xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cf4ff586e8c2e26041befa0941a6552ad902df2f)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CodeGenTBAA.h"
18 #include "CGCall.h"
19 #include "CGCUDARuntime.h"
20 #include "CGCXXABI.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/CharUnits.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclCXX.h"
29 #include "clang/AST/DeclTemplate.h"
30 #include "clang/AST/Mangle.h"
31 #include "clang/AST/RecordLayout.h"
32 #include "clang/AST/RecursiveASTVisitor.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/TargetInfo.h"
37 #include "clang/Basic/ConvertUTF.h"
38 #include "llvm/CallingConv.h"
39 #include "llvm/Module.h"
40 #include "llvm/Intrinsics.h"
41 #include "llvm/LLVMContext.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/Triple.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/DataLayout.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 using namespace clang;
49 using namespace CodeGen;
50 
51 static const char AnnotationSection[] = "llvm.metadata";
52 
53 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58   }
59 
60   llvm_unreachable("invalid C++ ABI kind");
61 }
62 
63 
64 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                              llvm::Module &M, const llvm::DataLayout &TD,
66                              DiagnosticsEngine &diags)
67   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69     ABI(createCXXABI(*this)),
70     Types(*this),
71     TBAA(0),
72     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74     RRData(0), CFConstantStringClassRef(0),
75     ConstantStringClassRef(0), NSConstantStringType(0),
76     VMContext(M.getContext()),
77     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78     BlockObjectAssign(0), BlockObjectDispose(0),
79     BlockDescriptorType(0), GenericBlockLiteralType(0) {
80 
81   // Initialize the type cache.
82   llvm::LLVMContext &LLVMContext = M.getContext();
83   VoidTy = llvm::Type::getVoidTy(LLVMContext);
84   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88   FloatTy = llvm::Type::getFloatTy(LLVMContext);
89   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91   PointerAlignInBytes =
92   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95   Int8PtrTy = Int8Ty->getPointerTo(0);
96   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97 
98   if (LangOpts.ObjC1)
99     createObjCRuntime();
100   if (LangOpts.OpenCL)
101     createOpenCLRuntime();
102   if (LangOpts.CUDA)
103     createCUDARuntime();
104 
105   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106   if (LangOpts.ThreadSanitizer ||
107       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                            ABI.getMangleContext());
110 
111   // If debug info or coverage generation is enabled, create the CGDebugInfo
112   // object.
113   if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114       CodeGenOpts.EmitGcovArcs ||
115       CodeGenOpts.EmitGcovNotes)
116     DebugInfo = new CGDebugInfo(*this);
117 
118   Block.GlobalUniqueCount = 0;
119 
120   if (C.getLangOpts().ObjCAutoRefCount)
121     ARCData = new ARCEntrypoints();
122   RRData = new RREntrypoints();
123 }
124 
125 CodeGenModule::~CodeGenModule() {
126   delete ObjCRuntime;
127   delete OpenCLRuntime;
128   delete CUDARuntime;
129   delete TheTargetCodeGenInfo;
130   delete &ABI;
131   delete TBAA;
132   delete DebugInfo;
133   delete ARCData;
134   delete RRData;
135 }
136 
137 void CodeGenModule::createObjCRuntime() {
138   // This is just isGNUFamily(), but we want to force implementors of
139   // new ABIs to decide how best to do this.
140   switch (LangOpts.ObjCRuntime.getKind()) {
141   case ObjCRuntime::GNUstep:
142   case ObjCRuntime::GCC:
143   case ObjCRuntime::ObjFW:
144     ObjCRuntime = CreateGNUObjCRuntime(*this);
145     return;
146 
147   case ObjCRuntime::FragileMacOSX:
148   case ObjCRuntime::MacOSX:
149   case ObjCRuntime::iOS:
150     ObjCRuntime = CreateMacObjCRuntime(*this);
151     return;
152   }
153   llvm_unreachable("bad runtime kind");
154 }
155 
156 void CodeGenModule::createOpenCLRuntime() {
157   OpenCLRuntime = new CGOpenCLRuntime(*this);
158 }
159 
160 void CodeGenModule::createCUDARuntime() {
161   CUDARuntime = CreateNVCUDARuntime(*this);
162 }
163 
164 void CodeGenModule::Release() {
165   EmitDeferred();
166   EmitCXXGlobalInitFunc();
167   EmitCXXGlobalDtorFunc();
168   if (ObjCRuntime)
169     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170       AddGlobalCtor(ObjCInitFunction);
171   EmitCtorList(GlobalCtors, "llvm.global_ctors");
172   EmitCtorList(GlobalDtors, "llvm.global_dtors");
173   EmitGlobalAnnotations();
174   EmitLLVMUsed();
175 
176   SimplifyPersonality();
177 
178   if (getCodeGenOpts().EmitDeclMetadata)
179     EmitDeclMetadata();
180 
181   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182     EmitCoverageFile();
183 
184   if (DebugInfo)
185     DebugInfo->finalize();
186 }
187 
188 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189   // Make sure that this type is translated.
190   Types.UpdateCompletedType(TD);
191 }
192 
193 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194   if (!TBAA)
195     return 0;
196   return TBAA->getTBAAInfo(QTy);
197 }
198 
199 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200   if (!TBAA)
201     return 0;
202   return TBAA->getTBAAInfoForVTablePtr();
203 }
204 
205 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206   if (!TBAA)
207     return 0;
208   return TBAA->getTBAAStructInfo(QTy);
209 }
210 
211 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                         llvm::MDNode *TBAAInfo) {
213   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214 }
215 
216 bool CodeGenModule::isTargetDarwin() const {
217   return getContext().getTargetInfo().getTriple().isOSDarwin();
218 }
219 
220 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222   getDiags().Report(Context.getFullLoc(loc), diagID);
223 }
224 
225 /// ErrorUnsupported - Print out an error that codegen doesn't support the
226 /// specified stmt yet.
227 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                      bool OmitOnError) {
229   if (OmitOnError && getDiags().hasErrorOccurred())
230     return;
231   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                                "cannot compile this %0 yet");
233   std::string Msg = Type;
234   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235     << Msg << S->getSourceRange();
236 }
237 
238 /// ErrorUnsupported - Print out an error that codegen doesn't support the
239 /// specified decl yet.
240 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                      bool OmitOnError) {
242   if (OmitOnError && getDiags().hasErrorOccurred())
243     return;
244   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                                "cannot compile this %0 yet");
246   std::string Msg = Type;
247   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248 }
249 
250 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252 }
253 
254 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                         const NamedDecl *D) const {
256   // Internal definitions always have default visibility.
257   if (GV->hasLocalLinkage()) {
258     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259     return;
260   }
261 
262   // Set visibility for definitions.
263   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266 }
267 
268 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277     CodeGenOptions::TLSModel M) {
278   switch (M) {
279   case CodeGenOptions::GeneralDynamicTLSModel:
280     return llvm::GlobalVariable::GeneralDynamicTLSModel;
281   case CodeGenOptions::LocalDynamicTLSModel:
282     return llvm::GlobalVariable::LocalDynamicTLSModel;
283   case CodeGenOptions::InitialExecTLSModel:
284     return llvm::GlobalVariable::InitialExecTLSModel;
285   case CodeGenOptions::LocalExecTLSModel:
286     return llvm::GlobalVariable::LocalExecTLSModel;
287   }
288   llvm_unreachable("Invalid TLS model!");
289 }
290 
291 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                                const VarDecl &D) const {
293   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294 
295   llvm::GlobalVariable::ThreadLocalMode TLM;
296   TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297 
298   // Override the TLS model if it is explicitly specified.
299   if (D.hasAttr<TLSModelAttr>()) {
300     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301     TLM = GetLLVMTLSModel(Attr->getModel());
302   }
303 
304   GV->setThreadLocalMode(TLM);
305 }
306 
307 /// Set the symbol visibility of type information (vtable and RTTI)
308 /// associated with the given type.
309 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                       const CXXRecordDecl *RD,
311                                       TypeVisibilityKind TVK) const {
312   setGlobalVisibility(GV, RD);
313 
314   if (!CodeGenOpts.HiddenWeakVTables)
315     return;
316 
317   // We never want to drop the visibility for RTTI names.
318   if (TVK == TVK_ForRTTIName)
319     return;
320 
321   // We want to drop the visibility to hidden for weak type symbols.
322   // This isn't possible if there might be unresolved references
323   // elsewhere that rely on this symbol being visible.
324 
325   // This should be kept roughly in sync with setThunkVisibility
326   // in CGVTables.cpp.
327 
328   // Preconditions.
329   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331     return;
332 
333   // Don't override an explicit visibility attribute.
334   if (RD->getExplicitVisibility())
335     return;
336 
337   switch (RD->getTemplateSpecializationKind()) {
338   // We have to disable the optimization if this is an EI definition
339   // because there might be EI declarations in other shared objects.
340   case TSK_ExplicitInstantiationDefinition:
341   case TSK_ExplicitInstantiationDeclaration:
342     return;
343 
344   // Every use of a non-template class's type information has to emit it.
345   case TSK_Undeclared:
346     break;
347 
348   // In theory, implicit instantiations can ignore the possibility of
349   // an explicit instantiation declaration because there necessarily
350   // must be an EI definition somewhere with default visibility.  In
351   // practice, it's possible to have an explicit instantiation for
352   // an arbitrary template class, and linkers aren't necessarily able
353   // to deal with mixed-visibility symbols.
354   case TSK_ExplicitSpecialization:
355   case TSK_ImplicitInstantiation:
356     if (!CodeGenOpts.HiddenWeakTemplateVTables)
357       return;
358     break;
359   }
360 
361   // If there's a key function, there may be translation units
362   // that don't have the key function's definition.  But ignore
363   // this if we're emitting RTTI under -fno-rtti.
364   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365     if (Context.getKeyFunction(RD))
366       return;
367   }
368 
369   // Otherwise, drop the visibility to hidden.
370   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371   GV->setUnnamedAddr(true);
372 }
373 
374 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376 
377   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378   if (!Str.empty())
379     return Str;
380 
381   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382     IdentifierInfo *II = ND->getIdentifier();
383     assert(II && "Attempt to mangle unnamed decl.");
384 
385     Str = II->getName();
386     return Str;
387   }
388 
389   SmallString<256> Buffer;
390   llvm::raw_svector_ostream Out(Buffer);
391   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396     getCXXABI().getMangleContext().mangleBlock(BD, Out,
397       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398   else
399     getCXXABI().getMangleContext().mangleName(ND, Out);
400 
401   // Allocate space for the mangled name.
402   Out.flush();
403   size_t Length = Buffer.size();
404   char *Name = MangledNamesAllocator.Allocate<char>(Length);
405   std::copy(Buffer.begin(), Buffer.end(), Name);
406 
407   Str = StringRef(Name, Length);
408 
409   return Str;
410 }
411 
412 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                         const BlockDecl *BD) {
414   MangleContext &MangleCtx = getCXXABI().getMangleContext();
415   const Decl *D = GD.getDecl();
416   llvm::raw_svector_ostream Out(Buffer.getBuffer());
417   if (D == 0)
418     MangleCtx.mangleGlobalBlock(BD,
419       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424   else
425     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426 }
427 
428 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429   return getModule().getNamedValue(Name);
430 }
431 
432 /// AddGlobalCtor - Add a function to the list that will be called before
433 /// main() runs.
434 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435   // FIXME: Type coercion of void()* types.
436   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437 }
438 
439 /// AddGlobalDtor - Add a function to the list that will be called
440 /// when the module is unloaded.
441 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442   // FIXME: Type coercion of void()* types.
443   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444 }
445 
446 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447   // Ctor function type is void()*.
448   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450 
451   // Get the type of a ctor entry, { i32, void ()* }.
452   llvm::StructType *CtorStructTy =
453     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454 
455   // Construct the constructor and destructor arrays.
456   SmallVector<llvm::Constant*, 8> Ctors;
457   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458     llvm::Constant *S[] = {
459       llvm::ConstantInt::get(Int32Ty, I->second, false),
460       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461     };
462     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463   }
464 
465   if (!Ctors.empty()) {
466     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467     new llvm::GlobalVariable(TheModule, AT, false,
468                              llvm::GlobalValue::AppendingLinkage,
469                              llvm::ConstantArray::get(AT, Ctors),
470                              GlobalName);
471   }
472 }
473 
474 llvm::GlobalValue::LinkageTypes
475 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477 
478   if (Linkage == GVA_Internal)
479     return llvm::Function::InternalLinkage;
480 
481   if (D->hasAttr<DLLExportAttr>())
482     return llvm::Function::DLLExportLinkage;
483 
484   if (D->hasAttr<WeakAttr>())
485     return llvm::Function::WeakAnyLinkage;
486 
487   // In C99 mode, 'inline' functions are guaranteed to have a strong
488   // definition somewhere else, so we can use available_externally linkage.
489   if (Linkage == GVA_C99Inline)
490     return llvm::Function::AvailableExternallyLinkage;
491 
492   // Note that Apple's kernel linker doesn't support symbol
493   // coalescing, so we need to avoid linkonce and weak linkages there.
494   // Normally, this means we just map to internal, but for explicit
495   // instantiations we'll map to external.
496 
497   // In C++, the compiler has to emit a definition in every translation unit
498   // that references the function.  We should use linkonce_odr because
499   // a) if all references in this translation unit are optimized away, we
500   // don't need to codegen it.  b) if the function persists, it needs to be
501   // merged with other definitions. c) C++ has the ODR, so we know the
502   // definition is dependable.
503   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504     return !Context.getLangOpts().AppleKext
505              ? llvm::Function::LinkOnceODRLinkage
506              : llvm::Function::InternalLinkage;
507 
508   // An explicit instantiation of a template has weak linkage, since
509   // explicit instantiations can occur in multiple translation units
510   // and must all be equivalent. However, we are not allowed to
511   // throw away these explicit instantiations.
512   if (Linkage == GVA_ExplicitTemplateInstantiation)
513     return !Context.getLangOpts().AppleKext
514              ? llvm::Function::WeakODRLinkage
515              : llvm::Function::ExternalLinkage;
516 
517   // Otherwise, we have strong external linkage.
518   assert(Linkage == GVA_StrongExternal);
519   return llvm::Function::ExternalLinkage;
520 }
521 
522 
523 /// SetFunctionDefinitionAttributes - Set attributes for a global.
524 ///
525 /// FIXME: This is currently only done for aliases and functions, but not for
526 /// variables (these details are set in EmitGlobalVarDefinition for variables).
527 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                     llvm::GlobalValue *GV) {
529   SetCommonAttributes(D, GV);
530 }
531 
532 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                               const CGFunctionInfo &Info,
534                                               llvm::Function *F) {
535   unsigned CallingConv;
536   AttributeListType AttributeList;
537   ConstructAttributeList(Info, D, AttributeList, CallingConv);
538   F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540 }
541 
542 /// Determines whether the language options require us to model
543 /// unwind exceptions.  We treat -fexceptions as mandating this
544 /// except under the fragile ObjC ABI with only ObjC exceptions
545 /// enabled.  This means, for example, that C with -fexceptions
546 /// enables this.
547 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548   // If exceptions are completely disabled, obviously this is false.
549   if (!LangOpts.Exceptions) return false;
550 
551   // If C++ exceptions are enabled, this is true.
552   if (LangOpts.CXXExceptions) return true;
553 
554   // If ObjC exceptions are enabled, this depends on the ABI.
555   if (LangOpts.ObjCExceptions) {
556     return LangOpts.ObjCRuntime.hasUnwindExceptions();
557   }
558 
559   return true;
560 }
561 
562 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                            llvm::Function *F) {
564   if (CodeGenOpts.UnwindTables)
565     F->setHasUWTable();
566 
567   if (!hasUnwindExceptions(LangOpts))
568     F->addFnAttr(llvm::Attributes::NoUnwind);
569 
570   if (D->hasAttr<NakedAttr>()) {
571     // Naked implies noinline: we should not be inlining such functions.
572     F->addFnAttr(llvm::Attributes::Naked);
573     F->addFnAttr(llvm::Attributes::NoInline);
574   }
575 
576   if (D->hasAttr<NoInlineAttr>())
577     F->addFnAttr(llvm::Attributes::NoInline);
578 
579   // (noinline wins over always_inline, and we can't specify both in IR)
580   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581       !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline))
582     F->addFnAttr(llvm::Attributes::AlwaysInline);
583 
584   // FIXME: Communicate hot and cold attributes to LLVM more directly.
585   if (D->hasAttr<ColdAttr>())
586     F->addFnAttr(llvm::Attributes::OptimizeForSize);
587 
588   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589     F->setUnnamedAddr(true);
590 
591   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592     if (MD->isVirtual())
593       F->setUnnamedAddr(true);
594 
595   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596     F->addFnAttr(llvm::Attributes::StackProtect);
597   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598     F->addFnAttr(llvm::Attributes::StackProtectReq);
599 
600   if (LangOpts.AddressSanitizer) {
601     // When AddressSanitizer is enabled, set AddressSafety attribute
602     // unless __attribute__((no_address_safety_analysis)) is used.
603     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604       F->addFnAttr(llvm::Attributes::AddressSafety);
605   }
606 
607   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608   if (alignment)
609     F->setAlignment(alignment);
610 
611   // C++ ABI requires 2-byte alignment for member functions.
612   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613     F->setAlignment(2);
614 }
615 
616 void CodeGenModule::SetCommonAttributes(const Decl *D,
617                                         llvm::GlobalValue *GV) {
618   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619     setGlobalVisibility(GV, ND);
620   else
621     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622 
623   if (D->hasAttr<UsedAttr>())
624     AddUsedGlobal(GV);
625 
626   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627     GV->setSection(SA->getName());
628 
629   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630 }
631 
632 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633                                                   llvm::Function *F,
634                                                   const CGFunctionInfo &FI) {
635   SetLLVMFunctionAttributes(D, FI, F);
636   SetLLVMFunctionAttributesForDefinition(D, F);
637 
638   F->setLinkage(llvm::Function::InternalLinkage);
639 
640   SetCommonAttributes(D, F);
641 }
642 
643 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644                                           llvm::Function *F,
645                                           bool IsIncompleteFunction) {
646   if (unsigned IID = F->getIntrinsicID()) {
647     // If this is an intrinsic function, set the function's attributes
648     // to the intrinsic's attributes.
649     F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650     return;
651   }
652 
653   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654 
655   if (!IsIncompleteFunction)
656     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657 
658   // Only a few attributes are set on declarations; these may later be
659   // overridden by a definition.
660 
661   if (FD->hasAttr<DLLImportAttr>()) {
662     F->setLinkage(llvm::Function::DLLImportLinkage);
663   } else if (FD->hasAttr<WeakAttr>() ||
664              FD->isWeakImported()) {
665     // "extern_weak" is overloaded in LLVM; we probably should have
666     // separate linkage types for this.
667     F->setLinkage(llvm::Function::ExternalWeakLinkage);
668   } else {
669     F->setLinkage(llvm::Function::ExternalLinkage);
670 
671     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673       F->setVisibility(GetLLVMVisibility(LV.visibility()));
674     }
675   }
676 
677   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678     F->setSection(SA->getName());
679 }
680 
681 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682   assert(!GV->isDeclaration() &&
683          "Only globals with definition can force usage.");
684   LLVMUsed.push_back(GV);
685 }
686 
687 void CodeGenModule::EmitLLVMUsed() {
688   // Don't create llvm.used if there is no need.
689   if (LLVMUsed.empty())
690     return;
691 
692   // Convert LLVMUsed to what ConstantArray needs.
693   SmallVector<llvm::Constant*, 8> UsedArray;
694   UsedArray.resize(LLVMUsed.size());
695   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696     UsedArray[i] =
697      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698                                     Int8PtrTy);
699   }
700 
701   if (UsedArray.empty())
702     return;
703   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704 
705   llvm::GlobalVariable *GV =
706     new llvm::GlobalVariable(getModule(), ATy, false,
707                              llvm::GlobalValue::AppendingLinkage,
708                              llvm::ConstantArray::get(ATy, UsedArray),
709                              "llvm.used");
710 
711   GV->setSection("llvm.metadata");
712 }
713 
714 void CodeGenModule::EmitDeferred() {
715   // Emit code for any potentially referenced deferred decls.  Since a
716   // previously unused static decl may become used during the generation of code
717   // for a static function, iterate until no changes are made.
718 
719   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720     if (!DeferredVTables.empty()) {
721       const CXXRecordDecl *RD = DeferredVTables.back();
722       DeferredVTables.pop_back();
723       getCXXABI().EmitVTables(RD);
724       continue;
725     }
726 
727     GlobalDecl D = DeferredDeclsToEmit.back();
728     DeferredDeclsToEmit.pop_back();
729 
730     // Check to see if we've already emitted this.  This is necessary
731     // for a couple of reasons: first, decls can end up in the
732     // deferred-decls queue multiple times, and second, decls can end
733     // up with definitions in unusual ways (e.g. by an extern inline
734     // function acquiring a strong function redefinition).  Just
735     // ignore these cases.
736     //
737     // TODO: That said, looking this up multiple times is very wasteful.
738     StringRef Name = getMangledName(D);
739     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740     assert(CGRef && "Deferred decl wasn't referenced?");
741 
742     if (!CGRef->isDeclaration())
743       continue;
744 
745     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746     // purposes an alias counts as a definition.
747     if (isa<llvm::GlobalAlias>(CGRef))
748       continue;
749 
750     // Otherwise, emit the definition and move on to the next one.
751     EmitGlobalDefinition(D);
752   }
753 }
754 
755 void CodeGenModule::EmitGlobalAnnotations() {
756   if (Annotations.empty())
757     return;
758 
759   // Create a new global variable for the ConstantStruct in the Module.
760   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761     Annotations[0]->getType(), Annotations.size()), Annotations);
762   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764     "llvm.global.annotations");
765   gv->setSection(AnnotationSection);
766 }
767 
768 llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770   if (i != AnnotationStrings.end())
771     return i->second;
772 
773   // Not found yet, create a new global.
774   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777   gv->setSection(AnnotationSection);
778   gv->setUnnamedAddr(true);
779   AnnotationStrings[Str] = gv;
780   return gv;
781 }
782 
783 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784   SourceManager &SM = getContext().getSourceManager();
785   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786   if (PLoc.isValid())
787     return EmitAnnotationString(PLoc.getFilename());
788   return EmitAnnotationString(SM.getBufferName(Loc));
789 }
790 
791 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792   SourceManager &SM = getContext().getSourceManager();
793   PresumedLoc PLoc = SM.getPresumedLoc(L);
794   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795     SM.getExpansionLineNumber(L);
796   return llvm::ConstantInt::get(Int32Ty, LineNo);
797 }
798 
799 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800                                                 const AnnotateAttr *AA,
801                                                 SourceLocation L) {
802   // Get the globals for file name, annotation, and the line number.
803   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804                  *UnitGV = EmitAnnotationUnit(L),
805                  *LineNoCst = EmitAnnotationLineNo(L);
806 
807   // Create the ConstantStruct for the global annotation.
808   llvm::Constant *Fields[4] = {
809     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812     LineNoCst
813   };
814   return llvm::ConstantStruct::getAnon(Fields);
815 }
816 
817 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818                                          llvm::GlobalValue *GV) {
819   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820   // Get the struct elements for these annotations.
821   for (specific_attr_iterator<AnnotateAttr>
822        ai = D->specific_attr_begin<AnnotateAttr>(),
823        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825 }
826 
827 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828   // Never defer when EmitAllDecls is specified.
829   if (LangOpts.EmitAllDecls)
830     return false;
831 
832   return !getContext().DeclMustBeEmitted(Global);
833 }
834 
835 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
836     const CXXUuidofExpr* E) {
837   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
838   // well-formed.
839   StringRef Uuid;
840   if (E->isTypeOperand())
841     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
842   else {
843     // Special case: __uuidof(0) means an all-zero GUID.
844     Expr *Op = E->getExprOperand();
845     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
846       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
847     else
848       Uuid = "00000000-0000-0000-0000-000000000000";
849   }
850   std::string Name = "__uuid_" + Uuid.str();
851 
852   // Look for an existing global.
853   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
854     return GV;
855 
856   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
857   assert(Init && "failed to initialize as constant");
858 
859   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
860   // first field is declared as "long", which for many targets is 8 bytes.
861   // Those architectures are not supported. (With the MS abi, long is always 4
862   // bytes.)
863   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
864   if (Init->getType() != GuidType) {
865     DiagnosticsEngine &Diags = getDiags();
866     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
867         "__uuidof codegen is not supported on this architecture");
868     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
869     Init = llvm::UndefValue::get(GuidType);
870   }
871 
872   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
873       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
874   GV->setUnnamedAddr(true);
875   return GV;
876 }
877 
878 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
879   const AliasAttr *AA = VD->getAttr<AliasAttr>();
880   assert(AA && "No alias?");
881 
882   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
883 
884   // See if there is already something with the target's name in the module.
885   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
886 
887   llvm::Constant *Aliasee;
888   if (isa<llvm::FunctionType>(DeclTy))
889     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
890                                       GlobalDecl(cast<FunctionDecl>(VD)),
891                                       /*ForVTable=*/false);
892   else
893     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
894                                     llvm::PointerType::getUnqual(DeclTy), 0);
895   if (!Entry) {
896     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
897     F->setLinkage(llvm::Function::ExternalWeakLinkage);
898     WeakRefReferences.insert(F);
899   }
900 
901   return Aliasee;
902 }
903 
904 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
905   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
906 
907   // Weak references don't produce any output by themselves.
908   if (Global->hasAttr<WeakRefAttr>())
909     return;
910 
911   // If this is an alias definition (which otherwise looks like a declaration)
912   // emit it now.
913   if (Global->hasAttr<AliasAttr>())
914     return EmitAliasDefinition(GD);
915 
916   // If this is CUDA, be selective about which declarations we emit.
917   if (LangOpts.CUDA) {
918     if (CodeGenOpts.CUDAIsDevice) {
919       if (!Global->hasAttr<CUDADeviceAttr>() &&
920           !Global->hasAttr<CUDAGlobalAttr>() &&
921           !Global->hasAttr<CUDAConstantAttr>() &&
922           !Global->hasAttr<CUDASharedAttr>())
923         return;
924     } else {
925       if (!Global->hasAttr<CUDAHostAttr>() && (
926             Global->hasAttr<CUDADeviceAttr>() ||
927             Global->hasAttr<CUDAConstantAttr>() ||
928             Global->hasAttr<CUDASharedAttr>()))
929         return;
930     }
931   }
932 
933   // Ignore declarations, they will be emitted on their first use.
934   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
935     // Forward declarations are emitted lazily on first use.
936     if (!FD->doesThisDeclarationHaveABody()) {
937       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
938         return;
939 
940       const FunctionDecl *InlineDefinition = 0;
941       FD->getBody(InlineDefinition);
942 
943       StringRef MangledName = getMangledName(GD);
944       DeferredDecls.erase(MangledName);
945       EmitGlobalDefinition(InlineDefinition);
946       return;
947     }
948   } else {
949     const VarDecl *VD = cast<VarDecl>(Global);
950     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
951 
952     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
953       return;
954   }
955 
956   // Defer code generation when possible if this is a static definition, inline
957   // function etc.  These we only want to emit if they are used.
958   if (!MayDeferGeneration(Global)) {
959     // Emit the definition if it can't be deferred.
960     EmitGlobalDefinition(GD);
961     return;
962   }
963 
964   // If we're deferring emission of a C++ variable with an
965   // initializer, remember the order in which it appeared in the file.
966   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
967       cast<VarDecl>(Global)->hasInit()) {
968     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
969     CXXGlobalInits.push_back(0);
970   }
971 
972   // If the value has already been used, add it directly to the
973   // DeferredDeclsToEmit list.
974   StringRef MangledName = getMangledName(GD);
975   if (GetGlobalValue(MangledName))
976     DeferredDeclsToEmit.push_back(GD);
977   else {
978     // Otherwise, remember that we saw a deferred decl with this name.  The
979     // first use of the mangled name will cause it to move into
980     // DeferredDeclsToEmit.
981     DeferredDecls[MangledName] = GD;
982   }
983 }
984 
985 namespace {
986   struct FunctionIsDirectlyRecursive :
987     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
988     const StringRef Name;
989     const Builtin::Context &BI;
990     bool Result;
991     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
992       Name(N), BI(C), Result(false) {
993     }
994     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
995 
996     bool TraverseCallExpr(CallExpr *E) {
997       const FunctionDecl *FD = E->getDirectCallee();
998       if (!FD)
999         return true;
1000       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1001       if (Attr && Name == Attr->getLabel()) {
1002         Result = true;
1003         return false;
1004       }
1005       unsigned BuiltinID = FD->getBuiltinID();
1006       if (!BuiltinID)
1007         return true;
1008       StringRef BuiltinName = BI.GetName(BuiltinID);
1009       if (BuiltinName.startswith("__builtin_") &&
1010           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1011         Result = true;
1012         return false;
1013       }
1014       return true;
1015     }
1016   };
1017 }
1018 
1019 // isTriviallyRecursive - Check if this function calls another
1020 // decl that, because of the asm attribute or the other decl being a builtin,
1021 // ends up pointing to itself.
1022 bool
1023 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1024   StringRef Name;
1025   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1026     // asm labels are a special kind of mangling we have to support.
1027     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1028     if (!Attr)
1029       return false;
1030     Name = Attr->getLabel();
1031   } else {
1032     Name = FD->getName();
1033   }
1034 
1035   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1036   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1037   return Walker.Result;
1038 }
1039 
1040 bool
1041 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1042   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1043     return true;
1044   if (CodeGenOpts.OptimizationLevel == 0 &&
1045       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1046     return false;
1047   // PR9614. Avoid cases where the source code is lying to us. An available
1048   // externally function should have an equivalent function somewhere else,
1049   // but a function that calls itself is clearly not equivalent to the real
1050   // implementation.
1051   // This happens in glibc's btowc and in some configure checks.
1052   return !isTriviallyRecursive(F);
1053 }
1054 
1055 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1056   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1057 
1058   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1059                                  Context.getSourceManager(),
1060                                  "Generating code for declaration");
1061 
1062   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1063     // At -O0, don't generate IR for functions with available_externally
1064     // linkage.
1065     if (!shouldEmitFunction(Function))
1066       return;
1067 
1068     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1069       // Make sure to emit the definition(s) before we emit the thunks.
1070       // This is necessary for the generation of certain thunks.
1071       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1072         EmitCXXConstructor(CD, GD.getCtorType());
1073       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1074         EmitCXXDestructor(DD, GD.getDtorType());
1075       else
1076         EmitGlobalFunctionDefinition(GD);
1077 
1078       if (Method->isVirtual())
1079         getVTables().EmitThunks(GD);
1080 
1081       return;
1082     }
1083 
1084     return EmitGlobalFunctionDefinition(GD);
1085   }
1086 
1087   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1088     return EmitGlobalVarDefinition(VD);
1089 
1090   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1091 }
1092 
1093 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1094 /// module, create and return an llvm Function with the specified type. If there
1095 /// is something in the module with the specified name, return it potentially
1096 /// bitcasted to the right type.
1097 ///
1098 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1099 /// to set the attributes on the function when it is first created.
1100 llvm::Constant *
1101 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1102                                        llvm::Type *Ty,
1103                                        GlobalDecl D, bool ForVTable,
1104                                        llvm::Attributes ExtraAttrs) {
1105   // Lookup the entry, lazily creating it if necessary.
1106   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1107   if (Entry) {
1108     if (WeakRefReferences.erase(Entry)) {
1109       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1110       if (FD && !FD->hasAttr<WeakAttr>())
1111         Entry->setLinkage(llvm::Function::ExternalLinkage);
1112     }
1113 
1114     if (Entry->getType()->getElementType() == Ty)
1115       return Entry;
1116 
1117     // Make sure the result is of the correct type.
1118     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1119   }
1120 
1121   // This function doesn't have a complete type (for example, the return
1122   // type is an incomplete struct). Use a fake type instead, and make
1123   // sure not to try to set attributes.
1124   bool IsIncompleteFunction = false;
1125 
1126   llvm::FunctionType *FTy;
1127   if (isa<llvm::FunctionType>(Ty)) {
1128     FTy = cast<llvm::FunctionType>(Ty);
1129   } else {
1130     FTy = llvm::FunctionType::get(VoidTy, false);
1131     IsIncompleteFunction = true;
1132   }
1133 
1134   llvm::Function *F = llvm::Function::Create(FTy,
1135                                              llvm::Function::ExternalLinkage,
1136                                              MangledName, &getModule());
1137   assert(F->getName() == MangledName && "name was uniqued!");
1138   if (D.getDecl())
1139     SetFunctionAttributes(D, F, IsIncompleteFunction);
1140   if (ExtraAttrs.hasAttributes())
1141     F->addAttribute(~0, ExtraAttrs);
1142 
1143   // This is the first use or definition of a mangled name.  If there is a
1144   // deferred decl with this name, remember that we need to emit it at the end
1145   // of the file.
1146   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1147   if (DDI != DeferredDecls.end()) {
1148     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1149     // list, and remove it from DeferredDecls (since we don't need it anymore).
1150     DeferredDeclsToEmit.push_back(DDI->second);
1151     DeferredDecls.erase(DDI);
1152 
1153   // Otherwise, there are cases we have to worry about where we're
1154   // using a declaration for which we must emit a definition but where
1155   // we might not find a top-level definition:
1156   //   - member functions defined inline in their classes
1157   //   - friend functions defined inline in some class
1158   //   - special member functions with implicit definitions
1159   // If we ever change our AST traversal to walk into class methods,
1160   // this will be unnecessary.
1161   //
1162   // We also don't emit a definition for a function if it's going to be an entry
1163   // in a vtable, unless it's already marked as used.
1164   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1165     // Look for a declaration that's lexically in a record.
1166     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1167     FD = FD->getMostRecentDecl();
1168     do {
1169       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1170         if (FD->isImplicit() && !ForVTable) {
1171           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1172           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1173           break;
1174         } else if (FD->doesThisDeclarationHaveABody()) {
1175           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1176           break;
1177         }
1178       }
1179       FD = FD->getPreviousDecl();
1180     } while (FD);
1181   }
1182 
1183   // Make sure the result is of the requested type.
1184   if (!IsIncompleteFunction) {
1185     assert(F->getType()->getElementType() == Ty);
1186     return F;
1187   }
1188 
1189   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1190   return llvm::ConstantExpr::getBitCast(F, PTy);
1191 }
1192 
1193 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1194 /// non-null, then this function will use the specified type if it has to
1195 /// create it (this occurs when we see a definition of the function).
1196 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1197                                                  llvm::Type *Ty,
1198                                                  bool ForVTable) {
1199   // If there was no specific requested type, just convert it now.
1200   if (!Ty)
1201     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1202 
1203   StringRef MangledName = getMangledName(GD);
1204   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1205 }
1206 
1207 /// CreateRuntimeFunction - Create a new runtime function with the specified
1208 /// type and name.
1209 llvm::Constant *
1210 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1211                                      StringRef Name,
1212                                      llvm::Attributes ExtraAttrs) {
1213   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1214                                  ExtraAttrs);
1215 }
1216 
1217 /// isTypeConstant - Determine whether an object of this type can be emitted
1218 /// as a constant.
1219 ///
1220 /// If ExcludeCtor is true, the duration when the object's constructor runs
1221 /// will not be considered. The caller will need to verify that the object is
1222 /// not written to during its construction.
1223 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1224   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1225     return false;
1226 
1227   if (Context.getLangOpts().CPlusPlus) {
1228     if (const CXXRecordDecl *Record
1229           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1230       return ExcludeCtor && !Record->hasMutableFields() &&
1231              Record->hasTrivialDestructor();
1232   }
1233 
1234   return true;
1235 }
1236 
1237 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1238 /// create and return an llvm GlobalVariable with the specified type.  If there
1239 /// is something in the module with the specified name, return it potentially
1240 /// bitcasted to the right type.
1241 ///
1242 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1243 /// to set the attributes on the global when it is first created.
1244 llvm::Constant *
1245 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1246                                      llvm::PointerType *Ty,
1247                                      const VarDecl *D,
1248                                      bool UnnamedAddr) {
1249   // Lookup the entry, lazily creating it if necessary.
1250   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1251   if (Entry) {
1252     if (WeakRefReferences.erase(Entry)) {
1253       if (D && !D->hasAttr<WeakAttr>())
1254         Entry->setLinkage(llvm::Function::ExternalLinkage);
1255     }
1256 
1257     if (UnnamedAddr)
1258       Entry->setUnnamedAddr(true);
1259 
1260     if (Entry->getType() == Ty)
1261       return Entry;
1262 
1263     // Make sure the result is of the correct type.
1264     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1265   }
1266 
1267   // This is the first use or definition of a mangled name.  If there is a
1268   // deferred decl with this name, remember that we need to emit it at the end
1269   // of the file.
1270   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1271   if (DDI != DeferredDecls.end()) {
1272     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1273     // list, and remove it from DeferredDecls (since we don't need it anymore).
1274     DeferredDeclsToEmit.push_back(DDI->second);
1275     DeferredDecls.erase(DDI);
1276   }
1277 
1278   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1279   llvm::GlobalVariable *GV =
1280     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1281                              llvm::GlobalValue::ExternalLinkage,
1282                              0, MangledName, 0,
1283                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1284 
1285   // Handle things which are present even on external declarations.
1286   if (D) {
1287     // FIXME: This code is overly simple and should be merged with other global
1288     // handling.
1289     GV->setConstant(isTypeConstant(D->getType(), false));
1290 
1291     // Set linkage and visibility in case we never see a definition.
1292     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1293     if (LV.linkage() != ExternalLinkage) {
1294       // Don't set internal linkage on declarations.
1295     } else {
1296       if (D->hasAttr<DLLImportAttr>())
1297         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1298       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1299         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1300 
1301       // Set visibility on a declaration only if it's explicit.
1302       if (LV.visibilityExplicit())
1303         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1304     }
1305 
1306     if (D->isThreadSpecified())
1307       setTLSMode(GV, *D);
1308   }
1309 
1310   if (AddrSpace != Ty->getAddressSpace())
1311     return llvm::ConstantExpr::getBitCast(GV, Ty);
1312   else
1313     return GV;
1314 }
1315 
1316 
1317 llvm::GlobalVariable *
1318 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1319                                       llvm::Type *Ty,
1320                                       llvm::GlobalValue::LinkageTypes Linkage) {
1321   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1322   llvm::GlobalVariable *OldGV = 0;
1323 
1324 
1325   if (GV) {
1326     // Check if the variable has the right type.
1327     if (GV->getType()->getElementType() == Ty)
1328       return GV;
1329 
1330     // Because C++ name mangling, the only way we can end up with an already
1331     // existing global with the same name is if it has been declared extern "C".
1332     assert(GV->isDeclaration() && "Declaration has wrong type!");
1333     OldGV = GV;
1334   }
1335 
1336   // Create a new variable.
1337   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1338                                 Linkage, 0, Name);
1339 
1340   if (OldGV) {
1341     // Replace occurrences of the old variable if needed.
1342     GV->takeName(OldGV);
1343 
1344     if (!OldGV->use_empty()) {
1345       llvm::Constant *NewPtrForOldDecl =
1346       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1347       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1348     }
1349 
1350     OldGV->eraseFromParent();
1351   }
1352 
1353   return GV;
1354 }
1355 
1356 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1357 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1358 /// then it will be created with the specified type instead of whatever the
1359 /// normal requested type would be.
1360 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1361                                                   llvm::Type *Ty) {
1362   assert(D->hasGlobalStorage() && "Not a global variable");
1363   QualType ASTTy = D->getType();
1364   if (Ty == 0)
1365     Ty = getTypes().ConvertTypeForMem(ASTTy);
1366 
1367   llvm::PointerType *PTy =
1368     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1369 
1370   StringRef MangledName = getMangledName(D);
1371   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1372 }
1373 
1374 /// CreateRuntimeVariable - Create a new runtime global variable with the
1375 /// specified type and name.
1376 llvm::Constant *
1377 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1378                                      StringRef Name) {
1379   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1380                                true);
1381 }
1382 
1383 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1384   assert(!D->getInit() && "Cannot emit definite definitions here!");
1385 
1386   if (MayDeferGeneration(D)) {
1387     // If we have not seen a reference to this variable yet, place it
1388     // into the deferred declarations table to be emitted if needed
1389     // later.
1390     StringRef MangledName = getMangledName(D);
1391     if (!GetGlobalValue(MangledName)) {
1392       DeferredDecls[MangledName] = D;
1393       return;
1394     }
1395   }
1396 
1397   // The tentative definition is the only definition.
1398   EmitGlobalVarDefinition(D);
1399 }
1400 
1401 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1402   if (DefinitionRequired)
1403     getCXXABI().EmitVTables(Class);
1404 }
1405 
1406 llvm::GlobalVariable::LinkageTypes
1407 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1408   if (RD->getLinkage() != ExternalLinkage)
1409     return llvm::GlobalVariable::InternalLinkage;
1410 
1411   if (const CXXMethodDecl *KeyFunction
1412                                     = RD->getASTContext().getKeyFunction(RD)) {
1413     // If this class has a key function, use that to determine the linkage of
1414     // the vtable.
1415     const FunctionDecl *Def = 0;
1416     if (KeyFunction->hasBody(Def))
1417       KeyFunction = cast<CXXMethodDecl>(Def);
1418 
1419     switch (KeyFunction->getTemplateSpecializationKind()) {
1420       case TSK_Undeclared:
1421       case TSK_ExplicitSpecialization:
1422         // When compiling with optimizations turned on, we emit all vtables,
1423         // even if the key function is not defined in the current translation
1424         // unit. If this is the case, use available_externally linkage.
1425         if (!Def && CodeGenOpts.OptimizationLevel)
1426           return llvm::GlobalVariable::AvailableExternallyLinkage;
1427 
1428         if (KeyFunction->isInlined())
1429           return !Context.getLangOpts().AppleKext ?
1430                    llvm::GlobalVariable::LinkOnceODRLinkage :
1431                    llvm::Function::InternalLinkage;
1432 
1433         return llvm::GlobalVariable::ExternalLinkage;
1434 
1435       case TSK_ImplicitInstantiation:
1436         return !Context.getLangOpts().AppleKext ?
1437                  llvm::GlobalVariable::LinkOnceODRLinkage :
1438                  llvm::Function::InternalLinkage;
1439 
1440       case TSK_ExplicitInstantiationDefinition:
1441         return !Context.getLangOpts().AppleKext ?
1442                  llvm::GlobalVariable::WeakODRLinkage :
1443                  llvm::Function::InternalLinkage;
1444 
1445       case TSK_ExplicitInstantiationDeclaration:
1446         // FIXME: Use available_externally linkage. However, this currently
1447         // breaks LLVM's build due to undefined symbols.
1448         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1449         return !Context.getLangOpts().AppleKext ?
1450                  llvm::GlobalVariable::LinkOnceODRLinkage :
1451                  llvm::Function::InternalLinkage;
1452     }
1453   }
1454 
1455   if (Context.getLangOpts().AppleKext)
1456     return llvm::Function::InternalLinkage;
1457 
1458   switch (RD->getTemplateSpecializationKind()) {
1459   case TSK_Undeclared:
1460   case TSK_ExplicitSpecialization:
1461   case TSK_ImplicitInstantiation:
1462     // FIXME: Use available_externally linkage. However, this currently
1463     // breaks LLVM's build due to undefined symbols.
1464     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1465   case TSK_ExplicitInstantiationDeclaration:
1466     return llvm::GlobalVariable::LinkOnceODRLinkage;
1467 
1468   case TSK_ExplicitInstantiationDefinition:
1469       return llvm::GlobalVariable::WeakODRLinkage;
1470   }
1471 
1472   llvm_unreachable("Invalid TemplateSpecializationKind!");
1473 }
1474 
1475 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1476     return Context.toCharUnitsFromBits(
1477       TheDataLayout.getTypeStoreSizeInBits(Ty));
1478 }
1479 
1480 llvm::Constant *
1481 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1482                                                        const Expr *rawInit) {
1483   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1484   if (const ExprWithCleanups *withCleanups =
1485           dyn_cast<ExprWithCleanups>(rawInit)) {
1486     cleanups = withCleanups->getObjects();
1487     rawInit = withCleanups->getSubExpr();
1488   }
1489 
1490   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1491   if (!init || !init->initializesStdInitializerList() ||
1492       init->getNumInits() == 0)
1493     return 0;
1494 
1495   ASTContext &ctx = getContext();
1496   unsigned numInits = init->getNumInits();
1497   // FIXME: This check is here because we would otherwise silently miscompile
1498   // nested global std::initializer_lists. Better would be to have a real
1499   // implementation.
1500   for (unsigned i = 0; i < numInits; ++i) {
1501     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1502     if (inner && inner->initializesStdInitializerList()) {
1503       ErrorUnsupported(inner, "nested global std::initializer_list");
1504       return 0;
1505     }
1506   }
1507 
1508   // Synthesize a fake VarDecl for the array and initialize that.
1509   QualType elementType = init->getInit(0)->getType();
1510   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1511   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1512                                                 ArrayType::Normal, 0);
1513 
1514   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1515   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1516                                               arrayType, D->getLocation());
1517   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1518                                                           D->getDeclContext()),
1519                                           D->getLocStart(), D->getLocation(),
1520                                           name, arrayType, sourceInfo,
1521                                           SC_Static, SC_Static);
1522 
1523   // Now clone the InitListExpr to initialize the array instead.
1524   // Incredible hack: we want to use the existing InitListExpr here, so we need
1525   // to tell it that it no longer initializes a std::initializer_list.
1526   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1527                         init->getNumInits());
1528   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1529                                            init->getRBraceLoc());
1530   arrayInit->setType(arrayType);
1531 
1532   if (!cleanups.empty())
1533     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1534 
1535   backingArray->setInit(arrayInit);
1536 
1537   // Emit the definition of the array.
1538   EmitGlobalVarDefinition(backingArray);
1539 
1540   // Inspect the initializer list to validate it and determine its type.
1541   // FIXME: doing this every time is probably inefficient; caching would be nice
1542   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1543   RecordDecl::field_iterator field = record->field_begin();
1544   if (field == record->field_end()) {
1545     ErrorUnsupported(D, "weird std::initializer_list");
1546     return 0;
1547   }
1548   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1549   // Start pointer.
1550   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1551     ErrorUnsupported(D, "weird std::initializer_list");
1552     return 0;
1553   }
1554   ++field;
1555   if (field == record->field_end()) {
1556     ErrorUnsupported(D, "weird std::initializer_list");
1557     return 0;
1558   }
1559   bool isStartEnd = false;
1560   if (ctx.hasSameType(field->getType(), elementPtr)) {
1561     // End pointer.
1562     isStartEnd = true;
1563   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1564     ErrorUnsupported(D, "weird std::initializer_list");
1565     return 0;
1566   }
1567 
1568   // Now build an APValue representing the std::initializer_list.
1569   APValue initListValue(APValue::UninitStruct(), 0, 2);
1570   APValue &startField = initListValue.getStructField(0);
1571   APValue::LValuePathEntry startOffsetPathEntry;
1572   startOffsetPathEntry.ArrayIndex = 0;
1573   startField = APValue(APValue::LValueBase(backingArray),
1574                        CharUnits::fromQuantity(0),
1575                        llvm::makeArrayRef(startOffsetPathEntry),
1576                        /*IsOnePastTheEnd=*/false, 0);
1577 
1578   if (isStartEnd) {
1579     APValue &endField = initListValue.getStructField(1);
1580     APValue::LValuePathEntry endOffsetPathEntry;
1581     endOffsetPathEntry.ArrayIndex = numInits;
1582     endField = APValue(APValue::LValueBase(backingArray),
1583                        ctx.getTypeSizeInChars(elementType) * numInits,
1584                        llvm::makeArrayRef(endOffsetPathEntry),
1585                        /*IsOnePastTheEnd=*/true, 0);
1586   } else {
1587     APValue &sizeField = initListValue.getStructField(1);
1588     sizeField = APValue(llvm::APSInt(numElements));
1589   }
1590 
1591   // Emit the constant for the initializer_list.
1592   llvm::Constant *llvmInit =
1593       EmitConstantValueForMemory(initListValue, D->getType());
1594   assert(llvmInit && "failed to initialize as constant");
1595   return llvmInit;
1596 }
1597 
1598 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1599                                                  unsigned AddrSpace) {
1600   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1601     if (D->hasAttr<CUDAConstantAttr>())
1602       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1603     else if (D->hasAttr<CUDASharedAttr>())
1604       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1605     else
1606       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1607   }
1608 
1609   return AddrSpace;
1610 }
1611 
1612 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1613   llvm::Constant *Init = 0;
1614   QualType ASTTy = D->getType();
1615   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1616   bool NeedsGlobalCtor = false;
1617   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1618 
1619   const VarDecl *InitDecl;
1620   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1621 
1622   if (!InitExpr) {
1623     // This is a tentative definition; tentative definitions are
1624     // implicitly initialized with { 0 }.
1625     //
1626     // Note that tentative definitions are only emitted at the end of
1627     // a translation unit, so they should never have incomplete
1628     // type. In addition, EmitTentativeDefinition makes sure that we
1629     // never attempt to emit a tentative definition if a real one
1630     // exists. A use may still exists, however, so we still may need
1631     // to do a RAUW.
1632     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1633     Init = EmitNullConstant(D->getType());
1634   } else {
1635     // If this is a std::initializer_list, emit the special initializer.
1636     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1637     // An empty init list will perform zero-initialization, which happens
1638     // to be exactly what we want.
1639     // FIXME: It does so in a global constructor, which is *not* what we
1640     // want.
1641 
1642     if (!Init) {
1643       initializedGlobalDecl = GlobalDecl(D);
1644       Init = EmitConstantInit(*InitDecl);
1645     }
1646     if (!Init) {
1647       QualType T = InitExpr->getType();
1648       if (D->getType()->isReferenceType())
1649         T = D->getType();
1650 
1651       if (getLangOpts().CPlusPlus) {
1652         Init = EmitNullConstant(T);
1653         NeedsGlobalCtor = true;
1654       } else {
1655         ErrorUnsupported(D, "static initializer");
1656         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1657       }
1658     } else {
1659       // We don't need an initializer, so remove the entry for the delayed
1660       // initializer position (just in case this entry was delayed) if we
1661       // also don't need to register a destructor.
1662       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1663         DelayedCXXInitPosition.erase(D);
1664     }
1665   }
1666 
1667   llvm::Type* InitType = Init->getType();
1668   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1669 
1670   // Strip off a bitcast if we got one back.
1671   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1672     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1673            // all zero index gep.
1674            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1675     Entry = CE->getOperand(0);
1676   }
1677 
1678   // Entry is now either a Function or GlobalVariable.
1679   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1680 
1681   // We have a definition after a declaration with the wrong type.
1682   // We must make a new GlobalVariable* and update everything that used OldGV
1683   // (a declaration or tentative definition) with the new GlobalVariable*
1684   // (which will be a definition).
1685   //
1686   // This happens if there is a prototype for a global (e.g.
1687   // "extern int x[];") and then a definition of a different type (e.g.
1688   // "int x[10];"). This also happens when an initializer has a different type
1689   // from the type of the global (this happens with unions).
1690   if (GV == 0 ||
1691       GV->getType()->getElementType() != InitType ||
1692       GV->getType()->getAddressSpace() !=
1693        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1694 
1695     // Move the old entry aside so that we'll create a new one.
1696     Entry->setName(StringRef());
1697 
1698     // Make a new global with the correct type, this is now guaranteed to work.
1699     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1700 
1701     // Replace all uses of the old global with the new global
1702     llvm::Constant *NewPtrForOldDecl =
1703         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1704     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1705 
1706     // Erase the old global, since it is no longer used.
1707     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1708   }
1709 
1710   if (D->hasAttr<AnnotateAttr>())
1711     AddGlobalAnnotations(D, GV);
1712 
1713   GV->setInitializer(Init);
1714 
1715   // If it is safe to mark the global 'constant', do so now.
1716   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1717                   isTypeConstant(D->getType(), true));
1718 
1719   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1720 
1721   // Set the llvm linkage type as appropriate.
1722   llvm::GlobalValue::LinkageTypes Linkage =
1723     GetLLVMLinkageVarDefinition(D, GV);
1724   GV->setLinkage(Linkage);
1725   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1726     // common vars aren't constant even if declared const.
1727     GV->setConstant(false);
1728 
1729   SetCommonAttributes(D, GV);
1730 
1731   // Emit the initializer function if necessary.
1732   if (NeedsGlobalCtor || NeedsGlobalDtor)
1733     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1734 
1735   // If we are compiling with ASan, add metadata indicating dynamically
1736   // initialized globals.
1737   if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1738     llvm::Module &M = getModule();
1739 
1740     llvm::NamedMDNode *DynamicInitializers =
1741         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1742     llvm::Value *GlobalToAdd[] = { GV };
1743     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1744     DynamicInitializers->addOperand(ThisGlobal);
1745   }
1746 
1747   // Emit global variable debug information.
1748   if (CGDebugInfo *DI = getModuleDebugInfo())
1749     if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1750       DI->EmitGlobalVariable(GV, D);
1751 }
1752 
1753 llvm::GlobalValue::LinkageTypes
1754 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1755                                            llvm::GlobalVariable *GV) {
1756   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1757   if (Linkage == GVA_Internal)
1758     return llvm::Function::InternalLinkage;
1759   else if (D->hasAttr<DLLImportAttr>())
1760     return llvm::Function::DLLImportLinkage;
1761   else if (D->hasAttr<DLLExportAttr>())
1762     return llvm::Function::DLLExportLinkage;
1763   else if (D->hasAttr<WeakAttr>()) {
1764     if (GV->isConstant())
1765       return llvm::GlobalVariable::WeakODRLinkage;
1766     else
1767       return llvm::GlobalVariable::WeakAnyLinkage;
1768   } else if (Linkage == GVA_TemplateInstantiation ||
1769              Linkage == GVA_ExplicitTemplateInstantiation)
1770     return llvm::GlobalVariable::WeakODRLinkage;
1771   else if (!getLangOpts().CPlusPlus &&
1772            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1773              D->getAttr<CommonAttr>()) &&
1774            !D->hasExternalStorage() && !D->getInit() &&
1775            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1776            !D->getAttr<WeakImportAttr>()) {
1777     // Thread local vars aren't considered common linkage.
1778     return llvm::GlobalVariable::CommonLinkage;
1779   }
1780   return llvm::GlobalVariable::ExternalLinkage;
1781 }
1782 
1783 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1784 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1785 /// existing call uses of the old function in the module, this adjusts them to
1786 /// call the new function directly.
1787 ///
1788 /// This is not just a cleanup: the always_inline pass requires direct calls to
1789 /// functions to be able to inline them.  If there is a bitcast in the way, it
1790 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1791 /// run at -O0.
1792 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1793                                                       llvm::Function *NewFn) {
1794   // If we're redefining a global as a function, don't transform it.
1795   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1796   if (OldFn == 0) return;
1797 
1798   llvm::Type *NewRetTy = NewFn->getReturnType();
1799   SmallVector<llvm::Value*, 4> ArgList;
1800 
1801   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1802        UI != E; ) {
1803     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1804     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1805     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1806     if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1807     llvm::CallSite CS(CI);
1808     if (!CI || !CS.isCallee(I)) continue;
1809 
1810     // If the return types don't match exactly, and if the call isn't dead, then
1811     // we can't transform this call.
1812     if (CI->getType() != NewRetTy && !CI->use_empty())
1813       continue;
1814 
1815     // Get the attribute list.
1816     llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1817     llvm::AttrListPtr AttrList = CI->getAttributes();
1818 
1819     // Get any return attributes.
1820     llvm::Attributes RAttrs = AttrList.getRetAttributes();
1821 
1822     // Add the return attributes.
1823     if (RAttrs)
1824       AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1825 
1826     // If the function was passed too few arguments, don't transform.  If extra
1827     // arguments were passed, we silently drop them.  If any of the types
1828     // mismatch, we don't transform.
1829     unsigned ArgNo = 0;
1830     bool DontTransform = false;
1831     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1832          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1833       if (CS.arg_size() == ArgNo ||
1834           CS.getArgument(ArgNo)->getType() != AI->getType()) {
1835         DontTransform = true;
1836         break;
1837       }
1838 
1839       // Add any parameter attributes.
1840       if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1841         AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1842     }
1843     if (DontTransform)
1844       continue;
1845 
1846     if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1847       AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1848 
1849     // Okay, we can transform this.  Create the new call instruction and copy
1850     // over the required information.
1851     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1852     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1853     ArgList.clear();
1854     if (!NewCall->getType()->isVoidTy())
1855       NewCall->takeName(CI);
1856     NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1857     NewCall->setCallingConv(CI->getCallingConv());
1858 
1859     // Finally, remove the old call, replacing any uses with the new one.
1860     if (!CI->use_empty())
1861       CI->replaceAllUsesWith(NewCall);
1862 
1863     // Copy debug location attached to CI.
1864     if (!CI->getDebugLoc().isUnknown())
1865       NewCall->setDebugLoc(CI->getDebugLoc());
1866     CI->eraseFromParent();
1867   }
1868 }
1869 
1870 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1871   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1872   // If we have a definition, this might be a deferred decl. If the
1873   // instantiation is explicit, make sure we emit it at the end.
1874   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1875     GetAddrOfGlobalVar(VD);
1876 }
1877 
1878 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1879   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1880 
1881   // Compute the function info and LLVM type.
1882   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1883   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1884 
1885   // Get or create the prototype for the function.
1886   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1887 
1888   // Strip off a bitcast if we got one back.
1889   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1890     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1891     Entry = CE->getOperand(0);
1892   }
1893 
1894 
1895   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1896     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1897 
1898     // If the types mismatch then we have to rewrite the definition.
1899     assert(OldFn->isDeclaration() &&
1900            "Shouldn't replace non-declaration");
1901 
1902     // F is the Function* for the one with the wrong type, we must make a new
1903     // Function* and update everything that used F (a declaration) with the new
1904     // Function* (which will be a definition).
1905     //
1906     // This happens if there is a prototype for a function
1907     // (e.g. "int f()") and then a definition of a different type
1908     // (e.g. "int f(int x)").  Move the old function aside so that it
1909     // doesn't interfere with GetAddrOfFunction.
1910     OldFn->setName(StringRef());
1911     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1912 
1913     // If this is an implementation of a function without a prototype, try to
1914     // replace any existing uses of the function (which may be calls) with uses
1915     // of the new function
1916     if (D->getType()->isFunctionNoProtoType()) {
1917       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1918       OldFn->removeDeadConstantUsers();
1919     }
1920 
1921     // Replace uses of F with the Function we will endow with a body.
1922     if (!Entry->use_empty()) {
1923       llvm::Constant *NewPtrForOldDecl =
1924         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1925       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1926     }
1927 
1928     // Ok, delete the old function now, which is dead.
1929     OldFn->eraseFromParent();
1930 
1931     Entry = NewFn;
1932   }
1933 
1934   // We need to set linkage and visibility on the function before
1935   // generating code for it because various parts of IR generation
1936   // want to propagate this information down (e.g. to local static
1937   // declarations).
1938   llvm::Function *Fn = cast<llvm::Function>(Entry);
1939   setFunctionLinkage(D, Fn);
1940 
1941   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1942   setGlobalVisibility(Fn, D);
1943 
1944   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1945 
1946   SetFunctionDefinitionAttributes(D, Fn);
1947   SetLLVMFunctionAttributesForDefinition(D, Fn);
1948 
1949   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1950     AddGlobalCtor(Fn, CA->getPriority());
1951   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1952     AddGlobalDtor(Fn, DA->getPriority());
1953   if (D->hasAttr<AnnotateAttr>())
1954     AddGlobalAnnotations(D, Fn);
1955 }
1956 
1957 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1958   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1959   const AliasAttr *AA = D->getAttr<AliasAttr>();
1960   assert(AA && "Not an alias?");
1961 
1962   StringRef MangledName = getMangledName(GD);
1963 
1964   // If there is a definition in the module, then it wins over the alias.
1965   // This is dubious, but allow it to be safe.  Just ignore the alias.
1966   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1967   if (Entry && !Entry->isDeclaration())
1968     return;
1969 
1970   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1971 
1972   // Create a reference to the named value.  This ensures that it is emitted
1973   // if a deferred decl.
1974   llvm::Constant *Aliasee;
1975   if (isa<llvm::FunctionType>(DeclTy))
1976     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1977                                       /*ForVTable=*/false);
1978   else
1979     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1980                                     llvm::PointerType::getUnqual(DeclTy), 0);
1981 
1982   // Create the new alias itself, but don't set a name yet.
1983   llvm::GlobalValue *GA =
1984     new llvm::GlobalAlias(Aliasee->getType(),
1985                           llvm::Function::ExternalLinkage,
1986                           "", Aliasee, &getModule());
1987 
1988   if (Entry) {
1989     assert(Entry->isDeclaration());
1990 
1991     // If there is a declaration in the module, then we had an extern followed
1992     // by the alias, as in:
1993     //   extern int test6();
1994     //   ...
1995     //   int test6() __attribute__((alias("test7")));
1996     //
1997     // Remove it and replace uses of it with the alias.
1998     GA->takeName(Entry);
1999 
2000     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2001                                                           Entry->getType()));
2002     Entry->eraseFromParent();
2003   } else {
2004     GA->setName(MangledName);
2005   }
2006 
2007   // Set attributes which are particular to an alias; this is a
2008   // specialization of the attributes which may be set on a global
2009   // variable/function.
2010   if (D->hasAttr<DLLExportAttr>()) {
2011     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2012       // The dllexport attribute is ignored for undefined symbols.
2013       if (FD->hasBody())
2014         GA->setLinkage(llvm::Function::DLLExportLinkage);
2015     } else {
2016       GA->setLinkage(llvm::Function::DLLExportLinkage);
2017     }
2018   } else if (D->hasAttr<WeakAttr>() ||
2019              D->hasAttr<WeakRefAttr>() ||
2020              D->isWeakImported()) {
2021     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2022   }
2023 
2024   SetCommonAttributes(D, GA);
2025 }
2026 
2027 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2028                                             ArrayRef<llvm::Type*> Tys) {
2029   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2030                                          Tys);
2031 }
2032 
2033 static llvm::StringMapEntry<llvm::Constant*> &
2034 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2035                          const StringLiteral *Literal,
2036                          bool TargetIsLSB,
2037                          bool &IsUTF16,
2038                          unsigned &StringLength) {
2039   StringRef String = Literal->getString();
2040   unsigned NumBytes = String.size();
2041 
2042   // Check for simple case.
2043   if (!Literal->containsNonAsciiOrNull()) {
2044     StringLength = NumBytes;
2045     return Map.GetOrCreateValue(String);
2046   }
2047 
2048   // Otherwise, convert the UTF8 literals into a string of shorts.
2049   IsUTF16 = true;
2050 
2051   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2052   const UTF8 *FromPtr = (const UTF8 *)String.data();
2053   UTF16 *ToPtr = &ToBuf[0];
2054 
2055   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2056                            &ToPtr, ToPtr + NumBytes,
2057                            strictConversion);
2058 
2059   // ConvertUTF8toUTF16 returns the length in ToPtr.
2060   StringLength = ToPtr - &ToBuf[0];
2061 
2062   // Add an explicit null.
2063   *ToPtr = 0;
2064   return Map.
2065     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2066                                (StringLength + 1) * 2));
2067 }
2068 
2069 static llvm::StringMapEntry<llvm::Constant*> &
2070 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2071                        const StringLiteral *Literal,
2072                        unsigned &StringLength) {
2073   StringRef String = Literal->getString();
2074   StringLength = String.size();
2075   return Map.GetOrCreateValue(String);
2076 }
2077 
2078 llvm::Constant *
2079 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2080   unsigned StringLength = 0;
2081   bool isUTF16 = false;
2082   llvm::StringMapEntry<llvm::Constant*> &Entry =
2083     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2084                              getDataLayout().isLittleEndian(),
2085                              isUTF16, StringLength);
2086 
2087   if (llvm::Constant *C = Entry.getValue())
2088     return C;
2089 
2090   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2091   llvm::Constant *Zeros[] = { Zero, Zero };
2092 
2093   // If we don't already have it, get __CFConstantStringClassReference.
2094   if (!CFConstantStringClassRef) {
2095     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2096     Ty = llvm::ArrayType::get(Ty, 0);
2097     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2098                                            "__CFConstantStringClassReference");
2099     // Decay array -> ptr
2100     CFConstantStringClassRef =
2101       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2102   }
2103 
2104   QualType CFTy = getContext().getCFConstantStringType();
2105 
2106   llvm::StructType *STy =
2107     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2108 
2109   llvm::Constant *Fields[4];
2110 
2111   // Class pointer.
2112   Fields[0] = CFConstantStringClassRef;
2113 
2114   // Flags.
2115   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2116   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2117     llvm::ConstantInt::get(Ty, 0x07C8);
2118 
2119   // String pointer.
2120   llvm::Constant *C = 0;
2121   if (isUTF16) {
2122     ArrayRef<uint16_t> Arr =
2123       llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2124                                    Entry.getKey().size() / 2);
2125     C = llvm::ConstantDataArray::get(VMContext, Arr);
2126   } else {
2127     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2128   }
2129 
2130   llvm::GlobalValue::LinkageTypes Linkage;
2131   if (isUTF16)
2132     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2133     Linkage = llvm::GlobalValue::InternalLinkage;
2134   else
2135     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2136     // when using private linkage. It is not clear if this is a bug in ld
2137     // or a reasonable new restriction.
2138     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2139 
2140   // Note: -fwritable-strings doesn't make the backing store strings of
2141   // CFStrings writable. (See <rdar://problem/10657500>)
2142   llvm::GlobalVariable *GV =
2143     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2144                              Linkage, C, ".str");
2145   GV->setUnnamedAddr(true);
2146   if (isUTF16) {
2147     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2148     GV->setAlignment(Align.getQuantity());
2149   } else {
2150     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2151     GV->setAlignment(Align.getQuantity());
2152   }
2153 
2154   // String.
2155   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2156 
2157   if (isUTF16)
2158     // Cast the UTF16 string to the correct type.
2159     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2160 
2161   // String length.
2162   Ty = getTypes().ConvertType(getContext().LongTy);
2163   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2164 
2165   // The struct.
2166   C = llvm::ConstantStruct::get(STy, Fields);
2167   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2168                                 llvm::GlobalVariable::PrivateLinkage, C,
2169                                 "_unnamed_cfstring_");
2170   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2171     GV->setSection(Sect);
2172   Entry.setValue(GV);
2173 
2174   return GV;
2175 }
2176 
2177 static RecordDecl *
2178 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2179                  DeclContext *DC, IdentifierInfo *Id) {
2180   SourceLocation Loc;
2181   if (Ctx.getLangOpts().CPlusPlus)
2182     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2183   else
2184     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2185 }
2186 
2187 llvm::Constant *
2188 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2189   unsigned StringLength = 0;
2190   llvm::StringMapEntry<llvm::Constant*> &Entry =
2191     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2192 
2193   if (llvm::Constant *C = Entry.getValue())
2194     return C;
2195 
2196   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2197   llvm::Constant *Zeros[] = { Zero, Zero };
2198 
2199   // If we don't already have it, get _NSConstantStringClassReference.
2200   if (!ConstantStringClassRef) {
2201     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2202     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2203     llvm::Constant *GV;
2204     if (LangOpts.ObjCRuntime.isNonFragile()) {
2205       std::string str =
2206         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2207                             : "OBJC_CLASS_$_" + StringClass;
2208       GV = getObjCRuntime().GetClassGlobal(str);
2209       // Make sure the result is of the correct type.
2210       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2211       ConstantStringClassRef =
2212         llvm::ConstantExpr::getBitCast(GV, PTy);
2213     } else {
2214       std::string str =
2215         StringClass.empty() ? "_NSConstantStringClassReference"
2216                             : "_" + StringClass + "ClassReference";
2217       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2218       GV = CreateRuntimeVariable(PTy, str);
2219       // Decay array -> ptr
2220       ConstantStringClassRef =
2221         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2222     }
2223   }
2224 
2225   if (!NSConstantStringType) {
2226     // Construct the type for a constant NSString.
2227     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2228                                      Context.getTranslationUnitDecl(),
2229                                    &Context.Idents.get("__builtin_NSString"));
2230     D->startDefinition();
2231 
2232     QualType FieldTypes[3];
2233 
2234     // const int *isa;
2235     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2236     // const char *str;
2237     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2238     // unsigned int length;
2239     FieldTypes[2] = Context.UnsignedIntTy;
2240 
2241     // Create fields
2242     for (unsigned i = 0; i < 3; ++i) {
2243       FieldDecl *Field = FieldDecl::Create(Context, D,
2244                                            SourceLocation(),
2245                                            SourceLocation(), 0,
2246                                            FieldTypes[i], /*TInfo=*/0,
2247                                            /*BitWidth=*/0,
2248                                            /*Mutable=*/false,
2249                                            ICIS_NoInit);
2250       Field->setAccess(AS_public);
2251       D->addDecl(Field);
2252     }
2253 
2254     D->completeDefinition();
2255     QualType NSTy = Context.getTagDeclType(D);
2256     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2257   }
2258 
2259   llvm::Constant *Fields[3];
2260 
2261   // Class pointer.
2262   Fields[0] = ConstantStringClassRef;
2263 
2264   // String pointer.
2265   llvm::Constant *C =
2266     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2267 
2268   llvm::GlobalValue::LinkageTypes Linkage;
2269   bool isConstant;
2270   Linkage = llvm::GlobalValue::PrivateLinkage;
2271   isConstant = !LangOpts.WritableStrings;
2272 
2273   llvm::GlobalVariable *GV =
2274   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2275                            ".str");
2276   GV->setUnnamedAddr(true);
2277   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2278   GV->setAlignment(Align.getQuantity());
2279   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2280 
2281   // String length.
2282   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2283   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2284 
2285   // The struct.
2286   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2287   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2288                                 llvm::GlobalVariable::PrivateLinkage, C,
2289                                 "_unnamed_nsstring_");
2290   // FIXME. Fix section.
2291   if (const char *Sect =
2292         LangOpts.ObjCRuntime.isNonFragile()
2293           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2294           : getContext().getTargetInfo().getNSStringSection())
2295     GV->setSection(Sect);
2296   Entry.setValue(GV);
2297 
2298   return GV;
2299 }
2300 
2301 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2302   if (ObjCFastEnumerationStateType.isNull()) {
2303     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2304                                      Context.getTranslationUnitDecl(),
2305                       &Context.Idents.get("__objcFastEnumerationState"));
2306     D->startDefinition();
2307 
2308     QualType FieldTypes[] = {
2309       Context.UnsignedLongTy,
2310       Context.getPointerType(Context.getObjCIdType()),
2311       Context.getPointerType(Context.UnsignedLongTy),
2312       Context.getConstantArrayType(Context.UnsignedLongTy,
2313                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2314     };
2315 
2316     for (size_t i = 0; i < 4; ++i) {
2317       FieldDecl *Field = FieldDecl::Create(Context,
2318                                            D,
2319                                            SourceLocation(),
2320                                            SourceLocation(), 0,
2321                                            FieldTypes[i], /*TInfo=*/0,
2322                                            /*BitWidth=*/0,
2323                                            /*Mutable=*/false,
2324                                            ICIS_NoInit);
2325       Field->setAccess(AS_public);
2326       D->addDecl(Field);
2327     }
2328 
2329     D->completeDefinition();
2330     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2331   }
2332 
2333   return ObjCFastEnumerationStateType;
2334 }
2335 
2336 llvm::Constant *
2337 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2338   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2339 
2340   // Don't emit it as the address of the string, emit the string data itself
2341   // as an inline array.
2342   if (E->getCharByteWidth() == 1) {
2343     SmallString<64> Str(E->getString());
2344 
2345     // Resize the string to the right size, which is indicated by its type.
2346     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2347     Str.resize(CAT->getSize().getZExtValue());
2348     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2349   }
2350 
2351   llvm::ArrayType *AType =
2352     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2353   llvm::Type *ElemTy = AType->getElementType();
2354   unsigned NumElements = AType->getNumElements();
2355 
2356   // Wide strings have either 2-byte or 4-byte elements.
2357   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2358     SmallVector<uint16_t, 32> Elements;
2359     Elements.reserve(NumElements);
2360 
2361     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2362       Elements.push_back(E->getCodeUnit(i));
2363     Elements.resize(NumElements);
2364     return llvm::ConstantDataArray::get(VMContext, Elements);
2365   }
2366 
2367   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2368   SmallVector<uint32_t, 32> Elements;
2369   Elements.reserve(NumElements);
2370 
2371   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2372     Elements.push_back(E->getCodeUnit(i));
2373   Elements.resize(NumElements);
2374   return llvm::ConstantDataArray::get(VMContext, Elements);
2375 }
2376 
2377 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2378 /// constant array for the given string literal.
2379 llvm::Constant *
2380 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2381   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2382   if (S->isAscii() || S->isUTF8()) {
2383     SmallString<64> Str(S->getString());
2384 
2385     // Resize the string to the right size, which is indicated by its type.
2386     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2387     Str.resize(CAT->getSize().getZExtValue());
2388     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2389   }
2390 
2391   // FIXME: the following does not memoize wide strings.
2392   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2393   llvm::GlobalVariable *GV =
2394     new llvm::GlobalVariable(getModule(),C->getType(),
2395                              !LangOpts.WritableStrings,
2396                              llvm::GlobalValue::PrivateLinkage,
2397                              C,".str");
2398 
2399   GV->setAlignment(Align.getQuantity());
2400   GV->setUnnamedAddr(true);
2401   return GV;
2402 }
2403 
2404 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2405 /// array for the given ObjCEncodeExpr node.
2406 llvm::Constant *
2407 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2408   std::string Str;
2409   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2410 
2411   return GetAddrOfConstantCString(Str);
2412 }
2413 
2414 
2415 /// GenerateWritableString -- Creates storage for a string literal.
2416 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2417                                              bool constant,
2418                                              CodeGenModule &CGM,
2419                                              const char *GlobalName,
2420                                              unsigned Alignment) {
2421   // Create Constant for this string literal. Don't add a '\0'.
2422   llvm::Constant *C =
2423       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2424 
2425   // Create a global variable for this string
2426   llvm::GlobalVariable *GV =
2427     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2428                              llvm::GlobalValue::PrivateLinkage,
2429                              C, GlobalName);
2430   GV->setAlignment(Alignment);
2431   GV->setUnnamedAddr(true);
2432   return GV;
2433 }
2434 
2435 /// GetAddrOfConstantString - Returns a pointer to a character array
2436 /// containing the literal. This contents are exactly that of the
2437 /// given string, i.e. it will not be null terminated automatically;
2438 /// see GetAddrOfConstantCString. Note that whether the result is
2439 /// actually a pointer to an LLVM constant depends on
2440 /// Feature.WriteableStrings.
2441 ///
2442 /// The result has pointer to array type.
2443 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2444                                                        const char *GlobalName,
2445                                                        unsigned Alignment) {
2446   // Get the default prefix if a name wasn't specified.
2447   if (!GlobalName)
2448     GlobalName = ".str";
2449 
2450   // Don't share any string literals if strings aren't constant.
2451   if (LangOpts.WritableStrings)
2452     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2453 
2454   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2455     ConstantStringMap.GetOrCreateValue(Str);
2456 
2457   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2458     if (Alignment > GV->getAlignment()) {
2459       GV->setAlignment(Alignment);
2460     }
2461     return GV;
2462   }
2463 
2464   // Create a global variable for this.
2465   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2466                                                    Alignment);
2467   Entry.setValue(GV);
2468   return GV;
2469 }
2470 
2471 /// GetAddrOfConstantCString - Returns a pointer to a character
2472 /// array containing the literal and a terminating '\0'
2473 /// character. The result has pointer to array type.
2474 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2475                                                         const char *GlobalName,
2476                                                         unsigned Alignment) {
2477   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2478   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2479 }
2480 
2481 /// EmitObjCPropertyImplementations - Emit information for synthesized
2482 /// properties for an implementation.
2483 void CodeGenModule::EmitObjCPropertyImplementations(const
2484                                                     ObjCImplementationDecl *D) {
2485   for (ObjCImplementationDecl::propimpl_iterator
2486          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2487     ObjCPropertyImplDecl *PID = *i;
2488 
2489     // Dynamic is just for type-checking.
2490     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2491       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2492 
2493       // Determine which methods need to be implemented, some may have
2494       // been overridden. Note that ::isPropertyAccessor is not the method
2495       // we want, that just indicates if the decl came from a
2496       // property. What we want to know is if the method is defined in
2497       // this implementation.
2498       if (!D->getInstanceMethod(PD->getGetterName()))
2499         CodeGenFunction(*this).GenerateObjCGetter(
2500                                  const_cast<ObjCImplementationDecl *>(D), PID);
2501       if (!PD->isReadOnly() &&
2502           !D->getInstanceMethod(PD->getSetterName()))
2503         CodeGenFunction(*this).GenerateObjCSetter(
2504                                  const_cast<ObjCImplementationDecl *>(D), PID);
2505     }
2506   }
2507 }
2508 
2509 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2510   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2511   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2512        ivar; ivar = ivar->getNextIvar())
2513     if (ivar->getType().isDestructedType())
2514       return true;
2515 
2516   return false;
2517 }
2518 
2519 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2520 /// for an implementation.
2521 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2522   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2523   if (needsDestructMethod(D)) {
2524     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2525     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2526     ObjCMethodDecl *DTORMethod =
2527       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2528                              cxxSelector, getContext().VoidTy, 0, D,
2529                              /*isInstance=*/true, /*isVariadic=*/false,
2530                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2531                              /*isDefined=*/false, ObjCMethodDecl::Required);
2532     D->addInstanceMethod(DTORMethod);
2533     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2534     D->setHasCXXStructors(true);
2535   }
2536 
2537   // If the implementation doesn't have any ivar initializers, we don't need
2538   // a .cxx_construct.
2539   if (D->getNumIvarInitializers() == 0)
2540     return;
2541 
2542   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2543   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2544   // The constructor returns 'self'.
2545   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2546                                                 D->getLocation(),
2547                                                 D->getLocation(),
2548                                                 cxxSelector,
2549                                                 getContext().getObjCIdType(), 0,
2550                                                 D, /*isInstance=*/true,
2551                                                 /*isVariadic=*/false,
2552                                                 /*isPropertyAccessor=*/true,
2553                                                 /*isImplicitlyDeclared=*/true,
2554                                                 /*isDefined=*/false,
2555                                                 ObjCMethodDecl::Required);
2556   D->addInstanceMethod(CTORMethod);
2557   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2558   D->setHasCXXStructors(true);
2559 }
2560 
2561 /// EmitNamespace - Emit all declarations in a namespace.
2562 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2563   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2564        I != E; ++I)
2565     EmitTopLevelDecl(*I);
2566 }
2567 
2568 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2569 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2570   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2571       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2572     ErrorUnsupported(LSD, "linkage spec");
2573     return;
2574   }
2575 
2576   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2577        I != E; ++I)
2578     EmitTopLevelDecl(*I);
2579 }
2580 
2581 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2582 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2583   // If an error has occurred, stop code generation, but continue
2584   // parsing and semantic analysis (to ensure all warnings and errors
2585   // are emitted).
2586   if (Diags.hasErrorOccurred())
2587     return;
2588 
2589   // Ignore dependent declarations.
2590   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2591     return;
2592 
2593   switch (D->getKind()) {
2594   case Decl::CXXConversion:
2595   case Decl::CXXMethod:
2596   case Decl::Function:
2597     // Skip function templates
2598     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2599         cast<FunctionDecl>(D)->isLateTemplateParsed())
2600       return;
2601 
2602     EmitGlobal(cast<FunctionDecl>(D));
2603     break;
2604 
2605   case Decl::Var:
2606     EmitGlobal(cast<VarDecl>(D));
2607     break;
2608 
2609   // Indirect fields from global anonymous structs and unions can be
2610   // ignored; only the actual variable requires IR gen support.
2611   case Decl::IndirectField:
2612     break;
2613 
2614   // C++ Decls
2615   case Decl::Namespace:
2616     EmitNamespace(cast<NamespaceDecl>(D));
2617     break;
2618     // No code generation needed.
2619   case Decl::UsingShadow:
2620   case Decl::Using:
2621   case Decl::UsingDirective:
2622   case Decl::ClassTemplate:
2623   case Decl::FunctionTemplate:
2624   case Decl::TypeAliasTemplate:
2625   case Decl::NamespaceAlias:
2626   case Decl::Block:
2627   case Decl::Import:
2628     break;
2629   case Decl::CXXConstructor:
2630     // Skip function templates
2631     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2632         cast<FunctionDecl>(D)->isLateTemplateParsed())
2633       return;
2634 
2635     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2636     break;
2637   case Decl::CXXDestructor:
2638     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2639       return;
2640     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2641     break;
2642 
2643   case Decl::StaticAssert:
2644     // Nothing to do.
2645     break;
2646 
2647   // Objective-C Decls
2648 
2649   // Forward declarations, no (immediate) code generation.
2650   case Decl::ObjCInterface:
2651   case Decl::ObjCCategory:
2652     break;
2653 
2654   case Decl::ObjCProtocol: {
2655     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2656     if (Proto->isThisDeclarationADefinition())
2657       ObjCRuntime->GenerateProtocol(Proto);
2658     break;
2659   }
2660 
2661   case Decl::ObjCCategoryImpl:
2662     // Categories have properties but don't support synthesize so we
2663     // can ignore them here.
2664     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2665     break;
2666 
2667   case Decl::ObjCImplementation: {
2668     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2669     EmitObjCPropertyImplementations(OMD);
2670     EmitObjCIvarInitializations(OMD);
2671     ObjCRuntime->GenerateClass(OMD);
2672     // Emit global variable debug information.
2673     if (CGDebugInfo *DI = getModuleDebugInfo())
2674       DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2675 				   OMD->getLocation());
2676 
2677     break;
2678   }
2679   case Decl::ObjCMethod: {
2680     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2681     // If this is not a prototype, emit the body.
2682     if (OMD->getBody())
2683       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2684     break;
2685   }
2686   case Decl::ObjCCompatibleAlias:
2687     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2688     break;
2689 
2690   case Decl::LinkageSpec:
2691     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2692     break;
2693 
2694   case Decl::FileScopeAsm: {
2695     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2696     StringRef AsmString = AD->getAsmString()->getString();
2697 
2698     const std::string &S = getModule().getModuleInlineAsm();
2699     if (S.empty())
2700       getModule().setModuleInlineAsm(AsmString);
2701     else if (S.end()[-1] == '\n')
2702       getModule().setModuleInlineAsm(S + AsmString.str());
2703     else
2704       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2705     break;
2706   }
2707 
2708   default:
2709     // Make sure we handled everything we should, every other kind is a
2710     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2711     // function. Need to recode Decl::Kind to do that easily.
2712     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2713   }
2714 }
2715 
2716 /// Turns the given pointer into a constant.
2717 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2718                                           const void *Ptr) {
2719   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2720   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2721   return llvm::ConstantInt::get(i64, PtrInt);
2722 }
2723 
2724 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2725                                    llvm::NamedMDNode *&GlobalMetadata,
2726                                    GlobalDecl D,
2727                                    llvm::GlobalValue *Addr) {
2728   if (!GlobalMetadata)
2729     GlobalMetadata =
2730       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2731 
2732   // TODO: should we report variant information for ctors/dtors?
2733   llvm::Value *Ops[] = {
2734     Addr,
2735     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2736   };
2737   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2738 }
2739 
2740 /// Emits metadata nodes associating all the global values in the
2741 /// current module with the Decls they came from.  This is useful for
2742 /// projects using IR gen as a subroutine.
2743 ///
2744 /// Since there's currently no way to associate an MDNode directly
2745 /// with an llvm::GlobalValue, we create a global named metadata
2746 /// with the name 'clang.global.decl.ptrs'.
2747 void CodeGenModule::EmitDeclMetadata() {
2748   llvm::NamedMDNode *GlobalMetadata = 0;
2749 
2750   // StaticLocalDeclMap
2751   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2752          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2753        I != E; ++I) {
2754     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2755     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2756   }
2757 }
2758 
2759 /// Emits metadata nodes for all the local variables in the current
2760 /// function.
2761 void CodeGenFunction::EmitDeclMetadata() {
2762   if (LocalDeclMap.empty()) return;
2763 
2764   llvm::LLVMContext &Context = getLLVMContext();
2765 
2766   // Find the unique metadata ID for this name.
2767   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2768 
2769   llvm::NamedMDNode *GlobalMetadata = 0;
2770 
2771   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2772          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2773     const Decl *D = I->first;
2774     llvm::Value *Addr = I->second;
2775 
2776     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2777       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2778       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2779     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2780       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2781       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2782     }
2783   }
2784 }
2785 
2786 void CodeGenModule::EmitCoverageFile() {
2787   if (!getCodeGenOpts().CoverageFile.empty()) {
2788     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2789       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2790       llvm::LLVMContext &Ctx = TheModule.getContext();
2791       llvm::MDString *CoverageFile =
2792           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2793       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2794         llvm::MDNode *CU = CUNode->getOperand(i);
2795         llvm::Value *node[] = { CoverageFile, CU };
2796         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2797         GCov->addOperand(N);
2798       }
2799     }
2800   }
2801 }
2802 
2803 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2804                                                      QualType GuidType) {
2805   // Sema has checked that all uuid strings are of the form
2806   // "12345678-1234-1234-1234-1234567890ab".
2807   assert(Uuid.size() == 36);
2808   const char *Uuidstr = Uuid.data();
2809   for (int i = 0; i < 36; ++i) {
2810     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2811     else                                         assert(isxdigit(Uuidstr[i]));
2812   }
2813 
2814   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2815   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2816   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2817   llvm::APInt Field3Values[] = {
2818     llvm::APInt(8, StringRef(Uuidstr + 19, 2), 16),
2819     llvm::APInt(8, StringRef(Uuidstr + 21, 2), 16),
2820     llvm::APInt(8, StringRef(Uuidstr + 24, 2), 16),
2821     llvm::APInt(8, StringRef(Uuidstr + 26, 2), 16),
2822     llvm::APInt(8, StringRef(Uuidstr + 28, 2), 16),
2823     llvm::APInt(8, StringRef(Uuidstr + 30, 2), 16),
2824     llvm::APInt(8, StringRef(Uuidstr + 32, 2), 16),
2825     llvm::APInt(8, StringRef(Uuidstr + 34, 2), 16),
2826   };
2827 
2828   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2829   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2830   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2831   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2832   APValue& Arr = InitStruct.getStructField(3);
2833   Arr = APValue(APValue::UninitArray(), 8, 8);
2834   for (int t = 0; t < 8; ++t)
2835     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(Field3Values[t]));
2836 
2837   return EmitConstantValue(InitStruct, GuidType);
2838 }
2839