1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/CharUnits.h" 32 #include "clang/AST/DeclCXX.h" 33 #include "clang/AST/DeclObjC.h" 34 #include "clang/AST/DeclTemplate.h" 35 #include "clang/AST/Mangle.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/AST/StmtVisitor.h" 38 #include "clang/Basic/Builtins.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/CodeGenOptions.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/FileManager.h" 43 #include "clang/Basic/Module.h" 44 #include "clang/Basic/SourceManager.h" 45 #include "clang/Basic/TargetInfo.h" 46 #include "clang/Basic/Version.h" 47 #include "clang/CodeGen/BackendUtil.h" 48 #include "clang/CodeGen/ConstantInitBuilder.h" 49 #include "clang/Frontend/FrontendDiagnostic.h" 50 #include "llvm/ADT/STLExtras.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/ADT/StringSwitch.h" 53 #include "llvm/ADT/Triple.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/CallingConv.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/LLVMContext.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/ProfileSummary.h" 62 #include "llvm/ProfileData/InstrProfReader.h" 63 #include "llvm/ProfileData/SampleProf.h" 64 #include "llvm/Support/CRC.h" 65 #include "llvm/Support/CodeGen.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/ConvertUTF.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/TimeProfiler.h" 70 #include "llvm/Support/X86TargetParser.h" 71 #include "llvm/Support/xxhash.h" 72 #include <optional> 73 74 using namespace clang; 75 using namespace CodeGen; 76 77 static llvm::cl::opt<bool> LimitedCoverage( 78 "limited-coverage-experimental", llvm::cl::Hidden, 79 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 80 81 static const char AnnotationSection[] = "llvm.metadata"; 82 83 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 84 switch (CGM.getContext().getCXXABIKind()) { 85 case TargetCXXABI::AppleARM64: 86 case TargetCXXABI::Fuchsia: 87 case TargetCXXABI::GenericAArch64: 88 case TargetCXXABI::GenericARM: 89 case TargetCXXABI::iOS: 90 case TargetCXXABI::WatchOS: 91 case TargetCXXABI::GenericMIPS: 92 case TargetCXXABI::GenericItanium: 93 case TargetCXXABI::WebAssembly: 94 case TargetCXXABI::XL: 95 return CreateItaniumCXXABI(CGM); 96 case TargetCXXABI::Microsoft: 97 return CreateMicrosoftCXXABI(CGM); 98 } 99 100 llvm_unreachable("invalid C++ ABI kind"); 101 } 102 103 CodeGenModule::CodeGenModule(ASTContext &C, 104 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 105 const HeaderSearchOptions &HSO, 106 const PreprocessorOptions &PPO, 107 const CodeGenOptions &CGO, llvm::Module &M, 108 DiagnosticsEngine &diags, 109 CoverageSourceInfo *CoverageInfo) 110 : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)), 111 HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), 112 TheModule(M), Diags(diags), Target(C.getTargetInfo()), 113 ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), 114 VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { 115 116 // Initialize the type cache. 117 llvm::LLVMContext &LLVMContext = M.getContext(); 118 VoidTy = llvm::Type::getVoidTy(LLVMContext); 119 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 120 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 121 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 122 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 123 HalfTy = llvm::Type::getHalfTy(LLVMContext); 124 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 125 FloatTy = llvm::Type::getFloatTy(LLVMContext); 126 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 127 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 128 PointerAlignInBytes = 129 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 130 .getQuantity(); 131 SizeSizeInBytes = 132 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 133 IntAlignInBytes = 134 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 135 CharTy = 136 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 137 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 138 IntPtrTy = llvm::IntegerType::get(LLVMContext, 139 C.getTargetInfo().getMaxPointerWidth()); 140 Int8PtrTy = Int8Ty->getPointerTo(0); 141 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 142 const llvm::DataLayout &DL = M.getDataLayout(); 143 AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace()); 144 GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace()); 145 ConstGlobalsPtrTy = Int8Ty->getPointerTo( 146 C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 147 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 148 149 // Build C++20 Module initializers. 150 // TODO: Add Microsoft here once we know the mangling required for the 151 // initializers. 152 CXX20ModuleInits = 153 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 154 ItaniumMangleContext::MK_Itanium; 155 156 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 157 158 if (LangOpts.ObjC) 159 createObjCRuntime(); 160 if (LangOpts.OpenCL) 161 createOpenCLRuntime(); 162 if (LangOpts.OpenMP) 163 createOpenMPRuntime(); 164 if (LangOpts.CUDA) 165 createCUDARuntime(); 166 if (LangOpts.HLSL) 167 createHLSLRuntime(); 168 169 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 170 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 171 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 172 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 173 getCXXABI().getMangleContext())); 174 175 // If debug info or coverage generation is enabled, create the CGDebugInfo 176 // object. 177 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 178 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 179 DebugInfo.reset(new CGDebugInfo(*this)); 180 181 Block.GlobalUniqueCount = 0; 182 183 if (C.getLangOpts().ObjC) 184 ObjCData.reset(new ObjCEntrypoints()); 185 186 if (CodeGenOpts.hasProfileClangUse()) { 187 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 188 CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile); 189 // We're checking for profile read errors in CompilerInvocation, so if 190 // there was an error it should've already been caught. If it hasn't been 191 // somehow, trip an assertion. 192 assert(ReaderOrErr); 193 PGOReader = std::move(ReaderOrErr.get()); 194 } 195 196 // If coverage mapping generation is enabled, create the 197 // CoverageMappingModuleGen object. 198 if (CodeGenOpts.CoverageMapping) 199 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 200 201 // Generate the module name hash here if needed. 202 if (CodeGenOpts.UniqueInternalLinkageNames && 203 !getModule().getSourceFileName().empty()) { 204 std::string Path = getModule().getSourceFileName(); 205 // Check if a path substitution is needed from the MacroPrefixMap. 206 for (const auto &Entry : LangOpts.MacroPrefixMap) 207 if (Path.rfind(Entry.first, 0) != std::string::npos) { 208 Path = Entry.second + Path.substr(Entry.first.size()); 209 break; 210 } 211 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 212 } 213 } 214 215 CodeGenModule::~CodeGenModule() {} 216 217 void CodeGenModule::createObjCRuntime() { 218 // This is just isGNUFamily(), but we want to force implementors of 219 // new ABIs to decide how best to do this. 220 switch (LangOpts.ObjCRuntime.getKind()) { 221 case ObjCRuntime::GNUstep: 222 case ObjCRuntime::GCC: 223 case ObjCRuntime::ObjFW: 224 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 225 return; 226 227 case ObjCRuntime::FragileMacOSX: 228 case ObjCRuntime::MacOSX: 229 case ObjCRuntime::iOS: 230 case ObjCRuntime::WatchOS: 231 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 232 return; 233 } 234 llvm_unreachable("bad runtime kind"); 235 } 236 237 void CodeGenModule::createOpenCLRuntime() { 238 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 239 } 240 241 void CodeGenModule::createOpenMPRuntime() { 242 // Select a specialized code generation class based on the target, if any. 243 // If it does not exist use the default implementation. 244 switch (getTriple().getArch()) { 245 case llvm::Triple::nvptx: 246 case llvm::Triple::nvptx64: 247 case llvm::Triple::amdgcn: 248 assert(getLangOpts().OpenMPIsDevice && 249 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 250 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 251 break; 252 default: 253 if (LangOpts.OpenMPSimd) 254 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 255 else 256 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 257 break; 258 } 259 } 260 261 void CodeGenModule::createCUDARuntime() { 262 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 263 } 264 265 void CodeGenModule::createHLSLRuntime() { 266 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 267 } 268 269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 270 Replacements[Name] = C; 271 } 272 273 void CodeGenModule::applyReplacements() { 274 for (auto &I : Replacements) { 275 StringRef MangledName = I.first(); 276 llvm::Constant *Replacement = I.second; 277 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 278 if (!Entry) 279 continue; 280 auto *OldF = cast<llvm::Function>(Entry); 281 auto *NewF = dyn_cast<llvm::Function>(Replacement); 282 if (!NewF) { 283 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 284 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 285 } else { 286 auto *CE = cast<llvm::ConstantExpr>(Replacement); 287 assert(CE->getOpcode() == llvm::Instruction::BitCast || 288 CE->getOpcode() == llvm::Instruction::GetElementPtr); 289 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 290 } 291 } 292 293 // Replace old with new, but keep the old order. 294 OldF->replaceAllUsesWith(Replacement); 295 if (NewF) { 296 NewF->removeFromParent(); 297 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 298 NewF); 299 } 300 OldF->eraseFromParent(); 301 } 302 } 303 304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 305 GlobalValReplacements.push_back(std::make_pair(GV, C)); 306 } 307 308 void CodeGenModule::applyGlobalValReplacements() { 309 for (auto &I : GlobalValReplacements) { 310 llvm::GlobalValue *GV = I.first; 311 llvm::Constant *C = I.second; 312 313 GV->replaceAllUsesWith(C); 314 GV->eraseFromParent(); 315 } 316 } 317 318 // This is only used in aliases that we created and we know they have a 319 // linear structure. 320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 321 const llvm::Constant *C; 322 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 323 C = GA->getAliasee(); 324 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 325 C = GI->getResolver(); 326 else 327 return GV; 328 329 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 330 if (!AliaseeGV) 331 return nullptr; 332 333 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 334 if (FinalGV == GV) 335 return nullptr; 336 337 return FinalGV; 338 } 339 340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags, 341 SourceLocation Location, bool IsIFunc, 342 const llvm::GlobalValue *Alias, 343 const llvm::GlobalValue *&GV) { 344 GV = getAliasedGlobal(Alias); 345 if (!GV) { 346 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 347 return false; 348 } 349 350 if (GV->isDeclaration()) { 351 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 352 return false; 353 } 354 355 if (IsIFunc) { 356 // Check resolver function type. 357 const auto *F = dyn_cast<llvm::Function>(GV); 358 if (!F) { 359 Diags.Report(Location, diag::err_alias_to_undefined) 360 << IsIFunc << IsIFunc; 361 return false; 362 } 363 364 llvm::FunctionType *FTy = F->getFunctionType(); 365 if (!FTy->getReturnType()->isPointerTy()) { 366 Diags.Report(Location, diag::err_ifunc_resolver_return); 367 return false; 368 } 369 } 370 371 return true; 372 } 373 374 void CodeGenModule::checkAliases() { 375 // Check if the constructed aliases are well formed. It is really unfortunate 376 // that we have to do this in CodeGen, but we only construct mangled names 377 // and aliases during codegen. 378 bool Error = false; 379 DiagnosticsEngine &Diags = getDiags(); 380 for (const GlobalDecl &GD : Aliases) { 381 const auto *D = cast<ValueDecl>(GD.getDecl()); 382 SourceLocation Location; 383 bool IsIFunc = D->hasAttr<IFuncAttr>(); 384 if (const Attr *A = D->getDefiningAttr()) 385 Location = A->getLocation(); 386 else 387 llvm_unreachable("Not an alias or ifunc?"); 388 389 StringRef MangledName = getMangledName(GD); 390 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 391 const llvm::GlobalValue *GV = nullptr; 392 if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) { 393 Error = true; 394 continue; 395 } 396 397 llvm::Constant *Aliasee = 398 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 399 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 400 401 llvm::GlobalValue *AliaseeGV; 402 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 403 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 404 else 405 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 406 407 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 408 StringRef AliasSection = SA->getName(); 409 if (AliasSection != AliaseeGV->getSection()) 410 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 411 << AliasSection << IsIFunc << IsIFunc; 412 } 413 414 // We have to handle alias to weak aliases in here. LLVM itself disallows 415 // this since the object semantics would not match the IL one. For 416 // compatibility with gcc we implement it by just pointing the alias 417 // to its aliasee's aliasee. We also warn, since the user is probably 418 // expecting the link to be weak. 419 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 420 if (GA->isInterposable()) { 421 Diags.Report(Location, diag::warn_alias_to_weak_alias) 422 << GV->getName() << GA->getName() << IsIFunc; 423 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 424 GA->getAliasee(), Alias->getType()); 425 426 if (IsIFunc) 427 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 428 else 429 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 430 } 431 } 432 } 433 if (!Error) 434 return; 435 436 for (const GlobalDecl &GD : Aliases) { 437 StringRef MangledName = getMangledName(GD); 438 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 439 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 440 Alias->eraseFromParent(); 441 } 442 } 443 444 void CodeGenModule::clear() { 445 DeferredDeclsToEmit.clear(); 446 EmittedDeferredDecls.clear(); 447 if (OpenMPRuntime) 448 OpenMPRuntime->clear(); 449 } 450 451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 452 StringRef MainFile) { 453 if (!hasDiagnostics()) 454 return; 455 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 456 if (MainFile.empty()) 457 MainFile = "<stdin>"; 458 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 459 } else { 460 if (Mismatched > 0) 461 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 462 463 if (Missing > 0) 464 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 465 } 466 } 467 468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 469 llvm::Module &M) { 470 if (!LO.VisibilityFromDLLStorageClass) 471 return; 472 473 llvm::GlobalValue::VisibilityTypes DLLExportVisibility = 474 CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility()); 475 llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility = 476 CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 477 llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility = 478 CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 479 llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility = 480 CodeGenModule::GetLLVMVisibility( 481 LO.getExternDeclNoDLLStorageClassVisibility()); 482 483 for (llvm::GlobalValue &GV : M.global_values()) { 484 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 485 continue; 486 487 // Reset DSO locality before setting the visibility. This removes 488 // any effects that visibility options and annotations may have 489 // had on the DSO locality. Setting the visibility will implicitly set 490 // appropriate globals to DSO Local; however, this will be pessimistic 491 // w.r.t. to the normal compiler IRGen. 492 GV.setDSOLocal(false); 493 494 if (GV.isDeclarationForLinker()) { 495 GV.setVisibility(GV.getDLLStorageClass() == 496 llvm::GlobalValue::DLLImportStorageClass 497 ? ExternDeclDLLImportVisibility 498 : ExternDeclNoDLLStorageClassVisibility); 499 } else { 500 GV.setVisibility(GV.getDLLStorageClass() == 501 llvm::GlobalValue::DLLExportStorageClass 502 ? DLLExportVisibility 503 : NoDLLStorageClassVisibility); 504 } 505 506 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 507 } 508 } 509 510 void CodeGenModule::Release() { 511 Module *Primary = getContext().getModuleForCodeGen(); 512 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 513 EmitModuleInitializers(Primary); 514 EmitDeferred(); 515 DeferredDecls.insert(EmittedDeferredDecls.begin(), 516 EmittedDeferredDecls.end()); 517 EmittedDeferredDecls.clear(); 518 EmitVTablesOpportunistically(); 519 applyGlobalValReplacements(); 520 applyReplacements(); 521 emitMultiVersionFunctions(); 522 523 if (Context.getLangOpts().IncrementalExtensions && 524 GlobalTopLevelStmtBlockInFlight.first) { 525 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 526 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 527 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 528 } 529 530 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 531 EmitCXXModuleInitFunc(Primary); 532 else 533 EmitCXXGlobalInitFunc(); 534 EmitCXXGlobalCleanUpFunc(); 535 registerGlobalDtorsWithAtExit(); 536 EmitCXXThreadLocalInitFunc(); 537 if (ObjCRuntime) 538 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 539 AddGlobalCtor(ObjCInitFunction); 540 if (Context.getLangOpts().CUDA && CUDARuntime) { 541 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 542 AddGlobalCtor(CudaCtorFunction); 543 } 544 if (OpenMPRuntime) { 545 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 546 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 547 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 548 } 549 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 550 OpenMPRuntime->clear(); 551 } 552 if (PGOReader) { 553 getModule().setProfileSummary( 554 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 555 llvm::ProfileSummary::PSK_Instr); 556 if (PGOStats.hasDiagnostics()) 557 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 558 } 559 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 560 return L.LexOrder < R.LexOrder; 561 }); 562 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 563 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 564 EmitGlobalAnnotations(); 565 EmitStaticExternCAliases(); 566 checkAliases(); 567 EmitDeferredUnusedCoverageMappings(); 568 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 569 if (CoverageMapping) 570 CoverageMapping->emit(); 571 if (CodeGenOpts.SanitizeCfiCrossDso) { 572 CodeGenFunction(*this).EmitCfiCheckFail(); 573 CodeGenFunction(*this).EmitCfiCheckStub(); 574 } 575 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 576 finalizeKCFITypes(); 577 emitAtAvailableLinkGuard(); 578 if (Context.getTargetInfo().getTriple().isWasm()) 579 EmitMainVoidAlias(); 580 581 if (getTriple().isAMDGPU()) { 582 // Emit reference of __amdgpu_device_library_preserve_asan_functions to 583 // preserve ASAN functions in bitcode libraries. 584 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 585 auto *FT = llvm::FunctionType::get(VoidTy, {}); 586 auto *F = llvm::Function::Create( 587 FT, llvm::GlobalValue::ExternalLinkage, 588 "__amdgpu_device_library_preserve_asan_functions", &getModule()); 589 auto *Var = new llvm::GlobalVariable( 590 getModule(), FT->getPointerTo(), 591 /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F, 592 "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr, 593 llvm::GlobalVariable::NotThreadLocal); 594 addCompilerUsedGlobal(Var); 595 } 596 // Emit amdgpu_code_object_version module flag, which is code object version 597 // times 100. 598 if (getTarget().getTargetOpts().CodeObjectVersion != 599 TargetOptions::COV_None) { 600 getModule().addModuleFlag(llvm::Module::Error, 601 "amdgpu_code_object_version", 602 getTarget().getTargetOpts().CodeObjectVersion); 603 } 604 } 605 606 // Emit a global array containing all external kernels or device variables 607 // used by host functions and mark it as used for CUDA/HIP. This is necessary 608 // to get kernels or device variables in archives linked in even if these 609 // kernels or device variables are only used in host functions. 610 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 611 SmallVector<llvm::Constant *, 8> UsedArray; 612 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 613 GlobalDecl GD; 614 if (auto *FD = dyn_cast<FunctionDecl>(D)) 615 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 616 else 617 GD = GlobalDecl(D); 618 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 619 GetAddrOfGlobal(GD), Int8PtrTy)); 620 } 621 622 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 623 624 auto *GV = new llvm::GlobalVariable( 625 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 626 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 627 addCompilerUsedGlobal(GV); 628 } 629 630 emitLLVMUsed(); 631 if (SanStats) 632 SanStats->finish(); 633 634 if (CodeGenOpts.Autolink && 635 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 636 EmitModuleLinkOptions(); 637 } 638 639 // On ELF we pass the dependent library specifiers directly to the linker 640 // without manipulating them. This is in contrast to other platforms where 641 // they are mapped to a specific linker option by the compiler. This 642 // difference is a result of the greater variety of ELF linkers and the fact 643 // that ELF linkers tend to handle libraries in a more complicated fashion 644 // than on other platforms. This forces us to defer handling the dependent 645 // libs to the linker. 646 // 647 // CUDA/HIP device and host libraries are different. Currently there is no 648 // way to differentiate dependent libraries for host or device. Existing 649 // usage of #pragma comment(lib, *) is intended for host libraries on 650 // Windows. Therefore emit llvm.dependent-libraries only for host. 651 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 652 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 653 for (auto *MD : ELFDependentLibraries) 654 NMD->addOperand(MD); 655 } 656 657 // Record mregparm value now so it is visible through rest of codegen. 658 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 659 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 660 CodeGenOpts.NumRegisterParameters); 661 662 if (CodeGenOpts.DwarfVersion) { 663 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 664 CodeGenOpts.DwarfVersion); 665 } 666 667 if (CodeGenOpts.Dwarf64) 668 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 669 670 if (Context.getLangOpts().SemanticInterposition) 671 // Require various optimization to respect semantic interposition. 672 getModule().setSemanticInterposition(true); 673 674 if (CodeGenOpts.EmitCodeView) { 675 // Indicate that we want CodeView in the metadata. 676 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 677 } 678 if (CodeGenOpts.CodeViewGHash) { 679 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 680 } 681 if (CodeGenOpts.ControlFlowGuard) { 682 // Function ID tables and checks for Control Flow Guard (cfguard=2). 683 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 684 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 685 // Function ID tables for Control Flow Guard (cfguard=1). 686 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 687 } 688 if (CodeGenOpts.EHContGuard) { 689 // Function ID tables for EH Continuation Guard. 690 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 691 } 692 if (Context.getLangOpts().Kernel) { 693 // Note if we are compiling with /kernel. 694 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 695 } 696 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 697 // We don't support LTO with 2 with different StrictVTablePointers 698 // FIXME: we could support it by stripping all the information introduced 699 // by StrictVTablePointers. 700 701 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 702 703 llvm::Metadata *Ops[2] = { 704 llvm::MDString::get(VMContext, "StrictVTablePointers"), 705 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 706 llvm::Type::getInt32Ty(VMContext), 1))}; 707 708 getModule().addModuleFlag(llvm::Module::Require, 709 "StrictVTablePointersRequirement", 710 llvm::MDNode::get(VMContext, Ops)); 711 } 712 if (getModuleDebugInfo()) 713 // We support a single version in the linked module. The LLVM 714 // parser will drop debug info with a different version number 715 // (and warn about it, too). 716 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 717 llvm::DEBUG_METADATA_VERSION); 718 719 // We need to record the widths of enums and wchar_t, so that we can generate 720 // the correct build attributes in the ARM backend. wchar_size is also used by 721 // TargetLibraryInfo. 722 uint64_t WCharWidth = 723 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 724 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 725 726 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 727 if ( Arch == llvm::Triple::arm 728 || Arch == llvm::Triple::armeb 729 || Arch == llvm::Triple::thumb 730 || Arch == llvm::Triple::thumbeb) { 731 // The minimum width of an enum in bytes 732 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 733 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 734 } 735 736 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 737 StringRef ABIStr = Target.getABI(); 738 llvm::LLVMContext &Ctx = TheModule.getContext(); 739 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 740 llvm::MDString::get(Ctx, ABIStr)); 741 } 742 743 if (CodeGenOpts.SanitizeCfiCrossDso) { 744 // Indicate that we want cross-DSO control flow integrity checks. 745 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 746 } 747 748 if (CodeGenOpts.WholeProgramVTables) { 749 // Indicate whether VFE was enabled for this module, so that the 750 // vcall_visibility metadata added under whole program vtables is handled 751 // appropriately in the optimizer. 752 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 753 CodeGenOpts.VirtualFunctionElimination); 754 } 755 756 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 757 getModule().addModuleFlag(llvm::Module::Override, 758 "CFI Canonical Jump Tables", 759 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 760 } 761 762 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 763 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 764 // KCFI assumes patchable-function-prefix is the same for all indirectly 765 // called functions. Store the expected offset for code generation. 766 if (CodeGenOpts.PatchableFunctionEntryOffset) 767 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 768 CodeGenOpts.PatchableFunctionEntryOffset); 769 } 770 771 if (CodeGenOpts.CFProtectionReturn && 772 Target.checkCFProtectionReturnSupported(getDiags())) { 773 // Indicate that we want to instrument return control flow protection. 774 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 775 1); 776 } 777 778 if (CodeGenOpts.CFProtectionBranch && 779 Target.checkCFProtectionBranchSupported(getDiags())) { 780 // Indicate that we want to instrument branch control flow protection. 781 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 782 1); 783 } 784 785 if (CodeGenOpts.FunctionReturnThunks) 786 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 787 788 if (CodeGenOpts.IndirectBranchCSPrefix) 789 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 790 791 // Add module metadata for return address signing (ignoring 792 // non-leaf/all) and stack tagging. These are actually turned on by function 793 // attributes, but we use module metadata to emit build attributes. This is 794 // needed for LTO, where the function attributes are inside bitcode 795 // serialised into a global variable by the time build attributes are 796 // emitted, so we can't access them. LTO objects could be compiled with 797 // different flags therefore module flags are set to "Min" behavior to achieve 798 // the same end result of the normal build where e.g BTI is off if any object 799 // doesn't support it. 800 if (Context.getTargetInfo().hasFeature("ptrauth") && 801 LangOpts.getSignReturnAddressScope() != 802 LangOptions::SignReturnAddressScopeKind::None) 803 getModule().addModuleFlag(llvm::Module::Override, 804 "sign-return-address-buildattr", 1); 805 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 806 getModule().addModuleFlag(llvm::Module::Override, 807 "tag-stack-memory-buildattr", 1); 808 809 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 810 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 811 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 812 Arch == llvm::Triple::aarch64_be) { 813 if (LangOpts.BranchTargetEnforcement) 814 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 815 1); 816 if (LangOpts.hasSignReturnAddress()) 817 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 818 if (LangOpts.isSignReturnAddressScopeAll()) 819 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 820 1); 821 if (!LangOpts.isSignReturnAddressWithAKey()) 822 getModule().addModuleFlag(llvm::Module::Min, 823 "sign-return-address-with-bkey", 1); 824 } 825 826 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 827 llvm::LLVMContext &Ctx = TheModule.getContext(); 828 getModule().addModuleFlag( 829 llvm::Module::Error, "MemProfProfileFilename", 830 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 831 } 832 833 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 834 // Indicate whether __nvvm_reflect should be configured to flush denormal 835 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 836 // property.) 837 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 838 CodeGenOpts.FP32DenormalMode.Output != 839 llvm::DenormalMode::IEEE); 840 } 841 842 if (LangOpts.EHAsynch) 843 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 844 845 // Indicate whether this Module was compiled with -fopenmp 846 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 847 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 848 if (getLangOpts().OpenMPIsDevice) 849 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 850 LangOpts.OpenMP); 851 852 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 853 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 854 EmitOpenCLMetadata(); 855 // Emit SPIR version. 856 if (getTriple().isSPIR()) { 857 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 858 // opencl.spir.version named metadata. 859 // C++ for OpenCL has a distinct mapping for version compatibility with 860 // OpenCL. 861 auto Version = LangOpts.getOpenCLCompatibleVersion(); 862 llvm::Metadata *SPIRVerElts[] = { 863 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 864 Int32Ty, Version / 100)), 865 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 866 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 867 llvm::NamedMDNode *SPIRVerMD = 868 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 869 llvm::LLVMContext &Ctx = TheModule.getContext(); 870 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 871 } 872 } 873 874 // HLSL related end of code gen work items. 875 if (LangOpts.HLSL) 876 getHLSLRuntime().finishCodeGen(); 877 878 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 879 assert(PLevel < 3 && "Invalid PIC Level"); 880 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 881 if (Context.getLangOpts().PIE) 882 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 883 } 884 885 if (getCodeGenOpts().CodeModel.size() > 0) { 886 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 887 .Case("tiny", llvm::CodeModel::Tiny) 888 .Case("small", llvm::CodeModel::Small) 889 .Case("kernel", llvm::CodeModel::Kernel) 890 .Case("medium", llvm::CodeModel::Medium) 891 .Case("large", llvm::CodeModel::Large) 892 .Default(~0u); 893 if (CM != ~0u) { 894 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 895 getModule().setCodeModel(codeModel); 896 } 897 } 898 899 if (CodeGenOpts.NoPLT) 900 getModule().setRtLibUseGOT(); 901 if (CodeGenOpts.UnwindTables) 902 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 903 904 switch (CodeGenOpts.getFramePointer()) { 905 case CodeGenOptions::FramePointerKind::None: 906 // 0 ("none") is the default. 907 break; 908 case CodeGenOptions::FramePointerKind::NonLeaf: 909 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 910 break; 911 case CodeGenOptions::FramePointerKind::All: 912 getModule().setFramePointer(llvm::FramePointerKind::All); 913 break; 914 } 915 916 SimplifyPersonality(); 917 918 if (getCodeGenOpts().EmitDeclMetadata) 919 EmitDeclMetadata(); 920 921 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 922 EmitCoverageFile(); 923 924 if (CGDebugInfo *DI = getModuleDebugInfo()) 925 DI->finalize(); 926 927 if (getCodeGenOpts().EmitVersionIdentMetadata) 928 EmitVersionIdentMetadata(); 929 930 if (!getCodeGenOpts().RecordCommandLine.empty()) 931 EmitCommandLineMetadata(); 932 933 if (!getCodeGenOpts().StackProtectorGuard.empty()) 934 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 935 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 936 getModule().setStackProtectorGuardReg( 937 getCodeGenOpts().StackProtectorGuardReg); 938 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 939 getModule().setStackProtectorGuardSymbol( 940 getCodeGenOpts().StackProtectorGuardSymbol); 941 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 942 getModule().setStackProtectorGuardOffset( 943 getCodeGenOpts().StackProtectorGuardOffset); 944 if (getCodeGenOpts().StackAlignment) 945 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 946 if (getCodeGenOpts().SkipRaxSetup) 947 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 948 949 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 950 951 EmitBackendOptionsMetadata(getCodeGenOpts()); 952 953 // If there is device offloading code embed it in the host now. 954 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 955 956 // Set visibility from DLL storage class 957 // We do this at the end of LLVM IR generation; after any operation 958 // that might affect the DLL storage class or the visibility, and 959 // before anything that might act on these. 960 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 961 } 962 963 void CodeGenModule::EmitOpenCLMetadata() { 964 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 965 // opencl.ocl.version named metadata node. 966 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 967 auto Version = LangOpts.getOpenCLCompatibleVersion(); 968 llvm::Metadata *OCLVerElts[] = { 969 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 970 Int32Ty, Version / 100)), 971 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 972 Int32Ty, (Version % 100) / 10))}; 973 llvm::NamedMDNode *OCLVerMD = 974 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 975 llvm::LLVMContext &Ctx = TheModule.getContext(); 976 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 977 } 978 979 void CodeGenModule::EmitBackendOptionsMetadata( 980 const CodeGenOptions CodeGenOpts) { 981 if (getTriple().isRISCV()) { 982 getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit", 983 CodeGenOpts.SmallDataLimit); 984 } 985 } 986 987 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 988 // Make sure that this type is translated. 989 Types.UpdateCompletedType(TD); 990 } 991 992 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 993 // Make sure that this type is translated. 994 Types.RefreshTypeCacheForClass(RD); 995 } 996 997 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 998 if (!TBAA) 999 return nullptr; 1000 return TBAA->getTypeInfo(QTy); 1001 } 1002 1003 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1004 if (!TBAA) 1005 return TBAAAccessInfo(); 1006 if (getLangOpts().CUDAIsDevice) { 1007 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1008 // access info. 1009 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1010 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1011 nullptr) 1012 return TBAAAccessInfo(); 1013 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1014 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1015 nullptr) 1016 return TBAAAccessInfo(); 1017 } 1018 } 1019 return TBAA->getAccessInfo(AccessType); 1020 } 1021 1022 TBAAAccessInfo 1023 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1024 if (!TBAA) 1025 return TBAAAccessInfo(); 1026 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1027 } 1028 1029 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1030 if (!TBAA) 1031 return nullptr; 1032 return TBAA->getTBAAStructInfo(QTy); 1033 } 1034 1035 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1036 if (!TBAA) 1037 return nullptr; 1038 return TBAA->getBaseTypeInfo(QTy); 1039 } 1040 1041 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1042 if (!TBAA) 1043 return nullptr; 1044 return TBAA->getAccessTagInfo(Info); 1045 } 1046 1047 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1048 TBAAAccessInfo TargetInfo) { 1049 if (!TBAA) 1050 return TBAAAccessInfo(); 1051 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1052 } 1053 1054 TBAAAccessInfo 1055 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1056 TBAAAccessInfo InfoB) { 1057 if (!TBAA) 1058 return TBAAAccessInfo(); 1059 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1060 } 1061 1062 TBAAAccessInfo 1063 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1064 TBAAAccessInfo SrcInfo) { 1065 if (!TBAA) 1066 return TBAAAccessInfo(); 1067 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1068 } 1069 1070 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1071 TBAAAccessInfo TBAAInfo) { 1072 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1073 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1074 } 1075 1076 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1077 llvm::Instruction *I, const CXXRecordDecl *RD) { 1078 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1079 llvm::MDNode::get(getLLVMContext(), {})); 1080 } 1081 1082 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1083 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1084 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1085 } 1086 1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1088 /// specified stmt yet. 1089 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1090 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1091 "cannot compile this %0 yet"); 1092 std::string Msg = Type; 1093 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1094 << Msg << S->getSourceRange(); 1095 } 1096 1097 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1098 /// specified decl yet. 1099 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1100 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1101 "cannot compile this %0 yet"); 1102 std::string Msg = Type; 1103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1104 } 1105 1106 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1107 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1108 } 1109 1110 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1111 const NamedDecl *D) const { 1112 // Internal definitions always have default visibility. 1113 if (GV->hasLocalLinkage()) { 1114 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1115 return; 1116 } 1117 if (!D) 1118 return; 1119 // Set visibility for definitions, and for declarations if requested globally 1120 // or set explicitly. 1121 LinkageInfo LV = D->getLinkageAndVisibility(); 1122 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1123 // Reject incompatible dlllstorage and visibility annotations. 1124 if (!LV.isVisibilityExplicit()) 1125 return; 1126 if (GV->hasDLLExportStorageClass()) { 1127 if (LV.getVisibility() == HiddenVisibility) 1128 getDiags().Report(D->getLocation(), 1129 diag::err_hidden_visibility_dllexport); 1130 } else if (LV.getVisibility() != DefaultVisibility) { 1131 getDiags().Report(D->getLocation(), 1132 diag::err_non_default_visibility_dllimport); 1133 } 1134 return; 1135 } 1136 1137 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1138 !GV->isDeclarationForLinker()) 1139 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1140 } 1141 1142 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1143 llvm::GlobalValue *GV) { 1144 if (GV->hasLocalLinkage()) 1145 return true; 1146 1147 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1148 return true; 1149 1150 // DLLImport explicitly marks the GV as external. 1151 if (GV->hasDLLImportStorageClass()) 1152 return false; 1153 1154 const llvm::Triple &TT = CGM.getTriple(); 1155 if (TT.isWindowsGNUEnvironment()) { 1156 // In MinGW, variables without DLLImport can still be automatically 1157 // imported from a DLL by the linker; don't mark variables that 1158 // potentially could come from another DLL as DSO local. 1159 1160 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1161 // (and this actually happens in the public interface of libstdc++), so 1162 // such variables can't be marked as DSO local. (Native TLS variables 1163 // can't be dllimported at all, though.) 1164 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1165 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS)) 1166 return false; 1167 } 1168 1169 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1170 // remain unresolved in the link, they can be resolved to zero, which is 1171 // outside the current DSO. 1172 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1173 return false; 1174 1175 // Every other GV is local on COFF. 1176 // Make an exception for windows OS in the triple: Some firmware builds use 1177 // *-win32-macho triples. This (accidentally?) produced windows relocations 1178 // without GOT tables in older clang versions; Keep this behaviour. 1179 // FIXME: even thread local variables? 1180 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1181 return true; 1182 1183 // Only handle COFF and ELF for now. 1184 if (!TT.isOSBinFormatELF()) 1185 return false; 1186 1187 // If this is not an executable, don't assume anything is local. 1188 const auto &CGOpts = CGM.getCodeGenOpts(); 1189 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1190 const auto &LOpts = CGM.getLangOpts(); 1191 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1192 // On ELF, if -fno-semantic-interposition is specified and the target 1193 // supports local aliases, there will be neither CC1 1194 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1195 // dso_local on the function if using a local alias is preferable (can avoid 1196 // PLT indirection). 1197 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1198 return false; 1199 return !(CGM.getLangOpts().SemanticInterposition || 1200 CGM.getLangOpts().HalfNoSemanticInterposition); 1201 } 1202 1203 // A definition cannot be preempted from an executable. 1204 if (!GV->isDeclarationForLinker()) 1205 return true; 1206 1207 // Most PIC code sequences that assume that a symbol is local cannot produce a 1208 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1209 // depended, it seems worth it to handle it here. 1210 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1211 return false; 1212 1213 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1214 if (TT.isPPC64()) 1215 return false; 1216 1217 if (CGOpts.DirectAccessExternalData) { 1218 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1219 // for non-thread-local variables. If the symbol is not defined in the 1220 // executable, a copy relocation will be needed at link time. dso_local is 1221 // excluded for thread-local variables because they generally don't support 1222 // copy relocations. 1223 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1224 if (!Var->isThreadLocal()) 1225 return true; 1226 1227 // -fno-pic sets dso_local on a function declaration to allow direct 1228 // accesses when taking its address (similar to a data symbol). If the 1229 // function is not defined in the executable, a canonical PLT entry will be 1230 // needed at link time. -fno-direct-access-external-data can avoid the 1231 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1232 // it could just cause trouble without providing perceptible benefits. 1233 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1234 return true; 1235 } 1236 1237 // If we can use copy relocations we can assume it is local. 1238 1239 // Otherwise don't assume it is local. 1240 return false; 1241 } 1242 1243 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1244 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1245 } 1246 1247 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1248 GlobalDecl GD) const { 1249 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1250 // C++ destructors have a few C++ ABI specific special cases. 1251 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1252 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1253 return; 1254 } 1255 setDLLImportDLLExport(GV, D); 1256 } 1257 1258 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1259 const NamedDecl *D) const { 1260 if (D && D->isExternallyVisible()) { 1261 if (D->hasAttr<DLLImportAttr>()) 1262 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1263 else if ((D->hasAttr<DLLExportAttr>() || 1264 shouldMapVisibilityToDLLExport(D)) && 1265 !GV->isDeclarationForLinker()) 1266 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1267 } 1268 } 1269 1270 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1271 GlobalDecl GD) const { 1272 setDLLImportDLLExport(GV, GD); 1273 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1274 } 1275 1276 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1277 const NamedDecl *D) const { 1278 setDLLImportDLLExport(GV, D); 1279 setGVPropertiesAux(GV, D); 1280 } 1281 1282 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1283 const NamedDecl *D) const { 1284 setGlobalVisibility(GV, D); 1285 setDSOLocal(GV); 1286 GV->setPartition(CodeGenOpts.SymbolPartition); 1287 } 1288 1289 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1290 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1291 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1292 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1293 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1294 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1295 } 1296 1297 llvm::GlobalVariable::ThreadLocalMode 1298 CodeGenModule::GetDefaultLLVMTLSModel() const { 1299 switch (CodeGenOpts.getDefaultTLSModel()) { 1300 case CodeGenOptions::GeneralDynamicTLSModel: 1301 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1302 case CodeGenOptions::LocalDynamicTLSModel: 1303 return llvm::GlobalVariable::LocalDynamicTLSModel; 1304 case CodeGenOptions::InitialExecTLSModel: 1305 return llvm::GlobalVariable::InitialExecTLSModel; 1306 case CodeGenOptions::LocalExecTLSModel: 1307 return llvm::GlobalVariable::LocalExecTLSModel; 1308 } 1309 llvm_unreachable("Invalid TLS model!"); 1310 } 1311 1312 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1313 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1314 1315 llvm::GlobalValue::ThreadLocalMode TLM; 1316 TLM = GetDefaultLLVMTLSModel(); 1317 1318 // Override the TLS model if it is explicitly specified. 1319 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1320 TLM = GetLLVMTLSModel(Attr->getModel()); 1321 } 1322 1323 GV->setThreadLocalMode(TLM); 1324 } 1325 1326 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1327 StringRef Name) { 1328 const TargetInfo &Target = CGM.getTarget(); 1329 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1330 } 1331 1332 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1333 const CPUSpecificAttr *Attr, 1334 unsigned CPUIndex, 1335 raw_ostream &Out) { 1336 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1337 // supported. 1338 if (Attr) 1339 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1340 else if (CGM.getTarget().supportsIFunc()) 1341 Out << ".resolver"; 1342 } 1343 1344 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1345 const TargetVersionAttr *Attr, 1346 raw_ostream &Out) { 1347 if (Attr->isDefaultVersion()) 1348 return; 1349 Out << "._"; 1350 llvm::SmallVector<StringRef, 8> Feats; 1351 Attr->getFeatures(Feats); 1352 for (const auto &Feat : Feats) { 1353 Out << 'M'; 1354 Out << Feat; 1355 } 1356 } 1357 1358 static void AppendTargetMangling(const CodeGenModule &CGM, 1359 const TargetAttr *Attr, raw_ostream &Out) { 1360 if (Attr->isDefaultVersion()) 1361 return; 1362 1363 Out << '.'; 1364 const TargetInfo &Target = CGM.getTarget(); 1365 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1366 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1367 // Multiversioning doesn't allow "no-${feature}", so we can 1368 // only have "+" prefixes here. 1369 assert(LHS.startswith("+") && RHS.startswith("+") && 1370 "Features should always have a prefix."); 1371 return Target.multiVersionSortPriority(LHS.substr(1)) > 1372 Target.multiVersionSortPriority(RHS.substr(1)); 1373 }); 1374 1375 bool IsFirst = true; 1376 1377 if (!Info.CPU.empty()) { 1378 IsFirst = false; 1379 Out << "arch_" << Info.CPU; 1380 } 1381 1382 for (StringRef Feat : Info.Features) { 1383 if (!IsFirst) 1384 Out << '_'; 1385 IsFirst = false; 1386 Out << Feat.substr(1); 1387 } 1388 } 1389 1390 // Returns true if GD is a function decl with internal linkage and 1391 // needs a unique suffix after the mangled name. 1392 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1393 CodeGenModule &CGM) { 1394 const Decl *D = GD.getDecl(); 1395 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1396 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1397 } 1398 1399 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1400 const TargetClonesAttr *Attr, 1401 unsigned VersionIndex, 1402 raw_ostream &Out) { 1403 if (CGM.getTarget().getTriple().isAArch64()) { 1404 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1405 if (FeatureStr == "default") 1406 return; 1407 Out << "._"; 1408 SmallVector<StringRef, 8> Features; 1409 FeatureStr.split(Features, "+"); 1410 for (auto &Feat : Features) { 1411 Out << 'M'; 1412 Out << Feat; 1413 } 1414 } else { 1415 Out << '.'; 1416 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1417 if (FeatureStr.startswith("arch=")) 1418 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1419 else 1420 Out << FeatureStr; 1421 1422 Out << '.' << Attr->getMangledIndex(VersionIndex); 1423 } 1424 } 1425 1426 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1427 const NamedDecl *ND, 1428 bool OmitMultiVersionMangling = false) { 1429 SmallString<256> Buffer; 1430 llvm::raw_svector_ostream Out(Buffer); 1431 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1432 if (!CGM.getModuleNameHash().empty()) 1433 MC.needsUniqueInternalLinkageNames(); 1434 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1435 if (ShouldMangle) 1436 MC.mangleName(GD.getWithDecl(ND), Out); 1437 else { 1438 IdentifierInfo *II = ND->getIdentifier(); 1439 assert(II && "Attempt to mangle unnamed decl."); 1440 const auto *FD = dyn_cast<FunctionDecl>(ND); 1441 1442 if (FD && 1443 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1444 Out << "__regcall3__" << II->getName(); 1445 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1446 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1447 Out << "__device_stub__" << II->getName(); 1448 } else { 1449 Out << II->getName(); 1450 } 1451 } 1452 1453 // Check if the module name hash should be appended for internal linkage 1454 // symbols. This should come before multi-version target suffixes are 1455 // appended. This is to keep the name and module hash suffix of the 1456 // internal linkage function together. The unique suffix should only be 1457 // added when name mangling is done to make sure that the final name can 1458 // be properly demangled. For example, for C functions without prototypes, 1459 // name mangling is not done and the unique suffix should not be appeneded 1460 // then. 1461 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1462 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1463 "Hash computed when not explicitly requested"); 1464 Out << CGM.getModuleNameHash(); 1465 } 1466 1467 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1468 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1469 switch (FD->getMultiVersionKind()) { 1470 case MultiVersionKind::CPUDispatch: 1471 case MultiVersionKind::CPUSpecific: 1472 AppendCPUSpecificCPUDispatchMangling(CGM, 1473 FD->getAttr<CPUSpecificAttr>(), 1474 GD.getMultiVersionIndex(), Out); 1475 break; 1476 case MultiVersionKind::Target: 1477 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1478 break; 1479 case MultiVersionKind::TargetVersion: 1480 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1481 break; 1482 case MultiVersionKind::TargetClones: 1483 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1484 GD.getMultiVersionIndex(), Out); 1485 break; 1486 case MultiVersionKind::None: 1487 llvm_unreachable("None multiversion type isn't valid here"); 1488 } 1489 } 1490 1491 // Make unique name for device side static file-scope variable for HIP. 1492 if (CGM.getContext().shouldExternalize(ND) && 1493 CGM.getLangOpts().GPURelocatableDeviceCode && 1494 CGM.getLangOpts().CUDAIsDevice) 1495 CGM.printPostfixForExternalizedDecl(Out, ND); 1496 1497 return std::string(Out.str()); 1498 } 1499 1500 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1501 const FunctionDecl *FD, 1502 StringRef &CurName) { 1503 if (!FD->isMultiVersion()) 1504 return; 1505 1506 // Get the name of what this would be without the 'target' attribute. This 1507 // allows us to lookup the version that was emitted when this wasn't a 1508 // multiversion function. 1509 std::string NonTargetName = 1510 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1511 GlobalDecl OtherGD; 1512 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1513 assert(OtherGD.getCanonicalDecl() 1514 .getDecl() 1515 ->getAsFunction() 1516 ->isMultiVersion() && 1517 "Other GD should now be a multiversioned function"); 1518 // OtherFD is the version of this function that was mangled BEFORE 1519 // becoming a MultiVersion function. It potentially needs to be updated. 1520 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1521 .getDecl() 1522 ->getAsFunction() 1523 ->getMostRecentDecl(); 1524 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1525 // This is so that if the initial version was already the 'default' 1526 // version, we don't try to update it. 1527 if (OtherName != NonTargetName) { 1528 // Remove instead of erase, since others may have stored the StringRef 1529 // to this. 1530 const auto ExistingRecord = Manglings.find(NonTargetName); 1531 if (ExistingRecord != std::end(Manglings)) 1532 Manglings.remove(&(*ExistingRecord)); 1533 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1534 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1535 Result.first->first(); 1536 // If this is the current decl is being created, make sure we update the name. 1537 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1538 CurName = OtherNameRef; 1539 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1540 Entry->setName(OtherName); 1541 } 1542 } 1543 } 1544 1545 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1546 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1547 1548 // Some ABIs don't have constructor variants. Make sure that base and 1549 // complete constructors get mangled the same. 1550 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1551 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1552 CXXCtorType OrigCtorType = GD.getCtorType(); 1553 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1554 if (OrigCtorType == Ctor_Base) 1555 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1556 } 1557 } 1558 1559 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1560 // static device variable depends on whether the variable is referenced by 1561 // a host or device host function. Therefore the mangled name cannot be 1562 // cached. 1563 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1564 auto FoundName = MangledDeclNames.find(CanonicalGD); 1565 if (FoundName != MangledDeclNames.end()) 1566 return FoundName->second; 1567 } 1568 1569 // Keep the first result in the case of a mangling collision. 1570 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1571 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1572 1573 // Ensure either we have different ABIs between host and device compilations, 1574 // says host compilation following MSVC ABI but device compilation follows 1575 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1576 // mangling should be the same after name stubbing. The later checking is 1577 // very important as the device kernel name being mangled in host-compilation 1578 // is used to resolve the device binaries to be executed. Inconsistent naming 1579 // result in undefined behavior. Even though we cannot check that naming 1580 // directly between host- and device-compilations, the host- and 1581 // device-mangling in host compilation could help catching certain ones. 1582 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1583 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1584 (getContext().getAuxTargetInfo() && 1585 (getContext().getAuxTargetInfo()->getCXXABI() != 1586 getContext().getTargetInfo().getCXXABI())) || 1587 getCUDARuntime().getDeviceSideName(ND) == 1588 getMangledNameImpl( 1589 *this, 1590 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1591 ND)); 1592 1593 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1594 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1595 } 1596 1597 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1598 const BlockDecl *BD) { 1599 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1600 const Decl *D = GD.getDecl(); 1601 1602 SmallString<256> Buffer; 1603 llvm::raw_svector_ostream Out(Buffer); 1604 if (!D) 1605 MangleCtx.mangleGlobalBlock(BD, 1606 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1607 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1608 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1609 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1610 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1611 else 1612 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1613 1614 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1615 return Result.first->first(); 1616 } 1617 1618 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 1619 auto it = MangledDeclNames.begin(); 1620 while (it != MangledDeclNames.end()) { 1621 if (it->second == Name) 1622 return it->first; 1623 it++; 1624 } 1625 return GlobalDecl(); 1626 } 1627 1628 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1629 return getModule().getNamedValue(Name); 1630 } 1631 1632 /// AddGlobalCtor - Add a function to the list that will be called before 1633 /// main() runs. 1634 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1635 unsigned LexOrder, 1636 llvm::Constant *AssociatedData) { 1637 // FIXME: Type coercion of void()* types. 1638 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 1639 } 1640 1641 /// AddGlobalDtor - Add a function to the list that will be called 1642 /// when the module is unloaded. 1643 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 1644 bool IsDtorAttrFunc) { 1645 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 1646 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 1647 DtorsUsingAtExit[Priority].push_back(Dtor); 1648 return; 1649 } 1650 1651 // FIXME: Type coercion of void()* types. 1652 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 1653 } 1654 1655 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1656 if (Fns.empty()) return; 1657 1658 // Ctor function type is void()*. 1659 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1660 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 1661 TheModule.getDataLayout().getProgramAddressSpace()); 1662 1663 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1664 llvm::StructType *CtorStructTy = llvm::StructType::get( 1665 Int32Ty, CtorPFTy, VoidPtrTy); 1666 1667 // Construct the constructor and destructor arrays. 1668 ConstantInitBuilder builder(*this); 1669 auto ctors = builder.beginArray(CtorStructTy); 1670 for (const auto &I : Fns) { 1671 auto ctor = ctors.beginStruct(CtorStructTy); 1672 ctor.addInt(Int32Ty, I.Priority); 1673 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1674 if (I.AssociatedData) 1675 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1676 else 1677 ctor.addNullPointer(VoidPtrTy); 1678 ctor.finishAndAddTo(ctors); 1679 } 1680 1681 auto list = 1682 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1683 /*constant*/ false, 1684 llvm::GlobalValue::AppendingLinkage); 1685 1686 // The LTO linker doesn't seem to like it when we set an alignment 1687 // on appending variables. Take it off as a workaround. 1688 list->setAlignment(std::nullopt); 1689 1690 Fns.clear(); 1691 } 1692 1693 llvm::GlobalValue::LinkageTypes 1694 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1695 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1696 1697 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1698 1699 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1700 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1701 1702 if (isa<CXXConstructorDecl>(D) && 1703 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1704 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1705 // Our approach to inheriting constructors is fundamentally different from 1706 // that used by the MS ABI, so keep our inheriting constructor thunks 1707 // internal rather than trying to pick an unambiguous mangling for them. 1708 return llvm::GlobalValue::InternalLinkage; 1709 } 1710 1711 return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false); 1712 } 1713 1714 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1715 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1716 if (!MDS) return nullptr; 1717 1718 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1719 } 1720 1721 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 1722 if (auto *FnType = T->getAs<FunctionProtoType>()) 1723 T = getContext().getFunctionType( 1724 FnType->getReturnType(), FnType->getParamTypes(), 1725 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 1726 1727 std::string OutName; 1728 llvm::raw_string_ostream Out(OutName); 1729 getCXXABI().getMangleContext().mangleTypeName(T, Out); 1730 1731 return llvm::ConstantInt::get(Int32Ty, 1732 static_cast<uint32_t>(llvm::xxHash64(OutName))); 1733 } 1734 1735 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 1736 const CGFunctionInfo &Info, 1737 llvm::Function *F, bool IsThunk) { 1738 unsigned CallingConv; 1739 llvm::AttributeList PAL; 1740 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 1741 /*AttrOnCallSite=*/false, IsThunk); 1742 F->setAttributes(PAL); 1743 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1744 } 1745 1746 static void removeImageAccessQualifier(std::string& TyName) { 1747 std::string ReadOnlyQual("__read_only"); 1748 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 1749 if (ReadOnlyPos != std::string::npos) 1750 // "+ 1" for the space after access qualifier. 1751 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 1752 else { 1753 std::string WriteOnlyQual("__write_only"); 1754 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 1755 if (WriteOnlyPos != std::string::npos) 1756 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 1757 else { 1758 std::string ReadWriteQual("__read_write"); 1759 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 1760 if (ReadWritePos != std::string::npos) 1761 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 1762 } 1763 } 1764 } 1765 1766 // Returns the address space id that should be produced to the 1767 // kernel_arg_addr_space metadata. This is always fixed to the ids 1768 // as specified in the SPIR 2.0 specification in order to differentiate 1769 // for example in clGetKernelArgInfo() implementation between the address 1770 // spaces with targets without unique mapping to the OpenCL address spaces 1771 // (basically all single AS CPUs). 1772 static unsigned ArgInfoAddressSpace(LangAS AS) { 1773 switch (AS) { 1774 case LangAS::opencl_global: 1775 return 1; 1776 case LangAS::opencl_constant: 1777 return 2; 1778 case LangAS::opencl_local: 1779 return 3; 1780 case LangAS::opencl_generic: 1781 return 4; // Not in SPIR 2.0 specs. 1782 case LangAS::opencl_global_device: 1783 return 5; 1784 case LangAS::opencl_global_host: 1785 return 6; 1786 default: 1787 return 0; // Assume private. 1788 } 1789 } 1790 1791 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 1792 const FunctionDecl *FD, 1793 CodeGenFunction *CGF) { 1794 assert(((FD && CGF) || (!FD && !CGF)) && 1795 "Incorrect use - FD and CGF should either be both null or not!"); 1796 // Create MDNodes that represent the kernel arg metadata. 1797 // Each MDNode is a list in the form of "key", N number of values which is 1798 // the same number of values as their are kernel arguments. 1799 1800 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 1801 1802 // MDNode for the kernel argument address space qualifiers. 1803 SmallVector<llvm::Metadata *, 8> addressQuals; 1804 1805 // MDNode for the kernel argument access qualifiers (images only). 1806 SmallVector<llvm::Metadata *, 8> accessQuals; 1807 1808 // MDNode for the kernel argument type names. 1809 SmallVector<llvm::Metadata *, 8> argTypeNames; 1810 1811 // MDNode for the kernel argument base type names. 1812 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 1813 1814 // MDNode for the kernel argument type qualifiers. 1815 SmallVector<llvm::Metadata *, 8> argTypeQuals; 1816 1817 // MDNode for the kernel argument names. 1818 SmallVector<llvm::Metadata *, 8> argNames; 1819 1820 if (FD && CGF) 1821 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 1822 const ParmVarDecl *parm = FD->getParamDecl(i); 1823 // Get argument name. 1824 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 1825 1826 if (!getLangOpts().OpenCL) 1827 continue; 1828 QualType ty = parm->getType(); 1829 std::string typeQuals; 1830 1831 // Get image and pipe access qualifier: 1832 if (ty->isImageType() || ty->isPipeType()) { 1833 const Decl *PDecl = parm; 1834 if (const auto *TD = ty->getAs<TypedefType>()) 1835 PDecl = TD->getDecl(); 1836 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 1837 if (A && A->isWriteOnly()) 1838 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 1839 else if (A && A->isReadWrite()) 1840 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 1841 else 1842 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 1843 } else 1844 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 1845 1846 auto getTypeSpelling = [&](QualType Ty) { 1847 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 1848 1849 if (Ty.isCanonical()) { 1850 StringRef typeNameRef = typeName; 1851 // Turn "unsigned type" to "utype" 1852 if (typeNameRef.consume_front("unsigned ")) 1853 return std::string("u") + typeNameRef.str(); 1854 if (typeNameRef.consume_front("signed ")) 1855 return typeNameRef.str(); 1856 } 1857 1858 return typeName; 1859 }; 1860 1861 if (ty->isPointerType()) { 1862 QualType pointeeTy = ty->getPointeeType(); 1863 1864 // Get address qualifier. 1865 addressQuals.push_back( 1866 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 1867 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 1868 1869 // Get argument type name. 1870 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 1871 std::string baseTypeName = 1872 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 1873 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1874 argBaseTypeNames.push_back( 1875 llvm::MDString::get(VMContext, baseTypeName)); 1876 1877 // Get argument type qualifiers: 1878 if (ty.isRestrictQualified()) 1879 typeQuals = "restrict"; 1880 if (pointeeTy.isConstQualified() || 1881 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 1882 typeQuals += typeQuals.empty() ? "const" : " const"; 1883 if (pointeeTy.isVolatileQualified()) 1884 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 1885 } else { 1886 uint32_t AddrSpc = 0; 1887 bool isPipe = ty->isPipeType(); 1888 if (ty->isImageType() || isPipe) 1889 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 1890 1891 addressQuals.push_back( 1892 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 1893 1894 // Get argument type name. 1895 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 1896 std::string typeName = getTypeSpelling(ty); 1897 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 1898 1899 // Remove access qualifiers on images 1900 // (as they are inseparable from type in clang implementation, 1901 // but OpenCL spec provides a special query to get access qualifier 1902 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 1903 if (ty->isImageType()) { 1904 removeImageAccessQualifier(typeName); 1905 removeImageAccessQualifier(baseTypeName); 1906 } 1907 1908 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 1909 argBaseTypeNames.push_back( 1910 llvm::MDString::get(VMContext, baseTypeName)); 1911 1912 if (isPipe) 1913 typeQuals = "pipe"; 1914 } 1915 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 1916 } 1917 1918 if (getLangOpts().OpenCL) { 1919 Fn->setMetadata("kernel_arg_addr_space", 1920 llvm::MDNode::get(VMContext, addressQuals)); 1921 Fn->setMetadata("kernel_arg_access_qual", 1922 llvm::MDNode::get(VMContext, accessQuals)); 1923 Fn->setMetadata("kernel_arg_type", 1924 llvm::MDNode::get(VMContext, argTypeNames)); 1925 Fn->setMetadata("kernel_arg_base_type", 1926 llvm::MDNode::get(VMContext, argBaseTypeNames)); 1927 Fn->setMetadata("kernel_arg_type_qual", 1928 llvm::MDNode::get(VMContext, argTypeQuals)); 1929 } 1930 if (getCodeGenOpts().EmitOpenCLArgMetadata || 1931 getCodeGenOpts().HIPSaveKernelArgName) 1932 Fn->setMetadata("kernel_arg_name", 1933 llvm::MDNode::get(VMContext, argNames)); 1934 } 1935 1936 /// Determines whether the language options require us to model 1937 /// unwind exceptions. We treat -fexceptions as mandating this 1938 /// except under the fragile ObjC ABI with only ObjC exceptions 1939 /// enabled. This means, for example, that C with -fexceptions 1940 /// enables this. 1941 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1942 // If exceptions are completely disabled, obviously this is false. 1943 if (!LangOpts.Exceptions) return false; 1944 1945 // If C++ exceptions are enabled, this is true. 1946 if (LangOpts.CXXExceptions) return true; 1947 1948 // If ObjC exceptions are enabled, this depends on the ABI. 1949 if (LangOpts.ObjCExceptions) { 1950 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1951 } 1952 1953 return true; 1954 } 1955 1956 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1957 const CXXMethodDecl *MD) { 1958 // Check that the type metadata can ever actually be used by a call. 1959 if (!CGM.getCodeGenOpts().LTOUnit || 1960 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1961 return false; 1962 1963 // Only functions whose address can be taken with a member function pointer 1964 // need this sort of type metadata. 1965 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1966 !isa<CXXDestructorDecl>(MD); 1967 } 1968 1969 std::vector<const CXXRecordDecl *> 1970 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1971 llvm::SetVector<const CXXRecordDecl *> MostBases; 1972 1973 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1974 CollectMostBases = [&](const CXXRecordDecl *RD) { 1975 if (RD->getNumBases() == 0) 1976 MostBases.insert(RD); 1977 for (const CXXBaseSpecifier &B : RD->bases()) 1978 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1979 }; 1980 CollectMostBases(RD); 1981 return MostBases.takeVector(); 1982 } 1983 1984 llvm::GlobalVariable * 1985 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) { 1986 auto It = RTTIProxyMap.find(Addr); 1987 if (It != RTTIProxyMap.end()) 1988 return It->second; 1989 1990 auto *FTRTTIProxy = new llvm::GlobalVariable( 1991 TheModule, Addr->getType(), 1992 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr, 1993 "__llvm_rtti_proxy"); 1994 FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1995 1996 RTTIProxyMap[Addr] = FTRTTIProxy; 1997 return FTRTTIProxy; 1998 } 1999 2000 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2001 llvm::Function *F) { 2002 llvm::AttrBuilder B(F->getContext()); 2003 2004 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2005 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2006 2007 if (CodeGenOpts.StackClashProtector) 2008 B.addAttribute("probe-stack", "inline-asm"); 2009 2010 if (!hasUnwindExceptions(LangOpts)) 2011 B.addAttribute(llvm::Attribute::NoUnwind); 2012 2013 if (D && D->hasAttr<NoStackProtectorAttr>()) 2014 ; // Do nothing. 2015 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2016 LangOpts.getStackProtector() == LangOptions::SSPOn) 2017 B.addAttribute(llvm::Attribute::StackProtectStrong); 2018 else if (LangOpts.getStackProtector() == LangOptions::SSPOn) 2019 B.addAttribute(llvm::Attribute::StackProtect); 2020 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 2021 B.addAttribute(llvm::Attribute::StackProtectStrong); 2022 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 2023 B.addAttribute(llvm::Attribute::StackProtectReq); 2024 2025 if (!D) { 2026 // If we don't have a declaration to control inlining, the function isn't 2027 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2028 // disabled, mark the function as noinline. 2029 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2030 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2031 B.addAttribute(llvm::Attribute::NoInline); 2032 2033 F->addFnAttrs(B); 2034 return; 2035 } 2036 2037 // Track whether we need to add the optnone LLVM attribute, 2038 // starting with the default for this optimization level. 2039 bool ShouldAddOptNone = 2040 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2041 // We can't add optnone in the following cases, it won't pass the verifier. 2042 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2043 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2044 2045 // Add optnone, but do so only if the function isn't always_inline. 2046 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2047 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2048 B.addAttribute(llvm::Attribute::OptimizeNone); 2049 2050 // OptimizeNone implies noinline; we should not be inlining such functions. 2051 B.addAttribute(llvm::Attribute::NoInline); 2052 2053 // We still need to handle naked functions even though optnone subsumes 2054 // much of their semantics. 2055 if (D->hasAttr<NakedAttr>()) 2056 B.addAttribute(llvm::Attribute::Naked); 2057 2058 // OptimizeNone wins over OptimizeForSize and MinSize. 2059 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2060 F->removeFnAttr(llvm::Attribute::MinSize); 2061 } else if (D->hasAttr<NakedAttr>()) { 2062 // Naked implies noinline: we should not be inlining such functions. 2063 B.addAttribute(llvm::Attribute::Naked); 2064 B.addAttribute(llvm::Attribute::NoInline); 2065 } else if (D->hasAttr<NoDuplicateAttr>()) { 2066 B.addAttribute(llvm::Attribute::NoDuplicate); 2067 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2068 // Add noinline if the function isn't always_inline. 2069 B.addAttribute(llvm::Attribute::NoInline); 2070 } else if (D->hasAttr<AlwaysInlineAttr>() && 2071 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2072 // (noinline wins over always_inline, and we can't specify both in IR) 2073 B.addAttribute(llvm::Attribute::AlwaysInline); 2074 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2075 // If we're not inlining, then force everything that isn't always_inline to 2076 // carry an explicit noinline attribute. 2077 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2078 B.addAttribute(llvm::Attribute::NoInline); 2079 } else { 2080 // Otherwise, propagate the inline hint attribute and potentially use its 2081 // absence to mark things as noinline. 2082 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2083 // Search function and template pattern redeclarations for inline. 2084 auto CheckForInline = [](const FunctionDecl *FD) { 2085 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2086 return Redecl->isInlineSpecified(); 2087 }; 2088 if (any_of(FD->redecls(), CheckRedeclForInline)) 2089 return true; 2090 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2091 if (!Pattern) 2092 return false; 2093 return any_of(Pattern->redecls(), CheckRedeclForInline); 2094 }; 2095 if (CheckForInline(FD)) { 2096 B.addAttribute(llvm::Attribute::InlineHint); 2097 } else if (CodeGenOpts.getInlining() == 2098 CodeGenOptions::OnlyHintInlining && 2099 !FD->isInlined() && 2100 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2101 B.addAttribute(llvm::Attribute::NoInline); 2102 } 2103 } 2104 } 2105 2106 // Add other optimization related attributes if we are optimizing this 2107 // function. 2108 if (!D->hasAttr<OptimizeNoneAttr>()) { 2109 if (D->hasAttr<ColdAttr>()) { 2110 if (!ShouldAddOptNone) 2111 B.addAttribute(llvm::Attribute::OptimizeForSize); 2112 B.addAttribute(llvm::Attribute::Cold); 2113 } 2114 if (D->hasAttr<HotAttr>()) 2115 B.addAttribute(llvm::Attribute::Hot); 2116 if (D->hasAttr<MinSizeAttr>()) 2117 B.addAttribute(llvm::Attribute::MinSize); 2118 } 2119 2120 F->addFnAttrs(B); 2121 2122 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2123 if (alignment) 2124 F->setAlignment(llvm::Align(alignment)); 2125 2126 if (!D->hasAttr<AlignedAttr>()) 2127 if (LangOpts.FunctionAlignment) 2128 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2129 2130 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2131 // reserve a bit for differentiating between virtual and non-virtual member 2132 // functions. If the current target's C++ ABI requires this and this is a 2133 // member function, set its alignment accordingly. 2134 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2135 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 2136 F->setAlignment(llvm::Align(2)); 2137 } 2138 2139 // In the cross-dso CFI mode with canonical jump tables, we want !type 2140 // attributes on definitions only. 2141 if (CodeGenOpts.SanitizeCfiCrossDso && 2142 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2143 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2144 // Skip available_externally functions. They won't be codegen'ed in the 2145 // current module anyway. 2146 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2147 CreateFunctionTypeMetadataForIcall(FD, F); 2148 } 2149 } 2150 2151 // Emit type metadata on member functions for member function pointer checks. 2152 // These are only ever necessary on definitions; we're guaranteed that the 2153 // definition will be present in the LTO unit as a result of LTO visibility. 2154 auto *MD = dyn_cast<CXXMethodDecl>(D); 2155 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2156 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2157 llvm::Metadata *Id = 2158 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2159 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2160 F->addTypeMetadata(0, Id); 2161 } 2162 } 2163 } 2164 2165 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D, 2166 llvm::Function *F) { 2167 if (D->hasAttr<StrictFPAttr>()) { 2168 llvm::AttrBuilder FuncAttrs(F->getContext()); 2169 FuncAttrs.addAttribute("strictfp"); 2170 F->addFnAttrs(FuncAttrs); 2171 } 2172 } 2173 2174 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2175 const Decl *D = GD.getDecl(); 2176 if (isa_and_nonnull<NamedDecl>(D)) 2177 setGVProperties(GV, GD); 2178 else 2179 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2180 2181 if (D && D->hasAttr<UsedAttr>()) 2182 addUsedOrCompilerUsedGlobal(GV); 2183 2184 if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) { 2185 const auto *VD = cast<VarDecl>(D); 2186 if (VD->getType().isConstQualified() && 2187 VD->getStorageDuration() == SD_Static) 2188 addUsedOrCompilerUsedGlobal(GV); 2189 } 2190 } 2191 2192 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2193 llvm::AttrBuilder &Attrs) { 2194 // Add target-cpu and target-features attributes to functions. If 2195 // we have a decl for the function and it has a target attribute then 2196 // parse that and add it to the feature set. 2197 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2198 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2199 std::vector<std::string> Features; 2200 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2201 FD = FD ? FD->getMostRecentDecl() : FD; 2202 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2203 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2204 assert((!TD || !TV) && "both target_version and target specified"); 2205 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2206 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2207 bool AddedAttr = false; 2208 if (TD || TV || SD || TC) { 2209 llvm::StringMap<bool> FeatureMap; 2210 getContext().getFunctionFeatureMap(FeatureMap, GD); 2211 2212 // Produce the canonical string for this set of features. 2213 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2214 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2215 2216 // Now add the target-cpu and target-features to the function. 2217 // While we populated the feature map above, we still need to 2218 // get and parse the target attribute so we can get the cpu for 2219 // the function. 2220 if (TD) { 2221 ParsedTargetAttr ParsedAttr = 2222 Target.parseTargetAttr(TD->getFeaturesStr()); 2223 if (!ParsedAttr.CPU.empty() && 2224 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2225 TargetCPU = ParsedAttr.CPU; 2226 TuneCPU = ""; // Clear the tune CPU. 2227 } 2228 if (!ParsedAttr.Tune.empty() && 2229 getTarget().isValidCPUName(ParsedAttr.Tune)) 2230 TuneCPU = ParsedAttr.Tune; 2231 } 2232 2233 if (SD) { 2234 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2235 // favor this processor. 2236 TuneCPU = getTarget().getCPUSpecificTuneName( 2237 SD->getCPUName(GD.getMultiVersionIndex())->getName()); 2238 } 2239 } else { 2240 // Otherwise just add the existing target cpu and target features to the 2241 // function. 2242 Features = getTarget().getTargetOpts().Features; 2243 } 2244 2245 if (!TargetCPU.empty()) { 2246 Attrs.addAttribute("target-cpu", TargetCPU); 2247 AddedAttr = true; 2248 } 2249 if (!TuneCPU.empty()) { 2250 Attrs.addAttribute("tune-cpu", TuneCPU); 2251 AddedAttr = true; 2252 } 2253 if (!Features.empty()) { 2254 llvm::sort(Features); 2255 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2256 AddedAttr = true; 2257 } 2258 2259 return AddedAttr; 2260 } 2261 2262 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2263 llvm::GlobalObject *GO) { 2264 const Decl *D = GD.getDecl(); 2265 SetCommonAttributes(GD, GO); 2266 2267 if (D) { 2268 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2269 if (D->hasAttr<RetainAttr>()) 2270 addUsedGlobal(GV); 2271 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2272 GV->addAttribute("bss-section", SA->getName()); 2273 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2274 GV->addAttribute("data-section", SA->getName()); 2275 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2276 GV->addAttribute("rodata-section", SA->getName()); 2277 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2278 GV->addAttribute("relro-section", SA->getName()); 2279 } 2280 2281 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2282 if (D->hasAttr<RetainAttr>()) 2283 addUsedGlobal(F); 2284 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2285 if (!D->getAttr<SectionAttr>()) 2286 F->addFnAttr("implicit-section-name", SA->getName()); 2287 2288 llvm::AttrBuilder Attrs(F->getContext()); 2289 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2290 // We know that GetCPUAndFeaturesAttributes will always have the 2291 // newest set, since it has the newest possible FunctionDecl, so the 2292 // new ones should replace the old. 2293 llvm::AttributeMask RemoveAttrs; 2294 RemoveAttrs.addAttribute("target-cpu"); 2295 RemoveAttrs.addAttribute("target-features"); 2296 RemoveAttrs.addAttribute("tune-cpu"); 2297 F->removeFnAttrs(RemoveAttrs); 2298 F->addFnAttrs(Attrs); 2299 } 2300 } 2301 2302 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2303 GO->setSection(CSA->getName()); 2304 else if (const auto *SA = D->getAttr<SectionAttr>()) 2305 GO->setSection(SA->getName()); 2306 } 2307 2308 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2309 } 2310 2311 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2312 llvm::Function *F, 2313 const CGFunctionInfo &FI) { 2314 const Decl *D = GD.getDecl(); 2315 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2316 SetLLVMFunctionAttributesForDefinition(D, F); 2317 2318 F->setLinkage(llvm::Function::InternalLinkage); 2319 2320 setNonAliasAttributes(GD, F); 2321 } 2322 2323 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2324 // Set linkage and visibility in case we never see a definition. 2325 LinkageInfo LV = ND->getLinkageAndVisibility(); 2326 // Don't set internal linkage on declarations. 2327 // "extern_weak" is overloaded in LLVM; we probably should have 2328 // separate linkage types for this. 2329 if (isExternallyVisible(LV.getLinkage()) && 2330 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2331 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2332 } 2333 2334 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2335 llvm::Function *F) { 2336 // Only if we are checking indirect calls. 2337 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2338 return; 2339 2340 // Non-static class methods are handled via vtable or member function pointer 2341 // checks elsewhere. 2342 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2343 return; 2344 2345 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2346 F->addTypeMetadata(0, MD); 2347 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2348 2349 // Emit a hash-based bit set entry for cross-DSO calls. 2350 if (CodeGenOpts.SanitizeCfiCrossDso) 2351 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2352 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2353 } 2354 2355 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2356 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2357 return; 2358 2359 llvm::LLVMContext &Ctx = F->getContext(); 2360 llvm::MDBuilder MDB(Ctx); 2361 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2362 llvm::MDNode::get( 2363 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2364 } 2365 2366 static bool allowKCFIIdentifier(StringRef Name) { 2367 // KCFI type identifier constants are only necessary for external assembly 2368 // functions, which means it's safe to skip unusual names. Subset of 2369 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2370 return llvm::all_of(Name, [](const char &C) { 2371 return llvm::isAlnum(C) || C == '_' || C == '.'; 2372 }); 2373 } 2374 2375 void CodeGenModule::finalizeKCFITypes() { 2376 llvm::Module &M = getModule(); 2377 for (auto &F : M.functions()) { 2378 // Remove KCFI type metadata from non-address-taken local functions. 2379 bool AddressTaken = F.hasAddressTaken(); 2380 if (!AddressTaken && F.hasLocalLinkage()) 2381 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2382 2383 // Generate a constant with the expected KCFI type identifier for all 2384 // address-taken function declarations to support annotating indirectly 2385 // called assembly functions. 2386 if (!AddressTaken || !F.isDeclaration()) 2387 continue; 2388 2389 const llvm::ConstantInt *Type; 2390 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2391 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2392 else 2393 continue; 2394 2395 StringRef Name = F.getName(); 2396 if (!allowKCFIIdentifier(Name)) 2397 continue; 2398 2399 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2400 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2401 .str(); 2402 M.appendModuleInlineAsm(Asm); 2403 } 2404 } 2405 2406 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2407 bool IsIncompleteFunction, 2408 bool IsThunk) { 2409 2410 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2411 // If this is an intrinsic function, set the function's attributes 2412 // to the intrinsic's attributes. 2413 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2414 return; 2415 } 2416 2417 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2418 2419 if (!IsIncompleteFunction) 2420 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2421 IsThunk); 2422 2423 // Add the Returned attribute for "this", except for iOS 5 and earlier 2424 // where substantial code, including the libstdc++ dylib, was compiled with 2425 // GCC and does not actually return "this". 2426 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2427 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2428 assert(!F->arg_empty() && 2429 F->arg_begin()->getType() 2430 ->canLosslesslyBitCastTo(F->getReturnType()) && 2431 "unexpected this return"); 2432 F->addParamAttr(0, llvm::Attribute::Returned); 2433 } 2434 2435 // Only a few attributes are set on declarations; these may later be 2436 // overridden by a definition. 2437 2438 setLinkageForGV(F, FD); 2439 setGVProperties(F, FD); 2440 2441 // Setup target-specific attributes. 2442 if (!IsIncompleteFunction && F->isDeclaration()) 2443 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2444 2445 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2446 F->setSection(CSA->getName()); 2447 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2448 F->setSection(SA->getName()); 2449 2450 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2451 if (EA->isError()) 2452 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2453 else if (EA->isWarning()) 2454 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2455 } 2456 2457 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2458 if (FD->isInlineBuiltinDeclaration()) { 2459 const FunctionDecl *FDBody; 2460 bool HasBody = FD->hasBody(FDBody); 2461 (void)HasBody; 2462 assert(HasBody && "Inline builtin declarations should always have an " 2463 "available body!"); 2464 if (shouldEmitFunction(FDBody)) 2465 F->addFnAttr(llvm::Attribute::NoBuiltin); 2466 } 2467 2468 if (FD->isReplaceableGlobalAllocationFunction()) { 2469 // A replaceable global allocation function does not act like a builtin by 2470 // default, only if it is invoked by a new-expression or delete-expression. 2471 F->addFnAttr(llvm::Attribute::NoBuiltin); 2472 } 2473 2474 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2475 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2476 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2477 if (MD->isVirtual()) 2478 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2479 2480 // Don't emit entries for function declarations in the cross-DSO mode. This 2481 // is handled with better precision by the receiving DSO. But if jump tables 2482 // are non-canonical then we need type metadata in order to produce the local 2483 // jump table. 2484 if (!CodeGenOpts.SanitizeCfiCrossDso || 2485 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2486 CreateFunctionTypeMetadataForIcall(FD, F); 2487 2488 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2489 setKCFIType(FD, F); 2490 2491 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2492 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2493 2494 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2495 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2496 2497 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2498 // Annotate the callback behavior as metadata: 2499 // - The callback callee (as argument number). 2500 // - The callback payloads (as argument numbers). 2501 llvm::LLVMContext &Ctx = F->getContext(); 2502 llvm::MDBuilder MDB(Ctx); 2503 2504 // The payload indices are all but the first one in the encoding. The first 2505 // identifies the callback callee. 2506 int CalleeIdx = *CB->encoding_begin(); 2507 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2508 F->addMetadata(llvm::LLVMContext::MD_callback, 2509 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2510 CalleeIdx, PayloadIndices, 2511 /* VarArgsArePassed */ false)})); 2512 } 2513 } 2514 2515 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2516 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2517 "Only globals with definition can force usage."); 2518 LLVMUsed.emplace_back(GV); 2519 } 2520 2521 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2522 assert(!GV->isDeclaration() && 2523 "Only globals with definition can force usage."); 2524 LLVMCompilerUsed.emplace_back(GV); 2525 } 2526 2527 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2528 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2529 "Only globals with definition can force usage."); 2530 if (getTriple().isOSBinFormatELF()) 2531 LLVMCompilerUsed.emplace_back(GV); 2532 else 2533 LLVMUsed.emplace_back(GV); 2534 } 2535 2536 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2537 std::vector<llvm::WeakTrackingVH> &List) { 2538 // Don't create llvm.used if there is no need. 2539 if (List.empty()) 2540 return; 2541 2542 // Convert List to what ConstantArray needs. 2543 SmallVector<llvm::Constant*, 8> UsedArray; 2544 UsedArray.resize(List.size()); 2545 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2546 UsedArray[i] = 2547 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2548 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2549 } 2550 2551 if (UsedArray.empty()) 2552 return; 2553 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2554 2555 auto *GV = new llvm::GlobalVariable( 2556 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2557 llvm::ConstantArray::get(ATy, UsedArray), Name); 2558 2559 GV->setSection("llvm.metadata"); 2560 } 2561 2562 void CodeGenModule::emitLLVMUsed() { 2563 emitUsed(*this, "llvm.used", LLVMUsed); 2564 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2565 } 2566 2567 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2568 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2569 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2570 } 2571 2572 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2573 llvm::SmallString<32> Opt; 2574 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2575 if (Opt.empty()) 2576 return; 2577 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2578 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2579 } 2580 2581 void CodeGenModule::AddDependentLib(StringRef Lib) { 2582 auto &C = getLLVMContext(); 2583 if (getTarget().getTriple().isOSBinFormatELF()) { 2584 ELFDependentLibraries.push_back( 2585 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2586 return; 2587 } 2588 2589 llvm::SmallString<24> Opt; 2590 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2591 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2592 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2593 } 2594 2595 /// Add link options implied by the given module, including modules 2596 /// it depends on, using a postorder walk. 2597 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2598 SmallVectorImpl<llvm::MDNode *> &Metadata, 2599 llvm::SmallPtrSet<Module *, 16> &Visited) { 2600 // Import this module's parent. 2601 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2602 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2603 } 2604 2605 // Import this module's dependencies. 2606 for (Module *Import : llvm::reverse(Mod->Imports)) { 2607 if (Visited.insert(Import).second) 2608 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2609 } 2610 2611 // Add linker options to link against the libraries/frameworks 2612 // described by this module. 2613 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2614 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2615 2616 // For modules that use export_as for linking, use that module 2617 // name instead. 2618 if (Mod->UseExportAsModuleLinkName) 2619 return; 2620 2621 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2622 // Link against a framework. Frameworks are currently Darwin only, so we 2623 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2624 if (LL.IsFramework) { 2625 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2626 llvm::MDString::get(Context, LL.Library)}; 2627 2628 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2629 continue; 2630 } 2631 2632 // Link against a library. 2633 if (IsELF) { 2634 llvm::Metadata *Args[2] = { 2635 llvm::MDString::get(Context, "lib"), 2636 llvm::MDString::get(Context, LL.Library), 2637 }; 2638 Metadata.push_back(llvm::MDNode::get(Context, Args)); 2639 } else { 2640 llvm::SmallString<24> Opt; 2641 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 2642 auto *OptString = llvm::MDString::get(Context, Opt); 2643 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 2644 } 2645 } 2646 } 2647 2648 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 2649 // Emit the initializers in the order that sub-modules appear in the 2650 // source, first Global Module Fragments, if present. 2651 if (auto GMF = Primary->getGlobalModuleFragment()) { 2652 for (Decl *D : getContext().getModuleInitializers(GMF)) { 2653 if (isa<ImportDecl>(D)) 2654 continue; 2655 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 2656 EmitTopLevelDecl(D); 2657 } 2658 } 2659 // Second any associated with the module, itself. 2660 for (Decl *D : getContext().getModuleInitializers(Primary)) { 2661 // Skip import decls, the inits for those are called explicitly. 2662 if (isa<ImportDecl>(D)) 2663 continue; 2664 EmitTopLevelDecl(D); 2665 } 2666 // Third any associated with the Privat eMOdule Fragment, if present. 2667 if (auto PMF = Primary->getPrivateModuleFragment()) { 2668 for (Decl *D : getContext().getModuleInitializers(PMF)) { 2669 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 2670 EmitTopLevelDecl(D); 2671 } 2672 } 2673 } 2674 2675 void CodeGenModule::EmitModuleLinkOptions() { 2676 // Collect the set of all of the modules we want to visit to emit link 2677 // options, which is essentially the imported modules and all of their 2678 // non-explicit child modules. 2679 llvm::SetVector<clang::Module *> LinkModules; 2680 llvm::SmallPtrSet<clang::Module *, 16> Visited; 2681 SmallVector<clang::Module *, 16> Stack; 2682 2683 // Seed the stack with imported modules. 2684 for (Module *M : ImportedModules) { 2685 // Do not add any link flags when an implementation TU of a module imports 2686 // a header of that same module. 2687 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 2688 !getLangOpts().isCompilingModule()) 2689 continue; 2690 if (Visited.insert(M).second) 2691 Stack.push_back(M); 2692 } 2693 2694 // Find all of the modules to import, making a little effort to prune 2695 // non-leaf modules. 2696 while (!Stack.empty()) { 2697 clang::Module *Mod = Stack.pop_back_val(); 2698 2699 bool AnyChildren = false; 2700 2701 // Visit the submodules of this module. 2702 for (const auto &SM : Mod->submodules()) { 2703 // Skip explicit children; they need to be explicitly imported to be 2704 // linked against. 2705 if (SM->IsExplicit) 2706 continue; 2707 2708 if (Visited.insert(SM).second) { 2709 Stack.push_back(SM); 2710 AnyChildren = true; 2711 } 2712 } 2713 2714 // We didn't find any children, so add this module to the list of 2715 // modules to link against. 2716 if (!AnyChildren) { 2717 LinkModules.insert(Mod); 2718 } 2719 } 2720 2721 // Add link options for all of the imported modules in reverse topological 2722 // order. We don't do anything to try to order import link flags with respect 2723 // to linker options inserted by things like #pragma comment(). 2724 SmallVector<llvm::MDNode *, 16> MetadataArgs; 2725 Visited.clear(); 2726 for (Module *M : LinkModules) 2727 if (Visited.insert(M).second) 2728 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 2729 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 2730 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 2731 2732 // Add the linker options metadata flag. 2733 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 2734 for (auto *MD : LinkerOptionsMetadata) 2735 NMD->addOperand(MD); 2736 } 2737 2738 void CodeGenModule::EmitDeferred() { 2739 // Emit deferred declare target declarations. 2740 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 2741 getOpenMPRuntime().emitDeferredTargetDecls(); 2742 2743 // Emit code for any potentially referenced deferred decls. Since a 2744 // previously unused static decl may become used during the generation of code 2745 // for a static function, iterate until no changes are made. 2746 2747 if (!DeferredVTables.empty()) { 2748 EmitDeferredVTables(); 2749 2750 // Emitting a vtable doesn't directly cause more vtables to 2751 // become deferred, although it can cause functions to be 2752 // emitted that then need those vtables. 2753 assert(DeferredVTables.empty()); 2754 } 2755 2756 // Emit CUDA/HIP static device variables referenced by host code only. 2757 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 2758 // needed for further handling. 2759 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 2760 llvm::append_range(DeferredDeclsToEmit, 2761 getContext().CUDADeviceVarODRUsedByHost); 2762 2763 // Stop if we're out of both deferred vtables and deferred declarations. 2764 if (DeferredDeclsToEmit.empty()) 2765 return; 2766 2767 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 2768 // work, it will not interfere with this. 2769 std::vector<GlobalDecl> CurDeclsToEmit; 2770 CurDeclsToEmit.swap(DeferredDeclsToEmit); 2771 2772 for (GlobalDecl &D : CurDeclsToEmit) { 2773 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 2774 // to get GlobalValue with exactly the type we need, not something that 2775 // might had been created for another decl with the same mangled name but 2776 // different type. 2777 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 2778 GetAddrOfGlobal(D, ForDefinition)); 2779 2780 // In case of different address spaces, we may still get a cast, even with 2781 // IsForDefinition equal to true. Query mangled names table to get 2782 // GlobalValue. 2783 if (!GV) 2784 GV = GetGlobalValue(getMangledName(D)); 2785 2786 // Make sure GetGlobalValue returned non-null. 2787 assert(GV); 2788 2789 // Check to see if we've already emitted this. This is necessary 2790 // for a couple of reasons: first, decls can end up in the 2791 // deferred-decls queue multiple times, and second, decls can end 2792 // up with definitions in unusual ways (e.g. by an extern inline 2793 // function acquiring a strong function redefinition). Just 2794 // ignore these cases. 2795 if (!GV->isDeclaration()) 2796 continue; 2797 2798 // If this is OpenMP, check if it is legal to emit this global normally. 2799 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 2800 continue; 2801 2802 // Otherwise, emit the definition and move on to the next one. 2803 EmitGlobalDefinition(D, GV); 2804 2805 // If we found out that we need to emit more decls, do that recursively. 2806 // This has the advantage that the decls are emitted in a DFS and related 2807 // ones are close together, which is convenient for testing. 2808 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 2809 EmitDeferred(); 2810 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 2811 } 2812 } 2813 } 2814 2815 void CodeGenModule::EmitVTablesOpportunistically() { 2816 // Try to emit external vtables as available_externally if they have emitted 2817 // all inlined virtual functions. It runs after EmitDeferred() and therefore 2818 // is not allowed to create new references to things that need to be emitted 2819 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 2820 2821 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 2822 && "Only emit opportunistic vtables with optimizations"); 2823 2824 for (const CXXRecordDecl *RD : OpportunisticVTables) { 2825 assert(getVTables().isVTableExternal(RD) && 2826 "This queue should only contain external vtables"); 2827 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 2828 VTables.GenerateClassData(RD); 2829 } 2830 OpportunisticVTables.clear(); 2831 } 2832 2833 void CodeGenModule::EmitGlobalAnnotations() { 2834 if (Annotations.empty()) 2835 return; 2836 2837 // Create a new global variable for the ConstantStruct in the Module. 2838 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 2839 Annotations[0]->getType(), Annotations.size()), Annotations); 2840 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 2841 llvm::GlobalValue::AppendingLinkage, 2842 Array, "llvm.global.annotations"); 2843 gv->setSection(AnnotationSection); 2844 } 2845 2846 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 2847 llvm::Constant *&AStr = AnnotationStrings[Str]; 2848 if (AStr) 2849 return AStr; 2850 2851 // Not found yet, create a new global. 2852 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 2853 auto *gv = new llvm::GlobalVariable( 2854 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 2855 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 2856 ConstGlobalsPtrTy->getAddressSpace()); 2857 gv->setSection(AnnotationSection); 2858 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2859 AStr = gv; 2860 return gv; 2861 } 2862 2863 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 2864 SourceManager &SM = getContext().getSourceManager(); 2865 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 2866 if (PLoc.isValid()) 2867 return EmitAnnotationString(PLoc.getFilename()); 2868 return EmitAnnotationString(SM.getBufferName(Loc)); 2869 } 2870 2871 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 2872 SourceManager &SM = getContext().getSourceManager(); 2873 PresumedLoc PLoc = SM.getPresumedLoc(L); 2874 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 2875 SM.getExpansionLineNumber(L); 2876 return llvm::ConstantInt::get(Int32Ty, LineNo); 2877 } 2878 2879 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 2880 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 2881 if (Exprs.empty()) 2882 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 2883 2884 llvm::FoldingSetNodeID ID; 2885 for (Expr *E : Exprs) { 2886 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 2887 } 2888 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 2889 if (Lookup) 2890 return Lookup; 2891 2892 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 2893 LLVMArgs.reserve(Exprs.size()); 2894 ConstantEmitter ConstEmiter(*this); 2895 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 2896 const auto *CE = cast<clang::ConstantExpr>(E); 2897 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 2898 CE->getType()); 2899 }); 2900 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 2901 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 2902 llvm::GlobalValue::PrivateLinkage, Struct, 2903 ".args"); 2904 GV->setSection(AnnotationSection); 2905 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2906 auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy); 2907 2908 Lookup = Bitcasted; 2909 return Bitcasted; 2910 } 2911 2912 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 2913 const AnnotateAttr *AA, 2914 SourceLocation L) { 2915 // Get the globals for file name, annotation, and the line number. 2916 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 2917 *UnitGV = EmitAnnotationUnit(L), 2918 *LineNoCst = EmitAnnotationLineNo(L), 2919 *Args = EmitAnnotationArgs(AA); 2920 2921 llvm::Constant *GVInGlobalsAS = GV; 2922 if (GV->getAddressSpace() != 2923 getDataLayout().getDefaultGlobalsAddressSpace()) { 2924 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 2925 GV, GV->getValueType()->getPointerTo( 2926 getDataLayout().getDefaultGlobalsAddressSpace())); 2927 } 2928 2929 // Create the ConstantStruct for the global annotation. 2930 llvm::Constant *Fields[] = { 2931 llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy), 2932 llvm::ConstantExpr::getBitCast(AnnoGV, ConstGlobalsPtrTy), 2933 llvm::ConstantExpr::getBitCast(UnitGV, ConstGlobalsPtrTy), 2934 LineNoCst, 2935 Args, 2936 }; 2937 return llvm::ConstantStruct::getAnon(Fields); 2938 } 2939 2940 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 2941 llvm::GlobalValue *GV) { 2942 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2943 // Get the struct elements for these annotations. 2944 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2945 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 2946 } 2947 2948 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 2949 SourceLocation Loc) const { 2950 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2951 // NoSanitize by function name. 2952 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 2953 return true; 2954 // NoSanitize by location. Check "mainfile" prefix. 2955 auto &SM = Context.getSourceManager(); 2956 const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID()); 2957 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 2958 return true; 2959 2960 // Check "src" prefix. 2961 if (Loc.isValid()) 2962 return NoSanitizeL.containsLocation(Kind, Loc); 2963 // If location is unknown, this may be a compiler-generated function. Assume 2964 // it's located in the main file. 2965 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 2966 } 2967 2968 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 2969 llvm::GlobalVariable *GV, 2970 SourceLocation Loc, QualType Ty, 2971 StringRef Category) const { 2972 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 2973 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 2974 return true; 2975 auto &SM = Context.getSourceManager(); 2976 if (NoSanitizeL.containsMainFile( 2977 Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category)) 2978 return true; 2979 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 2980 return true; 2981 2982 // Check global type. 2983 if (!Ty.isNull()) { 2984 // Drill down the array types: if global variable of a fixed type is 2985 // not sanitized, we also don't instrument arrays of them. 2986 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 2987 Ty = AT->getElementType(); 2988 Ty = Ty.getCanonicalType().getUnqualifiedType(); 2989 // Only record types (classes, structs etc.) are ignored. 2990 if (Ty->isRecordType()) { 2991 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 2992 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 2993 return true; 2994 } 2995 } 2996 return false; 2997 } 2998 2999 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3000 StringRef Category) const { 3001 const auto &XRayFilter = getContext().getXRayFilter(); 3002 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3003 auto Attr = ImbueAttr::NONE; 3004 if (Loc.isValid()) 3005 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3006 if (Attr == ImbueAttr::NONE) 3007 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3008 switch (Attr) { 3009 case ImbueAttr::NONE: 3010 return false; 3011 case ImbueAttr::ALWAYS: 3012 Fn->addFnAttr("function-instrument", "xray-always"); 3013 break; 3014 case ImbueAttr::ALWAYS_ARG1: 3015 Fn->addFnAttr("function-instrument", "xray-always"); 3016 Fn->addFnAttr("xray-log-args", "1"); 3017 break; 3018 case ImbueAttr::NEVER: 3019 Fn->addFnAttr("function-instrument", "xray-never"); 3020 break; 3021 } 3022 return true; 3023 } 3024 3025 ProfileList::ExclusionType 3026 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3027 SourceLocation Loc) const { 3028 const auto &ProfileList = getContext().getProfileList(); 3029 // If the profile list is empty, then instrument everything. 3030 if (ProfileList.isEmpty()) 3031 return ProfileList::Allow; 3032 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3033 // First, check the function name. 3034 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3035 return *V; 3036 // Next, check the source location. 3037 if (Loc.isValid()) 3038 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3039 return *V; 3040 // If location is unknown, this may be a compiler-generated function. Assume 3041 // it's located in the main file. 3042 auto &SM = Context.getSourceManager(); 3043 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) 3044 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3045 return *V; 3046 return ProfileList.getDefault(Kind); 3047 } 3048 3049 ProfileList::ExclusionType 3050 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3051 SourceLocation Loc) const { 3052 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3053 if (V != ProfileList::Allow) 3054 return V; 3055 3056 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3057 if (NumGroups > 1) { 3058 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3059 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3060 return ProfileList::Skip; 3061 } 3062 return ProfileList::Allow; 3063 } 3064 3065 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3066 // Never defer when EmitAllDecls is specified. 3067 if (LangOpts.EmitAllDecls) 3068 return true; 3069 3070 if (CodeGenOpts.KeepStaticConsts) { 3071 const auto *VD = dyn_cast<VarDecl>(Global); 3072 if (VD && VD->getType().isConstQualified() && 3073 VD->getStorageDuration() == SD_Static) 3074 return true; 3075 } 3076 3077 return getContext().DeclMustBeEmitted(Global); 3078 } 3079 3080 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3081 // In OpenMP 5.0 variables and function may be marked as 3082 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3083 // that they must be emitted on the host/device. To be sure we need to have 3084 // seen a declare target with an explicit mentioning of the function, we know 3085 // we have if the level of the declare target attribute is -1. Note that we 3086 // check somewhere else if we should emit this at all. 3087 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3088 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3089 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3090 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3091 return false; 3092 } 3093 3094 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3095 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3096 // Implicit template instantiations may change linkage if they are later 3097 // explicitly instantiated, so they should not be emitted eagerly. 3098 return false; 3099 } 3100 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3101 if (Context.getInlineVariableDefinitionKind(VD) == 3102 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3103 // A definition of an inline constexpr static data member may change 3104 // linkage later if it's redeclared outside the class. 3105 return false; 3106 if (CXX20ModuleInits && VD->getOwningModule() && 3107 !VD->getOwningModule()->isModuleMapModule()) { 3108 // For CXX20, module-owned initializers need to be deferred, since it is 3109 // not known at this point if they will be run for the current module or 3110 // as part of the initializer for an imported one. 3111 return false; 3112 } 3113 } 3114 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3115 // codegen for global variables, because they may be marked as threadprivate. 3116 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3117 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3118 !isTypeConstant(Global->getType(), false) && 3119 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3120 return false; 3121 3122 return true; 3123 } 3124 3125 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3126 StringRef Name = getMangledName(GD); 3127 3128 // The UUID descriptor should be pointer aligned. 3129 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3130 3131 // Look for an existing global. 3132 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3133 return ConstantAddress(GV, GV->getValueType(), Alignment); 3134 3135 ConstantEmitter Emitter(*this); 3136 llvm::Constant *Init; 3137 3138 APValue &V = GD->getAsAPValue(); 3139 if (!V.isAbsent()) { 3140 // If possible, emit the APValue version of the initializer. In particular, 3141 // this gets the type of the constant right. 3142 Init = Emitter.emitForInitializer( 3143 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3144 } else { 3145 // As a fallback, directly construct the constant. 3146 // FIXME: This may get padding wrong under esoteric struct layout rules. 3147 // MSVC appears to create a complete type 'struct __s_GUID' that it 3148 // presumably uses to represent these constants. 3149 MSGuidDecl::Parts Parts = GD->getParts(); 3150 llvm::Constant *Fields[4] = { 3151 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3152 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3153 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3154 llvm::ConstantDataArray::getRaw( 3155 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3156 Int8Ty)}; 3157 Init = llvm::ConstantStruct::getAnon(Fields); 3158 } 3159 3160 auto *GV = new llvm::GlobalVariable( 3161 getModule(), Init->getType(), 3162 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3163 if (supportsCOMDAT()) 3164 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3165 setDSOLocal(GV); 3166 3167 if (!V.isAbsent()) { 3168 Emitter.finalize(GV); 3169 return ConstantAddress(GV, GV->getValueType(), Alignment); 3170 } 3171 3172 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3173 llvm::Constant *Addr = llvm::ConstantExpr::getBitCast( 3174 GV, Ty->getPointerTo(GV->getAddressSpace())); 3175 return ConstantAddress(Addr, Ty, Alignment); 3176 } 3177 3178 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3179 const UnnamedGlobalConstantDecl *GCD) { 3180 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3181 3182 llvm::GlobalVariable **Entry = nullptr; 3183 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3184 if (*Entry) 3185 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3186 3187 ConstantEmitter Emitter(*this); 3188 llvm::Constant *Init; 3189 3190 const APValue &V = GCD->getValue(); 3191 3192 assert(!V.isAbsent()); 3193 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3194 GCD->getType()); 3195 3196 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3197 /*isConstant=*/true, 3198 llvm::GlobalValue::PrivateLinkage, Init, 3199 ".constant"); 3200 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3201 GV->setAlignment(Alignment.getAsAlign()); 3202 3203 Emitter.finalize(GV); 3204 3205 *Entry = GV; 3206 return ConstantAddress(GV, GV->getValueType(), Alignment); 3207 } 3208 3209 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3210 const TemplateParamObjectDecl *TPO) { 3211 StringRef Name = getMangledName(TPO); 3212 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3213 3214 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3215 return ConstantAddress(GV, GV->getValueType(), Alignment); 3216 3217 ConstantEmitter Emitter(*this); 3218 llvm::Constant *Init = Emitter.emitForInitializer( 3219 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3220 3221 if (!Init) { 3222 ErrorUnsupported(TPO, "template parameter object"); 3223 return ConstantAddress::invalid(); 3224 } 3225 3226 auto *GV = new llvm::GlobalVariable( 3227 getModule(), Init->getType(), 3228 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3229 if (supportsCOMDAT()) 3230 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3231 Emitter.finalize(GV); 3232 3233 return ConstantAddress(GV, GV->getValueType(), Alignment); 3234 } 3235 3236 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3237 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3238 assert(AA && "No alias?"); 3239 3240 CharUnits Alignment = getContext().getDeclAlign(VD); 3241 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3242 3243 // See if there is already something with the target's name in the module. 3244 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3245 if (Entry) { 3246 unsigned AS = getTypes().getTargetAddressSpace(VD->getType()); 3247 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 3248 return ConstantAddress(Ptr, DeclTy, Alignment); 3249 } 3250 3251 llvm::Constant *Aliasee; 3252 if (isa<llvm::FunctionType>(DeclTy)) 3253 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3254 GlobalDecl(cast<FunctionDecl>(VD)), 3255 /*ForVTable=*/false); 3256 else 3257 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3258 nullptr); 3259 3260 auto *F = cast<llvm::GlobalValue>(Aliasee); 3261 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3262 WeakRefReferences.insert(F); 3263 3264 return ConstantAddress(Aliasee, DeclTy, Alignment); 3265 } 3266 3267 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3268 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3269 3270 // Weak references don't produce any output by themselves. 3271 if (Global->hasAttr<WeakRefAttr>()) 3272 return; 3273 3274 // If this is an alias definition (which otherwise looks like a declaration) 3275 // emit it now. 3276 if (Global->hasAttr<AliasAttr>()) 3277 return EmitAliasDefinition(GD); 3278 3279 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3280 if (Global->hasAttr<IFuncAttr>()) 3281 return emitIFuncDefinition(GD); 3282 3283 // If this is a cpu_dispatch multiversion function, emit the resolver. 3284 if (Global->hasAttr<CPUDispatchAttr>()) 3285 return emitCPUDispatchDefinition(GD); 3286 3287 // If this is CUDA, be selective about which declarations we emit. 3288 if (LangOpts.CUDA) { 3289 if (LangOpts.CUDAIsDevice) { 3290 if (!Global->hasAttr<CUDADeviceAttr>() && 3291 !Global->hasAttr<CUDAGlobalAttr>() && 3292 !Global->hasAttr<CUDAConstantAttr>() && 3293 !Global->hasAttr<CUDASharedAttr>() && 3294 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3295 !Global->getType()->isCUDADeviceBuiltinTextureType()) 3296 return; 3297 } else { 3298 // We need to emit host-side 'shadows' for all global 3299 // device-side variables because the CUDA runtime needs their 3300 // size and host-side address in order to provide access to 3301 // their device-side incarnations. 3302 3303 // So device-only functions are the only things we skip. 3304 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3305 Global->hasAttr<CUDADeviceAttr>()) 3306 return; 3307 3308 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3309 "Expected Variable or Function"); 3310 } 3311 } 3312 3313 if (LangOpts.OpenMP) { 3314 // If this is OpenMP, check if it is legal to emit this global normally. 3315 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3316 return; 3317 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3318 if (MustBeEmitted(Global)) 3319 EmitOMPDeclareReduction(DRD); 3320 return; 3321 } 3322 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3323 if (MustBeEmitted(Global)) 3324 EmitOMPDeclareMapper(DMD); 3325 return; 3326 } 3327 } 3328 3329 // Ignore declarations, they will be emitted on their first use. 3330 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3331 // Forward declarations are emitted lazily on first use. 3332 if (!FD->doesThisDeclarationHaveABody()) { 3333 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3334 return; 3335 3336 StringRef MangledName = getMangledName(GD); 3337 3338 // Compute the function info and LLVM type. 3339 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3340 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3341 3342 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3343 /*DontDefer=*/false); 3344 return; 3345 } 3346 } else { 3347 const auto *VD = cast<VarDecl>(Global); 3348 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3349 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3350 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3351 if (LangOpts.OpenMP) { 3352 // Emit declaration of the must-be-emitted declare target variable. 3353 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3354 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3355 bool UnifiedMemoryEnabled = 3356 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3357 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3358 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3359 !UnifiedMemoryEnabled) { 3360 (void)GetAddrOfGlobalVar(VD); 3361 } else { 3362 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3363 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3364 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3365 UnifiedMemoryEnabled)) && 3366 "Link clause or to clause with unified memory expected."); 3367 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3368 } 3369 3370 return; 3371 } 3372 } 3373 // If this declaration may have caused an inline variable definition to 3374 // change linkage, make sure that it's emitted. 3375 if (Context.getInlineVariableDefinitionKind(VD) == 3376 ASTContext::InlineVariableDefinitionKind::Strong) 3377 GetAddrOfGlobalVar(VD); 3378 return; 3379 } 3380 } 3381 3382 // Defer code generation to first use when possible, e.g. if this is an inline 3383 // function. If the global must always be emitted, do it eagerly if possible 3384 // to benefit from cache locality. 3385 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3386 // Emit the definition if it can't be deferred. 3387 EmitGlobalDefinition(GD); 3388 return; 3389 } 3390 3391 // If we're deferring emission of a C++ variable with an 3392 // initializer, remember the order in which it appeared in the file. 3393 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3394 cast<VarDecl>(Global)->hasInit()) { 3395 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3396 CXXGlobalInits.push_back(nullptr); 3397 } 3398 3399 StringRef MangledName = getMangledName(GD); 3400 if (GetGlobalValue(MangledName) != nullptr) { 3401 // The value has already been used and should therefore be emitted. 3402 addDeferredDeclToEmit(GD); 3403 } else if (MustBeEmitted(Global)) { 3404 // The value must be emitted, but cannot be emitted eagerly. 3405 assert(!MayBeEmittedEagerly(Global)); 3406 addDeferredDeclToEmit(GD); 3407 EmittedDeferredDecls[MangledName] = GD; 3408 } else { 3409 // Otherwise, remember that we saw a deferred decl with this name. The 3410 // first use of the mangled name will cause it to move into 3411 // DeferredDeclsToEmit. 3412 DeferredDecls[MangledName] = GD; 3413 } 3414 } 3415 3416 // Check if T is a class type with a destructor that's not dllimport. 3417 static bool HasNonDllImportDtor(QualType T) { 3418 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3419 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3420 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3421 return true; 3422 3423 return false; 3424 } 3425 3426 namespace { 3427 struct FunctionIsDirectlyRecursive 3428 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3429 const StringRef Name; 3430 const Builtin::Context &BI; 3431 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3432 : Name(N), BI(C) {} 3433 3434 bool VisitCallExpr(const CallExpr *E) { 3435 const FunctionDecl *FD = E->getDirectCallee(); 3436 if (!FD) 3437 return false; 3438 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3439 if (Attr && Name == Attr->getLabel()) 3440 return true; 3441 unsigned BuiltinID = FD->getBuiltinID(); 3442 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3443 return false; 3444 StringRef BuiltinName = BI.getName(BuiltinID); 3445 if (BuiltinName.startswith("__builtin_") && 3446 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3447 return true; 3448 } 3449 return false; 3450 } 3451 3452 bool VisitStmt(const Stmt *S) { 3453 for (const Stmt *Child : S->children()) 3454 if (Child && this->Visit(Child)) 3455 return true; 3456 return false; 3457 } 3458 }; 3459 3460 // Make sure we're not referencing non-imported vars or functions. 3461 struct DLLImportFunctionVisitor 3462 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3463 bool SafeToInline = true; 3464 3465 bool shouldVisitImplicitCode() const { return true; } 3466 3467 bool VisitVarDecl(VarDecl *VD) { 3468 if (VD->getTLSKind()) { 3469 // A thread-local variable cannot be imported. 3470 SafeToInline = false; 3471 return SafeToInline; 3472 } 3473 3474 // A variable definition might imply a destructor call. 3475 if (VD->isThisDeclarationADefinition()) 3476 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3477 3478 return SafeToInline; 3479 } 3480 3481 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3482 if (const auto *D = E->getTemporary()->getDestructor()) 3483 SafeToInline = D->hasAttr<DLLImportAttr>(); 3484 return SafeToInline; 3485 } 3486 3487 bool VisitDeclRefExpr(DeclRefExpr *E) { 3488 ValueDecl *VD = E->getDecl(); 3489 if (isa<FunctionDecl>(VD)) 3490 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3491 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3492 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3493 return SafeToInline; 3494 } 3495 3496 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3497 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3498 return SafeToInline; 3499 } 3500 3501 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3502 CXXMethodDecl *M = E->getMethodDecl(); 3503 if (!M) { 3504 // Call through a pointer to member function. This is safe to inline. 3505 SafeToInline = true; 3506 } else { 3507 SafeToInline = M->hasAttr<DLLImportAttr>(); 3508 } 3509 return SafeToInline; 3510 } 3511 3512 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3513 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3514 return SafeToInline; 3515 } 3516 3517 bool VisitCXXNewExpr(CXXNewExpr *E) { 3518 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3519 return SafeToInline; 3520 } 3521 }; 3522 } 3523 3524 // isTriviallyRecursive - Check if this function calls another 3525 // decl that, because of the asm attribute or the other decl being a builtin, 3526 // ends up pointing to itself. 3527 bool 3528 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3529 StringRef Name; 3530 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3531 // asm labels are a special kind of mangling we have to support. 3532 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3533 if (!Attr) 3534 return false; 3535 Name = Attr->getLabel(); 3536 } else { 3537 Name = FD->getName(); 3538 } 3539 3540 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3541 const Stmt *Body = FD->getBody(); 3542 return Body ? Walker.Visit(Body) : false; 3543 } 3544 3545 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3546 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3547 return true; 3548 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3549 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3550 return false; 3551 3552 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3553 // Check whether it would be safe to inline this dllimport function. 3554 DLLImportFunctionVisitor Visitor; 3555 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3556 if (!Visitor.SafeToInline) 3557 return false; 3558 3559 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3560 // Implicit destructor invocations aren't captured in the AST, so the 3561 // check above can't see them. Check for them manually here. 3562 for (const Decl *Member : Dtor->getParent()->decls()) 3563 if (isa<FieldDecl>(Member)) 3564 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3565 return false; 3566 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3567 if (HasNonDllImportDtor(B.getType())) 3568 return false; 3569 } 3570 } 3571 3572 // Inline builtins declaration must be emitted. They often are fortified 3573 // functions. 3574 if (F->isInlineBuiltinDeclaration()) 3575 return true; 3576 3577 // PR9614. Avoid cases where the source code is lying to us. An available 3578 // externally function should have an equivalent function somewhere else, 3579 // but a function that calls itself through asm label/`__builtin_` trickery is 3580 // clearly not equivalent to the real implementation. 3581 // This happens in glibc's btowc and in some configure checks. 3582 return !isTriviallyRecursive(F); 3583 } 3584 3585 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 3586 return CodeGenOpts.OptimizationLevel > 0; 3587 } 3588 3589 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 3590 llvm::GlobalValue *GV) { 3591 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3592 3593 if (FD->isCPUSpecificMultiVersion()) { 3594 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 3595 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 3596 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3597 } else if (FD->isTargetClonesMultiVersion()) { 3598 auto *Clone = FD->getAttr<TargetClonesAttr>(); 3599 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 3600 if (Clone->isFirstOfVersion(I)) 3601 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 3602 // Ensure that the resolver function is also emitted. 3603 GetOrCreateMultiVersionResolver(GD); 3604 } else 3605 EmitGlobalFunctionDefinition(GD, GV); 3606 } 3607 3608 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 3609 const auto *D = cast<ValueDecl>(GD.getDecl()); 3610 3611 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 3612 Context.getSourceManager(), 3613 "Generating code for declaration"); 3614 3615 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3616 // At -O0, don't generate IR for functions with available_externally 3617 // linkage. 3618 if (!shouldEmitFunction(GD)) 3619 return; 3620 3621 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 3622 std::string Name; 3623 llvm::raw_string_ostream OS(Name); 3624 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 3625 /*Qualified=*/true); 3626 return Name; 3627 }); 3628 3629 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 3630 // Make sure to emit the definition(s) before we emit the thunks. 3631 // This is necessary for the generation of certain thunks. 3632 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 3633 ABI->emitCXXStructor(GD); 3634 else if (FD->isMultiVersion()) 3635 EmitMultiVersionFunctionDefinition(GD, GV); 3636 else 3637 EmitGlobalFunctionDefinition(GD, GV); 3638 3639 if (Method->isVirtual()) 3640 getVTables().EmitThunks(GD); 3641 3642 return; 3643 } 3644 3645 if (FD->isMultiVersion()) 3646 return EmitMultiVersionFunctionDefinition(GD, GV); 3647 return EmitGlobalFunctionDefinition(GD, GV); 3648 } 3649 3650 if (const auto *VD = dyn_cast<VarDecl>(D)) 3651 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 3652 3653 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 3654 } 3655 3656 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3657 llvm::Function *NewFn); 3658 3659 static unsigned 3660 TargetMVPriority(const TargetInfo &TI, 3661 const CodeGenFunction::MultiVersionResolverOption &RO) { 3662 unsigned Priority = 0; 3663 unsigned NumFeatures = 0; 3664 for (StringRef Feat : RO.Conditions.Features) { 3665 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 3666 NumFeatures++; 3667 } 3668 3669 if (!RO.Conditions.Architecture.empty()) 3670 Priority = std::max( 3671 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 3672 3673 Priority += TI.multiVersionFeatureCost() * NumFeatures; 3674 3675 return Priority; 3676 } 3677 3678 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 3679 // TU can forward declare the function without causing problems. Particularly 3680 // in the cases of CPUDispatch, this causes issues. This also makes sure we 3681 // work with internal linkage functions, so that the same function name can be 3682 // used with internal linkage in multiple TUs. 3683 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 3684 GlobalDecl GD) { 3685 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 3686 if (FD->getFormalLinkage() == InternalLinkage) 3687 return llvm::GlobalValue::InternalLinkage; 3688 return llvm::GlobalValue::WeakODRLinkage; 3689 } 3690 3691 void CodeGenModule::emitMultiVersionFunctions() { 3692 std::vector<GlobalDecl> MVFuncsToEmit; 3693 MultiVersionFuncs.swap(MVFuncsToEmit); 3694 for (GlobalDecl GD : MVFuncsToEmit) { 3695 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3696 assert(FD && "Expected a FunctionDecl"); 3697 3698 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3699 if (FD->isTargetMultiVersion()) { 3700 getContext().forEachMultiversionedFunctionVersion( 3701 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 3702 GlobalDecl CurGD{ 3703 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 3704 StringRef MangledName = getMangledName(CurGD); 3705 llvm::Constant *Func = GetGlobalValue(MangledName); 3706 if (!Func) { 3707 if (CurFD->isDefined()) { 3708 EmitGlobalFunctionDefinition(CurGD, nullptr); 3709 Func = GetGlobalValue(MangledName); 3710 } else { 3711 const CGFunctionInfo &FI = 3712 getTypes().arrangeGlobalDeclaration(GD); 3713 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3714 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3715 /*DontDefer=*/false, ForDefinition); 3716 } 3717 assert(Func && "This should have just been created"); 3718 } 3719 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 3720 const auto *TA = CurFD->getAttr<TargetAttr>(); 3721 llvm::SmallVector<StringRef, 8> Feats; 3722 TA->getAddedFeatures(Feats); 3723 Options.emplace_back(cast<llvm::Function>(Func), 3724 TA->getArchitecture(), Feats); 3725 } else { 3726 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 3727 llvm::SmallVector<StringRef, 8> Feats; 3728 TVA->getFeatures(Feats); 3729 Options.emplace_back(cast<llvm::Function>(Func), 3730 /*Architecture*/ "", Feats); 3731 } 3732 }); 3733 } else if (FD->isTargetClonesMultiVersion()) { 3734 const auto *TC = FD->getAttr<TargetClonesAttr>(); 3735 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 3736 ++VersionIndex) { 3737 if (!TC->isFirstOfVersion(VersionIndex)) 3738 continue; 3739 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 3740 VersionIndex}; 3741 StringRef Version = TC->getFeatureStr(VersionIndex); 3742 StringRef MangledName = getMangledName(CurGD); 3743 llvm::Constant *Func = GetGlobalValue(MangledName); 3744 if (!Func) { 3745 if (FD->isDefined()) { 3746 EmitGlobalFunctionDefinition(CurGD, nullptr); 3747 Func = GetGlobalValue(MangledName); 3748 } else { 3749 const CGFunctionInfo &FI = 3750 getTypes().arrangeGlobalDeclaration(CurGD); 3751 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3752 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 3753 /*DontDefer=*/false, ForDefinition); 3754 } 3755 assert(Func && "This should have just been created"); 3756 } 3757 3758 StringRef Architecture; 3759 llvm::SmallVector<StringRef, 1> Feature; 3760 3761 if (getTarget().getTriple().isAArch64()) { 3762 if (Version != "default") { 3763 llvm::SmallVector<StringRef, 8> VerFeats; 3764 Version.split(VerFeats, "+"); 3765 for (auto &CurFeat : VerFeats) 3766 Feature.push_back(CurFeat.trim()); 3767 } 3768 } else { 3769 if (Version.startswith("arch=")) 3770 Architecture = Version.drop_front(sizeof("arch=") - 1); 3771 else if (Version != "default") 3772 Feature.push_back(Version); 3773 } 3774 3775 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 3776 } 3777 } else { 3778 assert(0 && "Expected a target or target_clones multiversion function"); 3779 continue; 3780 } 3781 3782 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 3783 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) 3784 ResolverConstant = IFunc->getResolver(); 3785 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 3786 3787 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3788 3789 if (supportsCOMDAT()) 3790 ResolverFunc->setComdat( 3791 getModule().getOrInsertComdat(ResolverFunc->getName())); 3792 3793 const TargetInfo &TI = getTarget(); 3794 llvm::stable_sort( 3795 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 3796 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3797 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 3798 }); 3799 CodeGenFunction CGF(*this); 3800 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3801 } 3802 3803 // Ensure that any additions to the deferred decls list caused by emitting a 3804 // variant are emitted. This can happen when the variant itself is inline and 3805 // calls a function without linkage. 3806 if (!MVFuncsToEmit.empty()) 3807 EmitDeferred(); 3808 3809 // Ensure that any additions to the multiversion funcs list from either the 3810 // deferred decls or the multiversion functions themselves are emitted. 3811 if (!MultiVersionFuncs.empty()) 3812 emitMultiVersionFunctions(); 3813 } 3814 3815 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 3816 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3817 assert(FD && "Not a FunctionDecl?"); 3818 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 3819 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 3820 assert(DD && "Not a cpu_dispatch Function?"); 3821 3822 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3823 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3824 3825 StringRef ResolverName = getMangledName(GD); 3826 UpdateMultiVersionNames(GD, FD, ResolverName); 3827 3828 llvm::Type *ResolverType; 3829 GlobalDecl ResolverGD; 3830 if (getTarget().supportsIFunc()) { 3831 ResolverType = llvm::FunctionType::get( 3832 llvm::PointerType::get(DeclTy, 3833 getTypes().getTargetAddressSpace(FD->getType())), 3834 false); 3835 } 3836 else { 3837 ResolverType = DeclTy; 3838 ResolverGD = GD; 3839 } 3840 3841 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 3842 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 3843 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 3844 if (supportsCOMDAT()) 3845 ResolverFunc->setComdat( 3846 getModule().getOrInsertComdat(ResolverFunc->getName())); 3847 3848 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 3849 const TargetInfo &Target = getTarget(); 3850 unsigned Index = 0; 3851 for (const IdentifierInfo *II : DD->cpus()) { 3852 // Get the name of the target function so we can look it up/create it. 3853 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 3854 getCPUSpecificMangling(*this, II->getName()); 3855 3856 llvm::Constant *Func = GetGlobalValue(MangledName); 3857 3858 if (!Func) { 3859 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 3860 if (ExistingDecl.getDecl() && 3861 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 3862 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 3863 Func = GetGlobalValue(MangledName); 3864 } else { 3865 if (!ExistingDecl.getDecl()) 3866 ExistingDecl = GD.getWithMultiVersionIndex(Index); 3867 3868 Func = GetOrCreateLLVMFunction( 3869 MangledName, DeclTy, ExistingDecl, 3870 /*ForVTable=*/false, /*DontDefer=*/true, 3871 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 3872 } 3873 } 3874 3875 llvm::SmallVector<StringRef, 32> Features; 3876 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 3877 llvm::transform(Features, Features.begin(), 3878 [](StringRef Str) { return Str.substr(1); }); 3879 llvm::erase_if(Features, [&Target](StringRef Feat) { 3880 return !Target.validateCpuSupports(Feat); 3881 }); 3882 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 3883 ++Index; 3884 } 3885 3886 llvm::stable_sort( 3887 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 3888 const CodeGenFunction::MultiVersionResolverOption &RHS) { 3889 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 3890 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 3891 }); 3892 3893 // If the list contains multiple 'default' versions, such as when it contains 3894 // 'pentium' and 'generic', don't emit the call to the generic one (since we 3895 // always run on at least a 'pentium'). We do this by deleting the 'least 3896 // advanced' (read, lowest mangling letter). 3897 while (Options.size() > 1 && 3898 llvm::X86::getCpuSupportsMask( 3899 (Options.end() - 2)->Conditions.Features) == 0) { 3900 StringRef LHSName = (Options.end() - 2)->Function->getName(); 3901 StringRef RHSName = (Options.end() - 1)->Function->getName(); 3902 if (LHSName.compare(RHSName) < 0) 3903 Options.erase(Options.end() - 2); 3904 else 3905 Options.erase(Options.end() - 1); 3906 } 3907 3908 CodeGenFunction CGF(*this); 3909 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 3910 3911 if (getTarget().supportsIFunc()) { 3912 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 3913 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 3914 3915 // Fix up function declarations that were created for cpu_specific before 3916 // cpu_dispatch was known 3917 if (!isa<llvm::GlobalIFunc>(IFunc)) { 3918 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 3919 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 3920 &getModule()); 3921 GI->takeName(IFunc); 3922 IFunc->replaceAllUsesWith(GI); 3923 IFunc->eraseFromParent(); 3924 IFunc = GI; 3925 } 3926 3927 std::string AliasName = getMangledNameImpl( 3928 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 3929 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 3930 if (!AliasFunc) { 3931 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 3932 &getModule()); 3933 SetCommonAttributes(GD, GA); 3934 } 3935 } 3936 } 3937 3938 /// If a dispatcher for the specified mangled name is not in the module, create 3939 /// and return an llvm Function with the specified type. 3940 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 3941 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 3942 assert(FD && "Not a FunctionDecl?"); 3943 3944 std::string MangledName = 3945 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 3946 3947 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 3948 // a separate resolver). 3949 std::string ResolverName = MangledName; 3950 if (getTarget().supportsIFunc()) 3951 ResolverName += ".ifunc"; 3952 else if (FD->isTargetMultiVersion()) 3953 ResolverName += ".resolver"; 3954 3955 // If the resolver has already been created, just return it. 3956 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 3957 return ResolverGV; 3958 3959 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3960 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 3961 3962 // The resolver needs to be created. For target and target_clones, defer 3963 // creation until the end of the TU. 3964 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 3965 MultiVersionFuncs.push_back(GD); 3966 3967 // For cpu_specific, don't create an ifunc yet because we don't know if the 3968 // cpu_dispatch will be emitted in this translation unit. 3969 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 3970 llvm::Type *ResolverType = llvm::FunctionType::get( 3971 llvm::PointerType::get(DeclTy, 3972 getTypes().getTargetAddressSpace(FD->getType())), 3973 false); 3974 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3975 MangledName + ".resolver", ResolverType, GlobalDecl{}, 3976 /*ForVTable=*/false); 3977 llvm::GlobalIFunc *GIF = 3978 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 3979 "", Resolver, &getModule()); 3980 GIF->setName(ResolverName); 3981 SetCommonAttributes(FD, GIF); 3982 3983 return GIF; 3984 } 3985 3986 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 3987 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 3988 assert(isa<llvm::GlobalValue>(Resolver) && 3989 "Resolver should be created for the first time"); 3990 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 3991 return Resolver; 3992 } 3993 3994 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 3995 /// module, create and return an llvm Function with the specified type. If there 3996 /// is something in the module with the specified name, return it potentially 3997 /// bitcasted to the right type. 3998 /// 3999 /// If D is non-null, it specifies a decl that correspond to this. This is used 4000 /// to set the attributes on the function when it is first created. 4001 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4002 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4003 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4004 ForDefinition_t IsForDefinition) { 4005 const Decl *D = GD.getDecl(); 4006 4007 // Any attempts to use a MultiVersion function should result in retrieving 4008 // the iFunc instead. Name Mangling will handle the rest of the changes. 4009 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4010 // For the device mark the function as one that should be emitted. 4011 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 4012 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4013 !DontDefer && !IsForDefinition) { 4014 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4015 GlobalDecl GDDef; 4016 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4017 GDDef = GlobalDecl(CD, GD.getCtorType()); 4018 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4019 GDDef = GlobalDecl(DD, GD.getDtorType()); 4020 else 4021 GDDef = GlobalDecl(FDDef); 4022 EmitGlobal(GDDef); 4023 } 4024 } 4025 4026 if (FD->isMultiVersion()) { 4027 UpdateMultiVersionNames(GD, FD, MangledName); 4028 if (!IsForDefinition) 4029 return GetOrCreateMultiVersionResolver(GD); 4030 } 4031 } 4032 4033 // Lookup the entry, lazily creating it if necessary. 4034 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4035 if (Entry) { 4036 if (WeakRefReferences.erase(Entry)) { 4037 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4038 if (FD && !FD->hasAttr<WeakAttr>()) 4039 Entry->setLinkage(llvm::Function::ExternalLinkage); 4040 } 4041 4042 // Handle dropped DLL attributes. 4043 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4044 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4045 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4046 setDSOLocal(Entry); 4047 } 4048 4049 // If there are two attempts to define the same mangled name, issue an 4050 // error. 4051 if (IsForDefinition && !Entry->isDeclaration()) { 4052 GlobalDecl OtherGD; 4053 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4054 // to make sure that we issue an error only once. 4055 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4056 (GD.getCanonicalDecl().getDecl() != 4057 OtherGD.getCanonicalDecl().getDecl()) && 4058 DiagnosedConflictingDefinitions.insert(GD).second) { 4059 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4060 << MangledName; 4061 getDiags().Report(OtherGD.getDecl()->getLocation(), 4062 diag::note_previous_definition); 4063 } 4064 } 4065 4066 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4067 (Entry->getValueType() == Ty)) { 4068 return Entry; 4069 } 4070 4071 // Make sure the result is of the correct type. 4072 // (If function is requested for a definition, we always need to create a new 4073 // function, not just return a bitcast.) 4074 if (!IsForDefinition) 4075 return llvm::ConstantExpr::getBitCast( 4076 Entry, Ty->getPointerTo(Entry->getAddressSpace())); 4077 } 4078 4079 // This function doesn't have a complete type (for example, the return 4080 // type is an incomplete struct). Use a fake type instead, and make 4081 // sure not to try to set attributes. 4082 bool IsIncompleteFunction = false; 4083 4084 llvm::FunctionType *FTy; 4085 if (isa<llvm::FunctionType>(Ty)) { 4086 FTy = cast<llvm::FunctionType>(Ty); 4087 } else { 4088 FTy = llvm::FunctionType::get(VoidTy, false); 4089 IsIncompleteFunction = true; 4090 } 4091 4092 llvm::Function *F = 4093 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4094 Entry ? StringRef() : MangledName, &getModule()); 4095 4096 // If we already created a function with the same mangled name (but different 4097 // type) before, take its name and add it to the list of functions to be 4098 // replaced with F at the end of CodeGen. 4099 // 4100 // This happens if there is a prototype for a function (e.g. "int f()") and 4101 // then a definition of a different type (e.g. "int f(int x)"). 4102 if (Entry) { 4103 F->takeName(Entry); 4104 4105 // This might be an implementation of a function without a prototype, in 4106 // which case, try to do special replacement of calls which match the new 4107 // prototype. The really key thing here is that we also potentially drop 4108 // arguments from the call site so as to make a direct call, which makes the 4109 // inliner happier and suppresses a number of optimizer warnings (!) about 4110 // dropping arguments. 4111 if (!Entry->use_empty()) { 4112 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4113 Entry->removeDeadConstantUsers(); 4114 } 4115 4116 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 4117 F, Entry->getValueType()->getPointerTo(Entry->getAddressSpace())); 4118 addGlobalValReplacement(Entry, BC); 4119 } 4120 4121 assert(F->getName() == MangledName && "name was uniqued!"); 4122 if (D) 4123 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4124 if (ExtraAttrs.hasFnAttrs()) { 4125 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4126 F->addFnAttrs(B); 4127 } 4128 4129 if (!DontDefer) { 4130 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4131 // each other bottoming out with the base dtor. Therefore we emit non-base 4132 // dtors on usage, even if there is no dtor definition in the TU. 4133 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4134 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4135 GD.getDtorType())) 4136 addDeferredDeclToEmit(GD); 4137 4138 // This is the first use or definition of a mangled name. If there is a 4139 // deferred decl with this name, remember that we need to emit it at the end 4140 // of the file. 4141 auto DDI = DeferredDecls.find(MangledName); 4142 if (DDI != DeferredDecls.end()) { 4143 // Move the potentially referenced deferred decl to the 4144 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4145 // don't need it anymore). 4146 addDeferredDeclToEmit(DDI->second); 4147 EmittedDeferredDecls[DDI->first] = DDI->second; 4148 DeferredDecls.erase(DDI); 4149 4150 // Otherwise, there are cases we have to worry about where we're 4151 // using a declaration for which we must emit a definition but where 4152 // we might not find a top-level definition: 4153 // - member functions defined inline in their classes 4154 // - friend functions defined inline in some class 4155 // - special member functions with implicit definitions 4156 // If we ever change our AST traversal to walk into class methods, 4157 // this will be unnecessary. 4158 // 4159 // We also don't emit a definition for a function if it's going to be an 4160 // entry in a vtable, unless it's already marked as used. 4161 } else if (getLangOpts().CPlusPlus && D) { 4162 // Look for a declaration that's lexically in a record. 4163 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4164 FD = FD->getPreviousDecl()) { 4165 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4166 if (FD->doesThisDeclarationHaveABody()) { 4167 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4168 break; 4169 } 4170 } 4171 } 4172 } 4173 } 4174 4175 // Make sure the result is of the requested type. 4176 if (!IsIncompleteFunction) { 4177 assert(F->getFunctionType() == Ty); 4178 return F; 4179 } 4180 4181 return llvm::ConstantExpr::getBitCast(F, 4182 Ty->getPointerTo(F->getAddressSpace())); 4183 } 4184 4185 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4186 /// non-null, then this function will use the specified type if it has to 4187 /// create it (this occurs when we see a definition of the function). 4188 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 4189 llvm::Type *Ty, 4190 bool ForVTable, 4191 bool DontDefer, 4192 ForDefinition_t IsForDefinition) { 4193 assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() && 4194 "consteval function should never be emitted"); 4195 // If there was no specific requested type, just convert it now. 4196 if (!Ty) { 4197 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4198 Ty = getTypes().ConvertType(FD->getType()); 4199 } 4200 4201 // Devirtualized destructor calls may come through here instead of via 4202 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4203 // of the complete destructor when necessary. 4204 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4205 if (getTarget().getCXXABI().isMicrosoft() && 4206 GD.getDtorType() == Dtor_Complete && 4207 DD->getParent()->getNumVBases() == 0) 4208 GD = GlobalDecl(DD, Dtor_Base); 4209 } 4210 4211 StringRef MangledName = getMangledName(GD); 4212 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4213 /*IsThunk=*/false, llvm::AttributeList(), 4214 IsForDefinition); 4215 // Returns kernel handle for HIP kernel stub function. 4216 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4217 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4218 auto *Handle = getCUDARuntime().getKernelHandle( 4219 cast<llvm::Function>(F->stripPointerCasts()), GD); 4220 if (IsForDefinition) 4221 return F; 4222 return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo()); 4223 } 4224 return F; 4225 } 4226 4227 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4228 llvm::GlobalValue *F = 4229 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4230 4231 return llvm::ConstantExpr::getBitCast( 4232 llvm::NoCFIValue::get(F), 4233 llvm::Type::getInt8PtrTy(VMContext, F->getAddressSpace())); 4234 } 4235 4236 static const FunctionDecl * 4237 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4238 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4239 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4240 4241 IdentifierInfo &CII = C.Idents.get(Name); 4242 for (const auto *Result : DC->lookup(&CII)) 4243 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4244 return FD; 4245 4246 if (!C.getLangOpts().CPlusPlus) 4247 return nullptr; 4248 4249 // Demangle the premangled name from getTerminateFn() 4250 IdentifierInfo &CXXII = 4251 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4252 ? C.Idents.get("terminate") 4253 : C.Idents.get(Name); 4254 4255 for (const auto &N : {"__cxxabiv1", "std"}) { 4256 IdentifierInfo &NS = C.Idents.get(N); 4257 for (const auto *Result : DC->lookup(&NS)) { 4258 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4259 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4260 for (const auto *Result : LSD->lookup(&NS)) 4261 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4262 break; 4263 4264 if (ND) 4265 for (const auto *Result : ND->lookup(&CXXII)) 4266 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4267 return FD; 4268 } 4269 } 4270 4271 return nullptr; 4272 } 4273 4274 /// CreateRuntimeFunction - Create a new runtime function with the specified 4275 /// type and name. 4276 llvm::FunctionCallee 4277 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4278 llvm::AttributeList ExtraAttrs, bool Local, 4279 bool AssumeConvergent) { 4280 if (AssumeConvergent) { 4281 ExtraAttrs = 4282 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4283 } 4284 4285 llvm::Constant *C = 4286 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4287 /*DontDefer=*/false, /*IsThunk=*/false, 4288 ExtraAttrs); 4289 4290 if (auto *F = dyn_cast<llvm::Function>(C)) { 4291 if (F->empty()) { 4292 F->setCallingConv(getRuntimeCC()); 4293 4294 // In Windows Itanium environments, try to mark runtime functions 4295 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4296 // will link their standard library statically or dynamically. Marking 4297 // functions imported when they are not imported can cause linker errors 4298 // and warnings. 4299 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4300 !getCodeGenOpts().LTOVisibilityPublicStd) { 4301 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4302 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4303 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4304 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4305 } 4306 } 4307 setDSOLocal(F); 4308 } 4309 } 4310 4311 return {FTy, C}; 4312 } 4313 4314 /// isTypeConstant - Determine whether an object of this type can be emitted 4315 /// as a constant. 4316 /// 4317 /// If ExcludeCtor is true, the duration when the object's constructor runs 4318 /// will not be considered. The caller will need to verify that the object is 4319 /// not written to during its construction. 4320 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 4321 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 4322 return false; 4323 4324 if (Context.getLangOpts().CPlusPlus) { 4325 if (const CXXRecordDecl *Record 4326 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 4327 return ExcludeCtor && !Record->hasMutableFields() && 4328 Record->hasTrivialDestructor(); 4329 } 4330 4331 return true; 4332 } 4333 4334 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4335 /// create and return an llvm GlobalVariable with the specified type and address 4336 /// space. If there is something in the module with the specified name, return 4337 /// it potentially bitcasted to the right type. 4338 /// 4339 /// If D is non-null, it specifies a decl that correspond to this. This is used 4340 /// to set the attributes on the global when it is first created. 4341 /// 4342 /// If IsForDefinition is true, it is guaranteed that an actual global with 4343 /// type Ty will be returned, not conversion of a variable with the same 4344 /// mangled name but some other type. 4345 llvm::Constant * 4346 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4347 LangAS AddrSpace, const VarDecl *D, 4348 ForDefinition_t IsForDefinition) { 4349 // Lookup the entry, lazily creating it if necessary. 4350 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4351 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4352 if (Entry) { 4353 if (WeakRefReferences.erase(Entry)) { 4354 if (D && !D->hasAttr<WeakAttr>()) 4355 Entry->setLinkage(llvm::Function::ExternalLinkage); 4356 } 4357 4358 // Handle dropped DLL attributes. 4359 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4360 !shouldMapVisibilityToDLLExport(D)) 4361 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4362 4363 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4364 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4365 4366 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4367 return Entry; 4368 4369 // If there are two attempts to define the same mangled name, issue an 4370 // error. 4371 if (IsForDefinition && !Entry->isDeclaration()) { 4372 GlobalDecl OtherGD; 4373 const VarDecl *OtherD; 4374 4375 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4376 // to make sure that we issue an error only once. 4377 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4378 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4379 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4380 OtherD->hasInit() && 4381 DiagnosedConflictingDefinitions.insert(D).second) { 4382 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4383 << MangledName; 4384 getDiags().Report(OtherGD.getDecl()->getLocation(), 4385 diag::note_previous_definition); 4386 } 4387 } 4388 4389 // Make sure the result is of the correct type. 4390 if (Entry->getType()->getAddressSpace() != TargetAS) { 4391 return llvm::ConstantExpr::getAddrSpaceCast(Entry, 4392 Ty->getPointerTo(TargetAS)); 4393 } 4394 4395 // (If global is requested for a definition, we always need to create a new 4396 // global, not just return a bitcast.) 4397 if (!IsForDefinition) 4398 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS)); 4399 } 4400 4401 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4402 4403 auto *GV = new llvm::GlobalVariable( 4404 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4405 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4406 getContext().getTargetAddressSpace(DAddrSpace)); 4407 4408 // If we already created a global with the same mangled name (but different 4409 // type) before, take its name and remove it from its parent. 4410 if (Entry) { 4411 GV->takeName(Entry); 4412 4413 if (!Entry->use_empty()) { 4414 llvm::Constant *NewPtrForOldDecl = 4415 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 4416 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4417 } 4418 4419 Entry->eraseFromParent(); 4420 } 4421 4422 // This is the first use or definition of a mangled name. If there is a 4423 // deferred decl with this name, remember that we need to emit it at the end 4424 // of the file. 4425 auto DDI = DeferredDecls.find(MangledName); 4426 if (DDI != DeferredDecls.end()) { 4427 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4428 // list, and remove it from DeferredDecls (since we don't need it anymore). 4429 addDeferredDeclToEmit(DDI->second); 4430 EmittedDeferredDecls[DDI->first] = DDI->second; 4431 DeferredDecls.erase(DDI); 4432 } 4433 4434 // Handle things which are present even on external declarations. 4435 if (D) { 4436 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4437 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4438 4439 // FIXME: This code is overly simple and should be merged with other global 4440 // handling. 4441 GV->setConstant(isTypeConstant(D->getType(), false)); 4442 4443 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4444 4445 setLinkageForGV(GV, D); 4446 4447 if (D->getTLSKind()) { 4448 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4449 CXXThreadLocals.push_back(D); 4450 setTLSMode(GV, *D); 4451 } 4452 4453 setGVProperties(GV, D); 4454 4455 // If required by the ABI, treat declarations of static data members with 4456 // inline initializers as definitions. 4457 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4458 EmitGlobalVarDefinition(D); 4459 } 4460 4461 // Emit section information for extern variables. 4462 if (D->hasExternalStorage()) { 4463 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4464 GV->setSection(SA->getName()); 4465 } 4466 4467 // Handle XCore specific ABI requirements. 4468 if (getTriple().getArch() == llvm::Triple::xcore && 4469 D->getLanguageLinkage() == CLanguageLinkage && 4470 D->getType().isConstant(Context) && 4471 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4472 GV->setSection(".cp.rodata"); 4473 4474 // Check if we a have a const declaration with an initializer, we may be 4475 // able to emit it as available_externally to expose it's value to the 4476 // optimizer. 4477 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4478 D->getType().isConstQualified() && !GV->hasInitializer() && 4479 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4480 const auto *Record = 4481 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4482 bool HasMutableFields = Record && Record->hasMutableFields(); 4483 if (!HasMutableFields) { 4484 const VarDecl *InitDecl; 4485 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4486 if (InitExpr) { 4487 ConstantEmitter emitter(*this); 4488 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4489 if (Init) { 4490 auto *InitType = Init->getType(); 4491 if (GV->getValueType() != InitType) { 4492 // The type of the initializer does not match the definition. 4493 // This happens when an initializer has a different type from 4494 // the type of the global (because of padding at the end of a 4495 // structure for instance). 4496 GV->setName(StringRef()); 4497 // Make a new global with the correct type, this is now guaranteed 4498 // to work. 4499 auto *NewGV = cast<llvm::GlobalVariable>( 4500 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4501 ->stripPointerCasts()); 4502 4503 // Erase the old global, since it is no longer used. 4504 GV->eraseFromParent(); 4505 GV = NewGV; 4506 } else { 4507 GV->setInitializer(Init); 4508 GV->setConstant(true); 4509 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4510 } 4511 emitter.finalize(GV); 4512 } 4513 } 4514 } 4515 } 4516 } 4517 4518 if (GV->isDeclaration()) { 4519 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4520 // External HIP managed variables needed to be recorded for transformation 4521 // in both device and host compilations. 4522 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4523 D->hasExternalStorage()) 4524 getCUDARuntime().handleVarRegistration(D, *GV); 4525 } 4526 4527 if (D) 4528 SanitizerMD->reportGlobal(GV, *D); 4529 4530 LangAS ExpectedAS = 4531 D ? D->getType().getAddressSpace() 4532 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4533 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4534 if (DAddrSpace != ExpectedAS) { 4535 return getTargetCodeGenInfo().performAddrSpaceCast( 4536 *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS)); 4537 } 4538 4539 return GV; 4540 } 4541 4542 llvm::Constant * 4543 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4544 const Decl *D = GD.getDecl(); 4545 4546 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4547 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4548 /*DontDefer=*/false, IsForDefinition); 4549 4550 if (isa<CXXMethodDecl>(D)) { 4551 auto FInfo = 4552 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4553 auto Ty = getTypes().GetFunctionType(*FInfo); 4554 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4555 IsForDefinition); 4556 } 4557 4558 if (isa<FunctionDecl>(D)) { 4559 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4560 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4561 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4562 IsForDefinition); 4563 } 4564 4565 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 4566 } 4567 4568 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 4569 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 4570 llvm::Align Alignment) { 4571 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 4572 llvm::GlobalVariable *OldGV = nullptr; 4573 4574 if (GV) { 4575 // Check if the variable has the right type. 4576 if (GV->getValueType() == Ty) 4577 return GV; 4578 4579 // Because C++ name mangling, the only way we can end up with an already 4580 // existing global with the same name is if it has been declared extern "C". 4581 assert(GV->isDeclaration() && "Declaration has wrong type!"); 4582 OldGV = GV; 4583 } 4584 4585 // Create a new variable. 4586 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 4587 Linkage, nullptr, Name); 4588 4589 if (OldGV) { 4590 // Replace occurrences of the old variable if needed. 4591 GV->takeName(OldGV); 4592 4593 if (!OldGV->use_empty()) { 4594 llvm::Constant *NewPtrForOldDecl = 4595 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 4596 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 4597 } 4598 4599 OldGV->eraseFromParent(); 4600 } 4601 4602 if (supportsCOMDAT() && GV->isWeakForLinker() && 4603 !GV->hasAvailableExternallyLinkage()) 4604 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4605 4606 GV->setAlignment(Alignment); 4607 4608 return GV; 4609 } 4610 4611 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 4612 /// given global variable. If Ty is non-null and if the global doesn't exist, 4613 /// then it will be created with the specified type instead of whatever the 4614 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 4615 /// that an actual global with type Ty will be returned, not conversion of a 4616 /// variable with the same mangled name but some other type. 4617 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 4618 llvm::Type *Ty, 4619 ForDefinition_t IsForDefinition) { 4620 assert(D->hasGlobalStorage() && "Not a global variable"); 4621 QualType ASTTy = D->getType(); 4622 if (!Ty) 4623 Ty = getTypes().ConvertTypeForMem(ASTTy); 4624 4625 StringRef MangledName = getMangledName(D); 4626 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 4627 IsForDefinition); 4628 } 4629 4630 /// CreateRuntimeVariable - Create a new runtime global variable with the 4631 /// specified type and name. 4632 llvm::Constant * 4633 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 4634 StringRef Name) { 4635 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 4636 : LangAS::Default; 4637 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 4638 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 4639 return Ret; 4640 } 4641 4642 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 4643 assert(!D->getInit() && "Cannot emit definite definitions here!"); 4644 4645 StringRef MangledName = getMangledName(D); 4646 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 4647 4648 // We already have a definition, not declaration, with the same mangled name. 4649 // Emitting of declaration is not required (and actually overwrites emitted 4650 // definition). 4651 if (GV && !GV->isDeclaration()) 4652 return; 4653 4654 // If we have not seen a reference to this variable yet, place it into the 4655 // deferred declarations table to be emitted if needed later. 4656 if (!MustBeEmitted(D) && !GV) { 4657 DeferredDecls[MangledName] = D; 4658 return; 4659 } 4660 4661 // The tentative definition is the only definition. 4662 EmitGlobalVarDefinition(D); 4663 } 4664 4665 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 4666 EmitExternalVarDeclaration(D); 4667 } 4668 4669 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 4670 return Context.toCharUnitsFromBits( 4671 getDataLayout().getTypeStoreSizeInBits(Ty)); 4672 } 4673 4674 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 4675 if (LangOpts.OpenCL) { 4676 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 4677 assert(AS == LangAS::opencl_global || 4678 AS == LangAS::opencl_global_device || 4679 AS == LangAS::opencl_global_host || 4680 AS == LangAS::opencl_constant || 4681 AS == LangAS::opencl_local || 4682 AS >= LangAS::FirstTargetAddressSpace); 4683 return AS; 4684 } 4685 4686 if (LangOpts.SYCLIsDevice && 4687 (!D || D->getType().getAddressSpace() == LangAS::Default)) 4688 return LangAS::sycl_global; 4689 4690 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 4691 if (D) { 4692 if (D->hasAttr<CUDAConstantAttr>()) 4693 return LangAS::cuda_constant; 4694 if (D->hasAttr<CUDASharedAttr>()) 4695 return LangAS::cuda_shared; 4696 if (D->hasAttr<CUDADeviceAttr>()) 4697 return LangAS::cuda_device; 4698 if (D->getType().isConstQualified()) 4699 return LangAS::cuda_constant; 4700 } 4701 return LangAS::cuda_device; 4702 } 4703 4704 if (LangOpts.OpenMP) { 4705 LangAS AS; 4706 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 4707 return AS; 4708 } 4709 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 4710 } 4711 4712 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 4713 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 4714 if (LangOpts.OpenCL) 4715 return LangAS::opencl_constant; 4716 if (LangOpts.SYCLIsDevice) 4717 return LangAS::sycl_global; 4718 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 4719 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 4720 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 4721 // with OpVariable instructions with Generic storage class which is not 4722 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 4723 // UniformConstant storage class is not viable as pointers to it may not be 4724 // casted to Generic pointers which are used to model HIP's "flat" pointers. 4725 return LangAS::cuda_device; 4726 if (auto AS = getTarget().getConstantAddressSpace()) 4727 return *AS; 4728 return LangAS::Default; 4729 } 4730 4731 // In address space agnostic languages, string literals are in default address 4732 // space in AST. However, certain targets (e.g. amdgcn) request them to be 4733 // emitted in constant address space in LLVM IR. To be consistent with other 4734 // parts of AST, string literal global variables in constant address space 4735 // need to be casted to default address space before being put into address 4736 // map and referenced by other part of CodeGen. 4737 // In OpenCL, string literals are in constant address space in AST, therefore 4738 // they should not be casted to default address space. 4739 static llvm::Constant * 4740 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 4741 llvm::GlobalVariable *GV) { 4742 llvm::Constant *Cast = GV; 4743 if (!CGM.getLangOpts().OpenCL) { 4744 auto AS = CGM.GetGlobalConstantAddressSpace(); 4745 if (AS != LangAS::Default) 4746 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 4747 CGM, GV, AS, LangAS::Default, 4748 GV->getValueType()->getPointerTo( 4749 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 4750 } 4751 return Cast; 4752 } 4753 4754 template<typename SomeDecl> 4755 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 4756 llvm::GlobalValue *GV) { 4757 if (!getLangOpts().CPlusPlus) 4758 return; 4759 4760 // Must have 'used' attribute, or else inline assembly can't rely on 4761 // the name existing. 4762 if (!D->template hasAttr<UsedAttr>()) 4763 return; 4764 4765 // Must have internal linkage and an ordinary name. 4766 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 4767 return; 4768 4769 // Must be in an extern "C" context. Entities declared directly within 4770 // a record are not extern "C" even if the record is in such a context. 4771 const SomeDecl *First = D->getFirstDecl(); 4772 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 4773 return; 4774 4775 // OK, this is an internal linkage entity inside an extern "C" linkage 4776 // specification. Make a note of that so we can give it the "expected" 4777 // mangled name if nothing else is using that name. 4778 std::pair<StaticExternCMap::iterator, bool> R = 4779 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 4780 4781 // If we have multiple internal linkage entities with the same name 4782 // in extern "C" regions, none of them gets that name. 4783 if (!R.second) 4784 R.first->second = nullptr; 4785 } 4786 4787 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 4788 if (!CGM.supportsCOMDAT()) 4789 return false; 4790 4791 if (D.hasAttr<SelectAnyAttr>()) 4792 return true; 4793 4794 GVALinkage Linkage; 4795 if (auto *VD = dyn_cast<VarDecl>(&D)) 4796 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 4797 else 4798 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 4799 4800 switch (Linkage) { 4801 case GVA_Internal: 4802 case GVA_AvailableExternally: 4803 case GVA_StrongExternal: 4804 return false; 4805 case GVA_DiscardableODR: 4806 case GVA_StrongODR: 4807 return true; 4808 } 4809 llvm_unreachable("No such linkage"); 4810 } 4811 4812 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 4813 llvm::GlobalObject &GO) { 4814 if (!shouldBeInCOMDAT(*this, D)) 4815 return; 4816 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 4817 } 4818 4819 /// Pass IsTentative as true if you want to create a tentative definition. 4820 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 4821 bool IsTentative) { 4822 // OpenCL global variables of sampler type are translated to function calls, 4823 // therefore no need to be translated. 4824 QualType ASTTy = D->getType(); 4825 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 4826 return; 4827 4828 // If this is OpenMP device, check if it is legal to emit this global 4829 // normally. 4830 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 4831 OpenMPRuntime->emitTargetGlobalVariable(D)) 4832 return; 4833 4834 llvm::TrackingVH<llvm::Constant> Init; 4835 bool NeedsGlobalCtor = false; 4836 // Whether the definition of the variable is available externally. 4837 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 4838 // since this is the job for its original source. 4839 bool IsDefinitionAvailableExternally = 4840 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 4841 bool NeedsGlobalDtor = 4842 !IsDefinitionAvailableExternally && 4843 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 4844 4845 const VarDecl *InitDecl; 4846 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4847 4848 std::optional<ConstantEmitter> emitter; 4849 4850 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 4851 // as part of their declaration." Sema has already checked for 4852 // error cases, so we just need to set Init to UndefValue. 4853 bool IsCUDASharedVar = 4854 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 4855 // Shadows of initialized device-side global variables are also left 4856 // undefined. 4857 // Managed Variables should be initialized on both host side and device side. 4858 bool IsCUDAShadowVar = 4859 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4860 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 4861 D->hasAttr<CUDASharedAttr>()); 4862 bool IsCUDADeviceShadowVar = 4863 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 4864 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 4865 D->getType()->isCUDADeviceBuiltinTextureType()); 4866 if (getLangOpts().CUDA && 4867 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 4868 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4869 else if (D->hasAttr<LoaderUninitializedAttr>()) 4870 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 4871 else if (!InitExpr) { 4872 // This is a tentative definition; tentative definitions are 4873 // implicitly initialized with { 0 }. 4874 // 4875 // Note that tentative definitions are only emitted at the end of 4876 // a translation unit, so they should never have incomplete 4877 // type. In addition, EmitTentativeDefinition makes sure that we 4878 // never attempt to emit a tentative definition if a real one 4879 // exists. A use may still exists, however, so we still may need 4880 // to do a RAUW. 4881 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 4882 Init = EmitNullConstant(D->getType()); 4883 } else { 4884 initializedGlobalDecl = GlobalDecl(D); 4885 emitter.emplace(*this); 4886 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 4887 if (!Initializer) { 4888 QualType T = InitExpr->getType(); 4889 if (D->getType()->isReferenceType()) 4890 T = D->getType(); 4891 4892 if (getLangOpts().CPlusPlus) { 4893 if (InitDecl->hasFlexibleArrayInit(getContext())) 4894 ErrorUnsupported(D, "flexible array initializer"); 4895 Init = EmitNullConstant(T); 4896 4897 if (!IsDefinitionAvailableExternally) 4898 NeedsGlobalCtor = true; 4899 } else { 4900 ErrorUnsupported(D, "static initializer"); 4901 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 4902 } 4903 } else { 4904 Init = Initializer; 4905 // We don't need an initializer, so remove the entry for the delayed 4906 // initializer position (just in case this entry was delayed) if we 4907 // also don't need to register a destructor. 4908 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 4909 DelayedCXXInitPosition.erase(D); 4910 4911 #ifndef NDEBUG 4912 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 4913 InitDecl->getFlexibleArrayInitChars(getContext()); 4914 CharUnits CstSize = CharUnits::fromQuantity( 4915 getDataLayout().getTypeAllocSize(Init->getType())); 4916 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 4917 #endif 4918 } 4919 } 4920 4921 llvm::Type* InitType = Init->getType(); 4922 llvm::Constant *Entry = 4923 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 4924 4925 // Strip off pointer casts if we got them. 4926 Entry = Entry->stripPointerCasts(); 4927 4928 // Entry is now either a Function or GlobalVariable. 4929 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 4930 4931 // We have a definition after a declaration with the wrong type. 4932 // We must make a new GlobalVariable* and update everything that used OldGV 4933 // (a declaration or tentative definition) with the new GlobalVariable* 4934 // (which will be a definition). 4935 // 4936 // This happens if there is a prototype for a global (e.g. 4937 // "extern int x[];") and then a definition of a different type (e.g. 4938 // "int x[10];"). This also happens when an initializer has a different type 4939 // from the type of the global (this happens with unions). 4940 if (!GV || GV->getValueType() != InitType || 4941 GV->getType()->getAddressSpace() != 4942 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 4943 4944 // Move the old entry aside so that we'll create a new one. 4945 Entry->setName(StringRef()); 4946 4947 // Make a new global with the correct type, this is now guaranteed to work. 4948 GV = cast<llvm::GlobalVariable>( 4949 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 4950 ->stripPointerCasts()); 4951 4952 // Replace all uses of the old global with the new global 4953 llvm::Constant *NewPtrForOldDecl = 4954 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4955 Entry->getType()); 4956 Entry->replaceAllUsesWith(NewPtrForOldDecl); 4957 4958 // Erase the old global, since it is no longer used. 4959 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 4960 } 4961 4962 MaybeHandleStaticInExternC(D, GV); 4963 4964 if (D->hasAttr<AnnotateAttr>()) 4965 AddGlobalAnnotations(D, GV); 4966 4967 // Set the llvm linkage type as appropriate. 4968 llvm::GlobalValue::LinkageTypes Linkage = 4969 getLLVMLinkageVarDefinition(D, GV->isConstant()); 4970 4971 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 4972 // the device. [...]" 4973 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 4974 // __device__, declares a variable that: [...] 4975 // Is accessible from all the threads within the grid and from the host 4976 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 4977 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 4978 if (GV && LangOpts.CUDA) { 4979 if (LangOpts.CUDAIsDevice) { 4980 if (Linkage != llvm::GlobalValue::InternalLinkage && 4981 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 4982 D->getType()->isCUDADeviceBuiltinSurfaceType() || 4983 D->getType()->isCUDADeviceBuiltinTextureType())) 4984 GV->setExternallyInitialized(true); 4985 } else { 4986 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 4987 } 4988 getCUDARuntime().handleVarRegistration(D, *GV); 4989 } 4990 4991 GV->setInitializer(Init); 4992 if (emitter) 4993 emitter->finalize(GV); 4994 4995 // If it is safe to mark the global 'constant', do so now. 4996 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 4997 isTypeConstant(D->getType(), true)); 4998 4999 // If it is in a read-only section, mark it 'constant'. 5000 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5001 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5002 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5003 GV->setConstant(true); 5004 } 5005 5006 CharUnits AlignVal = getContext().getDeclAlign(D); 5007 // Check for alignment specifed in an 'omp allocate' directive. 5008 if (std::optional<CharUnits> AlignValFromAllocate = 5009 getOMPAllocateAlignment(D)) 5010 AlignVal = *AlignValFromAllocate; 5011 GV->setAlignment(AlignVal.getAsAlign()); 5012 5013 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5014 // function is only defined alongside the variable, not also alongside 5015 // callers. Normally, all accesses to a thread_local go through the 5016 // thread-wrapper in order to ensure initialization has occurred, underlying 5017 // variable will never be used other than the thread-wrapper, so it can be 5018 // converted to internal linkage. 5019 // 5020 // However, if the variable has the 'constinit' attribute, it _can_ be 5021 // referenced directly, without calling the thread-wrapper, so the linkage 5022 // must not be changed. 5023 // 5024 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5025 // weak or linkonce, the de-duplication semantics are important to preserve, 5026 // so we don't change the linkage. 5027 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5028 Linkage == llvm::GlobalValue::ExternalLinkage && 5029 Context.getTargetInfo().getTriple().isOSDarwin() && 5030 !D->hasAttr<ConstInitAttr>()) 5031 Linkage = llvm::GlobalValue::InternalLinkage; 5032 5033 GV->setLinkage(Linkage); 5034 if (D->hasAttr<DLLImportAttr>()) 5035 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5036 else if (D->hasAttr<DLLExportAttr>()) 5037 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5038 else 5039 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5040 5041 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5042 // common vars aren't constant even if declared const. 5043 GV->setConstant(false); 5044 // Tentative definition of global variables may be initialized with 5045 // non-zero null pointers. In this case they should have weak linkage 5046 // since common linkage must have zero initializer and must not have 5047 // explicit section therefore cannot have non-zero initial value. 5048 if (!GV->getInitializer()->isNullValue()) 5049 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5050 } 5051 5052 setNonAliasAttributes(D, GV); 5053 5054 if (D->getTLSKind() && !GV->isThreadLocal()) { 5055 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5056 CXXThreadLocals.push_back(D); 5057 setTLSMode(GV, *D); 5058 } 5059 5060 maybeSetTrivialComdat(*D, *GV); 5061 5062 // Emit the initializer function if necessary. 5063 if (NeedsGlobalCtor || NeedsGlobalDtor) 5064 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5065 5066 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5067 5068 // Emit global variable debug information. 5069 if (CGDebugInfo *DI = getModuleDebugInfo()) 5070 if (getCodeGenOpts().hasReducedDebugInfo()) 5071 DI->EmitGlobalVariable(GV, D); 5072 } 5073 5074 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5075 if (CGDebugInfo *DI = getModuleDebugInfo()) 5076 if (getCodeGenOpts().hasReducedDebugInfo()) { 5077 QualType ASTTy = D->getType(); 5078 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5079 llvm::Constant *GV = 5080 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5081 DI->EmitExternalVariable( 5082 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5083 } 5084 } 5085 5086 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5087 CodeGenModule &CGM, const VarDecl *D, 5088 bool NoCommon) { 5089 // Don't give variables common linkage if -fno-common was specified unless it 5090 // was overridden by a NoCommon attribute. 5091 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5092 return true; 5093 5094 // C11 6.9.2/2: 5095 // A declaration of an identifier for an object that has file scope without 5096 // an initializer, and without a storage-class specifier or with the 5097 // storage-class specifier static, constitutes a tentative definition. 5098 if (D->getInit() || D->hasExternalStorage()) 5099 return true; 5100 5101 // A variable cannot be both common and exist in a section. 5102 if (D->hasAttr<SectionAttr>()) 5103 return true; 5104 5105 // A variable cannot be both common and exist in a section. 5106 // We don't try to determine which is the right section in the front-end. 5107 // If no specialized section name is applicable, it will resort to default. 5108 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5109 D->hasAttr<PragmaClangDataSectionAttr>() || 5110 D->hasAttr<PragmaClangRelroSectionAttr>() || 5111 D->hasAttr<PragmaClangRodataSectionAttr>()) 5112 return true; 5113 5114 // Thread local vars aren't considered common linkage. 5115 if (D->getTLSKind()) 5116 return true; 5117 5118 // Tentative definitions marked with WeakImportAttr are true definitions. 5119 if (D->hasAttr<WeakImportAttr>()) 5120 return true; 5121 5122 // A variable cannot be both common and exist in a comdat. 5123 if (shouldBeInCOMDAT(CGM, *D)) 5124 return true; 5125 5126 // Declarations with a required alignment do not have common linkage in MSVC 5127 // mode. 5128 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5129 if (D->hasAttr<AlignedAttr>()) 5130 return true; 5131 QualType VarType = D->getType(); 5132 if (Context.isAlignmentRequired(VarType)) 5133 return true; 5134 5135 if (const auto *RT = VarType->getAs<RecordType>()) { 5136 const RecordDecl *RD = RT->getDecl(); 5137 for (const FieldDecl *FD : RD->fields()) { 5138 if (FD->isBitField()) 5139 continue; 5140 if (FD->hasAttr<AlignedAttr>()) 5141 return true; 5142 if (Context.isAlignmentRequired(FD->getType())) 5143 return true; 5144 } 5145 } 5146 } 5147 5148 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5149 // common symbols, so symbols with greater alignment requirements cannot be 5150 // common. 5151 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5152 // alignments for common symbols via the aligncomm directive, so this 5153 // restriction only applies to MSVC environments. 5154 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5155 Context.getTypeAlignIfKnown(D->getType()) > 5156 Context.toBits(CharUnits::fromQuantity(32))) 5157 return true; 5158 5159 return false; 5160 } 5161 5162 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 5163 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 5164 if (Linkage == GVA_Internal) 5165 return llvm::Function::InternalLinkage; 5166 5167 if (D->hasAttr<WeakAttr>()) 5168 return llvm::GlobalVariable::WeakAnyLinkage; 5169 5170 if (const auto *FD = D->getAsFunction()) 5171 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5172 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5173 5174 // We are guaranteed to have a strong definition somewhere else, 5175 // so we can use available_externally linkage. 5176 if (Linkage == GVA_AvailableExternally) 5177 return llvm::GlobalValue::AvailableExternallyLinkage; 5178 5179 // Note that Apple's kernel linker doesn't support symbol 5180 // coalescing, so we need to avoid linkonce and weak linkages there. 5181 // Normally, this means we just map to internal, but for explicit 5182 // instantiations we'll map to external. 5183 5184 // In C++, the compiler has to emit a definition in every translation unit 5185 // that references the function. We should use linkonce_odr because 5186 // a) if all references in this translation unit are optimized away, we 5187 // don't need to codegen it. b) if the function persists, it needs to be 5188 // merged with other definitions. c) C++ has the ODR, so we know the 5189 // definition is dependable. 5190 if (Linkage == GVA_DiscardableODR) 5191 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5192 : llvm::Function::InternalLinkage; 5193 5194 // An explicit instantiation of a template has weak linkage, since 5195 // explicit instantiations can occur in multiple translation units 5196 // and must all be equivalent. However, we are not allowed to 5197 // throw away these explicit instantiations. 5198 // 5199 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5200 // so say that CUDA templates are either external (for kernels) or internal. 5201 // This lets llvm perform aggressive inter-procedural optimizations. For 5202 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5203 // therefore we need to follow the normal linkage paradigm. 5204 if (Linkage == GVA_StrongODR) { 5205 if (getLangOpts().AppleKext) 5206 return llvm::Function::ExternalLinkage; 5207 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5208 !getLangOpts().GPURelocatableDeviceCode) 5209 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5210 : llvm::Function::InternalLinkage; 5211 return llvm::Function::WeakODRLinkage; 5212 } 5213 5214 // C++ doesn't have tentative definitions and thus cannot have common 5215 // linkage. 5216 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5217 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5218 CodeGenOpts.NoCommon)) 5219 return llvm::GlobalVariable::CommonLinkage; 5220 5221 // selectany symbols are externally visible, so use weak instead of 5222 // linkonce. MSVC optimizes away references to const selectany globals, so 5223 // all definitions should be the same and ODR linkage should be used. 5224 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5225 if (D->hasAttr<SelectAnyAttr>()) 5226 return llvm::GlobalVariable::WeakODRLinkage; 5227 5228 // Otherwise, we have strong external linkage. 5229 assert(Linkage == GVA_StrongExternal); 5230 return llvm::GlobalVariable::ExternalLinkage; 5231 } 5232 5233 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 5234 const VarDecl *VD, bool IsConstant) { 5235 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5236 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 5237 } 5238 5239 /// Replace the uses of a function that was declared with a non-proto type. 5240 /// We want to silently drop extra arguments from call sites 5241 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5242 llvm::Function *newFn) { 5243 // Fast path. 5244 if (old->use_empty()) return; 5245 5246 llvm::Type *newRetTy = newFn->getReturnType(); 5247 SmallVector<llvm::Value*, 4> newArgs; 5248 5249 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5250 ui != ue; ) { 5251 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5252 llvm::User *user = use->getUser(); 5253 5254 // Recognize and replace uses of bitcasts. Most calls to 5255 // unprototyped functions will use bitcasts. 5256 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5257 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5258 replaceUsesOfNonProtoConstant(bitcast, newFn); 5259 continue; 5260 } 5261 5262 // Recognize calls to the function. 5263 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5264 if (!callSite) continue; 5265 if (!callSite->isCallee(&*use)) 5266 continue; 5267 5268 // If the return types don't match exactly, then we can't 5269 // transform this call unless it's dead. 5270 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5271 continue; 5272 5273 // Get the call site's attribute list. 5274 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5275 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5276 5277 // If the function was passed too few arguments, don't transform. 5278 unsigned newNumArgs = newFn->arg_size(); 5279 if (callSite->arg_size() < newNumArgs) 5280 continue; 5281 5282 // If extra arguments were passed, we silently drop them. 5283 // If any of the types mismatch, we don't transform. 5284 unsigned argNo = 0; 5285 bool dontTransform = false; 5286 for (llvm::Argument &A : newFn->args()) { 5287 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5288 dontTransform = true; 5289 break; 5290 } 5291 5292 // Add any parameter attributes. 5293 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5294 argNo++; 5295 } 5296 if (dontTransform) 5297 continue; 5298 5299 // Okay, we can transform this. Create the new call instruction and copy 5300 // over the required information. 5301 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5302 5303 // Copy over any operand bundles. 5304 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5305 callSite->getOperandBundlesAsDefs(newBundles); 5306 5307 llvm::CallBase *newCall; 5308 if (isa<llvm::CallInst>(callSite)) { 5309 newCall = 5310 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5311 } else { 5312 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5313 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5314 oldInvoke->getUnwindDest(), newArgs, 5315 newBundles, "", callSite); 5316 } 5317 newArgs.clear(); // for the next iteration 5318 5319 if (!newCall->getType()->isVoidTy()) 5320 newCall->takeName(callSite); 5321 newCall->setAttributes( 5322 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5323 oldAttrs.getRetAttrs(), newArgAttrs)); 5324 newCall->setCallingConv(callSite->getCallingConv()); 5325 5326 // Finally, remove the old call, replacing any uses with the new one. 5327 if (!callSite->use_empty()) 5328 callSite->replaceAllUsesWith(newCall); 5329 5330 // Copy debug location attached to CI. 5331 if (callSite->getDebugLoc()) 5332 newCall->setDebugLoc(callSite->getDebugLoc()); 5333 5334 callSite->eraseFromParent(); 5335 } 5336 } 5337 5338 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5339 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5340 /// existing call uses of the old function in the module, this adjusts them to 5341 /// call the new function directly. 5342 /// 5343 /// This is not just a cleanup: the always_inline pass requires direct calls to 5344 /// functions to be able to inline them. If there is a bitcast in the way, it 5345 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5346 /// run at -O0. 5347 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5348 llvm::Function *NewFn) { 5349 // If we're redefining a global as a function, don't transform it. 5350 if (!isa<llvm::Function>(Old)) return; 5351 5352 replaceUsesOfNonProtoConstant(Old, NewFn); 5353 } 5354 5355 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5356 auto DK = VD->isThisDeclarationADefinition(); 5357 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5358 return; 5359 5360 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5361 // If we have a definition, this might be a deferred decl. If the 5362 // instantiation is explicit, make sure we emit it at the end. 5363 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5364 GetAddrOfGlobalVar(VD); 5365 5366 EmitTopLevelDecl(VD); 5367 } 5368 5369 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5370 llvm::GlobalValue *GV) { 5371 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5372 5373 // Compute the function info and LLVM type. 5374 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5375 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5376 5377 // Get or create the prototype for the function. 5378 if (!GV || (GV->getValueType() != Ty)) 5379 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5380 /*DontDefer=*/true, 5381 ForDefinition)); 5382 5383 // Already emitted. 5384 if (!GV->isDeclaration()) 5385 return; 5386 5387 // We need to set linkage and visibility on the function before 5388 // generating code for it because various parts of IR generation 5389 // want to propagate this information down (e.g. to local static 5390 // declarations). 5391 auto *Fn = cast<llvm::Function>(GV); 5392 setFunctionLinkage(GD, Fn); 5393 5394 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5395 setGVProperties(Fn, GD); 5396 5397 MaybeHandleStaticInExternC(D, Fn); 5398 5399 maybeSetTrivialComdat(*D, *Fn); 5400 5401 // Set CodeGen attributes that represent floating point environment. 5402 setLLVMFunctionFEnvAttributes(D, Fn); 5403 5404 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5405 5406 setNonAliasAttributes(GD, Fn); 5407 SetLLVMFunctionAttributesForDefinition(D, Fn); 5408 5409 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5410 AddGlobalCtor(Fn, CA->getPriority()); 5411 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5412 AddGlobalDtor(Fn, DA->getPriority(), true); 5413 if (D->hasAttr<AnnotateAttr>()) 5414 AddGlobalAnnotations(D, Fn); 5415 } 5416 5417 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5418 const auto *D = cast<ValueDecl>(GD.getDecl()); 5419 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5420 assert(AA && "Not an alias?"); 5421 5422 StringRef MangledName = getMangledName(GD); 5423 5424 if (AA->getAliasee() == MangledName) { 5425 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5426 return; 5427 } 5428 5429 // If there is a definition in the module, then it wins over the alias. 5430 // This is dubious, but allow it to be safe. Just ignore the alias. 5431 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5432 if (Entry && !Entry->isDeclaration()) 5433 return; 5434 5435 Aliases.push_back(GD); 5436 5437 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5438 5439 // Create a reference to the named value. This ensures that it is emitted 5440 // if a deferred decl. 5441 llvm::Constant *Aliasee; 5442 llvm::GlobalValue::LinkageTypes LT; 5443 if (isa<llvm::FunctionType>(DeclTy)) { 5444 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5445 /*ForVTable=*/false); 5446 LT = getFunctionLinkage(GD); 5447 } else { 5448 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5449 /*D=*/nullptr); 5450 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5451 LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified()); 5452 else 5453 LT = getFunctionLinkage(GD); 5454 } 5455 5456 // Create the new alias itself, but don't set a name yet. 5457 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5458 auto *GA = 5459 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5460 5461 if (Entry) { 5462 if (GA->getAliasee() == Entry) { 5463 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5464 return; 5465 } 5466 5467 assert(Entry->isDeclaration()); 5468 5469 // If there is a declaration in the module, then we had an extern followed 5470 // by the alias, as in: 5471 // extern int test6(); 5472 // ... 5473 // int test6() __attribute__((alias("test7"))); 5474 // 5475 // Remove it and replace uses of it with the alias. 5476 GA->takeName(Entry); 5477 5478 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 5479 Entry->getType())); 5480 Entry->eraseFromParent(); 5481 } else { 5482 GA->setName(MangledName); 5483 } 5484 5485 // Set attributes which are particular to an alias; this is a 5486 // specialization of the attributes which may be set on a global 5487 // variable/function. 5488 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5489 D->isWeakImported()) { 5490 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5491 } 5492 5493 if (const auto *VD = dyn_cast<VarDecl>(D)) 5494 if (VD->getTLSKind()) 5495 setTLSMode(GA, *VD); 5496 5497 SetCommonAttributes(GD, GA); 5498 5499 // Emit global alias debug information. 5500 if (isa<VarDecl>(D)) 5501 if (CGDebugInfo *DI = getModuleDebugInfo()) 5502 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5503 } 5504 5505 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5506 const auto *D = cast<ValueDecl>(GD.getDecl()); 5507 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5508 assert(IFA && "Not an ifunc?"); 5509 5510 StringRef MangledName = getMangledName(GD); 5511 5512 if (IFA->getResolver() == MangledName) { 5513 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5514 return; 5515 } 5516 5517 // Report an error if some definition overrides ifunc. 5518 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5519 if (Entry && !Entry->isDeclaration()) { 5520 GlobalDecl OtherGD; 5521 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5522 DiagnosedConflictingDefinitions.insert(GD).second) { 5523 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5524 << MangledName; 5525 Diags.Report(OtherGD.getDecl()->getLocation(), 5526 diag::note_previous_definition); 5527 } 5528 return; 5529 } 5530 5531 Aliases.push_back(GD); 5532 5533 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5534 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5535 llvm::Constant *Resolver = 5536 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5537 /*ForVTable=*/false); 5538 llvm::GlobalIFunc *GIF = 5539 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5540 "", Resolver, &getModule()); 5541 if (Entry) { 5542 if (GIF->getResolver() == Entry) { 5543 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5544 return; 5545 } 5546 assert(Entry->isDeclaration()); 5547 5548 // If there is a declaration in the module, then we had an extern followed 5549 // by the ifunc, as in: 5550 // extern int test(); 5551 // ... 5552 // int test() __attribute__((ifunc("resolver"))); 5553 // 5554 // Remove it and replace uses of it with the ifunc. 5555 GIF->takeName(Entry); 5556 5557 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 5558 Entry->getType())); 5559 Entry->eraseFromParent(); 5560 } else 5561 GIF->setName(MangledName); 5562 5563 SetCommonAttributes(GD, GIF); 5564 } 5565 5566 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 5567 ArrayRef<llvm::Type*> Tys) { 5568 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 5569 Tys); 5570 } 5571 5572 static llvm::StringMapEntry<llvm::GlobalVariable *> & 5573 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 5574 const StringLiteral *Literal, bool TargetIsLSB, 5575 bool &IsUTF16, unsigned &StringLength) { 5576 StringRef String = Literal->getString(); 5577 unsigned NumBytes = String.size(); 5578 5579 // Check for simple case. 5580 if (!Literal->containsNonAsciiOrNull()) { 5581 StringLength = NumBytes; 5582 return *Map.insert(std::make_pair(String, nullptr)).first; 5583 } 5584 5585 // Otherwise, convert the UTF8 literals into a string of shorts. 5586 IsUTF16 = true; 5587 5588 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 5589 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5590 llvm::UTF16 *ToPtr = &ToBuf[0]; 5591 5592 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5593 ToPtr + NumBytes, llvm::strictConversion); 5594 5595 // ConvertUTF8toUTF16 returns the length in ToPtr. 5596 StringLength = ToPtr - &ToBuf[0]; 5597 5598 // Add an explicit null. 5599 *ToPtr = 0; 5600 return *Map.insert(std::make_pair( 5601 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 5602 (StringLength + 1) * 2), 5603 nullptr)).first; 5604 } 5605 5606 ConstantAddress 5607 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 5608 unsigned StringLength = 0; 5609 bool isUTF16 = false; 5610 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 5611 GetConstantCFStringEntry(CFConstantStringMap, Literal, 5612 getDataLayout().isLittleEndian(), isUTF16, 5613 StringLength); 5614 5615 if (auto *C = Entry.second) 5616 return ConstantAddress( 5617 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 5618 5619 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 5620 llvm::Constant *Zeros[] = { Zero, Zero }; 5621 5622 const ASTContext &Context = getContext(); 5623 const llvm::Triple &Triple = getTriple(); 5624 5625 const auto CFRuntime = getLangOpts().CFRuntime; 5626 const bool IsSwiftABI = 5627 static_cast<unsigned>(CFRuntime) >= 5628 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 5629 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 5630 5631 // If we don't already have it, get __CFConstantStringClassReference. 5632 if (!CFConstantStringClassRef) { 5633 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 5634 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 5635 Ty = llvm::ArrayType::get(Ty, 0); 5636 5637 switch (CFRuntime) { 5638 default: break; 5639 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 5640 case LangOptions::CoreFoundationABI::Swift5_0: 5641 CFConstantStringClassName = 5642 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 5643 : "$s10Foundation19_NSCFConstantStringCN"; 5644 Ty = IntPtrTy; 5645 break; 5646 case LangOptions::CoreFoundationABI::Swift4_2: 5647 CFConstantStringClassName = 5648 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 5649 : "$S10Foundation19_NSCFConstantStringCN"; 5650 Ty = IntPtrTy; 5651 break; 5652 case LangOptions::CoreFoundationABI::Swift4_1: 5653 CFConstantStringClassName = 5654 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 5655 : "__T010Foundation19_NSCFConstantStringCN"; 5656 Ty = IntPtrTy; 5657 break; 5658 } 5659 5660 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 5661 5662 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 5663 llvm::GlobalValue *GV = nullptr; 5664 5665 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 5666 IdentifierInfo &II = Context.Idents.get(GV->getName()); 5667 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 5668 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 5669 5670 const VarDecl *VD = nullptr; 5671 for (const auto *Result : DC->lookup(&II)) 5672 if ((VD = dyn_cast<VarDecl>(Result))) 5673 break; 5674 5675 if (Triple.isOSBinFormatELF()) { 5676 if (!VD) 5677 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5678 } else { 5679 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 5680 if (!VD || !VD->hasAttr<DLLExportAttr>()) 5681 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 5682 else 5683 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 5684 } 5685 5686 setDSOLocal(GV); 5687 } 5688 } 5689 5690 // Decay array -> ptr 5691 CFConstantStringClassRef = 5692 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 5693 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 5694 } 5695 5696 QualType CFTy = Context.getCFConstantStringType(); 5697 5698 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 5699 5700 ConstantInitBuilder Builder(*this); 5701 auto Fields = Builder.beginStruct(STy); 5702 5703 // Class pointer. 5704 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 5705 5706 // Flags. 5707 if (IsSwiftABI) { 5708 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 5709 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 5710 } else { 5711 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 5712 } 5713 5714 // String pointer. 5715 llvm::Constant *C = nullptr; 5716 if (isUTF16) { 5717 auto Arr = llvm::ArrayRef( 5718 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 5719 Entry.first().size() / 2); 5720 C = llvm::ConstantDataArray::get(VMContext, Arr); 5721 } else { 5722 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 5723 } 5724 5725 // Note: -fwritable-strings doesn't make the backing store strings of 5726 // CFStrings writable. (See <rdar://problem/10657500>) 5727 auto *GV = 5728 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 5729 llvm::GlobalValue::PrivateLinkage, C, ".str"); 5730 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5731 // Don't enforce the target's minimum global alignment, since the only use 5732 // of the string is via this class initializer. 5733 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 5734 : Context.getTypeAlignInChars(Context.CharTy); 5735 GV->setAlignment(Align.getAsAlign()); 5736 5737 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 5738 // Without it LLVM can merge the string with a non unnamed_addr one during 5739 // LTO. Doing that changes the section it ends in, which surprises ld64. 5740 if (Triple.isOSBinFormatMachO()) 5741 GV->setSection(isUTF16 ? "__TEXT,__ustring" 5742 : "__TEXT,__cstring,cstring_literals"); 5743 // Make sure the literal ends up in .rodata to allow for safe ICF and for 5744 // the static linker to adjust permissions to read-only later on. 5745 else if (Triple.isOSBinFormatELF()) 5746 GV->setSection(".rodata"); 5747 5748 // String. 5749 llvm::Constant *Str = 5750 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 5751 5752 if (isUTF16) 5753 // Cast the UTF16 string to the correct type. 5754 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 5755 Fields.add(Str); 5756 5757 // String length. 5758 llvm::IntegerType *LengthTy = 5759 llvm::IntegerType::get(getModule().getContext(), 5760 Context.getTargetInfo().getLongWidth()); 5761 if (IsSwiftABI) { 5762 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 5763 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 5764 LengthTy = Int32Ty; 5765 else 5766 LengthTy = IntPtrTy; 5767 } 5768 Fields.addInt(LengthTy, StringLength); 5769 5770 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 5771 // properly aligned on 32-bit platforms. 5772 CharUnits Alignment = 5773 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 5774 5775 // The struct. 5776 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 5777 /*isConstant=*/false, 5778 llvm::GlobalVariable::PrivateLinkage); 5779 GV->addAttribute("objc_arc_inert"); 5780 switch (Triple.getObjectFormat()) { 5781 case llvm::Triple::UnknownObjectFormat: 5782 llvm_unreachable("unknown file format"); 5783 case llvm::Triple::DXContainer: 5784 case llvm::Triple::GOFF: 5785 case llvm::Triple::SPIRV: 5786 case llvm::Triple::XCOFF: 5787 llvm_unreachable("unimplemented"); 5788 case llvm::Triple::COFF: 5789 case llvm::Triple::ELF: 5790 case llvm::Triple::Wasm: 5791 GV->setSection("cfstring"); 5792 break; 5793 case llvm::Triple::MachO: 5794 GV->setSection("__DATA,__cfstring"); 5795 break; 5796 } 5797 Entry.second = GV; 5798 5799 return ConstantAddress(GV, GV->getValueType(), Alignment); 5800 } 5801 5802 bool CodeGenModule::getExpressionLocationsEnabled() const { 5803 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 5804 } 5805 5806 QualType CodeGenModule::getObjCFastEnumerationStateType() { 5807 if (ObjCFastEnumerationStateType.isNull()) { 5808 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 5809 D->startDefinition(); 5810 5811 QualType FieldTypes[] = { 5812 Context.UnsignedLongTy, 5813 Context.getPointerType(Context.getObjCIdType()), 5814 Context.getPointerType(Context.UnsignedLongTy), 5815 Context.getConstantArrayType(Context.UnsignedLongTy, 5816 llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0) 5817 }; 5818 5819 for (size_t i = 0; i < 4; ++i) { 5820 FieldDecl *Field = FieldDecl::Create(Context, 5821 D, 5822 SourceLocation(), 5823 SourceLocation(), nullptr, 5824 FieldTypes[i], /*TInfo=*/nullptr, 5825 /*BitWidth=*/nullptr, 5826 /*Mutable=*/false, 5827 ICIS_NoInit); 5828 Field->setAccess(AS_public); 5829 D->addDecl(Field); 5830 } 5831 5832 D->completeDefinition(); 5833 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 5834 } 5835 5836 return ObjCFastEnumerationStateType; 5837 } 5838 5839 llvm::Constant * 5840 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 5841 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 5842 5843 // Don't emit it as the address of the string, emit the string data itself 5844 // as an inline array. 5845 if (E->getCharByteWidth() == 1) { 5846 SmallString<64> Str(E->getString()); 5847 5848 // Resize the string to the right size, which is indicated by its type. 5849 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 5850 Str.resize(CAT->getSize().getZExtValue()); 5851 return llvm::ConstantDataArray::getString(VMContext, Str, false); 5852 } 5853 5854 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 5855 llvm::Type *ElemTy = AType->getElementType(); 5856 unsigned NumElements = AType->getNumElements(); 5857 5858 // Wide strings have either 2-byte or 4-byte elements. 5859 if (ElemTy->getPrimitiveSizeInBits() == 16) { 5860 SmallVector<uint16_t, 32> Elements; 5861 Elements.reserve(NumElements); 5862 5863 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5864 Elements.push_back(E->getCodeUnit(i)); 5865 Elements.resize(NumElements); 5866 return llvm::ConstantDataArray::get(VMContext, Elements); 5867 } 5868 5869 assert(ElemTy->getPrimitiveSizeInBits() == 32); 5870 SmallVector<uint32_t, 32> Elements; 5871 Elements.reserve(NumElements); 5872 5873 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 5874 Elements.push_back(E->getCodeUnit(i)); 5875 Elements.resize(NumElements); 5876 return llvm::ConstantDataArray::get(VMContext, Elements); 5877 } 5878 5879 static llvm::GlobalVariable * 5880 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 5881 CodeGenModule &CGM, StringRef GlobalName, 5882 CharUnits Alignment) { 5883 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 5884 CGM.GetGlobalConstantAddressSpace()); 5885 5886 llvm::Module &M = CGM.getModule(); 5887 // Create a global variable for this string 5888 auto *GV = new llvm::GlobalVariable( 5889 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 5890 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 5891 GV->setAlignment(Alignment.getAsAlign()); 5892 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 5893 if (GV->isWeakForLinker()) { 5894 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 5895 GV->setComdat(M.getOrInsertComdat(GV->getName())); 5896 } 5897 CGM.setDSOLocal(GV); 5898 5899 return GV; 5900 } 5901 5902 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 5903 /// constant array for the given string literal. 5904 ConstantAddress 5905 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 5906 StringRef Name) { 5907 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 5908 5909 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 5910 llvm::GlobalVariable **Entry = nullptr; 5911 if (!LangOpts.WritableStrings) { 5912 Entry = &ConstantStringMap[C]; 5913 if (auto GV = *Entry) { 5914 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5915 GV->setAlignment(Alignment.getAsAlign()); 5916 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5917 GV->getValueType(), Alignment); 5918 } 5919 } 5920 5921 SmallString<256> MangledNameBuffer; 5922 StringRef GlobalVariableName; 5923 llvm::GlobalValue::LinkageTypes LT; 5924 5925 // Mangle the string literal if that's how the ABI merges duplicate strings. 5926 // Don't do it if they are writable, since we don't want writes in one TU to 5927 // affect strings in another. 5928 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 5929 !LangOpts.WritableStrings) { 5930 llvm::raw_svector_ostream Out(MangledNameBuffer); 5931 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 5932 LT = llvm::GlobalValue::LinkOnceODRLinkage; 5933 GlobalVariableName = MangledNameBuffer; 5934 } else { 5935 LT = llvm::GlobalValue::PrivateLinkage; 5936 GlobalVariableName = Name; 5937 } 5938 5939 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 5940 5941 CGDebugInfo *DI = getModuleDebugInfo(); 5942 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 5943 DI->AddStringLiteralDebugInfo(GV, S); 5944 5945 if (Entry) 5946 *Entry = GV; 5947 5948 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 5949 5950 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5951 GV->getValueType(), Alignment); 5952 } 5953 5954 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 5955 /// array for the given ObjCEncodeExpr node. 5956 ConstantAddress 5957 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 5958 std::string Str; 5959 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 5960 5961 return GetAddrOfConstantCString(Str); 5962 } 5963 5964 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 5965 /// the literal and a terminating '\0' character. 5966 /// The result has pointer to array type. 5967 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 5968 const std::string &Str, const char *GlobalName) { 5969 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 5970 CharUnits Alignment = 5971 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 5972 5973 llvm::Constant *C = 5974 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 5975 5976 // Don't share any string literals if strings aren't constant. 5977 llvm::GlobalVariable **Entry = nullptr; 5978 if (!LangOpts.WritableStrings) { 5979 Entry = &ConstantStringMap[C]; 5980 if (auto GV = *Entry) { 5981 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 5982 GV->setAlignment(Alignment.getAsAlign()); 5983 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5984 GV->getValueType(), Alignment); 5985 } 5986 } 5987 5988 // Get the default prefix if a name wasn't specified. 5989 if (!GlobalName) 5990 GlobalName = ".str"; 5991 // Create a global variable for this. 5992 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 5993 GlobalName, Alignment); 5994 if (Entry) 5995 *Entry = GV; 5996 5997 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 5998 GV->getValueType(), Alignment); 5999 } 6000 6001 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6002 const MaterializeTemporaryExpr *E, const Expr *Init) { 6003 assert((E->getStorageDuration() == SD_Static || 6004 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6005 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6006 6007 // If we're not materializing a subobject of the temporary, keep the 6008 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6009 QualType MaterializedType = Init->getType(); 6010 if (Init == E->getSubExpr()) 6011 MaterializedType = E->getType(); 6012 6013 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6014 6015 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6016 if (!InsertResult.second) { 6017 // We've seen this before: either we already created it or we're in the 6018 // process of doing so. 6019 if (!InsertResult.first->second) { 6020 // We recursively re-entered this function, probably during emission of 6021 // the initializer. Create a placeholder. We'll clean this up in the 6022 // outer call, at the end of this function. 6023 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6024 InsertResult.first->second = new llvm::GlobalVariable( 6025 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6026 nullptr); 6027 } 6028 return ConstantAddress(InsertResult.first->second, 6029 llvm::cast<llvm::GlobalVariable>( 6030 InsertResult.first->second->stripPointerCasts()) 6031 ->getValueType(), 6032 Align); 6033 } 6034 6035 // FIXME: If an externally-visible declaration extends multiple temporaries, 6036 // we need to give each temporary the same name in every translation unit (and 6037 // we also need to make the temporaries externally-visible). 6038 SmallString<256> Name; 6039 llvm::raw_svector_ostream Out(Name); 6040 getCXXABI().getMangleContext().mangleReferenceTemporary( 6041 VD, E->getManglingNumber(), Out); 6042 6043 APValue *Value = nullptr; 6044 if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) { 6045 // If the initializer of the extending declaration is a constant 6046 // initializer, we should have a cached constant initializer for this 6047 // temporary. Note that this might have a different value from the value 6048 // computed by evaluating the initializer if the surrounding constant 6049 // expression modifies the temporary. 6050 Value = E->getOrCreateValue(false); 6051 } 6052 6053 // Try evaluating it now, it might have a constant initializer. 6054 Expr::EvalResult EvalResult; 6055 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6056 !EvalResult.hasSideEffects()) 6057 Value = &EvalResult.Val; 6058 6059 LangAS AddrSpace = 6060 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 6061 6062 std::optional<ConstantEmitter> emitter; 6063 llvm::Constant *InitialValue = nullptr; 6064 bool Constant = false; 6065 llvm::Type *Type; 6066 if (Value) { 6067 // The temporary has a constant initializer, use it. 6068 emitter.emplace(*this); 6069 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6070 MaterializedType); 6071 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 6072 Type = InitialValue->getType(); 6073 } else { 6074 // No initializer, the initialization will be provided when we 6075 // initialize the declaration which performed lifetime extension. 6076 Type = getTypes().ConvertTypeForMem(MaterializedType); 6077 } 6078 6079 // Create a global variable for this lifetime-extended temporary. 6080 llvm::GlobalValue::LinkageTypes Linkage = 6081 getLLVMLinkageVarDefinition(VD, Constant); 6082 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6083 const VarDecl *InitVD; 6084 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6085 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6086 // Temporaries defined inside a class get linkonce_odr linkage because the 6087 // class can be defined in multiple translation units. 6088 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6089 } else { 6090 // There is no need for this temporary to have external linkage if the 6091 // VarDecl has external linkage. 6092 Linkage = llvm::GlobalVariable::InternalLinkage; 6093 } 6094 } 6095 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6096 auto *GV = new llvm::GlobalVariable( 6097 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6098 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6099 if (emitter) emitter->finalize(GV); 6100 // Don't assign dllimport or dllexport to local linkage globals. 6101 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6102 setGVProperties(GV, VD); 6103 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6104 // The reference temporary should never be dllexport. 6105 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6106 } 6107 GV->setAlignment(Align.getAsAlign()); 6108 if (supportsCOMDAT() && GV->isWeakForLinker()) 6109 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6110 if (VD->getTLSKind()) 6111 setTLSMode(GV, *VD); 6112 llvm::Constant *CV = GV; 6113 if (AddrSpace != LangAS::Default) 6114 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6115 *this, GV, AddrSpace, LangAS::Default, 6116 Type->getPointerTo( 6117 getContext().getTargetAddressSpace(LangAS::Default))); 6118 6119 // Update the map with the new temporary. If we created a placeholder above, 6120 // replace it with the new global now. 6121 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6122 if (Entry) { 6123 Entry->replaceAllUsesWith( 6124 llvm::ConstantExpr::getBitCast(CV, Entry->getType())); 6125 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6126 } 6127 Entry = CV; 6128 6129 return ConstantAddress(CV, Type, Align); 6130 } 6131 6132 /// EmitObjCPropertyImplementations - Emit information for synthesized 6133 /// properties for an implementation. 6134 void CodeGenModule::EmitObjCPropertyImplementations(const 6135 ObjCImplementationDecl *D) { 6136 for (const auto *PID : D->property_impls()) { 6137 // Dynamic is just for type-checking. 6138 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6139 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6140 6141 // Determine which methods need to be implemented, some may have 6142 // been overridden. Note that ::isPropertyAccessor is not the method 6143 // we want, that just indicates if the decl came from a 6144 // property. What we want to know is if the method is defined in 6145 // this implementation. 6146 auto *Getter = PID->getGetterMethodDecl(); 6147 if (!Getter || Getter->isSynthesizedAccessorStub()) 6148 CodeGenFunction(*this).GenerateObjCGetter( 6149 const_cast<ObjCImplementationDecl *>(D), PID); 6150 auto *Setter = PID->getSetterMethodDecl(); 6151 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6152 CodeGenFunction(*this).GenerateObjCSetter( 6153 const_cast<ObjCImplementationDecl *>(D), PID); 6154 } 6155 } 6156 } 6157 6158 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6159 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6160 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6161 ivar; ivar = ivar->getNextIvar()) 6162 if (ivar->getType().isDestructedType()) 6163 return true; 6164 6165 return false; 6166 } 6167 6168 static bool AllTrivialInitializers(CodeGenModule &CGM, 6169 ObjCImplementationDecl *D) { 6170 CodeGenFunction CGF(CGM); 6171 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6172 E = D->init_end(); B != E; ++B) { 6173 CXXCtorInitializer *CtorInitExp = *B; 6174 Expr *Init = CtorInitExp->getInit(); 6175 if (!CGF.isTrivialInitializer(Init)) 6176 return false; 6177 } 6178 return true; 6179 } 6180 6181 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6182 /// for an implementation. 6183 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6184 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6185 if (needsDestructMethod(D)) { 6186 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6187 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6188 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6189 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6190 getContext().VoidTy, nullptr, D, 6191 /*isInstance=*/true, /*isVariadic=*/false, 6192 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6193 /*isImplicitlyDeclared=*/true, 6194 /*isDefined=*/false, ObjCMethodDecl::Required); 6195 D->addInstanceMethod(DTORMethod); 6196 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6197 D->setHasDestructors(true); 6198 } 6199 6200 // If the implementation doesn't have any ivar initializers, we don't need 6201 // a .cxx_construct. 6202 if (D->getNumIvarInitializers() == 0 || 6203 AllTrivialInitializers(*this, D)) 6204 return; 6205 6206 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6207 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6208 // The constructor returns 'self'. 6209 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6210 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6211 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6212 /*isVariadic=*/false, 6213 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6214 /*isImplicitlyDeclared=*/true, 6215 /*isDefined=*/false, ObjCMethodDecl::Required); 6216 D->addInstanceMethod(CTORMethod); 6217 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6218 D->setHasNonZeroConstructors(true); 6219 } 6220 6221 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6222 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6223 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 6224 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 6225 ErrorUnsupported(LSD, "linkage spec"); 6226 return; 6227 } 6228 6229 EmitDeclContext(LSD); 6230 } 6231 6232 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6233 std::unique_ptr<CodeGenFunction> &CurCGF = 6234 GlobalTopLevelStmtBlockInFlight.first; 6235 6236 // We emitted a top-level stmt but after it there is initialization. 6237 // Stop squashing the top-level stmts into a single function. 6238 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6239 CurCGF->FinishFunction(D->getEndLoc()); 6240 CurCGF = nullptr; 6241 } 6242 6243 if (!CurCGF) { 6244 // void __stmts__N(void) 6245 // FIXME: Ask the ABI name mangler to pick a name. 6246 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6247 FunctionArgList Args; 6248 QualType RetTy = getContext().VoidTy; 6249 const CGFunctionInfo &FnInfo = 6250 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6251 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6252 llvm::Function *Fn = llvm::Function::Create( 6253 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6254 6255 CurCGF.reset(new CodeGenFunction(*this)); 6256 GlobalTopLevelStmtBlockInFlight.second = D; 6257 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6258 D->getBeginLoc(), D->getBeginLoc()); 6259 CXXGlobalInits.push_back(Fn); 6260 } 6261 6262 CurCGF->EmitStmt(D->getStmt()); 6263 } 6264 6265 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6266 for (auto *I : DC->decls()) { 6267 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6268 // are themselves considered "top-level", so EmitTopLevelDecl on an 6269 // ObjCImplDecl does not recursively visit them. We need to do that in 6270 // case they're nested inside another construct (LinkageSpecDecl / 6271 // ExportDecl) that does stop them from being considered "top-level". 6272 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6273 for (auto *M : OID->methods()) 6274 EmitTopLevelDecl(M); 6275 } 6276 6277 EmitTopLevelDecl(I); 6278 } 6279 } 6280 6281 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6282 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6283 // Ignore dependent declarations. 6284 if (D->isTemplated()) 6285 return; 6286 6287 // Consteval function shouldn't be emitted. 6288 if (auto *FD = dyn_cast<FunctionDecl>(D)) 6289 if (FD->isConsteval()) 6290 return; 6291 6292 switch (D->getKind()) { 6293 case Decl::CXXConversion: 6294 case Decl::CXXMethod: 6295 case Decl::Function: 6296 EmitGlobal(cast<FunctionDecl>(D)); 6297 // Always provide some coverage mapping 6298 // even for the functions that aren't emitted. 6299 AddDeferredUnusedCoverageMapping(D); 6300 break; 6301 6302 case Decl::CXXDeductionGuide: 6303 // Function-like, but does not result in code emission. 6304 break; 6305 6306 case Decl::Var: 6307 case Decl::Decomposition: 6308 case Decl::VarTemplateSpecialization: 6309 EmitGlobal(cast<VarDecl>(D)); 6310 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6311 for (auto *B : DD->bindings()) 6312 if (auto *HD = B->getHoldingVar()) 6313 EmitGlobal(HD); 6314 break; 6315 6316 // Indirect fields from global anonymous structs and unions can be 6317 // ignored; only the actual variable requires IR gen support. 6318 case Decl::IndirectField: 6319 break; 6320 6321 // C++ Decls 6322 case Decl::Namespace: 6323 EmitDeclContext(cast<NamespaceDecl>(D)); 6324 break; 6325 case Decl::ClassTemplateSpecialization: { 6326 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6327 if (CGDebugInfo *DI = getModuleDebugInfo()) 6328 if (Spec->getSpecializationKind() == 6329 TSK_ExplicitInstantiationDefinition && 6330 Spec->hasDefinition()) 6331 DI->completeTemplateDefinition(*Spec); 6332 } [[fallthrough]]; 6333 case Decl::CXXRecord: { 6334 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6335 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6336 if (CRD->hasDefinition()) 6337 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6338 if (auto *ES = D->getASTContext().getExternalSource()) 6339 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6340 DI->completeUnusedClass(*CRD); 6341 } 6342 // Emit any static data members, they may be definitions. 6343 for (auto *I : CRD->decls()) 6344 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6345 EmitTopLevelDecl(I); 6346 break; 6347 } 6348 // No code generation needed. 6349 case Decl::UsingShadow: 6350 case Decl::ClassTemplate: 6351 case Decl::VarTemplate: 6352 case Decl::Concept: 6353 case Decl::VarTemplatePartialSpecialization: 6354 case Decl::FunctionTemplate: 6355 case Decl::TypeAliasTemplate: 6356 case Decl::Block: 6357 case Decl::Empty: 6358 case Decl::Binding: 6359 break; 6360 case Decl::Using: // using X; [C++] 6361 if (CGDebugInfo *DI = getModuleDebugInfo()) 6362 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6363 break; 6364 case Decl::UsingEnum: // using enum X; [C++] 6365 if (CGDebugInfo *DI = getModuleDebugInfo()) 6366 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6367 break; 6368 case Decl::NamespaceAlias: 6369 if (CGDebugInfo *DI = getModuleDebugInfo()) 6370 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6371 break; 6372 case Decl::UsingDirective: // using namespace X; [C++] 6373 if (CGDebugInfo *DI = getModuleDebugInfo()) 6374 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6375 break; 6376 case Decl::CXXConstructor: 6377 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6378 break; 6379 case Decl::CXXDestructor: 6380 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6381 break; 6382 6383 case Decl::StaticAssert: 6384 // Nothing to do. 6385 break; 6386 6387 // Objective-C Decls 6388 6389 // Forward declarations, no (immediate) code generation. 6390 case Decl::ObjCInterface: 6391 case Decl::ObjCCategory: 6392 break; 6393 6394 case Decl::ObjCProtocol: { 6395 auto *Proto = cast<ObjCProtocolDecl>(D); 6396 if (Proto->isThisDeclarationADefinition()) 6397 ObjCRuntime->GenerateProtocol(Proto); 6398 break; 6399 } 6400 6401 case Decl::ObjCCategoryImpl: 6402 // Categories have properties but don't support synthesize so we 6403 // can ignore them here. 6404 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6405 break; 6406 6407 case Decl::ObjCImplementation: { 6408 auto *OMD = cast<ObjCImplementationDecl>(D); 6409 EmitObjCPropertyImplementations(OMD); 6410 EmitObjCIvarInitializations(OMD); 6411 ObjCRuntime->GenerateClass(OMD); 6412 // Emit global variable debug information. 6413 if (CGDebugInfo *DI = getModuleDebugInfo()) 6414 if (getCodeGenOpts().hasReducedDebugInfo()) 6415 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6416 OMD->getClassInterface()), OMD->getLocation()); 6417 break; 6418 } 6419 case Decl::ObjCMethod: { 6420 auto *OMD = cast<ObjCMethodDecl>(D); 6421 // If this is not a prototype, emit the body. 6422 if (OMD->getBody()) 6423 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6424 break; 6425 } 6426 case Decl::ObjCCompatibleAlias: 6427 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6428 break; 6429 6430 case Decl::PragmaComment: { 6431 const auto *PCD = cast<PragmaCommentDecl>(D); 6432 switch (PCD->getCommentKind()) { 6433 case PCK_Unknown: 6434 llvm_unreachable("unexpected pragma comment kind"); 6435 case PCK_Linker: 6436 AppendLinkerOptions(PCD->getArg()); 6437 break; 6438 case PCK_Lib: 6439 AddDependentLib(PCD->getArg()); 6440 break; 6441 case PCK_Compiler: 6442 case PCK_ExeStr: 6443 case PCK_User: 6444 break; // We ignore all of these. 6445 } 6446 break; 6447 } 6448 6449 case Decl::PragmaDetectMismatch: { 6450 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6451 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6452 break; 6453 } 6454 6455 case Decl::LinkageSpec: 6456 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6457 break; 6458 6459 case Decl::FileScopeAsm: { 6460 // File-scope asm is ignored during device-side CUDA compilation. 6461 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6462 break; 6463 // File-scope asm is ignored during device-side OpenMP compilation. 6464 if (LangOpts.OpenMPIsDevice) 6465 break; 6466 // File-scope asm is ignored during device-side SYCL compilation. 6467 if (LangOpts.SYCLIsDevice) 6468 break; 6469 auto *AD = cast<FileScopeAsmDecl>(D); 6470 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6471 break; 6472 } 6473 6474 case Decl::TopLevelStmt: 6475 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6476 break; 6477 6478 case Decl::Import: { 6479 auto *Import = cast<ImportDecl>(D); 6480 6481 // If we've already imported this module, we're done. 6482 if (!ImportedModules.insert(Import->getImportedModule())) 6483 break; 6484 6485 // Emit debug information for direct imports. 6486 if (!Import->getImportedOwningModule()) { 6487 if (CGDebugInfo *DI = getModuleDebugInfo()) 6488 DI->EmitImportDecl(*Import); 6489 } 6490 6491 // For C++ standard modules we are done - we will call the module 6492 // initializer for imported modules, and that will likewise call those for 6493 // any imports it has. 6494 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6495 !Import->getImportedOwningModule()->isModuleMapModule()) 6496 break; 6497 6498 // For clang C++ module map modules the initializers for sub-modules are 6499 // emitted here. 6500 6501 // Find all of the submodules and emit the module initializers. 6502 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6503 SmallVector<clang::Module *, 16> Stack; 6504 Visited.insert(Import->getImportedModule()); 6505 Stack.push_back(Import->getImportedModule()); 6506 6507 while (!Stack.empty()) { 6508 clang::Module *Mod = Stack.pop_back_val(); 6509 if (!EmittedModuleInitializers.insert(Mod).second) 6510 continue; 6511 6512 for (auto *D : Context.getModuleInitializers(Mod)) 6513 EmitTopLevelDecl(D); 6514 6515 // Visit the submodules of this module. 6516 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 6517 SubEnd = Mod->submodule_end(); 6518 Sub != SubEnd; ++Sub) { 6519 // Skip explicit children; they need to be explicitly imported to emit 6520 // the initializers. 6521 if ((*Sub)->IsExplicit) 6522 continue; 6523 6524 if (Visited.insert(*Sub).second) 6525 Stack.push_back(*Sub); 6526 } 6527 } 6528 break; 6529 } 6530 6531 case Decl::Export: 6532 EmitDeclContext(cast<ExportDecl>(D)); 6533 break; 6534 6535 case Decl::OMPThreadPrivate: 6536 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6537 break; 6538 6539 case Decl::OMPAllocate: 6540 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6541 break; 6542 6543 case Decl::OMPDeclareReduction: 6544 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6545 break; 6546 6547 case Decl::OMPDeclareMapper: 6548 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6549 break; 6550 6551 case Decl::OMPRequires: 6552 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6553 break; 6554 6555 case Decl::Typedef: 6556 case Decl::TypeAlias: // using foo = bar; [C++11] 6557 if (CGDebugInfo *DI = getModuleDebugInfo()) 6558 DI->EmitAndRetainType( 6559 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6560 break; 6561 6562 case Decl::Record: 6563 if (CGDebugInfo *DI = getModuleDebugInfo()) 6564 if (cast<RecordDecl>(D)->getDefinition()) 6565 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6566 break; 6567 6568 case Decl::Enum: 6569 if (CGDebugInfo *DI = getModuleDebugInfo()) 6570 if (cast<EnumDecl>(D)->getDefinition()) 6571 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 6572 break; 6573 6574 case Decl::HLSLBuffer: 6575 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 6576 break; 6577 6578 default: 6579 // Make sure we handled everything we should, every other kind is a 6580 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 6581 // function. Need to recode Decl::Kind to do that easily. 6582 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 6583 break; 6584 } 6585 } 6586 6587 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 6588 // Do we need to generate coverage mapping? 6589 if (!CodeGenOpts.CoverageMapping) 6590 return; 6591 switch (D->getKind()) { 6592 case Decl::CXXConversion: 6593 case Decl::CXXMethod: 6594 case Decl::Function: 6595 case Decl::ObjCMethod: 6596 case Decl::CXXConstructor: 6597 case Decl::CXXDestructor: { 6598 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 6599 break; 6600 SourceManager &SM = getContext().getSourceManager(); 6601 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 6602 break; 6603 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6604 if (I == DeferredEmptyCoverageMappingDecls.end()) 6605 DeferredEmptyCoverageMappingDecls[D] = true; 6606 break; 6607 } 6608 default: 6609 break; 6610 }; 6611 } 6612 6613 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 6614 // Do we need to generate coverage mapping? 6615 if (!CodeGenOpts.CoverageMapping) 6616 return; 6617 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 6618 if (Fn->isTemplateInstantiation()) 6619 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 6620 } 6621 auto I = DeferredEmptyCoverageMappingDecls.find(D); 6622 if (I == DeferredEmptyCoverageMappingDecls.end()) 6623 DeferredEmptyCoverageMappingDecls[D] = false; 6624 else 6625 I->second = false; 6626 } 6627 6628 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 6629 // We call takeVector() here to avoid use-after-free. 6630 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 6631 // we deserialize function bodies to emit coverage info for them, and that 6632 // deserializes more declarations. How should we handle that case? 6633 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 6634 if (!Entry.second) 6635 continue; 6636 const Decl *D = Entry.first; 6637 switch (D->getKind()) { 6638 case Decl::CXXConversion: 6639 case Decl::CXXMethod: 6640 case Decl::Function: 6641 case Decl::ObjCMethod: { 6642 CodeGenPGO PGO(*this); 6643 GlobalDecl GD(cast<FunctionDecl>(D)); 6644 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6645 getFunctionLinkage(GD)); 6646 break; 6647 } 6648 case Decl::CXXConstructor: { 6649 CodeGenPGO PGO(*this); 6650 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 6651 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6652 getFunctionLinkage(GD)); 6653 break; 6654 } 6655 case Decl::CXXDestructor: { 6656 CodeGenPGO PGO(*this); 6657 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 6658 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 6659 getFunctionLinkage(GD)); 6660 break; 6661 } 6662 default: 6663 break; 6664 }; 6665 } 6666 } 6667 6668 void CodeGenModule::EmitMainVoidAlias() { 6669 // In order to transition away from "__original_main" gracefully, emit an 6670 // alias for "main" in the no-argument case so that libc can detect when 6671 // new-style no-argument main is in used. 6672 if (llvm::Function *F = getModule().getFunction("main")) { 6673 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 6674 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 6675 auto *GA = llvm::GlobalAlias::create("__main_void", F); 6676 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 6677 } 6678 } 6679 } 6680 6681 /// Turns the given pointer into a constant. 6682 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 6683 const void *Ptr) { 6684 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 6685 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 6686 return llvm::ConstantInt::get(i64, PtrInt); 6687 } 6688 6689 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 6690 llvm::NamedMDNode *&GlobalMetadata, 6691 GlobalDecl D, 6692 llvm::GlobalValue *Addr) { 6693 if (!GlobalMetadata) 6694 GlobalMetadata = 6695 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 6696 6697 // TODO: should we report variant information for ctors/dtors? 6698 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 6699 llvm::ConstantAsMetadata::get(GetPointerConstant( 6700 CGM.getLLVMContext(), D.getDecl()))}; 6701 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 6702 } 6703 6704 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 6705 llvm::GlobalValue *CppFunc) { 6706 // Store the list of ifuncs we need to replace uses in. 6707 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 6708 // List of ConstantExprs that we should be able to delete when we're done 6709 // here. 6710 llvm::SmallVector<llvm::ConstantExpr *> CEs; 6711 6712 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 6713 if (Elem == CppFunc) 6714 return false; 6715 6716 // First make sure that all users of this are ifuncs (or ifuncs via a 6717 // bitcast), and collect the list of ifuncs and CEs so we can work on them 6718 // later. 6719 for (llvm::User *User : Elem->users()) { 6720 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 6721 // ifunc directly. In any other case, just give up, as we don't know what we 6722 // could break by changing those. 6723 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 6724 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 6725 return false; 6726 6727 for (llvm::User *CEUser : ConstExpr->users()) { 6728 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 6729 IFuncs.push_back(IFunc); 6730 } else { 6731 return false; 6732 } 6733 } 6734 CEs.push_back(ConstExpr); 6735 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 6736 IFuncs.push_back(IFunc); 6737 } else { 6738 // This user is one we don't know how to handle, so fail redirection. This 6739 // will result in an ifunc retaining a resolver name that will ultimately 6740 // fail to be resolved to a defined function. 6741 return false; 6742 } 6743 } 6744 6745 // Now we know this is a valid case where we can do this alias replacement, we 6746 // need to remove all of the references to Elem (and the bitcasts!) so we can 6747 // delete it. 6748 for (llvm::GlobalIFunc *IFunc : IFuncs) 6749 IFunc->setResolver(nullptr); 6750 for (llvm::ConstantExpr *ConstExpr : CEs) 6751 ConstExpr->destroyConstant(); 6752 6753 // We should now be out of uses for the 'old' version of this function, so we 6754 // can erase it as well. 6755 Elem->eraseFromParent(); 6756 6757 for (llvm::GlobalIFunc *IFunc : IFuncs) { 6758 // The type of the resolver is always just a function-type that returns the 6759 // type of the IFunc, so create that here. If the type of the actual 6760 // resolver doesn't match, it just gets bitcast to the right thing. 6761 auto *ResolverTy = 6762 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 6763 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 6764 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 6765 IFunc->setResolver(Resolver); 6766 } 6767 return true; 6768 } 6769 6770 /// For each function which is declared within an extern "C" region and marked 6771 /// as 'used', but has internal linkage, create an alias from the unmangled 6772 /// name to the mangled name if possible. People expect to be able to refer 6773 /// to such functions with an unmangled name from inline assembly within the 6774 /// same translation unit. 6775 void CodeGenModule::EmitStaticExternCAliases() { 6776 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 6777 return; 6778 for (auto &I : StaticExternCValues) { 6779 IdentifierInfo *Name = I.first; 6780 llvm::GlobalValue *Val = I.second; 6781 6782 // If Val is null, that implies there were multiple declarations that each 6783 // had a claim to the unmangled name. In this case, generation of the alias 6784 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 6785 if (!Val) 6786 break; 6787 6788 llvm::GlobalValue *ExistingElem = 6789 getModule().getNamedValue(Name->getName()); 6790 6791 // If there is either not something already by this name, or we were able to 6792 // replace all uses from IFuncs, create the alias. 6793 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 6794 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 6795 } 6796 } 6797 6798 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 6799 GlobalDecl &Result) const { 6800 auto Res = Manglings.find(MangledName); 6801 if (Res == Manglings.end()) 6802 return false; 6803 Result = Res->getValue(); 6804 return true; 6805 } 6806 6807 /// Emits metadata nodes associating all the global values in the 6808 /// current module with the Decls they came from. This is useful for 6809 /// projects using IR gen as a subroutine. 6810 /// 6811 /// Since there's currently no way to associate an MDNode directly 6812 /// with an llvm::GlobalValue, we create a global named metadata 6813 /// with the name 'clang.global.decl.ptrs'. 6814 void CodeGenModule::EmitDeclMetadata() { 6815 llvm::NamedMDNode *GlobalMetadata = nullptr; 6816 6817 for (auto &I : MangledDeclNames) { 6818 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 6819 // Some mangled names don't necessarily have an associated GlobalValue 6820 // in this module, e.g. if we mangled it for DebugInfo. 6821 if (Addr) 6822 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 6823 } 6824 } 6825 6826 /// Emits metadata nodes for all the local variables in the current 6827 /// function. 6828 void CodeGenFunction::EmitDeclMetadata() { 6829 if (LocalDeclMap.empty()) return; 6830 6831 llvm::LLVMContext &Context = getLLVMContext(); 6832 6833 // Find the unique metadata ID for this name. 6834 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 6835 6836 llvm::NamedMDNode *GlobalMetadata = nullptr; 6837 6838 for (auto &I : LocalDeclMap) { 6839 const Decl *D = I.first; 6840 llvm::Value *Addr = I.second.getPointer(); 6841 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 6842 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 6843 Alloca->setMetadata( 6844 DeclPtrKind, llvm::MDNode::get( 6845 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 6846 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 6847 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 6848 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 6849 } 6850 } 6851 } 6852 6853 void CodeGenModule::EmitVersionIdentMetadata() { 6854 llvm::NamedMDNode *IdentMetadata = 6855 TheModule.getOrInsertNamedMetadata("llvm.ident"); 6856 std::string Version = getClangFullVersion(); 6857 llvm::LLVMContext &Ctx = TheModule.getContext(); 6858 6859 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 6860 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 6861 } 6862 6863 void CodeGenModule::EmitCommandLineMetadata() { 6864 llvm::NamedMDNode *CommandLineMetadata = 6865 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 6866 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 6867 llvm::LLVMContext &Ctx = TheModule.getContext(); 6868 6869 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 6870 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 6871 } 6872 6873 void CodeGenModule::EmitCoverageFile() { 6874 if (getCodeGenOpts().CoverageDataFile.empty() && 6875 getCodeGenOpts().CoverageNotesFile.empty()) 6876 return; 6877 6878 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 6879 if (!CUNode) 6880 return; 6881 6882 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 6883 llvm::LLVMContext &Ctx = TheModule.getContext(); 6884 auto *CoverageDataFile = 6885 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 6886 auto *CoverageNotesFile = 6887 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 6888 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 6889 llvm::MDNode *CU = CUNode->getOperand(i); 6890 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 6891 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 6892 } 6893 } 6894 6895 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 6896 bool ForEH) { 6897 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 6898 // FIXME: should we even be calling this method if RTTI is disabled 6899 // and it's not for EH? 6900 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice || 6901 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && 6902 getTriple().isNVPTX())) 6903 return llvm::Constant::getNullValue(Int8PtrTy); 6904 6905 if (ForEH && Ty->isObjCObjectPointerType() && 6906 LangOpts.ObjCRuntime.isGNUFamily()) 6907 return ObjCRuntime->GetEHType(Ty); 6908 6909 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 6910 } 6911 6912 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 6913 // Do not emit threadprivates in simd-only mode. 6914 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 6915 return; 6916 for (auto RefExpr : D->varlists()) { 6917 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 6918 bool PerformInit = 6919 VD->getAnyInitializer() && 6920 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 6921 /*ForRef=*/false); 6922 6923 Address Addr(GetAddrOfGlobalVar(VD), 6924 getTypes().ConvertTypeForMem(VD->getType()), 6925 getContext().getDeclAlign(VD)); 6926 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 6927 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 6928 CXXGlobalInits.push_back(InitFunction); 6929 } 6930 } 6931 6932 llvm::Metadata * 6933 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 6934 StringRef Suffix) { 6935 if (auto *FnType = T->getAs<FunctionProtoType>()) 6936 T = getContext().getFunctionType( 6937 FnType->getReturnType(), FnType->getParamTypes(), 6938 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 6939 6940 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 6941 if (InternalId) 6942 return InternalId; 6943 6944 if (isExternallyVisible(T->getLinkage())) { 6945 std::string OutName; 6946 llvm::raw_string_ostream Out(OutName); 6947 getCXXABI().getMangleContext().mangleTypeName(T, Out); 6948 Out << Suffix; 6949 6950 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 6951 } else { 6952 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 6953 llvm::ArrayRef<llvm::Metadata *>()); 6954 } 6955 6956 return InternalId; 6957 } 6958 6959 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 6960 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 6961 } 6962 6963 llvm::Metadata * 6964 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 6965 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 6966 } 6967 6968 // Generalize pointer types to a void pointer with the qualifiers of the 6969 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 6970 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 6971 // 'void *'. 6972 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 6973 if (!Ty->isPointerType()) 6974 return Ty; 6975 6976 return Ctx.getPointerType( 6977 QualType(Ctx.VoidTy).withCVRQualifiers( 6978 Ty->getPointeeType().getCVRQualifiers())); 6979 } 6980 6981 // Apply type generalization to a FunctionType's return and argument types 6982 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 6983 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 6984 SmallVector<QualType, 8> GeneralizedParams; 6985 for (auto &Param : FnType->param_types()) 6986 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 6987 6988 return Ctx.getFunctionType( 6989 GeneralizeType(Ctx, FnType->getReturnType()), 6990 GeneralizedParams, FnType->getExtProtoInfo()); 6991 } 6992 6993 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 6994 return Ctx.getFunctionNoProtoType( 6995 GeneralizeType(Ctx, FnType->getReturnType())); 6996 6997 llvm_unreachable("Encountered unknown FunctionType"); 6998 } 6999 7000 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7001 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7002 GeneralizedMetadataIdMap, ".generalized"); 7003 } 7004 7005 /// Returns whether this module needs the "all-vtables" type identifier. 7006 bool CodeGenModule::NeedAllVtablesTypeId() const { 7007 // Returns true if at least one of vtable-based CFI checkers is enabled and 7008 // is not in the trapping mode. 7009 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7010 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7011 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7012 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7013 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7014 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7015 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7016 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7017 } 7018 7019 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7020 CharUnits Offset, 7021 const CXXRecordDecl *RD) { 7022 llvm::Metadata *MD = 7023 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7024 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7025 7026 if (CodeGenOpts.SanitizeCfiCrossDso) 7027 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7028 VTable->addTypeMetadata(Offset.getQuantity(), 7029 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7030 7031 if (NeedAllVtablesTypeId()) { 7032 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7033 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7034 } 7035 } 7036 7037 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7038 if (!SanStats) 7039 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7040 7041 return *SanStats; 7042 } 7043 7044 llvm::Value * 7045 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7046 CodeGenFunction &CGF) { 7047 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7048 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7049 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7050 auto *Call = CGF.EmitRuntimeCall( 7051 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7052 return Call; 7053 } 7054 7055 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7056 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7057 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7058 /* forPointeeType= */ true); 7059 } 7060 7061 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7062 LValueBaseInfo *BaseInfo, 7063 TBAAAccessInfo *TBAAInfo, 7064 bool forPointeeType) { 7065 if (TBAAInfo) 7066 *TBAAInfo = getTBAAAccessInfo(T); 7067 7068 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7069 // that doesn't return the information we need to compute BaseInfo. 7070 7071 // Honor alignment typedef attributes even on incomplete types. 7072 // We also honor them straight for C++ class types, even as pointees; 7073 // there's an expressivity gap here. 7074 if (auto TT = T->getAs<TypedefType>()) { 7075 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7076 if (BaseInfo) 7077 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7078 return getContext().toCharUnitsFromBits(Align); 7079 } 7080 } 7081 7082 bool AlignForArray = T->isArrayType(); 7083 7084 // Analyze the base element type, so we don't get confused by incomplete 7085 // array types. 7086 T = getContext().getBaseElementType(T); 7087 7088 if (T->isIncompleteType()) { 7089 // We could try to replicate the logic from 7090 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7091 // type is incomplete, so it's impossible to test. We could try to reuse 7092 // getTypeAlignIfKnown, but that doesn't return the information we need 7093 // to set BaseInfo. So just ignore the possibility that the alignment is 7094 // greater than one. 7095 if (BaseInfo) 7096 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7097 return CharUnits::One(); 7098 } 7099 7100 if (BaseInfo) 7101 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7102 7103 CharUnits Alignment; 7104 const CXXRecordDecl *RD; 7105 if (T.getQualifiers().hasUnaligned()) { 7106 Alignment = CharUnits::One(); 7107 } else if (forPointeeType && !AlignForArray && 7108 (RD = T->getAsCXXRecordDecl())) { 7109 // For C++ class pointees, we don't know whether we're pointing at a 7110 // base or a complete object, so we generally need to use the 7111 // non-virtual alignment. 7112 Alignment = getClassPointerAlignment(RD); 7113 } else { 7114 Alignment = getContext().getTypeAlignInChars(T); 7115 } 7116 7117 // Cap to the global maximum type alignment unless the alignment 7118 // was somehow explicit on the type. 7119 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7120 if (Alignment.getQuantity() > MaxAlign && 7121 !getContext().isAlignmentRequired(T)) 7122 Alignment = CharUnits::fromQuantity(MaxAlign); 7123 } 7124 return Alignment; 7125 } 7126 7127 bool CodeGenModule::stopAutoInit() { 7128 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7129 if (StopAfter) { 7130 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7131 // used 7132 if (NumAutoVarInit >= StopAfter) { 7133 return true; 7134 } 7135 if (!NumAutoVarInit) { 7136 unsigned DiagID = getDiags().getCustomDiagID( 7137 DiagnosticsEngine::Warning, 7138 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7139 "number of times ftrivial-auto-var-init=%1 gets applied."); 7140 getDiags().Report(DiagID) 7141 << StopAfter 7142 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7143 LangOptions::TrivialAutoVarInitKind::Zero 7144 ? "zero" 7145 : "pattern"); 7146 } 7147 ++NumAutoVarInit; 7148 } 7149 return false; 7150 } 7151 7152 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7153 const Decl *D) const { 7154 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7155 // postfix beginning with '.' since the symbol name can be demangled. 7156 if (LangOpts.HIP) 7157 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7158 else 7159 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7160 7161 // If the CUID is not specified we try to generate a unique postfix. 7162 if (getLangOpts().CUID.empty()) { 7163 SourceManager &SM = getContext().getSourceManager(); 7164 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7165 assert(PLoc.isValid() && "Source location is expected to be valid."); 7166 7167 // Get the hash of the user defined macros. 7168 llvm::MD5 Hash; 7169 llvm::MD5::MD5Result Result; 7170 for (const auto &Arg : PreprocessorOpts.Macros) 7171 Hash.update(Arg.first); 7172 Hash.final(Result); 7173 7174 // Get the UniqueID for the file containing the decl. 7175 llvm::sys::fs::UniqueID ID; 7176 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7177 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7178 assert(PLoc.isValid() && "Source location is expected to be valid."); 7179 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7180 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7181 << PLoc.getFilename() << EC.message(); 7182 } 7183 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7184 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7185 } else { 7186 OS << getContext().getCUIDHash(); 7187 } 7188 } 7189 7190 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7191 assert(DeferredDeclsToEmit.empty() && 7192 "Should have emitted all decls deferred to emit."); 7193 assert(NewBuilder->DeferredDecls.empty() && 7194 "Newly created module should not have deferred decls"); 7195 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7196 7197 assert(NewBuilder->DeferredVTables.empty() && 7198 "Newly created module should not have deferred vtables"); 7199 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7200 7201 assert(NewBuilder->MangledDeclNames.empty() && 7202 "Newly created module should not have mangled decl names"); 7203 assert(NewBuilder->Manglings.empty() && 7204 "Newly created module should not have manglings"); 7205 NewBuilder->Manglings = std::move(Manglings); 7206 7207 assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied"); 7208 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7209 7210 NewBuilder->TBAA = std::move(TBAA); 7211 7212 assert(NewBuilder->EmittedDeferredDecls.empty() && 7213 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7214 7215 NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls); 7216 7217 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7218 } 7219