1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGCall.h" 18 #include "CGDebugInfo.h" 19 #include "CGObjCRuntime.h" 20 #include "CGOpenCLRuntime.h" 21 #include "CGOpenMPRuntime.h" 22 #include "CodeGenFunction.h" 23 #include "CodeGenPGO.h" 24 #include "CodeGenTBAA.h" 25 #include "TargetInfo.h" 26 #include "clang/AST/ASTContext.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/DeclCXX.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclTemplate.h" 31 #include "clang/AST/Mangle.h" 32 #include "clang/AST/RecordLayout.h" 33 #include "clang/AST/RecursiveASTVisitor.h" 34 #include "clang/Basic/Builtins.h" 35 #include "clang/Basic/CharInfo.h" 36 #include "clang/Basic/Diagnostic.h" 37 #include "clang/Basic/Module.h" 38 #include "clang/Basic/SourceManager.h" 39 #include "clang/Basic/TargetInfo.h" 40 #include "clang/Basic/Version.h" 41 #include "clang/Frontend/CodeGenOptions.h" 42 #include "clang/Sema/SemaDiagnostic.h" 43 #include "llvm/ADT/APSInt.h" 44 #include "llvm/ADT/Triple.h" 45 #include "llvm/IR/CallSite.h" 46 #include "llvm/IR/CallingConv.h" 47 #include "llvm/IR/DataLayout.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/ProfileData/InstrProfReader.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ErrorHandling.h" 54 55 using namespace clang; 56 using namespace CodeGen; 57 58 static const char AnnotationSection[] = "llvm.metadata"; 59 60 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 61 switch (CGM.getTarget().getCXXABI().getKind()) { 62 case TargetCXXABI::GenericAArch64: 63 case TargetCXXABI::GenericARM: 64 case TargetCXXABI::iOS: 65 case TargetCXXABI::iOS64: 66 case TargetCXXABI::GenericItanium: 67 return CreateItaniumCXXABI(CGM); 68 case TargetCXXABI::Microsoft: 69 return CreateMicrosoftCXXABI(CGM); 70 } 71 72 llvm_unreachable("invalid C++ ABI kind"); 73 } 74 75 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 76 llvm::Module &M, const llvm::DataLayout &TD, 77 DiagnosticsEngine &diags) 78 : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M), 79 Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()), 80 ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(nullptr), 81 TheTargetCodeGenInfo(nullptr), Types(*this), VTables(*this), 82 ObjCRuntime(nullptr), OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), 83 CUDARuntime(nullptr), DebugInfo(nullptr), ARCData(nullptr), 84 NoObjCARCExceptionsMetadata(nullptr), RRData(nullptr), PGOReader(nullptr), 85 CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr), 86 NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr), 87 NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr), 88 BlockObjectDispose(nullptr), BlockDescriptorType(nullptr), 89 GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr), 90 LifetimeEndFn(nullptr), SanitizerBL(llvm::SpecialCaseList::createOrDie( 91 CGO.SanitizerBlacklistFile)) { 92 93 // Initialize the type cache. 94 llvm::LLVMContext &LLVMContext = M.getContext(); 95 VoidTy = llvm::Type::getVoidTy(LLVMContext); 96 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 97 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 98 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 99 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 100 FloatTy = llvm::Type::getFloatTy(LLVMContext); 101 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 102 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 103 PointerAlignInBytes = 104 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 105 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 106 IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits); 107 Int8PtrTy = Int8Ty->getPointerTo(0); 108 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 109 110 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 111 112 if (LangOpts.ObjC1) 113 createObjCRuntime(); 114 if (LangOpts.OpenCL) 115 createOpenCLRuntime(); 116 if (LangOpts.OpenMP) 117 createOpenMPRuntime(); 118 if (LangOpts.CUDA) 119 createCUDARuntime(); 120 121 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 122 if (LangOpts.Sanitize.Thread || 123 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 124 TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(), 125 getCXXABI().getMangleContext()); 126 127 // If debug info or coverage generation is enabled, create the CGDebugInfo 128 // object. 129 if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo || 130 CodeGenOpts.EmitGcovArcs || 131 CodeGenOpts.EmitGcovNotes) 132 DebugInfo = new CGDebugInfo(*this); 133 134 Block.GlobalUniqueCount = 0; 135 136 if (C.getLangOpts().ObjCAutoRefCount) 137 ARCData = new ARCEntrypoints(); 138 RRData = new RREntrypoints(); 139 140 if (!CodeGenOpts.InstrProfileInput.empty()) { 141 if (std::error_code EC = llvm::IndexedInstrProfReader::create( 142 CodeGenOpts.InstrProfileInput, PGOReader)) { 143 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 144 "Could not read profile: %0"); 145 getDiags().Report(DiagID) << EC.message(); 146 } 147 } 148 } 149 150 CodeGenModule::~CodeGenModule() { 151 delete ObjCRuntime; 152 delete OpenCLRuntime; 153 delete OpenMPRuntime; 154 delete CUDARuntime; 155 delete TheTargetCodeGenInfo; 156 delete TBAA; 157 delete DebugInfo; 158 delete ARCData; 159 delete RRData; 160 } 161 162 void CodeGenModule::createObjCRuntime() { 163 // This is just isGNUFamily(), but we want to force implementors of 164 // new ABIs to decide how best to do this. 165 switch (LangOpts.ObjCRuntime.getKind()) { 166 case ObjCRuntime::GNUstep: 167 case ObjCRuntime::GCC: 168 case ObjCRuntime::ObjFW: 169 ObjCRuntime = CreateGNUObjCRuntime(*this); 170 return; 171 172 case ObjCRuntime::FragileMacOSX: 173 case ObjCRuntime::MacOSX: 174 case ObjCRuntime::iOS: 175 ObjCRuntime = CreateMacObjCRuntime(*this); 176 return; 177 } 178 llvm_unreachable("bad runtime kind"); 179 } 180 181 void CodeGenModule::createOpenCLRuntime() { 182 OpenCLRuntime = new CGOpenCLRuntime(*this); 183 } 184 185 void CodeGenModule::createOpenMPRuntime() { 186 OpenMPRuntime = new CGOpenMPRuntime(*this); 187 } 188 189 void CodeGenModule::createCUDARuntime() { 190 CUDARuntime = CreateNVCUDARuntime(*this); 191 } 192 193 void CodeGenModule::applyReplacements() { 194 for (ReplacementsTy::iterator I = Replacements.begin(), 195 E = Replacements.end(); 196 I != E; ++I) { 197 StringRef MangledName = I->first(); 198 llvm::Constant *Replacement = I->second; 199 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 200 if (!Entry) 201 continue; 202 auto *OldF = cast<llvm::Function>(Entry); 203 auto *NewF = dyn_cast<llvm::Function>(Replacement); 204 if (!NewF) { 205 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 206 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 207 } else { 208 auto *CE = cast<llvm::ConstantExpr>(Replacement); 209 assert(CE->getOpcode() == llvm::Instruction::BitCast || 210 CE->getOpcode() == llvm::Instruction::GetElementPtr); 211 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 212 } 213 } 214 215 // Replace old with new, but keep the old order. 216 OldF->replaceAllUsesWith(Replacement); 217 if (NewF) { 218 NewF->removeFromParent(); 219 OldF->getParent()->getFunctionList().insertAfter(OldF, NewF); 220 } 221 OldF->eraseFromParent(); 222 } 223 } 224 225 // This is only used in aliases that we created and we know they have a 226 // linear structure. 227 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) { 228 llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited; 229 const llvm::Constant *C = &GA; 230 for (;;) { 231 C = C->stripPointerCasts(); 232 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 233 return GO; 234 // stripPointerCasts will not walk over weak aliases. 235 auto *GA2 = dyn_cast<llvm::GlobalAlias>(C); 236 if (!GA2) 237 return nullptr; 238 if (!Visited.insert(GA2)) 239 return nullptr; 240 C = GA2->getAliasee(); 241 } 242 } 243 244 void CodeGenModule::checkAliases() { 245 // Check if the constructed aliases are well formed. It is really unfortunate 246 // that we have to do this in CodeGen, but we only construct mangled names 247 // and aliases during codegen. 248 bool Error = false; 249 DiagnosticsEngine &Diags = getDiags(); 250 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 251 E = Aliases.end(); I != E; ++I) { 252 const GlobalDecl &GD = *I; 253 const auto *D = cast<ValueDecl>(GD.getDecl()); 254 const AliasAttr *AA = D->getAttr<AliasAttr>(); 255 StringRef MangledName = getMangledName(GD); 256 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 257 auto *Alias = cast<llvm::GlobalAlias>(Entry); 258 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 259 if (!GV) { 260 Error = true; 261 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 262 } else if (GV->isDeclaration()) { 263 Error = true; 264 Diags.Report(AA->getLocation(), diag::err_alias_to_undefined); 265 } 266 267 llvm::Constant *Aliasee = Alias->getAliasee(); 268 llvm::GlobalValue *AliaseeGV; 269 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 270 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 271 else 272 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 273 274 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 275 StringRef AliasSection = SA->getName(); 276 if (AliasSection != AliaseeGV->getSection()) 277 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 278 << AliasSection; 279 } 280 281 // We have to handle alias to weak aliases in here. LLVM itself disallows 282 // this since the object semantics would not match the IL one. For 283 // compatibility with gcc we implement it by just pointing the alias 284 // to its aliasee's aliasee. We also warn, since the user is probably 285 // expecting the link to be weak. 286 if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 287 if (GA->mayBeOverridden()) { 288 Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias) 289 << GV->getName() << GA->getName(); 290 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 291 GA->getAliasee(), Alias->getType()); 292 Alias->setAliasee(Aliasee); 293 } 294 } 295 } 296 if (!Error) 297 return; 298 299 for (std::vector<GlobalDecl>::iterator I = Aliases.begin(), 300 E = Aliases.end(); I != E; ++I) { 301 const GlobalDecl &GD = *I; 302 StringRef MangledName = getMangledName(GD); 303 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 304 auto *Alias = cast<llvm::GlobalAlias>(Entry); 305 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 306 Alias->eraseFromParent(); 307 } 308 } 309 310 void CodeGenModule::clear() { 311 DeferredDeclsToEmit.clear(); 312 } 313 314 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 315 StringRef MainFile) { 316 if (!hasDiagnostics()) 317 return; 318 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 319 if (MainFile.empty()) 320 MainFile = "<stdin>"; 321 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 322 } else 323 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing 324 << Mismatched; 325 } 326 327 void CodeGenModule::Release() { 328 EmitDeferred(); 329 applyReplacements(); 330 checkAliases(); 331 EmitCXXGlobalInitFunc(); 332 EmitCXXGlobalDtorFunc(); 333 EmitCXXThreadLocalInitFunc(); 334 if (ObjCRuntime) 335 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 336 AddGlobalCtor(ObjCInitFunction); 337 if (getCodeGenOpts().ProfileInstrGenerate) 338 if (llvm::Function *PGOInit = CodeGenPGO::emitInitialization(*this)) 339 AddGlobalCtor(PGOInit, 0); 340 if (PGOReader && PGOStats.hasDiagnostics()) 341 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 342 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 343 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 344 EmitGlobalAnnotations(); 345 EmitStaticExternCAliases(); 346 emitLLVMUsed(); 347 348 if (CodeGenOpts.Autolink && 349 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 350 EmitModuleLinkOptions(); 351 } 352 if (CodeGenOpts.DwarfVersion) 353 // We actually want the latest version when there are conflicts. 354 // We can change from Warning to Latest if such mode is supported. 355 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 356 CodeGenOpts.DwarfVersion); 357 if (DebugInfo) 358 // We support a single version in the linked module. The LLVM 359 // parser will drop debug info with a different version number 360 // (and warn about it, too). 361 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 362 llvm::DEBUG_METADATA_VERSION); 363 364 // We need to record the widths of enums and wchar_t, so that we can generate 365 // the correct build attributes in the ARM backend. 366 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 367 if ( Arch == llvm::Triple::arm 368 || Arch == llvm::Triple::armeb 369 || Arch == llvm::Triple::thumb 370 || Arch == llvm::Triple::thumbeb) { 371 // Width of wchar_t in bytes 372 uint64_t WCharWidth = 373 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 374 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 375 376 // The minimum width of an enum in bytes 377 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 378 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 379 } 380 381 SimplifyPersonality(); 382 383 if (getCodeGenOpts().EmitDeclMetadata) 384 EmitDeclMetadata(); 385 386 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 387 EmitCoverageFile(); 388 389 if (DebugInfo) 390 DebugInfo->finalize(); 391 392 EmitVersionIdentMetadata(); 393 394 EmitTargetMetadata(); 395 } 396 397 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 398 // Make sure that this type is translated. 399 Types.UpdateCompletedType(TD); 400 } 401 402 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) { 403 if (!TBAA) 404 return nullptr; 405 return TBAA->getTBAAInfo(QTy); 406 } 407 408 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() { 409 if (!TBAA) 410 return nullptr; 411 return TBAA->getTBAAInfoForVTablePtr(); 412 } 413 414 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 415 if (!TBAA) 416 return nullptr; 417 return TBAA->getTBAAStructInfo(QTy); 418 } 419 420 llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) { 421 if (!TBAA) 422 return nullptr; 423 return TBAA->getTBAAStructTypeInfo(QTy); 424 } 425 426 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy, 427 llvm::MDNode *AccessN, 428 uint64_t O) { 429 if (!TBAA) 430 return nullptr; 431 return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O); 432 } 433 434 /// Decorate the instruction with a TBAA tag. For both scalar TBAA 435 /// and struct-path aware TBAA, the tag has the same format: 436 /// base type, access type and offset. 437 /// When ConvertTypeToTag is true, we create a tag based on the scalar type. 438 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst, 439 llvm::MDNode *TBAAInfo, 440 bool ConvertTypeToTag) { 441 if (ConvertTypeToTag && TBAA) 442 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, 443 TBAA->getTBAAScalarTagInfo(TBAAInfo)); 444 else 445 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo); 446 } 447 448 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 449 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 450 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 451 } 452 453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 454 /// specified stmt yet. 455 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 456 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 457 "cannot compile this %0 yet"); 458 std::string Msg = Type; 459 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 460 << Msg << S->getSourceRange(); 461 } 462 463 /// ErrorUnsupported - Print out an error that codegen doesn't support the 464 /// specified decl yet. 465 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 466 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 467 "cannot compile this %0 yet"); 468 std::string Msg = Type; 469 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 470 } 471 472 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 473 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 474 } 475 476 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 477 const NamedDecl *D) const { 478 // Internal definitions always have default visibility. 479 if (GV->hasLocalLinkage()) { 480 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 481 return; 482 } 483 484 // Set visibility for definitions. 485 LinkageInfo LV = D->getLinkageAndVisibility(); 486 if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage()) 487 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 488 } 489 490 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 491 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 492 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 493 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 494 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 495 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 496 } 497 498 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 499 CodeGenOptions::TLSModel M) { 500 switch (M) { 501 case CodeGenOptions::GeneralDynamicTLSModel: 502 return llvm::GlobalVariable::GeneralDynamicTLSModel; 503 case CodeGenOptions::LocalDynamicTLSModel: 504 return llvm::GlobalVariable::LocalDynamicTLSModel; 505 case CodeGenOptions::InitialExecTLSModel: 506 return llvm::GlobalVariable::InitialExecTLSModel; 507 case CodeGenOptions::LocalExecTLSModel: 508 return llvm::GlobalVariable::LocalExecTLSModel; 509 } 510 llvm_unreachable("Invalid TLS model!"); 511 } 512 513 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV, 514 const VarDecl &D) const { 515 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 516 517 llvm::GlobalVariable::ThreadLocalMode TLM; 518 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 519 520 // Override the TLS model if it is explicitly specified. 521 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 522 TLM = GetLLVMTLSModel(Attr->getModel()); 523 } 524 525 GV->setThreadLocalMode(TLM); 526 } 527 528 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 529 StringRef &FoundStr = MangledDeclNames[GD.getCanonicalDecl()]; 530 if (!FoundStr.empty()) 531 return FoundStr; 532 533 const auto *ND = cast<NamedDecl>(GD.getDecl()); 534 SmallString<256> Buffer; 535 StringRef Str; 536 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 537 llvm::raw_svector_ostream Out(Buffer); 538 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 539 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 540 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 541 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 542 else 543 getCXXABI().getMangleContext().mangleName(ND, Out); 544 Str = Out.str(); 545 } else { 546 IdentifierInfo *II = ND->getIdentifier(); 547 assert(II && "Attempt to mangle unnamed decl."); 548 Str = II->getName(); 549 } 550 551 auto &Mangled = Manglings.GetOrCreateValue(Str); 552 Mangled.second = GD; 553 return FoundStr = Mangled.first(); 554 } 555 556 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 557 const BlockDecl *BD) { 558 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 559 const Decl *D = GD.getDecl(); 560 561 SmallString<256> Buffer; 562 llvm::raw_svector_ostream Out(Buffer); 563 if (!D) 564 MangleCtx.mangleGlobalBlock(BD, 565 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 566 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 567 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 568 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 569 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 570 else 571 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 572 573 auto &Mangled = Manglings.GetOrCreateValue(Out.str()); 574 Mangled.second = BD; 575 return Mangled.first(); 576 } 577 578 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 579 return getModule().getNamedValue(Name); 580 } 581 582 /// AddGlobalCtor - Add a function to the list that will be called before 583 /// main() runs. 584 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 585 llvm::Constant *AssociatedData) { 586 // FIXME: Type coercion of void()* types. 587 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 588 } 589 590 /// AddGlobalDtor - Add a function to the list that will be called 591 /// when the module is unloaded. 592 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 593 // FIXME: Type coercion of void()* types. 594 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 595 } 596 597 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 598 // Ctor function type is void()*. 599 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 600 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 601 602 // Get the type of a ctor entry, { i32, void ()*, i8* }. 603 llvm::StructType *CtorStructTy = llvm::StructType::get( 604 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, NULL); 605 606 // Construct the constructor and destructor arrays. 607 SmallVector<llvm::Constant*, 8> Ctors; 608 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 609 llvm::Constant *S[] = { 610 llvm::ConstantInt::get(Int32Ty, I->Priority, false), 611 llvm::ConstantExpr::getBitCast(I->Initializer, CtorPFTy), 612 (I->AssociatedData 613 ? llvm::ConstantExpr::getBitCast(I->AssociatedData, VoidPtrTy) 614 : llvm::Constant::getNullValue(VoidPtrTy)) 615 }; 616 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 617 } 618 619 if (!Ctors.empty()) { 620 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 621 new llvm::GlobalVariable(TheModule, AT, false, 622 llvm::GlobalValue::AppendingLinkage, 623 llvm::ConstantArray::get(AT, Ctors), 624 GlobalName); 625 } 626 } 627 628 llvm::GlobalValue::LinkageTypes 629 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 630 const auto *D = cast<FunctionDecl>(GD.getDecl()); 631 632 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 633 634 if (isa<CXXDestructorDecl>(D) && 635 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 636 GD.getDtorType())) { 637 // Destructor variants in the Microsoft C++ ABI are always internal or 638 // linkonce_odr thunks emitted on an as-needed basis. 639 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 640 : llvm::GlobalValue::LinkOnceODRLinkage; 641 } 642 643 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 644 } 645 646 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 647 llvm::Function *F) { 648 setNonAliasAttributes(D, F); 649 } 650 651 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 652 const CGFunctionInfo &Info, 653 llvm::Function *F) { 654 unsigned CallingConv; 655 AttributeListType AttributeList; 656 ConstructAttributeList(Info, D, AttributeList, CallingConv, false); 657 F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList)); 658 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 659 } 660 661 /// Determines whether the language options require us to model 662 /// unwind exceptions. We treat -fexceptions as mandating this 663 /// except under the fragile ObjC ABI with only ObjC exceptions 664 /// enabled. This means, for example, that C with -fexceptions 665 /// enables this. 666 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 667 // If exceptions are completely disabled, obviously this is false. 668 if (!LangOpts.Exceptions) return false; 669 670 // If C++ exceptions are enabled, this is true. 671 if (LangOpts.CXXExceptions) return true; 672 673 // If ObjC exceptions are enabled, this depends on the ABI. 674 if (LangOpts.ObjCExceptions) { 675 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 676 } 677 678 return true; 679 } 680 681 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 682 llvm::Function *F) { 683 llvm::AttrBuilder B; 684 685 if (CodeGenOpts.UnwindTables) 686 B.addAttribute(llvm::Attribute::UWTable); 687 688 if (!hasUnwindExceptions(LangOpts)) 689 B.addAttribute(llvm::Attribute::NoUnwind); 690 691 if (D->hasAttr<NakedAttr>()) { 692 // Naked implies noinline: we should not be inlining such functions. 693 B.addAttribute(llvm::Attribute::Naked); 694 B.addAttribute(llvm::Attribute::NoInline); 695 } else if (D->hasAttr<OptimizeNoneAttr>()) { 696 // OptimizeNone implies noinline; we should not be inlining such functions. 697 B.addAttribute(llvm::Attribute::OptimizeNone); 698 B.addAttribute(llvm::Attribute::NoInline); 699 } else if (D->hasAttr<NoDuplicateAttr>()) { 700 B.addAttribute(llvm::Attribute::NoDuplicate); 701 } else if (D->hasAttr<NoInlineAttr>()) { 702 B.addAttribute(llvm::Attribute::NoInline); 703 } else if (D->hasAttr<AlwaysInlineAttr>() && 704 !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, 705 llvm::Attribute::NoInline)) { 706 // (noinline wins over always_inline, and we can't specify both in IR) 707 B.addAttribute(llvm::Attribute::AlwaysInline); 708 } 709 710 if (D->hasAttr<ColdAttr>()) { 711 B.addAttribute(llvm::Attribute::OptimizeForSize); 712 B.addAttribute(llvm::Attribute::Cold); 713 } 714 715 if (D->hasAttr<MinSizeAttr>()) 716 B.addAttribute(llvm::Attribute::MinSize); 717 718 if (D->hasAttr<OptimizeNoneAttr>()) { 719 // OptimizeNone wins over OptimizeForSize and MinSize. 720 B.removeAttribute(llvm::Attribute::OptimizeForSize); 721 B.removeAttribute(llvm::Attribute::MinSize); 722 } 723 724 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 725 B.addAttribute(llvm::Attribute::StackProtect); 726 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 727 B.addAttribute(llvm::Attribute::StackProtectStrong); 728 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 729 B.addAttribute(llvm::Attribute::StackProtectReq); 730 731 // Add sanitizer attributes if function is not blacklisted. 732 if (!SanitizerBL.isIn(*F)) { 733 // When AddressSanitizer is enabled, set SanitizeAddress attribute 734 // unless __attribute__((no_sanitize_address)) is used. 735 if (LangOpts.Sanitize.Address && !D->hasAttr<NoSanitizeAddressAttr>()) 736 B.addAttribute(llvm::Attribute::SanitizeAddress); 737 // Same for ThreadSanitizer and __attribute__((no_sanitize_thread)) 738 if (LangOpts.Sanitize.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) 739 B.addAttribute(llvm::Attribute::SanitizeThread); 740 // Same for MemorySanitizer and __attribute__((no_sanitize_memory)) 741 if (LangOpts.Sanitize.Memory && !D->hasAttr<NoSanitizeMemoryAttr>()) 742 B.addAttribute(llvm::Attribute::SanitizeMemory); 743 } 744 745 F->addAttributes(llvm::AttributeSet::FunctionIndex, 746 llvm::AttributeSet::get( 747 F->getContext(), llvm::AttributeSet::FunctionIndex, B)); 748 749 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 750 F->setUnnamedAddr(true); 751 else if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) 752 if (MD->isVirtual()) 753 F->setUnnamedAddr(true); 754 755 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 756 if (alignment) 757 F->setAlignment(alignment); 758 759 // C++ ABI requires 2-byte alignment for member functions. 760 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 761 F->setAlignment(2); 762 } 763 764 void CodeGenModule::SetCommonAttributes(const Decl *D, 765 llvm::GlobalValue *GV) { 766 if (const auto *ND = dyn_cast<NamedDecl>(D)) 767 setGlobalVisibility(GV, ND); 768 else 769 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 770 771 if (D->hasAttr<UsedAttr>()) 772 addUsedGlobal(GV); 773 } 774 775 void CodeGenModule::setNonAliasAttributes(const Decl *D, 776 llvm::GlobalObject *GO) { 777 SetCommonAttributes(D, GO); 778 779 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 780 GO->setSection(SA->getName()); 781 782 getTargetCodeGenInfo().SetTargetAttributes(D, GO, *this); 783 } 784 785 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 786 llvm::Function *F, 787 const CGFunctionInfo &FI) { 788 SetLLVMFunctionAttributes(D, FI, F); 789 SetLLVMFunctionAttributesForDefinition(D, F); 790 791 F->setLinkage(llvm::Function::InternalLinkage); 792 793 setNonAliasAttributes(D, F); 794 } 795 796 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV, 797 const NamedDecl *ND) { 798 // Set linkage and visibility in case we never see a definition. 799 LinkageInfo LV = ND->getLinkageAndVisibility(); 800 if (LV.getLinkage() != ExternalLinkage) { 801 // Don't set internal linkage on declarations. 802 } else { 803 if (ND->hasAttr<DLLImportAttr>()) { 804 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 805 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 806 } else if (ND->hasAttr<DLLExportAttr>()) { 807 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 808 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 809 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 810 // "extern_weak" is overloaded in LLVM; we probably should have 811 // separate linkage types for this. 812 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 813 } 814 815 // Set visibility on a declaration only if it's explicit. 816 if (LV.isVisibilityExplicit()) 817 GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility())); 818 } 819 } 820 821 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, 822 llvm::Function *F, 823 bool IsIncompleteFunction) { 824 if (unsigned IID = F->getIntrinsicID()) { 825 // If this is an intrinsic function, set the function's attributes 826 // to the intrinsic's attributes. 827 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), 828 (llvm::Intrinsic::ID)IID)); 829 return; 830 } 831 832 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 833 834 if (!IsIncompleteFunction) 835 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 836 837 // Add the Returned attribute for "this", except for iOS 5 and earlier 838 // where substantial code, including the libstdc++ dylib, was compiled with 839 // GCC and does not actually return "this". 840 if (getCXXABI().HasThisReturn(GD) && 841 !(getTarget().getTriple().isiOS() && 842 getTarget().getTriple().isOSVersionLT(6))) { 843 assert(!F->arg_empty() && 844 F->arg_begin()->getType() 845 ->canLosslesslyBitCastTo(F->getReturnType()) && 846 "unexpected this return"); 847 F->addAttribute(1, llvm::Attribute::Returned); 848 } 849 850 // Only a few attributes are set on declarations; these may later be 851 // overridden by a definition. 852 853 setLinkageAndVisibilityForGV(F, FD); 854 855 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 856 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 857 // Don't dllexport/import destructor thunks. 858 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 859 } 860 } 861 862 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 863 F->setSection(SA->getName()); 864 865 // A replaceable global allocation function does not act like a builtin by 866 // default, only if it is invoked by a new-expression or delete-expression. 867 if (FD->isReplaceableGlobalAllocationFunction()) 868 F->addAttribute(llvm::AttributeSet::FunctionIndex, 869 llvm::Attribute::NoBuiltin); 870 } 871 872 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 873 assert(!GV->isDeclaration() && 874 "Only globals with definition can force usage."); 875 LLVMUsed.push_back(GV); 876 } 877 878 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 879 assert(!GV->isDeclaration() && 880 "Only globals with definition can force usage."); 881 LLVMCompilerUsed.push_back(GV); 882 } 883 884 static void emitUsed(CodeGenModule &CGM, StringRef Name, 885 std::vector<llvm::WeakVH> &List) { 886 // Don't create llvm.used if there is no need. 887 if (List.empty()) 888 return; 889 890 // Convert List to what ConstantArray needs. 891 SmallVector<llvm::Constant*, 8> UsedArray; 892 UsedArray.resize(List.size()); 893 for (unsigned i = 0, e = List.size(); i != e; ++i) { 894 UsedArray[i] = 895 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*List[i]), 896 CGM.Int8PtrTy); 897 } 898 899 if (UsedArray.empty()) 900 return; 901 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 902 903 auto *GV = new llvm::GlobalVariable( 904 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 905 llvm::ConstantArray::get(ATy, UsedArray), Name); 906 907 GV->setSection("llvm.metadata"); 908 } 909 910 void CodeGenModule::emitLLVMUsed() { 911 emitUsed(*this, "llvm.used", LLVMUsed); 912 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 913 } 914 915 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 916 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 917 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 918 } 919 920 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 921 llvm::SmallString<32> Opt; 922 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 923 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 924 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 925 } 926 927 void CodeGenModule::AddDependentLib(StringRef Lib) { 928 llvm::SmallString<24> Opt; 929 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 930 llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 931 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 932 } 933 934 /// \brief Add link options implied by the given module, including modules 935 /// it depends on, using a postorder walk. 936 static void addLinkOptionsPostorder(CodeGenModule &CGM, 937 Module *Mod, 938 SmallVectorImpl<llvm::Value *> &Metadata, 939 llvm::SmallPtrSet<Module *, 16> &Visited) { 940 // Import this module's parent. 941 if (Mod->Parent && Visited.insert(Mod->Parent)) { 942 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 943 } 944 945 // Import this module's dependencies. 946 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 947 if (Visited.insert(Mod->Imports[I-1])) 948 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 949 } 950 951 // Add linker options to link against the libraries/frameworks 952 // described by this module. 953 llvm::LLVMContext &Context = CGM.getLLVMContext(); 954 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 955 // Link against a framework. Frameworks are currently Darwin only, so we 956 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 957 if (Mod->LinkLibraries[I-1].IsFramework) { 958 llvm::Value *Args[2] = { 959 llvm::MDString::get(Context, "-framework"), 960 llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library) 961 }; 962 963 Metadata.push_back(llvm::MDNode::get(Context, Args)); 964 continue; 965 } 966 967 // Link against a library. 968 llvm::SmallString<24> Opt; 969 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 970 Mod->LinkLibraries[I-1].Library, Opt); 971 llvm::Value *OptString = llvm::MDString::get(Context, Opt); 972 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 973 } 974 } 975 976 void CodeGenModule::EmitModuleLinkOptions() { 977 // Collect the set of all of the modules we want to visit to emit link 978 // options, which is essentially the imported modules and all of their 979 // non-explicit child modules. 980 llvm::SetVector<clang::Module *> LinkModules; 981 llvm::SmallPtrSet<clang::Module *, 16> Visited; 982 SmallVector<clang::Module *, 16> Stack; 983 984 // Seed the stack with imported modules. 985 for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(), 986 MEnd = ImportedModules.end(); 987 M != MEnd; ++M) { 988 if (Visited.insert(*M)) 989 Stack.push_back(*M); 990 } 991 992 // Find all of the modules to import, making a little effort to prune 993 // non-leaf modules. 994 while (!Stack.empty()) { 995 clang::Module *Mod = Stack.pop_back_val(); 996 997 bool AnyChildren = false; 998 999 // Visit the submodules of this module. 1000 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1001 SubEnd = Mod->submodule_end(); 1002 Sub != SubEnd; ++Sub) { 1003 // Skip explicit children; they need to be explicitly imported to be 1004 // linked against. 1005 if ((*Sub)->IsExplicit) 1006 continue; 1007 1008 if (Visited.insert(*Sub)) { 1009 Stack.push_back(*Sub); 1010 AnyChildren = true; 1011 } 1012 } 1013 1014 // We didn't find any children, so add this module to the list of 1015 // modules to link against. 1016 if (!AnyChildren) { 1017 LinkModules.insert(Mod); 1018 } 1019 } 1020 1021 // Add link options for all of the imported modules in reverse topological 1022 // order. We don't do anything to try to order import link flags with respect 1023 // to linker options inserted by things like #pragma comment(). 1024 SmallVector<llvm::Value *, 16> MetadataArgs; 1025 Visited.clear(); 1026 for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(), 1027 MEnd = LinkModules.end(); 1028 M != MEnd; ++M) { 1029 if (Visited.insert(*M)) 1030 addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited); 1031 } 1032 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1033 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1034 1035 // Add the linker options metadata flag. 1036 getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options", 1037 llvm::MDNode::get(getLLVMContext(), 1038 LinkerOptionsMetadata)); 1039 } 1040 1041 void CodeGenModule::EmitDeferred() { 1042 // Emit code for any potentially referenced deferred decls. Since a 1043 // previously unused static decl may become used during the generation of code 1044 // for a static function, iterate until no changes are made. 1045 1046 while (true) { 1047 if (!DeferredVTables.empty()) { 1048 EmitDeferredVTables(); 1049 1050 // Emitting a v-table doesn't directly cause more v-tables to 1051 // become deferred, although it can cause functions to be 1052 // emitted that then need those v-tables. 1053 assert(DeferredVTables.empty()); 1054 } 1055 1056 // Stop if we're out of both deferred v-tables and deferred declarations. 1057 if (DeferredDeclsToEmit.empty()) break; 1058 1059 DeferredGlobal &G = DeferredDeclsToEmit.back(); 1060 GlobalDecl D = G.GD; 1061 llvm::GlobalValue *GV = G.GV; 1062 DeferredDeclsToEmit.pop_back(); 1063 1064 assert(GV == GetGlobalValue(getMangledName(D))); 1065 // Check to see if we've already emitted this. This is necessary 1066 // for a couple of reasons: first, decls can end up in the 1067 // deferred-decls queue multiple times, and second, decls can end 1068 // up with definitions in unusual ways (e.g. by an extern inline 1069 // function acquiring a strong function redefinition). Just 1070 // ignore these cases. 1071 if(!GV->isDeclaration()) 1072 continue; 1073 1074 // Otherwise, emit the definition and move on to the next one. 1075 EmitGlobalDefinition(D, GV); 1076 } 1077 } 1078 1079 void CodeGenModule::EmitGlobalAnnotations() { 1080 if (Annotations.empty()) 1081 return; 1082 1083 // Create a new global variable for the ConstantStruct in the Module. 1084 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1085 Annotations[0]->getType(), Annotations.size()), Annotations); 1086 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1087 llvm::GlobalValue::AppendingLinkage, 1088 Array, "llvm.global.annotations"); 1089 gv->setSection(AnnotationSection); 1090 } 1091 1092 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1093 llvm::Constant *&AStr = AnnotationStrings[Str]; 1094 if (AStr) 1095 return AStr; 1096 1097 // Not found yet, create a new global. 1098 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1099 auto *gv = 1100 new llvm::GlobalVariable(getModule(), s->getType(), true, 1101 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1102 gv->setSection(AnnotationSection); 1103 gv->setUnnamedAddr(true); 1104 AStr = gv; 1105 return gv; 1106 } 1107 1108 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1109 SourceManager &SM = getContext().getSourceManager(); 1110 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1111 if (PLoc.isValid()) 1112 return EmitAnnotationString(PLoc.getFilename()); 1113 return EmitAnnotationString(SM.getBufferName(Loc)); 1114 } 1115 1116 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1117 SourceManager &SM = getContext().getSourceManager(); 1118 PresumedLoc PLoc = SM.getPresumedLoc(L); 1119 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1120 SM.getExpansionLineNumber(L); 1121 return llvm::ConstantInt::get(Int32Ty, LineNo); 1122 } 1123 1124 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1125 const AnnotateAttr *AA, 1126 SourceLocation L) { 1127 // Get the globals for file name, annotation, and the line number. 1128 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1129 *UnitGV = EmitAnnotationUnit(L), 1130 *LineNoCst = EmitAnnotationLineNo(L); 1131 1132 // Create the ConstantStruct for the global annotation. 1133 llvm::Constant *Fields[4] = { 1134 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1135 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1136 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1137 LineNoCst 1138 }; 1139 return llvm::ConstantStruct::getAnon(Fields); 1140 } 1141 1142 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1143 llvm::GlobalValue *GV) { 1144 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1145 // Get the struct elements for these annotations. 1146 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1147 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1148 } 1149 1150 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 1151 // Never defer when EmitAllDecls is specified. 1152 if (LangOpts.EmitAllDecls) 1153 return false; 1154 1155 return !getContext().DeclMustBeEmitted(Global); 1156 } 1157 1158 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor( 1159 const CXXUuidofExpr* E) { 1160 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1161 // well-formed. 1162 StringRef Uuid = E->getUuidAsStringRef(Context); 1163 std::string Name = "_GUID_" + Uuid.lower(); 1164 std::replace(Name.begin(), Name.end(), '-', '_'); 1165 1166 // Look for an existing global. 1167 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1168 return GV; 1169 1170 llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType()); 1171 assert(Init && "failed to initialize as constant"); 1172 1173 auto *GV = new llvm::GlobalVariable( 1174 getModule(), Init->getType(), 1175 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1176 return GV; 1177 } 1178 1179 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1180 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1181 assert(AA && "No alias?"); 1182 1183 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1184 1185 // See if there is already something with the target's name in the module. 1186 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1187 if (Entry) { 1188 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1189 return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1190 } 1191 1192 llvm::Constant *Aliasee; 1193 if (isa<llvm::FunctionType>(DeclTy)) 1194 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1195 GlobalDecl(cast<FunctionDecl>(VD)), 1196 /*ForVTable=*/false); 1197 else 1198 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1199 llvm::PointerType::getUnqual(DeclTy), 1200 nullptr); 1201 1202 auto *F = cast<llvm::GlobalValue>(Aliasee); 1203 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1204 WeakRefReferences.insert(F); 1205 1206 return Aliasee; 1207 } 1208 1209 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1210 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1211 1212 // Weak references don't produce any output by themselves. 1213 if (Global->hasAttr<WeakRefAttr>()) 1214 return; 1215 1216 // If this is an alias definition (which otherwise looks like a declaration) 1217 // emit it now. 1218 if (Global->hasAttr<AliasAttr>()) 1219 return EmitAliasDefinition(GD); 1220 1221 // If this is CUDA, be selective about which declarations we emit. 1222 if (LangOpts.CUDA) { 1223 if (CodeGenOpts.CUDAIsDevice) { 1224 if (!Global->hasAttr<CUDADeviceAttr>() && 1225 !Global->hasAttr<CUDAGlobalAttr>() && 1226 !Global->hasAttr<CUDAConstantAttr>() && 1227 !Global->hasAttr<CUDASharedAttr>()) 1228 return; 1229 } else { 1230 if (!Global->hasAttr<CUDAHostAttr>() && ( 1231 Global->hasAttr<CUDADeviceAttr>() || 1232 Global->hasAttr<CUDAConstantAttr>() || 1233 Global->hasAttr<CUDASharedAttr>())) 1234 return; 1235 } 1236 } 1237 1238 // Ignore declarations, they will be emitted on their first use. 1239 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1240 // Forward declarations are emitted lazily on first use. 1241 if (!FD->doesThisDeclarationHaveABody()) { 1242 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1243 return; 1244 1245 StringRef MangledName = getMangledName(GD); 1246 1247 // Compute the function info and LLVM type. 1248 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1249 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1250 1251 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1252 /*DontDefer=*/false); 1253 return; 1254 } 1255 } else { 1256 const auto *VD = cast<VarDecl>(Global); 1257 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1258 1259 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 1260 !Context.isMSStaticDataMemberInlineDefinition(VD)) 1261 return; 1262 } 1263 1264 // Defer code generation when possible if this is a static definition, inline 1265 // function etc. These we only want to emit if they are used. 1266 if (!MayDeferGeneration(Global)) { 1267 // Emit the definition if it can't be deferred. 1268 EmitGlobalDefinition(GD); 1269 return; 1270 } 1271 1272 // If we're deferring emission of a C++ variable with an 1273 // initializer, remember the order in which it appeared in the file. 1274 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1275 cast<VarDecl>(Global)->hasInit()) { 1276 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1277 CXXGlobalInits.push_back(nullptr); 1278 } 1279 1280 // If the value has already been used, add it directly to the 1281 // DeferredDeclsToEmit list. 1282 StringRef MangledName = getMangledName(GD); 1283 if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) 1284 addDeferredDeclToEmit(GV, GD); 1285 else { 1286 // Otherwise, remember that we saw a deferred decl with this name. The 1287 // first use of the mangled name will cause it to move into 1288 // DeferredDeclsToEmit. 1289 DeferredDecls[MangledName] = GD; 1290 } 1291 } 1292 1293 namespace { 1294 struct FunctionIsDirectlyRecursive : 1295 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1296 const StringRef Name; 1297 const Builtin::Context &BI; 1298 bool Result; 1299 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1300 Name(N), BI(C), Result(false) { 1301 } 1302 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1303 1304 bool TraverseCallExpr(CallExpr *E) { 1305 const FunctionDecl *FD = E->getDirectCallee(); 1306 if (!FD) 1307 return true; 1308 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1309 if (Attr && Name == Attr->getLabel()) { 1310 Result = true; 1311 return false; 1312 } 1313 unsigned BuiltinID = FD->getBuiltinID(); 1314 if (!BuiltinID) 1315 return true; 1316 StringRef BuiltinName = BI.GetName(BuiltinID); 1317 if (BuiltinName.startswith("__builtin_") && 1318 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1319 Result = true; 1320 return false; 1321 } 1322 return true; 1323 } 1324 }; 1325 } 1326 1327 // isTriviallyRecursive - Check if this function calls another 1328 // decl that, because of the asm attribute or the other decl being a builtin, 1329 // ends up pointing to itself. 1330 bool 1331 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1332 StringRef Name; 1333 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1334 // asm labels are a special kind of mangling we have to support. 1335 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1336 if (!Attr) 1337 return false; 1338 Name = Attr->getLabel(); 1339 } else { 1340 Name = FD->getName(); 1341 } 1342 1343 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1344 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1345 return Walker.Result; 1346 } 1347 1348 bool 1349 CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1350 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1351 return true; 1352 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1353 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1354 return false; 1355 // PR9614. Avoid cases where the source code is lying to us. An available 1356 // externally function should have an equivalent function somewhere else, 1357 // but a function that calls itself is clearly not equivalent to the real 1358 // implementation. 1359 // This happens in glibc's btowc and in some configure checks. 1360 return !isTriviallyRecursive(F); 1361 } 1362 1363 /// If the type for the method's class was generated by 1364 /// CGDebugInfo::createContextChain(), the cache contains only a 1365 /// limited DIType without any declarations. Since EmitFunctionStart() 1366 /// needs to find the canonical declaration for each method, we need 1367 /// to construct the complete type prior to emitting the method. 1368 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) { 1369 if (!D->isInstance()) 1370 return; 1371 1372 if (CGDebugInfo *DI = getModuleDebugInfo()) 1373 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 1374 const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext())); 1375 DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation()); 1376 } 1377 } 1378 1379 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 1380 const auto *D = cast<ValueDecl>(GD.getDecl()); 1381 1382 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 1383 Context.getSourceManager(), 1384 "Generating code for declaration"); 1385 1386 if (isa<FunctionDecl>(D)) { 1387 // At -O0, don't generate IR for functions with available_externally 1388 // linkage. 1389 if (!shouldEmitFunction(GD)) 1390 return; 1391 1392 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 1393 CompleteDIClassType(Method); 1394 // Make sure to emit the definition(s) before we emit the thunks. 1395 // This is necessary for the generation of certain thunks. 1396 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 1397 EmitCXXConstructor(CD, GD.getCtorType()); 1398 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 1399 EmitCXXDestructor(DD, GD.getDtorType()); 1400 else 1401 EmitGlobalFunctionDefinition(GD, GV); 1402 1403 if (Method->isVirtual()) 1404 getVTables().EmitThunks(GD); 1405 1406 return; 1407 } 1408 1409 return EmitGlobalFunctionDefinition(GD, GV); 1410 } 1411 1412 if (const auto *VD = dyn_cast<VarDecl>(D)) 1413 return EmitGlobalVarDefinition(VD); 1414 1415 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 1416 } 1417 1418 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 1419 /// module, create and return an llvm Function with the specified type. If there 1420 /// is something in the module with the specified name, return it potentially 1421 /// bitcasted to the right type. 1422 /// 1423 /// If D is non-null, it specifies a decl that correspond to this. This is used 1424 /// to set the attributes on the function when it is first created. 1425 llvm::Constant * 1426 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName, 1427 llvm::Type *Ty, 1428 GlobalDecl GD, bool ForVTable, 1429 bool DontDefer, 1430 llvm::AttributeSet ExtraAttrs) { 1431 const Decl *D = GD.getDecl(); 1432 1433 // Lookup the entry, lazily creating it if necessary. 1434 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1435 if (Entry) { 1436 if (WeakRefReferences.erase(Entry)) { 1437 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 1438 if (FD && !FD->hasAttr<WeakAttr>()) 1439 Entry->setLinkage(llvm::Function::ExternalLinkage); 1440 } 1441 1442 if (Entry->getType()->getElementType() == Ty) 1443 return Entry; 1444 1445 // Make sure the result is of the correct type. 1446 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 1447 } 1448 1449 // This function doesn't have a complete type (for example, the return 1450 // type is an incomplete struct). Use a fake type instead, and make 1451 // sure not to try to set attributes. 1452 bool IsIncompleteFunction = false; 1453 1454 llvm::FunctionType *FTy; 1455 if (isa<llvm::FunctionType>(Ty)) { 1456 FTy = cast<llvm::FunctionType>(Ty); 1457 } else { 1458 FTy = llvm::FunctionType::get(VoidTy, false); 1459 IsIncompleteFunction = true; 1460 } 1461 1462 llvm::Function *F = llvm::Function::Create(FTy, 1463 llvm::Function::ExternalLinkage, 1464 MangledName, &getModule()); 1465 assert(F->getName() == MangledName && "name was uniqued!"); 1466 if (D) 1467 SetFunctionAttributes(GD, F, IsIncompleteFunction); 1468 if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) { 1469 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex); 1470 F->addAttributes(llvm::AttributeSet::FunctionIndex, 1471 llvm::AttributeSet::get(VMContext, 1472 llvm::AttributeSet::FunctionIndex, 1473 B)); 1474 } 1475 1476 if (!DontDefer) { 1477 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 1478 // each other bottoming out with the base dtor. Therefore we emit non-base 1479 // dtors on usage, even if there is no dtor definition in the TU. 1480 if (D && isa<CXXDestructorDecl>(D) && 1481 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 1482 GD.getDtorType())) 1483 addDeferredDeclToEmit(F, GD); 1484 1485 // This is the first use or definition of a mangled name. If there is a 1486 // deferred decl with this name, remember that we need to emit it at the end 1487 // of the file. 1488 auto DDI = DeferredDecls.find(MangledName); 1489 if (DDI != DeferredDecls.end()) { 1490 // Move the potentially referenced deferred decl to the 1491 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 1492 // don't need it anymore). 1493 addDeferredDeclToEmit(F, DDI->second); 1494 DeferredDecls.erase(DDI); 1495 1496 // Otherwise, if this is a sized deallocation function, emit a weak 1497 // definition 1498 // for it at the end of the translation unit. 1499 } else if (D && cast<FunctionDecl>(D) 1500 ->getCorrespondingUnsizedGlobalDeallocationFunction()) { 1501 addDeferredDeclToEmit(F, GD); 1502 1503 // Otherwise, there are cases we have to worry about where we're 1504 // using a declaration for which we must emit a definition but where 1505 // we might not find a top-level definition: 1506 // - member functions defined inline in their classes 1507 // - friend functions defined inline in some class 1508 // - special member functions with implicit definitions 1509 // If we ever change our AST traversal to walk into class methods, 1510 // this will be unnecessary. 1511 // 1512 // We also don't emit a definition for a function if it's going to be an 1513 // entry in a vtable, unless it's already marked as used. 1514 } else if (getLangOpts().CPlusPlus && D) { 1515 // Look for a declaration that's lexically in a record. 1516 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 1517 FD = FD->getPreviousDecl()) { 1518 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 1519 if (FD->doesThisDeclarationHaveABody()) { 1520 addDeferredDeclToEmit(F, GD.getWithDecl(FD)); 1521 break; 1522 } 1523 } 1524 } 1525 } 1526 } 1527 1528 // Make sure the result is of the requested type. 1529 if (!IsIncompleteFunction) { 1530 assert(F->getType()->getElementType() == Ty); 1531 return F; 1532 } 1533 1534 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 1535 return llvm::ConstantExpr::getBitCast(F, PTy); 1536 } 1537 1538 /// GetAddrOfFunction - Return the address of the given function. If Ty is 1539 /// non-null, then this function will use the specified type if it has to 1540 /// create it (this occurs when we see a definition of the function). 1541 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 1542 llvm::Type *Ty, 1543 bool ForVTable, 1544 bool DontDefer) { 1545 // If there was no specific requested type, just convert it now. 1546 if (!Ty) 1547 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 1548 1549 StringRef MangledName = getMangledName(GD); 1550 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer); 1551 } 1552 1553 /// CreateRuntimeFunction - Create a new runtime function with the specified 1554 /// type and name. 1555 llvm::Constant * 1556 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, 1557 StringRef Name, 1558 llvm::AttributeSet ExtraAttrs) { 1559 llvm::Constant *C = 1560 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 1561 /*DontDefer=*/false, ExtraAttrs); 1562 if (auto *F = dyn_cast<llvm::Function>(C)) 1563 if (F->empty()) 1564 F->setCallingConv(getRuntimeCC()); 1565 return C; 1566 } 1567 1568 /// isTypeConstant - Determine whether an object of this type can be emitted 1569 /// as a constant. 1570 /// 1571 /// If ExcludeCtor is true, the duration when the object's constructor runs 1572 /// will not be considered. The caller will need to verify that the object is 1573 /// not written to during its construction. 1574 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 1575 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 1576 return false; 1577 1578 if (Context.getLangOpts().CPlusPlus) { 1579 if (const CXXRecordDecl *Record 1580 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 1581 return ExcludeCtor && !Record->hasMutableFields() && 1582 Record->hasTrivialDestructor(); 1583 } 1584 1585 return true; 1586 } 1587 1588 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 1589 /// create and return an llvm GlobalVariable with the specified type. If there 1590 /// is something in the module with the specified name, return it potentially 1591 /// bitcasted to the right type. 1592 /// 1593 /// If D is non-null, it specifies a decl that correspond to this. This is used 1594 /// to set the attributes on the global when it is first created. 1595 llvm::Constant * 1596 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 1597 llvm::PointerType *Ty, 1598 const VarDecl *D) { 1599 // Lookup the entry, lazily creating it if necessary. 1600 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 1601 if (Entry) { 1602 if (WeakRefReferences.erase(Entry)) { 1603 if (D && !D->hasAttr<WeakAttr>()) 1604 Entry->setLinkage(llvm::Function::ExternalLinkage); 1605 } 1606 1607 if (Entry->getType() == Ty) 1608 return Entry; 1609 1610 // Make sure the result is of the correct type. 1611 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 1612 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 1613 1614 return llvm::ConstantExpr::getBitCast(Entry, Ty); 1615 } 1616 1617 unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace()); 1618 auto *GV = new llvm::GlobalVariable( 1619 getModule(), Ty->getElementType(), false, 1620 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 1621 llvm::GlobalVariable::NotThreadLocal, AddrSpace); 1622 1623 // This is the first use or definition of a mangled name. If there is a 1624 // deferred decl with this name, remember that we need to emit it at the end 1625 // of the file. 1626 auto DDI = DeferredDecls.find(MangledName); 1627 if (DDI != DeferredDecls.end()) { 1628 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 1629 // list, and remove it from DeferredDecls (since we don't need it anymore). 1630 addDeferredDeclToEmit(GV, DDI->second); 1631 DeferredDecls.erase(DDI); 1632 } 1633 1634 // Handle things which are present even on external declarations. 1635 if (D) { 1636 // FIXME: This code is overly simple and should be merged with other global 1637 // handling. 1638 GV->setConstant(isTypeConstant(D->getType(), false)); 1639 1640 setLinkageAndVisibilityForGV(GV, D); 1641 1642 if (D->getTLSKind()) { 1643 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 1644 CXXThreadLocals.push_back(std::make_pair(D, GV)); 1645 setTLSMode(GV, *D); 1646 } 1647 1648 // If required by the ABI, treat declarations of static data members with 1649 // inline initializers as definitions. 1650 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 1651 EmitGlobalVarDefinition(D); 1652 } 1653 1654 // Handle XCore specific ABI requirements. 1655 if (getTarget().getTriple().getArch() == llvm::Triple::xcore && 1656 D->getLanguageLinkage() == CLanguageLinkage && 1657 D->getType().isConstant(Context) && 1658 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 1659 GV->setSection(".cp.rodata"); 1660 } 1661 1662 if (AddrSpace != Ty->getAddressSpace()) 1663 return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty); 1664 1665 return GV; 1666 } 1667 1668 1669 llvm::GlobalVariable * 1670 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 1671 llvm::Type *Ty, 1672 llvm::GlobalValue::LinkageTypes Linkage) { 1673 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 1674 llvm::GlobalVariable *OldGV = nullptr; 1675 1676 if (GV) { 1677 // Check if the variable has the right type. 1678 if (GV->getType()->getElementType() == Ty) 1679 return GV; 1680 1681 // Because C++ name mangling, the only way we can end up with an already 1682 // existing global with the same name is if it has been declared extern "C". 1683 assert(GV->isDeclaration() && "Declaration has wrong type!"); 1684 OldGV = GV; 1685 } 1686 1687 // Create a new variable. 1688 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 1689 Linkage, nullptr, Name); 1690 1691 if (OldGV) { 1692 // Replace occurrences of the old variable if needed. 1693 GV->takeName(OldGV); 1694 1695 if (!OldGV->use_empty()) { 1696 llvm::Constant *NewPtrForOldDecl = 1697 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 1698 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 1699 } 1700 1701 OldGV->eraseFromParent(); 1702 } 1703 1704 return GV; 1705 } 1706 1707 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 1708 /// given global variable. If Ty is non-null and if the global doesn't exist, 1709 /// then it will be created with the specified type instead of whatever the 1710 /// normal requested type would be. 1711 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 1712 llvm::Type *Ty) { 1713 assert(D->hasGlobalStorage() && "Not a global variable"); 1714 QualType ASTTy = D->getType(); 1715 if (!Ty) 1716 Ty = getTypes().ConvertTypeForMem(ASTTy); 1717 1718 llvm::PointerType *PTy = 1719 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 1720 1721 StringRef MangledName = getMangledName(D); 1722 return GetOrCreateLLVMGlobal(MangledName, PTy, D); 1723 } 1724 1725 /// CreateRuntimeVariable - Create a new runtime global variable with the 1726 /// specified type and name. 1727 llvm::Constant * 1728 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 1729 StringRef Name) { 1730 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 1731 } 1732 1733 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 1734 assert(!D->getInit() && "Cannot emit definite definitions here!"); 1735 1736 if (MayDeferGeneration(D)) { 1737 // If we have not seen a reference to this variable yet, place it 1738 // into the deferred declarations table to be emitted if needed 1739 // later. 1740 StringRef MangledName = getMangledName(D); 1741 if (!GetGlobalValue(MangledName)) { 1742 DeferredDecls[MangledName] = D; 1743 return; 1744 } 1745 } 1746 1747 // The tentative definition is the only definition. 1748 EmitGlobalVarDefinition(D); 1749 } 1750 1751 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 1752 return Context.toCharUnitsFromBits( 1753 TheDataLayout.getTypeStoreSizeInBits(Ty)); 1754 } 1755 1756 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D, 1757 unsigned AddrSpace) { 1758 if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) { 1759 if (D->hasAttr<CUDAConstantAttr>()) 1760 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant); 1761 else if (D->hasAttr<CUDASharedAttr>()) 1762 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared); 1763 else 1764 AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device); 1765 } 1766 1767 return AddrSpace; 1768 } 1769 1770 template<typename SomeDecl> 1771 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 1772 llvm::GlobalValue *GV) { 1773 if (!getLangOpts().CPlusPlus) 1774 return; 1775 1776 // Must have 'used' attribute, or else inline assembly can't rely on 1777 // the name existing. 1778 if (!D->template hasAttr<UsedAttr>()) 1779 return; 1780 1781 // Must have internal linkage and an ordinary name. 1782 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 1783 return; 1784 1785 // Must be in an extern "C" context. Entities declared directly within 1786 // a record are not extern "C" even if the record is in such a context. 1787 const SomeDecl *First = D->getFirstDecl(); 1788 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 1789 return; 1790 1791 // OK, this is an internal linkage entity inside an extern "C" linkage 1792 // specification. Make a note of that so we can give it the "expected" 1793 // mangled name if nothing else is using that name. 1794 std::pair<StaticExternCMap::iterator, bool> R = 1795 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 1796 1797 // If we have multiple internal linkage entities with the same name 1798 // in extern "C" regions, none of them gets that name. 1799 if (!R.second) 1800 R.first->second = nullptr; 1801 } 1802 1803 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 1804 llvm::Constant *Init = nullptr; 1805 QualType ASTTy = D->getType(); 1806 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 1807 bool NeedsGlobalCtor = false; 1808 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 1809 1810 const VarDecl *InitDecl; 1811 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 1812 1813 if (!InitExpr) { 1814 // This is a tentative definition; tentative definitions are 1815 // implicitly initialized with { 0 }. 1816 // 1817 // Note that tentative definitions are only emitted at the end of 1818 // a translation unit, so they should never have incomplete 1819 // type. In addition, EmitTentativeDefinition makes sure that we 1820 // never attempt to emit a tentative definition if a real one 1821 // exists. A use may still exists, however, so we still may need 1822 // to do a RAUW. 1823 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 1824 Init = EmitNullConstant(D->getType()); 1825 } else { 1826 initializedGlobalDecl = GlobalDecl(D); 1827 Init = EmitConstantInit(*InitDecl); 1828 1829 if (!Init) { 1830 QualType T = InitExpr->getType(); 1831 if (D->getType()->isReferenceType()) 1832 T = D->getType(); 1833 1834 if (getLangOpts().CPlusPlus) { 1835 Init = EmitNullConstant(T); 1836 NeedsGlobalCtor = true; 1837 } else { 1838 ErrorUnsupported(D, "static initializer"); 1839 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 1840 } 1841 } else { 1842 // We don't need an initializer, so remove the entry for the delayed 1843 // initializer position (just in case this entry was delayed) if we 1844 // also don't need to register a destructor. 1845 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 1846 DelayedCXXInitPosition.erase(D); 1847 } 1848 } 1849 1850 llvm::Type* InitType = Init->getType(); 1851 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 1852 1853 // Strip off a bitcast if we got one back. 1854 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1855 assert(CE->getOpcode() == llvm::Instruction::BitCast || 1856 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 1857 // All zero index gep. 1858 CE->getOpcode() == llvm::Instruction::GetElementPtr); 1859 Entry = CE->getOperand(0); 1860 } 1861 1862 // Entry is now either a Function or GlobalVariable. 1863 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 1864 1865 // We have a definition after a declaration with the wrong type. 1866 // We must make a new GlobalVariable* and update everything that used OldGV 1867 // (a declaration or tentative definition) with the new GlobalVariable* 1868 // (which will be a definition). 1869 // 1870 // This happens if there is a prototype for a global (e.g. 1871 // "extern int x[];") and then a definition of a different type (e.g. 1872 // "int x[10];"). This also happens when an initializer has a different type 1873 // from the type of the global (this happens with unions). 1874 if (!GV || 1875 GV->getType()->getElementType() != InitType || 1876 GV->getType()->getAddressSpace() != 1877 GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) { 1878 1879 // Move the old entry aside so that we'll create a new one. 1880 Entry->setName(StringRef()); 1881 1882 // Make a new global with the correct type, this is now guaranteed to work. 1883 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 1884 1885 // Replace all uses of the old global with the new global 1886 llvm::Constant *NewPtrForOldDecl = 1887 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 1888 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1889 1890 // Erase the old global, since it is no longer used. 1891 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 1892 } 1893 1894 MaybeHandleStaticInExternC(D, GV); 1895 1896 if (D->hasAttr<AnnotateAttr>()) 1897 AddGlobalAnnotations(D, GV); 1898 1899 GV->setInitializer(Init); 1900 1901 // If it is safe to mark the global 'constant', do so now. 1902 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 1903 isTypeConstant(D->getType(), true)); 1904 1905 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 1906 1907 // Set the llvm linkage type as appropriate. 1908 llvm::GlobalValue::LinkageTypes Linkage = 1909 getLLVMLinkageVarDefinition(D, GV->isConstant()); 1910 1911 // On Darwin, the backing variable for a C++11 thread_local variable always 1912 // has internal linkage; all accesses should just be calls to the 1913 // Itanium-specified entry point, which has the normal linkage of the 1914 // variable. 1915 if (const auto *VD = dyn_cast<VarDecl>(D)) 1916 if (!VD->isStaticLocal() && VD->getTLSKind() == VarDecl::TLS_Dynamic && 1917 Context.getTargetInfo().getTriple().isMacOSX()) 1918 Linkage = llvm::GlobalValue::InternalLinkage; 1919 1920 GV->setLinkage(Linkage); 1921 if (D->hasAttr<DLLImportAttr>()) 1922 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1923 else if (D->hasAttr<DLLExportAttr>()) 1924 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1925 1926 if (Linkage == llvm::GlobalVariable::CommonLinkage) 1927 // common vars aren't constant even if declared const. 1928 GV->setConstant(false); 1929 1930 setNonAliasAttributes(D, GV); 1931 1932 // Emit the initializer function if necessary. 1933 if (NeedsGlobalCtor || NeedsGlobalDtor) 1934 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 1935 1936 reportGlobalToASan(GV, *D, NeedsGlobalCtor); 1937 1938 // Emit global variable debug information. 1939 if (CGDebugInfo *DI = getModuleDebugInfo()) 1940 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1941 DI->EmitGlobalVariable(GV, D); 1942 } 1943 1944 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1945 SourceLocation Loc, StringRef Name, 1946 bool IsDynInit, bool IsBlacklisted) { 1947 if (!LangOpts.Sanitize.Address) 1948 return; 1949 IsDynInit &= !SanitizerBL.isIn(*GV, "init"); 1950 IsBlacklisted |= SanitizerBL.isIn(*GV); 1951 1952 llvm::GlobalVariable *LocDescr = nullptr; 1953 llvm::GlobalVariable *GlobalName = nullptr; 1954 if (!IsBlacklisted) { 1955 // Don't generate source location and global name if it is blacklisted - 1956 // it won't be instrumented anyway. 1957 PresumedLoc PLoc = Context.getSourceManager().getPresumedLoc(Loc); 1958 if (PLoc.isValid()) { 1959 llvm::Constant *LocData[] = { 1960 GetAddrOfConstantCString(PLoc.getFilename()), 1961 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1962 PLoc.getLine()), 1963 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 1964 PLoc.getColumn()), 1965 }; 1966 auto LocStruct = llvm::ConstantStruct::getAnon(LocData); 1967 LocDescr = new llvm::GlobalVariable(TheModule, LocStruct->getType(), true, 1968 llvm::GlobalValue::PrivateLinkage, 1969 LocStruct, ".asan_loc_descr"); 1970 LocDescr->setUnnamedAddr(true); 1971 // Add LocDescr to llvm.compiler.used, so that it won't be removed by 1972 // the optimizer before the ASan instrumentation pass. 1973 addCompilerUsedGlobal(LocDescr); 1974 } 1975 if (!Name.empty()) { 1976 GlobalName = GetAddrOfConstantCString(Name); 1977 // GlobalName shouldn't be removed by the optimizer. 1978 addCompilerUsedGlobal(GlobalName); 1979 } 1980 } 1981 1982 llvm::Value *GlobalMetadata[] = { 1983 GV, LocDescr, GlobalName, 1984 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsDynInit), 1985 llvm::ConstantInt::get(llvm::Type::getInt1Ty(VMContext), IsBlacklisted)}; 1986 1987 llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalMetadata); 1988 llvm::NamedMDNode *AsanGlobals = 1989 TheModule.getOrInsertNamedMetadata("llvm.asan.globals"); 1990 AsanGlobals->addOperand(ThisGlobal); 1991 } 1992 1993 void CodeGenModule::reportGlobalToASan(llvm::GlobalVariable *GV, 1994 const VarDecl &D, bool IsDynInit) { 1995 if (!LangOpts.Sanitize.Address) 1996 return; 1997 std::string QualName; 1998 llvm::raw_string_ostream OS(QualName); 1999 D.printQualifiedName(OS); 2000 reportGlobalToASan(GV, D.getLocation(), OS.str(), IsDynInit); 2001 } 2002 2003 void CodeGenModule::disableSanitizerForGlobal(llvm::GlobalVariable *GV) { 2004 // For now, just make sure the global is not modified by the ASan 2005 // instrumentation. 2006 if (LangOpts.Sanitize.Address) 2007 reportGlobalToASan(GV, SourceLocation(), "", false, true); 2008 } 2009 2010 static bool isVarDeclStrongDefinition(const VarDecl *D, bool NoCommon) { 2011 // Don't give variables common linkage if -fno-common was specified unless it 2012 // was overridden by a NoCommon attribute. 2013 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2014 return true; 2015 2016 // C11 6.9.2/2: 2017 // A declaration of an identifier for an object that has file scope without 2018 // an initializer, and without a storage-class specifier or with the 2019 // storage-class specifier static, constitutes a tentative definition. 2020 if (D->getInit() || D->hasExternalStorage()) 2021 return true; 2022 2023 // A variable cannot be both common and exist in a section. 2024 if (D->hasAttr<SectionAttr>()) 2025 return true; 2026 2027 // Thread local vars aren't considered common linkage. 2028 if (D->getTLSKind()) 2029 return true; 2030 2031 // Tentative definitions marked with WeakImportAttr are true definitions. 2032 if (D->hasAttr<WeakImportAttr>()) 2033 return true; 2034 2035 return false; 2036 } 2037 2038 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 2039 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 2040 if (Linkage == GVA_Internal) 2041 return llvm::Function::InternalLinkage; 2042 2043 if (D->hasAttr<WeakAttr>()) { 2044 if (IsConstantVariable) 2045 return llvm::GlobalVariable::WeakODRLinkage; 2046 else 2047 return llvm::GlobalVariable::WeakAnyLinkage; 2048 } 2049 2050 // We are guaranteed to have a strong definition somewhere else, 2051 // so we can use available_externally linkage. 2052 if (Linkage == GVA_AvailableExternally) 2053 return llvm::Function::AvailableExternallyLinkage; 2054 2055 // Note that Apple's kernel linker doesn't support symbol 2056 // coalescing, so we need to avoid linkonce and weak linkages there. 2057 // Normally, this means we just map to internal, but for explicit 2058 // instantiations we'll map to external. 2059 2060 // In C++, the compiler has to emit a definition in every translation unit 2061 // that references the function. We should use linkonce_odr because 2062 // a) if all references in this translation unit are optimized away, we 2063 // don't need to codegen it. b) if the function persists, it needs to be 2064 // merged with other definitions. c) C++ has the ODR, so we know the 2065 // definition is dependable. 2066 if (Linkage == GVA_DiscardableODR) 2067 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 2068 : llvm::Function::InternalLinkage; 2069 2070 // An explicit instantiation of a template has weak linkage, since 2071 // explicit instantiations can occur in multiple translation units 2072 // and must all be equivalent. However, we are not allowed to 2073 // throw away these explicit instantiations. 2074 if (Linkage == GVA_StrongODR) 2075 return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage 2076 : llvm::Function::ExternalLinkage; 2077 2078 // C++ doesn't have tentative definitions and thus cannot have common 2079 // linkage. 2080 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 2081 !isVarDeclStrongDefinition(cast<VarDecl>(D), CodeGenOpts.NoCommon)) 2082 return llvm::GlobalVariable::CommonLinkage; 2083 2084 // selectany symbols are externally visible, so use weak instead of 2085 // linkonce. MSVC optimizes away references to const selectany globals, so 2086 // all definitions should be the same and ODR linkage should be used. 2087 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 2088 if (D->hasAttr<SelectAnyAttr>()) 2089 return llvm::GlobalVariable::WeakODRLinkage; 2090 2091 // Otherwise, we have strong external linkage. 2092 assert(Linkage == GVA_StrongExternal); 2093 return llvm::GlobalVariable::ExternalLinkage; 2094 } 2095 2096 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 2097 const VarDecl *VD, bool IsConstant) { 2098 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 2099 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 2100 } 2101 2102 /// Replace the uses of a function that was declared with a non-proto type. 2103 /// We want to silently drop extra arguments from call sites 2104 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 2105 llvm::Function *newFn) { 2106 // Fast path. 2107 if (old->use_empty()) return; 2108 2109 llvm::Type *newRetTy = newFn->getReturnType(); 2110 SmallVector<llvm::Value*, 4> newArgs; 2111 2112 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 2113 ui != ue; ) { 2114 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 2115 llvm::User *user = use->getUser(); 2116 2117 // Recognize and replace uses of bitcasts. Most calls to 2118 // unprototyped functions will use bitcasts. 2119 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 2120 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 2121 replaceUsesOfNonProtoConstant(bitcast, newFn); 2122 continue; 2123 } 2124 2125 // Recognize calls to the function. 2126 llvm::CallSite callSite(user); 2127 if (!callSite) continue; 2128 if (!callSite.isCallee(&*use)) continue; 2129 2130 // If the return types don't match exactly, then we can't 2131 // transform this call unless it's dead. 2132 if (callSite->getType() != newRetTy && !callSite->use_empty()) 2133 continue; 2134 2135 // Get the call site's attribute list. 2136 SmallVector<llvm::AttributeSet, 8> newAttrs; 2137 llvm::AttributeSet oldAttrs = callSite.getAttributes(); 2138 2139 // Collect any return attributes from the call. 2140 if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex)) 2141 newAttrs.push_back( 2142 llvm::AttributeSet::get(newFn->getContext(), 2143 oldAttrs.getRetAttributes())); 2144 2145 // If the function was passed too few arguments, don't transform. 2146 unsigned newNumArgs = newFn->arg_size(); 2147 if (callSite.arg_size() < newNumArgs) continue; 2148 2149 // If extra arguments were passed, we silently drop them. 2150 // If any of the types mismatch, we don't transform. 2151 unsigned argNo = 0; 2152 bool dontTransform = false; 2153 for (llvm::Function::arg_iterator ai = newFn->arg_begin(), 2154 ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) { 2155 if (callSite.getArgument(argNo)->getType() != ai->getType()) { 2156 dontTransform = true; 2157 break; 2158 } 2159 2160 // Add any parameter attributes. 2161 if (oldAttrs.hasAttributes(argNo + 1)) 2162 newAttrs. 2163 push_back(llvm:: 2164 AttributeSet::get(newFn->getContext(), 2165 oldAttrs.getParamAttributes(argNo + 1))); 2166 } 2167 if (dontTransform) 2168 continue; 2169 2170 if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) 2171 newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(), 2172 oldAttrs.getFnAttributes())); 2173 2174 // Okay, we can transform this. Create the new call instruction and copy 2175 // over the required information. 2176 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 2177 2178 llvm::CallSite newCall; 2179 if (callSite.isCall()) { 2180 newCall = llvm::CallInst::Create(newFn, newArgs, "", 2181 callSite.getInstruction()); 2182 } else { 2183 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 2184 newCall = llvm::InvokeInst::Create(newFn, 2185 oldInvoke->getNormalDest(), 2186 oldInvoke->getUnwindDest(), 2187 newArgs, "", 2188 callSite.getInstruction()); 2189 } 2190 newArgs.clear(); // for the next iteration 2191 2192 if (!newCall->getType()->isVoidTy()) 2193 newCall->takeName(callSite.getInstruction()); 2194 newCall.setAttributes( 2195 llvm::AttributeSet::get(newFn->getContext(), newAttrs)); 2196 newCall.setCallingConv(callSite.getCallingConv()); 2197 2198 // Finally, remove the old call, replacing any uses with the new one. 2199 if (!callSite->use_empty()) 2200 callSite->replaceAllUsesWith(newCall.getInstruction()); 2201 2202 // Copy debug location attached to CI. 2203 if (!callSite->getDebugLoc().isUnknown()) 2204 newCall->setDebugLoc(callSite->getDebugLoc()); 2205 callSite->eraseFromParent(); 2206 } 2207 } 2208 2209 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 2210 /// implement a function with no prototype, e.g. "int foo() {}". If there are 2211 /// existing call uses of the old function in the module, this adjusts them to 2212 /// call the new function directly. 2213 /// 2214 /// This is not just a cleanup: the always_inline pass requires direct calls to 2215 /// functions to be able to inline them. If there is a bitcast in the way, it 2216 /// won't inline them. Instcombine normally deletes these calls, but it isn't 2217 /// run at -O0. 2218 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2219 llvm::Function *NewFn) { 2220 // If we're redefining a global as a function, don't transform it. 2221 if (!isa<llvm::Function>(Old)) return; 2222 2223 replaceUsesOfNonProtoConstant(Old, NewFn); 2224 } 2225 2226 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 2227 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 2228 // If we have a definition, this might be a deferred decl. If the 2229 // instantiation is explicit, make sure we emit it at the end. 2230 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 2231 GetAddrOfGlobalVar(VD); 2232 2233 EmitTopLevelDecl(VD); 2234 } 2235 2236 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 2237 llvm::GlobalValue *GV) { 2238 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2239 2240 // Compute the function info and LLVM type. 2241 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2242 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2243 2244 // Get or create the prototype for the function. 2245 if (!GV) { 2246 llvm::Constant *C = 2247 GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer*/ true); 2248 2249 // Strip off a bitcast if we got one back. 2250 if (auto *CE = dyn_cast<llvm::ConstantExpr>(C)) { 2251 assert(CE->getOpcode() == llvm::Instruction::BitCast); 2252 GV = cast<llvm::GlobalValue>(CE->getOperand(0)); 2253 } else { 2254 GV = cast<llvm::GlobalValue>(C); 2255 } 2256 } 2257 2258 if (!GV->isDeclaration()) { 2259 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name); 2260 return; 2261 } 2262 2263 if (GV->getType()->getElementType() != Ty) { 2264 // If the types mismatch then we have to rewrite the definition. 2265 assert(GV->isDeclaration() && "Shouldn't replace non-declaration"); 2266 2267 // F is the Function* for the one with the wrong type, we must make a new 2268 // Function* and update everything that used F (a declaration) with the new 2269 // Function* (which will be a definition). 2270 // 2271 // This happens if there is a prototype for a function 2272 // (e.g. "int f()") and then a definition of a different type 2273 // (e.g. "int f(int x)"). Move the old function aside so that it 2274 // doesn't interfere with GetAddrOfFunction. 2275 GV->setName(StringRef()); 2276 auto *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 2277 2278 // This might be an implementation of a function without a 2279 // prototype, in which case, try to do special replacement of 2280 // calls which match the new prototype. The really key thing here 2281 // is that we also potentially drop arguments from the call site 2282 // so as to make a direct call, which makes the inliner happier 2283 // and suppresses a number of optimizer warnings (!) about 2284 // dropping arguments. 2285 if (!GV->use_empty()) { 2286 ReplaceUsesOfNonProtoTypeWithRealFunction(GV, NewFn); 2287 GV->removeDeadConstantUsers(); 2288 } 2289 2290 // Replace uses of F with the Function we will endow with a body. 2291 if (!GV->use_empty()) { 2292 llvm::Constant *NewPtrForOldDecl = 2293 llvm::ConstantExpr::getBitCast(NewFn, GV->getType()); 2294 GV->replaceAllUsesWith(NewPtrForOldDecl); 2295 } 2296 2297 // Ok, delete the old function now, which is dead. 2298 GV->eraseFromParent(); 2299 2300 GV = NewFn; 2301 } 2302 2303 // We need to set linkage and visibility on the function before 2304 // generating code for it because various parts of IR generation 2305 // want to propagate this information down (e.g. to local static 2306 // declarations). 2307 auto *Fn = cast<llvm::Function>(GV); 2308 setFunctionLinkage(GD, Fn); 2309 2310 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 2311 setGlobalVisibility(Fn, D); 2312 2313 MaybeHandleStaticInExternC(D, Fn); 2314 2315 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 2316 2317 setFunctionDefinitionAttributes(D, Fn); 2318 SetLLVMFunctionAttributesForDefinition(D, Fn); 2319 2320 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 2321 AddGlobalCtor(Fn, CA->getPriority()); 2322 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 2323 AddGlobalDtor(Fn, DA->getPriority()); 2324 if (D->hasAttr<AnnotateAttr>()) 2325 AddGlobalAnnotations(D, Fn); 2326 } 2327 2328 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 2329 const auto *D = cast<ValueDecl>(GD.getDecl()); 2330 const AliasAttr *AA = D->getAttr<AliasAttr>(); 2331 assert(AA && "Not an alias?"); 2332 2333 StringRef MangledName = getMangledName(GD); 2334 2335 // If there is a definition in the module, then it wins over the alias. 2336 // This is dubious, but allow it to be safe. Just ignore the alias. 2337 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2338 if (Entry && !Entry->isDeclaration()) 2339 return; 2340 2341 Aliases.push_back(GD); 2342 2343 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 2344 2345 // Create a reference to the named value. This ensures that it is emitted 2346 // if a deferred decl. 2347 llvm::Constant *Aliasee; 2348 if (isa<llvm::FunctionType>(DeclTy)) 2349 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 2350 /*ForVTable=*/false); 2351 else 2352 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2353 llvm::PointerType::getUnqual(DeclTy), 2354 nullptr); 2355 2356 // Create the new alias itself, but don't set a name yet. 2357 auto *GA = llvm::GlobalAlias::create( 2358 cast<llvm::PointerType>(Aliasee->getType())->getElementType(), 0, 2359 llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 2360 2361 if (Entry) { 2362 if (GA->getAliasee() == Entry) { 2363 Diags.Report(AA->getLocation(), diag::err_cyclic_alias); 2364 return; 2365 } 2366 2367 assert(Entry->isDeclaration()); 2368 2369 // If there is a declaration in the module, then we had an extern followed 2370 // by the alias, as in: 2371 // extern int test6(); 2372 // ... 2373 // int test6() __attribute__((alias("test7"))); 2374 // 2375 // Remove it and replace uses of it with the alias. 2376 GA->takeName(Entry); 2377 2378 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 2379 Entry->getType())); 2380 Entry->eraseFromParent(); 2381 } else { 2382 GA->setName(MangledName); 2383 } 2384 2385 // Set attributes which are particular to an alias; this is a 2386 // specialization of the attributes which may be set on a global 2387 // variable/function. 2388 if (D->hasAttr<DLLExportAttr>()) { 2389 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 2390 // The dllexport attribute is ignored for undefined symbols. 2391 if (FD->hasBody()) 2392 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2393 } else { 2394 GA->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 2395 } 2396 } else if (D->hasAttr<WeakAttr>() || 2397 D->hasAttr<WeakRefAttr>() || 2398 D->isWeakImported()) { 2399 GA->setLinkage(llvm::Function::WeakAnyLinkage); 2400 } 2401 2402 SetCommonAttributes(D, GA); 2403 } 2404 2405 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 2406 ArrayRef<llvm::Type*> Tys) { 2407 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 2408 Tys); 2409 } 2410 2411 static llvm::StringMapEntry<llvm::Constant*> & 2412 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2413 const StringLiteral *Literal, 2414 bool TargetIsLSB, 2415 bool &IsUTF16, 2416 unsigned &StringLength) { 2417 StringRef String = Literal->getString(); 2418 unsigned NumBytes = String.size(); 2419 2420 // Check for simple case. 2421 if (!Literal->containsNonAsciiOrNull()) { 2422 StringLength = NumBytes; 2423 return Map.GetOrCreateValue(String); 2424 } 2425 2426 // Otherwise, convert the UTF8 literals into a string of shorts. 2427 IsUTF16 = true; 2428 2429 SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 2430 const UTF8 *FromPtr = (const UTF8 *)String.data(); 2431 UTF16 *ToPtr = &ToBuf[0]; 2432 2433 (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 2434 &ToPtr, ToPtr + NumBytes, 2435 strictConversion); 2436 2437 // ConvertUTF8toUTF16 returns the length in ToPtr. 2438 StringLength = ToPtr - &ToBuf[0]; 2439 2440 // Add an explicit null. 2441 *ToPtr = 0; 2442 return Map. 2443 GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()), 2444 (StringLength + 1) * 2)); 2445 } 2446 2447 static llvm::StringMapEntry<llvm::Constant*> & 2448 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map, 2449 const StringLiteral *Literal, 2450 unsigned &StringLength) { 2451 StringRef String = Literal->getString(); 2452 StringLength = String.size(); 2453 return Map.GetOrCreateValue(String); 2454 } 2455 2456 llvm::Constant * 2457 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 2458 unsigned StringLength = 0; 2459 bool isUTF16 = false; 2460 llvm::StringMapEntry<llvm::Constant*> &Entry = 2461 GetConstantCFStringEntry(CFConstantStringMap, Literal, 2462 getDataLayout().isLittleEndian(), 2463 isUTF16, StringLength); 2464 2465 if (llvm::Constant *C = Entry.getValue()) 2466 return C; 2467 2468 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2469 llvm::Constant *Zeros[] = { Zero, Zero }; 2470 llvm::Value *V; 2471 2472 // If we don't already have it, get __CFConstantStringClassReference. 2473 if (!CFConstantStringClassRef) { 2474 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2475 Ty = llvm::ArrayType::get(Ty, 0); 2476 llvm::Constant *GV = CreateRuntimeVariable(Ty, 2477 "__CFConstantStringClassReference"); 2478 // Decay array -> ptr 2479 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2480 CFConstantStringClassRef = V; 2481 } 2482 else 2483 V = CFConstantStringClassRef; 2484 2485 QualType CFTy = getContext().getCFConstantStringType(); 2486 2487 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 2488 2489 llvm::Constant *Fields[4]; 2490 2491 // Class pointer. 2492 Fields[0] = cast<llvm::ConstantExpr>(V); 2493 2494 // Flags. 2495 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2496 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 2497 llvm::ConstantInt::get(Ty, 0x07C8); 2498 2499 // String pointer. 2500 llvm::Constant *C = nullptr; 2501 if (isUTF16) { 2502 ArrayRef<uint16_t> Arr = 2503 llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>( 2504 const_cast<char *>(Entry.getKey().data())), 2505 Entry.getKey().size() / 2); 2506 C = llvm::ConstantDataArray::get(VMContext, Arr); 2507 } else { 2508 C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2509 } 2510 2511 // Note: -fwritable-strings doesn't make the backing store strings of 2512 // CFStrings writable. (See <rdar://problem/10657500>) 2513 auto *GV = 2514 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 2515 llvm::GlobalValue::PrivateLinkage, C, ".str"); 2516 GV->setUnnamedAddr(true); 2517 // Don't enforce the target's minimum global alignment, since the only use 2518 // of the string is via this class initializer. 2519 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without 2520 // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing 2521 // that changes the section it ends in, which surprises ld64. 2522 if (isUTF16) { 2523 CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); 2524 GV->setAlignment(Align.getQuantity()); 2525 GV->setSection("__TEXT,__ustring"); 2526 } else { 2527 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2528 GV->setAlignment(Align.getQuantity()); 2529 GV->setSection("__TEXT,__cstring,cstring_literals"); 2530 } 2531 2532 // String. 2533 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2534 2535 if (isUTF16) 2536 // Cast the UTF16 string to the correct type. 2537 Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy); 2538 2539 // String length. 2540 Ty = getTypes().ConvertType(getContext().LongTy); 2541 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 2542 2543 // The struct. 2544 C = llvm::ConstantStruct::get(STy, Fields); 2545 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2546 llvm::GlobalVariable::PrivateLinkage, C, 2547 "_unnamed_cfstring_"); 2548 GV->setSection("__DATA,__cfstring"); 2549 Entry.setValue(GV); 2550 2551 return GV; 2552 } 2553 2554 llvm::Constant * 2555 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) { 2556 unsigned StringLength = 0; 2557 llvm::StringMapEntry<llvm::Constant*> &Entry = 2558 GetConstantStringEntry(CFConstantStringMap, Literal, StringLength); 2559 2560 if (llvm::Constant *C = Entry.getValue()) 2561 return C; 2562 2563 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 2564 llvm::Constant *Zeros[] = { Zero, Zero }; 2565 llvm::Value *V; 2566 // If we don't already have it, get _NSConstantStringClassReference. 2567 if (!ConstantStringClassRef) { 2568 std::string StringClass(getLangOpts().ObjCConstantStringClass); 2569 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 2570 llvm::Constant *GV; 2571 if (LangOpts.ObjCRuntime.isNonFragile()) { 2572 std::string str = 2573 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString" 2574 : "OBJC_CLASS_$_" + StringClass; 2575 GV = getObjCRuntime().GetClassGlobal(str); 2576 // Make sure the result is of the correct type. 2577 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2578 V = llvm::ConstantExpr::getBitCast(GV, PTy); 2579 ConstantStringClassRef = V; 2580 } else { 2581 std::string str = 2582 StringClass.empty() ? "_NSConstantStringClassReference" 2583 : "_" + StringClass + "ClassReference"; 2584 llvm::Type *PTy = llvm::ArrayType::get(Ty, 0); 2585 GV = CreateRuntimeVariable(PTy, str); 2586 // Decay array -> ptr 2587 V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2588 ConstantStringClassRef = V; 2589 } 2590 } 2591 else 2592 V = ConstantStringClassRef; 2593 2594 if (!NSConstantStringType) { 2595 // Construct the type for a constant NSString. 2596 RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString"); 2597 D->startDefinition(); 2598 2599 QualType FieldTypes[3]; 2600 2601 // const int *isa; 2602 FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst()); 2603 // const char *str; 2604 FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst()); 2605 // unsigned int length; 2606 FieldTypes[2] = Context.UnsignedIntTy; 2607 2608 // Create fields 2609 for (unsigned i = 0; i < 3; ++i) { 2610 FieldDecl *Field = FieldDecl::Create(Context, D, 2611 SourceLocation(), 2612 SourceLocation(), nullptr, 2613 FieldTypes[i], /*TInfo=*/nullptr, 2614 /*BitWidth=*/nullptr, 2615 /*Mutable=*/false, 2616 ICIS_NoInit); 2617 Field->setAccess(AS_public); 2618 D->addDecl(Field); 2619 } 2620 2621 D->completeDefinition(); 2622 QualType NSTy = Context.getTagDeclType(D); 2623 NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy)); 2624 } 2625 2626 llvm::Constant *Fields[3]; 2627 2628 // Class pointer. 2629 Fields[0] = cast<llvm::ConstantExpr>(V); 2630 2631 // String pointer. 2632 llvm::Constant *C = 2633 llvm::ConstantDataArray::getString(VMContext, Entry.getKey()); 2634 2635 llvm::GlobalValue::LinkageTypes Linkage; 2636 bool isConstant; 2637 Linkage = llvm::GlobalValue::PrivateLinkage; 2638 isConstant = !LangOpts.WritableStrings; 2639 2640 auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 2641 Linkage, C, ".str"); 2642 GV->setUnnamedAddr(true); 2643 // Don't enforce the target's minimum global alignment, since the only use 2644 // of the string is via this class initializer. 2645 CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy); 2646 GV->setAlignment(Align.getQuantity()); 2647 Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros); 2648 2649 // String length. 2650 llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 2651 Fields[2] = llvm::ConstantInt::get(Ty, StringLength); 2652 2653 // The struct. 2654 C = llvm::ConstantStruct::get(NSConstantStringType, Fields); 2655 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 2656 llvm::GlobalVariable::PrivateLinkage, C, 2657 "_unnamed_nsstring_"); 2658 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip"; 2659 const char *NSStringNonFragileABISection = 2660 "__DATA,__objc_stringobj,regular,no_dead_strip"; 2661 // FIXME. Fix section. 2662 GV->setSection(LangOpts.ObjCRuntime.isNonFragile() 2663 ? NSStringNonFragileABISection 2664 : NSStringSection); 2665 Entry.setValue(GV); 2666 2667 return GV; 2668 } 2669 2670 QualType CodeGenModule::getObjCFastEnumerationStateType() { 2671 if (ObjCFastEnumerationStateType.isNull()) { 2672 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 2673 D->startDefinition(); 2674 2675 QualType FieldTypes[] = { 2676 Context.UnsignedLongTy, 2677 Context.getPointerType(Context.getObjCIdType()), 2678 Context.getPointerType(Context.UnsignedLongTy), 2679 Context.getConstantArrayType(Context.UnsignedLongTy, 2680 llvm::APInt(32, 5), ArrayType::Normal, 0) 2681 }; 2682 2683 for (size_t i = 0; i < 4; ++i) { 2684 FieldDecl *Field = FieldDecl::Create(Context, 2685 D, 2686 SourceLocation(), 2687 SourceLocation(), nullptr, 2688 FieldTypes[i], /*TInfo=*/nullptr, 2689 /*BitWidth=*/nullptr, 2690 /*Mutable=*/false, 2691 ICIS_NoInit); 2692 Field->setAccess(AS_public); 2693 D->addDecl(Field); 2694 } 2695 2696 D->completeDefinition(); 2697 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 2698 } 2699 2700 return ObjCFastEnumerationStateType; 2701 } 2702 2703 llvm::Constant * 2704 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 2705 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 2706 2707 // Don't emit it as the address of the string, emit the string data itself 2708 // as an inline array. 2709 if (E->getCharByteWidth() == 1) { 2710 SmallString<64> Str(E->getString()); 2711 2712 // Resize the string to the right size, which is indicated by its type. 2713 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 2714 Str.resize(CAT->getSize().getZExtValue()); 2715 return llvm::ConstantDataArray::getString(VMContext, Str, false); 2716 } 2717 2718 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 2719 llvm::Type *ElemTy = AType->getElementType(); 2720 unsigned NumElements = AType->getNumElements(); 2721 2722 // Wide strings have either 2-byte or 4-byte elements. 2723 if (ElemTy->getPrimitiveSizeInBits() == 16) { 2724 SmallVector<uint16_t, 32> Elements; 2725 Elements.reserve(NumElements); 2726 2727 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2728 Elements.push_back(E->getCodeUnit(i)); 2729 Elements.resize(NumElements); 2730 return llvm::ConstantDataArray::get(VMContext, Elements); 2731 } 2732 2733 assert(ElemTy->getPrimitiveSizeInBits() == 32); 2734 SmallVector<uint32_t, 32> Elements; 2735 Elements.reserve(NumElements); 2736 2737 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 2738 Elements.push_back(E->getCodeUnit(i)); 2739 Elements.resize(NumElements); 2740 return llvm::ConstantDataArray::get(VMContext, Elements); 2741 } 2742 2743 static llvm::GlobalVariable * 2744 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 2745 CodeGenModule &CGM, StringRef GlobalName, 2746 unsigned Alignment) { 2747 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 2748 unsigned AddrSpace = 0; 2749 if (CGM.getLangOpts().OpenCL) 2750 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 2751 2752 // Create a global variable for this string 2753 auto *GV = new llvm::GlobalVariable( 2754 CGM.getModule(), C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, 2755 GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 2756 GV->setAlignment(Alignment); 2757 GV->setUnnamedAddr(true); 2758 return GV; 2759 } 2760 2761 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 2762 /// constant array for the given string literal. 2763 llvm::GlobalVariable * 2764 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 2765 auto Alignment = 2766 getContext().getAlignOfGlobalVarInChars(S->getType()).getQuantity(); 2767 2768 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 2769 llvm::GlobalVariable **Entry = nullptr; 2770 if (!LangOpts.WritableStrings) { 2771 Entry = &ConstantStringMap[C]; 2772 if (auto GV = *Entry) { 2773 if (Alignment > GV->getAlignment()) 2774 GV->setAlignment(Alignment); 2775 return GV; 2776 } 2777 } 2778 2779 SmallString<256> MangledNameBuffer; 2780 StringRef GlobalVariableName; 2781 llvm::GlobalValue::LinkageTypes LT; 2782 2783 // Mangle the string literal if the ABI allows for it. However, we cannot 2784 // do this if we are compiling with ASan or -fwritable-strings because they 2785 // rely on strings having normal linkage. 2786 if (!LangOpts.WritableStrings && !LangOpts.Sanitize.Address && 2787 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 2788 llvm::raw_svector_ostream Out(MangledNameBuffer); 2789 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 2790 Out.flush(); 2791 2792 LT = llvm::GlobalValue::LinkOnceODRLinkage; 2793 GlobalVariableName = MangledNameBuffer; 2794 } else { 2795 LT = llvm::GlobalValue::PrivateLinkage; 2796 GlobalVariableName = ".str"; 2797 } 2798 2799 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 2800 if (Entry) 2801 *Entry = GV; 2802 2803 reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>"); 2804 return GV; 2805 } 2806 2807 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 2808 /// array for the given ObjCEncodeExpr node. 2809 llvm::GlobalVariable * 2810 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 2811 std::string Str; 2812 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 2813 2814 return GetAddrOfConstantCString(Str); 2815 } 2816 2817 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 2818 /// the literal and a terminating '\0' character. 2819 /// The result has pointer to array type. 2820 llvm::GlobalVariable *CodeGenModule::GetAddrOfConstantCString( 2821 const std::string &Str, const char *GlobalName, unsigned Alignment) { 2822 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 2823 if (Alignment == 0) { 2824 Alignment = getContext() 2825 .getAlignOfGlobalVarInChars(getContext().CharTy) 2826 .getQuantity(); 2827 } 2828 2829 llvm::Constant *C = 2830 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 2831 2832 // Don't share any string literals if strings aren't constant. 2833 llvm::GlobalVariable **Entry = nullptr; 2834 if (!LangOpts.WritableStrings) { 2835 Entry = &ConstantStringMap[C]; 2836 if (auto GV = *Entry) { 2837 if (Alignment > GV->getAlignment()) 2838 GV->setAlignment(Alignment); 2839 return GV; 2840 } 2841 } 2842 2843 // Get the default prefix if a name wasn't specified. 2844 if (!GlobalName) 2845 GlobalName = ".str"; 2846 // Create a global variable for this. 2847 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 2848 GlobalName, Alignment); 2849 if (Entry) 2850 *Entry = GV; 2851 return GV; 2852 } 2853 2854 llvm::Constant *CodeGenModule::GetAddrOfGlobalTemporary( 2855 const MaterializeTemporaryExpr *E, const Expr *Init) { 2856 assert((E->getStorageDuration() == SD_Static || 2857 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 2858 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 2859 2860 // If we're not materializing a subobject of the temporary, keep the 2861 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 2862 QualType MaterializedType = Init->getType(); 2863 if (Init == E->GetTemporaryExpr()) 2864 MaterializedType = E->getType(); 2865 2866 llvm::Constant *&Slot = MaterializedGlobalTemporaryMap[E]; 2867 if (Slot) 2868 return Slot; 2869 2870 // FIXME: If an externally-visible declaration extends multiple temporaries, 2871 // we need to give each temporary the same name in every translation unit (and 2872 // we also need to make the temporaries externally-visible). 2873 SmallString<256> Name; 2874 llvm::raw_svector_ostream Out(Name); 2875 getCXXABI().getMangleContext().mangleReferenceTemporary( 2876 VD, E->getManglingNumber(), Out); 2877 Out.flush(); 2878 2879 APValue *Value = nullptr; 2880 if (E->getStorageDuration() == SD_Static) { 2881 // We might have a cached constant initializer for this temporary. Note 2882 // that this might have a different value from the value computed by 2883 // evaluating the initializer if the surrounding constant expression 2884 // modifies the temporary. 2885 Value = getContext().getMaterializedTemporaryValue(E, false); 2886 if (Value && Value->isUninit()) 2887 Value = nullptr; 2888 } 2889 2890 // Try evaluating it now, it might have a constant initializer. 2891 Expr::EvalResult EvalResult; 2892 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 2893 !EvalResult.hasSideEffects()) 2894 Value = &EvalResult.Val; 2895 2896 llvm::Constant *InitialValue = nullptr; 2897 bool Constant = false; 2898 llvm::Type *Type; 2899 if (Value) { 2900 // The temporary has a constant initializer, use it. 2901 InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr); 2902 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 2903 Type = InitialValue->getType(); 2904 } else { 2905 // No initializer, the initialization will be provided when we 2906 // initialize the declaration which performed lifetime extension. 2907 Type = getTypes().ConvertTypeForMem(MaterializedType); 2908 } 2909 2910 // Create a global variable for this lifetime-extended temporary. 2911 llvm::GlobalValue::LinkageTypes Linkage = 2912 getLLVMLinkageVarDefinition(VD, Constant); 2913 // There is no need for this temporary to have global linkage if the global 2914 // variable has external linkage. 2915 if (Linkage == llvm::GlobalVariable::ExternalLinkage) 2916 Linkage = llvm::GlobalVariable::PrivateLinkage; 2917 unsigned AddrSpace = GetGlobalVarAddressSpace( 2918 VD, getContext().getTargetAddressSpace(MaterializedType)); 2919 auto *GV = new llvm::GlobalVariable( 2920 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 2921 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2922 AddrSpace); 2923 setGlobalVisibility(GV, VD); 2924 GV->setAlignment( 2925 getContext().getTypeAlignInChars(MaterializedType).getQuantity()); 2926 if (VD->getTLSKind()) 2927 setTLSMode(GV, *VD); 2928 Slot = GV; 2929 return GV; 2930 } 2931 2932 /// EmitObjCPropertyImplementations - Emit information for synthesized 2933 /// properties for an implementation. 2934 void CodeGenModule::EmitObjCPropertyImplementations(const 2935 ObjCImplementationDecl *D) { 2936 for (const auto *PID : D->property_impls()) { 2937 // Dynamic is just for type-checking. 2938 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 2939 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 2940 2941 // Determine which methods need to be implemented, some may have 2942 // been overridden. Note that ::isPropertyAccessor is not the method 2943 // we want, that just indicates if the decl came from a 2944 // property. What we want to know is if the method is defined in 2945 // this implementation. 2946 if (!D->getInstanceMethod(PD->getGetterName())) 2947 CodeGenFunction(*this).GenerateObjCGetter( 2948 const_cast<ObjCImplementationDecl *>(D), PID); 2949 if (!PD->isReadOnly() && 2950 !D->getInstanceMethod(PD->getSetterName())) 2951 CodeGenFunction(*this).GenerateObjCSetter( 2952 const_cast<ObjCImplementationDecl *>(D), PID); 2953 } 2954 } 2955 } 2956 2957 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 2958 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 2959 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 2960 ivar; ivar = ivar->getNextIvar()) 2961 if (ivar->getType().isDestructedType()) 2962 return true; 2963 2964 return false; 2965 } 2966 2967 /// EmitObjCIvarInitializations - Emit information for ivar initialization 2968 /// for an implementation. 2969 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 2970 // We might need a .cxx_destruct even if we don't have any ivar initializers. 2971 if (needsDestructMethod(D)) { 2972 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 2973 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2974 ObjCMethodDecl *DTORMethod = 2975 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 2976 cxxSelector, getContext().VoidTy, nullptr, D, 2977 /*isInstance=*/true, /*isVariadic=*/false, 2978 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 2979 /*isDefined=*/false, ObjCMethodDecl::Required); 2980 D->addInstanceMethod(DTORMethod); 2981 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 2982 D->setHasDestructors(true); 2983 } 2984 2985 // If the implementation doesn't have any ivar initializers, we don't need 2986 // a .cxx_construct. 2987 if (D->getNumIvarInitializers() == 0) 2988 return; 2989 2990 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 2991 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 2992 // The constructor returns 'self'. 2993 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 2994 D->getLocation(), 2995 D->getLocation(), 2996 cxxSelector, 2997 getContext().getObjCIdType(), 2998 nullptr, D, /*isInstance=*/true, 2999 /*isVariadic=*/false, 3000 /*isPropertyAccessor=*/true, 3001 /*isImplicitlyDeclared=*/true, 3002 /*isDefined=*/false, 3003 ObjCMethodDecl::Required); 3004 D->addInstanceMethod(CTORMethod); 3005 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3006 D->setHasNonZeroConstructors(true); 3007 } 3008 3009 /// EmitNamespace - Emit all declarations in a namespace. 3010 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 3011 for (auto *I : ND->decls()) { 3012 if (const auto *VD = dyn_cast<VarDecl>(I)) 3013 if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && 3014 VD->getTemplateSpecializationKind() != TSK_Undeclared) 3015 continue; 3016 EmitTopLevelDecl(I); 3017 } 3018 } 3019 3020 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3021 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3022 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3023 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3024 ErrorUnsupported(LSD, "linkage spec"); 3025 return; 3026 } 3027 3028 for (auto *I : LSD->decls()) { 3029 // Meta-data for ObjC class includes references to implemented methods. 3030 // Generate class's method definitions first. 3031 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3032 for (auto *M : OID->methods()) 3033 EmitTopLevelDecl(M); 3034 } 3035 EmitTopLevelDecl(I); 3036 } 3037 } 3038 3039 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3040 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 3041 // Ignore dependent declarations. 3042 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 3043 return; 3044 3045 switch (D->getKind()) { 3046 case Decl::CXXConversion: 3047 case Decl::CXXMethod: 3048 case Decl::Function: 3049 // Skip function templates 3050 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3051 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3052 return; 3053 3054 EmitGlobal(cast<FunctionDecl>(D)); 3055 break; 3056 3057 case Decl::Var: 3058 // Skip variable templates 3059 if (cast<VarDecl>(D)->getDescribedVarTemplate()) 3060 return; 3061 case Decl::VarTemplateSpecialization: 3062 EmitGlobal(cast<VarDecl>(D)); 3063 break; 3064 3065 // Indirect fields from global anonymous structs and unions can be 3066 // ignored; only the actual variable requires IR gen support. 3067 case Decl::IndirectField: 3068 break; 3069 3070 // C++ Decls 3071 case Decl::Namespace: 3072 EmitNamespace(cast<NamespaceDecl>(D)); 3073 break; 3074 // No code generation needed. 3075 case Decl::UsingShadow: 3076 case Decl::ClassTemplate: 3077 case Decl::VarTemplate: 3078 case Decl::VarTemplatePartialSpecialization: 3079 case Decl::FunctionTemplate: 3080 case Decl::TypeAliasTemplate: 3081 case Decl::Block: 3082 case Decl::Empty: 3083 break; 3084 case Decl::Using: // using X; [C++] 3085 if (CGDebugInfo *DI = getModuleDebugInfo()) 3086 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 3087 return; 3088 case Decl::NamespaceAlias: 3089 if (CGDebugInfo *DI = getModuleDebugInfo()) 3090 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 3091 return; 3092 case Decl::UsingDirective: // using namespace X; [C++] 3093 if (CGDebugInfo *DI = getModuleDebugInfo()) 3094 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 3095 return; 3096 case Decl::CXXConstructor: 3097 // Skip function templates 3098 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() || 3099 cast<FunctionDecl>(D)->isLateTemplateParsed()) 3100 return; 3101 3102 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 3103 break; 3104 case Decl::CXXDestructor: 3105 if (cast<FunctionDecl>(D)->isLateTemplateParsed()) 3106 return; 3107 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 3108 break; 3109 3110 case Decl::StaticAssert: 3111 // Nothing to do. 3112 break; 3113 3114 // Objective-C Decls 3115 3116 // Forward declarations, no (immediate) code generation. 3117 case Decl::ObjCInterface: 3118 case Decl::ObjCCategory: 3119 break; 3120 3121 case Decl::ObjCProtocol: { 3122 auto *Proto = cast<ObjCProtocolDecl>(D); 3123 if (Proto->isThisDeclarationADefinition()) 3124 ObjCRuntime->GenerateProtocol(Proto); 3125 break; 3126 } 3127 3128 case Decl::ObjCCategoryImpl: 3129 // Categories have properties but don't support synthesize so we 3130 // can ignore them here. 3131 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 3132 break; 3133 3134 case Decl::ObjCImplementation: { 3135 auto *OMD = cast<ObjCImplementationDecl>(D); 3136 EmitObjCPropertyImplementations(OMD); 3137 EmitObjCIvarInitializations(OMD); 3138 ObjCRuntime->GenerateClass(OMD); 3139 // Emit global variable debug information. 3140 if (CGDebugInfo *DI = getModuleDebugInfo()) 3141 if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 3142 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 3143 OMD->getClassInterface()), OMD->getLocation()); 3144 break; 3145 } 3146 case Decl::ObjCMethod: { 3147 auto *OMD = cast<ObjCMethodDecl>(D); 3148 // If this is not a prototype, emit the body. 3149 if (OMD->getBody()) 3150 CodeGenFunction(*this).GenerateObjCMethod(OMD); 3151 break; 3152 } 3153 case Decl::ObjCCompatibleAlias: 3154 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 3155 break; 3156 3157 case Decl::LinkageSpec: 3158 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 3159 break; 3160 3161 case Decl::FileScopeAsm: { 3162 auto *AD = cast<FileScopeAsmDecl>(D); 3163 StringRef AsmString = AD->getAsmString()->getString(); 3164 3165 const std::string &S = getModule().getModuleInlineAsm(); 3166 if (S.empty()) 3167 getModule().setModuleInlineAsm(AsmString); 3168 else if (S.end()[-1] == '\n') 3169 getModule().setModuleInlineAsm(S + AsmString.str()); 3170 else 3171 getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); 3172 break; 3173 } 3174 3175 case Decl::Import: { 3176 auto *Import = cast<ImportDecl>(D); 3177 3178 // Ignore import declarations that come from imported modules. 3179 if (clang::Module *Owner = Import->getOwningModule()) { 3180 if (getLangOpts().CurrentModule.empty() || 3181 Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule) 3182 break; 3183 } 3184 3185 ImportedModules.insert(Import->getImportedModule()); 3186 break; 3187 } 3188 3189 case Decl::ClassTemplateSpecialization: { 3190 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 3191 if (DebugInfo && 3192 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition) 3193 DebugInfo->completeTemplateDefinition(*Spec); 3194 } 3195 3196 default: 3197 // Make sure we handled everything we should, every other kind is a 3198 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 3199 // function. Need to recode Decl::Kind to do that easily. 3200 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 3201 } 3202 } 3203 3204 /// Turns the given pointer into a constant. 3205 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 3206 const void *Ptr) { 3207 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 3208 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 3209 return llvm::ConstantInt::get(i64, PtrInt); 3210 } 3211 3212 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 3213 llvm::NamedMDNode *&GlobalMetadata, 3214 GlobalDecl D, 3215 llvm::GlobalValue *Addr) { 3216 if (!GlobalMetadata) 3217 GlobalMetadata = 3218 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 3219 3220 // TODO: should we report variant information for ctors/dtors? 3221 llvm::Value *Ops[] = { 3222 Addr, 3223 GetPointerConstant(CGM.getLLVMContext(), D.getDecl()) 3224 }; 3225 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 3226 } 3227 3228 /// For each function which is declared within an extern "C" region and marked 3229 /// as 'used', but has internal linkage, create an alias from the unmangled 3230 /// name to the mangled name if possible. People expect to be able to refer 3231 /// to such functions with an unmangled name from inline assembly within the 3232 /// same translation unit. 3233 void CodeGenModule::EmitStaticExternCAliases() { 3234 for (StaticExternCMap::iterator I = StaticExternCValues.begin(), 3235 E = StaticExternCValues.end(); 3236 I != E; ++I) { 3237 IdentifierInfo *Name = I->first; 3238 llvm::GlobalValue *Val = I->second; 3239 if (Val && !getModule().getNamedValue(Name->getName())) 3240 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 3241 } 3242 } 3243 3244 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 3245 GlobalDecl &Result) const { 3246 auto Res = Manglings.find(MangledName); 3247 if (Res == Manglings.end()) 3248 return false; 3249 Result = Res->getValue(); 3250 return true; 3251 } 3252 3253 /// Emits metadata nodes associating all the global values in the 3254 /// current module with the Decls they came from. This is useful for 3255 /// projects using IR gen as a subroutine. 3256 /// 3257 /// Since there's currently no way to associate an MDNode directly 3258 /// with an llvm::GlobalValue, we create a global named metadata 3259 /// with the name 'clang.global.decl.ptrs'. 3260 void CodeGenModule::EmitDeclMetadata() { 3261 llvm::NamedMDNode *GlobalMetadata = nullptr; 3262 3263 // StaticLocalDeclMap 3264 for (auto &I : MangledDeclNames) { 3265 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 3266 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 3267 } 3268 } 3269 3270 /// Emits metadata nodes for all the local variables in the current 3271 /// function. 3272 void CodeGenFunction::EmitDeclMetadata() { 3273 if (LocalDeclMap.empty()) return; 3274 3275 llvm::LLVMContext &Context = getLLVMContext(); 3276 3277 // Find the unique metadata ID for this name. 3278 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 3279 3280 llvm::NamedMDNode *GlobalMetadata = nullptr; 3281 3282 for (auto &I : LocalDeclMap) { 3283 const Decl *D = I.first; 3284 llvm::Value *Addr = I.second; 3285 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 3286 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 3287 Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr)); 3288 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 3289 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 3290 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 3291 } 3292 } 3293 } 3294 3295 void CodeGenModule::EmitVersionIdentMetadata() { 3296 llvm::NamedMDNode *IdentMetadata = 3297 TheModule.getOrInsertNamedMetadata("llvm.ident"); 3298 std::string Version = getClangFullVersion(); 3299 llvm::LLVMContext &Ctx = TheModule.getContext(); 3300 3301 llvm::Value *IdentNode[] = { 3302 llvm::MDString::get(Ctx, Version) 3303 }; 3304 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 3305 } 3306 3307 void CodeGenModule::EmitTargetMetadata() { 3308 // Warning, new MangledDeclNames may be appended within this loop. 3309 // We rely on MapVector insertions adding new elements to the end 3310 // of the container. 3311 // FIXME: Move this loop into the one target that needs it, and only 3312 // loop over those declarations for which we couldn't emit the target 3313 // metadata when we emitted the declaration. 3314 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 3315 auto &Val = *(MangledDeclNames.begin() + I); 3316 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 3317 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 3318 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 3319 } 3320 } 3321 3322 void CodeGenModule::EmitCoverageFile() { 3323 if (!getCodeGenOpts().CoverageFile.empty()) { 3324 if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) { 3325 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 3326 llvm::LLVMContext &Ctx = TheModule.getContext(); 3327 llvm::MDString *CoverageFile = 3328 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile); 3329 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 3330 llvm::MDNode *CU = CUNode->getOperand(i); 3331 llvm::Value *node[] = { CoverageFile, CU }; 3332 llvm::MDNode *N = llvm::MDNode::get(Ctx, node); 3333 GCov->addOperand(N); 3334 } 3335 } 3336 } 3337 } 3338 3339 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid, 3340 QualType GuidType) { 3341 // Sema has checked that all uuid strings are of the form 3342 // "12345678-1234-1234-1234-1234567890ab". 3343 assert(Uuid.size() == 36); 3344 for (unsigned i = 0; i < 36; ++i) { 3345 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 3346 else assert(isHexDigit(Uuid[i])); 3347 } 3348 3349 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 3350 3351 llvm::Constant *Field3[8]; 3352 for (unsigned Idx = 0; Idx < 8; ++Idx) 3353 Field3[Idx] = llvm::ConstantInt::get( 3354 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 3355 3356 llvm::Constant *Fields[4] = { 3357 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 3358 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 3359 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 3360 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 3361 }; 3362 3363 return llvm::ConstantStruct::getAnon(Fields); 3364 } 3365 3366 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 3367 bool ForEH) { 3368 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 3369 // FIXME: should we even be calling this method if RTTI is disabled 3370 // and it's not for EH? 3371 if (!ForEH && !getLangOpts().RTTI) 3372 return llvm::Constant::getNullValue(Int8PtrTy); 3373 3374 if (ForEH && Ty->isObjCObjectPointerType() && 3375 LangOpts.ObjCRuntime.isGNUFamily()) 3376 return ObjCRuntime->GetEHType(Ty); 3377 3378 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 3379 } 3380 3381