations(OMD); 2671 ObjCRuntime->GenerateClass(OMD); 2672 // Emit global variable debug information. 2673 if (CGDebugInfo *DI = getModuleDebugInfo()) 2674 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()), 2675 OMD->getLocation()); 2676 2677 break; 2678 } 2679 case Decl::ObjCMethod: { 2680 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 2681 // If this is not a prototype, emit the body. 2682 if (OMD->getBody()) 2683 CodeGenFunction(*this).GenerateObjCMethod(OMD); 2684 break; 2685 } 2686 case Decl::ObjCCompatibleAlias: 2687 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 2688 break; 2689 2690 case Decl::LinkageSpec: 2691 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 2692 break; 2693 2694 case Decl::FileScopeAsm: { 2695 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 2696 StringRef AsmString = AD->getAsmString()->getString(); 2697 2698 const std::string &S = getModule().getModuleInlineAsm(); 2699 if (S.empty()) 2700 getModule().setModuleInlineAsm(AsmString); 2701 else if (S.end()[-1] == '\n') 2702 getModule().setModuleInlineAsm(S + AsmString.str()); 2703 else 2704 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 2705 break; 2706 } 2707 2708 default: 2709 // Make sure we handled everything we should, every other kind is a 2710 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 2711 // function. Need to recode Decl::Kind to do that easily. 2712 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 2713 } 2714 } 2715 2716 /// Turns the given pointer into a constant. 2717 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 2718 const void *Ptr) { 2719 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 2720 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 2721 return llvm::ConstantInt::get(i64, PtrInt); 2722 } 2723 2724 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 2725 llvm::NamedMDNode *&GlobalMetadata, 2726 GlobalDecl D, 2727 llvm::GlobalValue *Addr) { 2728 if (!GlobalMetadata) 2729 GlobalMetadata = 2730 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 2731 2732 // TODO: should we report variant information for ctors/dtors? 2733 llvm::Value *Ops[] = { 2734 Addr, 2735 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 2736 }; 2737 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 2738 } 2739 2740 /// Emits metadata nodes associating all the global values in the 2741 /// current module with the Decls they came from. This is useful for 2742 /// projects using IR gen as a subroutine. 2743 /// 2744 /// Since there's currently no way to associate an MDNode directly 2745 /// with an llvm::GlobalValue, we create a global named metadata 2746 /// with the name 'clang.global.decl.ptrs'. 2747 void CodeGenModule::EmitDeclMetadata() { 2748 llvm::NamedMDNode *GlobalMetadata = 0; 2749 2750 // StaticLocalDeclMap 2751 for (llvm::DenseMap<GlobalDecl,StringRef>::iterator 2752 I = MangledDeclNames.begin(), E = MangledDeclNames.end(); 2753 I != E; ++I) { 2754 llvm::GlobalValue *Addr = getModule().getNamedValue(I->second); 2755 EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr); 2756 } 2757 } 2758 2759 /// Emits metadata nodes for all the local variables in the current 2760 /// function. 2761 void CodeGenFunction::EmitDeclMetadata() { 2762 if (LocalDeclMap.empty()) return; 2763 2764 llvm::LLVMContext &Context = getLLVMContext(); 2765 2766 // Find the unique metadata ID for this name. 2767 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 2768 2769 llvm::NamedMDNode *GlobalMetadata = 0; 2770 2771 for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator 2772 I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) { 2773 const Decl *D = I->first; 2774 llvm::Value *Addr = I->second; 2775 2776 if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 2777 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 2778 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 2779 } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 2780 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 2781 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 2782 } 2783 } 2784 } 2785 2786 void CodeGenModule::EmitCoverageFile() { 2787 if (!getCodeGenOpts().CoverageFile.empty()) { 2788 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 2789 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 2790 llvm::LLVMContext &Ctx = TheModule.getContext(); 2791 llvm::MDString *CoverageFile = 2792 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 2793 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 2794 llvm::MDNode *CU = CUNode->getOperand(i); 2795 llvm::Value *node[] = { CoverageFile, CU }; 2796 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 2797 GCov->addOperand(N); 2798 } 2799 } 2800 } 2801 } 2802 2803 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 2804 QualType GuidType) { 2805 // Sema has checked that all uuid strings are of the form 2806 // "12345678-1234-1234-1234-1234567890ab". 2807 assert(Uuid.size() == 36); 2808 const char *Uuidstr = Uuid.data(); 2809 for (int i = 0; i < 36; ++i) { 2810 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-'); 2811 else assert(isxdigit(Uuidstr[i])); 2812 } 2813 2814 llvm::APInt Field0(32, StringRef(Uuidstr , 8), 16); 2815 llvm::APInt Field1(16, StringRef(Uuidstr + 9, 4), 16); 2816 llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16); 2817 llvm::APInt Field3Values[] = { 2818 llvm::APInt(8, StringRef(Uuidstr + 19, 2), 16), 2819 llvm::APInt(8, StringRef(Uuidstr + 21, 2), 16), 2820 llvm::APInt(8, StringRef(Uuidstr + 24, 2), 16), 2821 llvm::APInt(8, StringRef(Uuidstr + 26, 2), 16), 2822 llvm::APInt(8, StringRef(Uuidstr + 28, 2), 16), 2823 llvm::APInt(8, StringRef(Uuidstr + 30, 2), 16), 2824 llvm::APInt(8, StringRef(Uuidstr + 32, 2), 16), 2825 llvm::APInt(8, StringRef(Uuidstr + 34, 2), 16), 2826 }; 2827 2828 APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4); 2829 InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0)); 2830 InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1)); 2831 InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2)); 2832 APValue& Arr = InitStruct.getStructField(3); 2833 Arr = APValue(APValue::UninitArray(), 8, 8); 2834 for (int t = 0; t < 8; ++t) 2835 Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(Field3Values[t])); 2836 2837 return EmitConstantValue(InitStruct, GuidType); 2838 } 2839