xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision ce2f9c5c63b97907d148863cd4cb88324e91ec17)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGCall.h"
18 #include "CGDebugInfo.h"
19 #include "CGObjCRuntime.h"
20 #include "CGOpenCLRuntime.h"
21 #include "CodeGenFunction.h"
22 #include "CodeGenTBAA.h"
23 #include "TargetInfo.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/CharUnits.h"
26 #include "clang/AST/DeclCXX.h"
27 #include "clang/AST/DeclObjC.h"
28 #include "clang/AST/DeclTemplate.h"
29 #include "clang/AST/Mangle.h"
30 #include "clang/AST/RecordLayout.h"
31 #include "clang/AST/RecursiveASTVisitor.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ConvertUTF.h"
34 #include "clang/Basic/Diagnostic.h"
35 #include "clang/Basic/Module.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Frontend/CodeGenOptions.h"
39 #include "llvm/ADT/APSInt.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/Support/CallSite.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Target/Mangler.h"
49 using namespace clang;
50 using namespace CodeGen;
51 
52 static const char AnnotationSection[] = "llvm.metadata";
53 
54 static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
55   switch (CGM.getContext().getTargetInfo().getCXXABI()) {
56   case CXXABI_ARM: return *CreateARMCXXABI(CGM);
57   case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
58   case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
59   }
60 
61   llvm_unreachable("invalid C++ ABI kind");
62 }
63 
64 
65 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
66                              llvm::Module &M, const llvm::DataLayout &TD,
67                              DiagnosticsEngine &diags)
68   : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
69     TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
70     ABI(createCXXABI(*this)),
71     Types(*this),
72     TBAA(0),
73     VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
74     DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
75     RRData(0), CFConstantStringClassRef(0),
76     ConstantStringClassRef(0), NSConstantStringType(0),
77     VMContext(M.getContext()),
78     NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
79     BlockObjectAssign(0), BlockObjectDispose(0),
80     BlockDescriptorType(0), GenericBlockLiteralType(0),
81     SanitizerBlacklist(CGO.SanitizerBlacklistFile),
82     SanOpts(SanitizerBlacklist.isIn(M) ?
83             SanitizerOptions::Disabled : LangOpts.Sanitize) {
84 
85   // Initialize the type cache.
86   llvm::LLVMContext &LLVMContext = M.getContext();
87   VoidTy = llvm::Type::getVoidTy(LLVMContext);
88   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
89   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
90   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
91   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
92   FloatTy = llvm::Type::getFloatTy(LLVMContext);
93   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
94   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
95   PointerAlignInBytes =
96   C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
97   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
98   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
99   Int8PtrTy = Int8Ty->getPointerTo(0);
100   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
101 
102   if (LangOpts.ObjC1)
103     createObjCRuntime();
104   if (LangOpts.OpenCL)
105     createOpenCLRuntime();
106   if (LangOpts.CUDA)
107     createCUDARuntime();
108 
109   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
110   if (SanOpts.Thread ||
111       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
112     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
113                            ABI.getMangleContext());
114 
115   // If debug info or coverage generation is enabled, create the CGDebugInfo
116   // object.
117   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
118       CodeGenOpts.EmitGcovArcs ||
119       CodeGenOpts.EmitGcovNotes)
120     DebugInfo = new CGDebugInfo(*this);
121 
122   Block.GlobalUniqueCount = 0;
123 
124   if (C.getLangOpts().ObjCAutoRefCount)
125     ARCData = new ARCEntrypoints();
126   RRData = new RREntrypoints();
127 }
128 
129 CodeGenModule::~CodeGenModule() {
130   delete ObjCRuntime;
131   delete OpenCLRuntime;
132   delete CUDARuntime;
133   delete TheTargetCodeGenInfo;
134   delete &ABI;
135   delete TBAA;
136   delete DebugInfo;
137   delete ARCData;
138   delete RRData;
139 }
140 
141 void CodeGenModule::createObjCRuntime() {
142   // This is just isGNUFamily(), but we want to force implementors of
143   // new ABIs to decide how best to do this.
144   switch (LangOpts.ObjCRuntime.getKind()) {
145   case ObjCRuntime::GNUstep:
146   case ObjCRuntime::GCC:
147   case ObjCRuntime::ObjFW:
148     ObjCRuntime = CreateGNUObjCRuntime(*this);
149     return;
150 
151   case ObjCRuntime::FragileMacOSX:
152   case ObjCRuntime::MacOSX:
153   case ObjCRuntime::iOS:
154     ObjCRuntime = CreateMacObjCRuntime(*this);
155     return;
156   }
157   llvm_unreachable("bad runtime kind");
158 }
159 
160 void CodeGenModule::createOpenCLRuntime() {
161   OpenCLRuntime = new CGOpenCLRuntime(*this);
162 }
163 
164 void CodeGenModule::createCUDARuntime() {
165   CUDARuntime = CreateNVCUDARuntime(*this);
166 }
167 
168 void CodeGenModule::Release() {
169   EmitDeferred();
170   EmitCXXGlobalInitFunc();
171   EmitCXXGlobalDtorFunc();
172   if (ObjCRuntime)
173     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
174       AddGlobalCtor(ObjCInitFunction);
175   EmitCtorList(GlobalCtors, "llvm.global_ctors");
176   EmitCtorList(GlobalDtors, "llvm.global_dtors");
177   EmitGlobalAnnotations();
178   EmitLLVMUsed();
179 
180   if (CodeGenOpts.ModulesAutolink) {
181     EmitModuleLinkOptions();
182   }
183 
184   SimplifyPersonality();
185 
186   if (getCodeGenOpts().EmitDeclMetadata)
187     EmitDeclMetadata();
188 
189   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
190     EmitCoverageFile();
191 
192   if (DebugInfo)
193     DebugInfo->finalize();
194 }
195 
196 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
197   // Make sure that this type is translated.
198   Types.UpdateCompletedType(TD);
199 }
200 
201 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
202   if (!TBAA)
203     return 0;
204   return TBAA->getTBAAInfo(QTy);
205 }
206 
207 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
208   if (!TBAA)
209     return 0;
210   return TBAA->getTBAAInfoForVTablePtr();
211 }
212 
213 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
214   if (!TBAA)
215     return 0;
216   return TBAA->getTBAAStructInfo(QTy);
217 }
218 
219 void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
220                                         llvm::MDNode *TBAAInfo) {
221   Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
222 }
223 
224 bool CodeGenModule::isTargetDarwin() const {
225   return getContext().getTargetInfo().getTriple().isOSDarwin();
226 }
227 
228 void CodeGenModule::Error(SourceLocation loc, StringRef error) {
229   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
230   getDiags().Report(Context.getFullLoc(loc), diagID);
231 }
232 
233 /// ErrorUnsupported - Print out an error that codegen doesn't support the
234 /// specified stmt yet.
235 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
236                                      bool OmitOnError) {
237   if (OmitOnError && getDiags().hasErrorOccurred())
238     return;
239   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
240                                                "cannot compile this %0 yet");
241   std::string Msg = Type;
242   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
243     << Msg << S->getSourceRange();
244 }
245 
246 /// ErrorUnsupported - Print out an error that codegen doesn't support the
247 /// specified decl yet.
248 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
249                                      bool OmitOnError) {
250   if (OmitOnError && getDiags().hasErrorOccurred())
251     return;
252   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
253                                                "cannot compile this %0 yet");
254   std::string Msg = Type;
255   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
256 }
257 
258 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
259   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
260 }
261 
262 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
263                                         const NamedDecl *D) const {
264   // Internal definitions always have default visibility.
265   if (GV->hasLocalLinkage()) {
266     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
267     return;
268   }
269 
270   // Set visibility for definitions.
271   NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
272   if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
273     GV->setVisibility(GetLLVMVisibility(LV.visibility()));
274 }
275 
276 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
277   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
278       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
279       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
280       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
281       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
282 }
283 
284 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
285     CodeGenOptions::TLSModel M) {
286   switch (M) {
287   case CodeGenOptions::GeneralDynamicTLSModel:
288     return llvm::GlobalVariable::GeneralDynamicTLSModel;
289   case CodeGenOptions::LocalDynamicTLSModel:
290     return llvm::GlobalVariable::LocalDynamicTLSModel;
291   case CodeGenOptions::InitialExecTLSModel:
292     return llvm::GlobalVariable::InitialExecTLSModel;
293   case CodeGenOptions::LocalExecTLSModel:
294     return llvm::GlobalVariable::LocalExecTLSModel;
295   }
296   llvm_unreachable("Invalid TLS model!");
297 }
298 
299 void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
300                                const VarDecl &D) const {
301   assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
302 
303   llvm::GlobalVariable::ThreadLocalMode TLM;
304   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
305 
306   // Override the TLS model if it is explicitly specified.
307   if (D.hasAttr<TLSModelAttr>()) {
308     const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
309     TLM = GetLLVMTLSModel(Attr->getModel());
310   }
311 
312   GV->setThreadLocalMode(TLM);
313 }
314 
315 /// Set the symbol visibility of type information (vtable and RTTI)
316 /// associated with the given type.
317 void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
318                                       const CXXRecordDecl *RD,
319                                       TypeVisibilityKind TVK) const {
320   setGlobalVisibility(GV, RD);
321 
322   if (!CodeGenOpts.HiddenWeakVTables)
323     return;
324 
325   // We never want to drop the visibility for RTTI names.
326   if (TVK == TVK_ForRTTIName)
327     return;
328 
329   // We want to drop the visibility to hidden for weak type symbols.
330   // This isn't possible if there might be unresolved references
331   // elsewhere that rely on this symbol being visible.
332 
333   // This should be kept roughly in sync with setThunkVisibility
334   // in CGVTables.cpp.
335 
336   // Preconditions.
337   if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
338       GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
339     return;
340 
341   // Don't override an explicit visibility attribute.
342   if (RD->getExplicitVisibility())
343     return;
344 
345   switch (RD->getTemplateSpecializationKind()) {
346   // We have to disable the optimization if this is an EI definition
347   // because there might be EI declarations in other shared objects.
348   case TSK_ExplicitInstantiationDefinition:
349   case TSK_ExplicitInstantiationDeclaration:
350     return;
351 
352   // Every use of a non-template class's type information has to emit it.
353   case TSK_Undeclared:
354     break;
355 
356   // In theory, implicit instantiations can ignore the possibility of
357   // an explicit instantiation declaration because there necessarily
358   // must be an EI definition somewhere with default visibility.  In
359   // practice, it's possible to have an explicit instantiation for
360   // an arbitrary template class, and linkers aren't necessarily able
361   // to deal with mixed-visibility symbols.
362   case TSK_ExplicitSpecialization:
363   case TSK_ImplicitInstantiation:
364     return;
365   }
366 
367   // If there's a key function, there may be translation units
368   // that don't have the key function's definition.  But ignore
369   // this if we're emitting RTTI under -fno-rtti.
370   if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
371     if (Context.getKeyFunction(RD))
372       return;
373   }
374 
375   // Otherwise, drop the visibility to hidden.
376   GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
377   GV->setUnnamedAddr(true);
378 }
379 
380 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
381   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
382 
383   StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
384   if (!Str.empty())
385     return Str;
386 
387   if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
388     IdentifierInfo *II = ND->getIdentifier();
389     assert(II && "Attempt to mangle unnamed decl.");
390 
391     Str = II->getName();
392     return Str;
393   }
394 
395   SmallString<256> Buffer;
396   llvm::raw_svector_ostream Out(Buffer);
397   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
398     getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
399   else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
400     getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
401   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
402     getCXXABI().getMangleContext().mangleBlock(BD, Out,
403       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
404   else
405     getCXXABI().getMangleContext().mangleName(ND, Out);
406 
407   // Allocate space for the mangled name.
408   Out.flush();
409   size_t Length = Buffer.size();
410   char *Name = MangledNamesAllocator.Allocate<char>(Length);
411   std::copy(Buffer.begin(), Buffer.end(), Name);
412 
413   Str = StringRef(Name, Length);
414 
415   return Str;
416 }
417 
418 void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
419                                         const BlockDecl *BD) {
420   MangleContext &MangleCtx = getCXXABI().getMangleContext();
421   const Decl *D = GD.getDecl();
422   llvm::raw_svector_ostream Out(Buffer.getBuffer());
423   if (D == 0)
424     MangleCtx.mangleGlobalBlock(BD,
425       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
426   else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
427     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
428   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
429     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
430   else
431     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
432 }
433 
434 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
435   return getModule().getNamedValue(Name);
436 }
437 
438 /// AddGlobalCtor - Add a function to the list that will be called before
439 /// main() runs.
440 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
441   // FIXME: Type coercion of void()* types.
442   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
443 }
444 
445 /// AddGlobalDtor - Add a function to the list that will be called
446 /// when the module is unloaded.
447 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
448   // FIXME: Type coercion of void()* types.
449   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
450 }
451 
452 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
453   // Ctor function type is void()*.
454   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
455   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
456 
457   // Get the type of a ctor entry, { i32, void ()* }.
458   llvm::StructType *CtorStructTy =
459     llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
460 
461   // Construct the constructor and destructor arrays.
462   SmallVector<llvm::Constant*, 8> Ctors;
463   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
464     llvm::Constant *S[] = {
465       llvm::ConstantInt::get(Int32Ty, I->second, false),
466       llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
467     };
468     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
469   }
470 
471   if (!Ctors.empty()) {
472     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
473     new llvm::GlobalVariable(TheModule, AT, false,
474                              llvm::GlobalValue::AppendingLinkage,
475                              llvm::ConstantArray::get(AT, Ctors),
476                              GlobalName);
477   }
478 }
479 
480 llvm::GlobalValue::LinkageTypes
481 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
482   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
483 
484   if (Linkage == GVA_Internal)
485     return llvm::Function::InternalLinkage;
486 
487   if (D->hasAttr<DLLExportAttr>())
488     return llvm::Function::DLLExportLinkage;
489 
490   if (D->hasAttr<WeakAttr>())
491     return llvm::Function::WeakAnyLinkage;
492 
493   // In C99 mode, 'inline' functions are guaranteed to have a strong
494   // definition somewhere else, so we can use available_externally linkage.
495   if (Linkage == GVA_C99Inline)
496     return llvm::Function::AvailableExternallyLinkage;
497 
498   // Note that Apple's kernel linker doesn't support symbol
499   // coalescing, so we need to avoid linkonce and weak linkages there.
500   // Normally, this means we just map to internal, but for explicit
501   // instantiations we'll map to external.
502 
503   // In C++, the compiler has to emit a definition in every translation unit
504   // that references the function.  We should use linkonce_odr because
505   // a) if all references in this translation unit are optimized away, we
506   // don't need to codegen it.  b) if the function persists, it needs to be
507   // merged with other definitions. c) C++ has the ODR, so we know the
508   // definition is dependable.
509   if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
510     return !Context.getLangOpts().AppleKext
511              ? llvm::Function::LinkOnceODRLinkage
512              : llvm::Function::InternalLinkage;
513 
514   // An explicit instantiation of a template has weak linkage, since
515   // explicit instantiations can occur in multiple translation units
516   // and must all be equivalent. However, we are not allowed to
517   // throw away these explicit instantiations.
518   if (Linkage == GVA_ExplicitTemplateInstantiation)
519     return !Context.getLangOpts().AppleKext
520              ? llvm::Function::WeakODRLinkage
521              : llvm::Function::ExternalLinkage;
522 
523   // Otherwise, we have strong external linkage.
524   assert(Linkage == GVA_StrongExternal);
525   return llvm::Function::ExternalLinkage;
526 }
527 
528 
529 /// SetFunctionDefinitionAttributes - Set attributes for a global.
530 ///
531 /// FIXME: This is currently only done for aliases and functions, but not for
532 /// variables (these details are set in EmitGlobalVarDefinition for variables).
533 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
534                                                     llvm::GlobalValue *GV) {
535   SetCommonAttributes(D, GV);
536 }
537 
538 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
539                                               const CGFunctionInfo &Info,
540                                               llvm::Function *F) {
541   unsigned CallingConv;
542   AttributeListType AttributeList;
543   ConstructAttributeList(Info, D, AttributeList, CallingConv);
544   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
545   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
546 }
547 
548 /// Determines whether the language options require us to model
549 /// unwind exceptions.  We treat -fexceptions as mandating this
550 /// except under the fragile ObjC ABI with only ObjC exceptions
551 /// enabled.  This means, for example, that C with -fexceptions
552 /// enables this.
553 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
554   // If exceptions are completely disabled, obviously this is false.
555   if (!LangOpts.Exceptions) return false;
556 
557   // If C++ exceptions are enabled, this is true.
558   if (LangOpts.CXXExceptions) return true;
559 
560   // If ObjC exceptions are enabled, this depends on the ABI.
561   if (LangOpts.ObjCExceptions) {
562     return LangOpts.ObjCRuntime.hasUnwindExceptions();
563   }
564 
565   return true;
566 }
567 
568 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
569                                                            llvm::Function *F) {
570   if (CodeGenOpts.UnwindTables)
571     F->setHasUWTable();
572 
573   if (!hasUnwindExceptions(LangOpts))
574     F->addFnAttr(llvm::Attribute::NoUnwind);
575 
576   if (D->hasAttr<NakedAttr>()) {
577     // Naked implies noinline: we should not be inlining such functions.
578     F->addFnAttr(llvm::Attribute::Naked);
579     F->addFnAttr(llvm::Attribute::NoInline);
580   }
581 
582   if (D->hasAttr<NoInlineAttr>())
583     F->addFnAttr(llvm::Attribute::NoInline);
584 
585   // (noinline wins over always_inline, and we can't specify both in IR)
586   if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
587       !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
588                                        llvm::Attribute::NoInline))
589     F->addFnAttr(llvm::Attribute::AlwaysInline);
590 
591   // FIXME: Communicate hot and cold attributes to LLVM more directly.
592   if (D->hasAttr<ColdAttr>())
593     F->addFnAttr(llvm::Attribute::OptimizeForSize);
594 
595   if (D->hasAttr<MinSizeAttr>())
596     F->addFnAttr(llvm::Attribute::MinSize);
597 
598   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
599     F->setUnnamedAddr(true);
600 
601   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
602     if (MD->isVirtual())
603       F->setUnnamedAddr(true);
604 
605   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
606     F->addFnAttr(llvm::Attribute::StackProtect);
607   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
608     F->addFnAttr(llvm::Attribute::StackProtectReq);
609 
610   if (SanOpts.Address) {
611     // When AddressSanitizer is enabled, set AddressSafety attribute
612     // unless __attribute__((no_address_safety_analysis)) is used.
613     if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
614       F->addFnAttr(llvm::Attribute::AddressSafety);
615   }
616 
617   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
618   if (alignment)
619     F->setAlignment(alignment);
620 
621   // C++ ABI requires 2-byte alignment for member functions.
622   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
623     F->setAlignment(2);
624 }
625 
626 void CodeGenModule::SetCommonAttributes(const Decl *D,
627                                         llvm::GlobalValue *GV) {
628   if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
629     setGlobalVisibility(GV, ND);
630   else
631     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
632 
633   if (D->hasAttr<UsedAttr>())
634     AddUsedGlobal(GV);
635 
636   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
637     GV->setSection(SA->getName());
638 
639   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
640 }
641 
642 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
643                                                   llvm::Function *F,
644                                                   const CGFunctionInfo &FI) {
645   SetLLVMFunctionAttributes(D, FI, F);
646   SetLLVMFunctionAttributesForDefinition(D, F);
647 
648   F->setLinkage(llvm::Function::InternalLinkage);
649 
650   SetCommonAttributes(D, F);
651 }
652 
653 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
654                                           llvm::Function *F,
655                                           bool IsIncompleteFunction) {
656   if (unsigned IID = F->getIntrinsicID()) {
657     // If this is an intrinsic function, set the function's attributes
658     // to the intrinsic's attributes.
659     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
660                                                     (llvm::Intrinsic::ID)IID));
661     return;
662   }
663 
664   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
665 
666   if (!IsIncompleteFunction)
667     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
668 
669   // Only a few attributes are set on declarations; these may later be
670   // overridden by a definition.
671 
672   if (FD->hasAttr<DLLImportAttr>()) {
673     F->setLinkage(llvm::Function::DLLImportLinkage);
674   } else if (FD->hasAttr<WeakAttr>() ||
675              FD->isWeakImported()) {
676     // "extern_weak" is overloaded in LLVM; we probably should have
677     // separate linkage types for this.
678     F->setLinkage(llvm::Function::ExternalWeakLinkage);
679   } else {
680     F->setLinkage(llvm::Function::ExternalLinkage);
681 
682     NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
683     if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
684       F->setVisibility(GetLLVMVisibility(LV.visibility()));
685     }
686   }
687 
688   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
689     F->setSection(SA->getName());
690 }
691 
692 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
693   assert(!GV->isDeclaration() &&
694          "Only globals with definition can force usage.");
695   LLVMUsed.push_back(GV);
696 }
697 
698 void CodeGenModule::EmitLLVMUsed() {
699   // Don't create llvm.used if there is no need.
700   if (LLVMUsed.empty())
701     return;
702 
703   // Convert LLVMUsed to what ConstantArray needs.
704   SmallVector<llvm::Constant*, 8> UsedArray;
705   UsedArray.resize(LLVMUsed.size());
706   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
707     UsedArray[i] =
708      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
709                                     Int8PtrTy);
710   }
711 
712   if (UsedArray.empty())
713     return;
714   llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
715 
716   llvm::GlobalVariable *GV =
717     new llvm::GlobalVariable(getModule(), ATy, false,
718                              llvm::GlobalValue::AppendingLinkage,
719                              llvm::ConstantArray::get(ATy, UsedArray),
720                              "llvm.used");
721 
722   GV->setSection("llvm.metadata");
723 }
724 
725 /// \brief Add link options implied by the given module, including modules
726 /// it depends on, using a postorder walk.
727 static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
728                                     Module *Mod,
729                                     SmallVectorImpl<llvm::Value *> &Metadata,
730                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
731   // Import this module's parent.
732   if (Mod->Parent && Visited.insert(Mod->Parent)) {
733     addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
734   }
735 
736   // Import this module's dependencies.
737   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
738     if (Visited.insert(Mod->Imports[I-1]))
739       addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
740   }
741 
742   // Add linker options to link against the libraries/frameworks
743   // described by this module.
744   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
745     // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
746     // We need to know more about the linker to know how to encode these
747     // options propertly.
748 
749     // Link against a framework.
750     if (Mod->LinkLibraries[I-1].IsFramework) {
751       llvm::Value *Args[2] = {
752         llvm::MDString::get(Context, "-framework"),
753         llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
754       };
755 
756       Metadata.push_back(llvm::MDNode::get(Context, Args));
757       continue;
758     }
759 
760     // Link against a library.
761     llvm::Value *OptString
762     = llvm::MDString::get(Context,
763                           "-l" + Mod->LinkLibraries[I-1].Library);
764     Metadata.push_back(llvm::MDNode::get(Context, OptString));
765   }
766 }
767 
768 void CodeGenModule::EmitModuleLinkOptions() {
769   // Collect the set of all of the modules we want to visit to emit link
770   // options, which is essentially the imported modules and all of their
771   // non-explicit child modules.
772   llvm::SetVector<clang::Module *> LinkModules;
773   llvm::SmallPtrSet<clang::Module *, 16> Visited;
774   SmallVector<clang::Module *, 16> Stack;
775 
776   // Seed the stack with imported modules.
777   for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
778                                                MEnd = ImportedModules.end();
779        M != MEnd; ++M) {
780     if (Visited.insert(*M))
781       Stack.push_back(*M);
782   }
783 
784   // Find all of the modules to import, making a little effort to prune
785   // non-leaf modules.
786   while (!Stack.empty()) {
787     clang::Module *Mod = Stack.back();
788     Stack.pop_back();
789 
790     bool AnyChildren = false;
791 
792     // Visit the submodules of this module.
793     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
794                                         SubEnd = Mod->submodule_end();
795          Sub != SubEnd; ++Sub) {
796       // Skip explicit children; they need to be explicitly imported to be
797       // linked against.
798       if ((*Sub)->IsExplicit)
799         continue;
800 
801       if (Visited.insert(*Sub)) {
802         Stack.push_back(*Sub);
803         AnyChildren = true;
804       }
805     }
806 
807     // We didn't find any children, so add this module to the list of
808     // modules to link against.
809     if (!AnyChildren) {
810       LinkModules.insert(Mod);
811     }
812   }
813 
814   // Add link options for all of the imported modules in reverse topological
815   // order.
816   SmallVector<llvm::Value *, 16> MetadataArgs;
817   Visited.clear();
818   for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
819                                                MEnd = LinkModules.end();
820        M != MEnd; ++M) {
821     if (Visited.insert(*M))
822       addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
823   }
824   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
825 
826   // Add the linker options metadata flag.
827   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
828                             llvm::MDNode::get(getLLVMContext(), MetadataArgs));
829 }
830 
831 void CodeGenModule::EmitDeferred() {
832   // Emit code for any potentially referenced deferred decls.  Since a
833   // previously unused static decl may become used during the generation of code
834   // for a static function, iterate until no changes are made.
835 
836   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
837     if (!DeferredVTables.empty()) {
838       const CXXRecordDecl *RD = DeferredVTables.back();
839       DeferredVTables.pop_back();
840       getCXXABI().EmitVTables(RD);
841       continue;
842     }
843 
844     GlobalDecl D = DeferredDeclsToEmit.back();
845     DeferredDeclsToEmit.pop_back();
846 
847     // Check to see if we've already emitted this.  This is necessary
848     // for a couple of reasons: first, decls can end up in the
849     // deferred-decls queue multiple times, and second, decls can end
850     // up with definitions in unusual ways (e.g. by an extern inline
851     // function acquiring a strong function redefinition).  Just
852     // ignore these cases.
853     //
854     // TODO: That said, looking this up multiple times is very wasteful.
855     StringRef Name = getMangledName(D);
856     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
857     assert(CGRef && "Deferred decl wasn't referenced?");
858 
859     if (!CGRef->isDeclaration())
860       continue;
861 
862     // GlobalAlias::isDeclaration() defers to the aliasee, but for our
863     // purposes an alias counts as a definition.
864     if (isa<llvm::GlobalAlias>(CGRef))
865       continue;
866 
867     // Otherwise, emit the definition and move on to the next one.
868     EmitGlobalDefinition(D);
869   }
870 }
871 
872 void CodeGenModule::EmitGlobalAnnotations() {
873   if (Annotations.empty())
874     return;
875 
876   // Create a new global variable for the ConstantStruct in the Module.
877   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
878     Annotations[0]->getType(), Annotations.size()), Annotations);
879   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
880     Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
881     "llvm.global.annotations");
882   gv->setSection(AnnotationSection);
883 }
884 
885 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
886   llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
887   if (i != AnnotationStrings.end())
888     return i->second;
889 
890   // Not found yet, create a new global.
891   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
892   llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
893     true, llvm::GlobalValue::PrivateLinkage, s, ".str");
894   gv->setSection(AnnotationSection);
895   gv->setUnnamedAddr(true);
896   AnnotationStrings[Str] = gv;
897   return gv;
898 }
899 
900 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
901   SourceManager &SM = getContext().getSourceManager();
902   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
903   if (PLoc.isValid())
904     return EmitAnnotationString(PLoc.getFilename());
905   return EmitAnnotationString(SM.getBufferName(Loc));
906 }
907 
908 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
909   SourceManager &SM = getContext().getSourceManager();
910   PresumedLoc PLoc = SM.getPresumedLoc(L);
911   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
912     SM.getExpansionLineNumber(L);
913   return llvm::ConstantInt::get(Int32Ty, LineNo);
914 }
915 
916 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
917                                                 const AnnotateAttr *AA,
918                                                 SourceLocation L) {
919   // Get the globals for file name, annotation, and the line number.
920   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
921                  *UnitGV = EmitAnnotationUnit(L),
922                  *LineNoCst = EmitAnnotationLineNo(L);
923 
924   // Create the ConstantStruct for the global annotation.
925   llvm::Constant *Fields[4] = {
926     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
927     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
928     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
929     LineNoCst
930   };
931   return llvm::ConstantStruct::getAnon(Fields);
932 }
933 
934 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
935                                          llvm::GlobalValue *GV) {
936   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
937   // Get the struct elements for these annotations.
938   for (specific_attr_iterator<AnnotateAttr>
939        ai = D->specific_attr_begin<AnnotateAttr>(),
940        ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
941     Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
942 }
943 
944 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
945   // Never defer when EmitAllDecls is specified.
946   if (LangOpts.EmitAllDecls)
947     return false;
948 
949   return !getContext().DeclMustBeEmitted(Global);
950 }
951 
952 llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
953     const CXXUuidofExpr* E) {
954   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
955   // well-formed.
956   StringRef Uuid;
957   if (E->isTypeOperand())
958     Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
959   else {
960     // Special case: __uuidof(0) means an all-zero GUID.
961     Expr *Op = E->getExprOperand();
962     if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
963       Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
964     else
965       Uuid = "00000000-0000-0000-0000-000000000000";
966   }
967   std::string Name = "__uuid_" + Uuid.str();
968 
969   // Look for an existing global.
970   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
971     return GV;
972 
973   llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
974   assert(Init && "failed to initialize as constant");
975 
976   // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
977   // first field is declared as "long", which for many targets is 8 bytes.
978   // Those architectures are not supported. (With the MS abi, long is always 4
979   // bytes.)
980   llvm::Type *GuidType = getTypes().ConvertType(E->getType());
981   if (Init->getType() != GuidType) {
982     DiagnosticsEngine &Diags = getDiags();
983     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
984         "__uuidof codegen is not supported on this architecture");
985     Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
986     Init = llvm::UndefValue::get(GuidType);
987   }
988 
989   llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
990       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
991   GV->setUnnamedAddr(true);
992   return GV;
993 }
994 
995 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
996   const AliasAttr *AA = VD->getAttr<AliasAttr>();
997   assert(AA && "No alias?");
998 
999   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1000 
1001   // See if there is already something with the target's name in the module.
1002   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1003   if (Entry) {
1004     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1005     return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1006   }
1007 
1008   llvm::Constant *Aliasee;
1009   if (isa<llvm::FunctionType>(DeclTy))
1010     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1011                                       GlobalDecl(cast<FunctionDecl>(VD)),
1012                                       /*ForVTable=*/false);
1013   else
1014     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1015                                     llvm::PointerType::getUnqual(DeclTy), 0);
1016 
1017   llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1018   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1019   WeakRefReferences.insert(F);
1020 
1021   return Aliasee;
1022 }
1023 
1024 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1025   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1026 
1027   // Weak references don't produce any output by themselves.
1028   if (Global->hasAttr<WeakRefAttr>())
1029     return;
1030 
1031   // If this is an alias definition (which otherwise looks like a declaration)
1032   // emit it now.
1033   if (Global->hasAttr<AliasAttr>())
1034     return EmitAliasDefinition(GD);
1035 
1036   // If this is CUDA, be selective about which declarations we emit.
1037   if (LangOpts.CUDA) {
1038     if (CodeGenOpts.CUDAIsDevice) {
1039       if (!Global->hasAttr<CUDADeviceAttr>() &&
1040           !Global->hasAttr<CUDAGlobalAttr>() &&
1041           !Global->hasAttr<CUDAConstantAttr>() &&
1042           !Global->hasAttr<CUDASharedAttr>())
1043         return;
1044     } else {
1045       if (!Global->hasAttr<CUDAHostAttr>() && (
1046             Global->hasAttr<CUDADeviceAttr>() ||
1047             Global->hasAttr<CUDAConstantAttr>() ||
1048             Global->hasAttr<CUDASharedAttr>()))
1049         return;
1050     }
1051   }
1052 
1053   // Ignore declarations, they will be emitted on their first use.
1054   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1055     // Forward declarations are emitted lazily on first use.
1056     if (!FD->doesThisDeclarationHaveABody()) {
1057       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1058         return;
1059 
1060       const FunctionDecl *InlineDefinition = 0;
1061       FD->getBody(InlineDefinition);
1062 
1063       StringRef MangledName = getMangledName(GD);
1064       DeferredDecls.erase(MangledName);
1065       EmitGlobalDefinition(InlineDefinition);
1066       return;
1067     }
1068   } else {
1069     const VarDecl *VD = cast<VarDecl>(Global);
1070     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1071 
1072     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1073       return;
1074   }
1075 
1076   // Defer code generation when possible if this is a static definition, inline
1077   // function etc.  These we only want to emit if they are used.
1078   if (!MayDeferGeneration(Global)) {
1079     // Emit the definition if it can't be deferred.
1080     EmitGlobalDefinition(GD);
1081     return;
1082   }
1083 
1084   // If we're deferring emission of a C++ variable with an
1085   // initializer, remember the order in which it appeared in the file.
1086   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1087       cast<VarDecl>(Global)->hasInit()) {
1088     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1089     CXXGlobalInits.push_back(0);
1090   }
1091 
1092   // If the value has already been used, add it directly to the
1093   // DeferredDeclsToEmit list.
1094   StringRef MangledName = getMangledName(GD);
1095   if (GetGlobalValue(MangledName))
1096     DeferredDeclsToEmit.push_back(GD);
1097   else {
1098     // Otherwise, remember that we saw a deferred decl with this name.  The
1099     // first use of the mangled name will cause it to move into
1100     // DeferredDeclsToEmit.
1101     DeferredDecls[MangledName] = GD;
1102   }
1103 }
1104 
1105 namespace {
1106   struct FunctionIsDirectlyRecursive :
1107     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1108     const StringRef Name;
1109     const Builtin::Context &BI;
1110     bool Result;
1111     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1112       Name(N), BI(C), Result(false) {
1113     }
1114     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1115 
1116     bool TraverseCallExpr(CallExpr *E) {
1117       const FunctionDecl *FD = E->getDirectCallee();
1118       if (!FD)
1119         return true;
1120       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1121       if (Attr && Name == Attr->getLabel()) {
1122         Result = true;
1123         return false;
1124       }
1125       unsigned BuiltinID = FD->getBuiltinID();
1126       if (!BuiltinID)
1127         return true;
1128       StringRef BuiltinName = BI.GetName(BuiltinID);
1129       if (BuiltinName.startswith("__builtin_") &&
1130           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1131         Result = true;
1132         return false;
1133       }
1134       return true;
1135     }
1136   };
1137 }
1138 
1139 // isTriviallyRecursive - Check if this function calls another
1140 // decl that, because of the asm attribute or the other decl being a builtin,
1141 // ends up pointing to itself.
1142 bool
1143 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1144   StringRef Name;
1145   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1146     // asm labels are a special kind of mangling we have to support.
1147     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1148     if (!Attr)
1149       return false;
1150     Name = Attr->getLabel();
1151   } else {
1152     Name = FD->getName();
1153   }
1154 
1155   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1156   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1157   return Walker.Result;
1158 }
1159 
1160 bool
1161 CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1162   if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1163     return true;
1164   if (CodeGenOpts.OptimizationLevel == 0 &&
1165       !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1166     return false;
1167   // PR9614. Avoid cases where the source code is lying to us. An available
1168   // externally function should have an equivalent function somewhere else,
1169   // but a function that calls itself is clearly not equivalent to the real
1170   // implementation.
1171   // This happens in glibc's btowc and in some configure checks.
1172   return !isTriviallyRecursive(F);
1173 }
1174 
1175 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1176   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1177 
1178   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1179                                  Context.getSourceManager(),
1180                                  "Generating code for declaration");
1181 
1182   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1183     // At -O0, don't generate IR for functions with available_externally
1184     // linkage.
1185     if (!shouldEmitFunction(Function))
1186       return;
1187 
1188     if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1189       // Make sure to emit the definition(s) before we emit the thunks.
1190       // This is necessary for the generation of certain thunks.
1191       if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1192         EmitCXXConstructor(CD, GD.getCtorType());
1193       else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1194         EmitCXXDestructor(DD, GD.getDtorType());
1195       else
1196         EmitGlobalFunctionDefinition(GD);
1197 
1198       if (Method->isVirtual())
1199         getVTables().EmitThunks(GD);
1200 
1201       return;
1202     }
1203 
1204     return EmitGlobalFunctionDefinition(GD);
1205   }
1206 
1207   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1208     return EmitGlobalVarDefinition(VD);
1209 
1210   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1211 }
1212 
1213 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1214 /// module, create and return an llvm Function with the specified type. If there
1215 /// is something in the module with the specified name, return it potentially
1216 /// bitcasted to the right type.
1217 ///
1218 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1219 /// to set the attributes on the function when it is first created.
1220 llvm::Constant *
1221 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1222                                        llvm::Type *Ty,
1223                                        GlobalDecl D, bool ForVTable,
1224                                        llvm::Attribute ExtraAttrs) {
1225   // Lookup the entry, lazily creating it if necessary.
1226   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1227   if (Entry) {
1228     if (WeakRefReferences.erase(Entry)) {
1229       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1230       if (FD && !FD->hasAttr<WeakAttr>())
1231         Entry->setLinkage(llvm::Function::ExternalLinkage);
1232     }
1233 
1234     if (Entry->getType()->getElementType() == Ty)
1235       return Entry;
1236 
1237     // Make sure the result is of the correct type.
1238     return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1239   }
1240 
1241   // This function doesn't have a complete type (for example, the return
1242   // type is an incomplete struct). Use a fake type instead, and make
1243   // sure not to try to set attributes.
1244   bool IsIncompleteFunction = false;
1245 
1246   llvm::FunctionType *FTy;
1247   if (isa<llvm::FunctionType>(Ty)) {
1248     FTy = cast<llvm::FunctionType>(Ty);
1249   } else {
1250     FTy = llvm::FunctionType::get(VoidTy, false);
1251     IsIncompleteFunction = true;
1252   }
1253 
1254   llvm::Function *F = llvm::Function::Create(FTy,
1255                                              llvm::Function::ExternalLinkage,
1256                                              MangledName, &getModule());
1257   assert(F->getName() == MangledName && "name was uniqued!");
1258   if (D.getDecl())
1259     SetFunctionAttributes(D, F, IsIncompleteFunction);
1260   if (ExtraAttrs.hasAttributes()) {
1261     llvm::AttrBuilder B(ExtraAttrs);
1262     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1263                      llvm::AttributeSet::get(VMContext,
1264                                              llvm::AttributeSet::FunctionIndex,
1265                                              B));
1266   }
1267 
1268   // This is the first use or definition of a mangled name.  If there is a
1269   // deferred decl with this name, remember that we need to emit it at the end
1270   // of the file.
1271   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1272   if (DDI != DeferredDecls.end()) {
1273     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1274     // list, and remove it from DeferredDecls (since we don't need it anymore).
1275     DeferredDeclsToEmit.push_back(DDI->second);
1276     DeferredDecls.erase(DDI);
1277 
1278   // Otherwise, there are cases we have to worry about where we're
1279   // using a declaration for which we must emit a definition but where
1280   // we might not find a top-level definition:
1281   //   - member functions defined inline in their classes
1282   //   - friend functions defined inline in some class
1283   //   - special member functions with implicit definitions
1284   // If we ever change our AST traversal to walk into class methods,
1285   // this will be unnecessary.
1286   //
1287   // We also don't emit a definition for a function if it's going to be an entry
1288   // in a vtable, unless it's already marked as used.
1289   } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1290     // Look for a declaration that's lexically in a record.
1291     const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1292     FD = FD->getMostRecentDecl();
1293     do {
1294       if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1295         if (FD->isImplicit() && !ForVTable) {
1296           assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1297           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1298           break;
1299         } else if (FD->doesThisDeclarationHaveABody()) {
1300           DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1301           break;
1302         }
1303       }
1304       FD = FD->getPreviousDecl();
1305     } while (FD);
1306   }
1307 
1308   // Make sure the result is of the requested type.
1309   if (!IsIncompleteFunction) {
1310     assert(F->getType()->getElementType() == Ty);
1311     return F;
1312   }
1313 
1314   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1315   return llvm::ConstantExpr::getBitCast(F, PTy);
1316 }
1317 
1318 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1319 /// non-null, then this function will use the specified type if it has to
1320 /// create it (this occurs when we see a definition of the function).
1321 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1322                                                  llvm::Type *Ty,
1323                                                  bool ForVTable) {
1324   // If there was no specific requested type, just convert it now.
1325   if (!Ty)
1326     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1327 
1328   StringRef MangledName = getMangledName(GD);
1329   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1330 }
1331 
1332 /// CreateRuntimeFunction - Create a new runtime function with the specified
1333 /// type and name.
1334 llvm::Constant *
1335 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1336                                      StringRef Name,
1337                                      llvm::Attribute ExtraAttrs) {
1338   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1339                                  ExtraAttrs);
1340 }
1341 
1342 /// isTypeConstant - Determine whether an object of this type can be emitted
1343 /// as a constant.
1344 ///
1345 /// If ExcludeCtor is true, the duration when the object's constructor runs
1346 /// will not be considered. The caller will need to verify that the object is
1347 /// not written to during its construction.
1348 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1349   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1350     return false;
1351 
1352   if (Context.getLangOpts().CPlusPlus) {
1353     if (const CXXRecordDecl *Record
1354           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1355       return ExcludeCtor && !Record->hasMutableFields() &&
1356              Record->hasTrivialDestructor();
1357   }
1358 
1359   return true;
1360 }
1361 
1362 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1363 /// create and return an llvm GlobalVariable with the specified type.  If there
1364 /// is something in the module with the specified name, return it potentially
1365 /// bitcasted to the right type.
1366 ///
1367 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1368 /// to set the attributes on the global when it is first created.
1369 llvm::Constant *
1370 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1371                                      llvm::PointerType *Ty,
1372                                      const VarDecl *D,
1373                                      bool UnnamedAddr) {
1374   // Lookup the entry, lazily creating it if necessary.
1375   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1376   if (Entry) {
1377     if (WeakRefReferences.erase(Entry)) {
1378       if (D && !D->hasAttr<WeakAttr>())
1379         Entry->setLinkage(llvm::Function::ExternalLinkage);
1380     }
1381 
1382     if (UnnamedAddr)
1383       Entry->setUnnamedAddr(true);
1384 
1385     if (Entry->getType() == Ty)
1386       return Entry;
1387 
1388     // Make sure the result is of the correct type.
1389     return llvm::ConstantExpr::getBitCast(Entry, Ty);
1390   }
1391 
1392   // This is the first use or definition of a mangled name.  If there is a
1393   // deferred decl with this name, remember that we need to emit it at the end
1394   // of the file.
1395   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1396   if (DDI != DeferredDecls.end()) {
1397     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1398     // list, and remove it from DeferredDecls (since we don't need it anymore).
1399     DeferredDeclsToEmit.push_back(DDI->second);
1400     DeferredDecls.erase(DDI);
1401   }
1402 
1403   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1404   llvm::GlobalVariable *GV =
1405     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1406                              llvm::GlobalValue::ExternalLinkage,
1407                              0, MangledName, 0,
1408                              llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1409 
1410   // Handle things which are present even on external declarations.
1411   if (D) {
1412     // FIXME: This code is overly simple and should be merged with other global
1413     // handling.
1414     GV->setConstant(isTypeConstant(D->getType(), false));
1415 
1416     // Set linkage and visibility in case we never see a definition.
1417     NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1418     if (LV.linkage() != ExternalLinkage) {
1419       // Don't set internal linkage on declarations.
1420     } else {
1421       if (D->hasAttr<DLLImportAttr>())
1422         GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1423       else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1424         GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1425 
1426       // Set visibility on a declaration only if it's explicit.
1427       if (LV.visibilityExplicit())
1428         GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1429     }
1430 
1431     if (D->isThreadSpecified())
1432       setTLSMode(GV, *D);
1433   }
1434 
1435   if (AddrSpace != Ty->getAddressSpace())
1436     return llvm::ConstantExpr::getBitCast(GV, Ty);
1437   else
1438     return GV;
1439 }
1440 
1441 
1442 llvm::GlobalVariable *
1443 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1444                                       llvm::Type *Ty,
1445                                       llvm::GlobalValue::LinkageTypes Linkage) {
1446   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1447   llvm::GlobalVariable *OldGV = 0;
1448 
1449 
1450   if (GV) {
1451     // Check if the variable has the right type.
1452     if (GV->getType()->getElementType() == Ty)
1453       return GV;
1454 
1455     // Because C++ name mangling, the only way we can end up with an already
1456     // existing global with the same name is if it has been declared extern "C".
1457     assert(GV->isDeclaration() && "Declaration has wrong type!");
1458     OldGV = GV;
1459   }
1460 
1461   // Create a new variable.
1462   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1463                                 Linkage, 0, Name);
1464 
1465   if (OldGV) {
1466     // Replace occurrences of the old variable if needed.
1467     GV->takeName(OldGV);
1468 
1469     if (!OldGV->use_empty()) {
1470       llvm::Constant *NewPtrForOldDecl =
1471       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1472       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1473     }
1474 
1475     OldGV->eraseFromParent();
1476   }
1477 
1478   return GV;
1479 }
1480 
1481 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1482 /// given global variable.  If Ty is non-null and if the global doesn't exist,
1483 /// then it will be created with the specified type instead of whatever the
1484 /// normal requested type would be.
1485 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1486                                                   llvm::Type *Ty) {
1487   assert(D->hasGlobalStorage() && "Not a global variable");
1488   QualType ASTTy = D->getType();
1489   if (Ty == 0)
1490     Ty = getTypes().ConvertTypeForMem(ASTTy);
1491 
1492   llvm::PointerType *PTy =
1493     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1494 
1495   StringRef MangledName = getMangledName(D);
1496   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1497 }
1498 
1499 /// CreateRuntimeVariable - Create a new runtime global variable with the
1500 /// specified type and name.
1501 llvm::Constant *
1502 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1503                                      StringRef Name) {
1504   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1505                                true);
1506 }
1507 
1508 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1509   assert(!D->getInit() && "Cannot emit definite definitions here!");
1510 
1511   if (MayDeferGeneration(D)) {
1512     // If we have not seen a reference to this variable yet, place it
1513     // into the deferred declarations table to be emitted if needed
1514     // later.
1515     StringRef MangledName = getMangledName(D);
1516     if (!GetGlobalValue(MangledName)) {
1517       DeferredDecls[MangledName] = D;
1518       return;
1519     }
1520   }
1521 
1522   // The tentative definition is the only definition.
1523   EmitGlobalVarDefinition(D);
1524 }
1525 
1526 void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1527   if (DefinitionRequired)
1528     getCXXABI().EmitVTables(Class);
1529 }
1530 
1531 llvm::GlobalVariable::LinkageTypes
1532 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1533   if (RD->getLinkage() != ExternalLinkage)
1534     return llvm::GlobalVariable::InternalLinkage;
1535 
1536   if (const CXXMethodDecl *KeyFunction
1537                                     = RD->getASTContext().getKeyFunction(RD)) {
1538     // If this class has a key function, use that to determine the linkage of
1539     // the vtable.
1540     const FunctionDecl *Def = 0;
1541     if (KeyFunction->hasBody(Def))
1542       KeyFunction = cast<CXXMethodDecl>(Def);
1543 
1544     switch (KeyFunction->getTemplateSpecializationKind()) {
1545       case TSK_Undeclared:
1546       case TSK_ExplicitSpecialization:
1547         // When compiling with optimizations turned on, we emit all vtables,
1548         // even if the key function is not defined in the current translation
1549         // unit. If this is the case, use available_externally linkage.
1550         if (!Def && CodeGenOpts.OptimizationLevel)
1551           return llvm::GlobalVariable::AvailableExternallyLinkage;
1552 
1553         if (KeyFunction->isInlined())
1554           return !Context.getLangOpts().AppleKext ?
1555                    llvm::GlobalVariable::LinkOnceODRLinkage :
1556                    llvm::Function::InternalLinkage;
1557 
1558         return llvm::GlobalVariable::ExternalLinkage;
1559 
1560       case TSK_ImplicitInstantiation:
1561         return !Context.getLangOpts().AppleKext ?
1562                  llvm::GlobalVariable::LinkOnceODRLinkage :
1563                  llvm::Function::InternalLinkage;
1564 
1565       case TSK_ExplicitInstantiationDefinition:
1566         return !Context.getLangOpts().AppleKext ?
1567                  llvm::GlobalVariable::WeakODRLinkage :
1568                  llvm::Function::InternalLinkage;
1569 
1570       case TSK_ExplicitInstantiationDeclaration:
1571         // FIXME: Use available_externally linkage. However, this currently
1572         // breaks LLVM's build due to undefined symbols.
1573         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1574         return !Context.getLangOpts().AppleKext ?
1575                  llvm::GlobalVariable::LinkOnceODRLinkage :
1576                  llvm::Function::InternalLinkage;
1577     }
1578   }
1579 
1580   if (Context.getLangOpts().AppleKext)
1581     return llvm::Function::InternalLinkage;
1582 
1583   switch (RD->getTemplateSpecializationKind()) {
1584   case TSK_Undeclared:
1585   case TSK_ExplicitSpecialization:
1586   case TSK_ImplicitInstantiation:
1587     // FIXME: Use available_externally linkage. However, this currently
1588     // breaks LLVM's build due to undefined symbols.
1589     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1590   case TSK_ExplicitInstantiationDeclaration:
1591     return llvm::GlobalVariable::LinkOnceODRLinkage;
1592 
1593   case TSK_ExplicitInstantiationDefinition:
1594       return llvm::GlobalVariable::WeakODRLinkage;
1595   }
1596 
1597   llvm_unreachable("Invalid TemplateSpecializationKind!");
1598 }
1599 
1600 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1601     return Context.toCharUnitsFromBits(
1602       TheDataLayout.getTypeStoreSizeInBits(Ty));
1603 }
1604 
1605 llvm::Constant *
1606 CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1607                                                        const Expr *rawInit) {
1608   ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1609   if (const ExprWithCleanups *withCleanups =
1610           dyn_cast<ExprWithCleanups>(rawInit)) {
1611     cleanups = withCleanups->getObjects();
1612     rawInit = withCleanups->getSubExpr();
1613   }
1614 
1615   const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1616   if (!init || !init->initializesStdInitializerList() ||
1617       init->getNumInits() == 0)
1618     return 0;
1619 
1620   ASTContext &ctx = getContext();
1621   unsigned numInits = init->getNumInits();
1622   // FIXME: This check is here because we would otherwise silently miscompile
1623   // nested global std::initializer_lists. Better would be to have a real
1624   // implementation.
1625   for (unsigned i = 0; i < numInits; ++i) {
1626     const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1627     if (inner && inner->initializesStdInitializerList()) {
1628       ErrorUnsupported(inner, "nested global std::initializer_list");
1629       return 0;
1630     }
1631   }
1632 
1633   // Synthesize a fake VarDecl for the array and initialize that.
1634   QualType elementType = init->getInit(0)->getType();
1635   llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1636   QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1637                                                 ArrayType::Normal, 0);
1638 
1639   IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1640   TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1641                                               arrayType, D->getLocation());
1642   VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1643                                                           D->getDeclContext()),
1644                                           D->getLocStart(), D->getLocation(),
1645                                           name, arrayType, sourceInfo,
1646                                           SC_Static, SC_Static);
1647 
1648   // Now clone the InitListExpr to initialize the array instead.
1649   // Incredible hack: we want to use the existing InitListExpr here, so we need
1650   // to tell it that it no longer initializes a std::initializer_list.
1651   ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1652                         init->getNumInits());
1653   Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1654                                            init->getRBraceLoc());
1655   arrayInit->setType(arrayType);
1656 
1657   if (!cleanups.empty())
1658     arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1659 
1660   backingArray->setInit(arrayInit);
1661 
1662   // Emit the definition of the array.
1663   EmitGlobalVarDefinition(backingArray);
1664 
1665   // Inspect the initializer list to validate it and determine its type.
1666   // FIXME: doing this every time is probably inefficient; caching would be nice
1667   RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1668   RecordDecl::field_iterator field = record->field_begin();
1669   if (field == record->field_end()) {
1670     ErrorUnsupported(D, "weird std::initializer_list");
1671     return 0;
1672   }
1673   QualType elementPtr = ctx.getPointerType(elementType.withConst());
1674   // Start pointer.
1675   if (!ctx.hasSameType(field->getType(), elementPtr)) {
1676     ErrorUnsupported(D, "weird std::initializer_list");
1677     return 0;
1678   }
1679   ++field;
1680   if (field == record->field_end()) {
1681     ErrorUnsupported(D, "weird std::initializer_list");
1682     return 0;
1683   }
1684   bool isStartEnd = false;
1685   if (ctx.hasSameType(field->getType(), elementPtr)) {
1686     // End pointer.
1687     isStartEnd = true;
1688   } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1689     ErrorUnsupported(D, "weird std::initializer_list");
1690     return 0;
1691   }
1692 
1693   // Now build an APValue representing the std::initializer_list.
1694   APValue initListValue(APValue::UninitStruct(), 0, 2);
1695   APValue &startField = initListValue.getStructField(0);
1696   APValue::LValuePathEntry startOffsetPathEntry;
1697   startOffsetPathEntry.ArrayIndex = 0;
1698   startField = APValue(APValue::LValueBase(backingArray),
1699                        CharUnits::fromQuantity(0),
1700                        llvm::makeArrayRef(startOffsetPathEntry),
1701                        /*IsOnePastTheEnd=*/false, 0);
1702 
1703   if (isStartEnd) {
1704     APValue &endField = initListValue.getStructField(1);
1705     APValue::LValuePathEntry endOffsetPathEntry;
1706     endOffsetPathEntry.ArrayIndex = numInits;
1707     endField = APValue(APValue::LValueBase(backingArray),
1708                        ctx.getTypeSizeInChars(elementType) * numInits,
1709                        llvm::makeArrayRef(endOffsetPathEntry),
1710                        /*IsOnePastTheEnd=*/true, 0);
1711   } else {
1712     APValue &sizeField = initListValue.getStructField(1);
1713     sizeField = APValue(llvm::APSInt(numElements));
1714   }
1715 
1716   // Emit the constant for the initializer_list.
1717   llvm::Constant *llvmInit =
1718       EmitConstantValueForMemory(initListValue, D->getType());
1719   assert(llvmInit && "failed to initialize as constant");
1720   return llvmInit;
1721 }
1722 
1723 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1724                                                  unsigned AddrSpace) {
1725   if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1726     if (D->hasAttr<CUDAConstantAttr>())
1727       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1728     else if (D->hasAttr<CUDASharedAttr>())
1729       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1730     else
1731       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1732   }
1733 
1734   return AddrSpace;
1735 }
1736 
1737 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1738   llvm::Constant *Init = 0;
1739   QualType ASTTy = D->getType();
1740   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1741   bool NeedsGlobalCtor = false;
1742   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1743 
1744   const VarDecl *InitDecl;
1745   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1746 
1747   if (!InitExpr) {
1748     // This is a tentative definition; tentative definitions are
1749     // implicitly initialized with { 0 }.
1750     //
1751     // Note that tentative definitions are only emitted at the end of
1752     // a translation unit, so they should never have incomplete
1753     // type. In addition, EmitTentativeDefinition makes sure that we
1754     // never attempt to emit a tentative definition if a real one
1755     // exists. A use may still exists, however, so we still may need
1756     // to do a RAUW.
1757     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1758     Init = EmitNullConstant(D->getType());
1759   } else {
1760     // If this is a std::initializer_list, emit the special initializer.
1761     Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1762     // An empty init list will perform zero-initialization, which happens
1763     // to be exactly what we want.
1764     // FIXME: It does so in a global constructor, which is *not* what we
1765     // want.
1766 
1767     if (!Init) {
1768       initializedGlobalDecl = GlobalDecl(D);
1769       Init = EmitConstantInit(*InitDecl);
1770     }
1771     if (!Init) {
1772       QualType T = InitExpr->getType();
1773       if (D->getType()->isReferenceType())
1774         T = D->getType();
1775 
1776       if (getLangOpts().CPlusPlus) {
1777         Init = EmitNullConstant(T);
1778         NeedsGlobalCtor = true;
1779       } else {
1780         ErrorUnsupported(D, "static initializer");
1781         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1782       }
1783     } else {
1784       // We don't need an initializer, so remove the entry for the delayed
1785       // initializer position (just in case this entry was delayed) if we
1786       // also don't need to register a destructor.
1787       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1788         DelayedCXXInitPosition.erase(D);
1789     }
1790   }
1791 
1792   llvm::Type* InitType = Init->getType();
1793   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1794 
1795   // Strip off a bitcast if we got one back.
1796   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1797     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1798            // all zero index gep.
1799            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1800     Entry = CE->getOperand(0);
1801   }
1802 
1803   // Entry is now either a Function or GlobalVariable.
1804   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1805 
1806   // We have a definition after a declaration with the wrong type.
1807   // We must make a new GlobalVariable* and update everything that used OldGV
1808   // (a declaration or tentative definition) with the new GlobalVariable*
1809   // (which will be a definition).
1810   //
1811   // This happens if there is a prototype for a global (e.g.
1812   // "extern int x[];") and then a definition of a different type (e.g.
1813   // "int x[10];"). This also happens when an initializer has a different type
1814   // from the type of the global (this happens with unions).
1815   if (GV == 0 ||
1816       GV->getType()->getElementType() != InitType ||
1817       GV->getType()->getAddressSpace() !=
1818        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1819 
1820     // Move the old entry aside so that we'll create a new one.
1821     Entry->setName(StringRef());
1822 
1823     // Make a new global with the correct type, this is now guaranteed to work.
1824     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1825 
1826     // Replace all uses of the old global with the new global
1827     llvm::Constant *NewPtrForOldDecl =
1828         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1829     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1830 
1831     // Erase the old global, since it is no longer used.
1832     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1833   }
1834 
1835   if (D->hasAttr<AnnotateAttr>())
1836     AddGlobalAnnotations(D, GV);
1837 
1838   GV->setInitializer(Init);
1839 
1840   // If it is safe to mark the global 'constant', do so now.
1841   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1842                   isTypeConstant(D->getType(), true));
1843 
1844   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1845 
1846   // Set the llvm linkage type as appropriate.
1847   llvm::GlobalValue::LinkageTypes Linkage =
1848     GetLLVMLinkageVarDefinition(D, GV);
1849   GV->setLinkage(Linkage);
1850   if (Linkage == llvm::GlobalVariable::CommonLinkage)
1851     // common vars aren't constant even if declared const.
1852     GV->setConstant(false);
1853 
1854   SetCommonAttributes(D, GV);
1855 
1856   // Emit the initializer function if necessary.
1857   if (NeedsGlobalCtor || NeedsGlobalDtor)
1858     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1859 
1860   // If we are compiling with ASan, add metadata indicating dynamically
1861   // initialized globals.
1862   if (SanOpts.Address && NeedsGlobalCtor) {
1863     llvm::Module &M = getModule();
1864 
1865     llvm::NamedMDNode *DynamicInitializers =
1866         M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1867     llvm::Value *GlobalToAdd[] = { GV };
1868     llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1869     DynamicInitializers->addOperand(ThisGlobal);
1870   }
1871 
1872   // Emit global variable debug information.
1873   if (CGDebugInfo *DI = getModuleDebugInfo())
1874     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1875       DI->EmitGlobalVariable(GV, D);
1876 }
1877 
1878 llvm::GlobalValue::LinkageTypes
1879 CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1880                                            llvm::GlobalVariable *GV) {
1881   GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1882   if (Linkage == GVA_Internal)
1883     return llvm::Function::InternalLinkage;
1884   else if (D->hasAttr<DLLImportAttr>())
1885     return llvm::Function::DLLImportLinkage;
1886   else if (D->hasAttr<DLLExportAttr>())
1887     return llvm::Function::DLLExportLinkage;
1888   else if (D->hasAttr<WeakAttr>()) {
1889     if (GV->isConstant())
1890       return llvm::GlobalVariable::WeakODRLinkage;
1891     else
1892       return llvm::GlobalVariable::WeakAnyLinkage;
1893   } else if (Linkage == GVA_TemplateInstantiation ||
1894              Linkage == GVA_ExplicitTemplateInstantiation)
1895     return llvm::GlobalVariable::WeakODRLinkage;
1896   else if (!getLangOpts().CPlusPlus &&
1897            ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1898              D->getAttr<CommonAttr>()) &&
1899            !D->hasExternalStorage() && !D->getInit() &&
1900            !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1901            !D->getAttr<WeakImportAttr>()) {
1902     // Thread local vars aren't considered common linkage.
1903     return llvm::GlobalVariable::CommonLinkage;
1904   }
1905   return llvm::GlobalVariable::ExternalLinkage;
1906 }
1907 
1908 /// Replace the uses of a function that was declared with a non-proto type.
1909 /// We want to silently drop extra arguments from call sites
1910 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1911                                           llvm::Function *newFn) {
1912   // Fast path.
1913   if (old->use_empty()) return;
1914 
1915   llvm::Type *newRetTy = newFn->getReturnType();
1916   SmallVector<llvm::Value*, 4> newArgs;
1917 
1918   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1919          ui != ue; ) {
1920     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1921     llvm::User *user = *use;
1922 
1923     // Recognize and replace uses of bitcasts.  Most calls to
1924     // unprototyped functions will use bitcasts.
1925     if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1926       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1927         replaceUsesOfNonProtoConstant(bitcast, newFn);
1928       continue;
1929     }
1930 
1931     // Recognize calls to the function.
1932     llvm::CallSite callSite(user);
1933     if (!callSite) continue;
1934     if (!callSite.isCallee(use)) continue;
1935 
1936     // If the return types don't match exactly, then we can't
1937     // transform this call unless it's dead.
1938     if (callSite->getType() != newRetTy && !callSite->use_empty())
1939       continue;
1940 
1941     // Get the call site's attribute list.
1942     SmallVector<llvm::AttributeWithIndex, 8> newAttrs;
1943     llvm::AttributeSet oldAttrs = callSite.getAttributes();
1944 
1945     // Collect any return attributes from the call.
1946     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1947       newAttrs.push_back(
1948         llvm::AttributeWithIndex::get(newFn->getContext(),
1949                                       llvm::AttributeSet::ReturnIndex,
1950                                       oldAttrs.getRetAttributes()));
1951 
1952     // If the function was passed too few arguments, don't transform.
1953     unsigned newNumArgs = newFn->arg_size();
1954     if (callSite.arg_size() < newNumArgs) continue;
1955 
1956     // If extra arguments were passed, we silently drop them.
1957     // If any of the types mismatch, we don't transform.
1958     unsigned argNo = 0;
1959     bool dontTransform = false;
1960     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1961            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1962       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1963         dontTransform = true;
1964         break;
1965       }
1966 
1967       // Add any parameter attributes.
1968       if (oldAttrs.hasAttributes(argNo + 1))
1969         newAttrs.
1970           push_back(llvm::AttributeWithIndex::
1971                     get(newFn->getContext(),
1972                         argNo + 1,
1973                         oldAttrs.getParamAttributes(argNo + 1)));
1974     }
1975     if (dontTransform)
1976       continue;
1977 
1978     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1979       newAttrs.push_back(llvm::
1980                       AttributeWithIndex::get(newFn->getContext(),
1981                                               llvm::AttributeSet::FunctionIndex,
1982                                               oldAttrs.getFnAttributes()));
1983 
1984     // Okay, we can transform this.  Create the new call instruction and copy
1985     // over the required information.
1986     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1987 
1988     llvm::CallSite newCall;
1989     if (callSite.isCall()) {
1990       newCall = llvm::CallInst::Create(newFn, newArgs, "",
1991                                        callSite.getInstruction());
1992     } else {
1993       llvm::InvokeInst *oldInvoke =
1994         cast<llvm::InvokeInst>(callSite.getInstruction());
1995       newCall = llvm::InvokeInst::Create(newFn,
1996                                          oldInvoke->getNormalDest(),
1997                                          oldInvoke->getUnwindDest(),
1998                                          newArgs, "",
1999                                          callSite.getInstruction());
2000     }
2001     newArgs.clear(); // for the next iteration
2002 
2003     if (!newCall->getType()->isVoidTy())
2004       newCall->takeName(callSite.getInstruction());
2005     newCall.setAttributes(
2006                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2007     newCall.setCallingConv(callSite.getCallingConv());
2008 
2009     // Finally, remove the old call, replacing any uses with the new one.
2010     if (!callSite->use_empty())
2011       callSite->replaceAllUsesWith(newCall.getInstruction());
2012 
2013     // Copy debug location attached to CI.
2014     if (!callSite->getDebugLoc().isUnknown())
2015       newCall->setDebugLoc(callSite->getDebugLoc());
2016     callSite->eraseFromParent();
2017   }
2018 }
2019 
2020 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2021 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2022 /// existing call uses of the old function in the module, this adjusts them to
2023 /// call the new function directly.
2024 ///
2025 /// This is not just a cleanup: the always_inline pass requires direct calls to
2026 /// functions to be able to inline them.  If there is a bitcast in the way, it
2027 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2028 /// run at -O0.
2029 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2030                                                       llvm::Function *NewFn) {
2031   // If we're redefining a global as a function, don't transform it.
2032   if (!isa<llvm::Function>(Old)) return;
2033 
2034   replaceUsesOfNonProtoConstant(Old, NewFn);
2035 }
2036 
2037 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2038   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2039   // If we have a definition, this might be a deferred decl. If the
2040   // instantiation is explicit, make sure we emit it at the end.
2041   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2042     GetAddrOfGlobalVar(VD);
2043 }
2044 
2045 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2046   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2047 
2048   // Compute the function info and LLVM type.
2049   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2050   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2051 
2052   // Get or create the prototype for the function.
2053   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2054 
2055   // Strip off a bitcast if we got one back.
2056   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2057     assert(CE->getOpcode() == llvm::Instruction::BitCast);
2058     Entry = CE->getOperand(0);
2059   }
2060 
2061 
2062   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2063     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2064 
2065     // If the types mismatch then we have to rewrite the definition.
2066     assert(OldFn->isDeclaration() &&
2067            "Shouldn't replace non-declaration");
2068 
2069     // F is the Function* for the one with the wrong type, we must make a new
2070     // Function* and update everything that used F (a declaration) with the new
2071     // Function* (which will be a definition).
2072     //
2073     // This happens if there is a prototype for a function
2074     // (e.g. "int f()") and then a definition of a different type
2075     // (e.g. "int f(int x)").  Move the old function aside so that it
2076     // doesn't interfere with GetAddrOfFunction.
2077     OldFn->setName(StringRef());
2078     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2079 
2080     // This might be an implementation of a function without a
2081     // prototype, in which case, try to do special replacement of
2082     // calls which match the new prototype.  The really key thing here
2083     // is that we also potentially drop arguments from the call site
2084     // so as to make a direct call, which makes the inliner happier
2085     // and suppresses a number of optimizer warnings (!) about
2086     // dropping arguments.
2087     if (!OldFn->use_empty()) {
2088       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2089       OldFn->removeDeadConstantUsers();
2090     }
2091 
2092     // Replace uses of F with the Function we will endow with a body.
2093     if (!Entry->use_empty()) {
2094       llvm::Constant *NewPtrForOldDecl =
2095         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2096       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2097     }
2098 
2099     // Ok, delete the old function now, which is dead.
2100     OldFn->eraseFromParent();
2101 
2102     Entry = NewFn;
2103   }
2104 
2105   // We need to set linkage and visibility on the function before
2106   // generating code for it because various parts of IR generation
2107   // want to propagate this information down (e.g. to local static
2108   // declarations).
2109   llvm::Function *Fn = cast<llvm::Function>(Entry);
2110   setFunctionLinkage(D, Fn);
2111 
2112   // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2113   setGlobalVisibility(Fn, D);
2114 
2115   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2116 
2117   SetFunctionDefinitionAttributes(D, Fn);
2118   SetLLVMFunctionAttributesForDefinition(D, Fn);
2119 
2120   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2121     AddGlobalCtor(Fn, CA->getPriority());
2122   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2123     AddGlobalDtor(Fn, DA->getPriority());
2124   if (D->hasAttr<AnnotateAttr>())
2125     AddGlobalAnnotations(D, Fn);
2126 }
2127 
2128 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2129   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2130   const AliasAttr *AA = D->getAttr<AliasAttr>();
2131   assert(AA && "Not an alias?");
2132 
2133   StringRef MangledName = getMangledName(GD);
2134 
2135   // If there is a definition in the module, then it wins over the alias.
2136   // This is dubious, but allow it to be safe.  Just ignore the alias.
2137   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2138   if (Entry && !Entry->isDeclaration())
2139     return;
2140 
2141   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2142 
2143   // Create a reference to the named value.  This ensures that it is emitted
2144   // if a deferred decl.
2145   llvm::Constant *Aliasee;
2146   if (isa<llvm::FunctionType>(DeclTy))
2147     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2148                                       /*ForVTable=*/false);
2149   else
2150     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2151                                     llvm::PointerType::getUnqual(DeclTy), 0);
2152 
2153   // Create the new alias itself, but don't set a name yet.
2154   llvm::GlobalValue *GA =
2155     new llvm::GlobalAlias(Aliasee->getType(),
2156                           llvm::Function::ExternalLinkage,
2157                           "", Aliasee, &getModule());
2158 
2159   if (Entry) {
2160     assert(Entry->isDeclaration());
2161 
2162     // If there is a declaration in the module, then we had an extern followed
2163     // by the alias, as in:
2164     //   extern int test6();
2165     //   ...
2166     //   int test6() __attribute__((alias("test7")));
2167     //
2168     // Remove it and replace uses of it with the alias.
2169     GA->takeName(Entry);
2170 
2171     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2172                                                           Entry->getType()));
2173     Entry->eraseFromParent();
2174   } else {
2175     GA->setName(MangledName);
2176   }
2177 
2178   // Set attributes which are particular to an alias; this is a
2179   // specialization of the attributes which may be set on a global
2180   // variable/function.
2181   if (D->hasAttr<DLLExportAttr>()) {
2182     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2183       // The dllexport attribute is ignored for undefined symbols.
2184       if (FD->hasBody())
2185         GA->setLinkage(llvm::Function::DLLExportLinkage);
2186     } else {
2187       GA->setLinkage(llvm::Function::DLLExportLinkage);
2188     }
2189   } else if (D->hasAttr<WeakAttr>() ||
2190              D->hasAttr<WeakRefAttr>() ||
2191              D->isWeakImported()) {
2192     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2193   }
2194 
2195   SetCommonAttributes(D, GA);
2196 }
2197 
2198 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2199                                             ArrayRef<llvm::Type*> Tys) {
2200   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2201                                          Tys);
2202 }
2203 
2204 static llvm::StringMapEntry<llvm::Constant*> &
2205 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2206                          const StringLiteral *Literal,
2207                          bool TargetIsLSB,
2208                          bool &IsUTF16,
2209                          unsigned &StringLength) {
2210   StringRef String = Literal->getString();
2211   unsigned NumBytes = String.size();
2212 
2213   // Check for simple case.
2214   if (!Literal->containsNonAsciiOrNull()) {
2215     StringLength = NumBytes;
2216     return Map.GetOrCreateValue(String);
2217   }
2218 
2219   // Otherwise, convert the UTF8 literals into a string of shorts.
2220   IsUTF16 = true;
2221 
2222   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2223   const UTF8 *FromPtr = (const UTF8 *)String.data();
2224   UTF16 *ToPtr = &ToBuf[0];
2225 
2226   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2227                            &ToPtr, ToPtr + NumBytes,
2228                            strictConversion);
2229 
2230   // ConvertUTF8toUTF16 returns the length in ToPtr.
2231   StringLength = ToPtr - &ToBuf[0];
2232 
2233   // Add an explicit null.
2234   *ToPtr = 0;
2235   return Map.
2236     GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2237                                (StringLength + 1) * 2));
2238 }
2239 
2240 static llvm::StringMapEntry<llvm::Constant*> &
2241 GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2242                        const StringLiteral *Literal,
2243                        unsigned &StringLength) {
2244   StringRef String = Literal->getString();
2245   StringLength = String.size();
2246   return Map.GetOrCreateValue(String);
2247 }
2248 
2249 llvm::Constant *
2250 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2251   unsigned StringLength = 0;
2252   bool isUTF16 = false;
2253   llvm::StringMapEntry<llvm::Constant*> &Entry =
2254     GetConstantCFStringEntry(CFConstantStringMap, Literal,
2255                              getDataLayout().isLittleEndian(),
2256                              isUTF16, StringLength);
2257 
2258   if (llvm::Constant *C = Entry.getValue())
2259     return C;
2260 
2261   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2262   llvm::Constant *Zeros[] = { Zero, Zero };
2263 
2264   // If we don't already have it, get __CFConstantStringClassReference.
2265   if (!CFConstantStringClassRef) {
2266     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2267     Ty = llvm::ArrayType::get(Ty, 0);
2268     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2269                                            "__CFConstantStringClassReference");
2270     // Decay array -> ptr
2271     CFConstantStringClassRef =
2272       llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2273   }
2274 
2275   QualType CFTy = getContext().getCFConstantStringType();
2276 
2277   llvm::StructType *STy =
2278     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2279 
2280   llvm::Constant *Fields[4];
2281 
2282   // Class pointer.
2283   Fields[0] = CFConstantStringClassRef;
2284 
2285   // Flags.
2286   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2287   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2288     llvm::ConstantInt::get(Ty, 0x07C8);
2289 
2290   // String pointer.
2291   llvm::Constant *C = 0;
2292   if (isUTF16) {
2293     ArrayRef<uint16_t> Arr =
2294       llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2295                                      const_cast<char *>(Entry.getKey().data())),
2296                                    Entry.getKey().size() / 2);
2297     C = llvm::ConstantDataArray::get(VMContext, Arr);
2298   } else {
2299     C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2300   }
2301 
2302   llvm::GlobalValue::LinkageTypes Linkage;
2303   if (isUTF16)
2304     // FIXME: why do utf strings get "_" labels instead of "L" labels?
2305     Linkage = llvm::GlobalValue::InternalLinkage;
2306   else
2307     // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2308     // when using private linkage. It is not clear if this is a bug in ld
2309     // or a reasonable new restriction.
2310     Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2311 
2312   // Note: -fwritable-strings doesn't make the backing store strings of
2313   // CFStrings writable. (See <rdar://problem/10657500>)
2314   llvm::GlobalVariable *GV =
2315     new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2316                              Linkage, C, ".str");
2317   GV->setUnnamedAddr(true);
2318   if (isUTF16) {
2319     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2320     GV->setAlignment(Align.getQuantity());
2321   } else {
2322     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2323     GV->setAlignment(Align.getQuantity());
2324   }
2325 
2326   // String.
2327   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2328 
2329   if (isUTF16)
2330     // Cast the UTF16 string to the correct type.
2331     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2332 
2333   // String length.
2334   Ty = getTypes().ConvertType(getContext().LongTy);
2335   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2336 
2337   // The struct.
2338   C = llvm::ConstantStruct::get(STy, Fields);
2339   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2340                                 llvm::GlobalVariable::PrivateLinkage, C,
2341                                 "_unnamed_cfstring_");
2342   if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2343     GV->setSection(Sect);
2344   Entry.setValue(GV);
2345 
2346   return GV;
2347 }
2348 
2349 static RecordDecl *
2350 CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2351                  DeclContext *DC, IdentifierInfo *Id) {
2352   SourceLocation Loc;
2353   if (Ctx.getLangOpts().CPlusPlus)
2354     return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2355   else
2356     return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2357 }
2358 
2359 llvm::Constant *
2360 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2361   unsigned StringLength = 0;
2362   llvm::StringMapEntry<llvm::Constant*> &Entry =
2363     GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2364 
2365   if (llvm::Constant *C = Entry.getValue())
2366     return C;
2367 
2368   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2369   llvm::Constant *Zeros[] = { Zero, Zero };
2370 
2371   // If we don't already have it, get _NSConstantStringClassReference.
2372   if (!ConstantStringClassRef) {
2373     std::string StringClass(getLangOpts().ObjCConstantStringClass);
2374     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2375     llvm::Constant *GV;
2376     if (LangOpts.ObjCRuntime.isNonFragile()) {
2377       std::string str =
2378         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2379                             : "OBJC_CLASS_$_" + StringClass;
2380       GV = getObjCRuntime().GetClassGlobal(str);
2381       // Make sure the result is of the correct type.
2382       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2383       ConstantStringClassRef =
2384         llvm::ConstantExpr::getBitCast(GV, PTy);
2385     } else {
2386       std::string str =
2387         StringClass.empty() ? "_NSConstantStringClassReference"
2388                             : "_" + StringClass + "ClassReference";
2389       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2390       GV = CreateRuntimeVariable(PTy, str);
2391       // Decay array -> ptr
2392       ConstantStringClassRef =
2393         llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2394     }
2395   }
2396 
2397   if (!NSConstantStringType) {
2398     // Construct the type for a constant NSString.
2399     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2400                                      Context.getTranslationUnitDecl(),
2401                                    &Context.Idents.get("__builtin_NSString"));
2402     D->startDefinition();
2403 
2404     QualType FieldTypes[3];
2405 
2406     // const int *isa;
2407     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2408     // const char *str;
2409     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2410     // unsigned int length;
2411     FieldTypes[2] = Context.UnsignedIntTy;
2412 
2413     // Create fields
2414     for (unsigned i = 0; i < 3; ++i) {
2415       FieldDecl *Field = FieldDecl::Create(Context, D,
2416                                            SourceLocation(),
2417                                            SourceLocation(), 0,
2418                                            FieldTypes[i], /*TInfo=*/0,
2419                                            /*BitWidth=*/0,
2420                                            /*Mutable=*/false,
2421                                            ICIS_NoInit);
2422       Field->setAccess(AS_public);
2423       D->addDecl(Field);
2424     }
2425 
2426     D->completeDefinition();
2427     QualType NSTy = Context.getTagDeclType(D);
2428     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2429   }
2430 
2431   llvm::Constant *Fields[3];
2432 
2433   // Class pointer.
2434   Fields[0] = ConstantStringClassRef;
2435 
2436   // String pointer.
2437   llvm::Constant *C =
2438     llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2439 
2440   llvm::GlobalValue::LinkageTypes Linkage;
2441   bool isConstant;
2442   Linkage = llvm::GlobalValue::PrivateLinkage;
2443   isConstant = !LangOpts.WritableStrings;
2444 
2445   llvm::GlobalVariable *GV =
2446   new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2447                            ".str");
2448   GV->setUnnamedAddr(true);
2449   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2450   GV->setAlignment(Align.getQuantity());
2451   Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2452 
2453   // String length.
2454   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2455   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2456 
2457   // The struct.
2458   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2459   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2460                                 llvm::GlobalVariable::PrivateLinkage, C,
2461                                 "_unnamed_nsstring_");
2462   // FIXME. Fix section.
2463   if (const char *Sect =
2464         LangOpts.ObjCRuntime.isNonFragile()
2465           ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2466           : getContext().getTargetInfo().getNSStringSection())
2467     GV->setSection(Sect);
2468   Entry.setValue(GV);
2469 
2470   return GV;
2471 }
2472 
2473 QualType CodeGenModule::getObjCFastEnumerationStateType() {
2474   if (ObjCFastEnumerationStateType.isNull()) {
2475     RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2476                                      Context.getTranslationUnitDecl(),
2477                       &Context.Idents.get("__objcFastEnumerationState"));
2478     D->startDefinition();
2479 
2480     QualType FieldTypes[] = {
2481       Context.UnsignedLongTy,
2482       Context.getPointerType(Context.getObjCIdType()),
2483       Context.getPointerType(Context.UnsignedLongTy),
2484       Context.getConstantArrayType(Context.UnsignedLongTy,
2485                            llvm::APInt(32, 5), ArrayType::Normal, 0)
2486     };
2487 
2488     for (size_t i = 0; i < 4; ++i) {
2489       FieldDecl *Field = FieldDecl::Create(Context,
2490                                            D,
2491                                            SourceLocation(),
2492                                            SourceLocation(), 0,
2493                                            FieldTypes[i], /*TInfo=*/0,
2494                                            /*BitWidth=*/0,
2495                                            /*Mutable=*/false,
2496                                            ICIS_NoInit);
2497       Field->setAccess(AS_public);
2498       D->addDecl(Field);
2499     }
2500 
2501     D->completeDefinition();
2502     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2503   }
2504 
2505   return ObjCFastEnumerationStateType;
2506 }
2507 
2508 llvm::Constant *
2509 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2510   assert(!E->getType()->isPointerType() && "Strings are always arrays");
2511 
2512   // Don't emit it as the address of the string, emit the string data itself
2513   // as an inline array.
2514   if (E->getCharByteWidth() == 1) {
2515     SmallString<64> Str(E->getString());
2516 
2517     // Resize the string to the right size, which is indicated by its type.
2518     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2519     Str.resize(CAT->getSize().getZExtValue());
2520     return llvm::ConstantDataArray::getString(VMContext, Str, false);
2521   }
2522 
2523   llvm::ArrayType *AType =
2524     cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2525   llvm::Type *ElemTy = AType->getElementType();
2526   unsigned NumElements = AType->getNumElements();
2527 
2528   // Wide strings have either 2-byte or 4-byte elements.
2529   if (ElemTy->getPrimitiveSizeInBits() == 16) {
2530     SmallVector<uint16_t, 32> Elements;
2531     Elements.reserve(NumElements);
2532 
2533     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2534       Elements.push_back(E->getCodeUnit(i));
2535     Elements.resize(NumElements);
2536     return llvm::ConstantDataArray::get(VMContext, Elements);
2537   }
2538 
2539   assert(ElemTy->getPrimitiveSizeInBits() == 32);
2540   SmallVector<uint32_t, 32> Elements;
2541   Elements.reserve(NumElements);
2542 
2543   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2544     Elements.push_back(E->getCodeUnit(i));
2545   Elements.resize(NumElements);
2546   return llvm::ConstantDataArray::get(VMContext, Elements);
2547 }
2548 
2549 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2550 /// constant array for the given string literal.
2551 llvm::Constant *
2552 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2553   CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2554   if (S->isAscii() || S->isUTF8()) {
2555     SmallString<64> Str(S->getString());
2556 
2557     // Resize the string to the right size, which is indicated by its type.
2558     const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2559     Str.resize(CAT->getSize().getZExtValue());
2560     return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2561   }
2562 
2563   // FIXME: the following does not memoize wide strings.
2564   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2565   llvm::GlobalVariable *GV =
2566     new llvm::GlobalVariable(getModule(),C->getType(),
2567                              !LangOpts.WritableStrings,
2568                              llvm::GlobalValue::PrivateLinkage,
2569                              C,".str");
2570 
2571   GV->setAlignment(Align.getQuantity());
2572   GV->setUnnamedAddr(true);
2573   return GV;
2574 }
2575 
2576 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2577 /// array for the given ObjCEncodeExpr node.
2578 llvm::Constant *
2579 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2580   std::string Str;
2581   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2582 
2583   return GetAddrOfConstantCString(Str);
2584 }
2585 
2586 
2587 /// GenerateWritableString -- Creates storage for a string literal.
2588 static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2589                                              bool constant,
2590                                              CodeGenModule &CGM,
2591                                              const char *GlobalName,
2592                                              unsigned Alignment) {
2593   // Create Constant for this string literal. Don't add a '\0'.
2594   llvm::Constant *C =
2595       llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2596 
2597   // Create a global variable for this string
2598   llvm::GlobalVariable *GV =
2599     new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2600                              llvm::GlobalValue::PrivateLinkage,
2601                              C, GlobalName);
2602   GV->setAlignment(Alignment);
2603   GV->setUnnamedAddr(true);
2604   return GV;
2605 }
2606 
2607 /// GetAddrOfConstantString - Returns a pointer to a character array
2608 /// containing the literal. This contents are exactly that of the
2609 /// given string, i.e. it will not be null terminated automatically;
2610 /// see GetAddrOfConstantCString. Note that whether the result is
2611 /// actually a pointer to an LLVM constant depends on
2612 /// Feature.WriteableStrings.
2613 ///
2614 /// The result has pointer to array type.
2615 llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2616                                                        const char *GlobalName,
2617                                                        unsigned Alignment) {
2618   // Get the default prefix if a name wasn't specified.
2619   if (!GlobalName)
2620     GlobalName = ".str";
2621 
2622   // Don't share any string literals if strings aren't constant.
2623   if (LangOpts.WritableStrings)
2624     return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2625 
2626   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2627     ConstantStringMap.GetOrCreateValue(Str);
2628 
2629   if (llvm::GlobalVariable *GV = Entry.getValue()) {
2630     if (Alignment > GV->getAlignment()) {
2631       GV->setAlignment(Alignment);
2632     }
2633     return GV;
2634   }
2635 
2636   // Create a global variable for this.
2637   llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2638                                                    Alignment);
2639   Entry.setValue(GV);
2640   return GV;
2641 }
2642 
2643 /// GetAddrOfConstantCString - Returns a pointer to a character
2644 /// array containing the literal and a terminating '\0'
2645 /// character. The result has pointer to array type.
2646 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2647                                                         const char *GlobalName,
2648                                                         unsigned Alignment) {
2649   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2650   return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2651 }
2652 
2653 /// EmitObjCPropertyImplementations - Emit information for synthesized
2654 /// properties for an implementation.
2655 void CodeGenModule::EmitObjCPropertyImplementations(const
2656                                                     ObjCImplementationDecl *D) {
2657   for (ObjCImplementationDecl::propimpl_iterator
2658          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2659     ObjCPropertyImplDecl *PID = *i;
2660 
2661     // Dynamic is just for type-checking.
2662     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2663       ObjCPropertyDecl *PD = PID->getPropertyDecl();
2664 
2665       // Determine which methods need to be implemented, some may have
2666       // been overridden. Note that ::isPropertyAccessor is not the method
2667       // we want, that just indicates if the decl came from a
2668       // property. What we want to know is if the method is defined in
2669       // this implementation.
2670       if (!D->getInstanceMethod(PD->getGetterName()))
2671         CodeGenFunction(*this).GenerateObjCGetter(
2672                                  const_cast<ObjCImplementationDecl *>(D), PID);
2673       if (!PD->isReadOnly() &&
2674           !D->getInstanceMethod(PD->getSetterName()))
2675         CodeGenFunction(*this).GenerateObjCSetter(
2676                                  const_cast<ObjCImplementationDecl *>(D), PID);
2677     }
2678   }
2679 }
2680 
2681 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2682   const ObjCInterfaceDecl *iface = impl->getClassInterface();
2683   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2684        ivar; ivar = ivar->getNextIvar())
2685     if (ivar->getType().isDestructedType())
2686       return true;
2687 
2688   return false;
2689 }
2690 
2691 /// EmitObjCIvarInitializations - Emit information for ivar initialization
2692 /// for an implementation.
2693 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2694   // We might need a .cxx_destruct even if we don't have any ivar initializers.
2695   if (needsDestructMethod(D)) {
2696     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2697     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2698     ObjCMethodDecl *DTORMethod =
2699       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2700                              cxxSelector, getContext().VoidTy, 0, D,
2701                              /*isInstance=*/true, /*isVariadic=*/false,
2702                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2703                              /*isDefined=*/false, ObjCMethodDecl::Required);
2704     D->addInstanceMethod(DTORMethod);
2705     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2706     D->setHasDestructors(true);
2707   }
2708 
2709   // If the implementation doesn't have any ivar initializers, we don't need
2710   // a .cxx_construct.
2711   if (D->getNumIvarInitializers() == 0)
2712     return;
2713 
2714   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2715   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2716   // The constructor returns 'self'.
2717   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2718                                                 D->getLocation(),
2719                                                 D->getLocation(),
2720                                                 cxxSelector,
2721                                                 getContext().getObjCIdType(), 0,
2722                                                 D, /*isInstance=*/true,
2723                                                 /*isVariadic=*/false,
2724                                                 /*isPropertyAccessor=*/true,
2725                                                 /*isImplicitlyDeclared=*/true,
2726                                                 /*isDefined=*/false,
2727                                                 ObjCMethodDecl::Required);
2728   D->addInstanceMethod(CTORMethod);
2729   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2730   D->setHasNonZeroConstructors(true);
2731 }
2732 
2733 /// EmitNamespace - Emit all declarations in a namespace.
2734 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2735   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2736        I != E; ++I)
2737     EmitTopLevelDecl(*I);
2738 }
2739 
2740 // EmitLinkageSpec - Emit all declarations in a linkage spec.
2741 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2742   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2743       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2744     ErrorUnsupported(LSD, "linkage spec");
2745     return;
2746   }
2747 
2748   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2749        I != E; ++I) {
2750     // Meta-data for ObjC class includes references to implemented methods.
2751     // Generate class's method definitions first.
2752     if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2753       for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2754            MEnd = OID->meth_end();
2755            M != MEnd; ++M)
2756         EmitTopLevelDecl(*M);
2757     }
2758     EmitTopLevelDecl(*I);
2759   }
2760 }
2761 
2762 /// EmitTopLevelDecl - Emit code for a single top level declaration.
2763 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2764   // If an error has occurred, stop code generation, but continue
2765   // parsing and semantic analysis (to ensure all warnings and errors
2766   // are emitted).
2767   if (Diags.hasErrorOccurred())
2768     return;
2769 
2770   // Ignore dependent declarations.
2771   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2772     return;
2773 
2774   switch (D->getKind()) {
2775   case Decl::CXXConversion:
2776   case Decl::CXXMethod:
2777   case Decl::Function:
2778     // Skip function templates
2779     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2780         cast<FunctionDecl>(D)->isLateTemplateParsed())
2781       return;
2782 
2783     EmitGlobal(cast<FunctionDecl>(D));
2784     break;
2785 
2786   case Decl::Var:
2787     EmitGlobal(cast<VarDecl>(D));
2788     break;
2789 
2790   // Indirect fields from global anonymous structs and unions can be
2791   // ignored; only the actual variable requires IR gen support.
2792   case Decl::IndirectField:
2793     break;
2794 
2795   // C++ Decls
2796   case Decl::Namespace:
2797     EmitNamespace(cast<NamespaceDecl>(D));
2798     break;
2799     // No code generation needed.
2800   case Decl::UsingShadow:
2801   case Decl::Using:
2802   case Decl::UsingDirective:
2803   case Decl::ClassTemplate:
2804   case Decl::FunctionTemplate:
2805   case Decl::TypeAliasTemplate:
2806   case Decl::NamespaceAlias:
2807   case Decl::Block:
2808     break;
2809   case Decl::CXXConstructor:
2810     // Skip function templates
2811     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2812         cast<FunctionDecl>(D)->isLateTemplateParsed())
2813       return;
2814 
2815     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2816     break;
2817   case Decl::CXXDestructor:
2818     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2819       return;
2820     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2821     break;
2822 
2823   case Decl::StaticAssert:
2824     // Nothing to do.
2825     break;
2826 
2827   // Objective-C Decls
2828 
2829   // Forward declarations, no (immediate) code generation.
2830   case Decl::ObjCInterface:
2831   case Decl::ObjCCategory:
2832     break;
2833 
2834   case Decl::ObjCProtocol: {
2835     ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2836     if (Proto->isThisDeclarationADefinition())
2837       ObjCRuntime->GenerateProtocol(Proto);
2838     break;
2839   }
2840 
2841   case Decl::ObjCCategoryImpl:
2842     // Categories have properties but don't support synthesize so we
2843     // can ignore them here.
2844     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2845     break;
2846 
2847   case Decl::ObjCImplementation: {
2848     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2849     EmitObjCPropertyImplementations(OMD);
2850     EmitObjCIvarInitializations(OMD);
2851     ObjCRuntime->GenerateClass(OMD);
2852     // Emit global variable debug information.
2853     if (CGDebugInfo *DI = getModuleDebugInfo())
2854       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2855         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2856             OMD->getClassInterface()), OMD->getLocation());
2857     break;
2858   }
2859   case Decl::ObjCMethod: {
2860     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2861     // If this is not a prototype, emit the body.
2862     if (OMD->getBody())
2863       CodeGenFunction(*this).GenerateObjCMethod(OMD);
2864     break;
2865   }
2866   case Decl::ObjCCompatibleAlias:
2867     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2868     break;
2869 
2870   case Decl::LinkageSpec:
2871     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2872     break;
2873 
2874   case Decl::FileScopeAsm: {
2875     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2876     StringRef AsmString = AD->getAsmString()->getString();
2877 
2878     const std::string &S = getModule().getModuleInlineAsm();
2879     if (S.empty())
2880       getModule().setModuleInlineAsm(AsmString);
2881     else if (S.end()[-1] == '\n')
2882       getModule().setModuleInlineAsm(S + AsmString.str());
2883     else
2884       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2885     break;
2886   }
2887 
2888   case Decl::Import: {
2889     ImportDecl *Import = cast<ImportDecl>(D);
2890 
2891     // Ignore import declarations that come from imported modules.
2892     if (clang::Module *Owner = Import->getOwningModule()) {
2893       if (getLangOpts().CurrentModule.empty() ||
2894           Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2895         break;
2896     }
2897 
2898     ImportedModules.insert(Import->getImportedModule());
2899     break;
2900  }
2901 
2902   default:
2903     // Make sure we handled everything we should, every other kind is a
2904     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2905     // function. Need to recode Decl::Kind to do that easily.
2906     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2907   }
2908 }
2909 
2910 /// Turns the given pointer into a constant.
2911 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2912                                           const void *Ptr) {
2913   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2914   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2915   return llvm::ConstantInt::get(i64, PtrInt);
2916 }
2917 
2918 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2919                                    llvm::NamedMDNode *&GlobalMetadata,
2920                                    GlobalDecl D,
2921                                    llvm::GlobalValue *Addr) {
2922   if (!GlobalMetadata)
2923     GlobalMetadata =
2924       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2925 
2926   // TODO: should we report variant information for ctors/dtors?
2927   llvm::Value *Ops[] = {
2928     Addr,
2929     GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2930   };
2931   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2932 }
2933 
2934 /// Emits metadata nodes associating all the global values in the
2935 /// current module with the Decls they came from.  This is useful for
2936 /// projects using IR gen as a subroutine.
2937 ///
2938 /// Since there's currently no way to associate an MDNode directly
2939 /// with an llvm::GlobalValue, we create a global named metadata
2940 /// with the name 'clang.global.decl.ptrs'.
2941 void CodeGenModule::EmitDeclMetadata() {
2942   llvm::NamedMDNode *GlobalMetadata = 0;
2943 
2944   // StaticLocalDeclMap
2945   for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2946          I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2947        I != E; ++I) {
2948     llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2949     EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2950   }
2951 }
2952 
2953 /// Emits metadata nodes for all the local variables in the current
2954 /// function.
2955 void CodeGenFunction::EmitDeclMetadata() {
2956   if (LocalDeclMap.empty()) return;
2957 
2958   llvm::LLVMContext &Context = getLLVMContext();
2959 
2960   // Find the unique metadata ID for this name.
2961   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2962 
2963   llvm::NamedMDNode *GlobalMetadata = 0;
2964 
2965   for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2966          I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2967     const Decl *D = I->first;
2968     llvm::Value *Addr = I->second;
2969 
2970     if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2971       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2972       Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2973     } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2974       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2975       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2976     }
2977   }
2978 }
2979 
2980 void CodeGenModule::EmitCoverageFile() {
2981   if (!getCodeGenOpts().CoverageFile.empty()) {
2982     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2983       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2984       llvm::LLVMContext &Ctx = TheModule.getContext();
2985       llvm::MDString *CoverageFile =
2986           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2987       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2988         llvm::MDNode *CU = CUNode->getOperand(i);
2989         llvm::Value *node[] = { CoverageFile, CU };
2990         llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2991         GCov->addOperand(N);
2992       }
2993     }
2994   }
2995 }
2996 
2997 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2998                                                      QualType GuidType) {
2999   // Sema has checked that all uuid strings are of the form
3000   // "12345678-1234-1234-1234-1234567890ab".
3001   assert(Uuid.size() == 36);
3002   const char *Uuidstr = Uuid.data();
3003   for (int i = 0; i < 36; ++i) {
3004     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3005     else                                         assert(isxdigit(Uuidstr[i]));
3006   }
3007 
3008   llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3009   llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3010   llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3011   static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3012 
3013   APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3014   InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3015   InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3016   InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3017   APValue& Arr = InitStruct.getStructField(3);
3018   Arr = APValue(APValue::UninitArray(), 8, 8);
3019   for (int t = 0; t < 8; ++t)
3020     Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3021           llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3022 
3023   return EmitConstantValue(InitStruct, GuidType);
3024 }
3025