xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cd2f6bbd5c12972328f006a07353995b269dad44)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGObjCRuntime.h"
21 #include "CGOpenCLRuntime.h"
22 #include "CGOpenMPRuntime.h"
23 #include "CodeGenFunction.h"
24 #include "CodeGenPGO.h"
25 #include "CodeGenTBAA.h"
26 #include "CoverageMappingGen.h"
27 #include "TargetInfo.h"
28 #include "clang/AST/ASTContext.h"
29 #include "clang/AST/CharUnits.h"
30 #include "clang/AST/DeclCXX.h"
31 #include "clang/AST/DeclObjC.h"
32 #include "clang/AST/DeclTemplate.h"
33 #include "clang/AST/Mangle.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/RecursiveASTVisitor.h"
36 #include "clang/Basic/Builtins.h"
37 #include "clang/Basic/CharInfo.h"
38 #include "clang/Basic/Diagnostic.h"
39 #include "clang/Basic/Module.h"
40 #include "clang/Basic/SourceManager.h"
41 #include "clang/Basic/TargetInfo.h"
42 #include "clang/Basic/Version.h"
43 #include "clang/Frontend/CodeGenOptions.h"
44 #include "clang/Sema/SemaDiagnostic.h"
45 #include "llvm/ADT/APSInt.h"
46 #include "llvm/ADT/Triple.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/ProfileData/InstrProfReader.h"
54 #include "llvm/Support/ConvertUTF.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/MD5.h"
57 
58 using namespace clang;
59 using namespace CodeGen;
60 
61 static const char AnnotationSection[] = "llvm.metadata";
62 
63 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
64   switch (CGM.getTarget().getCXXABI().getKind()) {
65   case TargetCXXABI::GenericAArch64:
66   case TargetCXXABI::GenericARM:
67   case TargetCXXABI::iOS:
68   case TargetCXXABI::iOS64:
69   case TargetCXXABI::WatchOS:
70   case TargetCXXABI::GenericMIPS:
71   case TargetCXXABI::GenericItanium:
72   case TargetCXXABI::WebAssembly:
73     return CreateItaniumCXXABI(CGM);
74   case TargetCXXABI::Microsoft:
75     return CreateMicrosoftCXXABI(CGM);
76   }
77 
78   llvm_unreachable("invalid C++ ABI kind");
79 }
80 
81 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO,
82                              const PreprocessorOptions &PPO,
83                              const CodeGenOptions &CGO, llvm::Module &M,
84                              DiagnosticsEngine &diags,
85                              CoverageSourceInfo *CoverageInfo)
86     : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO),
87       PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
88       Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
89       VMContext(M.getContext()), TBAA(nullptr), TheTargetCodeGenInfo(nullptr),
90       Types(*this), VTables(*this), ObjCRuntime(nullptr),
91       OpenCLRuntime(nullptr), OpenMPRuntime(nullptr), CUDARuntime(nullptr),
92       DebugInfo(nullptr), ObjCData(nullptr),
93       NoObjCARCExceptionsMetadata(nullptr), PGOReader(nullptr),
94       CFConstantStringClassRef(nullptr), ConstantStringClassRef(nullptr),
95       NSConstantStringType(nullptr), NSConcreteGlobalBlock(nullptr),
96       NSConcreteStackBlock(nullptr), BlockObjectAssign(nullptr),
97       BlockObjectDispose(nullptr), BlockDescriptorType(nullptr),
98       GenericBlockLiteralType(nullptr), LifetimeStartFn(nullptr),
99       LifetimeEndFn(nullptr), SanitizerMD(new SanitizerMetadata(*this)) {
100 
101   // Initialize the type cache.
102   llvm::LLVMContext &LLVMContext = M.getContext();
103   VoidTy = llvm::Type::getVoidTy(LLVMContext);
104   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
105   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
106   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108   FloatTy = llvm::Type::getFloatTy(LLVMContext);
109   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
110   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
111   PointerAlignInBytes =
112     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
113   IntAlignInBytes =
114     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
115   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
116   IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
117   Int8PtrTy = Int8Ty->getPointerTo(0);
118   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
119 
120   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
121   BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC();
122 
123   if (LangOpts.ObjC1)
124     createObjCRuntime();
125   if (LangOpts.OpenCL)
126     createOpenCLRuntime();
127   if (LangOpts.OpenMP)
128     createOpenMPRuntime();
129   if (LangOpts.CUDA)
130     createCUDARuntime();
131 
132   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
133   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
134       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
135     TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
136                            getCXXABI().getMangleContext());
137 
138   // If debug info or coverage generation is enabled, create the CGDebugInfo
139   // object.
140   if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
141       CodeGenOpts.EmitGcovArcs ||
142       CodeGenOpts.EmitGcovNotes)
143     DebugInfo = new CGDebugInfo(*this);
144 
145   Block.GlobalUniqueCount = 0;
146 
147   if (C.getLangOpts().ObjC1)
148     ObjCData = new ObjCEntrypoints();
149 
150   if (!CodeGenOpts.InstrProfileInput.empty()) {
151     auto ReaderOrErr =
152         llvm::IndexedInstrProfReader::create(CodeGenOpts.InstrProfileInput);
153     if (std::error_code EC = ReaderOrErr.getError()) {
154       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
155                                               "Could not read profile %0: %1");
156       getDiags().Report(DiagID) << CodeGenOpts.InstrProfileInput
157                                 << EC.message();
158     } else
159       PGOReader = std::move(ReaderOrErr.get());
160   }
161 
162   // If coverage mapping generation is enabled, create the
163   // CoverageMappingModuleGen object.
164   if (CodeGenOpts.CoverageMapping)
165     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
166 }
167 
168 CodeGenModule::~CodeGenModule() {
169   delete ObjCRuntime;
170   delete OpenCLRuntime;
171   delete OpenMPRuntime;
172   delete CUDARuntime;
173   delete TheTargetCodeGenInfo;
174   delete TBAA;
175   delete DebugInfo;
176   delete ObjCData;
177 }
178 
179 void CodeGenModule::createObjCRuntime() {
180   // This is just isGNUFamily(), but we want to force implementors of
181   // new ABIs to decide how best to do this.
182   switch (LangOpts.ObjCRuntime.getKind()) {
183   case ObjCRuntime::GNUstep:
184   case ObjCRuntime::GCC:
185   case ObjCRuntime::ObjFW:
186     ObjCRuntime = CreateGNUObjCRuntime(*this);
187     return;
188 
189   case ObjCRuntime::FragileMacOSX:
190   case ObjCRuntime::MacOSX:
191   case ObjCRuntime::iOS:
192   case ObjCRuntime::WatchOS:
193     ObjCRuntime = CreateMacObjCRuntime(*this);
194     return;
195   }
196   llvm_unreachable("bad runtime kind");
197 }
198 
199 void CodeGenModule::createOpenCLRuntime() {
200   OpenCLRuntime = new CGOpenCLRuntime(*this);
201 }
202 
203 void CodeGenModule::createOpenMPRuntime() {
204   OpenMPRuntime = new CGOpenMPRuntime(*this);
205 }
206 
207 void CodeGenModule::createCUDARuntime() {
208   CUDARuntime = CreateNVCUDARuntime(*this);
209 }
210 
211 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
212   Replacements[Name] = C;
213 }
214 
215 void CodeGenModule::applyReplacements() {
216   for (auto &I : Replacements) {
217     StringRef MangledName = I.first();
218     llvm::Constant *Replacement = I.second;
219     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
220     if (!Entry)
221       continue;
222     auto *OldF = cast<llvm::Function>(Entry);
223     auto *NewF = dyn_cast<llvm::Function>(Replacement);
224     if (!NewF) {
225       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
226         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
227       } else {
228         auto *CE = cast<llvm::ConstantExpr>(Replacement);
229         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
230                CE->getOpcode() == llvm::Instruction::GetElementPtr);
231         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
232       }
233     }
234 
235     // Replace old with new, but keep the old order.
236     OldF->replaceAllUsesWith(Replacement);
237     if (NewF) {
238       NewF->removeFromParent();
239       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
240                                                        NewF);
241     }
242     OldF->eraseFromParent();
243   }
244 }
245 
246 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
247   GlobalValReplacements.push_back(std::make_pair(GV, C));
248 }
249 
250 void CodeGenModule::applyGlobalValReplacements() {
251   for (auto &I : GlobalValReplacements) {
252     llvm::GlobalValue *GV = I.first;
253     llvm::Constant *C = I.second;
254 
255     GV->replaceAllUsesWith(C);
256     GV->eraseFromParent();
257   }
258 }
259 
260 // This is only used in aliases that we created and we know they have a
261 // linear structure.
262 static const llvm::GlobalObject *getAliasedGlobal(const llvm::GlobalAlias &GA) {
263   llvm::SmallPtrSet<const llvm::GlobalAlias*, 4> Visited;
264   const llvm::Constant *C = &GA;
265   for (;;) {
266     C = C->stripPointerCasts();
267     if (auto *GO = dyn_cast<llvm::GlobalObject>(C))
268       return GO;
269     // stripPointerCasts will not walk over weak aliases.
270     auto *GA2 = dyn_cast<llvm::GlobalAlias>(C);
271     if (!GA2)
272       return nullptr;
273     if (!Visited.insert(GA2).second)
274       return nullptr;
275     C = GA2->getAliasee();
276   }
277 }
278 
279 void CodeGenModule::checkAliases() {
280   // Check if the constructed aliases are well formed. It is really unfortunate
281   // that we have to do this in CodeGen, but we only construct mangled names
282   // and aliases during codegen.
283   bool Error = false;
284   DiagnosticsEngine &Diags = getDiags();
285   for (const GlobalDecl &GD : Aliases) {
286     const auto *D = cast<ValueDecl>(GD.getDecl());
287     const AliasAttr *AA = D->getAttr<AliasAttr>();
288     StringRef MangledName = getMangledName(GD);
289     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
290     auto *Alias = cast<llvm::GlobalAlias>(Entry);
291     const llvm::GlobalValue *GV = getAliasedGlobal(*Alias);
292     if (!GV) {
293       Error = true;
294       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
295     } else if (GV->isDeclaration()) {
296       Error = true;
297       Diags.Report(AA->getLocation(), diag::err_alias_to_undefined);
298     }
299 
300     llvm::Constant *Aliasee = Alias->getAliasee();
301     llvm::GlobalValue *AliaseeGV;
302     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
303       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
304     else
305       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
306 
307     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
308       StringRef AliasSection = SA->getName();
309       if (AliasSection != AliaseeGV->getSection())
310         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
311             << AliasSection;
312     }
313 
314     // We have to handle alias to weak aliases in here. LLVM itself disallows
315     // this since the object semantics would not match the IL one. For
316     // compatibility with gcc we implement it by just pointing the alias
317     // to its aliasee's aliasee. We also warn, since the user is probably
318     // expecting the link to be weak.
319     if (auto GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
320       if (GA->mayBeOverridden()) {
321         Diags.Report(AA->getLocation(), diag::warn_alias_to_weak_alias)
322             << GV->getName() << GA->getName();
323         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
324             GA->getAliasee(), Alias->getType());
325         Alias->setAliasee(Aliasee);
326       }
327     }
328   }
329   if (!Error)
330     return;
331 
332   for (const GlobalDecl &GD : Aliases) {
333     StringRef MangledName = getMangledName(GD);
334     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
335     auto *Alias = cast<llvm::GlobalAlias>(Entry);
336     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
337     Alias->eraseFromParent();
338   }
339 }
340 
341 void CodeGenModule::clear() {
342   DeferredDeclsToEmit.clear();
343   if (OpenMPRuntime)
344     OpenMPRuntime->clear();
345 }
346 
347 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
348                                        StringRef MainFile) {
349   if (!hasDiagnostics())
350     return;
351   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
352     if (MainFile.empty())
353       MainFile = "<stdin>";
354     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
355   } else
356     Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Missing
357                                                       << Mismatched;
358 }
359 
360 void CodeGenModule::Release() {
361   EmitDeferred();
362   applyGlobalValReplacements();
363   applyReplacements();
364   checkAliases();
365   EmitCXXGlobalInitFunc();
366   EmitCXXGlobalDtorFunc();
367   EmitCXXThreadLocalInitFunc();
368   if (ObjCRuntime)
369     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
370       AddGlobalCtor(ObjCInitFunction);
371   if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice &&
372       CUDARuntime) {
373     if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction())
374       AddGlobalCtor(CudaCtorFunction);
375     if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction())
376       AddGlobalDtor(CudaDtorFunction);
377   }
378   if (OpenMPRuntime)
379     if (llvm::Function *OpenMPRegistrationFunction =
380             OpenMPRuntime->emitRegistrationFunction())
381       AddGlobalCtor(OpenMPRegistrationFunction, 0);
382   if (PGOReader) {
383     getModule().setMaximumFunctionCount(PGOReader->getMaximumFunctionCount());
384     if (PGOStats.hasDiagnostics())
385       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
386   }
387   EmitCtorList(GlobalCtors, "llvm.global_ctors");
388   EmitCtorList(GlobalDtors, "llvm.global_dtors");
389   EmitGlobalAnnotations();
390   EmitStaticExternCAliases();
391   EmitDeferredUnusedCoverageMappings();
392   if (CoverageMapping)
393     CoverageMapping->emit();
394   emitLLVMUsed();
395   if (SanStats)
396     SanStats->finish();
397 
398   if (CodeGenOpts.Autolink &&
399       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
400     EmitModuleLinkOptions();
401   }
402   if (CodeGenOpts.DwarfVersion) {
403     // We actually want the latest version when there are conflicts.
404     // We can change from Warning to Latest if such mode is supported.
405     getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version",
406                               CodeGenOpts.DwarfVersion);
407   }
408   if (CodeGenOpts.EmitCodeView) {
409     // Indicate that we want CodeView in the metadata.
410     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
411   }
412   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
413     // We don't support LTO with 2 with different StrictVTablePointers
414     // FIXME: we could support it by stripping all the information introduced
415     // by StrictVTablePointers.
416 
417     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
418 
419     llvm::Metadata *Ops[2] = {
420               llvm::MDString::get(VMContext, "StrictVTablePointers"),
421               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
422                   llvm::Type::getInt32Ty(VMContext), 1))};
423 
424     getModule().addModuleFlag(llvm::Module::Require,
425                               "StrictVTablePointersRequirement",
426                               llvm::MDNode::get(VMContext, Ops));
427   }
428   if (DebugInfo)
429     // We support a single version in the linked module. The LLVM
430     // parser will drop debug info with a different version number
431     // (and warn about it, too).
432     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
433                               llvm::DEBUG_METADATA_VERSION);
434 
435   // We need to record the widths of enums and wchar_t, so that we can generate
436   // the correct build attributes in the ARM backend.
437   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
438   if (   Arch == llvm::Triple::arm
439       || Arch == llvm::Triple::armeb
440       || Arch == llvm::Triple::thumb
441       || Arch == llvm::Triple::thumbeb) {
442     // Width of wchar_t in bytes
443     uint64_t WCharWidth =
444         Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
445     getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
446 
447     // The minimum width of an enum in bytes
448     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
449     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
450   }
451 
452   if (CodeGenOpts.SanitizeCfiCrossDso) {
453     // Indicate that we want cross-DSO control flow integrity checks.
454     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
455   }
456 
457   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
458     llvm::PICLevel::Level PL = llvm::PICLevel::Default;
459     switch (PLevel) {
460     case 0: break;
461     case 1: PL = llvm::PICLevel::Small; break;
462     case 2: PL = llvm::PICLevel::Large; break;
463     default: llvm_unreachable("Invalid PIC Level");
464     }
465 
466     getModule().setPICLevel(PL);
467   }
468 
469   SimplifyPersonality();
470 
471   if (getCodeGenOpts().EmitDeclMetadata)
472     EmitDeclMetadata();
473 
474   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
475     EmitCoverageFile();
476 
477   if (DebugInfo)
478     DebugInfo->finalize();
479 
480   EmitVersionIdentMetadata();
481 
482   EmitTargetMetadata();
483 }
484 
485 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
486   // Make sure that this type is translated.
487   Types.UpdateCompletedType(TD);
488 }
489 
490 llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
491   if (!TBAA)
492     return nullptr;
493   return TBAA->getTBAAInfo(QTy);
494 }
495 
496 llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
497   if (!TBAA)
498     return nullptr;
499   return TBAA->getTBAAInfoForVTablePtr();
500 }
501 
502 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
503   if (!TBAA)
504     return nullptr;
505   return TBAA->getTBAAStructInfo(QTy);
506 }
507 
508 llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
509                                                   llvm::MDNode *AccessN,
510                                                   uint64_t O) {
511   if (!TBAA)
512     return nullptr;
513   return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
514 }
515 
516 /// Decorate the instruction with a TBAA tag. For both scalar TBAA
517 /// and struct-path aware TBAA, the tag has the same format:
518 /// base type, access type and offset.
519 /// When ConvertTypeToTag is true, we create a tag based on the scalar type.
520 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
521                                                 llvm::MDNode *TBAAInfo,
522                                                 bool ConvertTypeToTag) {
523   if (ConvertTypeToTag && TBAA)
524     Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
525                       TBAA->getTBAAScalarTagInfo(TBAAInfo));
526   else
527     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
528 }
529 
530 void CodeGenModule::DecorateInstructionWithInvariantGroup(
531     llvm::Instruction *I, const CXXRecordDecl *RD) {
532   llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
533   auto *MetaDataNode = dyn_cast<llvm::MDNode>(MD);
534   // Check if we have to wrap MDString in MDNode.
535   if (!MetaDataNode)
536     MetaDataNode = llvm::MDNode::get(getLLVMContext(), MD);
537   I->setMetadata(llvm::LLVMContext::MD_invariant_group, MetaDataNode);
538 }
539 
540 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
541   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
542   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
543 }
544 
545 /// ErrorUnsupported - Print out an error that codegen doesn't support the
546 /// specified stmt yet.
547 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
548   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
549                                                "cannot compile this %0 yet");
550   std::string Msg = Type;
551   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
552     << Msg << S->getSourceRange();
553 }
554 
555 /// ErrorUnsupported - Print out an error that codegen doesn't support the
556 /// specified decl yet.
557 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
558   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
559                                                "cannot compile this %0 yet");
560   std::string Msg = Type;
561   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
562 }
563 
564 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
565   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
566 }
567 
568 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
569                                         const NamedDecl *D) const {
570   // Internal definitions always have default visibility.
571   if (GV->hasLocalLinkage()) {
572     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
573     return;
574   }
575 
576   // Set visibility for definitions.
577   LinkageInfo LV = D->getLinkageAndVisibility();
578   if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
579     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
580 }
581 
582 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
583   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
584       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
585       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
586       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
587       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
588 }
589 
590 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
591     CodeGenOptions::TLSModel M) {
592   switch (M) {
593   case CodeGenOptions::GeneralDynamicTLSModel:
594     return llvm::GlobalVariable::GeneralDynamicTLSModel;
595   case CodeGenOptions::LocalDynamicTLSModel:
596     return llvm::GlobalVariable::LocalDynamicTLSModel;
597   case CodeGenOptions::InitialExecTLSModel:
598     return llvm::GlobalVariable::InitialExecTLSModel;
599   case CodeGenOptions::LocalExecTLSModel:
600     return llvm::GlobalVariable::LocalExecTLSModel;
601   }
602   llvm_unreachable("Invalid TLS model!");
603 }
604 
605 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
606   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
607 
608   llvm::GlobalValue::ThreadLocalMode TLM;
609   TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
610 
611   // Override the TLS model if it is explicitly specified.
612   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
613     TLM = GetLLVMTLSModel(Attr->getModel());
614   }
615 
616   GV->setThreadLocalMode(TLM);
617 }
618 
619 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
620   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
621 
622   // Some ABIs don't have constructor variants.  Make sure that base and
623   // complete constructors get mangled the same.
624   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
625     if (!getTarget().getCXXABI().hasConstructorVariants()) {
626       CXXCtorType OrigCtorType = GD.getCtorType();
627       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
628       if (OrigCtorType == Ctor_Base)
629         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
630     }
631   }
632 
633   StringRef &FoundStr = MangledDeclNames[CanonicalGD];
634   if (!FoundStr.empty())
635     return FoundStr;
636 
637   const auto *ND = cast<NamedDecl>(GD.getDecl());
638   SmallString<256> Buffer;
639   StringRef Str;
640   if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
641     llvm::raw_svector_ostream Out(Buffer);
642     if (const auto *D = dyn_cast<CXXConstructorDecl>(ND))
643       getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
644     else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND))
645       getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
646     else
647       getCXXABI().getMangleContext().mangleName(ND, Out);
648     Str = Out.str();
649   } else {
650     IdentifierInfo *II = ND->getIdentifier();
651     assert(II && "Attempt to mangle unnamed decl.");
652     Str = II->getName();
653   }
654 
655   // Keep the first result in the case of a mangling collision.
656   auto Result = Manglings.insert(std::make_pair(Str, GD));
657   return FoundStr = Result.first->first();
658 }
659 
660 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
661                                              const BlockDecl *BD) {
662   MangleContext &MangleCtx = getCXXABI().getMangleContext();
663   const Decl *D = GD.getDecl();
664 
665   SmallString<256> Buffer;
666   llvm::raw_svector_ostream Out(Buffer);
667   if (!D)
668     MangleCtx.mangleGlobalBlock(BD,
669       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
670   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
671     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
672   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
673     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
674   else
675     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
676 
677   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
678   return Result.first->first();
679 }
680 
681 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
682   return getModule().getNamedValue(Name);
683 }
684 
685 /// AddGlobalCtor - Add a function to the list that will be called before
686 /// main() runs.
687 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
688                                   llvm::Constant *AssociatedData) {
689   // FIXME: Type coercion of void()* types.
690   GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData));
691 }
692 
693 /// AddGlobalDtor - Add a function to the list that will be called
694 /// when the module is unloaded.
695 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) {
696   // FIXME: Type coercion of void()* types.
697   GlobalDtors.push_back(Structor(Priority, Dtor, nullptr));
698 }
699 
700 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
701   // Ctor function type is void()*.
702   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
703   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
704 
705   // Get the type of a ctor entry, { i32, void ()*, i8* }.
706   llvm::StructType *CtorStructTy = llvm::StructType::get(
707       Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy, nullptr);
708 
709   // Construct the constructor and destructor arrays.
710   SmallVector<llvm::Constant *, 8> Ctors;
711   for (const auto &I : Fns) {
712     llvm::Constant *S[] = {
713         llvm::ConstantInt::get(Int32Ty, I.Priority, false),
714         llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy),
715         (I.AssociatedData
716              ? llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)
717              : llvm::Constant::getNullValue(VoidPtrTy))};
718     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
719   }
720 
721   if (!Ctors.empty()) {
722     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
723     new llvm::GlobalVariable(TheModule, AT, false,
724                              llvm::GlobalValue::AppendingLinkage,
725                              llvm::ConstantArray::get(AT, Ctors),
726                              GlobalName);
727   }
728 }
729 
730 llvm::GlobalValue::LinkageTypes
731 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
732   const auto *D = cast<FunctionDecl>(GD.getDecl());
733 
734   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
735 
736   if (isa<CXXDestructorDecl>(D) &&
737       getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
738                                          GD.getDtorType())) {
739     // Destructor variants in the Microsoft C++ ABI are always internal or
740     // linkonce_odr thunks emitted on an as-needed basis.
741     return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage
742                                    : llvm::GlobalValue::LinkOnceODRLinkage;
743   }
744 
745   return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false);
746 }
747 
748 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) {
749   const auto *FD = cast<FunctionDecl>(GD.getDecl());
750 
751   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) {
752     if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) {
753       // Don't dllexport/import destructor thunks.
754       F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
755       return;
756     }
757   }
758 
759   if (FD->hasAttr<DLLImportAttr>())
760     F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
761   else if (FD->hasAttr<DLLExportAttr>())
762     F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
763   else
764     F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
765 }
766 
767 llvm::ConstantInt *
768 CodeGenModule::CreateCfiIdForTypeMetadata(llvm::Metadata *MD) {
769   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
770   if (!MDS) return nullptr;
771 
772   llvm::MD5 md5;
773   llvm::MD5::MD5Result result;
774   md5.update(MDS->getString());
775   md5.final(result);
776   uint64_t id = 0;
777   for (int i = 0; i < 8; ++i)
778     id |= static_cast<uint64_t>(result[i]) << (i * 8);
779   return llvm::ConstantInt::get(Int64Ty, id);
780 }
781 
782 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D,
783                                                     llvm::Function *F) {
784   setNonAliasAttributes(D, F);
785 }
786 
787 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
788                                               const CGFunctionInfo &Info,
789                                               llvm::Function *F) {
790   unsigned CallingConv;
791   AttributeListType AttributeList;
792   ConstructAttributeList(F->getName(), Info, D, AttributeList, CallingConv,
793                          false);
794   F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
795   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
796 }
797 
798 /// Determines whether the language options require us to model
799 /// unwind exceptions.  We treat -fexceptions as mandating this
800 /// except under the fragile ObjC ABI with only ObjC exceptions
801 /// enabled.  This means, for example, that C with -fexceptions
802 /// enables this.
803 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
804   // If exceptions are completely disabled, obviously this is false.
805   if (!LangOpts.Exceptions) return false;
806 
807   // If C++ exceptions are enabled, this is true.
808   if (LangOpts.CXXExceptions) return true;
809 
810   // If ObjC exceptions are enabled, this depends on the ABI.
811   if (LangOpts.ObjCExceptions) {
812     return LangOpts.ObjCRuntime.hasUnwindExceptions();
813   }
814 
815   return true;
816 }
817 
818 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
819                                                            llvm::Function *F) {
820   llvm::AttrBuilder B;
821 
822   if (CodeGenOpts.UnwindTables)
823     B.addAttribute(llvm::Attribute::UWTable);
824 
825   if (!hasUnwindExceptions(LangOpts))
826     B.addAttribute(llvm::Attribute::NoUnwind);
827 
828   if (LangOpts.getStackProtector() == LangOptions::SSPOn)
829     B.addAttribute(llvm::Attribute::StackProtect);
830   else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
831     B.addAttribute(llvm::Attribute::StackProtectStrong);
832   else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
833     B.addAttribute(llvm::Attribute::StackProtectReq);
834 
835   if (!D) {
836     F->addAttributes(llvm::AttributeSet::FunctionIndex,
837                      llvm::AttributeSet::get(
838                          F->getContext(),
839                          llvm::AttributeSet::FunctionIndex, B));
840     return;
841   }
842 
843   if (D->hasAttr<NakedAttr>()) {
844     // Naked implies noinline: we should not be inlining such functions.
845     B.addAttribute(llvm::Attribute::Naked);
846     B.addAttribute(llvm::Attribute::NoInline);
847   } else if (D->hasAttr<NoDuplicateAttr>()) {
848     B.addAttribute(llvm::Attribute::NoDuplicate);
849   } else if (D->hasAttr<NoInlineAttr>()) {
850     B.addAttribute(llvm::Attribute::NoInline);
851   } else if (D->hasAttr<AlwaysInlineAttr>() &&
852              !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
853                                               llvm::Attribute::NoInline)) {
854     // (noinline wins over always_inline, and we can't specify both in IR)
855     B.addAttribute(llvm::Attribute::AlwaysInline);
856   }
857 
858   if (D->hasAttr<ColdAttr>()) {
859     if (!D->hasAttr<OptimizeNoneAttr>())
860       B.addAttribute(llvm::Attribute::OptimizeForSize);
861     B.addAttribute(llvm::Attribute::Cold);
862   }
863 
864   if (D->hasAttr<MinSizeAttr>())
865     B.addAttribute(llvm::Attribute::MinSize);
866 
867   F->addAttributes(llvm::AttributeSet::FunctionIndex,
868                    llvm::AttributeSet::get(
869                        F->getContext(), llvm::AttributeSet::FunctionIndex, B));
870 
871   if (D->hasAttr<OptimizeNoneAttr>()) {
872     // OptimizeNone implies noinline; we should not be inlining such functions.
873     F->addFnAttr(llvm::Attribute::OptimizeNone);
874     F->addFnAttr(llvm::Attribute::NoInline);
875 
876     // OptimizeNone wins over OptimizeForSize, MinSize, AlwaysInline.
877     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
878     F->removeFnAttr(llvm::Attribute::MinSize);
879     assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
880            "OptimizeNone and AlwaysInline on same function!");
881 
882     // Attribute 'inlinehint' has no effect on 'optnone' functions.
883     // Explicitly remove it from the set of function attributes.
884     F->removeFnAttr(llvm::Attribute::InlineHint);
885   }
886 
887   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
888     F->setUnnamedAddr(true);
889   else if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
890     if (MD->isVirtual())
891       F->setUnnamedAddr(true);
892 
893   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
894   if (alignment)
895     F->setAlignment(alignment);
896 
897   // Some C++ ABIs require 2-byte alignment for member functions, in order to
898   // reserve a bit for differentiating between virtual and non-virtual member
899   // functions. If the current target's C++ ABI requires this and this is a
900   // member function, set its alignment accordingly.
901   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
902     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
903       F->setAlignment(2);
904   }
905 }
906 
907 void CodeGenModule::SetCommonAttributes(const Decl *D,
908                                         llvm::GlobalValue *GV) {
909   if (const auto *ND = dyn_cast_or_null<NamedDecl>(D))
910     setGlobalVisibility(GV, ND);
911   else
912     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
913 
914   if (D && D->hasAttr<UsedAttr>())
915     addUsedGlobal(GV);
916 }
917 
918 void CodeGenModule::setAliasAttributes(const Decl *D,
919                                        llvm::GlobalValue *GV) {
920   SetCommonAttributes(D, GV);
921 
922   // Process the dllexport attribute based on whether the original definition
923   // (not necessarily the aliasee) was exported.
924   if (D->hasAttr<DLLExportAttr>())
925     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
926 }
927 
928 void CodeGenModule::setNonAliasAttributes(const Decl *D,
929                                           llvm::GlobalObject *GO) {
930   SetCommonAttributes(D, GO);
931 
932   if (D)
933     if (const SectionAttr *SA = D->getAttr<SectionAttr>())
934       GO->setSection(SA->getName());
935 
936   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
937 }
938 
939 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
940                                                   llvm::Function *F,
941                                                   const CGFunctionInfo &FI) {
942   SetLLVMFunctionAttributes(D, FI, F);
943   SetLLVMFunctionAttributesForDefinition(D, F);
944 
945   F->setLinkage(llvm::Function::InternalLinkage);
946 
947   setNonAliasAttributes(D, F);
948 }
949 
950 static void setLinkageAndVisibilityForGV(llvm::GlobalValue *GV,
951                                          const NamedDecl *ND) {
952   // Set linkage and visibility in case we never see a definition.
953   LinkageInfo LV = ND->getLinkageAndVisibility();
954   if (LV.getLinkage() != ExternalLinkage) {
955     // Don't set internal linkage on declarations.
956   } else {
957     if (ND->hasAttr<DLLImportAttr>()) {
958       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
959       GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
960     } else if (ND->hasAttr<DLLExportAttr>()) {
961       GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
962       GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
963     } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) {
964       // "extern_weak" is overloaded in LLVM; we probably should have
965       // separate linkage types for this.
966       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
967     }
968 
969     // Set visibility on a declaration only if it's explicit.
970     if (LV.isVisibilityExplicit())
971       GV->setVisibility(CodeGenModule::GetLLVMVisibility(LV.getVisibility()));
972   }
973 }
974 
975 void CodeGenModule::CreateFunctionBitSetEntry(const FunctionDecl *FD,
976                                               llvm::Function *F) {
977   // Only if we are checking indirect calls.
978   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
979     return;
980 
981   // Non-static class methods are handled via vtable pointer checks elsewhere.
982   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
983     return;
984 
985   // Additionally, if building with cross-DSO support...
986   if (CodeGenOpts.SanitizeCfiCrossDso) {
987     // Don't emit entries for function declarations. In cross-DSO mode these are
988     // handled with better precision at run time.
989     if (!FD->hasBody())
990       return;
991     // Skip available_externally functions. They won't be codegen'ed in the
992     // current module anyway.
993     if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally)
994       return;
995   }
996 
997   llvm::NamedMDNode *BitsetsMD =
998       getModule().getOrInsertNamedMetadata("llvm.bitsets");
999 
1000   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
1001   llvm::Metadata *BitsetOps[] = {
1002       MD, llvm::ConstantAsMetadata::get(F),
1003       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1004   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
1005 
1006   // Emit a hash-based bit set entry for cross-DSO calls.
1007   if (CodeGenOpts.SanitizeCfiCrossDso) {
1008     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
1009       llvm::Metadata *BitsetOps2[] = {
1010           llvm::ConstantAsMetadata::get(TypeId),
1011           llvm::ConstantAsMetadata::get(F),
1012           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(Int64Ty, 0))};
1013       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
1014     }
1015   }
1016 }
1017 
1018 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
1019                                           bool IsIncompleteFunction,
1020                                           bool IsThunk) {
1021   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
1022     // If this is an intrinsic function, set the function's attributes
1023     // to the intrinsic's attributes.
1024     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
1025     return;
1026   }
1027 
1028   const auto *FD = cast<FunctionDecl>(GD.getDecl());
1029 
1030   if (!IsIncompleteFunction)
1031     SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
1032 
1033   // Add the Returned attribute for "this", except for iOS 5 and earlier
1034   // where substantial code, including the libstdc++ dylib, was compiled with
1035   // GCC and does not actually return "this".
1036   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
1037       !(getTarget().getTriple().isiOS() &&
1038         getTarget().getTriple().isOSVersionLT(6))) {
1039     assert(!F->arg_empty() &&
1040            F->arg_begin()->getType()
1041              ->canLosslesslyBitCastTo(F->getReturnType()) &&
1042            "unexpected this return");
1043     F->addAttribute(1, llvm::Attribute::Returned);
1044   }
1045 
1046   // Only a few attributes are set on declarations; these may later be
1047   // overridden by a definition.
1048 
1049   setLinkageAndVisibilityForGV(F, FD);
1050 
1051   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
1052     F->setSection(SA->getName());
1053 
1054   // A replaceable global allocation function does not act like a builtin by
1055   // default, only if it is invoked by a new-expression or delete-expression.
1056   if (FD->isReplaceableGlobalAllocationFunction())
1057     F->addAttribute(llvm::AttributeSet::FunctionIndex,
1058                     llvm::Attribute::NoBuiltin);
1059 
1060   CreateFunctionBitSetEntry(FD, F);
1061 }
1062 
1063 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
1064   assert(!GV->isDeclaration() &&
1065          "Only globals with definition can force usage.");
1066   LLVMUsed.emplace_back(GV);
1067 }
1068 
1069 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
1070   assert(!GV->isDeclaration() &&
1071          "Only globals with definition can force usage.");
1072   LLVMCompilerUsed.emplace_back(GV);
1073 }
1074 
1075 static void emitUsed(CodeGenModule &CGM, StringRef Name,
1076                      std::vector<llvm::WeakVH> &List) {
1077   // Don't create llvm.used if there is no need.
1078   if (List.empty())
1079     return;
1080 
1081   // Convert List to what ConstantArray needs.
1082   SmallVector<llvm::Constant*, 8> UsedArray;
1083   UsedArray.resize(List.size());
1084   for (unsigned i = 0, e = List.size(); i != e; ++i) {
1085     UsedArray[i] =
1086         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1087             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
1088   }
1089 
1090   if (UsedArray.empty())
1091     return;
1092   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
1093 
1094   auto *GV = new llvm::GlobalVariable(
1095       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
1096       llvm::ConstantArray::get(ATy, UsedArray), Name);
1097 
1098   GV->setSection("llvm.metadata");
1099 }
1100 
1101 void CodeGenModule::emitLLVMUsed() {
1102   emitUsed(*this, "llvm.used", LLVMUsed);
1103   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
1104 }
1105 
1106 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
1107   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
1108   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1109 }
1110 
1111 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
1112   llvm::SmallString<32> Opt;
1113   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
1114   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1115   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1116 }
1117 
1118 void CodeGenModule::AddDependentLib(StringRef Lib) {
1119   llvm::SmallString<24> Opt;
1120   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
1121   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
1122   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
1123 }
1124 
1125 /// \brief Add link options implied by the given module, including modules
1126 /// it depends on, using a postorder walk.
1127 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
1128                                     SmallVectorImpl<llvm::Metadata *> &Metadata,
1129                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
1130   // Import this module's parent.
1131   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
1132     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
1133   }
1134 
1135   // Import this module's dependencies.
1136   for (unsigned I = Mod->Imports.size(); I > 0; --I) {
1137     if (Visited.insert(Mod->Imports[I - 1]).second)
1138       addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
1139   }
1140 
1141   // Add linker options to link against the libraries/frameworks
1142   // described by this module.
1143   llvm::LLVMContext &Context = CGM.getLLVMContext();
1144   for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
1145     // Link against a framework.  Frameworks are currently Darwin only, so we
1146     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
1147     if (Mod->LinkLibraries[I-1].IsFramework) {
1148       llvm::Metadata *Args[2] = {
1149           llvm::MDString::get(Context, "-framework"),
1150           llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)};
1151 
1152       Metadata.push_back(llvm::MDNode::get(Context, Args));
1153       continue;
1154     }
1155 
1156     // Link against a library.
1157     llvm::SmallString<24> Opt;
1158     CGM.getTargetCodeGenInfo().getDependentLibraryOption(
1159       Mod->LinkLibraries[I-1].Library, Opt);
1160     auto *OptString = llvm::MDString::get(Context, Opt);
1161     Metadata.push_back(llvm::MDNode::get(Context, OptString));
1162   }
1163 }
1164 
1165 void CodeGenModule::EmitModuleLinkOptions() {
1166   // Collect the set of all of the modules we want to visit to emit link
1167   // options, which is essentially the imported modules and all of their
1168   // non-explicit child modules.
1169   llvm::SetVector<clang::Module *> LinkModules;
1170   llvm::SmallPtrSet<clang::Module *, 16> Visited;
1171   SmallVector<clang::Module *, 16> Stack;
1172 
1173   // Seed the stack with imported modules.
1174   for (Module *M : ImportedModules)
1175     if (Visited.insert(M).second)
1176       Stack.push_back(M);
1177 
1178   // Find all of the modules to import, making a little effort to prune
1179   // non-leaf modules.
1180   while (!Stack.empty()) {
1181     clang::Module *Mod = Stack.pop_back_val();
1182 
1183     bool AnyChildren = false;
1184 
1185     // Visit the submodules of this module.
1186     for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
1187                                         SubEnd = Mod->submodule_end();
1188          Sub != SubEnd; ++Sub) {
1189       // Skip explicit children; they need to be explicitly imported to be
1190       // linked against.
1191       if ((*Sub)->IsExplicit)
1192         continue;
1193 
1194       if (Visited.insert(*Sub).second) {
1195         Stack.push_back(*Sub);
1196         AnyChildren = true;
1197       }
1198     }
1199 
1200     // We didn't find any children, so add this module to the list of
1201     // modules to link against.
1202     if (!AnyChildren) {
1203       LinkModules.insert(Mod);
1204     }
1205   }
1206 
1207   // Add link options for all of the imported modules in reverse topological
1208   // order.  We don't do anything to try to order import link flags with respect
1209   // to linker options inserted by things like #pragma comment().
1210   SmallVector<llvm::Metadata *, 16> MetadataArgs;
1211   Visited.clear();
1212   for (Module *M : LinkModules)
1213     if (Visited.insert(M).second)
1214       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
1215   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
1216   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
1217 
1218   // Add the linker options metadata flag.
1219   getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
1220                             llvm::MDNode::get(getLLVMContext(),
1221                                               LinkerOptionsMetadata));
1222 }
1223 
1224 void CodeGenModule::EmitDeferred() {
1225   // Emit code for any potentially referenced deferred decls.  Since a
1226   // previously unused static decl may become used during the generation of code
1227   // for a static function, iterate until no changes are made.
1228 
1229   if (!DeferredVTables.empty()) {
1230     EmitDeferredVTables();
1231 
1232     // Emitting a v-table doesn't directly cause more v-tables to
1233     // become deferred, although it can cause functions to be
1234     // emitted that then need those v-tables.
1235     assert(DeferredVTables.empty());
1236   }
1237 
1238   // Stop if we're out of both deferred v-tables and deferred declarations.
1239   if (DeferredDeclsToEmit.empty())
1240     return;
1241 
1242   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
1243   // work, it will not interfere with this.
1244   std::vector<DeferredGlobal> CurDeclsToEmit;
1245   CurDeclsToEmit.swap(DeferredDeclsToEmit);
1246 
1247   for (DeferredGlobal &G : CurDeclsToEmit) {
1248     GlobalDecl D = G.GD;
1249     G.GV = nullptr;
1250 
1251     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
1252     // to get GlobalValue with exactly the type we need, not something that
1253     // might had been created for another decl with the same mangled name but
1254     // different type.
1255     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
1256         GetAddrOfGlobal(D, /*IsForDefinition=*/true));
1257 
1258     // In case of different address spaces, we may still get a cast, even with
1259     // IsForDefinition equal to true. Query mangled names table to get
1260     // GlobalValue.
1261     if (!GV)
1262       GV = GetGlobalValue(getMangledName(D));
1263 
1264     // Make sure GetGlobalValue returned non-null.
1265     assert(GV);
1266 
1267     // Check to see if we've already emitted this.  This is necessary
1268     // for a couple of reasons: first, decls can end up in the
1269     // deferred-decls queue multiple times, and second, decls can end
1270     // up with definitions in unusual ways (e.g. by an extern inline
1271     // function acquiring a strong function redefinition).  Just
1272     // ignore these cases.
1273     if (!GV->isDeclaration())
1274       continue;
1275 
1276     // Otherwise, emit the definition and move on to the next one.
1277     EmitGlobalDefinition(D, GV);
1278 
1279     // If we found out that we need to emit more decls, do that recursively.
1280     // This has the advantage that the decls are emitted in a DFS and related
1281     // ones are close together, which is convenient for testing.
1282     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
1283       EmitDeferred();
1284       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
1285     }
1286   }
1287 }
1288 
1289 void CodeGenModule::EmitGlobalAnnotations() {
1290   if (Annotations.empty())
1291     return;
1292 
1293   // Create a new global variable for the ConstantStruct in the Module.
1294   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
1295     Annotations[0]->getType(), Annotations.size()), Annotations);
1296   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
1297                                       llvm::GlobalValue::AppendingLinkage,
1298                                       Array, "llvm.global.annotations");
1299   gv->setSection(AnnotationSection);
1300 }
1301 
1302 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
1303   llvm::Constant *&AStr = AnnotationStrings[Str];
1304   if (AStr)
1305     return AStr;
1306 
1307   // Not found yet, create a new global.
1308   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
1309   auto *gv =
1310       new llvm::GlobalVariable(getModule(), s->getType(), true,
1311                                llvm::GlobalValue::PrivateLinkage, s, ".str");
1312   gv->setSection(AnnotationSection);
1313   gv->setUnnamedAddr(true);
1314   AStr = gv;
1315   return gv;
1316 }
1317 
1318 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
1319   SourceManager &SM = getContext().getSourceManager();
1320   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
1321   if (PLoc.isValid())
1322     return EmitAnnotationString(PLoc.getFilename());
1323   return EmitAnnotationString(SM.getBufferName(Loc));
1324 }
1325 
1326 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
1327   SourceManager &SM = getContext().getSourceManager();
1328   PresumedLoc PLoc = SM.getPresumedLoc(L);
1329   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
1330     SM.getExpansionLineNumber(L);
1331   return llvm::ConstantInt::get(Int32Ty, LineNo);
1332 }
1333 
1334 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
1335                                                 const AnnotateAttr *AA,
1336                                                 SourceLocation L) {
1337   // Get the globals for file name, annotation, and the line number.
1338   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
1339                  *UnitGV = EmitAnnotationUnit(L),
1340                  *LineNoCst = EmitAnnotationLineNo(L);
1341 
1342   // Create the ConstantStruct for the global annotation.
1343   llvm::Constant *Fields[4] = {
1344     llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
1345     llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
1346     llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
1347     LineNoCst
1348   };
1349   return llvm::ConstantStruct::getAnon(Fields);
1350 }
1351 
1352 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1353                                          llvm::GlobalValue *GV) {
1354   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1355   // Get the struct elements for these annotations.
1356   for (const auto *I : D->specific_attrs<AnnotateAttr>())
1357     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
1358 }
1359 
1360 bool CodeGenModule::isInSanitizerBlacklist(llvm::Function *Fn,
1361                                            SourceLocation Loc) const {
1362   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1363   // Blacklist by function name.
1364   if (SanitizerBL.isBlacklistedFunction(Fn->getName()))
1365     return true;
1366   // Blacklist by location.
1367   if (Loc.isValid())
1368     return SanitizerBL.isBlacklistedLocation(Loc);
1369   // If location is unknown, this may be a compiler-generated function. Assume
1370   // it's located in the main file.
1371   auto &SM = Context.getSourceManager();
1372   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
1373     return SanitizerBL.isBlacklistedFile(MainFile->getName());
1374   }
1375   return false;
1376 }
1377 
1378 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV,
1379                                            SourceLocation Loc, QualType Ty,
1380                                            StringRef Category) const {
1381   // For now globals can be blacklisted only in ASan and KASan.
1382   if (!LangOpts.Sanitize.hasOneOf(
1383           SanitizerKind::Address | SanitizerKind::KernelAddress))
1384     return false;
1385   const auto &SanitizerBL = getContext().getSanitizerBlacklist();
1386   if (SanitizerBL.isBlacklistedGlobal(GV->getName(), Category))
1387     return true;
1388   if (SanitizerBL.isBlacklistedLocation(Loc, Category))
1389     return true;
1390   // Check global type.
1391   if (!Ty.isNull()) {
1392     // Drill down the array types: if global variable of a fixed type is
1393     // blacklisted, we also don't instrument arrays of them.
1394     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
1395       Ty = AT->getElementType();
1396     Ty = Ty.getCanonicalType().getUnqualifiedType();
1397     // We allow to blacklist only record types (classes, structs etc.)
1398     if (Ty->isRecordType()) {
1399       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
1400       if (SanitizerBL.isBlacklistedType(TypeStr, Category))
1401         return true;
1402     }
1403   }
1404   return false;
1405 }
1406 
1407 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
1408   // Never defer when EmitAllDecls is specified.
1409   if (LangOpts.EmitAllDecls)
1410     return true;
1411 
1412   return getContext().DeclMustBeEmitted(Global);
1413 }
1414 
1415 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
1416   if (const auto *FD = dyn_cast<FunctionDecl>(Global))
1417     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1418       // Implicit template instantiations may change linkage if they are later
1419       // explicitly instantiated, so they should not be emitted eagerly.
1420       return false;
1421   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
1422   // codegen for global variables, because they may be marked as threadprivate.
1423   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
1424       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global))
1425     return false;
1426 
1427   return true;
1428 }
1429 
1430 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor(
1431     const CXXUuidofExpr* E) {
1432   // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1433   // well-formed.
1434   StringRef Uuid = E->getUuidAsStringRef(Context);
1435   std::string Name = "_GUID_" + Uuid.lower();
1436   std::replace(Name.begin(), Name.end(), '-', '_');
1437 
1438   // Contains a 32-bit field.
1439   CharUnits Alignment = CharUnits::fromQuantity(4);
1440 
1441   // Look for an existing global.
1442   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1443     return ConstantAddress(GV, Alignment);
1444 
1445   llvm::Constant *Init = EmitUuidofInitializer(Uuid);
1446   assert(Init && "failed to initialize as constant");
1447 
1448   auto *GV = new llvm::GlobalVariable(
1449       getModule(), Init->getType(),
1450       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
1451   if (supportsCOMDAT())
1452     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
1453   return ConstantAddress(GV, Alignment);
1454 }
1455 
1456 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1457   const AliasAttr *AA = VD->getAttr<AliasAttr>();
1458   assert(AA && "No alias?");
1459 
1460   CharUnits Alignment = getContext().getDeclAlign(VD);
1461   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1462 
1463   // See if there is already something with the target's name in the module.
1464   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1465   if (Entry) {
1466     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1467     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1468     return ConstantAddress(Ptr, Alignment);
1469   }
1470 
1471   llvm::Constant *Aliasee;
1472   if (isa<llvm::FunctionType>(DeclTy))
1473     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1474                                       GlobalDecl(cast<FunctionDecl>(VD)),
1475                                       /*ForVTable=*/false);
1476   else
1477     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1478                                     llvm::PointerType::getUnqual(DeclTy),
1479                                     nullptr);
1480 
1481   auto *F = cast<llvm::GlobalValue>(Aliasee);
1482   F->setLinkage(llvm::Function::ExternalWeakLinkage);
1483   WeakRefReferences.insert(F);
1484 
1485   return ConstantAddress(Aliasee, Alignment);
1486 }
1487 
1488 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1489   const auto *Global = cast<ValueDecl>(GD.getDecl());
1490 
1491   // Weak references don't produce any output by themselves.
1492   if (Global->hasAttr<WeakRefAttr>())
1493     return;
1494 
1495   // If this is an alias definition (which otherwise looks like a declaration)
1496   // emit it now.
1497   if (Global->hasAttr<AliasAttr>())
1498     return EmitAliasDefinition(GD);
1499 
1500   // If this is CUDA, be selective about which declarations we emit.
1501   if (LangOpts.CUDA) {
1502     if (LangOpts.CUDAIsDevice) {
1503       if (!Global->hasAttr<CUDADeviceAttr>() &&
1504           !Global->hasAttr<CUDAGlobalAttr>() &&
1505           !Global->hasAttr<CUDAConstantAttr>() &&
1506           !Global->hasAttr<CUDASharedAttr>())
1507         return;
1508     } else {
1509       if (!Global->hasAttr<CUDAHostAttr>() && (
1510             Global->hasAttr<CUDADeviceAttr>() ||
1511             Global->hasAttr<CUDAConstantAttr>() ||
1512             Global->hasAttr<CUDASharedAttr>()))
1513         return;
1514     }
1515   }
1516 
1517   // If this is OpenMP device, check if it is legal to emit this global
1518   // normally.
1519   if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
1520     return;
1521 
1522   // Ignore declarations, they will be emitted on their first use.
1523   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
1524     // Forward declarations are emitted lazily on first use.
1525     if (!FD->doesThisDeclarationHaveABody()) {
1526       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1527         return;
1528 
1529       StringRef MangledName = getMangledName(GD);
1530 
1531       // Compute the function info and LLVM type.
1532       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1533       llvm::Type *Ty = getTypes().GetFunctionType(FI);
1534 
1535       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
1536                               /*DontDefer=*/false);
1537       return;
1538     }
1539   } else {
1540     const auto *VD = cast<VarDecl>(Global);
1541     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1542 
1543     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
1544         !Context.isMSStaticDataMemberInlineDefinition(VD))
1545       return;
1546   }
1547 
1548   // Defer code generation to first use when possible, e.g. if this is an inline
1549   // function. If the global must always be emitted, do it eagerly if possible
1550   // to benefit from cache locality.
1551   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
1552     // Emit the definition if it can't be deferred.
1553     EmitGlobalDefinition(GD);
1554     return;
1555   }
1556 
1557   // If we're deferring emission of a C++ variable with an
1558   // initializer, remember the order in which it appeared in the file.
1559   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1560       cast<VarDecl>(Global)->hasInit()) {
1561     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1562     CXXGlobalInits.push_back(nullptr);
1563   }
1564 
1565   StringRef MangledName = getMangledName(GD);
1566   if (llvm::GlobalValue *GV = GetGlobalValue(MangledName)) {
1567     // The value has already been used and should therefore be emitted.
1568     addDeferredDeclToEmit(GV, GD);
1569   } else if (MustBeEmitted(Global)) {
1570     // The value must be emitted, but cannot be emitted eagerly.
1571     assert(!MayBeEmittedEagerly(Global));
1572     addDeferredDeclToEmit(/*GV=*/nullptr, GD);
1573   } else {
1574     // Otherwise, remember that we saw a deferred decl with this name.  The
1575     // first use of the mangled name will cause it to move into
1576     // DeferredDeclsToEmit.
1577     DeferredDecls[MangledName] = GD;
1578   }
1579 }
1580 
1581 namespace {
1582   struct FunctionIsDirectlyRecursive :
1583     public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1584     const StringRef Name;
1585     const Builtin::Context &BI;
1586     bool Result;
1587     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1588       Name(N), BI(C), Result(false) {
1589     }
1590     typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1591 
1592     bool TraverseCallExpr(CallExpr *E) {
1593       const FunctionDecl *FD = E->getDirectCallee();
1594       if (!FD)
1595         return true;
1596       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1597       if (Attr && Name == Attr->getLabel()) {
1598         Result = true;
1599         return false;
1600       }
1601       unsigned BuiltinID = FD->getBuiltinID();
1602       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
1603         return true;
1604       StringRef BuiltinName = BI.getName(BuiltinID);
1605       if (BuiltinName.startswith("__builtin_") &&
1606           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1607         Result = true;
1608         return false;
1609       }
1610       return true;
1611     }
1612   };
1613 
1614   struct DLLImportFunctionVisitor
1615       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
1616     bool SafeToInline = true;
1617 
1618     bool VisitVarDecl(VarDecl *VD) {
1619       // A thread-local variable cannot be imported.
1620       SafeToInline = !VD->getTLSKind();
1621       return SafeToInline;
1622     }
1623 
1624     // Make sure we're not referencing non-imported vars or functions.
1625     bool VisitDeclRefExpr(DeclRefExpr *E) {
1626       ValueDecl *VD = E->getDecl();
1627       if (isa<FunctionDecl>(VD))
1628         SafeToInline = VD->hasAttr<DLLImportAttr>();
1629       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
1630         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
1631       return SafeToInline;
1632     }
1633     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
1634       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
1635       return SafeToInline;
1636     }
1637     bool VisitCXXNewExpr(CXXNewExpr *E) {
1638       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
1639       return SafeToInline;
1640     }
1641   };
1642 }
1643 
1644 // isTriviallyRecursive - Check if this function calls another
1645 // decl that, because of the asm attribute or the other decl being a builtin,
1646 // ends up pointing to itself.
1647 bool
1648 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1649   StringRef Name;
1650   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1651     // asm labels are a special kind of mangling we have to support.
1652     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1653     if (!Attr)
1654       return false;
1655     Name = Attr->getLabel();
1656   } else {
1657     Name = FD->getName();
1658   }
1659 
1660   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1661   Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1662   return Walker.Result;
1663 }
1664 
1665 bool
1666 CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
1667   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
1668     return true;
1669   const auto *F = cast<FunctionDecl>(GD.getDecl());
1670   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
1671     return false;
1672 
1673   if (F->hasAttr<DLLImportAttr>()) {
1674     // Check whether it would be safe to inline this dllimport function.
1675     DLLImportFunctionVisitor Visitor;
1676     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
1677     if (!Visitor.SafeToInline)
1678       return false;
1679   }
1680 
1681   // PR9614. Avoid cases where the source code is lying to us. An available
1682   // externally function should have an equivalent function somewhere else,
1683   // but a function that calls itself is clearly not equivalent to the real
1684   // implementation.
1685   // This happens in glibc's btowc and in some configure checks.
1686   return !isTriviallyRecursive(F);
1687 }
1688 
1689 /// If the type for the method's class was generated by
1690 /// CGDebugInfo::createContextChain(), the cache contains only a
1691 /// limited DIType without any declarations. Since EmitFunctionStart()
1692 /// needs to find the canonical declaration for each method, we need
1693 /// to construct the complete type prior to emitting the method.
1694 void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1695   if (!D->isInstance())
1696     return;
1697 
1698   if (CGDebugInfo *DI = getModuleDebugInfo())
1699     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1700       const auto *ThisPtr = cast<PointerType>(D->getThisType(getContext()));
1701       DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1702     }
1703 }
1704 
1705 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
1706   const auto *D = cast<ValueDecl>(GD.getDecl());
1707 
1708   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1709                                  Context.getSourceManager(),
1710                                  "Generating code for declaration");
1711 
1712   if (isa<FunctionDecl>(D)) {
1713     // At -O0, don't generate IR for functions with available_externally
1714     // linkage.
1715     if (!shouldEmitFunction(GD))
1716       return;
1717 
1718     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
1719       CompleteDIClassType(Method);
1720       // Make sure to emit the definition(s) before we emit the thunks.
1721       // This is necessary for the generation of certain thunks.
1722       if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method))
1723         ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType()));
1724       else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method))
1725         ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType()));
1726       else
1727         EmitGlobalFunctionDefinition(GD, GV);
1728 
1729       if (Method->isVirtual())
1730         getVTables().EmitThunks(GD);
1731 
1732       return;
1733     }
1734 
1735     return EmitGlobalFunctionDefinition(GD, GV);
1736   }
1737 
1738   if (const auto *VD = dyn_cast<VarDecl>(D))
1739     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
1740 
1741   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1742 }
1743 
1744 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1745                                                       llvm::Function *NewFn);
1746 
1747 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1748 /// module, create and return an llvm Function with the specified type. If there
1749 /// is something in the module with the specified name, return it potentially
1750 /// bitcasted to the right type.
1751 ///
1752 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1753 /// to set the attributes on the function when it is first created.
1754 llvm::Constant *
1755 CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1756                                        llvm::Type *Ty,
1757                                        GlobalDecl GD, bool ForVTable,
1758                                        bool DontDefer, bool IsThunk,
1759                                        llvm::AttributeSet ExtraAttrs,
1760                                        bool IsForDefinition) {
1761   const Decl *D = GD.getDecl();
1762 
1763   // Lookup the entry, lazily creating it if necessary.
1764   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1765   if (Entry) {
1766     if (WeakRefReferences.erase(Entry)) {
1767       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
1768       if (FD && !FD->hasAttr<WeakAttr>())
1769         Entry->setLinkage(llvm::Function::ExternalLinkage);
1770     }
1771 
1772     // Handle dropped DLL attributes.
1773     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
1774       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1775 
1776     // If there are two attempts to define the same mangled name, issue an
1777     // error.
1778     if (IsForDefinition && !Entry->isDeclaration()) {
1779       GlobalDecl OtherGD;
1780       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
1781       // to make sure that we issue an error only once.
1782       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
1783           (GD.getCanonicalDecl().getDecl() !=
1784            OtherGD.getCanonicalDecl().getDecl()) &&
1785           DiagnosedConflictingDefinitions.insert(GD).second) {
1786         getDiags().Report(D->getLocation(),
1787                           diag::err_duplicate_mangled_name);
1788         getDiags().Report(OtherGD.getDecl()->getLocation(),
1789                           diag::note_previous_definition);
1790       }
1791     }
1792 
1793     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
1794         (Entry->getType()->getElementType() == Ty)) {
1795       return Entry;
1796     }
1797 
1798     // Make sure the result is of the correct type.
1799     // (If function is requested for a definition, we always need to create a new
1800     // function, not just return a bitcast.)
1801     if (!IsForDefinition)
1802       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1803   }
1804 
1805   // This function doesn't have a complete type (for example, the return
1806   // type is an incomplete struct). Use a fake type instead, and make
1807   // sure not to try to set attributes.
1808   bool IsIncompleteFunction = false;
1809 
1810   llvm::FunctionType *FTy;
1811   if (isa<llvm::FunctionType>(Ty)) {
1812     FTy = cast<llvm::FunctionType>(Ty);
1813   } else {
1814     FTy = llvm::FunctionType::get(VoidTy, false);
1815     IsIncompleteFunction = true;
1816   }
1817 
1818   llvm::Function *F =
1819       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
1820                              Entry ? StringRef() : MangledName, &getModule());
1821 
1822   // If we already created a function with the same mangled name (but different
1823   // type) before, take its name and add it to the list of functions to be
1824   // replaced with F at the end of CodeGen.
1825   //
1826   // This happens if there is a prototype for a function (e.g. "int f()") and
1827   // then a definition of a different type (e.g. "int f(int x)").
1828   if (Entry) {
1829     F->takeName(Entry);
1830 
1831     // This might be an implementation of a function without a prototype, in
1832     // which case, try to do special replacement of calls which match the new
1833     // prototype.  The really key thing here is that we also potentially drop
1834     // arguments from the call site so as to make a direct call, which makes the
1835     // inliner happier and suppresses a number of optimizer warnings (!) about
1836     // dropping arguments.
1837     if (!Entry->use_empty()) {
1838       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
1839       Entry->removeDeadConstantUsers();
1840     }
1841 
1842     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
1843         F, Entry->getType()->getElementType()->getPointerTo());
1844     addGlobalValReplacement(Entry, BC);
1845   }
1846 
1847   assert(F->getName() == MangledName && "name was uniqued!");
1848   if (D)
1849     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
1850   if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1851     llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1852     F->addAttributes(llvm::AttributeSet::FunctionIndex,
1853                      llvm::AttributeSet::get(VMContext,
1854                                              llvm::AttributeSet::FunctionIndex,
1855                                              B));
1856   }
1857 
1858   if (!DontDefer) {
1859     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
1860     // each other bottoming out with the base dtor.  Therefore we emit non-base
1861     // dtors on usage, even if there is no dtor definition in the TU.
1862     if (D && isa<CXXDestructorDecl>(D) &&
1863         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
1864                                            GD.getDtorType()))
1865       addDeferredDeclToEmit(F, GD);
1866 
1867     // This is the first use or definition of a mangled name.  If there is a
1868     // deferred decl with this name, remember that we need to emit it at the end
1869     // of the file.
1870     auto DDI = DeferredDecls.find(MangledName);
1871     if (DDI != DeferredDecls.end()) {
1872       // Move the potentially referenced deferred decl to the
1873       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
1874       // don't need it anymore).
1875       addDeferredDeclToEmit(F, DDI->second);
1876       DeferredDecls.erase(DDI);
1877 
1878       // Otherwise, there are cases we have to worry about where we're
1879       // using a declaration for which we must emit a definition but where
1880       // we might not find a top-level definition:
1881       //   - member functions defined inline in their classes
1882       //   - friend functions defined inline in some class
1883       //   - special member functions with implicit definitions
1884       // If we ever change our AST traversal to walk into class methods,
1885       // this will be unnecessary.
1886       //
1887       // We also don't emit a definition for a function if it's going to be an
1888       // entry in a vtable, unless it's already marked as used.
1889     } else if (getLangOpts().CPlusPlus && D) {
1890       // Look for a declaration that's lexically in a record.
1891       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
1892            FD = FD->getPreviousDecl()) {
1893         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1894           if (FD->doesThisDeclarationHaveABody()) {
1895             addDeferredDeclToEmit(F, GD.getWithDecl(FD));
1896             break;
1897           }
1898         }
1899       }
1900     }
1901   }
1902 
1903   // Make sure the result is of the requested type.
1904   if (!IsIncompleteFunction) {
1905     assert(F->getType()->getElementType() == Ty);
1906     return F;
1907   }
1908 
1909   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1910   return llvm::ConstantExpr::getBitCast(F, PTy);
1911 }
1912 
1913 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
1914 /// non-null, then this function will use the specified type if it has to
1915 /// create it (this occurs when we see a definition of the function).
1916 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1917                                                  llvm::Type *Ty,
1918                                                  bool ForVTable,
1919                                                  bool DontDefer,
1920                                                  bool IsForDefinition) {
1921   // If there was no specific requested type, just convert it now.
1922   if (!Ty) {
1923     const auto *FD = cast<FunctionDecl>(GD.getDecl());
1924     auto CanonTy = Context.getCanonicalType(FD->getType());
1925     Ty = getTypes().ConvertFunctionType(CanonTy, FD);
1926   }
1927 
1928   StringRef MangledName = getMangledName(GD);
1929   return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
1930                                  /*IsThunk=*/false, llvm::AttributeSet(),
1931                                  IsForDefinition);
1932 }
1933 
1934 /// CreateRuntimeFunction - Create a new runtime function with the specified
1935 /// type and name.
1936 llvm::Constant *
1937 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1938                                      StringRef Name,
1939                                      llvm::AttributeSet ExtraAttrs) {
1940   llvm::Constant *C =
1941       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1942                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1943   if (auto *F = dyn_cast<llvm::Function>(C))
1944     if (F->empty())
1945       F->setCallingConv(getRuntimeCC());
1946   return C;
1947 }
1948 
1949 /// CreateBuiltinFunction - Create a new builtin function with the specified
1950 /// type and name.
1951 llvm::Constant *
1952 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy,
1953                                      StringRef Name,
1954                                      llvm::AttributeSet ExtraAttrs) {
1955   llvm::Constant *C =
1956       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1957                               /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
1958   if (auto *F = dyn_cast<llvm::Function>(C))
1959     if (F->empty())
1960       F->setCallingConv(getBuiltinCC());
1961   return C;
1962 }
1963 
1964 /// isTypeConstant - Determine whether an object of this type can be emitted
1965 /// as a constant.
1966 ///
1967 /// If ExcludeCtor is true, the duration when the object's constructor runs
1968 /// will not be considered. The caller will need to verify that the object is
1969 /// not written to during its construction.
1970 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1971   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1972     return false;
1973 
1974   if (Context.getLangOpts().CPlusPlus) {
1975     if (const CXXRecordDecl *Record
1976           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1977       return ExcludeCtor && !Record->hasMutableFields() &&
1978              Record->hasTrivialDestructor();
1979   }
1980 
1981   return true;
1982 }
1983 
1984 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1985 /// create and return an llvm GlobalVariable with the specified type.  If there
1986 /// is something in the module with the specified name, return it potentially
1987 /// bitcasted to the right type.
1988 ///
1989 /// If D is non-null, it specifies a decl that correspond to this.  This is used
1990 /// to set the attributes on the global when it is first created.
1991 ///
1992 /// If IsForDefinition is true, it is guranteed that an actual global with
1993 /// type Ty will be returned, not conversion of a variable with the same
1994 /// mangled name but some other type.
1995 llvm::Constant *
1996 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1997                                      llvm::PointerType *Ty,
1998                                      const VarDecl *D,
1999                                      bool IsForDefinition) {
2000   // Lookup the entry, lazily creating it if necessary.
2001   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2002   if (Entry) {
2003     if (WeakRefReferences.erase(Entry)) {
2004       if (D && !D->hasAttr<WeakAttr>())
2005         Entry->setLinkage(llvm::Function::ExternalLinkage);
2006     }
2007 
2008     // Handle dropped DLL attributes.
2009     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>())
2010       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
2011 
2012     if (Entry->getType() == Ty)
2013       return Entry;
2014 
2015     // If there are two attempts to define the same mangled name, issue an
2016     // error.
2017     if (IsForDefinition && !Entry->isDeclaration()) {
2018       GlobalDecl OtherGD;
2019       const VarDecl *OtherD;
2020 
2021       // Check that D is not yet in DiagnosedConflictingDefinitions is required
2022       // to make sure that we issue an error only once.
2023       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
2024           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
2025           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
2026           OtherD->hasInit() &&
2027           DiagnosedConflictingDefinitions.insert(D).second) {
2028         getDiags().Report(D->getLocation(),
2029                           diag::err_duplicate_mangled_name);
2030         getDiags().Report(OtherGD.getDecl()->getLocation(),
2031                           diag::note_previous_definition);
2032       }
2033     }
2034 
2035     // Make sure the result is of the correct type.
2036     if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace())
2037       return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty);
2038 
2039     // (If global is requested for a definition, we always need to create a new
2040     // global, not just return a bitcast.)
2041     if (!IsForDefinition)
2042       return llvm::ConstantExpr::getBitCast(Entry, Ty);
2043   }
2044 
2045   unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
2046   auto *GV = new llvm::GlobalVariable(
2047       getModule(), Ty->getElementType(), false,
2048       llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr,
2049       llvm::GlobalVariable::NotThreadLocal, AddrSpace);
2050 
2051   // If we already created a global with the same mangled name (but different
2052   // type) before, take its name and remove it from its parent.
2053   if (Entry) {
2054     GV->takeName(Entry);
2055 
2056     if (!Entry->use_empty()) {
2057       llvm::Constant *NewPtrForOldDecl =
2058           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2059       Entry->replaceAllUsesWith(NewPtrForOldDecl);
2060     }
2061 
2062     Entry->eraseFromParent();
2063   }
2064 
2065   // This is the first use or definition of a mangled name.  If there is a
2066   // deferred decl with this name, remember that we need to emit it at the end
2067   // of the file.
2068   auto DDI = DeferredDecls.find(MangledName);
2069   if (DDI != DeferredDecls.end()) {
2070     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
2071     // list, and remove it from DeferredDecls (since we don't need it anymore).
2072     addDeferredDeclToEmit(GV, DDI->second);
2073     DeferredDecls.erase(DDI);
2074   }
2075 
2076   // Handle things which are present even on external declarations.
2077   if (D) {
2078     // FIXME: This code is overly simple and should be merged with other global
2079     // handling.
2080     GV->setConstant(isTypeConstant(D->getType(), false));
2081 
2082     GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2083 
2084     setLinkageAndVisibilityForGV(GV, D);
2085 
2086     if (D->getTLSKind()) {
2087       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2088         CXXThreadLocals.push_back(D);
2089       setTLSMode(GV, *D);
2090     }
2091 
2092     // If required by the ABI, treat declarations of static data members with
2093     // inline initializers as definitions.
2094     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
2095       EmitGlobalVarDefinition(D);
2096     }
2097 
2098     // Handle XCore specific ABI requirements.
2099     if (getTarget().getTriple().getArch() == llvm::Triple::xcore &&
2100         D->getLanguageLinkage() == CLanguageLinkage &&
2101         D->getType().isConstant(Context) &&
2102         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
2103       GV->setSection(".cp.rodata");
2104   }
2105 
2106   if (AddrSpace != Ty->getAddressSpace())
2107     return llvm::ConstantExpr::getAddrSpaceCast(GV, Ty);
2108 
2109   return GV;
2110 }
2111 
2112 llvm::Constant *
2113 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD,
2114                                bool IsForDefinition) {
2115   if (isa<CXXConstructorDecl>(GD.getDecl()))
2116     return getAddrOfCXXStructor(cast<CXXConstructorDecl>(GD.getDecl()),
2117                                 getFromCtorType(GD.getCtorType()),
2118                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2119                                 /*DontDefer=*/false, IsForDefinition);
2120   else if (isa<CXXDestructorDecl>(GD.getDecl()))
2121     return getAddrOfCXXStructor(cast<CXXDestructorDecl>(GD.getDecl()),
2122                                 getFromDtorType(GD.getDtorType()),
2123                                 /*FnInfo=*/nullptr, /*FnType=*/nullptr,
2124                                 /*DontDefer=*/false, IsForDefinition);
2125   else if (isa<CXXMethodDecl>(GD.getDecl())) {
2126     auto FInfo = &getTypes().arrangeCXXMethodDeclaration(
2127         cast<CXXMethodDecl>(GD.getDecl()));
2128     auto Ty = getTypes().GetFunctionType(*FInfo);
2129     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2130                              IsForDefinition);
2131   } else if (isa<FunctionDecl>(GD.getDecl())) {
2132     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2133     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2134     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
2135                              IsForDefinition);
2136   } else
2137     return GetAddrOfGlobalVar(cast<VarDecl>(GD.getDecl()), /*Ty=*/nullptr,
2138                               IsForDefinition);
2139 }
2140 
2141 llvm::GlobalVariable *
2142 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
2143                                       llvm::Type *Ty,
2144                                       llvm::GlobalValue::LinkageTypes Linkage) {
2145   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
2146   llvm::GlobalVariable *OldGV = nullptr;
2147 
2148   if (GV) {
2149     // Check if the variable has the right type.
2150     if (GV->getType()->getElementType() == Ty)
2151       return GV;
2152 
2153     // Because C++ name mangling, the only way we can end up with an already
2154     // existing global with the same name is if it has been declared extern "C".
2155     assert(GV->isDeclaration() && "Declaration has wrong type!");
2156     OldGV = GV;
2157   }
2158 
2159   // Create a new variable.
2160   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
2161                                 Linkage, nullptr, Name);
2162 
2163   if (OldGV) {
2164     // Replace occurrences of the old variable if needed.
2165     GV->takeName(OldGV);
2166 
2167     if (!OldGV->use_empty()) {
2168       llvm::Constant *NewPtrForOldDecl =
2169       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
2170       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
2171     }
2172 
2173     OldGV->eraseFromParent();
2174   }
2175 
2176   if (supportsCOMDAT() && GV->isWeakForLinker() &&
2177       !GV->hasAvailableExternallyLinkage())
2178     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
2179 
2180   return GV;
2181 }
2182 
2183 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
2184 /// given global variable.  If Ty is non-null and if the global doesn't exist,
2185 /// then it will be created with the specified type instead of whatever the
2186 /// normal requested type would be. If IsForDefinition is true, it is guranteed
2187 /// that an actual global with type Ty will be returned, not conversion of a
2188 /// variable with the same mangled name but some other type.
2189 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
2190                                                   llvm::Type *Ty,
2191                                                   bool IsForDefinition) {
2192   assert(D->hasGlobalStorage() && "Not a global variable");
2193   QualType ASTTy = D->getType();
2194   if (!Ty)
2195     Ty = getTypes().ConvertTypeForMem(ASTTy);
2196 
2197   llvm::PointerType *PTy =
2198     llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
2199 
2200   StringRef MangledName = getMangledName(D);
2201   return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition);
2202 }
2203 
2204 /// CreateRuntimeVariable - Create a new runtime global variable with the
2205 /// specified type and name.
2206 llvm::Constant *
2207 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
2208                                      StringRef Name) {
2209   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr);
2210 }
2211 
2212 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
2213   assert(!D->getInit() && "Cannot emit definite definitions here!");
2214 
2215   StringRef MangledName = getMangledName(D);
2216   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
2217 
2218   // We already have a definition, not declaration, with the same mangled name.
2219   // Emitting of declaration is not required (and actually overwrites emitted
2220   // definition).
2221   if (GV && !GV->isDeclaration())
2222     return;
2223 
2224   // If we have not seen a reference to this variable yet, place it into the
2225   // deferred declarations table to be emitted if needed later.
2226   if (!MustBeEmitted(D) && !GV) {
2227       DeferredDecls[MangledName] = D;
2228       return;
2229   }
2230 
2231   // The tentative definition is the only definition.
2232   EmitGlobalVarDefinition(D);
2233 }
2234 
2235 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
2236   return Context.toCharUnitsFromBits(
2237       getDataLayout().getTypeStoreSizeInBits(Ty));
2238 }
2239 
2240 unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
2241                                                  unsigned AddrSpace) {
2242   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
2243     if (D->hasAttr<CUDAConstantAttr>())
2244       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
2245     else if (D->hasAttr<CUDASharedAttr>())
2246       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
2247     else
2248       AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
2249   }
2250 
2251   return AddrSpace;
2252 }
2253 
2254 template<typename SomeDecl>
2255 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
2256                                                llvm::GlobalValue *GV) {
2257   if (!getLangOpts().CPlusPlus)
2258     return;
2259 
2260   // Must have 'used' attribute, or else inline assembly can't rely on
2261   // the name existing.
2262   if (!D->template hasAttr<UsedAttr>())
2263     return;
2264 
2265   // Must have internal linkage and an ordinary name.
2266   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
2267     return;
2268 
2269   // Must be in an extern "C" context. Entities declared directly within
2270   // a record are not extern "C" even if the record is in such a context.
2271   const SomeDecl *First = D->getFirstDecl();
2272   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
2273     return;
2274 
2275   // OK, this is an internal linkage entity inside an extern "C" linkage
2276   // specification. Make a note of that so we can give it the "expected"
2277   // mangled name if nothing else is using that name.
2278   std::pair<StaticExternCMap::iterator, bool> R =
2279       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
2280 
2281   // If we have multiple internal linkage entities with the same name
2282   // in extern "C" regions, none of them gets that name.
2283   if (!R.second)
2284     R.first->second = nullptr;
2285 }
2286 
2287 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
2288   if (!CGM.supportsCOMDAT())
2289     return false;
2290 
2291   if (D.hasAttr<SelectAnyAttr>())
2292     return true;
2293 
2294   GVALinkage Linkage;
2295   if (auto *VD = dyn_cast<VarDecl>(&D))
2296     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
2297   else
2298     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
2299 
2300   switch (Linkage) {
2301   case GVA_Internal:
2302   case GVA_AvailableExternally:
2303   case GVA_StrongExternal:
2304     return false;
2305   case GVA_DiscardableODR:
2306   case GVA_StrongODR:
2307     return true;
2308   }
2309   llvm_unreachable("No such linkage");
2310 }
2311 
2312 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
2313                                           llvm::GlobalObject &GO) {
2314   if (!shouldBeInCOMDAT(*this, D))
2315     return;
2316   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
2317 }
2318 
2319 /// Pass IsTentative as true if you want to create a tentative definition.
2320 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
2321                                             bool IsTentative) {
2322   llvm::Constant *Init = nullptr;
2323   QualType ASTTy = D->getType();
2324   CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2325   bool NeedsGlobalCtor = false;
2326   bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
2327 
2328   const VarDecl *InitDecl;
2329   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
2330 
2331   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization as part
2332   // of their declaration."
2333   if (getLangOpts().CPlusPlus && getLangOpts().CUDAIsDevice
2334       && D->hasAttr<CUDASharedAttr>()) {
2335     if (InitExpr) {
2336       const auto *C = dyn_cast<CXXConstructExpr>(InitExpr);
2337       if (C == nullptr || !C->getConstructor()->hasTrivialBody())
2338         Error(D->getLocation(),
2339               "__shared__ variable cannot have an initialization.");
2340     }
2341     Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy));
2342   } else if (!InitExpr) {
2343     // This is a tentative definition; tentative definitions are
2344     // implicitly initialized with { 0 }.
2345     //
2346     // Note that tentative definitions are only emitted at the end of
2347     // a translation unit, so they should never have incomplete
2348     // type. In addition, EmitTentativeDefinition makes sure that we
2349     // never attempt to emit a tentative definition if a real one
2350     // exists. A use may still exists, however, so we still may need
2351     // to do a RAUW.
2352     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
2353     Init = EmitNullConstant(D->getType());
2354   } else {
2355     initializedGlobalDecl = GlobalDecl(D);
2356     Init = EmitConstantInit(*InitDecl);
2357 
2358     if (!Init) {
2359       QualType T = InitExpr->getType();
2360       if (D->getType()->isReferenceType())
2361         T = D->getType();
2362 
2363       if (getLangOpts().CPlusPlus) {
2364         Init = EmitNullConstant(T);
2365         NeedsGlobalCtor = true;
2366       } else {
2367         ErrorUnsupported(D, "static initializer");
2368         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
2369       }
2370     } else {
2371       // We don't need an initializer, so remove the entry for the delayed
2372       // initializer position (just in case this entry was delayed) if we
2373       // also don't need to register a destructor.
2374       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
2375         DelayedCXXInitPosition.erase(D);
2376     }
2377   }
2378 
2379   llvm::Type* InitType = Init->getType();
2380   llvm::Constant *Entry =
2381       GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative);
2382 
2383   // Strip off a bitcast if we got one back.
2384   if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2385     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
2386            CE->getOpcode() == llvm::Instruction::AddrSpaceCast ||
2387            // All zero index gep.
2388            CE->getOpcode() == llvm::Instruction::GetElementPtr);
2389     Entry = CE->getOperand(0);
2390   }
2391 
2392   // Entry is now either a Function or GlobalVariable.
2393   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
2394 
2395   // We have a definition after a declaration with the wrong type.
2396   // We must make a new GlobalVariable* and update everything that used OldGV
2397   // (a declaration or tentative definition) with the new GlobalVariable*
2398   // (which will be a definition).
2399   //
2400   // This happens if there is a prototype for a global (e.g.
2401   // "extern int x[];") and then a definition of a different type (e.g.
2402   // "int x[10];"). This also happens when an initializer has a different type
2403   // from the type of the global (this happens with unions).
2404   if (!GV ||
2405       GV->getType()->getElementType() != InitType ||
2406       GV->getType()->getAddressSpace() !=
2407        GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
2408 
2409     // Move the old entry aside so that we'll create a new one.
2410     Entry->setName(StringRef());
2411 
2412     // Make a new global with the correct type, this is now guaranteed to work.
2413     GV = cast<llvm::GlobalVariable>(
2414         GetAddrOfGlobalVar(D, InitType, /*IsForDefinition=*/!IsTentative));
2415 
2416     // Replace all uses of the old global with the new global
2417     llvm::Constant *NewPtrForOldDecl =
2418         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
2419     Entry->replaceAllUsesWith(NewPtrForOldDecl);
2420 
2421     // Erase the old global, since it is no longer used.
2422     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
2423   }
2424 
2425   MaybeHandleStaticInExternC(D, GV);
2426 
2427   if (D->hasAttr<AnnotateAttr>())
2428     AddGlobalAnnotations(D, GV);
2429 
2430   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
2431   // the device. [...]"
2432   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
2433   // __device__, declares a variable that: [...]
2434   // Is accessible from all the threads within the grid and from the host
2435   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
2436   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
2437   if (GV && LangOpts.CUDA && LangOpts.CUDAIsDevice &&
2438       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>())) {
2439     GV->setExternallyInitialized(true);
2440   }
2441   GV->setInitializer(Init);
2442 
2443   // If it is safe to mark the global 'constant', do so now.
2444   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
2445                   isTypeConstant(D->getType(), true));
2446 
2447   // If it is in a read-only section, mark it 'constant'.
2448   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
2449     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
2450     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
2451       GV->setConstant(true);
2452   }
2453 
2454   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
2455 
2456   // Set the llvm linkage type as appropriate.
2457   llvm::GlobalValue::LinkageTypes Linkage =
2458       getLLVMLinkageVarDefinition(D, GV->isConstant());
2459 
2460   // On Darwin, if the normal linkage of a C++ thread_local variable is
2461   // LinkOnce or Weak, we keep the normal linkage to prevent multiple
2462   // copies within a linkage unit; otherwise, the backing variable has
2463   // internal linkage and all accesses should just be calls to the
2464   // Itanium-specified entry point, which has the normal linkage of the
2465   // variable. This is to preserve the ability to change the implementation
2466   // behind the scenes.
2467   if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic &&
2468       Context.getTargetInfo().getTriple().isOSDarwin() &&
2469       !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) &&
2470       !llvm::GlobalVariable::isWeakLinkage(Linkage))
2471     Linkage = llvm::GlobalValue::InternalLinkage;
2472 
2473   GV->setLinkage(Linkage);
2474   if (D->hasAttr<DLLImportAttr>())
2475     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
2476   else if (D->hasAttr<DLLExportAttr>())
2477     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
2478   else
2479     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
2480 
2481   if (Linkage == llvm::GlobalVariable::CommonLinkage)
2482     // common vars aren't constant even if declared const.
2483     GV->setConstant(false);
2484 
2485   setNonAliasAttributes(D, GV);
2486 
2487   if (D->getTLSKind() && !GV->isThreadLocal()) {
2488     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
2489       CXXThreadLocals.push_back(D);
2490     setTLSMode(GV, *D);
2491   }
2492 
2493   maybeSetTrivialComdat(*D, *GV);
2494 
2495   // Emit the initializer function if necessary.
2496   if (NeedsGlobalCtor || NeedsGlobalDtor)
2497     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
2498 
2499   SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor);
2500 
2501   // Emit global variable debug information.
2502   if (CGDebugInfo *DI = getModuleDebugInfo())
2503     if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2504       DI->EmitGlobalVariable(GV, D);
2505 }
2506 
2507 static bool isVarDeclStrongDefinition(const ASTContext &Context,
2508                                       CodeGenModule &CGM, const VarDecl *D,
2509                                       bool NoCommon) {
2510   // Don't give variables common linkage if -fno-common was specified unless it
2511   // was overridden by a NoCommon attribute.
2512   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
2513     return true;
2514 
2515   // C11 6.9.2/2:
2516   //   A declaration of an identifier for an object that has file scope without
2517   //   an initializer, and without a storage-class specifier or with the
2518   //   storage-class specifier static, constitutes a tentative definition.
2519   if (D->getInit() || D->hasExternalStorage())
2520     return true;
2521 
2522   // A variable cannot be both common and exist in a section.
2523   if (D->hasAttr<SectionAttr>())
2524     return true;
2525 
2526   // Thread local vars aren't considered common linkage.
2527   if (D->getTLSKind())
2528     return true;
2529 
2530   // Tentative definitions marked with WeakImportAttr are true definitions.
2531   if (D->hasAttr<WeakImportAttr>())
2532     return true;
2533 
2534   // A variable cannot be both common and exist in a comdat.
2535   if (shouldBeInCOMDAT(CGM, *D))
2536     return true;
2537 
2538   // Declarations with a required alignment do not have common linakge in MSVC
2539   // mode.
2540   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2541     if (D->hasAttr<AlignedAttr>())
2542       return true;
2543     QualType VarType = D->getType();
2544     if (Context.isAlignmentRequired(VarType))
2545       return true;
2546 
2547     if (const auto *RT = VarType->getAs<RecordType>()) {
2548       const RecordDecl *RD = RT->getDecl();
2549       for (const FieldDecl *FD : RD->fields()) {
2550         if (FD->isBitField())
2551           continue;
2552         if (FD->hasAttr<AlignedAttr>())
2553           return true;
2554         if (Context.isAlignmentRequired(FD->getType()))
2555           return true;
2556       }
2557     }
2558   }
2559 
2560   return false;
2561 }
2562 
2563 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
2564     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
2565   if (Linkage == GVA_Internal)
2566     return llvm::Function::InternalLinkage;
2567 
2568   if (D->hasAttr<WeakAttr>()) {
2569     if (IsConstantVariable)
2570       return llvm::GlobalVariable::WeakODRLinkage;
2571     else
2572       return llvm::GlobalVariable::WeakAnyLinkage;
2573   }
2574 
2575   // We are guaranteed to have a strong definition somewhere else,
2576   // so we can use available_externally linkage.
2577   if (Linkage == GVA_AvailableExternally)
2578     return llvm::Function::AvailableExternallyLinkage;
2579 
2580   // Note that Apple's kernel linker doesn't support symbol
2581   // coalescing, so we need to avoid linkonce and weak linkages there.
2582   // Normally, this means we just map to internal, but for explicit
2583   // instantiations we'll map to external.
2584 
2585   // In C++, the compiler has to emit a definition in every translation unit
2586   // that references the function.  We should use linkonce_odr because
2587   // a) if all references in this translation unit are optimized away, we
2588   // don't need to codegen it.  b) if the function persists, it needs to be
2589   // merged with other definitions. c) C++ has the ODR, so we know the
2590   // definition is dependable.
2591   if (Linkage == GVA_DiscardableODR)
2592     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
2593                                             : llvm::Function::InternalLinkage;
2594 
2595   // An explicit instantiation of a template has weak linkage, since
2596   // explicit instantiations can occur in multiple translation units
2597   // and must all be equivalent. However, we are not allowed to
2598   // throw away these explicit instantiations.
2599   if (Linkage == GVA_StrongODR)
2600     return !Context.getLangOpts().AppleKext ? llvm::Function::WeakODRLinkage
2601                                             : llvm::Function::ExternalLinkage;
2602 
2603   // C++ doesn't have tentative definitions and thus cannot have common
2604   // linkage.
2605   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
2606       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
2607                                  CodeGenOpts.NoCommon))
2608     return llvm::GlobalVariable::CommonLinkage;
2609 
2610   // selectany symbols are externally visible, so use weak instead of
2611   // linkonce.  MSVC optimizes away references to const selectany globals, so
2612   // all definitions should be the same and ODR linkage should be used.
2613   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
2614   if (D->hasAttr<SelectAnyAttr>())
2615     return llvm::GlobalVariable::WeakODRLinkage;
2616 
2617   // Otherwise, we have strong external linkage.
2618   assert(Linkage == GVA_StrongExternal);
2619   return llvm::GlobalVariable::ExternalLinkage;
2620 }
2621 
2622 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
2623     const VarDecl *VD, bool IsConstant) {
2624   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
2625   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
2626 }
2627 
2628 /// Replace the uses of a function that was declared with a non-proto type.
2629 /// We want to silently drop extra arguments from call sites
2630 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
2631                                           llvm::Function *newFn) {
2632   // Fast path.
2633   if (old->use_empty()) return;
2634 
2635   llvm::Type *newRetTy = newFn->getReturnType();
2636   SmallVector<llvm::Value*, 4> newArgs;
2637   SmallVector<llvm::OperandBundleDef, 1> newBundles;
2638 
2639   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
2640          ui != ue; ) {
2641     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
2642     llvm::User *user = use->getUser();
2643 
2644     // Recognize and replace uses of bitcasts.  Most calls to
2645     // unprototyped functions will use bitcasts.
2646     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
2647       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
2648         replaceUsesOfNonProtoConstant(bitcast, newFn);
2649       continue;
2650     }
2651 
2652     // Recognize calls to the function.
2653     llvm::CallSite callSite(user);
2654     if (!callSite) continue;
2655     if (!callSite.isCallee(&*use)) continue;
2656 
2657     // If the return types don't match exactly, then we can't
2658     // transform this call unless it's dead.
2659     if (callSite->getType() != newRetTy && !callSite->use_empty())
2660       continue;
2661 
2662     // Get the call site's attribute list.
2663     SmallVector<llvm::AttributeSet, 8> newAttrs;
2664     llvm::AttributeSet oldAttrs = callSite.getAttributes();
2665 
2666     // Collect any return attributes from the call.
2667     if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2668       newAttrs.push_back(
2669         llvm::AttributeSet::get(newFn->getContext(),
2670                                 oldAttrs.getRetAttributes()));
2671 
2672     // If the function was passed too few arguments, don't transform.
2673     unsigned newNumArgs = newFn->arg_size();
2674     if (callSite.arg_size() < newNumArgs) continue;
2675 
2676     // If extra arguments were passed, we silently drop them.
2677     // If any of the types mismatch, we don't transform.
2678     unsigned argNo = 0;
2679     bool dontTransform = false;
2680     for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2681            ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2682       if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2683         dontTransform = true;
2684         break;
2685       }
2686 
2687       // Add any parameter attributes.
2688       if (oldAttrs.hasAttributes(argNo + 1))
2689         newAttrs.
2690           push_back(llvm::
2691                     AttributeSet::get(newFn->getContext(),
2692                                       oldAttrs.getParamAttributes(argNo + 1)));
2693     }
2694     if (dontTransform)
2695       continue;
2696 
2697     if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2698       newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2699                                                  oldAttrs.getFnAttributes()));
2700 
2701     // Okay, we can transform this.  Create the new call instruction and copy
2702     // over the required information.
2703     newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2704 
2705     // Copy over any operand bundles.
2706     callSite.getOperandBundlesAsDefs(newBundles);
2707 
2708     llvm::CallSite newCall;
2709     if (callSite.isCall()) {
2710       newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
2711                                        callSite.getInstruction());
2712     } else {
2713       auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction());
2714       newCall = llvm::InvokeInst::Create(newFn,
2715                                          oldInvoke->getNormalDest(),
2716                                          oldInvoke->getUnwindDest(),
2717                                          newArgs, newBundles, "",
2718                                          callSite.getInstruction());
2719     }
2720     newArgs.clear(); // for the next iteration
2721 
2722     if (!newCall->getType()->isVoidTy())
2723       newCall->takeName(callSite.getInstruction());
2724     newCall.setAttributes(
2725                      llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2726     newCall.setCallingConv(callSite.getCallingConv());
2727 
2728     // Finally, remove the old call, replacing any uses with the new one.
2729     if (!callSite->use_empty())
2730       callSite->replaceAllUsesWith(newCall.getInstruction());
2731 
2732     // Copy debug location attached to CI.
2733     if (callSite->getDebugLoc())
2734       newCall->setDebugLoc(callSite->getDebugLoc());
2735 
2736     callSite->eraseFromParent();
2737   }
2738 }
2739 
2740 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2741 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
2742 /// existing call uses of the old function in the module, this adjusts them to
2743 /// call the new function directly.
2744 ///
2745 /// This is not just a cleanup: the always_inline pass requires direct calls to
2746 /// functions to be able to inline them.  If there is a bitcast in the way, it
2747 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
2748 /// run at -O0.
2749 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2750                                                       llvm::Function *NewFn) {
2751   // If we're redefining a global as a function, don't transform it.
2752   if (!isa<llvm::Function>(Old)) return;
2753 
2754   replaceUsesOfNonProtoConstant(Old, NewFn);
2755 }
2756 
2757 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2758   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2759   // If we have a definition, this might be a deferred decl. If the
2760   // instantiation is explicit, make sure we emit it at the end.
2761   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2762     GetAddrOfGlobalVar(VD);
2763 
2764   EmitTopLevelDecl(VD);
2765 }
2766 
2767 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
2768                                                  llvm::GlobalValue *GV) {
2769   const auto *D = cast<FunctionDecl>(GD.getDecl());
2770 
2771   // Compute the function info and LLVM type.
2772   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2773   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2774 
2775   // Get or create the prototype for the function.
2776   if (!GV || (GV->getType()->getElementType() != Ty))
2777     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
2778                                                    /*DontDefer=*/true,
2779                                                    /*IsForDefinition=*/true));
2780 
2781   // Already emitted.
2782   if (!GV->isDeclaration())
2783     return;
2784 
2785   // We need to set linkage and visibility on the function before
2786   // generating code for it because various parts of IR generation
2787   // want to propagate this information down (e.g. to local static
2788   // declarations).
2789   auto *Fn = cast<llvm::Function>(GV);
2790   setFunctionLinkage(GD, Fn);
2791   setFunctionDLLStorageClass(GD, Fn);
2792 
2793   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
2794   setGlobalVisibility(Fn, D);
2795 
2796   MaybeHandleStaticInExternC(D, Fn);
2797 
2798   maybeSetTrivialComdat(*D, *Fn);
2799 
2800   CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2801 
2802   setFunctionDefinitionAttributes(D, Fn);
2803   SetLLVMFunctionAttributesForDefinition(D, Fn);
2804 
2805   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2806     AddGlobalCtor(Fn, CA->getPriority());
2807   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2808     AddGlobalDtor(Fn, DA->getPriority());
2809   if (D->hasAttr<AnnotateAttr>())
2810     AddGlobalAnnotations(D, Fn);
2811 }
2812 
2813 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2814   const auto *D = cast<ValueDecl>(GD.getDecl());
2815   const AliasAttr *AA = D->getAttr<AliasAttr>();
2816   assert(AA && "Not an alias?");
2817 
2818   StringRef MangledName = getMangledName(GD);
2819 
2820   if (AA->getAliasee() == MangledName) {
2821     Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2822     return;
2823   }
2824 
2825   // If there is a definition in the module, then it wins over the alias.
2826   // This is dubious, but allow it to be safe.  Just ignore the alias.
2827   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2828   if (Entry && !Entry->isDeclaration())
2829     return;
2830 
2831   Aliases.push_back(GD);
2832 
2833   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2834 
2835   // Create a reference to the named value.  This ensures that it is emitted
2836   // if a deferred decl.
2837   llvm::Constant *Aliasee;
2838   if (isa<llvm::FunctionType>(DeclTy))
2839     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2840                                       /*ForVTable=*/false);
2841   else
2842     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2843                                     llvm::PointerType::getUnqual(DeclTy),
2844                                     /*D=*/nullptr);
2845 
2846   // Create the new alias itself, but don't set a name yet.
2847   auto *GA = llvm::GlobalAlias::create(
2848       DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule());
2849 
2850   if (Entry) {
2851     if (GA->getAliasee() == Entry) {
2852       Diags.Report(AA->getLocation(), diag::err_cyclic_alias);
2853       return;
2854     }
2855 
2856     assert(Entry->isDeclaration());
2857 
2858     // If there is a declaration in the module, then we had an extern followed
2859     // by the alias, as in:
2860     //   extern int test6();
2861     //   ...
2862     //   int test6() __attribute__((alias("test7")));
2863     //
2864     // Remove it and replace uses of it with the alias.
2865     GA->takeName(Entry);
2866 
2867     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2868                                                           Entry->getType()));
2869     Entry->eraseFromParent();
2870   } else {
2871     GA->setName(MangledName);
2872   }
2873 
2874   // Set attributes which are particular to an alias; this is a
2875   // specialization of the attributes which may be set on a global
2876   // variable/function.
2877   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
2878       D->isWeakImported()) {
2879     GA->setLinkage(llvm::Function::WeakAnyLinkage);
2880   }
2881 
2882   if (const auto *VD = dyn_cast<VarDecl>(D))
2883     if (VD->getTLSKind())
2884       setTLSMode(GA, *VD);
2885 
2886   setAliasAttributes(D, GA);
2887 }
2888 
2889 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2890                                             ArrayRef<llvm::Type*> Tys) {
2891   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2892                                          Tys);
2893 }
2894 
2895 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2896 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2897                          const StringLiteral *Literal, bool TargetIsLSB,
2898                          bool &IsUTF16, unsigned &StringLength) {
2899   StringRef String = Literal->getString();
2900   unsigned NumBytes = String.size();
2901 
2902   // Check for simple case.
2903   if (!Literal->containsNonAsciiOrNull()) {
2904     StringLength = NumBytes;
2905     return *Map.insert(std::make_pair(String, nullptr)).first;
2906   }
2907 
2908   // Otherwise, convert the UTF8 literals into a string of shorts.
2909   IsUTF16 = true;
2910 
2911   SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2912   const UTF8 *FromPtr = (const UTF8 *)String.data();
2913   UTF16 *ToPtr = &ToBuf[0];
2914 
2915   (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2916                            &ToPtr, ToPtr + NumBytes,
2917                            strictConversion);
2918 
2919   // ConvertUTF8toUTF16 returns the length in ToPtr.
2920   StringLength = ToPtr - &ToBuf[0];
2921 
2922   // Add an explicit null.
2923   *ToPtr = 0;
2924   return *Map.insert(std::make_pair(
2925                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2926                                    (StringLength + 1) * 2),
2927                          nullptr)).first;
2928 }
2929 
2930 static llvm::StringMapEntry<llvm::GlobalVariable *> &
2931 GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
2932                        const StringLiteral *Literal, unsigned &StringLength) {
2933   StringRef String = Literal->getString();
2934   StringLength = String.size();
2935   return *Map.insert(std::make_pair(String, nullptr)).first;
2936 }
2937 
2938 ConstantAddress
2939 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2940   unsigned StringLength = 0;
2941   bool isUTF16 = false;
2942   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2943       GetConstantCFStringEntry(CFConstantStringMap, Literal,
2944                                getDataLayout().isLittleEndian(), isUTF16,
2945                                StringLength);
2946 
2947   if (auto *C = Entry.second)
2948     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
2949 
2950   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2951   llvm::Constant *Zeros[] = { Zero, Zero };
2952   llvm::Value *V;
2953 
2954   // If we don't already have it, get __CFConstantStringClassReference.
2955   if (!CFConstantStringClassRef) {
2956     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2957     Ty = llvm::ArrayType::get(Ty, 0);
2958     llvm::Constant *GV = CreateRuntimeVariable(Ty,
2959                                            "__CFConstantStringClassReference");
2960     // Decay array -> ptr
2961     V = llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros);
2962     CFConstantStringClassRef = V;
2963   }
2964   else
2965     V = CFConstantStringClassRef;
2966 
2967   QualType CFTy = getContext().getCFConstantStringType();
2968 
2969   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2970 
2971   llvm::Constant *Fields[4];
2972 
2973   // Class pointer.
2974   Fields[0] = cast<llvm::ConstantExpr>(V);
2975 
2976   // Flags.
2977   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2978   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2979     llvm::ConstantInt::get(Ty, 0x07C8);
2980 
2981   // String pointer.
2982   llvm::Constant *C = nullptr;
2983   if (isUTF16) {
2984     auto Arr = llvm::makeArrayRef(
2985         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
2986         Entry.first().size() / 2);
2987     C = llvm::ConstantDataArray::get(VMContext, Arr);
2988   } else {
2989     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
2990   }
2991 
2992   // Note: -fwritable-strings doesn't make the backing store strings of
2993   // CFStrings writable. (See <rdar://problem/10657500>)
2994   auto *GV =
2995       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2996                                llvm::GlobalValue::PrivateLinkage, C, ".str");
2997   GV->setUnnamedAddr(true);
2998   // Don't enforce the target's minimum global alignment, since the only use
2999   // of the string is via this class initializer.
3000   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. Without
3001   // it LLVM can merge the string with a non unnamed_addr one during LTO. Doing
3002   // that changes the section it ends in, which surprises ld64.
3003   if (isUTF16) {
3004     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
3005     GV->setAlignment(Align.getQuantity());
3006     GV->setSection("__TEXT,__ustring");
3007   } else {
3008     CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3009     GV->setAlignment(Align.getQuantity());
3010     GV->setSection("__TEXT,__cstring,cstring_literals");
3011   }
3012 
3013   // String.
3014   Fields[2] =
3015       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3016 
3017   if (isUTF16)
3018     // Cast the UTF16 string to the correct type.
3019     Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
3020 
3021   // String length.
3022   Ty = getTypes().ConvertType(getContext().LongTy);
3023   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
3024 
3025   CharUnits Alignment = getPointerAlign();
3026 
3027   // The struct.
3028   C = llvm::ConstantStruct::get(STy, Fields);
3029   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3030                                 llvm::GlobalVariable::PrivateLinkage, C,
3031                                 "_unnamed_cfstring_");
3032   GV->setSection("__DATA,__cfstring");
3033   GV->setAlignment(Alignment.getQuantity());
3034   Entry.second = GV;
3035 
3036   return ConstantAddress(GV, Alignment);
3037 }
3038 
3039 ConstantAddress
3040 CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
3041   unsigned StringLength = 0;
3042   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
3043       GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
3044 
3045   if (auto *C = Entry.second)
3046     return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment()));
3047 
3048   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
3049   llvm::Constant *Zeros[] = { Zero, Zero };
3050   llvm::Value *V;
3051   // If we don't already have it, get _NSConstantStringClassReference.
3052   if (!ConstantStringClassRef) {
3053     std::string StringClass(getLangOpts().ObjCConstantStringClass);
3054     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
3055     llvm::Constant *GV;
3056     if (LangOpts.ObjCRuntime.isNonFragile()) {
3057       std::string str =
3058         StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
3059                             : "OBJC_CLASS_$_" + StringClass;
3060       GV = getObjCRuntime().GetClassGlobal(str);
3061       // Make sure the result is of the correct type.
3062       llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
3063       V = llvm::ConstantExpr::getBitCast(GV, PTy);
3064       ConstantStringClassRef = V;
3065     } else {
3066       std::string str =
3067         StringClass.empty() ? "_NSConstantStringClassReference"
3068                             : "_" + StringClass + "ClassReference";
3069       llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
3070       GV = CreateRuntimeVariable(PTy, str);
3071       // Decay array -> ptr
3072       V = llvm::ConstantExpr::getGetElementPtr(PTy, GV, Zeros);
3073       ConstantStringClassRef = V;
3074     }
3075   } else
3076     V = ConstantStringClassRef;
3077 
3078   if (!NSConstantStringType) {
3079     // Construct the type for a constant NSString.
3080     RecordDecl *D = Context.buildImplicitRecord("__builtin_NSString");
3081     D->startDefinition();
3082 
3083     QualType FieldTypes[3];
3084 
3085     // const int *isa;
3086     FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
3087     // const char *str;
3088     FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
3089     // unsigned int length;
3090     FieldTypes[2] = Context.UnsignedIntTy;
3091 
3092     // Create fields
3093     for (unsigned i = 0; i < 3; ++i) {
3094       FieldDecl *Field = FieldDecl::Create(Context, D,
3095                                            SourceLocation(),
3096                                            SourceLocation(), nullptr,
3097                                            FieldTypes[i], /*TInfo=*/nullptr,
3098                                            /*BitWidth=*/nullptr,
3099                                            /*Mutable=*/false,
3100                                            ICIS_NoInit);
3101       Field->setAccess(AS_public);
3102       D->addDecl(Field);
3103     }
3104 
3105     D->completeDefinition();
3106     QualType NSTy = Context.getTagDeclType(D);
3107     NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
3108   }
3109 
3110   llvm::Constant *Fields[3];
3111 
3112   // Class pointer.
3113   Fields[0] = cast<llvm::ConstantExpr>(V);
3114 
3115   // String pointer.
3116   llvm::Constant *C =
3117       llvm::ConstantDataArray::getString(VMContext, Entry.first());
3118 
3119   llvm::GlobalValue::LinkageTypes Linkage;
3120   bool isConstant;
3121   Linkage = llvm::GlobalValue::PrivateLinkage;
3122   isConstant = !LangOpts.WritableStrings;
3123 
3124   auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
3125                                       Linkage, C, ".str");
3126   GV->setUnnamedAddr(true);
3127   // Don't enforce the target's minimum global alignment, since the only use
3128   // of the string is via this class initializer.
3129   CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
3130   GV->setAlignment(Align.getQuantity());
3131   Fields[1] =
3132       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
3133 
3134   // String length.
3135   llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
3136   Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
3137 
3138   // The struct.
3139   CharUnits Alignment = getPointerAlign();
3140   C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
3141   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
3142                                 llvm::GlobalVariable::PrivateLinkage, C,
3143                                 "_unnamed_nsstring_");
3144   GV->setAlignment(Alignment.getQuantity());
3145   const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
3146   const char *NSStringNonFragileABISection =
3147       "__DATA,__objc_stringobj,regular,no_dead_strip";
3148   // FIXME. Fix section.
3149   GV->setSection(LangOpts.ObjCRuntime.isNonFragile()
3150                      ? NSStringNonFragileABISection
3151                      : NSStringSection);
3152   Entry.second = GV;
3153 
3154   return ConstantAddress(GV, Alignment);
3155 }
3156 
3157 QualType CodeGenModule::getObjCFastEnumerationStateType() {
3158   if (ObjCFastEnumerationStateType.isNull()) {
3159     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
3160     D->startDefinition();
3161 
3162     QualType FieldTypes[] = {
3163       Context.UnsignedLongTy,
3164       Context.getPointerType(Context.getObjCIdType()),
3165       Context.getPointerType(Context.UnsignedLongTy),
3166       Context.getConstantArrayType(Context.UnsignedLongTy,
3167                            llvm::APInt(32, 5), ArrayType::Normal, 0)
3168     };
3169 
3170     for (size_t i = 0; i < 4; ++i) {
3171       FieldDecl *Field = FieldDecl::Create(Context,
3172                                            D,
3173                                            SourceLocation(),
3174                                            SourceLocation(), nullptr,
3175                                            FieldTypes[i], /*TInfo=*/nullptr,
3176                                            /*BitWidth=*/nullptr,
3177                                            /*Mutable=*/false,
3178                                            ICIS_NoInit);
3179       Field->setAccess(AS_public);
3180       D->addDecl(Field);
3181     }
3182 
3183     D->completeDefinition();
3184     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
3185   }
3186 
3187   return ObjCFastEnumerationStateType;
3188 }
3189 
3190 llvm::Constant *
3191 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
3192   assert(!E->getType()->isPointerType() && "Strings are always arrays");
3193 
3194   // Don't emit it as the address of the string, emit the string data itself
3195   // as an inline array.
3196   if (E->getCharByteWidth() == 1) {
3197     SmallString<64> Str(E->getString());
3198 
3199     // Resize the string to the right size, which is indicated by its type.
3200     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
3201     Str.resize(CAT->getSize().getZExtValue());
3202     return llvm::ConstantDataArray::getString(VMContext, Str, false);
3203   }
3204 
3205   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
3206   llvm::Type *ElemTy = AType->getElementType();
3207   unsigned NumElements = AType->getNumElements();
3208 
3209   // Wide strings have either 2-byte or 4-byte elements.
3210   if (ElemTy->getPrimitiveSizeInBits() == 16) {
3211     SmallVector<uint16_t, 32> Elements;
3212     Elements.reserve(NumElements);
3213 
3214     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3215       Elements.push_back(E->getCodeUnit(i));
3216     Elements.resize(NumElements);
3217     return llvm::ConstantDataArray::get(VMContext, Elements);
3218   }
3219 
3220   assert(ElemTy->getPrimitiveSizeInBits() == 32);
3221   SmallVector<uint32_t, 32> Elements;
3222   Elements.reserve(NumElements);
3223 
3224   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
3225     Elements.push_back(E->getCodeUnit(i));
3226   Elements.resize(NumElements);
3227   return llvm::ConstantDataArray::get(VMContext, Elements);
3228 }
3229 
3230 static llvm::GlobalVariable *
3231 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
3232                       CodeGenModule &CGM, StringRef GlobalName,
3233                       CharUnits Alignment) {
3234   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
3235   unsigned AddrSpace = 0;
3236   if (CGM.getLangOpts().OpenCL)
3237     AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant);
3238 
3239   llvm::Module &M = CGM.getModule();
3240   // Create a global variable for this string
3241   auto *GV = new llvm::GlobalVariable(
3242       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
3243       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
3244   GV->setAlignment(Alignment.getQuantity());
3245   GV->setUnnamedAddr(true);
3246   if (GV->isWeakForLinker()) {
3247     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
3248     GV->setComdat(M.getOrInsertComdat(GV->getName()));
3249   }
3250 
3251   return GV;
3252 }
3253 
3254 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
3255 /// constant array for the given string literal.
3256 ConstantAddress
3257 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
3258                                                   StringRef Name) {
3259   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
3260 
3261   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
3262   llvm::GlobalVariable **Entry = nullptr;
3263   if (!LangOpts.WritableStrings) {
3264     Entry = &ConstantStringMap[C];
3265     if (auto GV = *Entry) {
3266       if (Alignment.getQuantity() > GV->getAlignment())
3267         GV->setAlignment(Alignment.getQuantity());
3268       return ConstantAddress(GV, Alignment);
3269     }
3270   }
3271 
3272   SmallString<256> MangledNameBuffer;
3273   StringRef GlobalVariableName;
3274   llvm::GlobalValue::LinkageTypes LT;
3275 
3276   // Mangle the string literal if the ABI allows for it.  However, we cannot
3277   // do this if  we are compiling with ASan or -fwritable-strings because they
3278   // rely on strings having normal linkage.
3279   if (!LangOpts.WritableStrings &&
3280       !LangOpts.Sanitize.has(SanitizerKind::Address) &&
3281       getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) {
3282     llvm::raw_svector_ostream Out(MangledNameBuffer);
3283     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
3284 
3285     LT = llvm::GlobalValue::LinkOnceODRLinkage;
3286     GlobalVariableName = MangledNameBuffer;
3287   } else {
3288     LT = llvm::GlobalValue::PrivateLinkage;
3289     GlobalVariableName = Name;
3290   }
3291 
3292   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
3293   if (Entry)
3294     *Entry = GV;
3295 
3296   SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>",
3297                                   QualType());
3298   return ConstantAddress(GV, Alignment);
3299 }
3300 
3301 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
3302 /// array for the given ObjCEncodeExpr node.
3303 ConstantAddress
3304 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
3305   std::string Str;
3306   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
3307 
3308   return GetAddrOfConstantCString(Str);
3309 }
3310 
3311 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
3312 /// the literal and a terminating '\0' character.
3313 /// The result has pointer to array type.
3314 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
3315     const std::string &Str, const char *GlobalName) {
3316   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
3317   CharUnits Alignment =
3318     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
3319 
3320   llvm::Constant *C =
3321       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
3322 
3323   // Don't share any string literals if strings aren't constant.
3324   llvm::GlobalVariable **Entry = nullptr;
3325   if (!LangOpts.WritableStrings) {
3326     Entry = &ConstantStringMap[C];
3327     if (auto GV = *Entry) {
3328       if (Alignment.getQuantity() > GV->getAlignment())
3329         GV->setAlignment(Alignment.getQuantity());
3330       return ConstantAddress(GV, Alignment);
3331     }
3332   }
3333 
3334   // Get the default prefix if a name wasn't specified.
3335   if (!GlobalName)
3336     GlobalName = ".str";
3337   // Create a global variable for this.
3338   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
3339                                   GlobalName, Alignment);
3340   if (Entry)
3341     *Entry = GV;
3342   return ConstantAddress(GV, Alignment);
3343 }
3344 
3345 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
3346     const MaterializeTemporaryExpr *E, const Expr *Init) {
3347   assert((E->getStorageDuration() == SD_Static ||
3348           E->getStorageDuration() == SD_Thread) && "not a global temporary");
3349   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
3350 
3351   // If we're not materializing a subobject of the temporary, keep the
3352   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
3353   QualType MaterializedType = Init->getType();
3354   if (Init == E->GetTemporaryExpr())
3355     MaterializedType = E->getType();
3356 
3357   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
3358 
3359   if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E])
3360     return ConstantAddress(Slot, Align);
3361 
3362   // FIXME: If an externally-visible declaration extends multiple temporaries,
3363   // we need to give each temporary the same name in every translation unit (and
3364   // we also need to make the temporaries externally-visible).
3365   SmallString<256> Name;
3366   llvm::raw_svector_ostream Out(Name);
3367   getCXXABI().getMangleContext().mangleReferenceTemporary(
3368       VD, E->getManglingNumber(), Out);
3369 
3370   APValue *Value = nullptr;
3371   if (E->getStorageDuration() == SD_Static) {
3372     // We might have a cached constant initializer for this temporary. Note
3373     // that this might have a different value from the value computed by
3374     // evaluating the initializer if the surrounding constant expression
3375     // modifies the temporary.
3376     Value = getContext().getMaterializedTemporaryValue(E, false);
3377     if (Value && Value->isUninit())
3378       Value = nullptr;
3379   }
3380 
3381   // Try evaluating it now, it might have a constant initializer.
3382   Expr::EvalResult EvalResult;
3383   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
3384       !EvalResult.hasSideEffects())
3385     Value = &EvalResult.Val;
3386 
3387   llvm::Constant *InitialValue = nullptr;
3388   bool Constant = false;
3389   llvm::Type *Type;
3390   if (Value) {
3391     // The temporary has a constant initializer, use it.
3392     InitialValue = EmitConstantValue(*Value, MaterializedType, nullptr);
3393     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
3394     Type = InitialValue->getType();
3395   } else {
3396     // No initializer, the initialization will be provided when we
3397     // initialize the declaration which performed lifetime extension.
3398     Type = getTypes().ConvertTypeForMem(MaterializedType);
3399   }
3400 
3401   // Create a global variable for this lifetime-extended temporary.
3402   llvm::GlobalValue::LinkageTypes Linkage =
3403       getLLVMLinkageVarDefinition(VD, Constant);
3404   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
3405     const VarDecl *InitVD;
3406     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
3407         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
3408       // Temporaries defined inside a class get linkonce_odr linkage because the
3409       // class can be defined in multipe translation units.
3410       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
3411     } else {
3412       // There is no need for this temporary to have external linkage if the
3413       // VarDecl has external linkage.
3414       Linkage = llvm::GlobalVariable::InternalLinkage;
3415     }
3416   }
3417   unsigned AddrSpace = GetGlobalVarAddressSpace(
3418       VD, getContext().getTargetAddressSpace(MaterializedType));
3419   auto *GV = new llvm::GlobalVariable(
3420       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
3421       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
3422       AddrSpace);
3423   setGlobalVisibility(GV, VD);
3424   GV->setAlignment(Align.getQuantity());
3425   if (supportsCOMDAT() && GV->isWeakForLinker())
3426     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3427   if (VD->getTLSKind())
3428     setTLSMode(GV, *VD);
3429   MaterializedGlobalTemporaryMap[E] = GV;
3430   return ConstantAddress(GV, Align);
3431 }
3432 
3433 /// EmitObjCPropertyImplementations - Emit information for synthesized
3434 /// properties for an implementation.
3435 void CodeGenModule::EmitObjCPropertyImplementations(const
3436                                                     ObjCImplementationDecl *D) {
3437   for (const auto *PID : D->property_impls()) {
3438     // Dynamic is just for type-checking.
3439     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3440       ObjCPropertyDecl *PD = PID->getPropertyDecl();
3441 
3442       // Determine which methods need to be implemented, some may have
3443       // been overridden. Note that ::isPropertyAccessor is not the method
3444       // we want, that just indicates if the decl came from a
3445       // property. What we want to know is if the method is defined in
3446       // this implementation.
3447       if (!D->getInstanceMethod(PD->getGetterName()))
3448         CodeGenFunction(*this).GenerateObjCGetter(
3449                                  const_cast<ObjCImplementationDecl *>(D), PID);
3450       if (!PD->isReadOnly() &&
3451           !D->getInstanceMethod(PD->getSetterName()))
3452         CodeGenFunction(*this).GenerateObjCSetter(
3453                                  const_cast<ObjCImplementationDecl *>(D), PID);
3454     }
3455   }
3456 }
3457 
3458 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
3459   const ObjCInterfaceDecl *iface = impl->getClassInterface();
3460   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
3461        ivar; ivar = ivar->getNextIvar())
3462     if (ivar->getType().isDestructedType())
3463       return true;
3464 
3465   return false;
3466 }
3467 
3468 static bool AllTrivialInitializers(CodeGenModule &CGM,
3469                                    ObjCImplementationDecl *D) {
3470   CodeGenFunction CGF(CGM);
3471   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
3472        E = D->init_end(); B != E; ++B) {
3473     CXXCtorInitializer *CtorInitExp = *B;
3474     Expr *Init = CtorInitExp->getInit();
3475     if (!CGF.isTrivialInitializer(Init))
3476       return false;
3477   }
3478   return true;
3479 }
3480 
3481 /// EmitObjCIvarInitializations - Emit information for ivar initialization
3482 /// for an implementation.
3483 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
3484   // We might need a .cxx_destruct even if we don't have any ivar initializers.
3485   if (needsDestructMethod(D)) {
3486     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
3487     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3488     ObjCMethodDecl *DTORMethod =
3489       ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
3490                              cxxSelector, getContext().VoidTy, nullptr, D,
3491                              /*isInstance=*/true, /*isVariadic=*/false,
3492                           /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
3493                              /*isDefined=*/false, ObjCMethodDecl::Required);
3494     D->addInstanceMethod(DTORMethod);
3495     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
3496     D->setHasDestructors(true);
3497   }
3498 
3499   // If the implementation doesn't have any ivar initializers, we don't need
3500   // a .cxx_construct.
3501   if (D->getNumIvarInitializers() == 0 ||
3502       AllTrivialInitializers(*this, D))
3503     return;
3504 
3505   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
3506   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
3507   // The constructor returns 'self'.
3508   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
3509                                                 D->getLocation(),
3510                                                 D->getLocation(),
3511                                                 cxxSelector,
3512                                                 getContext().getObjCIdType(),
3513                                                 nullptr, D, /*isInstance=*/true,
3514                                                 /*isVariadic=*/false,
3515                                                 /*isPropertyAccessor=*/true,
3516                                                 /*isImplicitlyDeclared=*/true,
3517                                                 /*isDefined=*/false,
3518                                                 ObjCMethodDecl::Required);
3519   D->addInstanceMethod(CTORMethod);
3520   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
3521   D->setHasNonZeroConstructors(true);
3522 }
3523 
3524 /// EmitNamespace - Emit all declarations in a namespace.
3525 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
3526   for (auto *I : ND->decls()) {
3527     if (const auto *VD = dyn_cast<VarDecl>(I))
3528       if (VD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
3529           VD->getTemplateSpecializationKind() != TSK_Undeclared)
3530         continue;
3531     EmitTopLevelDecl(I);
3532   }
3533 }
3534 
3535 // EmitLinkageSpec - Emit all declarations in a linkage spec.
3536 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
3537   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
3538       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
3539     ErrorUnsupported(LSD, "linkage spec");
3540     return;
3541   }
3542 
3543   for (auto *I : LSD->decls()) {
3544     // Meta-data for ObjC class includes references to implemented methods.
3545     // Generate class's method definitions first.
3546     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
3547       for (auto *M : OID->methods())
3548         EmitTopLevelDecl(M);
3549     }
3550     EmitTopLevelDecl(I);
3551   }
3552 }
3553 
3554 /// EmitTopLevelDecl - Emit code for a single top level declaration.
3555 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
3556   // Ignore dependent declarations.
3557   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
3558     return;
3559 
3560   switch (D->getKind()) {
3561   case Decl::CXXConversion:
3562   case Decl::CXXMethod:
3563   case Decl::Function:
3564     // Skip function templates
3565     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3566         cast<FunctionDecl>(D)->isLateTemplateParsed())
3567       return;
3568 
3569     EmitGlobal(cast<FunctionDecl>(D));
3570     // Always provide some coverage mapping
3571     // even for the functions that aren't emitted.
3572     AddDeferredUnusedCoverageMapping(D);
3573     break;
3574 
3575   case Decl::Var:
3576     // Skip variable templates
3577     if (cast<VarDecl>(D)->getDescribedVarTemplate())
3578       return;
3579   case Decl::VarTemplateSpecialization:
3580     EmitGlobal(cast<VarDecl>(D));
3581     break;
3582 
3583   // Indirect fields from global anonymous structs and unions can be
3584   // ignored; only the actual variable requires IR gen support.
3585   case Decl::IndirectField:
3586     break;
3587 
3588   // C++ Decls
3589   case Decl::Namespace:
3590     EmitNamespace(cast<NamespaceDecl>(D));
3591     break;
3592     // No code generation needed.
3593   case Decl::UsingShadow:
3594   case Decl::ClassTemplate:
3595   case Decl::VarTemplate:
3596   case Decl::VarTemplatePartialSpecialization:
3597   case Decl::FunctionTemplate:
3598   case Decl::TypeAliasTemplate:
3599   case Decl::Block:
3600   case Decl::Empty:
3601     break;
3602   case Decl::Using:          // using X; [C++]
3603     if (CGDebugInfo *DI = getModuleDebugInfo())
3604         DI->EmitUsingDecl(cast<UsingDecl>(*D));
3605     return;
3606   case Decl::NamespaceAlias:
3607     if (CGDebugInfo *DI = getModuleDebugInfo())
3608         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
3609     return;
3610   case Decl::UsingDirective: // using namespace X; [C++]
3611     if (CGDebugInfo *DI = getModuleDebugInfo())
3612       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
3613     return;
3614   case Decl::CXXConstructor:
3615     // Skip function templates
3616     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
3617         cast<FunctionDecl>(D)->isLateTemplateParsed())
3618       return;
3619 
3620     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
3621     break;
3622   case Decl::CXXDestructor:
3623     if (cast<FunctionDecl>(D)->isLateTemplateParsed())
3624       return;
3625     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
3626     break;
3627 
3628   case Decl::StaticAssert:
3629     // Nothing to do.
3630     break;
3631 
3632   // Objective-C Decls
3633 
3634   // Forward declarations, no (immediate) code generation.
3635   case Decl::ObjCInterface:
3636   case Decl::ObjCCategory:
3637     break;
3638 
3639   case Decl::ObjCProtocol: {
3640     auto *Proto = cast<ObjCProtocolDecl>(D);
3641     if (Proto->isThisDeclarationADefinition())
3642       ObjCRuntime->GenerateProtocol(Proto);
3643     break;
3644   }
3645 
3646   case Decl::ObjCCategoryImpl:
3647     // Categories have properties but don't support synthesize so we
3648     // can ignore them here.
3649     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
3650     break;
3651 
3652   case Decl::ObjCImplementation: {
3653     auto *OMD = cast<ObjCImplementationDecl>(D);
3654     EmitObjCPropertyImplementations(OMD);
3655     EmitObjCIvarInitializations(OMD);
3656     ObjCRuntime->GenerateClass(OMD);
3657     // Emit global variable debug information.
3658     if (CGDebugInfo *DI = getModuleDebugInfo())
3659       if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
3660         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
3661             OMD->getClassInterface()), OMD->getLocation());
3662     break;
3663   }
3664   case Decl::ObjCMethod: {
3665     auto *OMD = cast<ObjCMethodDecl>(D);
3666     // If this is not a prototype, emit the body.
3667     if (OMD->getBody())
3668       CodeGenFunction(*this).GenerateObjCMethod(OMD);
3669     break;
3670   }
3671   case Decl::ObjCCompatibleAlias:
3672     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
3673     break;
3674 
3675   case Decl::LinkageSpec:
3676     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
3677     break;
3678 
3679   case Decl::FileScopeAsm: {
3680     // File-scope asm is ignored during device-side CUDA compilation.
3681     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
3682       break;
3683     // File-scope asm is ignored during device-side OpenMP compilation.
3684     if (LangOpts.OpenMPIsDevice)
3685       break;
3686     auto *AD = cast<FileScopeAsmDecl>(D);
3687     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
3688     break;
3689   }
3690 
3691   case Decl::Import: {
3692     auto *Import = cast<ImportDecl>(D);
3693 
3694     // Ignore import declarations that come from imported modules.
3695     if (Import->getImportedOwningModule())
3696       break;
3697     if (CGDebugInfo *DI = getModuleDebugInfo())
3698       DI->EmitImportDecl(*Import);
3699 
3700     ImportedModules.insert(Import->getImportedModule());
3701     break;
3702   }
3703 
3704   case Decl::OMPThreadPrivate:
3705     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
3706     break;
3707 
3708   case Decl::ClassTemplateSpecialization: {
3709     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
3710     if (DebugInfo &&
3711         Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition &&
3712         Spec->hasDefinition())
3713       DebugInfo->completeTemplateDefinition(*Spec);
3714     break;
3715   }
3716 
3717   default:
3718     // Make sure we handled everything we should, every other kind is a
3719     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
3720     // function. Need to recode Decl::Kind to do that easily.
3721     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
3722     break;
3723   }
3724 }
3725 
3726 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
3727   // Do we need to generate coverage mapping?
3728   if (!CodeGenOpts.CoverageMapping)
3729     return;
3730   switch (D->getKind()) {
3731   case Decl::CXXConversion:
3732   case Decl::CXXMethod:
3733   case Decl::Function:
3734   case Decl::ObjCMethod:
3735   case Decl::CXXConstructor:
3736   case Decl::CXXDestructor: {
3737     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
3738       return;
3739     auto I = DeferredEmptyCoverageMappingDecls.find(D);
3740     if (I == DeferredEmptyCoverageMappingDecls.end())
3741       DeferredEmptyCoverageMappingDecls[D] = true;
3742     break;
3743   }
3744   default:
3745     break;
3746   };
3747 }
3748 
3749 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
3750   // Do we need to generate coverage mapping?
3751   if (!CodeGenOpts.CoverageMapping)
3752     return;
3753   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
3754     if (Fn->isTemplateInstantiation())
3755       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
3756   }
3757   auto I = DeferredEmptyCoverageMappingDecls.find(D);
3758   if (I == DeferredEmptyCoverageMappingDecls.end())
3759     DeferredEmptyCoverageMappingDecls[D] = false;
3760   else
3761     I->second = false;
3762 }
3763 
3764 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
3765   std::vector<const Decl *> DeferredDecls;
3766   for (const auto &I : DeferredEmptyCoverageMappingDecls) {
3767     if (!I.second)
3768       continue;
3769     DeferredDecls.push_back(I.first);
3770   }
3771   // Sort the declarations by their location to make sure that the tests get a
3772   // predictable order for the coverage mapping for the unused declarations.
3773   if (CodeGenOpts.DumpCoverageMapping)
3774     std::sort(DeferredDecls.begin(), DeferredDecls.end(),
3775               [] (const Decl *LHS, const Decl *RHS) {
3776       return LHS->getLocStart() < RHS->getLocStart();
3777     });
3778   for (const auto *D : DeferredDecls) {
3779     switch (D->getKind()) {
3780     case Decl::CXXConversion:
3781     case Decl::CXXMethod:
3782     case Decl::Function:
3783     case Decl::ObjCMethod: {
3784       CodeGenPGO PGO(*this);
3785       GlobalDecl GD(cast<FunctionDecl>(D));
3786       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3787                                   getFunctionLinkage(GD));
3788       break;
3789     }
3790     case Decl::CXXConstructor: {
3791       CodeGenPGO PGO(*this);
3792       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
3793       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3794                                   getFunctionLinkage(GD));
3795       break;
3796     }
3797     case Decl::CXXDestructor: {
3798       CodeGenPGO PGO(*this);
3799       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
3800       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
3801                                   getFunctionLinkage(GD));
3802       break;
3803     }
3804     default:
3805       break;
3806     };
3807   }
3808 }
3809 
3810 /// Turns the given pointer into a constant.
3811 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
3812                                           const void *Ptr) {
3813   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
3814   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3815   return llvm::ConstantInt::get(i64, PtrInt);
3816 }
3817 
3818 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3819                                    llvm::NamedMDNode *&GlobalMetadata,
3820                                    GlobalDecl D,
3821                                    llvm::GlobalValue *Addr) {
3822   if (!GlobalMetadata)
3823     GlobalMetadata =
3824       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3825 
3826   // TODO: should we report variant information for ctors/dtors?
3827   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
3828                            llvm::ConstantAsMetadata::get(GetPointerConstant(
3829                                CGM.getLLVMContext(), D.getDecl()))};
3830   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3831 }
3832 
3833 /// For each function which is declared within an extern "C" region and marked
3834 /// as 'used', but has internal linkage, create an alias from the unmangled
3835 /// name to the mangled name if possible. People expect to be able to refer
3836 /// to such functions with an unmangled name from inline assembly within the
3837 /// same translation unit.
3838 void CodeGenModule::EmitStaticExternCAliases() {
3839   // Don't do anything if we're generating CUDA device code -- the NVPTX
3840   // assembly target doesn't support aliases.
3841   if (Context.getTargetInfo().getTriple().isNVPTX())
3842     return;
3843   for (auto &I : StaticExternCValues) {
3844     IdentifierInfo *Name = I.first;
3845     llvm::GlobalValue *Val = I.second;
3846     if (Val && !getModule().getNamedValue(Name->getName()))
3847       addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
3848   }
3849 }
3850 
3851 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
3852                                              GlobalDecl &Result) const {
3853   auto Res = Manglings.find(MangledName);
3854   if (Res == Manglings.end())
3855     return false;
3856   Result = Res->getValue();
3857   return true;
3858 }
3859 
3860 /// Emits metadata nodes associating all the global values in the
3861 /// current module with the Decls they came from.  This is useful for
3862 /// projects using IR gen as a subroutine.
3863 ///
3864 /// Since there's currently no way to associate an MDNode directly
3865 /// with an llvm::GlobalValue, we create a global named metadata
3866 /// with the name 'clang.global.decl.ptrs'.
3867 void CodeGenModule::EmitDeclMetadata() {
3868   llvm::NamedMDNode *GlobalMetadata = nullptr;
3869 
3870   for (auto &I : MangledDeclNames) {
3871     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
3872     // Some mangled names don't necessarily have an associated GlobalValue
3873     // in this module, e.g. if we mangled it for DebugInfo.
3874     if (Addr)
3875       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
3876   }
3877 }
3878 
3879 /// Emits metadata nodes for all the local variables in the current
3880 /// function.
3881 void CodeGenFunction::EmitDeclMetadata() {
3882   if (LocalDeclMap.empty()) return;
3883 
3884   llvm::LLVMContext &Context = getLLVMContext();
3885 
3886   // Find the unique metadata ID for this name.
3887   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3888 
3889   llvm::NamedMDNode *GlobalMetadata = nullptr;
3890 
3891   for (auto &I : LocalDeclMap) {
3892     const Decl *D = I.first;
3893     llvm::Value *Addr = I.second.getPointer();
3894     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3895       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3896       Alloca->setMetadata(
3897           DeclPtrKind, llvm::MDNode::get(
3898                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
3899     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3900       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3901       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3902     }
3903   }
3904 }
3905 
3906 void CodeGenModule::EmitVersionIdentMetadata() {
3907   llvm::NamedMDNode *IdentMetadata =
3908     TheModule.getOrInsertNamedMetadata("llvm.ident");
3909   std::string Version = getClangFullVersion();
3910   llvm::LLVMContext &Ctx = TheModule.getContext();
3911 
3912   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
3913   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
3914 }
3915 
3916 void CodeGenModule::EmitTargetMetadata() {
3917   // Warning, new MangledDeclNames may be appended within this loop.
3918   // We rely on MapVector insertions adding new elements to the end
3919   // of the container.
3920   // FIXME: Move this loop into the one target that needs it, and only
3921   // loop over those declarations for which we couldn't emit the target
3922   // metadata when we emitted the declaration.
3923   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
3924     auto Val = *(MangledDeclNames.begin() + I);
3925     const Decl *D = Val.first.getDecl()->getMostRecentDecl();
3926     llvm::GlobalValue *GV = GetGlobalValue(Val.second);
3927     getTargetCodeGenInfo().emitTargetMD(D, GV, *this);
3928   }
3929 }
3930 
3931 void CodeGenModule::EmitCoverageFile() {
3932   if (!getCodeGenOpts().CoverageFile.empty()) {
3933     if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3934       llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3935       llvm::LLVMContext &Ctx = TheModule.getContext();
3936       llvm::MDString *CoverageFile =
3937           llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3938       for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3939         llvm::MDNode *CU = CUNode->getOperand(i);
3940         llvm::Metadata *Elts[] = {CoverageFile, CU};
3941         GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
3942       }
3943     }
3944   }
3945 }
3946 
3947 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) {
3948   // Sema has checked that all uuid strings are of the form
3949   // "12345678-1234-1234-1234-1234567890ab".
3950   assert(Uuid.size() == 36);
3951   for (unsigned i = 0; i < 36; ++i) {
3952     if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-');
3953     else                                         assert(isHexDigit(Uuid[i]));
3954   }
3955 
3956   // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab".
3957   const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3958 
3959   llvm::Constant *Field3[8];
3960   for (unsigned Idx = 0; Idx < 8; ++Idx)
3961     Field3[Idx] = llvm::ConstantInt::get(
3962         Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16);
3963 
3964   llvm::Constant *Fields[4] = {
3965     llvm::ConstantInt::get(Int32Ty, Uuid.substr(0,  8), 16),
3966     llvm::ConstantInt::get(Int16Ty, Uuid.substr(9,  4), 16),
3967     llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16),
3968     llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3)
3969   };
3970 
3971   return llvm::ConstantStruct::getAnon(Fields);
3972 }
3973 
3974 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
3975                                                        bool ForEH) {
3976   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
3977   // FIXME: should we even be calling this method if RTTI is disabled
3978   // and it's not for EH?
3979   if (!ForEH && !getLangOpts().RTTI)
3980     return llvm::Constant::getNullValue(Int8PtrTy);
3981 
3982   if (ForEH && Ty->isObjCObjectPointerType() &&
3983       LangOpts.ObjCRuntime.isGNUFamily())
3984     return ObjCRuntime->GetEHType(Ty);
3985 
3986   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
3987 }
3988 
3989 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
3990   for (auto RefExpr : D->varlists()) {
3991     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
3992     bool PerformInit =
3993         VD->getAnyInitializer() &&
3994         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
3995                                                         /*ForRef=*/false);
3996 
3997     Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD));
3998     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
3999             VD, Addr, RefExpr->getLocStart(), PerformInit))
4000       CXXGlobalInits.push_back(InitFunction);
4001   }
4002 }
4003 
4004 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
4005   llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()];
4006   if (InternalId)
4007     return InternalId;
4008 
4009   if (isExternallyVisible(T->getLinkage())) {
4010     std::string OutName;
4011     llvm::raw_string_ostream Out(OutName);
4012     getCXXABI().getMangleContext().mangleTypeName(T, Out);
4013 
4014     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
4015   } else {
4016     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
4017                                            llvm::ArrayRef<llvm::Metadata *>());
4018   }
4019 
4020   return InternalId;
4021 }
4022 
4023 void CodeGenModule::CreateVTableBitSetEntry(llvm::NamedMDNode *BitsetsMD,
4024                                             llvm::GlobalVariable *VTable,
4025                                             CharUnits Offset,
4026                                             const CXXRecordDecl *RD) {
4027   llvm::Metadata *MD =
4028       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
4029   llvm::Metadata *BitsetOps[] = {
4030       MD, llvm::ConstantAsMetadata::get(VTable),
4031       llvm::ConstantAsMetadata::get(
4032           llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4033   BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps));
4034 
4035   if (CodeGenOpts.SanitizeCfiCrossDso) {
4036     if (auto TypeId = CreateCfiIdForTypeMetadata(MD)) {
4037       llvm::Metadata *BitsetOps2[] = {
4038           llvm::ConstantAsMetadata::get(TypeId),
4039           llvm::ConstantAsMetadata::get(VTable),
4040           llvm::ConstantAsMetadata::get(
4041               llvm::ConstantInt::get(Int64Ty, Offset.getQuantity()))};
4042       BitsetsMD->addOperand(llvm::MDTuple::get(getLLVMContext(), BitsetOps2));
4043     }
4044   }
4045 }
4046 
4047 // Fills in the supplied string map with the set of target features for the
4048 // passed in function.
4049 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
4050                                           const FunctionDecl *FD) {
4051   StringRef TargetCPU = Target.getTargetOpts().CPU;
4052   if (const auto *TD = FD->getAttr<TargetAttr>()) {
4053     // If we have a TargetAttr build up the feature map based on that.
4054     TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
4055 
4056     // Make a copy of the features as passed on the command line into the
4057     // beginning of the additional features from the function to override.
4058     ParsedAttr.first.insert(ParsedAttr.first.begin(),
4059                             Target.getTargetOpts().FeaturesAsWritten.begin(),
4060                             Target.getTargetOpts().FeaturesAsWritten.end());
4061 
4062     if (ParsedAttr.second != "")
4063       TargetCPU = ParsedAttr.second;
4064 
4065     // Now populate the feature map, first with the TargetCPU which is either
4066     // the default or a new one from the target attribute string. Then we'll use
4067     // the passed in features (FeaturesAsWritten) along with the new ones from
4068     // the attribute.
4069     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, ParsedAttr.first);
4070   } else {
4071     Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU,
4072                           Target.getTargetOpts().Features);
4073   }
4074 }
4075 
4076 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
4077   if (!SanStats)
4078     SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule());
4079 
4080   return *SanStats;
4081 }
4082