xref: /llvm-project/clang/lib/CodeGen/CodeGenModule.cpp (revision cd20a1828605887699579789b5433111d5bc0319)
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/CharUnits.h"
32 #include "clang/AST/DeclCXX.h"
33 #include "clang/AST/DeclObjC.h"
34 #include "clang/AST/DeclTemplate.h"
35 #include "clang/AST/Mangle.h"
36 #include "clang/AST/RecursiveASTVisitor.h"
37 #include "clang/AST/StmtVisitor.h"
38 #include "clang/Basic/Builtins.h"
39 #include "clang/Basic/CharInfo.h"
40 #include "clang/Basic/CodeGenOptions.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/FileManager.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/ADT/Triple.h"
54 #include "llvm/Analysis/TargetLibraryInfo.h"
55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/X86TargetParser.h"
71 #include "llvm/Support/xxhash.h"
72 
73 using namespace clang;
74 using namespace CodeGen;
75 
76 static llvm::cl::opt<bool> LimitedCoverage(
77     "limited-coverage-experimental", llvm::cl::Hidden,
78     llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
79 
80 static const char AnnotationSection[] = "llvm.metadata";
81 
82 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
83   switch (CGM.getContext().getCXXABIKind()) {
84   case TargetCXXABI::AppleARM64:
85   case TargetCXXABI::Fuchsia:
86   case TargetCXXABI::GenericAArch64:
87   case TargetCXXABI::GenericARM:
88   case TargetCXXABI::iOS:
89   case TargetCXXABI::WatchOS:
90   case TargetCXXABI::GenericMIPS:
91   case TargetCXXABI::GenericItanium:
92   case TargetCXXABI::WebAssembly:
93   case TargetCXXABI::XL:
94     return CreateItaniumCXXABI(CGM);
95   case TargetCXXABI::Microsoft:
96     return CreateMicrosoftCXXABI(CGM);
97   }
98 
99   llvm_unreachable("invalid C++ ABI kind");
100 }
101 
102 CodeGenModule::CodeGenModule(ASTContext &C,
103                              IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
104                              const HeaderSearchOptions &HSO,
105                              const PreprocessorOptions &PPO,
106                              const CodeGenOptions &CGO, llvm::Module &M,
107                              DiagnosticsEngine &diags,
108                              CoverageSourceInfo *CoverageInfo)
109     : Context(C), LangOpts(C.getLangOpts()), FS(std::move(FS)),
110       HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO),
111       TheModule(M), Diags(diags), Target(C.getTargetInfo()),
112       ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this),
113       VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) {
114 
115   // Initialize the type cache.
116   llvm::LLVMContext &LLVMContext = M.getContext();
117   VoidTy = llvm::Type::getVoidTy(LLVMContext);
118   Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
119   Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
120   Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
121   Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
122   HalfTy = llvm::Type::getHalfTy(LLVMContext);
123   BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
124   FloatTy = llvm::Type::getFloatTy(LLVMContext);
125   DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
126   PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
127   PointerAlignInBytes =
128     C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
129   SizeSizeInBytes =
130     C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
131   IntAlignInBytes =
132     C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
133   CharTy =
134     llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
135   IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
136   IntPtrTy = llvm::IntegerType::get(LLVMContext,
137     C.getTargetInfo().getMaxPointerWidth());
138   Int8PtrTy = Int8Ty->getPointerTo(0);
139   Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
140   const llvm::DataLayout &DL = M.getDataLayout();
141   AllocaInt8PtrTy = Int8Ty->getPointerTo(DL.getAllocaAddrSpace());
142   GlobalsInt8PtrTy = Int8Ty->getPointerTo(DL.getDefaultGlobalsAddressSpace());
143   ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
144 
145   // Build C++20 Module initializers.
146   // TODO: Add Microsoft here once we know the mangling required for the
147   // initializers.
148   CXX20ModuleInits =
149       LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
150                                        ItaniumMangleContext::MK_Itanium;
151 
152   RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
153 
154   if (LangOpts.ObjC)
155     createObjCRuntime();
156   if (LangOpts.OpenCL)
157     createOpenCLRuntime();
158   if (LangOpts.OpenMP)
159     createOpenMPRuntime();
160   if (LangOpts.CUDA)
161     createCUDARuntime();
162   if (LangOpts.HLSL)
163     createHLSLRuntime();
164 
165   // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
166   if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
167       (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
168     TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
169                                getCXXABI().getMangleContext()));
170 
171   // If debug info or coverage generation is enabled, create the CGDebugInfo
172   // object.
173   if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo ||
174       CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)
175     DebugInfo.reset(new CGDebugInfo(*this));
176 
177   Block.GlobalUniqueCount = 0;
178 
179   if (C.getLangOpts().ObjC)
180     ObjCData.reset(new ObjCEntrypoints());
181 
182   if (CodeGenOpts.hasProfileClangUse()) {
183     auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
184         CodeGenOpts.ProfileInstrumentUsePath, CodeGenOpts.ProfileRemappingFile);
185     if (auto E = ReaderOrErr.takeError()) {
186       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
187                                               "Could not read profile %0: %1");
188       llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) {
189         getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath
190                                   << EI.message();
191       });
192     } else
193       PGOReader = std::move(ReaderOrErr.get());
194   }
195 
196   // If coverage mapping generation is enabled, create the
197   // CoverageMappingModuleGen object.
198   if (CodeGenOpts.CoverageMapping)
199     CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
200 
201   // Generate the module name hash here if needed.
202   if (CodeGenOpts.UniqueInternalLinkageNames &&
203       !getModule().getSourceFileName().empty()) {
204     std::string Path = getModule().getSourceFileName();
205     // Check if a path substitution is needed from the MacroPrefixMap.
206     for (const auto &Entry : LangOpts.MacroPrefixMap)
207       if (Path.rfind(Entry.first, 0) != std::string::npos) {
208         Path = Entry.second + Path.substr(Entry.first.size());
209         break;
210       }
211     ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
212   }
213 }
214 
215 CodeGenModule::~CodeGenModule() {}
216 
217 void CodeGenModule::createObjCRuntime() {
218   // This is just isGNUFamily(), but we want to force implementors of
219   // new ABIs to decide how best to do this.
220   switch (LangOpts.ObjCRuntime.getKind()) {
221   case ObjCRuntime::GNUstep:
222   case ObjCRuntime::GCC:
223   case ObjCRuntime::ObjFW:
224     ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
225     return;
226 
227   case ObjCRuntime::FragileMacOSX:
228   case ObjCRuntime::MacOSX:
229   case ObjCRuntime::iOS:
230   case ObjCRuntime::WatchOS:
231     ObjCRuntime.reset(CreateMacObjCRuntime(*this));
232     return;
233   }
234   llvm_unreachable("bad runtime kind");
235 }
236 
237 void CodeGenModule::createOpenCLRuntime() {
238   OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
239 }
240 
241 void CodeGenModule::createOpenMPRuntime() {
242   // Select a specialized code generation class based on the target, if any.
243   // If it does not exist use the default implementation.
244   switch (getTriple().getArch()) {
245   case llvm::Triple::nvptx:
246   case llvm::Triple::nvptx64:
247   case llvm::Triple::amdgcn:
248     assert(getLangOpts().OpenMPIsDevice &&
249            "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
250     OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
251     break;
252   default:
253     if (LangOpts.OpenMPSimd)
254       OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
255     else
256       OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
257     break;
258   }
259 }
260 
261 void CodeGenModule::createCUDARuntime() {
262   CUDARuntime.reset(CreateNVCUDARuntime(*this));
263 }
264 
265 void CodeGenModule::createHLSLRuntime() {
266   HLSLRuntime.reset(new CGHLSLRuntime(*this));
267 }
268 
269 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
270   Replacements[Name] = C;
271 }
272 
273 void CodeGenModule::applyReplacements() {
274   for (auto &I : Replacements) {
275     StringRef MangledName = I.first();
276     llvm::Constant *Replacement = I.second;
277     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
278     if (!Entry)
279       continue;
280     auto *OldF = cast<llvm::Function>(Entry);
281     auto *NewF = dyn_cast<llvm::Function>(Replacement);
282     if (!NewF) {
283       if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
284         NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
285       } else {
286         auto *CE = cast<llvm::ConstantExpr>(Replacement);
287         assert(CE->getOpcode() == llvm::Instruction::BitCast ||
288                CE->getOpcode() == llvm::Instruction::GetElementPtr);
289         NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
290       }
291     }
292 
293     // Replace old with new, but keep the old order.
294     OldF->replaceAllUsesWith(Replacement);
295     if (NewF) {
296       NewF->removeFromParent();
297       OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
298                                                        NewF);
299     }
300     OldF->eraseFromParent();
301   }
302 }
303 
304 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
305   GlobalValReplacements.push_back(std::make_pair(GV, C));
306 }
307 
308 void CodeGenModule::applyGlobalValReplacements() {
309   for (auto &I : GlobalValReplacements) {
310     llvm::GlobalValue *GV = I.first;
311     llvm::Constant *C = I.second;
312 
313     GV->replaceAllUsesWith(C);
314     GV->eraseFromParent();
315   }
316 }
317 
318 // This is only used in aliases that we created and we know they have a
319 // linear structure.
320 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
321   const llvm::Constant *C;
322   if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
323     C = GA->getAliasee();
324   else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
325     C = GI->getResolver();
326   else
327     return GV;
328 
329   const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
330   if (!AliaseeGV)
331     return nullptr;
332 
333   const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
334   if (FinalGV == GV)
335     return nullptr;
336 
337   return FinalGV;
338 }
339 
340 static bool checkAliasedGlobal(DiagnosticsEngine &Diags,
341                                SourceLocation Location, bool IsIFunc,
342                                const llvm::GlobalValue *Alias,
343                                const llvm::GlobalValue *&GV) {
344   GV = getAliasedGlobal(Alias);
345   if (!GV) {
346     Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
347     return false;
348   }
349 
350   if (GV->isDeclaration()) {
351     Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
352     return false;
353   }
354 
355   if (IsIFunc) {
356     // Check resolver function type.
357     const auto *F = dyn_cast<llvm::Function>(GV);
358     if (!F) {
359       Diags.Report(Location, diag::err_alias_to_undefined)
360           << IsIFunc << IsIFunc;
361       return false;
362     }
363 
364     llvm::FunctionType *FTy = F->getFunctionType();
365     if (!FTy->getReturnType()->isPointerTy()) {
366       Diags.Report(Location, diag::err_ifunc_resolver_return);
367       return false;
368     }
369   }
370 
371   return true;
372 }
373 
374 void CodeGenModule::checkAliases() {
375   // Check if the constructed aliases are well formed. It is really unfortunate
376   // that we have to do this in CodeGen, but we only construct mangled names
377   // and aliases during codegen.
378   bool Error = false;
379   DiagnosticsEngine &Diags = getDiags();
380   for (const GlobalDecl &GD : Aliases) {
381     const auto *D = cast<ValueDecl>(GD.getDecl());
382     SourceLocation Location;
383     bool IsIFunc = D->hasAttr<IFuncAttr>();
384     if (const Attr *A = D->getDefiningAttr())
385       Location = A->getLocation();
386     else
387       llvm_unreachable("Not an alias or ifunc?");
388 
389     StringRef MangledName = getMangledName(GD);
390     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
391     const llvm::GlobalValue *GV = nullptr;
392     if (!checkAliasedGlobal(Diags, Location, IsIFunc, Alias, GV)) {
393       Error = true;
394       continue;
395     }
396 
397     llvm::Constant *Aliasee =
398         IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
399                 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
400 
401     llvm::GlobalValue *AliaseeGV;
402     if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
403       AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
404     else
405       AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
406 
407     if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
408       StringRef AliasSection = SA->getName();
409       if (AliasSection != AliaseeGV->getSection())
410         Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
411             << AliasSection << IsIFunc << IsIFunc;
412     }
413 
414     // We have to handle alias to weak aliases in here. LLVM itself disallows
415     // this since the object semantics would not match the IL one. For
416     // compatibility with gcc we implement it by just pointing the alias
417     // to its aliasee's aliasee. We also warn, since the user is probably
418     // expecting the link to be weak.
419     if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
420       if (GA->isInterposable()) {
421         Diags.Report(Location, diag::warn_alias_to_weak_alias)
422             << GV->getName() << GA->getName() << IsIFunc;
423         Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
424             GA->getAliasee(), Alias->getType());
425 
426         if (IsIFunc)
427           cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
428         else
429           cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
430       }
431     }
432   }
433   if (!Error)
434     return;
435 
436   for (const GlobalDecl &GD : Aliases) {
437     StringRef MangledName = getMangledName(GD);
438     llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
439     Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
440     Alias->eraseFromParent();
441   }
442 }
443 
444 void CodeGenModule::clear() {
445   DeferredDeclsToEmit.clear();
446   EmittedDeferredDecls.clear();
447   if (OpenMPRuntime)
448     OpenMPRuntime->clear();
449 }
450 
451 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
452                                        StringRef MainFile) {
453   if (!hasDiagnostics())
454     return;
455   if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
456     if (MainFile.empty())
457       MainFile = "<stdin>";
458     Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
459   } else {
460     if (Mismatched > 0)
461       Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
462 
463     if (Missing > 0)
464       Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
465   }
466 }
467 
468 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
469                                              llvm::Module &M) {
470   if (!LO.VisibilityFromDLLStorageClass)
471     return;
472 
473   llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
474       CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
475   llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
476       CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
477   llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
478       CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
479   llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
480       CodeGenModule::GetLLVMVisibility(
481           LO.getExternDeclNoDLLStorageClassVisibility());
482 
483   for (llvm::GlobalValue &GV : M.global_values()) {
484     if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
485       continue;
486 
487     // Reset DSO locality before setting the visibility. This removes
488     // any effects that visibility options and annotations may have
489     // had on the DSO locality. Setting the visibility will implicitly set
490     // appropriate globals to DSO Local; however, this will be pessimistic
491     // w.r.t. to the normal compiler IRGen.
492     GV.setDSOLocal(false);
493 
494     if (GV.isDeclarationForLinker()) {
495       GV.setVisibility(GV.getDLLStorageClass() ==
496                                llvm::GlobalValue::DLLImportStorageClass
497                            ? ExternDeclDLLImportVisibility
498                            : ExternDeclNoDLLStorageClassVisibility);
499     } else {
500       GV.setVisibility(GV.getDLLStorageClass() ==
501                                llvm::GlobalValue::DLLExportStorageClass
502                            ? DLLExportVisibility
503                            : NoDLLStorageClassVisibility);
504     }
505 
506     GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
507   }
508 }
509 
510 void CodeGenModule::Release() {
511   Module *Primary = getContext().getModuleForCodeGen();
512   if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
513     EmitModuleInitializers(Primary);
514   EmitDeferred();
515   DeferredDecls.insert(EmittedDeferredDecls.begin(),
516                        EmittedDeferredDecls.end());
517   EmittedDeferredDecls.clear();
518   EmitVTablesOpportunistically();
519   applyGlobalValReplacements();
520   applyReplacements();
521   emitMultiVersionFunctions();
522   if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
523     EmitCXXModuleInitFunc(Primary);
524   else
525     EmitCXXGlobalInitFunc();
526   EmitCXXGlobalCleanUpFunc();
527   registerGlobalDtorsWithAtExit();
528   EmitCXXThreadLocalInitFunc();
529   if (ObjCRuntime)
530     if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
531       AddGlobalCtor(ObjCInitFunction);
532   if (Context.getLangOpts().CUDA && CUDARuntime) {
533     if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
534       AddGlobalCtor(CudaCtorFunction);
535   }
536   if (OpenMPRuntime) {
537     if (llvm::Function *OpenMPRequiresDirectiveRegFun =
538             OpenMPRuntime->emitRequiresDirectiveRegFun()) {
539       AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
540     }
541     OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
542     OpenMPRuntime->clear();
543   }
544   if (PGOReader) {
545     getModule().setProfileSummary(
546         PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
547         llvm::ProfileSummary::PSK_Instr);
548     if (PGOStats.hasDiagnostics())
549       PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
550   }
551   llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
552     return L.LexOrder < R.LexOrder;
553   });
554   EmitCtorList(GlobalCtors, "llvm.global_ctors");
555   EmitCtorList(GlobalDtors, "llvm.global_dtors");
556   EmitGlobalAnnotations();
557   EmitStaticExternCAliases();
558   checkAliases();
559   EmitDeferredUnusedCoverageMappings();
560   CodeGenPGO(*this).setValueProfilingFlag(getModule());
561   if (CoverageMapping)
562     CoverageMapping->emit();
563   if (CodeGenOpts.SanitizeCfiCrossDso) {
564     CodeGenFunction(*this).EmitCfiCheckFail();
565     CodeGenFunction(*this).EmitCfiCheckStub();
566   }
567   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
568     finalizeKCFITypes();
569   emitAtAvailableLinkGuard();
570   if (Context.getTargetInfo().getTriple().isWasm())
571     EmitMainVoidAlias();
572 
573   if (getTriple().isAMDGPU()) {
574     // Emit reference of __amdgpu_device_library_preserve_asan_functions to
575     // preserve ASAN functions in bitcode libraries.
576     if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
577       auto *FT = llvm::FunctionType::get(VoidTy, {});
578       auto *F = llvm::Function::Create(
579           FT, llvm::GlobalValue::ExternalLinkage,
580           "__amdgpu_device_library_preserve_asan_functions", &getModule());
581       auto *Var = new llvm::GlobalVariable(
582           getModule(), FT->getPointerTo(),
583           /*isConstant=*/true, llvm::GlobalValue::WeakAnyLinkage, F,
584           "__amdgpu_device_library_preserve_asan_functions_ptr", nullptr,
585           llvm::GlobalVariable::NotThreadLocal);
586       addCompilerUsedGlobal(Var);
587     }
588     // Emit amdgpu_code_object_version module flag, which is code object version
589     // times 100.
590     // ToDo: Enable module flag for all code object version when ROCm device
591     // library is ready.
592     if (getTarget().getTargetOpts().CodeObjectVersion == TargetOptions::COV_5) {
593       getModule().addModuleFlag(llvm::Module::Error,
594                                 "amdgpu_code_object_version",
595                                 getTarget().getTargetOpts().CodeObjectVersion);
596     }
597   }
598 
599   // Emit a global array containing all external kernels or device variables
600   // used by host functions and mark it as used for CUDA/HIP. This is necessary
601   // to get kernels or device variables in archives linked in even if these
602   // kernels or device variables are only used in host functions.
603   if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
604     SmallVector<llvm::Constant *, 8> UsedArray;
605     for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
606       GlobalDecl GD;
607       if (auto *FD = dyn_cast<FunctionDecl>(D))
608         GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
609       else
610         GD = GlobalDecl(D);
611       UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
612           GetAddrOfGlobal(GD), Int8PtrTy));
613     }
614 
615     llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
616 
617     auto *GV = new llvm::GlobalVariable(
618         getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
619         llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
620     addCompilerUsedGlobal(GV);
621   }
622 
623   emitLLVMUsed();
624   if (SanStats)
625     SanStats->finish();
626 
627   if (CodeGenOpts.Autolink &&
628       (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
629     EmitModuleLinkOptions();
630   }
631 
632   // On ELF we pass the dependent library specifiers directly to the linker
633   // without manipulating them. This is in contrast to other platforms where
634   // they are mapped to a specific linker option by the compiler. This
635   // difference is a result of the greater variety of ELF linkers and the fact
636   // that ELF linkers tend to handle libraries in a more complicated fashion
637   // than on other platforms. This forces us to defer handling the dependent
638   // libs to the linker.
639   //
640   // CUDA/HIP device and host libraries are different. Currently there is no
641   // way to differentiate dependent libraries for host or device. Existing
642   // usage of #pragma comment(lib, *) is intended for host libraries on
643   // Windows. Therefore emit llvm.dependent-libraries only for host.
644   if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
645     auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
646     for (auto *MD : ELFDependentLibraries)
647       NMD->addOperand(MD);
648   }
649 
650   // Record mregparm value now so it is visible through rest of codegen.
651   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
652     getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
653                               CodeGenOpts.NumRegisterParameters);
654 
655   if (CodeGenOpts.DwarfVersion) {
656     getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
657                               CodeGenOpts.DwarfVersion);
658   }
659 
660   if (CodeGenOpts.Dwarf64)
661     getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
662 
663   if (Context.getLangOpts().SemanticInterposition)
664     // Require various optimization to respect semantic interposition.
665     getModule().setSemanticInterposition(true);
666 
667   if (CodeGenOpts.EmitCodeView) {
668     // Indicate that we want CodeView in the metadata.
669     getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
670   }
671   if (CodeGenOpts.CodeViewGHash) {
672     getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
673   }
674   if (CodeGenOpts.ControlFlowGuard) {
675     // Function ID tables and checks for Control Flow Guard (cfguard=2).
676     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
677   } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
678     // Function ID tables for Control Flow Guard (cfguard=1).
679     getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
680   }
681   if (CodeGenOpts.EHContGuard) {
682     // Function ID tables for EH Continuation Guard.
683     getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
684   }
685   if (Context.getLangOpts().Kernel) {
686     // Note if we are compiling with /kernel.
687     getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
688   }
689   if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
690     // We don't support LTO with 2 with different StrictVTablePointers
691     // FIXME: we could support it by stripping all the information introduced
692     // by StrictVTablePointers.
693 
694     getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
695 
696     llvm::Metadata *Ops[2] = {
697               llvm::MDString::get(VMContext, "StrictVTablePointers"),
698               llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
699                   llvm::Type::getInt32Ty(VMContext), 1))};
700 
701     getModule().addModuleFlag(llvm::Module::Require,
702                               "StrictVTablePointersRequirement",
703                               llvm::MDNode::get(VMContext, Ops));
704   }
705   if (getModuleDebugInfo())
706     // We support a single version in the linked module. The LLVM
707     // parser will drop debug info with a different version number
708     // (and warn about it, too).
709     getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
710                               llvm::DEBUG_METADATA_VERSION);
711 
712   // We need to record the widths of enums and wchar_t, so that we can generate
713   // the correct build attributes in the ARM backend. wchar_size is also used by
714   // TargetLibraryInfo.
715   uint64_t WCharWidth =
716       Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
717   getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
718 
719   llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
720   if (   Arch == llvm::Triple::arm
721       || Arch == llvm::Triple::armeb
722       || Arch == llvm::Triple::thumb
723       || Arch == llvm::Triple::thumbeb) {
724     // The minimum width of an enum in bytes
725     uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
726     getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
727   }
728 
729   if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
730     StringRef ABIStr = Target.getABI();
731     llvm::LLVMContext &Ctx = TheModule.getContext();
732     getModule().addModuleFlag(llvm::Module::Error, "target-abi",
733                               llvm::MDString::get(Ctx, ABIStr));
734   }
735 
736   if (CodeGenOpts.SanitizeCfiCrossDso) {
737     // Indicate that we want cross-DSO control flow integrity checks.
738     getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
739   }
740 
741   if (CodeGenOpts.WholeProgramVTables) {
742     // Indicate whether VFE was enabled for this module, so that the
743     // vcall_visibility metadata added under whole program vtables is handled
744     // appropriately in the optimizer.
745     getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
746                               CodeGenOpts.VirtualFunctionElimination);
747   }
748 
749   if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
750     getModule().addModuleFlag(llvm::Module::Override,
751                               "CFI Canonical Jump Tables",
752                               CodeGenOpts.SanitizeCfiCanonicalJumpTables);
753   }
754 
755   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
756     getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
757 
758   if (CodeGenOpts.CFProtectionReturn &&
759       Target.checkCFProtectionReturnSupported(getDiags())) {
760     // Indicate that we want to instrument return control flow protection.
761     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
762                               1);
763   }
764 
765   if (CodeGenOpts.CFProtectionBranch &&
766       Target.checkCFProtectionBranchSupported(getDiags())) {
767     // Indicate that we want to instrument branch control flow protection.
768     getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
769                               1);
770   }
771 
772   if (CodeGenOpts.IBTSeal)
773     getModule().addModuleFlag(llvm::Module::Min, "ibt-seal", 1);
774 
775   if (CodeGenOpts.FunctionReturnThunks)
776     getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
777 
778   if (CodeGenOpts.IndirectBranchCSPrefix)
779     getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
780 
781   // Add module metadata for return address signing (ignoring
782   // non-leaf/all) and stack tagging. These are actually turned on by function
783   // attributes, but we use module metadata to emit build attributes. This is
784   // needed for LTO, where the function attributes are inside bitcode
785   // serialised into a global variable by the time build attributes are
786   // emitted, so we can't access them. LTO objects could be compiled with
787   // different flags therefore module flags are set to "Min" behavior to achieve
788   // the same end result of the normal build where e.g BTI is off if any object
789   // doesn't support it.
790   if (Context.getTargetInfo().hasFeature("ptrauth") &&
791       LangOpts.getSignReturnAddressScope() !=
792           LangOptions::SignReturnAddressScopeKind::None)
793     getModule().addModuleFlag(llvm::Module::Override,
794                               "sign-return-address-buildattr", 1);
795   if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
796     getModule().addModuleFlag(llvm::Module::Override,
797                               "tag-stack-memory-buildattr", 1);
798 
799   if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
800       Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
801       Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
802       Arch == llvm::Triple::aarch64_be) {
803     if (LangOpts.BranchTargetEnforcement)
804       getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
805                                 1);
806     if (LangOpts.hasSignReturnAddress())
807       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
808     if (LangOpts.isSignReturnAddressScopeAll())
809       getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
810                                 1);
811     if (!LangOpts.isSignReturnAddressWithAKey())
812       getModule().addModuleFlag(llvm::Module::Min,
813                                 "sign-return-address-with-bkey", 1);
814   }
815 
816   if (!CodeGenOpts.MemoryProfileOutput.empty()) {
817     llvm::LLVMContext &Ctx = TheModule.getContext();
818     getModule().addModuleFlag(
819         llvm::Module::Error, "MemProfProfileFilename",
820         llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
821   }
822 
823   if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
824     // Indicate whether __nvvm_reflect should be configured to flush denormal
825     // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
826     // property.)
827     getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
828                               CodeGenOpts.FP32DenormalMode.Output !=
829                                   llvm::DenormalMode::IEEE);
830   }
831 
832   if (LangOpts.EHAsynch)
833     getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
834 
835   // Indicate whether this Module was compiled with -fopenmp
836   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
837     getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
838   if (getLangOpts().OpenMPIsDevice)
839     getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
840                               LangOpts.OpenMP);
841 
842   // Emit OpenCL specific module metadata: OpenCL/SPIR version.
843   if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
844     EmitOpenCLMetadata();
845     // Emit SPIR version.
846     if (getTriple().isSPIR()) {
847       // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
848       // opencl.spir.version named metadata.
849       // C++ for OpenCL has a distinct mapping for version compatibility with
850       // OpenCL.
851       auto Version = LangOpts.getOpenCLCompatibleVersion();
852       llvm::Metadata *SPIRVerElts[] = {
853           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
854               Int32Ty, Version / 100)),
855           llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
856               Int32Ty, (Version / 100 > 1) ? 0 : 2))};
857       llvm::NamedMDNode *SPIRVerMD =
858           TheModule.getOrInsertNamedMetadata("opencl.spir.version");
859       llvm::LLVMContext &Ctx = TheModule.getContext();
860       SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
861     }
862   }
863 
864   // HLSL related end of code gen work items.
865   if (LangOpts.HLSL)
866     getHLSLRuntime().finishCodeGen();
867 
868   if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
869     assert(PLevel < 3 && "Invalid PIC Level");
870     getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
871     if (Context.getLangOpts().PIE)
872       getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
873   }
874 
875   if (getCodeGenOpts().CodeModel.size() > 0) {
876     unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
877                   .Case("tiny", llvm::CodeModel::Tiny)
878                   .Case("small", llvm::CodeModel::Small)
879                   .Case("kernel", llvm::CodeModel::Kernel)
880                   .Case("medium", llvm::CodeModel::Medium)
881                   .Case("large", llvm::CodeModel::Large)
882                   .Default(~0u);
883     if (CM != ~0u) {
884       llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
885       getModule().setCodeModel(codeModel);
886     }
887   }
888 
889   if (CodeGenOpts.NoPLT)
890     getModule().setRtLibUseGOT();
891   if (CodeGenOpts.UnwindTables)
892     getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
893 
894   switch (CodeGenOpts.getFramePointer()) {
895   case CodeGenOptions::FramePointerKind::None:
896     // 0 ("none") is the default.
897     break;
898   case CodeGenOptions::FramePointerKind::NonLeaf:
899     getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
900     break;
901   case CodeGenOptions::FramePointerKind::All:
902     getModule().setFramePointer(llvm::FramePointerKind::All);
903     break;
904   }
905 
906   SimplifyPersonality();
907 
908   if (getCodeGenOpts().EmitDeclMetadata)
909     EmitDeclMetadata();
910 
911   if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
912     EmitCoverageFile();
913 
914   if (CGDebugInfo *DI = getModuleDebugInfo())
915     DI->finalize();
916 
917   if (getCodeGenOpts().EmitVersionIdentMetadata)
918     EmitVersionIdentMetadata();
919 
920   if (!getCodeGenOpts().RecordCommandLine.empty())
921     EmitCommandLineMetadata();
922 
923   if (!getCodeGenOpts().StackProtectorGuard.empty())
924     getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
925   if (!getCodeGenOpts().StackProtectorGuardReg.empty())
926     getModule().setStackProtectorGuardReg(
927         getCodeGenOpts().StackProtectorGuardReg);
928   if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
929     getModule().setStackProtectorGuardSymbol(
930         getCodeGenOpts().StackProtectorGuardSymbol);
931   if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
932     getModule().setStackProtectorGuardOffset(
933         getCodeGenOpts().StackProtectorGuardOffset);
934   if (getCodeGenOpts().StackAlignment)
935     getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
936   if (getCodeGenOpts().SkipRaxSetup)
937     getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
938 
939   getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
940 
941   EmitBackendOptionsMetadata(getCodeGenOpts());
942 
943   // If there is device offloading code embed it in the host now.
944   EmbedObject(&getModule(), CodeGenOpts, getDiags());
945 
946   // Set visibility from DLL storage class
947   // We do this at the end of LLVM IR generation; after any operation
948   // that might affect the DLL storage class or the visibility, and
949   // before anything that might act on these.
950   setVisibilityFromDLLStorageClass(LangOpts, getModule());
951 }
952 
953 void CodeGenModule::EmitOpenCLMetadata() {
954   // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
955   // opencl.ocl.version named metadata node.
956   // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
957   auto Version = LangOpts.getOpenCLCompatibleVersion();
958   llvm::Metadata *OCLVerElts[] = {
959       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
960           Int32Ty, Version / 100)),
961       llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
962           Int32Ty, (Version % 100) / 10))};
963   llvm::NamedMDNode *OCLVerMD =
964       TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
965   llvm::LLVMContext &Ctx = TheModule.getContext();
966   OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
967 }
968 
969 void CodeGenModule::EmitBackendOptionsMetadata(
970     const CodeGenOptions CodeGenOpts) {
971   if (getTriple().isRISCV()) {
972     getModule().addModuleFlag(llvm::Module::Error, "SmallDataLimit",
973                               CodeGenOpts.SmallDataLimit);
974   }
975 }
976 
977 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
978   // Make sure that this type is translated.
979   Types.UpdateCompletedType(TD);
980 }
981 
982 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
983   // Make sure that this type is translated.
984   Types.RefreshTypeCacheForClass(RD);
985 }
986 
987 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
988   if (!TBAA)
989     return nullptr;
990   return TBAA->getTypeInfo(QTy);
991 }
992 
993 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
994   if (!TBAA)
995     return TBAAAccessInfo();
996   if (getLangOpts().CUDAIsDevice) {
997     // As CUDA builtin surface/texture types are replaced, skip generating TBAA
998     // access info.
999     if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1000       if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1001           nullptr)
1002         return TBAAAccessInfo();
1003     } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1004       if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1005           nullptr)
1006         return TBAAAccessInfo();
1007     }
1008   }
1009   return TBAA->getAccessInfo(AccessType);
1010 }
1011 
1012 TBAAAccessInfo
1013 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1014   if (!TBAA)
1015     return TBAAAccessInfo();
1016   return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1017 }
1018 
1019 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1020   if (!TBAA)
1021     return nullptr;
1022   return TBAA->getTBAAStructInfo(QTy);
1023 }
1024 
1025 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1026   if (!TBAA)
1027     return nullptr;
1028   return TBAA->getBaseTypeInfo(QTy);
1029 }
1030 
1031 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1032   if (!TBAA)
1033     return nullptr;
1034   return TBAA->getAccessTagInfo(Info);
1035 }
1036 
1037 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1038                                                    TBAAAccessInfo TargetInfo) {
1039   if (!TBAA)
1040     return TBAAAccessInfo();
1041   return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1042 }
1043 
1044 TBAAAccessInfo
1045 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1046                                                    TBAAAccessInfo InfoB) {
1047   if (!TBAA)
1048     return TBAAAccessInfo();
1049   return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1050 }
1051 
1052 TBAAAccessInfo
1053 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1054                                               TBAAAccessInfo SrcInfo) {
1055   if (!TBAA)
1056     return TBAAAccessInfo();
1057   return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1058 }
1059 
1060 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1061                                                 TBAAAccessInfo TBAAInfo) {
1062   if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1063     Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1064 }
1065 
1066 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1067     llvm::Instruction *I, const CXXRecordDecl *RD) {
1068   I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1069                  llvm::MDNode::get(getLLVMContext(), {}));
1070 }
1071 
1072 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1073   unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1074   getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1075 }
1076 
1077 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1078 /// specified stmt yet.
1079 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1080   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1081                                                "cannot compile this %0 yet");
1082   std::string Msg = Type;
1083   getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1084       << Msg << S->getSourceRange();
1085 }
1086 
1087 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1088 /// specified decl yet.
1089 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1090   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1091                                                "cannot compile this %0 yet");
1092   std::string Msg = Type;
1093   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1094 }
1095 
1096 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1097   return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1098 }
1099 
1100 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1101                                         const NamedDecl *D) const {
1102   // Internal definitions always have default visibility.
1103   if (GV->hasLocalLinkage()) {
1104     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1105     return;
1106   }
1107   if (!D)
1108     return;
1109   // Set visibility for definitions, and for declarations if requested globally
1110   // or set explicitly.
1111   LinkageInfo LV = D->getLinkageAndVisibility();
1112   if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1113     // Reject incompatible dlllstorage and visibility annotations.
1114     if (!LV.isVisibilityExplicit())
1115       return;
1116     if (GV->hasDLLExportStorageClass()) {
1117       if (LV.getVisibility() == HiddenVisibility)
1118         getDiags().Report(D->getLocation(),
1119                           diag::err_hidden_visibility_dllexport);
1120     } else if (LV.getVisibility() != DefaultVisibility) {
1121       getDiags().Report(D->getLocation(),
1122                         diag::err_non_default_visibility_dllimport);
1123     }
1124     return;
1125   }
1126 
1127   if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1128       !GV->isDeclarationForLinker())
1129     GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1130 }
1131 
1132 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1133                                  llvm::GlobalValue *GV) {
1134   if (GV->hasLocalLinkage())
1135     return true;
1136 
1137   if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1138     return true;
1139 
1140   // DLLImport explicitly marks the GV as external.
1141   if (GV->hasDLLImportStorageClass())
1142     return false;
1143 
1144   const llvm::Triple &TT = CGM.getTriple();
1145   if (TT.isWindowsGNUEnvironment()) {
1146     // In MinGW, variables without DLLImport can still be automatically
1147     // imported from a DLL by the linker; don't mark variables that
1148     // potentially could come from another DLL as DSO local.
1149 
1150     // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1151     // (and this actually happens in the public interface of libstdc++), so
1152     // such variables can't be marked as DSO local. (Native TLS variables
1153     // can't be dllimported at all, though.)
1154     if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1155         (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS))
1156       return false;
1157   }
1158 
1159   // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1160   // remain unresolved in the link, they can be resolved to zero, which is
1161   // outside the current DSO.
1162   if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1163     return false;
1164 
1165   // Every other GV is local on COFF.
1166   // Make an exception for windows OS in the triple: Some firmware builds use
1167   // *-win32-macho triples. This (accidentally?) produced windows relocations
1168   // without GOT tables in older clang versions; Keep this behaviour.
1169   // FIXME: even thread local variables?
1170   if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1171     return true;
1172 
1173   // Only handle COFF and ELF for now.
1174   if (!TT.isOSBinFormatELF())
1175     return false;
1176 
1177   // If this is not an executable, don't assume anything is local.
1178   const auto &CGOpts = CGM.getCodeGenOpts();
1179   llvm::Reloc::Model RM = CGOpts.RelocationModel;
1180   const auto &LOpts = CGM.getLangOpts();
1181   if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1182     // On ELF, if -fno-semantic-interposition is specified and the target
1183     // supports local aliases, there will be neither CC1
1184     // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1185     // dso_local on the function if using a local alias is preferable (can avoid
1186     // PLT indirection).
1187     if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1188       return false;
1189     return !(CGM.getLangOpts().SemanticInterposition ||
1190              CGM.getLangOpts().HalfNoSemanticInterposition);
1191   }
1192 
1193   // A definition cannot be preempted from an executable.
1194   if (!GV->isDeclarationForLinker())
1195     return true;
1196 
1197   // Most PIC code sequences that assume that a symbol is local cannot produce a
1198   // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1199   // depended, it seems worth it to handle it here.
1200   if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1201     return false;
1202 
1203   // PowerPC64 prefers TOC indirection to avoid copy relocations.
1204   if (TT.isPPC64())
1205     return false;
1206 
1207   if (CGOpts.DirectAccessExternalData) {
1208     // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1209     // for non-thread-local variables. If the symbol is not defined in the
1210     // executable, a copy relocation will be needed at link time. dso_local is
1211     // excluded for thread-local variables because they generally don't support
1212     // copy relocations.
1213     if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1214       if (!Var->isThreadLocal())
1215         return true;
1216 
1217     // -fno-pic sets dso_local on a function declaration to allow direct
1218     // accesses when taking its address (similar to a data symbol). If the
1219     // function is not defined in the executable, a canonical PLT entry will be
1220     // needed at link time. -fno-direct-access-external-data can avoid the
1221     // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1222     // it could just cause trouble without providing perceptible benefits.
1223     if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1224       return true;
1225   }
1226 
1227   // If we can use copy relocations we can assume it is local.
1228 
1229   // Otherwise don't assume it is local.
1230   return false;
1231 }
1232 
1233 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1234   GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1235 }
1236 
1237 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1238                                           GlobalDecl GD) const {
1239   const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1240   // C++ destructors have a few C++ ABI specific special cases.
1241   if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1242     getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1243     return;
1244   }
1245   setDLLImportDLLExport(GV, D);
1246 }
1247 
1248 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1249                                           const NamedDecl *D) const {
1250   if (D && D->isExternallyVisible()) {
1251     if (D->hasAttr<DLLImportAttr>())
1252       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1253     else if ((D->hasAttr<DLLExportAttr>() ||
1254               shouldMapVisibilityToDLLExport(D)) &&
1255              !GV->isDeclarationForLinker())
1256       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1257   }
1258 }
1259 
1260 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1261                                     GlobalDecl GD) const {
1262   setDLLImportDLLExport(GV, GD);
1263   setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1264 }
1265 
1266 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1267                                     const NamedDecl *D) const {
1268   setDLLImportDLLExport(GV, D);
1269   setGVPropertiesAux(GV, D);
1270 }
1271 
1272 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1273                                        const NamedDecl *D) const {
1274   setGlobalVisibility(GV, D);
1275   setDSOLocal(GV);
1276   GV->setPartition(CodeGenOpts.SymbolPartition);
1277 }
1278 
1279 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1280   return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1281       .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1282       .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1283       .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1284       .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1285 }
1286 
1287 llvm::GlobalVariable::ThreadLocalMode
1288 CodeGenModule::GetDefaultLLVMTLSModel() const {
1289   switch (CodeGenOpts.getDefaultTLSModel()) {
1290   case CodeGenOptions::GeneralDynamicTLSModel:
1291     return llvm::GlobalVariable::GeneralDynamicTLSModel;
1292   case CodeGenOptions::LocalDynamicTLSModel:
1293     return llvm::GlobalVariable::LocalDynamicTLSModel;
1294   case CodeGenOptions::InitialExecTLSModel:
1295     return llvm::GlobalVariable::InitialExecTLSModel;
1296   case CodeGenOptions::LocalExecTLSModel:
1297     return llvm::GlobalVariable::LocalExecTLSModel;
1298   }
1299   llvm_unreachable("Invalid TLS model!");
1300 }
1301 
1302 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1303   assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1304 
1305   llvm::GlobalValue::ThreadLocalMode TLM;
1306   TLM = GetDefaultLLVMTLSModel();
1307 
1308   // Override the TLS model if it is explicitly specified.
1309   if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1310     TLM = GetLLVMTLSModel(Attr->getModel());
1311   }
1312 
1313   GV->setThreadLocalMode(TLM);
1314 }
1315 
1316 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1317                                           StringRef Name) {
1318   const TargetInfo &Target = CGM.getTarget();
1319   return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1320 }
1321 
1322 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1323                                                  const CPUSpecificAttr *Attr,
1324                                                  unsigned CPUIndex,
1325                                                  raw_ostream &Out) {
1326   // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1327   // supported.
1328   if (Attr)
1329     Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1330   else if (CGM.getTarget().supportsIFunc())
1331     Out << ".resolver";
1332 }
1333 
1334 static void AppendTargetMangling(const CodeGenModule &CGM,
1335                                  const TargetAttr *Attr, raw_ostream &Out) {
1336   if (Attr->isDefaultVersion())
1337     return;
1338 
1339   Out << '.';
1340   const TargetInfo &Target = CGM.getTarget();
1341   ParsedTargetAttr Info =
1342       Attr->parse([&Target](StringRef LHS, StringRef RHS) {
1343         // Multiversioning doesn't allow "no-${feature}", so we can
1344         // only have "+" prefixes here.
1345         assert(LHS.startswith("+") && RHS.startswith("+") &&
1346                "Features should always have a prefix.");
1347         return Target.multiVersionSortPriority(LHS.substr(1)) >
1348                Target.multiVersionSortPriority(RHS.substr(1));
1349       });
1350 
1351   bool IsFirst = true;
1352 
1353   if (!Info.Architecture.empty()) {
1354     IsFirst = false;
1355     Out << "arch_" << Info.Architecture;
1356   }
1357 
1358   for (StringRef Feat : Info.Features) {
1359     if (!IsFirst)
1360       Out << '_';
1361     IsFirst = false;
1362     Out << Feat.substr(1);
1363   }
1364 }
1365 
1366 // Returns true if GD is a function decl with internal linkage and
1367 // needs a unique suffix after the mangled name.
1368 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1369                                         CodeGenModule &CGM) {
1370   const Decl *D = GD.getDecl();
1371   return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1372          (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1373 }
1374 
1375 static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1376                                        const TargetClonesAttr *Attr,
1377                                        unsigned VersionIndex,
1378                                        raw_ostream &Out) {
1379   Out << '.';
1380   StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1381   if (FeatureStr.startswith("arch="))
1382     Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1383   else
1384     Out << FeatureStr;
1385 
1386   Out << '.' << Attr->getMangledIndex(VersionIndex);
1387 }
1388 
1389 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1390                                       const NamedDecl *ND,
1391                                       bool OmitMultiVersionMangling = false) {
1392   SmallString<256> Buffer;
1393   llvm::raw_svector_ostream Out(Buffer);
1394   MangleContext &MC = CGM.getCXXABI().getMangleContext();
1395   if (!CGM.getModuleNameHash().empty())
1396     MC.needsUniqueInternalLinkageNames();
1397   bool ShouldMangle = MC.shouldMangleDeclName(ND);
1398   if (ShouldMangle)
1399     MC.mangleName(GD.getWithDecl(ND), Out);
1400   else {
1401     IdentifierInfo *II = ND->getIdentifier();
1402     assert(II && "Attempt to mangle unnamed decl.");
1403     const auto *FD = dyn_cast<FunctionDecl>(ND);
1404 
1405     if (FD &&
1406         FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1407       Out << "__regcall3__" << II->getName();
1408     } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1409                GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1410       Out << "__device_stub__" << II->getName();
1411     } else {
1412       Out << II->getName();
1413     }
1414   }
1415 
1416   // Check if the module name hash should be appended for internal linkage
1417   // symbols.   This should come before multi-version target suffixes are
1418   // appended. This is to keep the name and module hash suffix of the
1419   // internal linkage function together.  The unique suffix should only be
1420   // added when name mangling is done to make sure that the final name can
1421   // be properly demangled.  For example, for C functions without prototypes,
1422   // name mangling is not done and the unique suffix should not be appeneded
1423   // then.
1424   if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1425     assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1426            "Hash computed when not explicitly requested");
1427     Out << CGM.getModuleNameHash();
1428   }
1429 
1430   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1431     if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1432       switch (FD->getMultiVersionKind()) {
1433       case MultiVersionKind::CPUDispatch:
1434       case MultiVersionKind::CPUSpecific:
1435         AppendCPUSpecificCPUDispatchMangling(CGM,
1436                                              FD->getAttr<CPUSpecificAttr>(),
1437                                              GD.getMultiVersionIndex(), Out);
1438         break;
1439       case MultiVersionKind::Target:
1440         AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1441         break;
1442       case MultiVersionKind::TargetClones:
1443         AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1444                                    GD.getMultiVersionIndex(), Out);
1445         break;
1446       case MultiVersionKind::None:
1447         llvm_unreachable("None multiversion type isn't valid here");
1448       }
1449     }
1450 
1451   // Make unique name for device side static file-scope variable for HIP.
1452   if (CGM.getContext().shouldExternalize(ND) &&
1453       CGM.getLangOpts().GPURelocatableDeviceCode &&
1454       CGM.getLangOpts().CUDAIsDevice)
1455     CGM.printPostfixForExternalizedDecl(Out, ND);
1456 
1457   return std::string(Out.str());
1458 }
1459 
1460 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1461                                             const FunctionDecl *FD,
1462                                             StringRef &CurName) {
1463   if (!FD->isMultiVersion())
1464     return;
1465 
1466   // Get the name of what this would be without the 'target' attribute.  This
1467   // allows us to lookup the version that was emitted when this wasn't a
1468   // multiversion function.
1469   std::string NonTargetName =
1470       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1471   GlobalDecl OtherGD;
1472   if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1473     assert(OtherGD.getCanonicalDecl()
1474                .getDecl()
1475                ->getAsFunction()
1476                ->isMultiVersion() &&
1477            "Other GD should now be a multiversioned function");
1478     // OtherFD is the version of this function that was mangled BEFORE
1479     // becoming a MultiVersion function.  It potentially needs to be updated.
1480     const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1481                                       .getDecl()
1482                                       ->getAsFunction()
1483                                       ->getMostRecentDecl();
1484     std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1485     // This is so that if the initial version was already the 'default'
1486     // version, we don't try to update it.
1487     if (OtherName != NonTargetName) {
1488       // Remove instead of erase, since others may have stored the StringRef
1489       // to this.
1490       const auto ExistingRecord = Manglings.find(NonTargetName);
1491       if (ExistingRecord != std::end(Manglings))
1492         Manglings.remove(&(*ExistingRecord));
1493       auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1494       StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1495           Result.first->first();
1496       // If this is the current decl is being created, make sure we update the name.
1497       if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1498         CurName = OtherNameRef;
1499       if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1500         Entry->setName(OtherName);
1501     }
1502   }
1503 }
1504 
1505 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1506   GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1507 
1508   // Some ABIs don't have constructor variants.  Make sure that base and
1509   // complete constructors get mangled the same.
1510   if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1511     if (!getTarget().getCXXABI().hasConstructorVariants()) {
1512       CXXCtorType OrigCtorType = GD.getCtorType();
1513       assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1514       if (OrigCtorType == Ctor_Base)
1515         CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1516     }
1517   }
1518 
1519   // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1520   // static device variable depends on whether the variable is referenced by
1521   // a host or device host function. Therefore the mangled name cannot be
1522   // cached.
1523   if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1524     auto FoundName = MangledDeclNames.find(CanonicalGD);
1525     if (FoundName != MangledDeclNames.end())
1526       return FoundName->second;
1527   }
1528 
1529   // Keep the first result in the case of a mangling collision.
1530   const auto *ND = cast<NamedDecl>(GD.getDecl());
1531   std::string MangledName = getMangledNameImpl(*this, GD, ND);
1532 
1533   // Ensure either we have different ABIs between host and device compilations,
1534   // says host compilation following MSVC ABI but device compilation follows
1535   // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1536   // mangling should be the same after name stubbing. The later checking is
1537   // very important as the device kernel name being mangled in host-compilation
1538   // is used to resolve the device binaries to be executed. Inconsistent naming
1539   // result in undefined behavior. Even though we cannot check that naming
1540   // directly between host- and device-compilations, the host- and
1541   // device-mangling in host compilation could help catching certain ones.
1542   assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1543          getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1544          (getContext().getAuxTargetInfo() &&
1545           (getContext().getAuxTargetInfo()->getCXXABI() !=
1546            getContext().getTargetInfo().getCXXABI())) ||
1547          getCUDARuntime().getDeviceSideName(ND) ==
1548              getMangledNameImpl(
1549                  *this,
1550                  GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1551                  ND));
1552 
1553   auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1554   return MangledDeclNames[CanonicalGD] = Result.first->first();
1555 }
1556 
1557 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1558                                              const BlockDecl *BD) {
1559   MangleContext &MangleCtx = getCXXABI().getMangleContext();
1560   const Decl *D = GD.getDecl();
1561 
1562   SmallString<256> Buffer;
1563   llvm::raw_svector_ostream Out(Buffer);
1564   if (!D)
1565     MangleCtx.mangleGlobalBlock(BD,
1566       dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1567   else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1568     MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1569   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1570     MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1571   else
1572     MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1573 
1574   auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1575   return Result.first->first();
1576 }
1577 
1578 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1579   auto it = MangledDeclNames.begin();
1580   while (it != MangledDeclNames.end()) {
1581     if (it->second == Name)
1582       return it->first;
1583     it++;
1584   }
1585   return GlobalDecl();
1586 }
1587 
1588 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1589   return getModule().getNamedValue(Name);
1590 }
1591 
1592 /// AddGlobalCtor - Add a function to the list that will be called before
1593 /// main() runs.
1594 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1595                                   unsigned LexOrder,
1596                                   llvm::Constant *AssociatedData) {
1597   // FIXME: Type coercion of void()* types.
1598   GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1599 }
1600 
1601 /// AddGlobalDtor - Add a function to the list that will be called
1602 /// when the module is unloaded.
1603 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
1604                                   bool IsDtorAttrFunc) {
1605   if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
1606       (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
1607     DtorsUsingAtExit[Priority].push_back(Dtor);
1608     return;
1609   }
1610 
1611   // FIXME: Type coercion of void()* types.
1612   GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
1613 }
1614 
1615 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
1616   if (Fns.empty()) return;
1617 
1618   // Ctor function type is void()*.
1619   llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
1620   llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
1621       TheModule.getDataLayout().getProgramAddressSpace());
1622 
1623   // Get the type of a ctor entry, { i32, void ()*, i8* }.
1624   llvm::StructType *CtorStructTy = llvm::StructType::get(
1625       Int32Ty, CtorPFTy, VoidPtrTy);
1626 
1627   // Construct the constructor and destructor arrays.
1628   ConstantInitBuilder builder(*this);
1629   auto ctors = builder.beginArray(CtorStructTy);
1630   for (const auto &I : Fns) {
1631     auto ctor = ctors.beginStruct(CtorStructTy);
1632     ctor.addInt(Int32Ty, I.Priority);
1633     ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy));
1634     if (I.AssociatedData)
1635       ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy));
1636     else
1637       ctor.addNullPointer(VoidPtrTy);
1638     ctor.finishAndAddTo(ctors);
1639   }
1640 
1641   auto list =
1642     ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
1643                                 /*constant*/ false,
1644                                 llvm::GlobalValue::AppendingLinkage);
1645 
1646   // The LTO linker doesn't seem to like it when we set an alignment
1647   // on appending variables.  Take it off as a workaround.
1648   list->setAlignment(llvm::None);
1649 
1650   Fns.clear();
1651 }
1652 
1653 llvm::GlobalValue::LinkageTypes
1654 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
1655   const auto *D = cast<FunctionDecl>(GD.getDecl());
1656 
1657   GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
1658 
1659   if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
1660     return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
1661 
1662   if (isa<CXXConstructorDecl>(D) &&
1663       cast<CXXConstructorDecl>(D)->isInheritingConstructor() &&
1664       Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1665     // Our approach to inheriting constructors is fundamentally different from
1666     // that used by the MS ABI, so keep our inheriting constructor thunks
1667     // internal rather than trying to pick an unambiguous mangling for them.
1668     return llvm::GlobalValue::InternalLinkage;
1669   }
1670 
1671   return getLLVMLinkageForDeclarator(D, Linkage, /*IsConstantVariable=*/false);
1672 }
1673 
1674 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
1675   llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
1676   if (!MDS) return nullptr;
1677 
1678   return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
1679 }
1680 
1681 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
1682   if (auto *FnType = T->getAs<FunctionProtoType>())
1683     T = getContext().getFunctionType(
1684         FnType->getReturnType(), FnType->getParamTypes(),
1685         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
1686 
1687   std::string OutName;
1688   llvm::raw_string_ostream Out(OutName);
1689   getCXXABI().getMangleContext().mangleTypeName(T, Out);
1690 
1691   return llvm::ConstantInt::get(Int32Ty,
1692                                 static_cast<uint32_t>(llvm::xxHash64(OutName)));
1693 }
1694 
1695 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
1696                                               const CGFunctionInfo &Info,
1697                                               llvm::Function *F, bool IsThunk) {
1698   unsigned CallingConv;
1699   llvm::AttributeList PAL;
1700   ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
1701                          /*AttrOnCallSite=*/false, IsThunk);
1702   F->setAttributes(PAL);
1703   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1704 }
1705 
1706 static void removeImageAccessQualifier(std::string& TyName) {
1707   std::string ReadOnlyQual("__read_only");
1708   std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
1709   if (ReadOnlyPos != std::string::npos)
1710     // "+ 1" for the space after access qualifier.
1711     TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
1712   else {
1713     std::string WriteOnlyQual("__write_only");
1714     std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
1715     if (WriteOnlyPos != std::string::npos)
1716       TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
1717     else {
1718       std::string ReadWriteQual("__read_write");
1719       std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
1720       if (ReadWritePos != std::string::npos)
1721         TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
1722     }
1723   }
1724 }
1725 
1726 // Returns the address space id that should be produced to the
1727 // kernel_arg_addr_space metadata. This is always fixed to the ids
1728 // as specified in the SPIR 2.0 specification in order to differentiate
1729 // for example in clGetKernelArgInfo() implementation between the address
1730 // spaces with targets without unique mapping to the OpenCL address spaces
1731 // (basically all single AS CPUs).
1732 static unsigned ArgInfoAddressSpace(LangAS AS) {
1733   switch (AS) {
1734   case LangAS::opencl_global:
1735     return 1;
1736   case LangAS::opencl_constant:
1737     return 2;
1738   case LangAS::opencl_local:
1739     return 3;
1740   case LangAS::opencl_generic:
1741     return 4; // Not in SPIR 2.0 specs.
1742   case LangAS::opencl_global_device:
1743     return 5;
1744   case LangAS::opencl_global_host:
1745     return 6;
1746   default:
1747     return 0; // Assume private.
1748   }
1749 }
1750 
1751 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
1752                                          const FunctionDecl *FD,
1753                                          CodeGenFunction *CGF) {
1754   assert(((FD && CGF) || (!FD && !CGF)) &&
1755          "Incorrect use - FD and CGF should either be both null or not!");
1756   // Create MDNodes that represent the kernel arg metadata.
1757   // Each MDNode is a list in the form of "key", N number of values which is
1758   // the same number of values as their are kernel arguments.
1759 
1760   const PrintingPolicy &Policy = Context.getPrintingPolicy();
1761 
1762   // MDNode for the kernel argument address space qualifiers.
1763   SmallVector<llvm::Metadata *, 8> addressQuals;
1764 
1765   // MDNode for the kernel argument access qualifiers (images only).
1766   SmallVector<llvm::Metadata *, 8> accessQuals;
1767 
1768   // MDNode for the kernel argument type names.
1769   SmallVector<llvm::Metadata *, 8> argTypeNames;
1770 
1771   // MDNode for the kernel argument base type names.
1772   SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
1773 
1774   // MDNode for the kernel argument type qualifiers.
1775   SmallVector<llvm::Metadata *, 8> argTypeQuals;
1776 
1777   // MDNode for the kernel argument names.
1778   SmallVector<llvm::Metadata *, 8> argNames;
1779 
1780   if (FD && CGF)
1781     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
1782       const ParmVarDecl *parm = FD->getParamDecl(i);
1783       // Get argument name.
1784       argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
1785 
1786       if (!getLangOpts().OpenCL)
1787         continue;
1788       QualType ty = parm->getType();
1789       std::string typeQuals;
1790 
1791       // Get image and pipe access qualifier:
1792       if (ty->isImageType() || ty->isPipeType()) {
1793         const Decl *PDecl = parm;
1794         if (const auto *TD = ty->getAs<TypedefType>())
1795           PDecl = TD->getDecl();
1796         const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
1797         if (A && A->isWriteOnly())
1798           accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
1799         else if (A && A->isReadWrite())
1800           accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
1801         else
1802           accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
1803       } else
1804         accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
1805 
1806       auto getTypeSpelling = [&](QualType Ty) {
1807         auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
1808 
1809         if (Ty.isCanonical()) {
1810           StringRef typeNameRef = typeName;
1811           // Turn "unsigned type" to "utype"
1812           if (typeNameRef.consume_front("unsigned "))
1813             return std::string("u") + typeNameRef.str();
1814           if (typeNameRef.consume_front("signed "))
1815             return typeNameRef.str();
1816         }
1817 
1818         return typeName;
1819       };
1820 
1821       if (ty->isPointerType()) {
1822         QualType pointeeTy = ty->getPointeeType();
1823 
1824         // Get address qualifier.
1825         addressQuals.push_back(
1826             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
1827                 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
1828 
1829         // Get argument type name.
1830         std::string typeName = getTypeSpelling(pointeeTy) + "*";
1831         std::string baseTypeName =
1832             getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
1833         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1834         argBaseTypeNames.push_back(
1835             llvm::MDString::get(VMContext, baseTypeName));
1836 
1837         // Get argument type qualifiers:
1838         if (ty.isRestrictQualified())
1839           typeQuals = "restrict";
1840         if (pointeeTy.isConstQualified() ||
1841             (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
1842           typeQuals += typeQuals.empty() ? "const" : " const";
1843         if (pointeeTy.isVolatileQualified())
1844           typeQuals += typeQuals.empty() ? "volatile" : " volatile";
1845       } else {
1846         uint32_t AddrSpc = 0;
1847         bool isPipe = ty->isPipeType();
1848         if (ty->isImageType() || isPipe)
1849           AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
1850 
1851         addressQuals.push_back(
1852             llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
1853 
1854         // Get argument type name.
1855         ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
1856         std::string typeName = getTypeSpelling(ty);
1857         std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
1858 
1859         // Remove access qualifiers on images
1860         // (as they are inseparable from type in clang implementation,
1861         // but OpenCL spec provides a special query to get access qualifier
1862         // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
1863         if (ty->isImageType()) {
1864           removeImageAccessQualifier(typeName);
1865           removeImageAccessQualifier(baseTypeName);
1866         }
1867 
1868         argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
1869         argBaseTypeNames.push_back(
1870             llvm::MDString::get(VMContext, baseTypeName));
1871 
1872         if (isPipe)
1873           typeQuals = "pipe";
1874       }
1875       argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
1876     }
1877 
1878   if (getLangOpts().OpenCL) {
1879     Fn->setMetadata("kernel_arg_addr_space",
1880                     llvm::MDNode::get(VMContext, addressQuals));
1881     Fn->setMetadata("kernel_arg_access_qual",
1882                     llvm::MDNode::get(VMContext, accessQuals));
1883     Fn->setMetadata("kernel_arg_type",
1884                     llvm::MDNode::get(VMContext, argTypeNames));
1885     Fn->setMetadata("kernel_arg_base_type",
1886                     llvm::MDNode::get(VMContext, argBaseTypeNames));
1887     Fn->setMetadata("kernel_arg_type_qual",
1888                     llvm::MDNode::get(VMContext, argTypeQuals));
1889   }
1890   if (getCodeGenOpts().EmitOpenCLArgMetadata ||
1891       getCodeGenOpts().HIPSaveKernelArgName)
1892     Fn->setMetadata("kernel_arg_name",
1893                     llvm::MDNode::get(VMContext, argNames));
1894 }
1895 
1896 /// Determines whether the language options require us to model
1897 /// unwind exceptions.  We treat -fexceptions as mandating this
1898 /// except under the fragile ObjC ABI with only ObjC exceptions
1899 /// enabled.  This means, for example, that C with -fexceptions
1900 /// enables this.
1901 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
1902   // If exceptions are completely disabled, obviously this is false.
1903   if (!LangOpts.Exceptions) return false;
1904 
1905   // If C++ exceptions are enabled, this is true.
1906   if (LangOpts.CXXExceptions) return true;
1907 
1908   // If ObjC exceptions are enabled, this depends on the ABI.
1909   if (LangOpts.ObjCExceptions) {
1910     return LangOpts.ObjCRuntime.hasUnwindExceptions();
1911   }
1912 
1913   return true;
1914 }
1915 
1916 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
1917                                                       const CXXMethodDecl *MD) {
1918   // Check that the type metadata can ever actually be used by a call.
1919   if (!CGM.getCodeGenOpts().LTOUnit ||
1920       !CGM.HasHiddenLTOVisibility(MD->getParent()))
1921     return false;
1922 
1923   // Only functions whose address can be taken with a member function pointer
1924   // need this sort of type metadata.
1925   return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) &&
1926          !isa<CXXDestructorDecl>(MD);
1927 }
1928 
1929 std::vector<const CXXRecordDecl *>
1930 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
1931   llvm::SetVector<const CXXRecordDecl *> MostBases;
1932 
1933   std::function<void (const CXXRecordDecl *)> CollectMostBases;
1934   CollectMostBases = [&](const CXXRecordDecl *RD) {
1935     if (RD->getNumBases() == 0)
1936       MostBases.insert(RD);
1937     for (const CXXBaseSpecifier &B : RD->bases())
1938       CollectMostBases(B.getType()->getAsCXXRecordDecl());
1939   };
1940   CollectMostBases(RD);
1941   return MostBases.takeVector();
1942 }
1943 
1944 llvm::GlobalVariable *
1945 CodeGenModule::GetOrCreateRTTIProxyGlobalVariable(llvm::Constant *Addr) {
1946   auto It = RTTIProxyMap.find(Addr);
1947   if (It != RTTIProxyMap.end())
1948     return It->second;
1949 
1950   auto *FTRTTIProxy = new llvm::GlobalVariable(
1951       TheModule, Addr->getType(),
1952       /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Addr,
1953       "__llvm_rtti_proxy");
1954   FTRTTIProxy->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1955 
1956   RTTIProxyMap[Addr] = FTRTTIProxy;
1957   return FTRTTIProxy;
1958 }
1959 
1960 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
1961                                                            llvm::Function *F) {
1962   llvm::AttrBuilder B(F->getContext());
1963 
1964   if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
1965     B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1966 
1967   if (CodeGenOpts.StackClashProtector)
1968     B.addAttribute("probe-stack", "inline-asm");
1969 
1970   if (!hasUnwindExceptions(LangOpts))
1971     B.addAttribute(llvm::Attribute::NoUnwind);
1972 
1973   if (!D || !D->hasAttr<NoStackProtectorAttr>()) {
1974     if (LangOpts.getStackProtector() == LangOptions::SSPOn)
1975       B.addAttribute(llvm::Attribute::StackProtect);
1976     else if (LangOpts.getStackProtector() == LangOptions::SSPStrong)
1977       B.addAttribute(llvm::Attribute::StackProtectStrong);
1978     else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
1979       B.addAttribute(llvm::Attribute::StackProtectReq);
1980   }
1981 
1982   if (!D) {
1983     // If we don't have a declaration to control inlining, the function isn't
1984     // explicitly marked as alwaysinline for semantic reasons, and inlining is
1985     // disabled, mark the function as noinline.
1986     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
1987         CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
1988       B.addAttribute(llvm::Attribute::NoInline);
1989 
1990     F->addFnAttrs(B);
1991     return;
1992   }
1993 
1994   // Track whether we need to add the optnone LLVM attribute,
1995   // starting with the default for this optimization level.
1996   bool ShouldAddOptNone =
1997       !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
1998   // We can't add optnone in the following cases, it won't pass the verifier.
1999   ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2000   ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2001 
2002   // Add optnone, but do so only if the function isn't always_inline.
2003   if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2004       !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2005     B.addAttribute(llvm::Attribute::OptimizeNone);
2006 
2007     // OptimizeNone implies noinline; we should not be inlining such functions.
2008     B.addAttribute(llvm::Attribute::NoInline);
2009 
2010     // We still need to handle naked functions even though optnone subsumes
2011     // much of their semantics.
2012     if (D->hasAttr<NakedAttr>())
2013       B.addAttribute(llvm::Attribute::Naked);
2014 
2015     // OptimizeNone wins over OptimizeForSize and MinSize.
2016     F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2017     F->removeFnAttr(llvm::Attribute::MinSize);
2018   } else if (D->hasAttr<NakedAttr>()) {
2019     // Naked implies noinline: we should not be inlining such functions.
2020     B.addAttribute(llvm::Attribute::Naked);
2021     B.addAttribute(llvm::Attribute::NoInline);
2022   } else if (D->hasAttr<NoDuplicateAttr>()) {
2023     B.addAttribute(llvm::Attribute::NoDuplicate);
2024   } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2025     // Add noinline if the function isn't always_inline.
2026     B.addAttribute(llvm::Attribute::NoInline);
2027   } else if (D->hasAttr<AlwaysInlineAttr>() &&
2028              !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2029     // (noinline wins over always_inline, and we can't specify both in IR)
2030     B.addAttribute(llvm::Attribute::AlwaysInline);
2031   } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2032     // If we're not inlining, then force everything that isn't always_inline to
2033     // carry an explicit noinline attribute.
2034     if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2035       B.addAttribute(llvm::Attribute::NoInline);
2036   } else {
2037     // Otherwise, propagate the inline hint attribute and potentially use its
2038     // absence to mark things as noinline.
2039     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2040       // Search function and template pattern redeclarations for inline.
2041       auto CheckForInline = [](const FunctionDecl *FD) {
2042         auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2043           return Redecl->isInlineSpecified();
2044         };
2045         if (any_of(FD->redecls(), CheckRedeclForInline))
2046           return true;
2047         const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2048         if (!Pattern)
2049           return false;
2050         return any_of(Pattern->redecls(), CheckRedeclForInline);
2051       };
2052       if (CheckForInline(FD)) {
2053         B.addAttribute(llvm::Attribute::InlineHint);
2054       } else if (CodeGenOpts.getInlining() ==
2055                      CodeGenOptions::OnlyHintInlining &&
2056                  !FD->isInlined() &&
2057                  !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2058         B.addAttribute(llvm::Attribute::NoInline);
2059       }
2060     }
2061   }
2062 
2063   // Add other optimization related attributes if we are optimizing this
2064   // function.
2065   if (!D->hasAttr<OptimizeNoneAttr>()) {
2066     if (D->hasAttr<ColdAttr>()) {
2067       if (!ShouldAddOptNone)
2068         B.addAttribute(llvm::Attribute::OptimizeForSize);
2069       B.addAttribute(llvm::Attribute::Cold);
2070     }
2071     if (D->hasAttr<HotAttr>())
2072       B.addAttribute(llvm::Attribute::Hot);
2073     if (D->hasAttr<MinSizeAttr>())
2074       B.addAttribute(llvm::Attribute::MinSize);
2075   }
2076 
2077   F->addFnAttrs(B);
2078 
2079   unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2080   if (alignment)
2081     F->setAlignment(llvm::Align(alignment));
2082 
2083   if (!D->hasAttr<AlignedAttr>())
2084     if (LangOpts.FunctionAlignment)
2085       F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2086 
2087   // Some C++ ABIs require 2-byte alignment for member functions, in order to
2088   // reserve a bit for differentiating between virtual and non-virtual member
2089   // functions. If the current target's C++ ABI requires this and this is a
2090   // member function, set its alignment accordingly.
2091   if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2092     if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
2093       F->setAlignment(llvm::Align(2));
2094   }
2095 
2096   // In the cross-dso CFI mode with canonical jump tables, we want !type
2097   // attributes on definitions only.
2098   if (CodeGenOpts.SanitizeCfiCrossDso &&
2099       CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2100     if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2101       // Skip available_externally functions. They won't be codegen'ed in the
2102       // current module anyway.
2103       if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2104         CreateFunctionTypeMetadataForIcall(FD, F);
2105     }
2106   }
2107 
2108   // Emit type metadata on member functions for member function pointer checks.
2109   // These are only ever necessary on definitions; we're guaranteed that the
2110   // definition will be present in the LTO unit as a result of LTO visibility.
2111   auto *MD = dyn_cast<CXXMethodDecl>(D);
2112   if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2113     for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2114       llvm::Metadata *Id =
2115           CreateMetadataIdentifierForType(Context.getMemberPointerType(
2116               MD->getType(), Context.getRecordType(Base).getTypePtr()));
2117       F->addTypeMetadata(0, Id);
2118     }
2119   }
2120 }
2121 
2122 void CodeGenModule::setLLVMFunctionFEnvAttributes(const FunctionDecl *D,
2123                                                   llvm::Function *F) {
2124   if (D->hasAttr<StrictFPAttr>()) {
2125     llvm::AttrBuilder FuncAttrs(F->getContext());
2126     FuncAttrs.addAttribute("strictfp");
2127     F->addFnAttrs(FuncAttrs);
2128   }
2129 }
2130 
2131 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2132   const Decl *D = GD.getDecl();
2133   if (isa_and_nonnull<NamedDecl>(D))
2134     setGVProperties(GV, GD);
2135   else
2136     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2137 
2138   if (D && D->hasAttr<UsedAttr>())
2139     addUsedOrCompilerUsedGlobal(GV);
2140 
2141   if (CodeGenOpts.KeepStaticConsts && D && isa<VarDecl>(D)) {
2142     const auto *VD = cast<VarDecl>(D);
2143     if (VD->getType().isConstQualified() &&
2144         VD->getStorageDuration() == SD_Static)
2145       addUsedOrCompilerUsedGlobal(GV);
2146   }
2147 }
2148 
2149 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2150                                                 llvm::AttrBuilder &Attrs) {
2151   // Add target-cpu and target-features attributes to functions. If
2152   // we have a decl for the function and it has a target attribute then
2153   // parse that and add it to the feature set.
2154   StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2155   StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2156   std::vector<std::string> Features;
2157   const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2158   FD = FD ? FD->getMostRecentDecl() : FD;
2159   const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2160   const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2161   const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2162   bool AddedAttr = false;
2163   if (TD || SD || TC) {
2164     llvm::StringMap<bool> FeatureMap;
2165     getContext().getFunctionFeatureMap(FeatureMap, GD);
2166 
2167     // Produce the canonical string for this set of features.
2168     for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2169       Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2170 
2171     // Now add the target-cpu and target-features to the function.
2172     // While we populated the feature map above, we still need to
2173     // get and parse the target attribute so we can get the cpu for
2174     // the function.
2175     if (TD) {
2176       ParsedTargetAttr ParsedAttr = TD->parse();
2177       if (!ParsedAttr.Architecture.empty() &&
2178           getTarget().isValidCPUName(ParsedAttr.Architecture)) {
2179         TargetCPU = ParsedAttr.Architecture;
2180         TuneCPU = ""; // Clear the tune CPU.
2181       }
2182       if (!ParsedAttr.Tune.empty() &&
2183           getTarget().isValidCPUName(ParsedAttr.Tune))
2184         TuneCPU = ParsedAttr.Tune;
2185     }
2186 
2187     if (SD) {
2188       // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2189       // favor this processor.
2190       TuneCPU = getTarget().getCPUSpecificTuneName(
2191           SD->getCPUName(GD.getMultiVersionIndex())->getName());
2192     }
2193   } else {
2194     // Otherwise just add the existing target cpu and target features to the
2195     // function.
2196     Features = getTarget().getTargetOpts().Features;
2197   }
2198 
2199   if (!TargetCPU.empty()) {
2200     Attrs.addAttribute("target-cpu", TargetCPU);
2201     AddedAttr = true;
2202   }
2203   if (!TuneCPU.empty()) {
2204     Attrs.addAttribute("tune-cpu", TuneCPU);
2205     AddedAttr = true;
2206   }
2207   if (!Features.empty()) {
2208     llvm::sort(Features);
2209     Attrs.addAttribute("target-features", llvm::join(Features, ","));
2210     AddedAttr = true;
2211   }
2212 
2213   return AddedAttr;
2214 }
2215 
2216 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2217                                           llvm::GlobalObject *GO) {
2218   const Decl *D = GD.getDecl();
2219   SetCommonAttributes(GD, GO);
2220 
2221   if (D) {
2222     if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2223       if (D->hasAttr<RetainAttr>())
2224         addUsedGlobal(GV);
2225       if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2226         GV->addAttribute("bss-section", SA->getName());
2227       if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2228         GV->addAttribute("data-section", SA->getName());
2229       if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2230         GV->addAttribute("rodata-section", SA->getName());
2231       if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2232         GV->addAttribute("relro-section", SA->getName());
2233     }
2234 
2235     if (auto *F = dyn_cast<llvm::Function>(GO)) {
2236       if (D->hasAttr<RetainAttr>())
2237         addUsedGlobal(F);
2238       if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2239         if (!D->getAttr<SectionAttr>())
2240           F->addFnAttr("implicit-section-name", SA->getName());
2241 
2242       llvm::AttrBuilder Attrs(F->getContext());
2243       if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2244         // We know that GetCPUAndFeaturesAttributes will always have the
2245         // newest set, since it has the newest possible FunctionDecl, so the
2246         // new ones should replace the old.
2247         llvm::AttributeMask RemoveAttrs;
2248         RemoveAttrs.addAttribute("target-cpu");
2249         RemoveAttrs.addAttribute("target-features");
2250         RemoveAttrs.addAttribute("tune-cpu");
2251         F->removeFnAttrs(RemoveAttrs);
2252         F->addFnAttrs(Attrs);
2253       }
2254     }
2255 
2256     if (const auto *CSA = D->getAttr<CodeSegAttr>())
2257       GO->setSection(CSA->getName());
2258     else if (const auto *SA = D->getAttr<SectionAttr>())
2259       GO->setSection(SA->getName());
2260   }
2261 
2262   getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2263 }
2264 
2265 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2266                                                   llvm::Function *F,
2267                                                   const CGFunctionInfo &FI) {
2268   const Decl *D = GD.getDecl();
2269   SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2270   SetLLVMFunctionAttributesForDefinition(D, F);
2271 
2272   F->setLinkage(llvm::Function::InternalLinkage);
2273 
2274   setNonAliasAttributes(GD, F);
2275 }
2276 
2277 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2278   // Set linkage and visibility in case we never see a definition.
2279   LinkageInfo LV = ND->getLinkageAndVisibility();
2280   // Don't set internal linkage on declarations.
2281   // "extern_weak" is overloaded in LLVM; we probably should have
2282   // separate linkage types for this.
2283   if (isExternallyVisible(LV.getLinkage()) &&
2284       (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2285     GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2286 }
2287 
2288 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2289                                                        llvm::Function *F) {
2290   // Only if we are checking indirect calls.
2291   if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2292     return;
2293 
2294   // Non-static class methods are handled via vtable or member function pointer
2295   // checks elsewhere.
2296   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2297     return;
2298 
2299   llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2300   F->addTypeMetadata(0, MD);
2301   F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2302 
2303   // Emit a hash-based bit set entry for cross-DSO calls.
2304   if (CodeGenOpts.SanitizeCfiCrossDso)
2305     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2306       F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2307 }
2308 
2309 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2310   if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2311     return;
2312 
2313   llvm::LLVMContext &Ctx = F->getContext();
2314   llvm::MDBuilder MDB(Ctx);
2315   F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2316                  llvm::MDNode::get(
2317                      Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2318 }
2319 
2320 static bool allowKCFIIdentifier(StringRef Name) {
2321   // KCFI type identifier constants are only necessary for external assembly
2322   // functions, which means it's safe to skip unusual names. Subset of
2323   // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2324   return llvm::all_of(Name, [](const char &C) {
2325     return llvm::isAlnum(C) || C == '_' || C == '.';
2326   });
2327 }
2328 
2329 void CodeGenModule::finalizeKCFITypes() {
2330   llvm::Module &M = getModule();
2331   for (auto &F : M.functions()) {
2332     // Remove KCFI type metadata from non-address-taken local functions.
2333     bool AddressTaken = F.hasAddressTaken();
2334     if (!AddressTaken && F.hasLocalLinkage())
2335       F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2336 
2337     // Generate a constant with the expected KCFI type identifier for all
2338     // address-taken function declarations to support annotating indirectly
2339     // called assembly functions.
2340     if (!AddressTaken || !F.isDeclaration())
2341       continue;
2342 
2343     const llvm::ConstantInt *Type;
2344     if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2345       Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2346     else
2347       continue;
2348 
2349     StringRef Name = F.getName();
2350     if (!allowKCFIIdentifier(Name))
2351       continue;
2352 
2353     std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2354                        Name + ", " + Twine(Type->getZExtValue()) + "\n")
2355                           .str();
2356     M.appendModuleInlineAsm(Asm);
2357   }
2358 }
2359 
2360 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2361                                           bool IsIncompleteFunction,
2362                                           bool IsThunk) {
2363 
2364   if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2365     // If this is an intrinsic function, set the function's attributes
2366     // to the intrinsic's attributes.
2367     F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2368     return;
2369   }
2370 
2371   const auto *FD = cast<FunctionDecl>(GD.getDecl());
2372 
2373   if (!IsIncompleteFunction)
2374     SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2375                               IsThunk);
2376 
2377   // Add the Returned attribute for "this", except for iOS 5 and earlier
2378   // where substantial code, including the libstdc++ dylib, was compiled with
2379   // GCC and does not actually return "this".
2380   if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2381       !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2382     assert(!F->arg_empty() &&
2383            F->arg_begin()->getType()
2384              ->canLosslesslyBitCastTo(F->getReturnType()) &&
2385            "unexpected this return");
2386     F->addParamAttr(0, llvm::Attribute::Returned);
2387   }
2388 
2389   // Only a few attributes are set on declarations; these may later be
2390   // overridden by a definition.
2391 
2392   setLinkageForGV(F, FD);
2393   setGVProperties(F, FD);
2394 
2395   // Setup target-specific attributes.
2396   if (!IsIncompleteFunction && F->isDeclaration())
2397     getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2398 
2399   if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2400     F->setSection(CSA->getName());
2401   else if (const auto *SA = FD->getAttr<SectionAttr>())
2402      F->setSection(SA->getName());
2403 
2404   if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2405     if (EA->isError())
2406       F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2407     else if (EA->isWarning())
2408       F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2409   }
2410 
2411   // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2412   if (FD->isInlineBuiltinDeclaration()) {
2413     const FunctionDecl *FDBody;
2414     bool HasBody = FD->hasBody(FDBody);
2415     (void)HasBody;
2416     assert(HasBody && "Inline builtin declarations should always have an "
2417                       "available body!");
2418     if (shouldEmitFunction(FDBody))
2419       F->addFnAttr(llvm::Attribute::NoBuiltin);
2420   }
2421 
2422   if (FD->isReplaceableGlobalAllocationFunction()) {
2423     // A replaceable global allocation function does not act like a builtin by
2424     // default, only if it is invoked by a new-expression or delete-expression.
2425     F->addFnAttr(llvm::Attribute::NoBuiltin);
2426   }
2427 
2428   if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2429     F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2430   else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2431     if (MD->isVirtual())
2432       F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2433 
2434   // Don't emit entries for function declarations in the cross-DSO mode. This
2435   // is handled with better precision by the receiving DSO. But if jump tables
2436   // are non-canonical then we need type metadata in order to produce the local
2437   // jump table.
2438   if (!CodeGenOpts.SanitizeCfiCrossDso ||
2439       !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2440     CreateFunctionTypeMetadataForIcall(FD, F);
2441 
2442   if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2443     setKCFIType(FD, F);
2444 
2445   if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2446     getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2447 
2448   if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2449     F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2450 
2451   if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2452     // Annotate the callback behavior as metadata:
2453     //  - The callback callee (as argument number).
2454     //  - The callback payloads (as argument numbers).
2455     llvm::LLVMContext &Ctx = F->getContext();
2456     llvm::MDBuilder MDB(Ctx);
2457 
2458     // The payload indices are all but the first one in the encoding. The first
2459     // identifies the callback callee.
2460     int CalleeIdx = *CB->encoding_begin();
2461     ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2462     F->addMetadata(llvm::LLVMContext::MD_callback,
2463                    *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2464                                                CalleeIdx, PayloadIndices,
2465                                                /* VarArgsArePassed */ false)}));
2466   }
2467 }
2468 
2469 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2470   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2471          "Only globals with definition can force usage.");
2472   LLVMUsed.emplace_back(GV);
2473 }
2474 
2475 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2476   assert(!GV->isDeclaration() &&
2477          "Only globals with definition can force usage.");
2478   LLVMCompilerUsed.emplace_back(GV);
2479 }
2480 
2481 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2482   assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2483          "Only globals with definition can force usage.");
2484   if (getTriple().isOSBinFormatELF())
2485     LLVMCompilerUsed.emplace_back(GV);
2486   else
2487     LLVMUsed.emplace_back(GV);
2488 }
2489 
2490 static void emitUsed(CodeGenModule &CGM, StringRef Name,
2491                      std::vector<llvm::WeakTrackingVH> &List) {
2492   // Don't create llvm.used if there is no need.
2493   if (List.empty())
2494     return;
2495 
2496   // Convert List to what ConstantArray needs.
2497   SmallVector<llvm::Constant*, 8> UsedArray;
2498   UsedArray.resize(List.size());
2499   for (unsigned i = 0, e = List.size(); i != e; ++i) {
2500     UsedArray[i] =
2501         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2502             cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2503   }
2504 
2505   if (UsedArray.empty())
2506     return;
2507   llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2508 
2509   auto *GV = new llvm::GlobalVariable(
2510       CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2511       llvm::ConstantArray::get(ATy, UsedArray), Name);
2512 
2513   GV->setSection("llvm.metadata");
2514 }
2515 
2516 void CodeGenModule::emitLLVMUsed() {
2517   emitUsed(*this, "llvm.used", LLVMUsed);
2518   emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2519 }
2520 
2521 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2522   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2523   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2524 }
2525 
2526 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2527   llvm::SmallString<32> Opt;
2528   getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2529   if (Opt.empty())
2530     return;
2531   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2532   LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2533 }
2534 
2535 void CodeGenModule::AddDependentLib(StringRef Lib) {
2536   auto &C = getLLVMContext();
2537   if (getTarget().getTriple().isOSBinFormatELF()) {
2538       ELFDependentLibraries.push_back(
2539         llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2540     return;
2541   }
2542 
2543   llvm::SmallString<24> Opt;
2544   getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2545   auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2546   LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2547 }
2548 
2549 /// Add link options implied by the given module, including modules
2550 /// it depends on, using a postorder walk.
2551 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2552                                     SmallVectorImpl<llvm::MDNode *> &Metadata,
2553                                     llvm::SmallPtrSet<Module *, 16> &Visited) {
2554   // Import this module's parent.
2555   if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2556     addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2557   }
2558 
2559   // Import this module's dependencies.
2560   for (Module *Import : llvm::reverse(Mod->Imports)) {
2561     if (Visited.insert(Import).second)
2562       addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2563   }
2564 
2565   // Add linker options to link against the libraries/frameworks
2566   // described by this module.
2567   llvm::LLVMContext &Context = CGM.getLLVMContext();
2568   bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2569 
2570   // For modules that use export_as for linking, use that module
2571   // name instead.
2572   if (Mod->UseExportAsModuleLinkName)
2573     return;
2574 
2575   for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2576     // Link against a framework.  Frameworks are currently Darwin only, so we
2577     // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2578     if (LL.IsFramework) {
2579       llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2580                                  llvm::MDString::get(Context, LL.Library)};
2581 
2582       Metadata.push_back(llvm::MDNode::get(Context, Args));
2583       continue;
2584     }
2585 
2586     // Link against a library.
2587     if (IsELF) {
2588       llvm::Metadata *Args[2] = {
2589           llvm::MDString::get(Context, "lib"),
2590           llvm::MDString::get(Context, LL.Library),
2591       };
2592       Metadata.push_back(llvm::MDNode::get(Context, Args));
2593     } else {
2594       llvm::SmallString<24> Opt;
2595       CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2596       auto *OptString = llvm::MDString::get(Context, Opt);
2597       Metadata.push_back(llvm::MDNode::get(Context, OptString));
2598     }
2599   }
2600 }
2601 
2602 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2603   // Emit the initializers in the order that sub-modules appear in the
2604   // source, first Global Module Fragments, if present.
2605   if (auto GMF = Primary->getGlobalModuleFragment()) {
2606     for (Decl *D : getContext().getModuleInitializers(GMF)) {
2607       if (isa<ImportDecl>(D))
2608         continue;
2609       assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
2610       EmitTopLevelDecl(D);
2611     }
2612   }
2613   // Second any associated with the module, itself.
2614   for (Decl *D : getContext().getModuleInitializers(Primary)) {
2615     // Skip import decls, the inits for those are called explicitly.
2616     if (isa<ImportDecl>(D))
2617       continue;
2618     EmitTopLevelDecl(D);
2619   }
2620   // Third any associated with the Privat eMOdule Fragment, if present.
2621   if (auto PMF = Primary->getPrivateModuleFragment()) {
2622     for (Decl *D : getContext().getModuleInitializers(PMF)) {
2623       assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
2624       EmitTopLevelDecl(D);
2625     }
2626   }
2627 }
2628 
2629 void CodeGenModule::EmitModuleLinkOptions() {
2630   // Collect the set of all of the modules we want to visit to emit link
2631   // options, which is essentially the imported modules and all of their
2632   // non-explicit child modules.
2633   llvm::SetVector<clang::Module *> LinkModules;
2634   llvm::SmallPtrSet<clang::Module *, 16> Visited;
2635   SmallVector<clang::Module *, 16> Stack;
2636 
2637   // Seed the stack with imported modules.
2638   for (Module *M : ImportedModules) {
2639     // Do not add any link flags when an implementation TU of a module imports
2640     // a header of that same module.
2641     if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
2642         !getLangOpts().isCompilingModule())
2643       continue;
2644     if (Visited.insert(M).second)
2645       Stack.push_back(M);
2646   }
2647 
2648   // Find all of the modules to import, making a little effort to prune
2649   // non-leaf modules.
2650   while (!Stack.empty()) {
2651     clang::Module *Mod = Stack.pop_back_val();
2652 
2653     bool AnyChildren = false;
2654 
2655     // Visit the submodules of this module.
2656     for (const auto &SM : Mod->submodules()) {
2657       // Skip explicit children; they need to be explicitly imported to be
2658       // linked against.
2659       if (SM->IsExplicit)
2660         continue;
2661 
2662       if (Visited.insert(SM).second) {
2663         Stack.push_back(SM);
2664         AnyChildren = true;
2665       }
2666     }
2667 
2668     // We didn't find any children, so add this module to the list of
2669     // modules to link against.
2670     if (!AnyChildren) {
2671       LinkModules.insert(Mod);
2672     }
2673   }
2674 
2675   // Add link options for all of the imported modules in reverse topological
2676   // order.  We don't do anything to try to order import link flags with respect
2677   // to linker options inserted by things like #pragma comment().
2678   SmallVector<llvm::MDNode *, 16> MetadataArgs;
2679   Visited.clear();
2680   for (Module *M : LinkModules)
2681     if (Visited.insert(M).second)
2682       addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
2683   std::reverse(MetadataArgs.begin(), MetadataArgs.end());
2684   LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
2685 
2686   // Add the linker options metadata flag.
2687   auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
2688   for (auto *MD : LinkerOptionsMetadata)
2689     NMD->addOperand(MD);
2690 }
2691 
2692 void CodeGenModule::EmitDeferred() {
2693   // Emit deferred declare target declarations.
2694   if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
2695     getOpenMPRuntime().emitDeferredTargetDecls();
2696 
2697   // Emit code for any potentially referenced deferred decls.  Since a
2698   // previously unused static decl may become used during the generation of code
2699   // for a static function, iterate until no changes are made.
2700 
2701   if (!DeferredVTables.empty()) {
2702     EmitDeferredVTables();
2703 
2704     // Emitting a vtable doesn't directly cause more vtables to
2705     // become deferred, although it can cause functions to be
2706     // emitted that then need those vtables.
2707     assert(DeferredVTables.empty());
2708   }
2709 
2710   // Emit CUDA/HIP static device variables referenced by host code only.
2711   // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
2712   // needed for further handling.
2713   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2714     llvm::append_range(DeferredDeclsToEmit,
2715                        getContext().CUDADeviceVarODRUsedByHost);
2716 
2717   // Stop if we're out of both deferred vtables and deferred declarations.
2718   if (DeferredDeclsToEmit.empty())
2719     return;
2720 
2721   // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
2722   // work, it will not interfere with this.
2723   std::vector<GlobalDecl> CurDeclsToEmit;
2724   CurDeclsToEmit.swap(DeferredDeclsToEmit);
2725 
2726   for (GlobalDecl &D : CurDeclsToEmit) {
2727     // We should call GetAddrOfGlobal with IsForDefinition set to true in order
2728     // to get GlobalValue with exactly the type we need, not something that
2729     // might had been created for another decl with the same mangled name but
2730     // different type.
2731     llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
2732         GetAddrOfGlobal(D, ForDefinition));
2733 
2734     // In case of different address spaces, we may still get a cast, even with
2735     // IsForDefinition equal to true. Query mangled names table to get
2736     // GlobalValue.
2737     if (!GV)
2738       GV = GetGlobalValue(getMangledName(D));
2739 
2740     // Make sure GetGlobalValue returned non-null.
2741     assert(GV);
2742 
2743     // Check to see if we've already emitted this.  This is necessary
2744     // for a couple of reasons: first, decls can end up in the
2745     // deferred-decls queue multiple times, and second, decls can end
2746     // up with definitions in unusual ways (e.g. by an extern inline
2747     // function acquiring a strong function redefinition).  Just
2748     // ignore these cases.
2749     if (!GV->isDeclaration())
2750       continue;
2751 
2752     // If this is OpenMP, check if it is legal to emit this global normally.
2753     if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
2754       continue;
2755 
2756     // Otherwise, emit the definition and move on to the next one.
2757     EmitGlobalDefinition(D, GV);
2758 
2759     // If we found out that we need to emit more decls, do that recursively.
2760     // This has the advantage that the decls are emitted in a DFS and related
2761     // ones are close together, which is convenient for testing.
2762     if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
2763       EmitDeferred();
2764       assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
2765     }
2766   }
2767 }
2768 
2769 void CodeGenModule::EmitVTablesOpportunistically() {
2770   // Try to emit external vtables as available_externally if they have emitted
2771   // all inlined virtual functions.  It runs after EmitDeferred() and therefore
2772   // is not allowed to create new references to things that need to be emitted
2773   // lazily. Note that it also uses fact that we eagerly emitting RTTI.
2774 
2775   assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
2776          && "Only emit opportunistic vtables with optimizations");
2777 
2778   for (const CXXRecordDecl *RD : OpportunisticVTables) {
2779     assert(getVTables().isVTableExternal(RD) &&
2780            "This queue should only contain external vtables");
2781     if (getCXXABI().canSpeculativelyEmitVTable(RD))
2782       VTables.GenerateClassData(RD);
2783   }
2784   OpportunisticVTables.clear();
2785 }
2786 
2787 void CodeGenModule::EmitGlobalAnnotations() {
2788   if (Annotations.empty())
2789     return;
2790 
2791   // Create a new global variable for the ConstantStruct in the Module.
2792   llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
2793     Annotations[0]->getType(), Annotations.size()), Annotations);
2794   auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
2795                                       llvm::GlobalValue::AppendingLinkage,
2796                                       Array, "llvm.global.annotations");
2797   gv->setSection(AnnotationSection);
2798 }
2799 
2800 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
2801   llvm::Constant *&AStr = AnnotationStrings[Str];
2802   if (AStr)
2803     return AStr;
2804 
2805   // Not found yet, create a new global.
2806   llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
2807   auto *gv =
2808       new llvm::GlobalVariable(getModule(), s->getType(), true,
2809                                llvm::GlobalValue::PrivateLinkage, s, ".str");
2810   gv->setSection(AnnotationSection);
2811   gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2812   AStr = gv;
2813   return gv;
2814 }
2815 
2816 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
2817   SourceManager &SM = getContext().getSourceManager();
2818   PresumedLoc PLoc = SM.getPresumedLoc(Loc);
2819   if (PLoc.isValid())
2820     return EmitAnnotationString(PLoc.getFilename());
2821   return EmitAnnotationString(SM.getBufferName(Loc));
2822 }
2823 
2824 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
2825   SourceManager &SM = getContext().getSourceManager();
2826   PresumedLoc PLoc = SM.getPresumedLoc(L);
2827   unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
2828     SM.getExpansionLineNumber(L);
2829   return llvm::ConstantInt::get(Int32Ty, LineNo);
2830 }
2831 
2832 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
2833   ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
2834   if (Exprs.empty())
2835     return llvm::ConstantPointerNull::get(GlobalsInt8PtrTy);
2836 
2837   llvm::FoldingSetNodeID ID;
2838   for (Expr *E : Exprs) {
2839     ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
2840   }
2841   llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
2842   if (Lookup)
2843     return Lookup;
2844 
2845   llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
2846   LLVMArgs.reserve(Exprs.size());
2847   ConstantEmitter ConstEmiter(*this);
2848   llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
2849     const auto *CE = cast<clang::ConstantExpr>(E);
2850     return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
2851                                     CE->getType());
2852   });
2853   auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
2854   auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
2855                                       llvm::GlobalValue::PrivateLinkage, Struct,
2856                                       ".args");
2857   GV->setSection(AnnotationSection);
2858   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2859   auto *Bitcasted = llvm::ConstantExpr::getBitCast(GV, GlobalsInt8PtrTy);
2860 
2861   Lookup = Bitcasted;
2862   return Bitcasted;
2863 }
2864 
2865 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
2866                                                 const AnnotateAttr *AA,
2867                                                 SourceLocation L) {
2868   // Get the globals for file name, annotation, and the line number.
2869   llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
2870                  *UnitGV = EmitAnnotationUnit(L),
2871                  *LineNoCst = EmitAnnotationLineNo(L),
2872                  *Args = EmitAnnotationArgs(AA);
2873 
2874   llvm::Constant *GVInGlobalsAS = GV;
2875   if (GV->getAddressSpace() !=
2876       getDataLayout().getDefaultGlobalsAddressSpace()) {
2877     GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
2878         GV, GV->getValueType()->getPointerTo(
2879                 getDataLayout().getDefaultGlobalsAddressSpace()));
2880   }
2881 
2882   // Create the ConstantStruct for the global annotation.
2883   llvm::Constant *Fields[] = {
2884       llvm::ConstantExpr::getBitCast(GVInGlobalsAS, GlobalsInt8PtrTy),
2885       llvm::ConstantExpr::getBitCast(AnnoGV, GlobalsInt8PtrTy),
2886       llvm::ConstantExpr::getBitCast(UnitGV, GlobalsInt8PtrTy),
2887       LineNoCst,
2888       Args,
2889   };
2890   return llvm::ConstantStruct::getAnon(Fields);
2891 }
2892 
2893 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
2894                                          llvm::GlobalValue *GV) {
2895   assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
2896   // Get the struct elements for these annotations.
2897   for (const auto *I : D->specific_attrs<AnnotateAttr>())
2898     Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
2899 }
2900 
2901 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
2902                                        SourceLocation Loc) const {
2903   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2904   // NoSanitize by function name.
2905   if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
2906     return true;
2907   // NoSanitize by location. Check "mainfile" prefix.
2908   auto &SM = Context.getSourceManager();
2909   const FileEntry &MainFile = *SM.getFileEntryForID(SM.getMainFileID());
2910   if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
2911     return true;
2912 
2913   // Check "src" prefix.
2914   if (Loc.isValid())
2915     return NoSanitizeL.containsLocation(Kind, Loc);
2916   // If location is unknown, this may be a compiler-generated function. Assume
2917   // it's located in the main file.
2918   return NoSanitizeL.containsFile(Kind, MainFile.getName());
2919 }
2920 
2921 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
2922                                        llvm::GlobalVariable *GV,
2923                                        SourceLocation Loc, QualType Ty,
2924                                        StringRef Category) const {
2925   const auto &NoSanitizeL = getContext().getNoSanitizeList();
2926   if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
2927     return true;
2928   auto &SM = Context.getSourceManager();
2929   if (NoSanitizeL.containsMainFile(
2930           Kind, SM.getFileEntryForID(SM.getMainFileID())->getName(), Category))
2931     return true;
2932   if (NoSanitizeL.containsLocation(Kind, Loc, Category))
2933     return true;
2934 
2935   // Check global type.
2936   if (!Ty.isNull()) {
2937     // Drill down the array types: if global variable of a fixed type is
2938     // not sanitized, we also don't instrument arrays of them.
2939     while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
2940       Ty = AT->getElementType();
2941     Ty = Ty.getCanonicalType().getUnqualifiedType();
2942     // Only record types (classes, structs etc.) are ignored.
2943     if (Ty->isRecordType()) {
2944       std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
2945       if (NoSanitizeL.containsType(Kind, TypeStr, Category))
2946         return true;
2947     }
2948   }
2949   return false;
2950 }
2951 
2952 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
2953                                    StringRef Category) const {
2954   const auto &XRayFilter = getContext().getXRayFilter();
2955   using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
2956   auto Attr = ImbueAttr::NONE;
2957   if (Loc.isValid())
2958     Attr = XRayFilter.shouldImbueLocation(Loc, Category);
2959   if (Attr == ImbueAttr::NONE)
2960     Attr = XRayFilter.shouldImbueFunction(Fn->getName());
2961   switch (Attr) {
2962   case ImbueAttr::NONE:
2963     return false;
2964   case ImbueAttr::ALWAYS:
2965     Fn->addFnAttr("function-instrument", "xray-always");
2966     break;
2967   case ImbueAttr::ALWAYS_ARG1:
2968     Fn->addFnAttr("function-instrument", "xray-always");
2969     Fn->addFnAttr("xray-log-args", "1");
2970     break;
2971   case ImbueAttr::NEVER:
2972     Fn->addFnAttr("function-instrument", "xray-never");
2973     break;
2974   }
2975   return true;
2976 }
2977 
2978 ProfileList::ExclusionType
2979 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
2980                                               SourceLocation Loc) const {
2981   const auto &ProfileList = getContext().getProfileList();
2982   // If the profile list is empty, then instrument everything.
2983   if (ProfileList.isEmpty())
2984     return ProfileList::Allow;
2985   CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
2986   // First, check the function name.
2987   if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
2988     return *V;
2989   // Next, check the source location.
2990   if (Loc.isValid())
2991     if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
2992       return *V;
2993   // If location is unknown, this may be a compiler-generated function. Assume
2994   // it's located in the main file.
2995   auto &SM = Context.getSourceManager();
2996   if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID()))
2997     if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
2998       return *V;
2999   return ProfileList.getDefault(Kind);
3000 }
3001 
3002 ProfileList::ExclusionType
3003 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3004                                                  SourceLocation Loc) const {
3005   auto V = isFunctionBlockedByProfileList(Fn, Loc);
3006   if (V != ProfileList::Allow)
3007     return V;
3008 
3009   auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3010   if (NumGroups > 1) {
3011     auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3012     if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3013       return ProfileList::Skip;
3014   }
3015   return ProfileList::Allow;
3016 }
3017 
3018 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3019   // Never defer when EmitAllDecls is specified.
3020   if (LangOpts.EmitAllDecls)
3021     return true;
3022 
3023   if (CodeGenOpts.KeepStaticConsts) {
3024     const auto *VD = dyn_cast<VarDecl>(Global);
3025     if (VD && VD->getType().isConstQualified() &&
3026         VD->getStorageDuration() == SD_Static)
3027       return true;
3028   }
3029 
3030   return getContext().DeclMustBeEmitted(Global);
3031 }
3032 
3033 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3034   // In OpenMP 5.0 variables and function may be marked as
3035   // device_type(host/nohost) and we should not emit them eagerly unless we sure
3036   // that they must be emitted on the host/device. To be sure we need to have
3037   // seen a declare target with an explicit mentioning of the function, we know
3038   // we have if the level of the declare target attribute is -1. Note that we
3039   // check somewhere else if we should emit this at all.
3040   if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3041     llvm::Optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3042         OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3043     if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3044       return false;
3045   }
3046 
3047   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3048     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3049       // Implicit template instantiations may change linkage if they are later
3050       // explicitly instantiated, so they should not be emitted eagerly.
3051       return false;
3052   }
3053   if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3054     if (Context.getInlineVariableDefinitionKind(VD) ==
3055         ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3056       // A definition of an inline constexpr static data member may change
3057       // linkage later if it's redeclared outside the class.
3058       return false;
3059     if (CXX20ModuleInits && VD->getOwningModule() &&
3060         !VD->getOwningModule()->isModuleMapModule()) {
3061       // For CXX20, module-owned initializers need to be deferred, since it is
3062       // not known at this point if they will be run for the current module or
3063       // as part of the initializer for an imported one.
3064       return false;
3065     }
3066   }
3067   // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3068   // codegen for global variables, because they may be marked as threadprivate.
3069   if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3070       getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3071       !isTypeConstant(Global->getType(), false) &&
3072       !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3073     return false;
3074 
3075   return true;
3076 }
3077 
3078 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3079   StringRef Name = getMangledName(GD);
3080 
3081   // The UUID descriptor should be pointer aligned.
3082   CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3083 
3084   // Look for an existing global.
3085   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3086     return ConstantAddress(GV, GV->getValueType(), Alignment);
3087 
3088   ConstantEmitter Emitter(*this);
3089   llvm::Constant *Init;
3090 
3091   APValue &V = GD->getAsAPValue();
3092   if (!V.isAbsent()) {
3093     // If possible, emit the APValue version of the initializer. In particular,
3094     // this gets the type of the constant right.
3095     Init = Emitter.emitForInitializer(
3096         GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3097   } else {
3098     // As a fallback, directly construct the constant.
3099     // FIXME: This may get padding wrong under esoteric struct layout rules.
3100     // MSVC appears to create a complete type 'struct __s_GUID' that it
3101     // presumably uses to represent these constants.
3102     MSGuidDecl::Parts Parts = GD->getParts();
3103     llvm::Constant *Fields[4] = {
3104         llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3105         llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3106         llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3107         llvm::ConstantDataArray::getRaw(
3108             StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3109             Int8Ty)};
3110     Init = llvm::ConstantStruct::getAnon(Fields);
3111   }
3112 
3113   auto *GV = new llvm::GlobalVariable(
3114       getModule(), Init->getType(),
3115       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3116   if (supportsCOMDAT())
3117     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3118   setDSOLocal(GV);
3119 
3120   if (!V.isAbsent()) {
3121     Emitter.finalize(GV);
3122     return ConstantAddress(GV, GV->getValueType(), Alignment);
3123   }
3124 
3125   llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3126   llvm::Constant *Addr = llvm::ConstantExpr::getBitCast(
3127       GV, Ty->getPointerTo(GV->getAddressSpace()));
3128   return ConstantAddress(Addr, Ty, Alignment);
3129 }
3130 
3131 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3132     const UnnamedGlobalConstantDecl *GCD) {
3133   CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3134 
3135   llvm::GlobalVariable **Entry = nullptr;
3136   Entry = &UnnamedGlobalConstantDeclMap[GCD];
3137   if (*Entry)
3138     return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3139 
3140   ConstantEmitter Emitter(*this);
3141   llvm::Constant *Init;
3142 
3143   const APValue &V = GCD->getValue();
3144 
3145   assert(!V.isAbsent());
3146   Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3147                                     GCD->getType());
3148 
3149   auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3150                                       /*isConstant=*/true,
3151                                       llvm::GlobalValue::PrivateLinkage, Init,
3152                                       ".constant");
3153   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3154   GV->setAlignment(Alignment.getAsAlign());
3155 
3156   Emitter.finalize(GV);
3157 
3158   *Entry = GV;
3159   return ConstantAddress(GV, GV->getValueType(), Alignment);
3160 }
3161 
3162 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3163     const TemplateParamObjectDecl *TPO) {
3164   StringRef Name = getMangledName(TPO);
3165   CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3166 
3167   if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3168     return ConstantAddress(GV, GV->getValueType(), Alignment);
3169 
3170   ConstantEmitter Emitter(*this);
3171   llvm::Constant *Init = Emitter.emitForInitializer(
3172         TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3173 
3174   if (!Init) {
3175     ErrorUnsupported(TPO, "template parameter object");
3176     return ConstantAddress::invalid();
3177   }
3178 
3179   auto *GV = new llvm::GlobalVariable(
3180       getModule(), Init->getType(),
3181       /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3182   if (supportsCOMDAT())
3183     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3184   Emitter.finalize(GV);
3185 
3186   return ConstantAddress(GV, GV->getValueType(), Alignment);
3187 }
3188 
3189 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3190   const AliasAttr *AA = VD->getAttr<AliasAttr>();
3191   assert(AA && "No alias?");
3192 
3193   CharUnits Alignment = getContext().getDeclAlign(VD);
3194   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3195 
3196   // See if there is already something with the target's name in the module.
3197   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3198   if (Entry) {
3199     unsigned AS = getContext().getTargetAddressSpace(VD->getType());
3200     auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
3201     return ConstantAddress(Ptr, DeclTy, Alignment);
3202   }
3203 
3204   llvm::Constant *Aliasee;
3205   if (isa<llvm::FunctionType>(DeclTy))
3206     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3207                                       GlobalDecl(cast<FunctionDecl>(VD)),
3208                                       /*ForVTable=*/false);
3209   else
3210     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3211                                     nullptr);
3212 
3213   auto *F = cast<llvm::GlobalValue>(Aliasee);
3214   F->setLinkage(llvm::Function::ExternalWeakLinkage);
3215   WeakRefReferences.insert(F);
3216 
3217   return ConstantAddress(Aliasee, DeclTy, Alignment);
3218 }
3219 
3220 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3221   const auto *Global = cast<ValueDecl>(GD.getDecl());
3222 
3223   // Weak references don't produce any output by themselves.
3224   if (Global->hasAttr<WeakRefAttr>())
3225     return;
3226 
3227   // If this is an alias definition (which otherwise looks like a declaration)
3228   // emit it now.
3229   if (Global->hasAttr<AliasAttr>())
3230     return EmitAliasDefinition(GD);
3231 
3232   // IFunc like an alias whose value is resolved at runtime by calling resolver.
3233   if (Global->hasAttr<IFuncAttr>())
3234     return emitIFuncDefinition(GD);
3235 
3236   // If this is a cpu_dispatch multiversion function, emit the resolver.
3237   if (Global->hasAttr<CPUDispatchAttr>())
3238     return emitCPUDispatchDefinition(GD);
3239 
3240   // If this is CUDA, be selective about which declarations we emit.
3241   if (LangOpts.CUDA) {
3242     if (LangOpts.CUDAIsDevice) {
3243       if (!Global->hasAttr<CUDADeviceAttr>() &&
3244           !Global->hasAttr<CUDAGlobalAttr>() &&
3245           !Global->hasAttr<CUDAConstantAttr>() &&
3246           !Global->hasAttr<CUDASharedAttr>() &&
3247           !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3248           !Global->getType()->isCUDADeviceBuiltinTextureType())
3249         return;
3250     } else {
3251       // We need to emit host-side 'shadows' for all global
3252       // device-side variables because the CUDA runtime needs their
3253       // size and host-side address in order to provide access to
3254       // their device-side incarnations.
3255 
3256       // So device-only functions are the only things we skip.
3257       if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3258           Global->hasAttr<CUDADeviceAttr>())
3259         return;
3260 
3261       assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3262              "Expected Variable or Function");
3263     }
3264   }
3265 
3266   if (LangOpts.OpenMP) {
3267     // If this is OpenMP, check if it is legal to emit this global normally.
3268     if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3269       return;
3270     if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3271       if (MustBeEmitted(Global))
3272         EmitOMPDeclareReduction(DRD);
3273       return;
3274     } else if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3275       if (MustBeEmitted(Global))
3276         EmitOMPDeclareMapper(DMD);
3277       return;
3278     }
3279   }
3280 
3281   // Ignore declarations, they will be emitted on their first use.
3282   if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3283     // Forward declarations are emitted lazily on first use.
3284     if (!FD->doesThisDeclarationHaveABody()) {
3285       if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3286         return;
3287 
3288       StringRef MangledName = getMangledName(GD);
3289 
3290       // Compute the function info and LLVM type.
3291       const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3292       llvm::Type *Ty = getTypes().GetFunctionType(FI);
3293 
3294       GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3295                               /*DontDefer=*/false);
3296       return;
3297     }
3298   } else {
3299     const auto *VD = cast<VarDecl>(Global);
3300     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3301     if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3302         !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3303       if (LangOpts.OpenMP) {
3304         // Emit declaration of the must-be-emitted declare target variable.
3305         if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3306                 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3307           bool UnifiedMemoryEnabled =
3308               getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3309           if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3310               !UnifiedMemoryEnabled) {
3311             (void)GetAddrOfGlobalVar(VD);
3312           } else {
3313             assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3314                     (*Res == OMPDeclareTargetDeclAttr::MT_To &&
3315                      UnifiedMemoryEnabled)) &&
3316                    "Link clause or to clause with unified memory expected.");
3317             (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3318           }
3319 
3320           return;
3321         }
3322       }
3323       // If this declaration may have caused an inline variable definition to
3324       // change linkage, make sure that it's emitted.
3325       if (Context.getInlineVariableDefinitionKind(VD) ==
3326           ASTContext::InlineVariableDefinitionKind::Strong)
3327         GetAddrOfGlobalVar(VD);
3328       return;
3329     }
3330   }
3331 
3332   // Defer code generation to first use when possible, e.g. if this is an inline
3333   // function. If the global must always be emitted, do it eagerly if possible
3334   // to benefit from cache locality.
3335   if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3336     // Emit the definition if it can't be deferred.
3337     EmitGlobalDefinition(GD);
3338     return;
3339   }
3340 
3341   // If we're deferring emission of a C++ variable with an
3342   // initializer, remember the order in which it appeared in the file.
3343   if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3344       cast<VarDecl>(Global)->hasInit()) {
3345     DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3346     CXXGlobalInits.push_back(nullptr);
3347   }
3348 
3349   StringRef MangledName = getMangledName(GD);
3350   if (GetGlobalValue(MangledName) != nullptr) {
3351     // The value has already been used and should therefore be emitted.
3352     addDeferredDeclToEmit(GD);
3353   } else if (MustBeEmitted(Global)) {
3354     // The value must be emitted, but cannot be emitted eagerly.
3355     assert(!MayBeEmittedEagerly(Global));
3356     addDeferredDeclToEmit(GD);
3357     EmittedDeferredDecls[MangledName] = GD;
3358   } else {
3359     // Otherwise, remember that we saw a deferred decl with this name.  The
3360     // first use of the mangled name will cause it to move into
3361     // DeferredDeclsToEmit.
3362     DeferredDecls[MangledName] = GD;
3363   }
3364 }
3365 
3366 // Check if T is a class type with a destructor that's not dllimport.
3367 static bool HasNonDllImportDtor(QualType T) {
3368   if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3369     if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3370       if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3371         return true;
3372 
3373   return false;
3374 }
3375 
3376 namespace {
3377   struct FunctionIsDirectlyRecursive
3378       : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3379     const StringRef Name;
3380     const Builtin::Context &BI;
3381     FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3382         : Name(N), BI(C) {}
3383 
3384     bool VisitCallExpr(const CallExpr *E) {
3385       const FunctionDecl *FD = E->getDirectCallee();
3386       if (!FD)
3387         return false;
3388       AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3389       if (Attr && Name == Attr->getLabel())
3390         return true;
3391       unsigned BuiltinID = FD->getBuiltinID();
3392       if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3393         return false;
3394       StringRef BuiltinName = BI.getName(BuiltinID);
3395       if (BuiltinName.startswith("__builtin_") &&
3396           Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3397         return true;
3398       }
3399       return false;
3400     }
3401 
3402     bool VisitStmt(const Stmt *S) {
3403       for (const Stmt *Child : S->children())
3404         if (Child && this->Visit(Child))
3405           return true;
3406       return false;
3407     }
3408   };
3409 
3410   // Make sure we're not referencing non-imported vars or functions.
3411   struct DLLImportFunctionVisitor
3412       : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3413     bool SafeToInline = true;
3414 
3415     bool shouldVisitImplicitCode() const { return true; }
3416 
3417     bool VisitVarDecl(VarDecl *VD) {
3418       if (VD->getTLSKind()) {
3419         // A thread-local variable cannot be imported.
3420         SafeToInline = false;
3421         return SafeToInline;
3422       }
3423 
3424       // A variable definition might imply a destructor call.
3425       if (VD->isThisDeclarationADefinition())
3426         SafeToInline = !HasNonDllImportDtor(VD->getType());
3427 
3428       return SafeToInline;
3429     }
3430 
3431     bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3432       if (const auto *D = E->getTemporary()->getDestructor())
3433         SafeToInline = D->hasAttr<DLLImportAttr>();
3434       return SafeToInline;
3435     }
3436 
3437     bool VisitDeclRefExpr(DeclRefExpr *E) {
3438       ValueDecl *VD = E->getDecl();
3439       if (isa<FunctionDecl>(VD))
3440         SafeToInline = VD->hasAttr<DLLImportAttr>();
3441       else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3442         SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3443       return SafeToInline;
3444     }
3445 
3446     bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3447       SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3448       return SafeToInline;
3449     }
3450 
3451     bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3452       CXXMethodDecl *M = E->getMethodDecl();
3453       if (!M) {
3454         // Call through a pointer to member function. This is safe to inline.
3455         SafeToInline = true;
3456       } else {
3457         SafeToInline = M->hasAttr<DLLImportAttr>();
3458       }
3459       return SafeToInline;
3460     }
3461 
3462     bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3463       SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3464       return SafeToInline;
3465     }
3466 
3467     bool VisitCXXNewExpr(CXXNewExpr *E) {
3468       SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3469       return SafeToInline;
3470     }
3471   };
3472 }
3473 
3474 // isTriviallyRecursive - Check if this function calls another
3475 // decl that, because of the asm attribute or the other decl being a builtin,
3476 // ends up pointing to itself.
3477 bool
3478 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3479   StringRef Name;
3480   if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3481     // asm labels are a special kind of mangling we have to support.
3482     AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3483     if (!Attr)
3484       return false;
3485     Name = Attr->getLabel();
3486   } else {
3487     Name = FD->getName();
3488   }
3489 
3490   FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3491   const Stmt *Body = FD->getBody();
3492   return Body ? Walker.Visit(Body) : false;
3493 }
3494 
3495 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3496   if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3497     return true;
3498   const auto *F = cast<FunctionDecl>(GD.getDecl());
3499   if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3500     return false;
3501 
3502   if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3503     // Check whether it would be safe to inline this dllimport function.
3504     DLLImportFunctionVisitor Visitor;
3505     Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3506     if (!Visitor.SafeToInline)
3507       return false;
3508 
3509     if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3510       // Implicit destructor invocations aren't captured in the AST, so the
3511       // check above can't see them. Check for them manually here.
3512       for (const Decl *Member : Dtor->getParent()->decls())
3513         if (isa<FieldDecl>(Member))
3514           if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3515             return false;
3516       for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3517         if (HasNonDllImportDtor(B.getType()))
3518           return false;
3519     }
3520   }
3521 
3522   // Inline builtins declaration must be emitted. They often are fortified
3523   // functions.
3524   if (F->isInlineBuiltinDeclaration())
3525     return true;
3526 
3527   // PR9614. Avoid cases where the source code is lying to us. An available
3528   // externally function should have an equivalent function somewhere else,
3529   // but a function that calls itself through asm label/`__builtin_` trickery is
3530   // clearly not equivalent to the real implementation.
3531   // This happens in glibc's btowc and in some configure checks.
3532   return !isTriviallyRecursive(F);
3533 }
3534 
3535 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3536   return CodeGenOpts.OptimizationLevel > 0;
3537 }
3538 
3539 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3540                                                        llvm::GlobalValue *GV) {
3541   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3542 
3543   if (FD->isCPUSpecificMultiVersion()) {
3544     auto *Spec = FD->getAttr<CPUSpecificAttr>();
3545     for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3546       EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3547   } else if (FD->isTargetClonesMultiVersion()) {
3548     auto *Clone = FD->getAttr<TargetClonesAttr>();
3549     for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
3550       if (Clone->isFirstOfVersion(I))
3551         EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3552     // Ensure that the resolver function is also emitted.
3553     GetOrCreateMultiVersionResolver(GD);
3554   } else
3555     EmitGlobalFunctionDefinition(GD, GV);
3556 }
3557 
3558 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
3559   const auto *D = cast<ValueDecl>(GD.getDecl());
3560 
3561   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
3562                                  Context.getSourceManager(),
3563                                  "Generating code for declaration");
3564 
3565   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3566     // At -O0, don't generate IR for functions with available_externally
3567     // linkage.
3568     if (!shouldEmitFunction(GD))
3569       return;
3570 
3571     llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
3572       std::string Name;
3573       llvm::raw_string_ostream OS(Name);
3574       FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
3575                                /*Qualified=*/true);
3576       return Name;
3577     });
3578 
3579     if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
3580       // Make sure to emit the definition(s) before we emit the thunks.
3581       // This is necessary for the generation of certain thunks.
3582       if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
3583         ABI->emitCXXStructor(GD);
3584       else if (FD->isMultiVersion())
3585         EmitMultiVersionFunctionDefinition(GD, GV);
3586       else
3587         EmitGlobalFunctionDefinition(GD, GV);
3588 
3589       if (Method->isVirtual())
3590         getVTables().EmitThunks(GD);
3591 
3592       return;
3593     }
3594 
3595     if (FD->isMultiVersion())
3596       return EmitMultiVersionFunctionDefinition(GD, GV);
3597     return EmitGlobalFunctionDefinition(GD, GV);
3598   }
3599 
3600   if (const auto *VD = dyn_cast<VarDecl>(D))
3601     return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
3602 
3603   llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
3604 }
3605 
3606 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
3607                                                       llvm::Function *NewFn);
3608 
3609 static unsigned
3610 TargetMVPriority(const TargetInfo &TI,
3611                  const CodeGenFunction::MultiVersionResolverOption &RO) {
3612   unsigned Priority = 0;
3613   for (StringRef Feat : RO.Conditions.Features)
3614     Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
3615 
3616   if (!RO.Conditions.Architecture.empty())
3617     Priority = std::max(
3618         Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
3619   return Priority;
3620 }
3621 
3622 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
3623 // TU can forward declare the function without causing problems.  Particularly
3624 // in the cases of CPUDispatch, this causes issues. This also makes sure we
3625 // work with internal linkage functions, so that the same function name can be
3626 // used with internal linkage in multiple TUs.
3627 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
3628                                                        GlobalDecl GD) {
3629   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
3630   if (FD->getFormalLinkage() == InternalLinkage)
3631     return llvm::GlobalValue::InternalLinkage;
3632   return llvm::GlobalValue::WeakODRLinkage;
3633 }
3634 
3635 void CodeGenModule::emitMultiVersionFunctions() {
3636   std::vector<GlobalDecl> MVFuncsToEmit;
3637   MultiVersionFuncs.swap(MVFuncsToEmit);
3638   for (GlobalDecl GD : MVFuncsToEmit) {
3639     const auto *FD = cast<FunctionDecl>(GD.getDecl());
3640     assert(FD && "Expected a FunctionDecl");
3641 
3642     SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3643     if (FD->isTargetMultiVersion()) {
3644       getContext().forEachMultiversionedFunctionVersion(
3645           FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
3646             GlobalDecl CurGD{
3647                 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
3648             StringRef MangledName = getMangledName(CurGD);
3649             llvm::Constant *Func = GetGlobalValue(MangledName);
3650             if (!Func) {
3651               if (CurFD->isDefined()) {
3652                 EmitGlobalFunctionDefinition(CurGD, nullptr);
3653                 Func = GetGlobalValue(MangledName);
3654               } else {
3655                 const CGFunctionInfo &FI =
3656                     getTypes().arrangeGlobalDeclaration(GD);
3657                 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3658                 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3659                                          /*DontDefer=*/false, ForDefinition);
3660               }
3661               assert(Func && "This should have just been created");
3662             }
3663 
3664             const auto *TA = CurFD->getAttr<TargetAttr>();
3665             llvm::SmallVector<StringRef, 8> Feats;
3666             TA->getAddedFeatures(Feats);
3667 
3668             Options.emplace_back(cast<llvm::Function>(Func),
3669                                  TA->getArchitecture(), Feats);
3670           });
3671     } else if (FD->isTargetClonesMultiVersion()) {
3672       const auto *TC = FD->getAttr<TargetClonesAttr>();
3673       for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
3674            ++VersionIndex) {
3675         if (!TC->isFirstOfVersion(VersionIndex))
3676           continue;
3677         GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
3678                          VersionIndex};
3679         StringRef Version = TC->getFeatureStr(VersionIndex);
3680         StringRef MangledName = getMangledName(CurGD);
3681         llvm::Constant *Func = GetGlobalValue(MangledName);
3682         if (!Func) {
3683           if (FD->isDefined()) {
3684             EmitGlobalFunctionDefinition(CurGD, nullptr);
3685             Func = GetGlobalValue(MangledName);
3686           } else {
3687             const CGFunctionInfo &FI =
3688                 getTypes().arrangeGlobalDeclaration(CurGD);
3689             llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
3690             Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
3691                                      /*DontDefer=*/false, ForDefinition);
3692           }
3693           assert(Func && "This should have just been created");
3694         }
3695 
3696         StringRef Architecture;
3697         llvm::SmallVector<StringRef, 1> Feature;
3698 
3699         if (Version.startswith("arch="))
3700           Architecture = Version.drop_front(sizeof("arch=") - 1);
3701         else if (Version != "default")
3702           Feature.push_back(Version);
3703 
3704         Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
3705       }
3706     } else {
3707       assert(0 && "Expected a target or target_clones multiversion function");
3708       continue;
3709     }
3710 
3711     llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
3712     if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant))
3713       ResolverConstant = IFunc->getResolver();
3714     llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
3715 
3716     ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3717 
3718     if (supportsCOMDAT())
3719       ResolverFunc->setComdat(
3720           getModule().getOrInsertComdat(ResolverFunc->getName()));
3721 
3722     const TargetInfo &TI = getTarget();
3723     llvm::stable_sort(
3724         Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
3725                        const CodeGenFunction::MultiVersionResolverOption &RHS) {
3726           return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
3727         });
3728     CodeGenFunction CGF(*this);
3729     CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3730   }
3731 
3732   // Ensure that any additions to the deferred decls list caused by emitting a
3733   // variant are emitted.  This can happen when the variant itself is inline and
3734   // calls a function without linkage.
3735   if (!MVFuncsToEmit.empty())
3736     EmitDeferred();
3737 
3738   // Ensure that any additions to the multiversion funcs list from either the
3739   // deferred decls or the multiversion functions themselves are emitted.
3740   if (!MultiVersionFuncs.empty())
3741     emitMultiVersionFunctions();
3742 }
3743 
3744 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
3745   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3746   assert(FD && "Not a FunctionDecl?");
3747   assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
3748   const auto *DD = FD->getAttr<CPUDispatchAttr>();
3749   assert(DD && "Not a cpu_dispatch Function?");
3750 
3751   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3752   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3753 
3754   StringRef ResolverName = getMangledName(GD);
3755   UpdateMultiVersionNames(GD, FD, ResolverName);
3756 
3757   llvm::Type *ResolverType;
3758   GlobalDecl ResolverGD;
3759   if (getTarget().supportsIFunc()) {
3760     ResolverType = llvm::FunctionType::get(
3761         llvm::PointerType::get(DeclTy,
3762                                Context.getTargetAddressSpace(FD->getType())),
3763         false);
3764   }
3765   else {
3766     ResolverType = DeclTy;
3767     ResolverGD = GD;
3768   }
3769 
3770   auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
3771       ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
3772   ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
3773   if (supportsCOMDAT())
3774     ResolverFunc->setComdat(
3775         getModule().getOrInsertComdat(ResolverFunc->getName()));
3776 
3777   SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
3778   const TargetInfo &Target = getTarget();
3779   unsigned Index = 0;
3780   for (const IdentifierInfo *II : DD->cpus()) {
3781     // Get the name of the target function so we can look it up/create it.
3782     std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
3783                               getCPUSpecificMangling(*this, II->getName());
3784 
3785     llvm::Constant *Func = GetGlobalValue(MangledName);
3786 
3787     if (!Func) {
3788       GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
3789       if (ExistingDecl.getDecl() &&
3790           ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
3791         EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
3792         Func = GetGlobalValue(MangledName);
3793       } else {
3794         if (!ExistingDecl.getDecl())
3795           ExistingDecl = GD.getWithMultiVersionIndex(Index);
3796 
3797       Func = GetOrCreateLLVMFunction(
3798           MangledName, DeclTy, ExistingDecl,
3799           /*ForVTable=*/false, /*DontDefer=*/true,
3800           /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
3801       }
3802     }
3803 
3804     llvm::SmallVector<StringRef, 32> Features;
3805     Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
3806     llvm::transform(Features, Features.begin(),
3807                     [](StringRef Str) { return Str.substr(1); });
3808     llvm::erase_if(Features, [&Target](StringRef Feat) {
3809       return !Target.validateCpuSupports(Feat);
3810     });
3811     Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
3812     ++Index;
3813   }
3814 
3815   llvm::stable_sort(
3816       Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
3817                   const CodeGenFunction::MultiVersionResolverOption &RHS) {
3818         return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
3819                llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
3820       });
3821 
3822   // If the list contains multiple 'default' versions, such as when it contains
3823   // 'pentium' and 'generic', don't emit the call to the generic one (since we
3824   // always run on at least a 'pentium'). We do this by deleting the 'least
3825   // advanced' (read, lowest mangling letter).
3826   while (Options.size() > 1 &&
3827          llvm::X86::getCpuSupportsMask(
3828              (Options.end() - 2)->Conditions.Features) == 0) {
3829     StringRef LHSName = (Options.end() - 2)->Function->getName();
3830     StringRef RHSName = (Options.end() - 1)->Function->getName();
3831     if (LHSName.compare(RHSName) < 0)
3832       Options.erase(Options.end() - 2);
3833     else
3834       Options.erase(Options.end() - 1);
3835   }
3836 
3837   CodeGenFunction CGF(*this);
3838   CGF.EmitMultiVersionResolver(ResolverFunc, Options);
3839 
3840   if (getTarget().supportsIFunc()) {
3841     llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
3842     auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
3843 
3844     // Fix up function declarations that were created for cpu_specific before
3845     // cpu_dispatch was known
3846     if (!isa<llvm::GlobalIFunc>(IFunc)) {
3847       assert(cast<llvm::Function>(IFunc)->isDeclaration());
3848       auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
3849                                            &getModule());
3850       GI->takeName(IFunc);
3851       IFunc->replaceAllUsesWith(GI);
3852       IFunc->eraseFromParent();
3853       IFunc = GI;
3854     }
3855 
3856     std::string AliasName = getMangledNameImpl(
3857         *this, GD, FD, /*OmitMultiVersionMangling=*/true);
3858     llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
3859     if (!AliasFunc) {
3860       auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
3861                                            &getModule());
3862       SetCommonAttributes(GD, GA);
3863     }
3864   }
3865 }
3866 
3867 /// If a dispatcher for the specified mangled name is not in the module, create
3868 /// and return an llvm Function with the specified type.
3869 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
3870   const auto *FD = cast<FunctionDecl>(GD.getDecl());
3871   assert(FD && "Not a FunctionDecl?");
3872 
3873   std::string MangledName =
3874       getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
3875 
3876   // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
3877   // a separate resolver).
3878   std::string ResolverName = MangledName;
3879   if (getTarget().supportsIFunc())
3880     ResolverName += ".ifunc";
3881   else if (FD->isTargetMultiVersion())
3882     ResolverName += ".resolver";
3883 
3884   // If the resolver has already been created, just return it.
3885   if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
3886     return ResolverGV;
3887 
3888   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3889   llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
3890 
3891   // The resolver needs to be created. For target and target_clones, defer
3892   // creation until the end of the TU.
3893   if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
3894     MultiVersionFuncs.push_back(GD);
3895 
3896   // For cpu_specific, don't create an ifunc yet because we don't know if the
3897   // cpu_dispatch will be emitted in this translation unit.
3898   if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
3899     llvm::Type *ResolverType = llvm::FunctionType::get(
3900         llvm::PointerType::get(
3901             DeclTy, getContext().getTargetAddressSpace(FD->getType())),
3902         false);
3903     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3904         MangledName + ".resolver", ResolverType, GlobalDecl{},
3905         /*ForVTable=*/false);
3906     llvm::GlobalIFunc *GIF =
3907         llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
3908                                   "", Resolver, &getModule());
3909     GIF->setName(ResolverName);
3910     SetCommonAttributes(FD, GIF);
3911 
3912     return GIF;
3913   }
3914 
3915   llvm::Constant *Resolver = GetOrCreateLLVMFunction(
3916       ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
3917   assert(isa<llvm::GlobalValue>(Resolver) &&
3918          "Resolver should be created for the first time");
3919   SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
3920   return Resolver;
3921 }
3922 
3923 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
3924 /// module, create and return an llvm Function with the specified type. If there
3925 /// is something in the module with the specified name, return it potentially
3926 /// bitcasted to the right type.
3927 ///
3928 /// If D is non-null, it specifies a decl that correspond to this.  This is used
3929 /// to set the attributes on the function when it is first created.
3930 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
3931     StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
3932     bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
3933     ForDefinition_t IsForDefinition) {
3934   const Decl *D = GD.getDecl();
3935 
3936   // Any attempts to use a MultiVersion function should result in retrieving
3937   // the iFunc instead. Name Mangling will handle the rest of the changes.
3938   if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
3939     // For the device mark the function as one that should be emitted.
3940     if (getLangOpts().OpenMPIsDevice && OpenMPRuntime &&
3941         !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
3942         !DontDefer && !IsForDefinition) {
3943       if (const FunctionDecl *FDDef = FD->getDefinition()) {
3944         GlobalDecl GDDef;
3945         if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
3946           GDDef = GlobalDecl(CD, GD.getCtorType());
3947         else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
3948           GDDef = GlobalDecl(DD, GD.getDtorType());
3949         else
3950           GDDef = GlobalDecl(FDDef);
3951         EmitGlobal(GDDef);
3952       }
3953     }
3954 
3955     if (FD->isMultiVersion()) {
3956       UpdateMultiVersionNames(GD, FD, MangledName);
3957       if (!IsForDefinition)
3958         return GetOrCreateMultiVersionResolver(GD);
3959     }
3960   }
3961 
3962   // Lookup the entry, lazily creating it if necessary.
3963   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
3964   if (Entry) {
3965     if (WeakRefReferences.erase(Entry)) {
3966       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
3967       if (FD && !FD->hasAttr<WeakAttr>())
3968         Entry->setLinkage(llvm::Function::ExternalLinkage);
3969     }
3970 
3971     // Handle dropped DLL attributes.
3972     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
3973         !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
3974       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
3975       setDSOLocal(Entry);
3976     }
3977 
3978     // If there are two attempts to define the same mangled name, issue an
3979     // error.
3980     if (IsForDefinition && !Entry->isDeclaration()) {
3981       GlobalDecl OtherGD;
3982       // Check that GD is not yet in DiagnosedConflictingDefinitions is required
3983       // to make sure that we issue an error only once.
3984       if (lookupRepresentativeDecl(MangledName, OtherGD) &&
3985           (GD.getCanonicalDecl().getDecl() !=
3986            OtherGD.getCanonicalDecl().getDecl()) &&
3987           DiagnosedConflictingDefinitions.insert(GD).second) {
3988         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
3989             << MangledName;
3990         getDiags().Report(OtherGD.getDecl()->getLocation(),
3991                           diag::note_previous_definition);
3992       }
3993     }
3994 
3995     if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
3996         (Entry->getValueType() == Ty)) {
3997       return Entry;
3998     }
3999 
4000     // Make sure the result is of the correct type.
4001     // (If function is requested for a definition, we always need to create a new
4002     // function, not just return a bitcast.)
4003     if (!IsForDefinition)
4004       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
4005   }
4006 
4007   // This function doesn't have a complete type (for example, the return
4008   // type is an incomplete struct). Use a fake type instead, and make
4009   // sure not to try to set attributes.
4010   bool IsIncompleteFunction = false;
4011 
4012   llvm::FunctionType *FTy;
4013   if (isa<llvm::FunctionType>(Ty)) {
4014     FTy = cast<llvm::FunctionType>(Ty);
4015   } else {
4016     FTy = llvm::FunctionType::get(VoidTy, false);
4017     IsIncompleteFunction = true;
4018   }
4019 
4020   llvm::Function *F =
4021       llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4022                              Entry ? StringRef() : MangledName, &getModule());
4023 
4024   // If we already created a function with the same mangled name (but different
4025   // type) before, take its name and add it to the list of functions to be
4026   // replaced with F at the end of CodeGen.
4027   //
4028   // This happens if there is a prototype for a function (e.g. "int f()") and
4029   // then a definition of a different type (e.g. "int f(int x)").
4030   if (Entry) {
4031     F->takeName(Entry);
4032 
4033     // This might be an implementation of a function without a prototype, in
4034     // which case, try to do special replacement of calls which match the new
4035     // prototype.  The really key thing here is that we also potentially drop
4036     // arguments from the call site so as to make a direct call, which makes the
4037     // inliner happier and suppresses a number of optimizer warnings (!) about
4038     // dropping arguments.
4039     if (!Entry->use_empty()) {
4040       ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4041       Entry->removeDeadConstantUsers();
4042     }
4043 
4044     llvm::Constant *BC = llvm::ConstantExpr::getBitCast(
4045         F, Entry->getValueType()->getPointerTo());
4046     addGlobalValReplacement(Entry, BC);
4047   }
4048 
4049   assert(F->getName() == MangledName && "name was uniqued!");
4050   if (D)
4051     SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4052   if (ExtraAttrs.hasFnAttrs()) {
4053     llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4054     F->addFnAttrs(B);
4055   }
4056 
4057   if (!DontDefer) {
4058     // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4059     // each other bottoming out with the base dtor.  Therefore we emit non-base
4060     // dtors on usage, even if there is no dtor definition in the TU.
4061     if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4062         getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4063                                            GD.getDtorType()))
4064       addDeferredDeclToEmit(GD);
4065 
4066     // This is the first use or definition of a mangled name.  If there is a
4067     // deferred decl with this name, remember that we need to emit it at the end
4068     // of the file.
4069     auto DDI = DeferredDecls.find(MangledName);
4070     if (DDI != DeferredDecls.end()) {
4071       // Move the potentially referenced deferred decl to the
4072       // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4073       // don't need it anymore).
4074       addDeferredDeclToEmit(DDI->second);
4075       EmittedDeferredDecls[DDI->first] = DDI->second;
4076       DeferredDecls.erase(DDI);
4077 
4078       // Otherwise, there are cases we have to worry about where we're
4079       // using a declaration for which we must emit a definition but where
4080       // we might not find a top-level definition:
4081       //   - member functions defined inline in their classes
4082       //   - friend functions defined inline in some class
4083       //   - special member functions with implicit definitions
4084       // If we ever change our AST traversal to walk into class methods,
4085       // this will be unnecessary.
4086       //
4087       // We also don't emit a definition for a function if it's going to be an
4088       // entry in a vtable, unless it's already marked as used.
4089     } else if (getLangOpts().CPlusPlus && D) {
4090       // Look for a declaration that's lexically in a record.
4091       for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4092            FD = FD->getPreviousDecl()) {
4093         if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4094           if (FD->doesThisDeclarationHaveABody()) {
4095             addDeferredDeclToEmit(GD.getWithDecl(FD));
4096             break;
4097           }
4098         }
4099       }
4100     }
4101   }
4102 
4103   // Make sure the result is of the requested type.
4104   if (!IsIncompleteFunction) {
4105     assert(F->getFunctionType() == Ty);
4106     return F;
4107   }
4108 
4109   llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
4110   return llvm::ConstantExpr::getBitCast(F, PTy);
4111 }
4112 
4113 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
4114 /// non-null, then this function will use the specified type if it has to
4115 /// create it (this occurs when we see a definition of the function).
4116 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
4117                                                  llvm::Type *Ty,
4118                                                  bool ForVTable,
4119                                                  bool DontDefer,
4120                                               ForDefinition_t IsForDefinition) {
4121   assert(!cast<FunctionDecl>(GD.getDecl())->isConsteval() &&
4122          "consteval function should never be emitted");
4123   // If there was no specific requested type, just convert it now.
4124   if (!Ty) {
4125     const auto *FD = cast<FunctionDecl>(GD.getDecl());
4126     Ty = getTypes().ConvertType(FD->getType());
4127   }
4128 
4129   // Devirtualized destructor calls may come through here instead of via
4130   // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4131   // of the complete destructor when necessary.
4132   if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4133     if (getTarget().getCXXABI().isMicrosoft() &&
4134         GD.getDtorType() == Dtor_Complete &&
4135         DD->getParent()->getNumVBases() == 0)
4136       GD = GlobalDecl(DD, Dtor_Base);
4137   }
4138 
4139   StringRef MangledName = getMangledName(GD);
4140   auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4141                                     /*IsThunk=*/false, llvm::AttributeList(),
4142                                     IsForDefinition);
4143   // Returns kernel handle for HIP kernel stub function.
4144   if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4145       cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4146     auto *Handle = getCUDARuntime().getKernelHandle(
4147         cast<llvm::Function>(F->stripPointerCasts()), GD);
4148     if (IsForDefinition)
4149       return F;
4150     return llvm::ConstantExpr::getBitCast(Handle, Ty->getPointerTo());
4151   }
4152   return F;
4153 }
4154 
4155 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4156   llvm::GlobalValue *F =
4157       cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4158 
4159   return llvm::ConstantExpr::getBitCast(llvm::NoCFIValue::get(F),
4160                                         llvm::Type::getInt8PtrTy(VMContext));
4161 }
4162 
4163 static const FunctionDecl *
4164 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4165   TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4166   DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4167 
4168   IdentifierInfo &CII = C.Idents.get(Name);
4169   for (const auto *Result : DC->lookup(&CII))
4170     if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4171       return FD;
4172 
4173   if (!C.getLangOpts().CPlusPlus)
4174     return nullptr;
4175 
4176   // Demangle the premangled name from getTerminateFn()
4177   IdentifierInfo &CXXII =
4178       (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4179           ? C.Idents.get("terminate")
4180           : C.Idents.get(Name);
4181 
4182   for (const auto &N : {"__cxxabiv1", "std"}) {
4183     IdentifierInfo &NS = C.Idents.get(N);
4184     for (const auto *Result : DC->lookup(&NS)) {
4185       const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4186       if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4187         for (const auto *Result : LSD->lookup(&NS))
4188           if ((ND = dyn_cast<NamespaceDecl>(Result)))
4189             break;
4190 
4191       if (ND)
4192         for (const auto *Result : ND->lookup(&CXXII))
4193           if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4194             return FD;
4195     }
4196   }
4197 
4198   return nullptr;
4199 }
4200 
4201 /// CreateRuntimeFunction - Create a new runtime function with the specified
4202 /// type and name.
4203 llvm::FunctionCallee
4204 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4205                                      llvm::AttributeList ExtraAttrs, bool Local,
4206                                      bool AssumeConvergent) {
4207   if (AssumeConvergent) {
4208     ExtraAttrs =
4209         ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4210   }
4211 
4212   llvm::Constant *C =
4213       GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4214                               /*DontDefer=*/false, /*IsThunk=*/false,
4215                               ExtraAttrs);
4216 
4217   if (auto *F = dyn_cast<llvm::Function>(C)) {
4218     if (F->empty()) {
4219       F->setCallingConv(getRuntimeCC());
4220 
4221       // In Windows Itanium environments, try to mark runtime functions
4222       // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4223       // will link their standard library statically or dynamically. Marking
4224       // functions imported when they are not imported can cause linker errors
4225       // and warnings.
4226       if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4227           !getCodeGenOpts().LTOVisibilityPublicStd) {
4228         const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4229         if (!FD || FD->hasAttr<DLLImportAttr>()) {
4230           F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4231           F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4232         }
4233       }
4234       setDSOLocal(F);
4235     }
4236   }
4237 
4238   return {FTy, C};
4239 }
4240 
4241 /// isTypeConstant - Determine whether an object of this type can be emitted
4242 /// as a constant.
4243 ///
4244 /// If ExcludeCtor is true, the duration when the object's constructor runs
4245 /// will not be considered. The caller will need to verify that the object is
4246 /// not written to during its construction.
4247 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
4248   if (!Ty.isConstant(Context) && !Ty->isReferenceType())
4249     return false;
4250 
4251   if (Context.getLangOpts().CPlusPlus) {
4252     if (const CXXRecordDecl *Record
4253           = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
4254       return ExcludeCtor && !Record->hasMutableFields() &&
4255              Record->hasTrivialDestructor();
4256   }
4257 
4258   return true;
4259 }
4260 
4261 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4262 /// create and return an llvm GlobalVariable with the specified type and address
4263 /// space. If there is something in the module with the specified name, return
4264 /// it potentially bitcasted to the right type.
4265 ///
4266 /// If D is non-null, it specifies a decl that correspond to this.  This is used
4267 /// to set the attributes on the global when it is first created.
4268 ///
4269 /// If IsForDefinition is true, it is guaranteed that an actual global with
4270 /// type Ty will be returned, not conversion of a variable with the same
4271 /// mangled name but some other type.
4272 llvm::Constant *
4273 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4274                                      LangAS AddrSpace, const VarDecl *D,
4275                                      ForDefinition_t IsForDefinition) {
4276   // Lookup the entry, lazily creating it if necessary.
4277   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4278   unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4279   if (Entry) {
4280     if (WeakRefReferences.erase(Entry)) {
4281       if (D && !D->hasAttr<WeakAttr>())
4282         Entry->setLinkage(llvm::Function::ExternalLinkage);
4283     }
4284 
4285     // Handle dropped DLL attributes.
4286     if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4287         !shouldMapVisibilityToDLLExport(D))
4288       Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4289 
4290     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4291       getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4292 
4293     if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4294       return Entry;
4295 
4296     // If there are two attempts to define the same mangled name, issue an
4297     // error.
4298     if (IsForDefinition && !Entry->isDeclaration()) {
4299       GlobalDecl OtherGD;
4300       const VarDecl *OtherD;
4301 
4302       // Check that D is not yet in DiagnosedConflictingDefinitions is required
4303       // to make sure that we issue an error only once.
4304       if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4305           (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4306           (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4307           OtherD->hasInit() &&
4308           DiagnosedConflictingDefinitions.insert(D).second) {
4309         getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4310             << MangledName;
4311         getDiags().Report(OtherGD.getDecl()->getLocation(),
4312                           diag::note_previous_definition);
4313       }
4314     }
4315 
4316     // Make sure the result is of the correct type.
4317     if (Entry->getType()->getAddressSpace() != TargetAS) {
4318       return llvm::ConstantExpr::getAddrSpaceCast(Entry,
4319                                                   Ty->getPointerTo(TargetAS));
4320     }
4321 
4322     // (If global is requested for a definition, we always need to create a new
4323     // global, not just return a bitcast.)
4324     if (!IsForDefinition)
4325       return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo(TargetAS));
4326   }
4327 
4328   auto DAddrSpace = GetGlobalVarAddressSpace(D);
4329 
4330   auto *GV = new llvm::GlobalVariable(
4331       getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4332       MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4333       getContext().getTargetAddressSpace(DAddrSpace));
4334 
4335   // If we already created a global with the same mangled name (but different
4336   // type) before, take its name and remove it from its parent.
4337   if (Entry) {
4338     GV->takeName(Entry);
4339 
4340     if (!Entry->use_empty()) {
4341       llvm::Constant *NewPtrForOldDecl =
4342           llvm::ConstantExpr::getBitCast(GV, Entry->getType());
4343       Entry->replaceAllUsesWith(NewPtrForOldDecl);
4344     }
4345 
4346     Entry->eraseFromParent();
4347   }
4348 
4349   // This is the first use or definition of a mangled name.  If there is a
4350   // deferred decl with this name, remember that we need to emit it at the end
4351   // of the file.
4352   auto DDI = DeferredDecls.find(MangledName);
4353   if (DDI != DeferredDecls.end()) {
4354     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4355     // list, and remove it from DeferredDecls (since we don't need it anymore).
4356     addDeferredDeclToEmit(DDI->second);
4357     EmittedDeferredDecls[DDI->first] = DDI->second;
4358     DeferredDecls.erase(DDI);
4359   }
4360 
4361   // Handle things which are present even on external declarations.
4362   if (D) {
4363     if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4364       getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4365 
4366     // FIXME: This code is overly simple and should be merged with other global
4367     // handling.
4368     GV->setConstant(isTypeConstant(D->getType(), false));
4369 
4370     GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4371 
4372     setLinkageForGV(GV, D);
4373 
4374     if (D->getTLSKind()) {
4375       if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4376         CXXThreadLocals.push_back(D);
4377       setTLSMode(GV, *D);
4378     }
4379 
4380     setGVProperties(GV, D);
4381 
4382     // If required by the ABI, treat declarations of static data members with
4383     // inline initializers as definitions.
4384     if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4385       EmitGlobalVarDefinition(D);
4386     }
4387 
4388     // Emit section information for extern variables.
4389     if (D->hasExternalStorage()) {
4390       if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4391         GV->setSection(SA->getName());
4392     }
4393 
4394     // Handle XCore specific ABI requirements.
4395     if (getTriple().getArch() == llvm::Triple::xcore &&
4396         D->getLanguageLinkage() == CLanguageLinkage &&
4397         D->getType().isConstant(Context) &&
4398         isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4399       GV->setSection(".cp.rodata");
4400 
4401     // Check if we a have a const declaration with an initializer, we may be
4402     // able to emit it as available_externally to expose it's value to the
4403     // optimizer.
4404     if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4405         D->getType().isConstQualified() && !GV->hasInitializer() &&
4406         !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4407       const auto *Record =
4408           Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4409       bool HasMutableFields = Record && Record->hasMutableFields();
4410       if (!HasMutableFields) {
4411         const VarDecl *InitDecl;
4412         const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4413         if (InitExpr) {
4414           ConstantEmitter emitter(*this);
4415           llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4416           if (Init) {
4417             auto *InitType = Init->getType();
4418             if (GV->getValueType() != InitType) {
4419               // The type of the initializer does not match the definition.
4420               // This happens when an initializer has a different type from
4421               // the type of the global (because of padding at the end of a
4422               // structure for instance).
4423               GV->setName(StringRef());
4424               // Make a new global with the correct type, this is now guaranteed
4425               // to work.
4426               auto *NewGV = cast<llvm::GlobalVariable>(
4427                   GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4428                       ->stripPointerCasts());
4429 
4430               // Erase the old global, since it is no longer used.
4431               GV->eraseFromParent();
4432               GV = NewGV;
4433             } else {
4434               GV->setInitializer(Init);
4435               GV->setConstant(true);
4436               GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4437             }
4438             emitter.finalize(GV);
4439           }
4440         }
4441       }
4442     }
4443   }
4444 
4445   if (GV->isDeclaration()) {
4446     getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4447     // External HIP managed variables needed to be recorded for transformation
4448     // in both device and host compilations.
4449     if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4450         D->hasExternalStorage())
4451       getCUDARuntime().handleVarRegistration(D, *GV);
4452   }
4453 
4454   if (D)
4455     SanitizerMD->reportGlobal(GV, *D);
4456 
4457   LangAS ExpectedAS =
4458       D ? D->getType().getAddressSpace()
4459         : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4460   assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4461   if (DAddrSpace != ExpectedAS) {
4462     return getTargetCodeGenInfo().performAddrSpaceCast(
4463         *this, GV, DAddrSpace, ExpectedAS, Ty->getPointerTo(TargetAS));
4464   }
4465 
4466   return GV;
4467 }
4468 
4469 llvm::Constant *
4470 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4471   const Decl *D = GD.getDecl();
4472 
4473   if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4474     return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4475                                 /*DontDefer=*/false, IsForDefinition);
4476 
4477   if (isa<CXXMethodDecl>(D)) {
4478     auto FInfo =
4479         &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4480     auto Ty = getTypes().GetFunctionType(*FInfo);
4481     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4482                              IsForDefinition);
4483   }
4484 
4485   if (isa<FunctionDecl>(D)) {
4486     const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4487     llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4488     return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4489                              IsForDefinition);
4490   }
4491 
4492   return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4493 }
4494 
4495 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4496     StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4497     unsigned Alignment) {
4498   llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4499   llvm::GlobalVariable *OldGV = nullptr;
4500 
4501   if (GV) {
4502     // Check if the variable has the right type.
4503     if (GV->getValueType() == Ty)
4504       return GV;
4505 
4506     // Because C++ name mangling, the only way we can end up with an already
4507     // existing global with the same name is if it has been declared extern "C".
4508     assert(GV->isDeclaration() && "Declaration has wrong type!");
4509     OldGV = GV;
4510   }
4511 
4512   // Create a new variable.
4513   GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4514                                 Linkage, nullptr, Name);
4515 
4516   if (OldGV) {
4517     // Replace occurrences of the old variable if needed.
4518     GV->takeName(OldGV);
4519 
4520     if (!OldGV->use_empty()) {
4521       llvm::Constant *NewPtrForOldDecl =
4522       llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
4523       OldGV->replaceAllUsesWith(NewPtrForOldDecl);
4524     }
4525 
4526     OldGV->eraseFromParent();
4527   }
4528 
4529   if (supportsCOMDAT() && GV->isWeakForLinker() &&
4530       !GV->hasAvailableExternallyLinkage())
4531     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
4532 
4533   GV->setAlignment(llvm::MaybeAlign(Alignment));
4534 
4535   return GV;
4536 }
4537 
4538 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
4539 /// given global variable.  If Ty is non-null and if the global doesn't exist,
4540 /// then it will be created with the specified type instead of whatever the
4541 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
4542 /// that an actual global with type Ty will be returned, not conversion of a
4543 /// variable with the same mangled name but some other type.
4544 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
4545                                                   llvm::Type *Ty,
4546                                            ForDefinition_t IsForDefinition) {
4547   assert(D->hasGlobalStorage() && "Not a global variable");
4548   QualType ASTTy = D->getType();
4549   if (!Ty)
4550     Ty = getTypes().ConvertTypeForMem(ASTTy);
4551 
4552   StringRef MangledName = getMangledName(D);
4553   return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
4554                                IsForDefinition);
4555 }
4556 
4557 /// CreateRuntimeVariable - Create a new runtime global variable with the
4558 /// specified type and name.
4559 llvm::Constant *
4560 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
4561                                      StringRef Name) {
4562   LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
4563                                                        : LangAS::Default;
4564   auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
4565   setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
4566   return Ret;
4567 }
4568 
4569 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
4570   assert(!D->getInit() && "Cannot emit definite definitions here!");
4571 
4572   StringRef MangledName = getMangledName(D);
4573   llvm::GlobalValue *GV = GetGlobalValue(MangledName);
4574 
4575   // We already have a definition, not declaration, with the same mangled name.
4576   // Emitting of declaration is not required (and actually overwrites emitted
4577   // definition).
4578   if (GV && !GV->isDeclaration())
4579     return;
4580 
4581   // If we have not seen a reference to this variable yet, place it into the
4582   // deferred declarations table to be emitted if needed later.
4583   if (!MustBeEmitted(D) && !GV) {
4584       DeferredDecls[MangledName] = D;
4585       return;
4586   }
4587 
4588   // The tentative definition is the only definition.
4589   EmitGlobalVarDefinition(D);
4590 }
4591 
4592 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
4593   EmitExternalVarDeclaration(D);
4594 }
4595 
4596 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
4597   return Context.toCharUnitsFromBits(
4598       getDataLayout().getTypeStoreSizeInBits(Ty));
4599 }
4600 
4601 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
4602   if (LangOpts.OpenCL) {
4603     LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
4604     assert(AS == LangAS::opencl_global ||
4605            AS == LangAS::opencl_global_device ||
4606            AS == LangAS::opencl_global_host ||
4607            AS == LangAS::opencl_constant ||
4608            AS == LangAS::opencl_local ||
4609            AS >= LangAS::FirstTargetAddressSpace);
4610     return AS;
4611   }
4612 
4613   if (LangOpts.SYCLIsDevice &&
4614       (!D || D->getType().getAddressSpace() == LangAS::Default))
4615     return LangAS::sycl_global;
4616 
4617   if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
4618     if (D && D->hasAttr<CUDAConstantAttr>())
4619       return LangAS::cuda_constant;
4620     else if (D && D->hasAttr<CUDASharedAttr>())
4621       return LangAS::cuda_shared;
4622     else if (D && D->hasAttr<CUDADeviceAttr>())
4623       return LangAS::cuda_device;
4624     else if (D && D->getType().isConstQualified())
4625       return LangAS::cuda_constant;
4626     else
4627       return LangAS::cuda_device;
4628   }
4629 
4630   if (LangOpts.OpenMP) {
4631     LangAS AS;
4632     if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
4633       return AS;
4634   }
4635   return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
4636 }
4637 
4638 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
4639   // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
4640   if (LangOpts.OpenCL)
4641     return LangAS::opencl_constant;
4642   if (LangOpts.SYCLIsDevice)
4643     return LangAS::sycl_global;
4644   if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
4645     // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
4646     // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
4647     // with OpVariable instructions with Generic storage class which is not
4648     // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
4649     // UniformConstant storage class is not viable as pointers to it may not be
4650     // casted to Generic pointers which are used to model HIP's "flat" pointers.
4651     return LangAS::cuda_device;
4652   if (auto AS = getTarget().getConstantAddressSpace())
4653     return *AS;
4654   return LangAS::Default;
4655 }
4656 
4657 // In address space agnostic languages, string literals are in default address
4658 // space in AST. However, certain targets (e.g. amdgcn) request them to be
4659 // emitted in constant address space in LLVM IR. To be consistent with other
4660 // parts of AST, string literal global variables in constant address space
4661 // need to be casted to default address space before being put into address
4662 // map and referenced by other part of CodeGen.
4663 // In OpenCL, string literals are in constant address space in AST, therefore
4664 // they should not be casted to default address space.
4665 static llvm::Constant *
4666 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
4667                                        llvm::GlobalVariable *GV) {
4668   llvm::Constant *Cast = GV;
4669   if (!CGM.getLangOpts().OpenCL) {
4670     auto AS = CGM.GetGlobalConstantAddressSpace();
4671     if (AS != LangAS::Default)
4672       Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
4673           CGM, GV, AS, LangAS::Default,
4674           GV->getValueType()->getPointerTo(
4675               CGM.getContext().getTargetAddressSpace(LangAS::Default)));
4676   }
4677   return Cast;
4678 }
4679 
4680 template<typename SomeDecl>
4681 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
4682                                                llvm::GlobalValue *GV) {
4683   if (!getLangOpts().CPlusPlus)
4684     return;
4685 
4686   // Must have 'used' attribute, or else inline assembly can't rely on
4687   // the name existing.
4688   if (!D->template hasAttr<UsedAttr>())
4689     return;
4690 
4691   // Must have internal linkage and an ordinary name.
4692   if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
4693     return;
4694 
4695   // Must be in an extern "C" context. Entities declared directly within
4696   // a record are not extern "C" even if the record is in such a context.
4697   const SomeDecl *First = D->getFirstDecl();
4698   if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
4699     return;
4700 
4701   // OK, this is an internal linkage entity inside an extern "C" linkage
4702   // specification. Make a note of that so we can give it the "expected"
4703   // mangled name if nothing else is using that name.
4704   std::pair<StaticExternCMap::iterator, bool> R =
4705       StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
4706 
4707   // If we have multiple internal linkage entities with the same name
4708   // in extern "C" regions, none of them gets that name.
4709   if (!R.second)
4710     R.first->second = nullptr;
4711 }
4712 
4713 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
4714   if (!CGM.supportsCOMDAT())
4715     return false;
4716 
4717   if (D.hasAttr<SelectAnyAttr>())
4718     return true;
4719 
4720   GVALinkage Linkage;
4721   if (auto *VD = dyn_cast<VarDecl>(&D))
4722     Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
4723   else
4724     Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
4725 
4726   switch (Linkage) {
4727   case GVA_Internal:
4728   case GVA_AvailableExternally:
4729   case GVA_StrongExternal:
4730     return false;
4731   case GVA_DiscardableODR:
4732   case GVA_StrongODR:
4733     return true;
4734   }
4735   llvm_unreachable("No such linkage");
4736 }
4737 
4738 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
4739                                           llvm::GlobalObject &GO) {
4740   if (!shouldBeInCOMDAT(*this, D))
4741     return;
4742   GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
4743 }
4744 
4745 /// Pass IsTentative as true if you want to create a tentative definition.
4746 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
4747                                             bool IsTentative) {
4748   // OpenCL global variables of sampler type are translated to function calls,
4749   // therefore no need to be translated.
4750   QualType ASTTy = D->getType();
4751   if (getLangOpts().OpenCL && ASTTy->isSamplerT())
4752     return;
4753 
4754   // If this is OpenMP device, check if it is legal to emit this global
4755   // normally.
4756   if (LangOpts.OpenMPIsDevice && OpenMPRuntime &&
4757       OpenMPRuntime->emitTargetGlobalVariable(D))
4758     return;
4759 
4760   llvm::TrackingVH<llvm::Constant> Init;
4761   bool NeedsGlobalCtor = false;
4762   bool NeedsGlobalDtor =
4763       D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
4764 
4765   const VarDecl *InitDecl;
4766   const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4767 
4768   Optional<ConstantEmitter> emitter;
4769 
4770   // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
4771   // as part of their declaration."  Sema has already checked for
4772   // error cases, so we just need to set Init to UndefValue.
4773   bool IsCUDASharedVar =
4774       getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
4775   // Shadows of initialized device-side global variables are also left
4776   // undefined.
4777   // Managed Variables should be initialized on both host side and device side.
4778   bool IsCUDAShadowVar =
4779       !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4780       (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
4781        D->hasAttr<CUDASharedAttr>());
4782   bool IsCUDADeviceShadowVar =
4783       getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
4784       (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4785        D->getType()->isCUDADeviceBuiltinTextureType());
4786   if (getLangOpts().CUDA &&
4787       (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
4788     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4789   else if (D->hasAttr<LoaderUninitializedAttr>())
4790     Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
4791   else if (!InitExpr) {
4792     // This is a tentative definition; tentative definitions are
4793     // implicitly initialized with { 0 }.
4794     //
4795     // Note that tentative definitions are only emitted at the end of
4796     // a translation unit, so they should never have incomplete
4797     // type. In addition, EmitTentativeDefinition makes sure that we
4798     // never attempt to emit a tentative definition if a real one
4799     // exists. A use may still exists, however, so we still may need
4800     // to do a RAUW.
4801     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
4802     Init = EmitNullConstant(D->getType());
4803   } else {
4804     initializedGlobalDecl = GlobalDecl(D);
4805     emitter.emplace(*this);
4806     llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
4807     if (!Initializer) {
4808       QualType T = InitExpr->getType();
4809       if (D->getType()->isReferenceType())
4810         T = D->getType();
4811 
4812       if (getLangOpts().CPlusPlus) {
4813         if (InitDecl->hasFlexibleArrayInit(getContext()))
4814           ErrorUnsupported(D, "flexible array initializer");
4815         Init = EmitNullConstant(T);
4816         NeedsGlobalCtor = true;
4817       } else {
4818         ErrorUnsupported(D, "static initializer");
4819         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
4820       }
4821     } else {
4822       Init = Initializer;
4823       // We don't need an initializer, so remove the entry for the delayed
4824       // initializer position (just in case this entry was delayed) if we
4825       // also don't need to register a destructor.
4826       if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
4827         DelayedCXXInitPosition.erase(D);
4828 
4829 #ifndef NDEBUG
4830       CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
4831                           InitDecl->getFlexibleArrayInitChars(getContext());
4832       CharUnits CstSize = CharUnits::fromQuantity(
4833           getDataLayout().getTypeAllocSize(Init->getType()));
4834       assert(VarSize == CstSize && "Emitted constant has unexpected size");
4835 #endif
4836     }
4837   }
4838 
4839   llvm::Type* InitType = Init->getType();
4840   llvm::Constant *Entry =
4841       GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
4842 
4843   // Strip off pointer casts if we got them.
4844   Entry = Entry->stripPointerCasts();
4845 
4846   // Entry is now either a Function or GlobalVariable.
4847   auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
4848 
4849   // We have a definition after a declaration with the wrong type.
4850   // We must make a new GlobalVariable* and update everything that used OldGV
4851   // (a declaration or tentative definition) with the new GlobalVariable*
4852   // (which will be a definition).
4853   //
4854   // This happens if there is a prototype for a global (e.g.
4855   // "extern int x[];") and then a definition of a different type (e.g.
4856   // "int x[10];"). This also happens when an initializer has a different type
4857   // from the type of the global (this happens with unions).
4858   if (!GV || GV->getValueType() != InitType ||
4859       GV->getType()->getAddressSpace() !=
4860           getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
4861 
4862     // Move the old entry aside so that we'll create a new one.
4863     Entry->setName(StringRef());
4864 
4865     // Make a new global with the correct type, this is now guaranteed to work.
4866     GV = cast<llvm::GlobalVariable>(
4867         GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
4868             ->stripPointerCasts());
4869 
4870     // Replace all uses of the old global with the new global
4871     llvm::Constant *NewPtrForOldDecl =
4872         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
4873                                                              Entry->getType());
4874     Entry->replaceAllUsesWith(NewPtrForOldDecl);
4875 
4876     // Erase the old global, since it is no longer used.
4877     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
4878   }
4879 
4880   MaybeHandleStaticInExternC(D, GV);
4881 
4882   if (D->hasAttr<AnnotateAttr>())
4883     AddGlobalAnnotations(D, GV);
4884 
4885   // Set the llvm linkage type as appropriate.
4886   llvm::GlobalValue::LinkageTypes Linkage =
4887       getLLVMLinkageVarDefinition(D, GV->isConstant());
4888 
4889   // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
4890   // the device. [...]"
4891   // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
4892   // __device__, declares a variable that: [...]
4893   // Is accessible from all the threads within the grid and from the host
4894   // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
4895   // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
4896   if (GV && LangOpts.CUDA) {
4897     if (LangOpts.CUDAIsDevice) {
4898       if (Linkage != llvm::GlobalValue::InternalLinkage &&
4899           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
4900            D->getType()->isCUDADeviceBuiltinSurfaceType() ||
4901            D->getType()->isCUDADeviceBuiltinTextureType()))
4902         GV->setExternallyInitialized(true);
4903     } else {
4904       getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
4905     }
4906     getCUDARuntime().handleVarRegistration(D, *GV);
4907   }
4908 
4909   GV->setInitializer(Init);
4910   if (emitter)
4911     emitter->finalize(GV);
4912 
4913   // If it is safe to mark the global 'constant', do so now.
4914   GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
4915                   isTypeConstant(D->getType(), true));
4916 
4917   // If it is in a read-only section, mark it 'constant'.
4918   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
4919     const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
4920     if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
4921       GV->setConstant(true);
4922   }
4923 
4924   CharUnits AlignVal = getContext().getDeclAlign(D);
4925   // Check for alignment specifed in an 'omp allocate' directive.
4926   if (llvm::Optional<CharUnits> AlignValFromAllocate =
4927           getOMPAllocateAlignment(D))
4928     AlignVal = *AlignValFromAllocate;
4929   GV->setAlignment(AlignVal.getAsAlign());
4930 
4931   // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
4932   // function is only defined alongside the variable, not also alongside
4933   // callers. Normally, all accesses to a thread_local go through the
4934   // thread-wrapper in order to ensure initialization has occurred, underlying
4935   // variable will never be used other than the thread-wrapper, so it can be
4936   // converted to internal linkage.
4937   //
4938   // However, if the variable has the 'constinit' attribute, it _can_ be
4939   // referenced directly, without calling the thread-wrapper, so the linkage
4940   // must not be changed.
4941   //
4942   // Additionally, if the variable isn't plain external linkage, e.g. if it's
4943   // weak or linkonce, the de-duplication semantics are important to preserve,
4944   // so we don't change the linkage.
4945   if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
4946       Linkage == llvm::GlobalValue::ExternalLinkage &&
4947       Context.getTargetInfo().getTriple().isOSDarwin() &&
4948       !D->hasAttr<ConstInitAttr>())
4949     Linkage = llvm::GlobalValue::InternalLinkage;
4950 
4951   GV->setLinkage(Linkage);
4952   if (D->hasAttr<DLLImportAttr>())
4953     GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
4954   else if (D->hasAttr<DLLExportAttr>())
4955     GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
4956   else
4957     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
4958 
4959   if (Linkage == llvm::GlobalVariable::CommonLinkage) {
4960     // common vars aren't constant even if declared const.
4961     GV->setConstant(false);
4962     // Tentative definition of global variables may be initialized with
4963     // non-zero null pointers. In this case they should have weak linkage
4964     // since common linkage must have zero initializer and must not have
4965     // explicit section therefore cannot have non-zero initial value.
4966     if (!GV->getInitializer()->isNullValue())
4967       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
4968   }
4969 
4970   setNonAliasAttributes(D, GV);
4971 
4972   if (D->getTLSKind() && !GV->isThreadLocal()) {
4973     if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4974       CXXThreadLocals.push_back(D);
4975     setTLSMode(GV, *D);
4976   }
4977 
4978   maybeSetTrivialComdat(*D, *GV);
4979 
4980   // Emit the initializer function if necessary.
4981   if (NeedsGlobalCtor || NeedsGlobalDtor)
4982     EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
4983 
4984   SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
4985 
4986   // Emit global variable debug information.
4987   if (CGDebugInfo *DI = getModuleDebugInfo())
4988     if (getCodeGenOpts().hasReducedDebugInfo())
4989       DI->EmitGlobalVariable(GV, D);
4990 }
4991 
4992 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
4993   if (CGDebugInfo *DI = getModuleDebugInfo())
4994     if (getCodeGenOpts().hasReducedDebugInfo()) {
4995       QualType ASTTy = D->getType();
4996       llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
4997       llvm::Constant *GV =
4998           GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
4999       DI->EmitExternalVariable(
5000           cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5001     }
5002 }
5003 
5004 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5005                                       CodeGenModule &CGM, const VarDecl *D,
5006                                       bool NoCommon) {
5007   // Don't give variables common linkage if -fno-common was specified unless it
5008   // was overridden by a NoCommon attribute.
5009   if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5010     return true;
5011 
5012   // C11 6.9.2/2:
5013   //   A declaration of an identifier for an object that has file scope without
5014   //   an initializer, and without a storage-class specifier or with the
5015   //   storage-class specifier static, constitutes a tentative definition.
5016   if (D->getInit() || D->hasExternalStorage())
5017     return true;
5018 
5019   // A variable cannot be both common and exist in a section.
5020   if (D->hasAttr<SectionAttr>())
5021     return true;
5022 
5023   // A variable cannot be both common and exist in a section.
5024   // We don't try to determine which is the right section in the front-end.
5025   // If no specialized section name is applicable, it will resort to default.
5026   if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5027       D->hasAttr<PragmaClangDataSectionAttr>() ||
5028       D->hasAttr<PragmaClangRelroSectionAttr>() ||
5029       D->hasAttr<PragmaClangRodataSectionAttr>())
5030     return true;
5031 
5032   // Thread local vars aren't considered common linkage.
5033   if (D->getTLSKind())
5034     return true;
5035 
5036   // Tentative definitions marked with WeakImportAttr are true definitions.
5037   if (D->hasAttr<WeakImportAttr>())
5038     return true;
5039 
5040   // A variable cannot be both common and exist in a comdat.
5041   if (shouldBeInCOMDAT(CGM, *D))
5042     return true;
5043 
5044   // Declarations with a required alignment do not have common linkage in MSVC
5045   // mode.
5046   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5047     if (D->hasAttr<AlignedAttr>())
5048       return true;
5049     QualType VarType = D->getType();
5050     if (Context.isAlignmentRequired(VarType))
5051       return true;
5052 
5053     if (const auto *RT = VarType->getAs<RecordType>()) {
5054       const RecordDecl *RD = RT->getDecl();
5055       for (const FieldDecl *FD : RD->fields()) {
5056         if (FD->isBitField())
5057           continue;
5058         if (FD->hasAttr<AlignedAttr>())
5059           return true;
5060         if (Context.isAlignmentRequired(FD->getType()))
5061           return true;
5062       }
5063     }
5064   }
5065 
5066   // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5067   // common symbols, so symbols with greater alignment requirements cannot be
5068   // common.
5069   // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5070   // alignments for common symbols via the aligncomm directive, so this
5071   // restriction only applies to MSVC environments.
5072   if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5073       Context.getTypeAlignIfKnown(D->getType()) >
5074           Context.toBits(CharUnits::fromQuantity(32)))
5075     return true;
5076 
5077   return false;
5078 }
5079 
5080 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(
5081     const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) {
5082   if (Linkage == GVA_Internal)
5083     return llvm::Function::InternalLinkage;
5084 
5085   if (D->hasAttr<WeakAttr>())
5086     return llvm::GlobalVariable::WeakAnyLinkage;
5087 
5088   if (const auto *FD = D->getAsFunction())
5089     if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5090       return llvm::GlobalVariable::LinkOnceAnyLinkage;
5091 
5092   // We are guaranteed to have a strong definition somewhere else,
5093   // so we can use available_externally linkage.
5094   if (Linkage == GVA_AvailableExternally)
5095     return llvm::GlobalValue::AvailableExternallyLinkage;
5096 
5097   // Note that Apple's kernel linker doesn't support symbol
5098   // coalescing, so we need to avoid linkonce and weak linkages there.
5099   // Normally, this means we just map to internal, but for explicit
5100   // instantiations we'll map to external.
5101 
5102   // In C++, the compiler has to emit a definition in every translation unit
5103   // that references the function.  We should use linkonce_odr because
5104   // a) if all references in this translation unit are optimized away, we
5105   // don't need to codegen it.  b) if the function persists, it needs to be
5106   // merged with other definitions. c) C++ has the ODR, so we know the
5107   // definition is dependable.
5108   if (Linkage == GVA_DiscardableODR)
5109     return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5110                                             : llvm::Function::InternalLinkage;
5111 
5112   // An explicit instantiation of a template has weak linkage, since
5113   // explicit instantiations can occur in multiple translation units
5114   // and must all be equivalent. However, we are not allowed to
5115   // throw away these explicit instantiations.
5116   //
5117   // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5118   // so say that CUDA templates are either external (for kernels) or internal.
5119   // This lets llvm perform aggressive inter-procedural optimizations. For
5120   // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5121   // therefore we need to follow the normal linkage paradigm.
5122   if (Linkage == GVA_StrongODR) {
5123     if (getLangOpts().AppleKext)
5124       return llvm::Function::ExternalLinkage;
5125     if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5126         !getLangOpts().GPURelocatableDeviceCode)
5127       return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5128                                           : llvm::Function::InternalLinkage;
5129     return llvm::Function::WeakODRLinkage;
5130   }
5131 
5132   // C++ doesn't have tentative definitions and thus cannot have common
5133   // linkage.
5134   if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5135       !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5136                                  CodeGenOpts.NoCommon))
5137     return llvm::GlobalVariable::CommonLinkage;
5138 
5139   // selectany symbols are externally visible, so use weak instead of
5140   // linkonce.  MSVC optimizes away references to const selectany globals, so
5141   // all definitions should be the same and ODR linkage should be used.
5142   // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5143   if (D->hasAttr<SelectAnyAttr>())
5144     return llvm::GlobalVariable::WeakODRLinkage;
5145 
5146   // Otherwise, we have strong external linkage.
5147   assert(Linkage == GVA_StrongExternal);
5148   return llvm::GlobalVariable::ExternalLinkage;
5149 }
5150 
5151 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(
5152     const VarDecl *VD, bool IsConstant) {
5153   GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5154   return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant);
5155 }
5156 
5157 /// Replace the uses of a function that was declared with a non-proto type.
5158 /// We want to silently drop extra arguments from call sites
5159 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5160                                           llvm::Function *newFn) {
5161   // Fast path.
5162   if (old->use_empty()) return;
5163 
5164   llvm::Type *newRetTy = newFn->getReturnType();
5165   SmallVector<llvm::Value*, 4> newArgs;
5166 
5167   for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5168          ui != ue; ) {
5169     llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5170     llvm::User *user = use->getUser();
5171 
5172     // Recognize and replace uses of bitcasts.  Most calls to
5173     // unprototyped functions will use bitcasts.
5174     if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5175       if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5176         replaceUsesOfNonProtoConstant(bitcast, newFn);
5177       continue;
5178     }
5179 
5180     // Recognize calls to the function.
5181     llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5182     if (!callSite) continue;
5183     if (!callSite->isCallee(&*use))
5184       continue;
5185 
5186     // If the return types don't match exactly, then we can't
5187     // transform this call unless it's dead.
5188     if (callSite->getType() != newRetTy && !callSite->use_empty())
5189       continue;
5190 
5191     // Get the call site's attribute list.
5192     SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5193     llvm::AttributeList oldAttrs = callSite->getAttributes();
5194 
5195     // If the function was passed too few arguments, don't transform.
5196     unsigned newNumArgs = newFn->arg_size();
5197     if (callSite->arg_size() < newNumArgs)
5198       continue;
5199 
5200     // If extra arguments were passed, we silently drop them.
5201     // If any of the types mismatch, we don't transform.
5202     unsigned argNo = 0;
5203     bool dontTransform = false;
5204     for (llvm::Argument &A : newFn->args()) {
5205       if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5206         dontTransform = true;
5207         break;
5208       }
5209 
5210       // Add any parameter attributes.
5211       newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5212       argNo++;
5213     }
5214     if (dontTransform)
5215       continue;
5216 
5217     // Okay, we can transform this.  Create the new call instruction and copy
5218     // over the required information.
5219     newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5220 
5221     // Copy over any operand bundles.
5222     SmallVector<llvm::OperandBundleDef, 1> newBundles;
5223     callSite->getOperandBundlesAsDefs(newBundles);
5224 
5225     llvm::CallBase *newCall;
5226     if (isa<llvm::CallInst>(callSite)) {
5227       newCall =
5228           llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5229     } else {
5230       auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5231       newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5232                                          oldInvoke->getUnwindDest(), newArgs,
5233                                          newBundles, "", callSite);
5234     }
5235     newArgs.clear(); // for the next iteration
5236 
5237     if (!newCall->getType()->isVoidTy())
5238       newCall->takeName(callSite);
5239     newCall->setAttributes(
5240         llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5241                                  oldAttrs.getRetAttrs(), newArgAttrs));
5242     newCall->setCallingConv(callSite->getCallingConv());
5243 
5244     // Finally, remove the old call, replacing any uses with the new one.
5245     if (!callSite->use_empty())
5246       callSite->replaceAllUsesWith(newCall);
5247 
5248     // Copy debug location attached to CI.
5249     if (callSite->getDebugLoc())
5250       newCall->setDebugLoc(callSite->getDebugLoc());
5251 
5252     callSite->eraseFromParent();
5253   }
5254 }
5255 
5256 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5257 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
5258 /// existing call uses of the old function in the module, this adjusts them to
5259 /// call the new function directly.
5260 ///
5261 /// This is not just a cleanup: the always_inline pass requires direct calls to
5262 /// functions to be able to inline them.  If there is a bitcast in the way, it
5263 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
5264 /// run at -O0.
5265 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5266                                                       llvm::Function *NewFn) {
5267   // If we're redefining a global as a function, don't transform it.
5268   if (!isa<llvm::Function>(Old)) return;
5269 
5270   replaceUsesOfNonProtoConstant(Old, NewFn);
5271 }
5272 
5273 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5274   auto DK = VD->isThisDeclarationADefinition();
5275   if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5276     return;
5277 
5278   TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5279   // If we have a definition, this might be a deferred decl. If the
5280   // instantiation is explicit, make sure we emit it at the end.
5281   if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5282     GetAddrOfGlobalVar(VD);
5283 
5284   EmitTopLevelDecl(VD);
5285 }
5286 
5287 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5288                                                  llvm::GlobalValue *GV) {
5289   const auto *D = cast<FunctionDecl>(GD.getDecl());
5290 
5291   // Compute the function info and LLVM type.
5292   const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5293   llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5294 
5295   // Get or create the prototype for the function.
5296   if (!GV || (GV->getValueType() != Ty))
5297     GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5298                                                    /*DontDefer=*/true,
5299                                                    ForDefinition));
5300 
5301   // Already emitted.
5302   if (!GV->isDeclaration())
5303     return;
5304 
5305   // We need to set linkage and visibility on the function before
5306   // generating code for it because various parts of IR generation
5307   // want to propagate this information down (e.g. to local static
5308   // declarations).
5309   auto *Fn = cast<llvm::Function>(GV);
5310   setFunctionLinkage(GD, Fn);
5311 
5312   // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5313   setGVProperties(Fn, GD);
5314 
5315   MaybeHandleStaticInExternC(D, Fn);
5316 
5317   maybeSetTrivialComdat(*D, *Fn);
5318 
5319   // Set CodeGen attributes that represent floating point environment.
5320   setLLVMFunctionFEnvAttributes(D, Fn);
5321 
5322   CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5323 
5324   setNonAliasAttributes(GD, Fn);
5325   SetLLVMFunctionAttributesForDefinition(D, Fn);
5326 
5327   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5328     AddGlobalCtor(Fn, CA->getPriority());
5329   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5330     AddGlobalDtor(Fn, DA->getPriority(), true);
5331   if (D->hasAttr<AnnotateAttr>())
5332     AddGlobalAnnotations(D, Fn);
5333 }
5334 
5335 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5336   const auto *D = cast<ValueDecl>(GD.getDecl());
5337   const AliasAttr *AA = D->getAttr<AliasAttr>();
5338   assert(AA && "Not an alias?");
5339 
5340   StringRef MangledName = getMangledName(GD);
5341 
5342   if (AA->getAliasee() == MangledName) {
5343     Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5344     return;
5345   }
5346 
5347   // If there is a definition in the module, then it wins over the alias.
5348   // This is dubious, but allow it to be safe.  Just ignore the alias.
5349   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5350   if (Entry && !Entry->isDeclaration())
5351     return;
5352 
5353   Aliases.push_back(GD);
5354 
5355   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5356 
5357   // Create a reference to the named value.  This ensures that it is emitted
5358   // if a deferred decl.
5359   llvm::Constant *Aliasee;
5360   llvm::GlobalValue::LinkageTypes LT;
5361   if (isa<llvm::FunctionType>(DeclTy)) {
5362     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5363                                       /*ForVTable=*/false);
5364     LT = getFunctionLinkage(GD);
5365   } else {
5366     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5367                                     /*D=*/nullptr);
5368     if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5369       LT = getLLVMLinkageVarDefinition(VD, D->getType().isConstQualified());
5370     else
5371       LT = getFunctionLinkage(GD);
5372   }
5373 
5374   // Create the new alias itself, but don't set a name yet.
5375   unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5376   auto *GA =
5377       llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5378 
5379   if (Entry) {
5380     if (GA->getAliasee() == Entry) {
5381       Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5382       return;
5383     }
5384 
5385     assert(Entry->isDeclaration());
5386 
5387     // If there is a declaration in the module, then we had an extern followed
5388     // by the alias, as in:
5389     //   extern int test6();
5390     //   ...
5391     //   int test6() __attribute__((alias("test7")));
5392     //
5393     // Remove it and replace uses of it with the alias.
5394     GA->takeName(Entry);
5395 
5396     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
5397                                                           Entry->getType()));
5398     Entry->eraseFromParent();
5399   } else {
5400     GA->setName(MangledName);
5401   }
5402 
5403   // Set attributes which are particular to an alias; this is a
5404   // specialization of the attributes which may be set on a global
5405   // variable/function.
5406   if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5407       D->isWeakImported()) {
5408     GA->setLinkage(llvm::Function::WeakAnyLinkage);
5409   }
5410 
5411   if (const auto *VD = dyn_cast<VarDecl>(D))
5412     if (VD->getTLSKind())
5413       setTLSMode(GA, *VD);
5414 
5415   SetCommonAttributes(GD, GA);
5416 
5417   // Emit global alias debug information.
5418   if (isa<VarDecl>(D))
5419     if (CGDebugInfo *DI = getModuleDebugInfo())
5420       DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5421 }
5422 
5423 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5424   const auto *D = cast<ValueDecl>(GD.getDecl());
5425   const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5426   assert(IFA && "Not an ifunc?");
5427 
5428   StringRef MangledName = getMangledName(GD);
5429 
5430   if (IFA->getResolver() == MangledName) {
5431     Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5432     return;
5433   }
5434 
5435   // Report an error if some definition overrides ifunc.
5436   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5437   if (Entry && !Entry->isDeclaration()) {
5438     GlobalDecl OtherGD;
5439     if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5440         DiagnosedConflictingDefinitions.insert(GD).second) {
5441       Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5442           << MangledName;
5443       Diags.Report(OtherGD.getDecl()->getLocation(),
5444                    diag::note_previous_definition);
5445     }
5446     return;
5447   }
5448 
5449   Aliases.push_back(GD);
5450 
5451   llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5452   llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5453   llvm::Constant *Resolver =
5454       GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5455                               /*ForVTable=*/false);
5456   llvm::GlobalIFunc *GIF =
5457       llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5458                                 "", Resolver, &getModule());
5459   if (Entry) {
5460     if (GIF->getResolver() == Entry) {
5461       Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5462       return;
5463     }
5464     assert(Entry->isDeclaration());
5465 
5466     // If there is a declaration in the module, then we had an extern followed
5467     // by the ifunc, as in:
5468     //   extern int test();
5469     //   ...
5470     //   int test() __attribute__((ifunc("resolver")));
5471     //
5472     // Remove it and replace uses of it with the ifunc.
5473     GIF->takeName(Entry);
5474 
5475     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF,
5476                                                           Entry->getType()));
5477     Entry->eraseFromParent();
5478   } else
5479     GIF->setName(MangledName);
5480 
5481   SetCommonAttributes(GD, GIF);
5482 }
5483 
5484 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5485                                             ArrayRef<llvm::Type*> Tys) {
5486   return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5487                                          Tys);
5488 }
5489 
5490 static llvm::StringMapEntry<llvm::GlobalVariable *> &
5491 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5492                          const StringLiteral *Literal, bool TargetIsLSB,
5493                          bool &IsUTF16, unsigned &StringLength) {
5494   StringRef String = Literal->getString();
5495   unsigned NumBytes = String.size();
5496 
5497   // Check for simple case.
5498   if (!Literal->containsNonAsciiOrNull()) {
5499     StringLength = NumBytes;
5500     return *Map.insert(std::make_pair(String, nullptr)).first;
5501   }
5502 
5503   // Otherwise, convert the UTF8 literals into a string of shorts.
5504   IsUTF16 = true;
5505 
5506   SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5507   const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5508   llvm::UTF16 *ToPtr = &ToBuf[0];
5509 
5510   (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5511                                  ToPtr + NumBytes, llvm::strictConversion);
5512 
5513   // ConvertUTF8toUTF16 returns the length in ToPtr.
5514   StringLength = ToPtr - &ToBuf[0];
5515 
5516   // Add an explicit null.
5517   *ToPtr = 0;
5518   return *Map.insert(std::make_pair(
5519                          StringRef(reinterpret_cast<const char *>(ToBuf.data()),
5520                                    (StringLength + 1) * 2),
5521                          nullptr)).first;
5522 }
5523 
5524 ConstantAddress
5525 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
5526   unsigned StringLength = 0;
5527   bool isUTF16 = false;
5528   llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
5529       GetConstantCFStringEntry(CFConstantStringMap, Literal,
5530                                getDataLayout().isLittleEndian(), isUTF16,
5531                                StringLength);
5532 
5533   if (auto *C = Entry.second)
5534     return ConstantAddress(
5535         C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
5536 
5537   llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
5538   llvm::Constant *Zeros[] = { Zero, Zero };
5539 
5540   const ASTContext &Context = getContext();
5541   const llvm::Triple &Triple = getTriple();
5542 
5543   const auto CFRuntime = getLangOpts().CFRuntime;
5544   const bool IsSwiftABI =
5545       static_cast<unsigned>(CFRuntime) >=
5546       static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
5547   const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
5548 
5549   // If we don't already have it, get __CFConstantStringClassReference.
5550   if (!CFConstantStringClassRef) {
5551     const char *CFConstantStringClassName = "__CFConstantStringClassReference";
5552     llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
5553     Ty = llvm::ArrayType::get(Ty, 0);
5554 
5555     switch (CFRuntime) {
5556     default: break;
5557     case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
5558     case LangOptions::CoreFoundationABI::Swift5_0:
5559       CFConstantStringClassName =
5560           Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
5561                               : "$s10Foundation19_NSCFConstantStringCN";
5562       Ty = IntPtrTy;
5563       break;
5564     case LangOptions::CoreFoundationABI::Swift4_2:
5565       CFConstantStringClassName =
5566           Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
5567                               : "$S10Foundation19_NSCFConstantStringCN";
5568       Ty = IntPtrTy;
5569       break;
5570     case LangOptions::CoreFoundationABI::Swift4_1:
5571       CFConstantStringClassName =
5572           Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
5573                               : "__T010Foundation19_NSCFConstantStringCN";
5574       Ty = IntPtrTy;
5575       break;
5576     }
5577 
5578     llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
5579 
5580     if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
5581       llvm::GlobalValue *GV = nullptr;
5582 
5583       if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
5584         IdentifierInfo &II = Context.Idents.get(GV->getName());
5585         TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
5586         DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
5587 
5588         const VarDecl *VD = nullptr;
5589         for (const auto *Result : DC->lookup(&II))
5590           if ((VD = dyn_cast<VarDecl>(Result)))
5591             break;
5592 
5593         if (Triple.isOSBinFormatELF()) {
5594           if (!VD)
5595             GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5596         } else {
5597           GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
5598           if (!VD || !VD->hasAttr<DLLExportAttr>())
5599             GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
5600           else
5601             GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
5602         }
5603 
5604         setDSOLocal(GV);
5605       }
5606     }
5607 
5608     // Decay array -> ptr
5609     CFConstantStringClassRef =
5610         IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
5611                    : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
5612   }
5613 
5614   QualType CFTy = Context.getCFConstantStringType();
5615 
5616   auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
5617 
5618   ConstantInitBuilder Builder(*this);
5619   auto Fields = Builder.beginStruct(STy);
5620 
5621   // Class pointer.
5622   Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
5623 
5624   // Flags.
5625   if (IsSwiftABI) {
5626     Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
5627     Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
5628   } else {
5629     Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
5630   }
5631 
5632   // String pointer.
5633   llvm::Constant *C = nullptr;
5634   if (isUTF16) {
5635     auto Arr = llvm::makeArrayRef(
5636         reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
5637         Entry.first().size() / 2);
5638     C = llvm::ConstantDataArray::get(VMContext, Arr);
5639   } else {
5640     C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
5641   }
5642 
5643   // Note: -fwritable-strings doesn't make the backing store strings of
5644   // CFStrings writable. (See <rdar://problem/10657500>)
5645   auto *GV =
5646       new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
5647                                llvm::GlobalValue::PrivateLinkage, C, ".str");
5648   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5649   // Don't enforce the target's minimum global alignment, since the only use
5650   // of the string is via this class initializer.
5651   CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
5652                             : Context.getTypeAlignInChars(Context.CharTy);
5653   GV->setAlignment(Align.getAsAlign());
5654 
5655   // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
5656   // Without it LLVM can merge the string with a non unnamed_addr one during
5657   // LTO.  Doing that changes the section it ends in, which surprises ld64.
5658   if (Triple.isOSBinFormatMachO())
5659     GV->setSection(isUTF16 ? "__TEXT,__ustring"
5660                            : "__TEXT,__cstring,cstring_literals");
5661   // Make sure the literal ends up in .rodata to allow for safe ICF and for
5662   // the static linker to adjust permissions to read-only later on.
5663   else if (Triple.isOSBinFormatELF())
5664     GV->setSection(".rodata");
5665 
5666   // String.
5667   llvm::Constant *Str =
5668       llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
5669 
5670   if (isUTF16)
5671     // Cast the UTF16 string to the correct type.
5672     Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy);
5673   Fields.add(Str);
5674 
5675   // String length.
5676   llvm::IntegerType *LengthTy =
5677       llvm::IntegerType::get(getModule().getContext(),
5678                              Context.getTargetInfo().getLongWidth());
5679   if (IsSwiftABI) {
5680     if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
5681         CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
5682       LengthTy = Int32Ty;
5683     else
5684       LengthTy = IntPtrTy;
5685   }
5686   Fields.addInt(LengthTy, StringLength);
5687 
5688   // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
5689   // properly aligned on 32-bit platforms.
5690   CharUnits Alignment =
5691       IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
5692 
5693   // The struct.
5694   GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
5695                                     /*isConstant=*/false,
5696                                     llvm::GlobalVariable::PrivateLinkage);
5697   GV->addAttribute("objc_arc_inert");
5698   switch (Triple.getObjectFormat()) {
5699   case llvm::Triple::UnknownObjectFormat:
5700     llvm_unreachable("unknown file format");
5701   case llvm::Triple::DXContainer:
5702   case llvm::Triple::GOFF:
5703   case llvm::Triple::SPIRV:
5704   case llvm::Triple::XCOFF:
5705     llvm_unreachable("unimplemented");
5706   case llvm::Triple::COFF:
5707   case llvm::Triple::ELF:
5708   case llvm::Triple::Wasm:
5709     GV->setSection("cfstring");
5710     break;
5711   case llvm::Triple::MachO:
5712     GV->setSection("__DATA,__cfstring");
5713     break;
5714   }
5715   Entry.second = GV;
5716 
5717   return ConstantAddress(GV, GV->getValueType(), Alignment);
5718 }
5719 
5720 bool CodeGenModule::getExpressionLocationsEnabled() const {
5721   return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
5722 }
5723 
5724 QualType CodeGenModule::getObjCFastEnumerationStateType() {
5725   if (ObjCFastEnumerationStateType.isNull()) {
5726     RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
5727     D->startDefinition();
5728 
5729     QualType FieldTypes[] = {
5730       Context.UnsignedLongTy,
5731       Context.getPointerType(Context.getObjCIdType()),
5732       Context.getPointerType(Context.UnsignedLongTy),
5733       Context.getConstantArrayType(Context.UnsignedLongTy,
5734                            llvm::APInt(32, 5), nullptr, ArrayType::Normal, 0)
5735     };
5736 
5737     for (size_t i = 0; i < 4; ++i) {
5738       FieldDecl *Field = FieldDecl::Create(Context,
5739                                            D,
5740                                            SourceLocation(),
5741                                            SourceLocation(), nullptr,
5742                                            FieldTypes[i], /*TInfo=*/nullptr,
5743                                            /*BitWidth=*/nullptr,
5744                                            /*Mutable=*/false,
5745                                            ICIS_NoInit);
5746       Field->setAccess(AS_public);
5747       D->addDecl(Field);
5748     }
5749 
5750     D->completeDefinition();
5751     ObjCFastEnumerationStateType = Context.getTagDeclType(D);
5752   }
5753 
5754   return ObjCFastEnumerationStateType;
5755 }
5756 
5757 llvm::Constant *
5758 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
5759   assert(!E->getType()->isPointerType() && "Strings are always arrays");
5760 
5761   // Don't emit it as the address of the string, emit the string data itself
5762   // as an inline array.
5763   if (E->getCharByteWidth() == 1) {
5764     SmallString<64> Str(E->getString());
5765 
5766     // Resize the string to the right size, which is indicated by its type.
5767     const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
5768     Str.resize(CAT->getSize().getZExtValue());
5769     return llvm::ConstantDataArray::getString(VMContext, Str, false);
5770   }
5771 
5772   auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
5773   llvm::Type *ElemTy = AType->getElementType();
5774   unsigned NumElements = AType->getNumElements();
5775 
5776   // Wide strings have either 2-byte or 4-byte elements.
5777   if (ElemTy->getPrimitiveSizeInBits() == 16) {
5778     SmallVector<uint16_t, 32> Elements;
5779     Elements.reserve(NumElements);
5780 
5781     for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5782       Elements.push_back(E->getCodeUnit(i));
5783     Elements.resize(NumElements);
5784     return llvm::ConstantDataArray::get(VMContext, Elements);
5785   }
5786 
5787   assert(ElemTy->getPrimitiveSizeInBits() == 32);
5788   SmallVector<uint32_t, 32> Elements;
5789   Elements.reserve(NumElements);
5790 
5791   for(unsigned i = 0, e = E->getLength(); i != e; ++i)
5792     Elements.push_back(E->getCodeUnit(i));
5793   Elements.resize(NumElements);
5794   return llvm::ConstantDataArray::get(VMContext, Elements);
5795 }
5796 
5797 static llvm::GlobalVariable *
5798 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
5799                       CodeGenModule &CGM, StringRef GlobalName,
5800                       CharUnits Alignment) {
5801   unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
5802       CGM.GetGlobalConstantAddressSpace());
5803 
5804   llvm::Module &M = CGM.getModule();
5805   // Create a global variable for this string
5806   auto *GV = new llvm::GlobalVariable(
5807       M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
5808       nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
5809   GV->setAlignment(Alignment.getAsAlign());
5810   GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
5811   if (GV->isWeakForLinker()) {
5812     assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
5813     GV->setComdat(M.getOrInsertComdat(GV->getName()));
5814   }
5815   CGM.setDSOLocal(GV);
5816 
5817   return GV;
5818 }
5819 
5820 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
5821 /// constant array for the given string literal.
5822 ConstantAddress
5823 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
5824                                                   StringRef Name) {
5825   CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
5826 
5827   llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
5828   llvm::GlobalVariable **Entry = nullptr;
5829   if (!LangOpts.WritableStrings) {
5830     Entry = &ConstantStringMap[C];
5831     if (auto GV = *Entry) {
5832       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5833         GV->setAlignment(Alignment.getAsAlign());
5834       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5835                              GV->getValueType(), Alignment);
5836     }
5837   }
5838 
5839   SmallString<256> MangledNameBuffer;
5840   StringRef GlobalVariableName;
5841   llvm::GlobalValue::LinkageTypes LT;
5842 
5843   // Mangle the string literal if that's how the ABI merges duplicate strings.
5844   // Don't do it if they are writable, since we don't want writes in one TU to
5845   // affect strings in another.
5846   if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
5847       !LangOpts.WritableStrings) {
5848     llvm::raw_svector_ostream Out(MangledNameBuffer);
5849     getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
5850     LT = llvm::GlobalValue::LinkOnceODRLinkage;
5851     GlobalVariableName = MangledNameBuffer;
5852   } else {
5853     LT = llvm::GlobalValue::PrivateLinkage;
5854     GlobalVariableName = Name;
5855   }
5856 
5857   auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
5858 
5859   CGDebugInfo *DI = getModuleDebugInfo();
5860   if (DI && getCodeGenOpts().hasReducedDebugInfo())
5861     DI->AddStringLiteralDebugInfo(GV, S);
5862 
5863   if (Entry)
5864     *Entry = GV;
5865 
5866   SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
5867 
5868   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5869                          GV->getValueType(), Alignment);
5870 }
5871 
5872 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
5873 /// array for the given ObjCEncodeExpr node.
5874 ConstantAddress
5875 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
5876   std::string Str;
5877   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
5878 
5879   return GetAddrOfConstantCString(Str);
5880 }
5881 
5882 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
5883 /// the literal and a terminating '\0' character.
5884 /// The result has pointer to array type.
5885 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
5886     const std::string &Str, const char *GlobalName) {
5887   StringRef StrWithNull(Str.c_str(), Str.size() + 1);
5888   CharUnits Alignment =
5889     getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
5890 
5891   llvm::Constant *C =
5892       llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
5893 
5894   // Don't share any string literals if strings aren't constant.
5895   llvm::GlobalVariable **Entry = nullptr;
5896   if (!LangOpts.WritableStrings) {
5897     Entry = &ConstantStringMap[C];
5898     if (auto GV = *Entry) {
5899       if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
5900         GV->setAlignment(Alignment.getAsAlign());
5901       return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5902                              GV->getValueType(), Alignment);
5903     }
5904   }
5905 
5906   // Get the default prefix if a name wasn't specified.
5907   if (!GlobalName)
5908     GlobalName = ".str";
5909   // Create a global variable for this.
5910   auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
5911                                   GlobalName, Alignment);
5912   if (Entry)
5913     *Entry = GV;
5914 
5915   return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
5916                          GV->getValueType(), Alignment);
5917 }
5918 
5919 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
5920     const MaterializeTemporaryExpr *E, const Expr *Init) {
5921   assert((E->getStorageDuration() == SD_Static ||
5922           E->getStorageDuration() == SD_Thread) && "not a global temporary");
5923   const auto *VD = cast<VarDecl>(E->getExtendingDecl());
5924 
5925   // If we're not materializing a subobject of the temporary, keep the
5926   // cv-qualifiers from the type of the MaterializeTemporaryExpr.
5927   QualType MaterializedType = Init->getType();
5928   if (Init == E->getSubExpr())
5929     MaterializedType = E->getType();
5930 
5931   CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
5932 
5933   auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
5934   if (!InsertResult.second) {
5935     // We've seen this before: either we already created it or we're in the
5936     // process of doing so.
5937     if (!InsertResult.first->second) {
5938       // We recursively re-entered this function, probably during emission of
5939       // the initializer. Create a placeholder. We'll clean this up in the
5940       // outer call, at the end of this function.
5941       llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
5942       InsertResult.first->second = new llvm::GlobalVariable(
5943           getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
5944           nullptr);
5945     }
5946     return ConstantAddress(InsertResult.first->second,
5947                            llvm::cast<llvm::GlobalVariable>(
5948                                InsertResult.first->second->stripPointerCasts())
5949                                ->getValueType(),
5950                            Align);
5951   }
5952 
5953   // FIXME: If an externally-visible declaration extends multiple temporaries,
5954   // we need to give each temporary the same name in every translation unit (and
5955   // we also need to make the temporaries externally-visible).
5956   SmallString<256> Name;
5957   llvm::raw_svector_ostream Out(Name);
5958   getCXXABI().getMangleContext().mangleReferenceTemporary(
5959       VD, E->getManglingNumber(), Out);
5960 
5961   APValue *Value = nullptr;
5962   if (E->getStorageDuration() == SD_Static && VD && VD->evaluateValue()) {
5963     // If the initializer of the extending declaration is a constant
5964     // initializer, we should have a cached constant initializer for this
5965     // temporary. Note that this might have a different value from the value
5966     // computed by evaluating the initializer if the surrounding constant
5967     // expression modifies the temporary.
5968     Value = E->getOrCreateValue(false);
5969   }
5970 
5971   // Try evaluating it now, it might have a constant initializer.
5972   Expr::EvalResult EvalResult;
5973   if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
5974       !EvalResult.hasSideEffects())
5975     Value = &EvalResult.Val;
5976 
5977   LangAS AddrSpace =
5978       VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace();
5979 
5980   Optional<ConstantEmitter> emitter;
5981   llvm::Constant *InitialValue = nullptr;
5982   bool Constant = false;
5983   llvm::Type *Type;
5984   if (Value) {
5985     // The temporary has a constant initializer, use it.
5986     emitter.emplace(*this);
5987     InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
5988                                                MaterializedType);
5989     Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value);
5990     Type = InitialValue->getType();
5991   } else {
5992     // No initializer, the initialization will be provided when we
5993     // initialize the declaration which performed lifetime extension.
5994     Type = getTypes().ConvertTypeForMem(MaterializedType);
5995   }
5996 
5997   // Create a global variable for this lifetime-extended temporary.
5998   llvm::GlobalValue::LinkageTypes Linkage =
5999       getLLVMLinkageVarDefinition(VD, Constant);
6000   if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6001     const VarDecl *InitVD;
6002     if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6003         isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6004       // Temporaries defined inside a class get linkonce_odr linkage because the
6005       // class can be defined in multiple translation units.
6006       Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6007     } else {
6008       // There is no need for this temporary to have external linkage if the
6009       // VarDecl has external linkage.
6010       Linkage = llvm::GlobalVariable::InternalLinkage;
6011     }
6012   }
6013   auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6014   auto *GV = new llvm::GlobalVariable(
6015       getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6016       /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6017   if (emitter) emitter->finalize(GV);
6018   setGVProperties(GV, VD);
6019   if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6020     // The reference temporary should never be dllexport.
6021     GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6022   GV->setAlignment(Align.getAsAlign());
6023   if (supportsCOMDAT() && GV->isWeakForLinker())
6024     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6025   if (VD->getTLSKind())
6026     setTLSMode(GV, *VD);
6027   llvm::Constant *CV = GV;
6028   if (AddrSpace != LangAS::Default)
6029     CV = getTargetCodeGenInfo().performAddrSpaceCast(
6030         *this, GV, AddrSpace, LangAS::Default,
6031         Type->getPointerTo(
6032             getContext().getTargetAddressSpace(LangAS::Default)));
6033 
6034   // Update the map with the new temporary. If we created a placeholder above,
6035   // replace it with the new global now.
6036   llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6037   if (Entry) {
6038     Entry->replaceAllUsesWith(
6039         llvm::ConstantExpr::getBitCast(CV, Entry->getType()));
6040     llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6041   }
6042   Entry = CV;
6043 
6044   return ConstantAddress(CV, Type, Align);
6045 }
6046 
6047 /// EmitObjCPropertyImplementations - Emit information for synthesized
6048 /// properties for an implementation.
6049 void CodeGenModule::EmitObjCPropertyImplementations(const
6050                                                     ObjCImplementationDecl *D) {
6051   for (const auto *PID : D->property_impls()) {
6052     // Dynamic is just for type-checking.
6053     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6054       ObjCPropertyDecl *PD = PID->getPropertyDecl();
6055 
6056       // Determine which methods need to be implemented, some may have
6057       // been overridden. Note that ::isPropertyAccessor is not the method
6058       // we want, that just indicates if the decl came from a
6059       // property. What we want to know is if the method is defined in
6060       // this implementation.
6061       auto *Getter = PID->getGetterMethodDecl();
6062       if (!Getter || Getter->isSynthesizedAccessorStub())
6063         CodeGenFunction(*this).GenerateObjCGetter(
6064             const_cast<ObjCImplementationDecl *>(D), PID);
6065       auto *Setter = PID->getSetterMethodDecl();
6066       if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6067         CodeGenFunction(*this).GenerateObjCSetter(
6068                                  const_cast<ObjCImplementationDecl *>(D), PID);
6069     }
6070   }
6071 }
6072 
6073 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6074   const ObjCInterfaceDecl *iface = impl->getClassInterface();
6075   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6076        ivar; ivar = ivar->getNextIvar())
6077     if (ivar->getType().isDestructedType())
6078       return true;
6079 
6080   return false;
6081 }
6082 
6083 static bool AllTrivialInitializers(CodeGenModule &CGM,
6084                                    ObjCImplementationDecl *D) {
6085   CodeGenFunction CGF(CGM);
6086   for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6087        E = D->init_end(); B != E; ++B) {
6088     CXXCtorInitializer *CtorInitExp = *B;
6089     Expr *Init = CtorInitExp->getInit();
6090     if (!CGF.isTrivialInitializer(Init))
6091       return false;
6092   }
6093   return true;
6094 }
6095 
6096 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6097 /// for an implementation.
6098 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6099   // We might need a .cxx_destruct even if we don't have any ivar initializers.
6100   if (needsDestructMethod(D)) {
6101     IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6102     Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6103     ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6104         getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6105         getContext().VoidTy, nullptr, D,
6106         /*isInstance=*/true, /*isVariadic=*/false,
6107         /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6108         /*isImplicitlyDeclared=*/true,
6109         /*isDefined=*/false, ObjCMethodDecl::Required);
6110     D->addInstanceMethod(DTORMethod);
6111     CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6112     D->setHasDestructors(true);
6113   }
6114 
6115   // If the implementation doesn't have any ivar initializers, we don't need
6116   // a .cxx_construct.
6117   if (D->getNumIvarInitializers() == 0 ||
6118       AllTrivialInitializers(*this, D))
6119     return;
6120 
6121   IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6122   Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6123   // The constructor returns 'self'.
6124   ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6125       getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6126       getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6127       /*isVariadic=*/false,
6128       /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6129       /*isImplicitlyDeclared=*/true,
6130       /*isDefined=*/false, ObjCMethodDecl::Required);
6131   D->addInstanceMethod(CTORMethod);
6132   CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6133   D->setHasNonZeroConstructors(true);
6134 }
6135 
6136 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6137 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6138   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
6139       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
6140     ErrorUnsupported(LSD, "linkage spec");
6141     return;
6142   }
6143 
6144   EmitDeclContext(LSD);
6145 }
6146 
6147 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6148   for (auto *I : DC->decls()) {
6149     // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6150     // are themselves considered "top-level", so EmitTopLevelDecl on an
6151     // ObjCImplDecl does not recursively visit them. We need to do that in
6152     // case they're nested inside another construct (LinkageSpecDecl /
6153     // ExportDecl) that does stop them from being considered "top-level".
6154     if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6155       for (auto *M : OID->methods())
6156         EmitTopLevelDecl(M);
6157     }
6158 
6159     EmitTopLevelDecl(I);
6160   }
6161 }
6162 
6163 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6164 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6165   // Ignore dependent declarations.
6166   if (D->isTemplated())
6167     return;
6168 
6169   // Consteval function shouldn't be emitted.
6170   if (auto *FD = dyn_cast<FunctionDecl>(D))
6171     if (FD->isConsteval())
6172       return;
6173 
6174   switch (D->getKind()) {
6175   case Decl::CXXConversion:
6176   case Decl::CXXMethod:
6177   case Decl::Function:
6178     EmitGlobal(cast<FunctionDecl>(D));
6179     // Always provide some coverage mapping
6180     // even for the functions that aren't emitted.
6181     AddDeferredUnusedCoverageMapping(D);
6182     break;
6183 
6184   case Decl::CXXDeductionGuide:
6185     // Function-like, but does not result in code emission.
6186     break;
6187 
6188   case Decl::Var:
6189   case Decl::Decomposition:
6190   case Decl::VarTemplateSpecialization:
6191     EmitGlobal(cast<VarDecl>(D));
6192     if (auto *DD = dyn_cast<DecompositionDecl>(D))
6193       for (auto *B : DD->bindings())
6194         if (auto *HD = B->getHoldingVar())
6195           EmitGlobal(HD);
6196     break;
6197 
6198   // Indirect fields from global anonymous structs and unions can be
6199   // ignored; only the actual variable requires IR gen support.
6200   case Decl::IndirectField:
6201     break;
6202 
6203   // C++ Decls
6204   case Decl::Namespace:
6205     EmitDeclContext(cast<NamespaceDecl>(D));
6206     break;
6207   case Decl::ClassTemplateSpecialization: {
6208     const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6209     if (CGDebugInfo *DI = getModuleDebugInfo())
6210       if (Spec->getSpecializationKind() ==
6211               TSK_ExplicitInstantiationDefinition &&
6212           Spec->hasDefinition())
6213         DI->completeTemplateDefinition(*Spec);
6214   } [[fallthrough]];
6215   case Decl::CXXRecord: {
6216     CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6217     if (CGDebugInfo *DI = getModuleDebugInfo()) {
6218       if (CRD->hasDefinition())
6219         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6220       if (auto *ES = D->getASTContext().getExternalSource())
6221         if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6222           DI->completeUnusedClass(*CRD);
6223     }
6224     // Emit any static data members, they may be definitions.
6225     for (auto *I : CRD->decls())
6226       if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6227         EmitTopLevelDecl(I);
6228     break;
6229   }
6230     // No code generation needed.
6231   case Decl::UsingShadow:
6232   case Decl::ClassTemplate:
6233   case Decl::VarTemplate:
6234   case Decl::Concept:
6235   case Decl::VarTemplatePartialSpecialization:
6236   case Decl::FunctionTemplate:
6237   case Decl::TypeAliasTemplate:
6238   case Decl::Block:
6239   case Decl::Empty:
6240   case Decl::Binding:
6241     break;
6242   case Decl::Using:          // using X; [C++]
6243     if (CGDebugInfo *DI = getModuleDebugInfo())
6244         DI->EmitUsingDecl(cast<UsingDecl>(*D));
6245     break;
6246   case Decl::UsingEnum: // using enum X; [C++]
6247     if (CGDebugInfo *DI = getModuleDebugInfo())
6248       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6249     break;
6250   case Decl::NamespaceAlias:
6251     if (CGDebugInfo *DI = getModuleDebugInfo())
6252         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6253     break;
6254   case Decl::UsingDirective: // using namespace X; [C++]
6255     if (CGDebugInfo *DI = getModuleDebugInfo())
6256       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6257     break;
6258   case Decl::CXXConstructor:
6259     getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6260     break;
6261   case Decl::CXXDestructor:
6262     getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6263     break;
6264 
6265   case Decl::StaticAssert:
6266     // Nothing to do.
6267     break;
6268 
6269   // Objective-C Decls
6270 
6271   // Forward declarations, no (immediate) code generation.
6272   case Decl::ObjCInterface:
6273   case Decl::ObjCCategory:
6274     break;
6275 
6276   case Decl::ObjCProtocol: {
6277     auto *Proto = cast<ObjCProtocolDecl>(D);
6278     if (Proto->isThisDeclarationADefinition())
6279       ObjCRuntime->GenerateProtocol(Proto);
6280     break;
6281   }
6282 
6283   case Decl::ObjCCategoryImpl:
6284     // Categories have properties but don't support synthesize so we
6285     // can ignore them here.
6286     ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6287     break;
6288 
6289   case Decl::ObjCImplementation: {
6290     auto *OMD = cast<ObjCImplementationDecl>(D);
6291     EmitObjCPropertyImplementations(OMD);
6292     EmitObjCIvarInitializations(OMD);
6293     ObjCRuntime->GenerateClass(OMD);
6294     // Emit global variable debug information.
6295     if (CGDebugInfo *DI = getModuleDebugInfo())
6296       if (getCodeGenOpts().hasReducedDebugInfo())
6297         DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6298             OMD->getClassInterface()), OMD->getLocation());
6299     break;
6300   }
6301   case Decl::ObjCMethod: {
6302     auto *OMD = cast<ObjCMethodDecl>(D);
6303     // If this is not a prototype, emit the body.
6304     if (OMD->getBody())
6305       CodeGenFunction(*this).GenerateObjCMethod(OMD);
6306     break;
6307   }
6308   case Decl::ObjCCompatibleAlias:
6309     ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6310     break;
6311 
6312   case Decl::PragmaComment: {
6313     const auto *PCD = cast<PragmaCommentDecl>(D);
6314     switch (PCD->getCommentKind()) {
6315     case PCK_Unknown:
6316       llvm_unreachable("unexpected pragma comment kind");
6317     case PCK_Linker:
6318       AppendLinkerOptions(PCD->getArg());
6319       break;
6320     case PCK_Lib:
6321         AddDependentLib(PCD->getArg());
6322       break;
6323     case PCK_Compiler:
6324     case PCK_ExeStr:
6325     case PCK_User:
6326       break; // We ignore all of these.
6327     }
6328     break;
6329   }
6330 
6331   case Decl::PragmaDetectMismatch: {
6332     const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6333     AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6334     break;
6335   }
6336 
6337   case Decl::LinkageSpec:
6338     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6339     break;
6340 
6341   case Decl::FileScopeAsm: {
6342     // File-scope asm is ignored during device-side CUDA compilation.
6343     if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6344       break;
6345     // File-scope asm is ignored during device-side OpenMP compilation.
6346     if (LangOpts.OpenMPIsDevice)
6347       break;
6348     // File-scope asm is ignored during device-side SYCL compilation.
6349     if (LangOpts.SYCLIsDevice)
6350       break;
6351     auto *AD = cast<FileScopeAsmDecl>(D);
6352     getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6353     break;
6354   }
6355 
6356   case Decl::Import: {
6357     auto *Import = cast<ImportDecl>(D);
6358 
6359     // If we've already imported this module, we're done.
6360     if (!ImportedModules.insert(Import->getImportedModule()))
6361       break;
6362 
6363     // Emit debug information for direct imports.
6364     if (!Import->getImportedOwningModule()) {
6365       if (CGDebugInfo *DI = getModuleDebugInfo())
6366         DI->EmitImportDecl(*Import);
6367     }
6368 
6369     // For C++ standard modules we are done - we will call the module
6370     // initializer for imported modules, and that will likewise call those for
6371     // any imports it has.
6372     if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6373         !Import->getImportedOwningModule()->isModuleMapModule())
6374       break;
6375 
6376     // For clang C++ module map modules the initializers for sub-modules are
6377     // emitted here.
6378 
6379     // Find all of the submodules and emit the module initializers.
6380     llvm::SmallPtrSet<clang::Module *, 16> Visited;
6381     SmallVector<clang::Module *, 16> Stack;
6382     Visited.insert(Import->getImportedModule());
6383     Stack.push_back(Import->getImportedModule());
6384 
6385     while (!Stack.empty()) {
6386       clang::Module *Mod = Stack.pop_back_val();
6387       if (!EmittedModuleInitializers.insert(Mod).second)
6388         continue;
6389 
6390       for (auto *D : Context.getModuleInitializers(Mod))
6391         EmitTopLevelDecl(D);
6392 
6393       // Visit the submodules of this module.
6394       for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
6395                                              SubEnd = Mod->submodule_end();
6396            Sub != SubEnd; ++Sub) {
6397         // Skip explicit children; they need to be explicitly imported to emit
6398         // the initializers.
6399         if ((*Sub)->IsExplicit)
6400           continue;
6401 
6402         if (Visited.insert(*Sub).second)
6403           Stack.push_back(*Sub);
6404       }
6405     }
6406     break;
6407   }
6408 
6409   case Decl::Export:
6410     EmitDeclContext(cast<ExportDecl>(D));
6411     break;
6412 
6413   case Decl::OMPThreadPrivate:
6414     EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6415     break;
6416 
6417   case Decl::OMPAllocate:
6418     EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6419     break;
6420 
6421   case Decl::OMPDeclareReduction:
6422     EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6423     break;
6424 
6425   case Decl::OMPDeclareMapper:
6426     EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6427     break;
6428 
6429   case Decl::OMPRequires:
6430     EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6431     break;
6432 
6433   case Decl::Typedef:
6434   case Decl::TypeAlias: // using foo = bar; [C++11]
6435     if (CGDebugInfo *DI = getModuleDebugInfo())
6436       DI->EmitAndRetainType(
6437           getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6438     break;
6439 
6440   case Decl::Record:
6441     if (CGDebugInfo *DI = getModuleDebugInfo())
6442       if (cast<RecordDecl>(D)->getDefinition())
6443         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6444     break;
6445 
6446   case Decl::Enum:
6447     if (CGDebugInfo *DI = getModuleDebugInfo())
6448       if (cast<EnumDecl>(D)->getDefinition())
6449         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6450     break;
6451 
6452   default:
6453     // Make sure we handled everything we should, every other kind is a
6454     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6455     // function. Need to recode Decl::Kind to do that easily.
6456     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6457     break;
6458   }
6459 }
6460 
6461 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6462   // Do we need to generate coverage mapping?
6463   if (!CodeGenOpts.CoverageMapping)
6464     return;
6465   switch (D->getKind()) {
6466   case Decl::CXXConversion:
6467   case Decl::CXXMethod:
6468   case Decl::Function:
6469   case Decl::ObjCMethod:
6470   case Decl::CXXConstructor:
6471   case Decl::CXXDestructor: {
6472     if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
6473       break;
6474     SourceManager &SM = getContext().getSourceManager();
6475     if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
6476       break;
6477     auto I = DeferredEmptyCoverageMappingDecls.find(D);
6478     if (I == DeferredEmptyCoverageMappingDecls.end())
6479       DeferredEmptyCoverageMappingDecls[D] = true;
6480     break;
6481   }
6482   default:
6483     break;
6484   };
6485 }
6486 
6487 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
6488   // Do we need to generate coverage mapping?
6489   if (!CodeGenOpts.CoverageMapping)
6490     return;
6491   if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
6492     if (Fn->isTemplateInstantiation())
6493       ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
6494   }
6495   auto I = DeferredEmptyCoverageMappingDecls.find(D);
6496   if (I == DeferredEmptyCoverageMappingDecls.end())
6497     DeferredEmptyCoverageMappingDecls[D] = false;
6498   else
6499     I->second = false;
6500 }
6501 
6502 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
6503   // We call takeVector() here to avoid use-after-free.
6504   // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
6505   // we deserialize function bodies to emit coverage info for them, and that
6506   // deserializes more declarations. How should we handle that case?
6507   for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
6508     if (!Entry.second)
6509       continue;
6510     const Decl *D = Entry.first;
6511     switch (D->getKind()) {
6512     case Decl::CXXConversion:
6513     case Decl::CXXMethod:
6514     case Decl::Function:
6515     case Decl::ObjCMethod: {
6516       CodeGenPGO PGO(*this);
6517       GlobalDecl GD(cast<FunctionDecl>(D));
6518       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6519                                   getFunctionLinkage(GD));
6520       break;
6521     }
6522     case Decl::CXXConstructor: {
6523       CodeGenPGO PGO(*this);
6524       GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
6525       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6526                                   getFunctionLinkage(GD));
6527       break;
6528     }
6529     case Decl::CXXDestructor: {
6530       CodeGenPGO PGO(*this);
6531       GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
6532       PGO.emitEmptyCounterMapping(D, getMangledName(GD),
6533                                   getFunctionLinkage(GD));
6534       break;
6535     }
6536     default:
6537       break;
6538     };
6539   }
6540 }
6541 
6542 void CodeGenModule::EmitMainVoidAlias() {
6543   // In order to transition away from "__original_main" gracefully, emit an
6544   // alias for "main" in the no-argument case so that libc can detect when
6545   // new-style no-argument main is in used.
6546   if (llvm::Function *F = getModule().getFunction("main")) {
6547     if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
6548         F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
6549       auto *GA = llvm::GlobalAlias::create("__main_void", F);
6550       GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
6551     }
6552   }
6553 }
6554 
6555 /// Turns the given pointer into a constant.
6556 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
6557                                           const void *Ptr) {
6558   uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
6559   llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
6560   return llvm::ConstantInt::get(i64, PtrInt);
6561 }
6562 
6563 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
6564                                    llvm::NamedMDNode *&GlobalMetadata,
6565                                    GlobalDecl D,
6566                                    llvm::GlobalValue *Addr) {
6567   if (!GlobalMetadata)
6568     GlobalMetadata =
6569       CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
6570 
6571   // TODO: should we report variant information for ctors/dtors?
6572   llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
6573                            llvm::ConstantAsMetadata::get(GetPointerConstant(
6574                                CGM.getLLVMContext(), D.getDecl()))};
6575   GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
6576 }
6577 
6578 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
6579                                                  llvm::GlobalValue *CppFunc) {
6580   // Store the list of ifuncs we need to replace uses in.
6581   llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
6582   // List of ConstantExprs that we should be able to delete when we're done
6583   // here.
6584   llvm::SmallVector<llvm::ConstantExpr *> CEs;
6585 
6586   // It isn't valid to replace the extern-C ifuncs if all we find is itself!
6587   if (Elem == CppFunc)
6588     return false;
6589 
6590   // First make sure that all users of this are ifuncs (or ifuncs via a
6591   // bitcast), and collect the list of ifuncs and CEs so we can work on them
6592   // later.
6593   for (llvm::User *User : Elem->users()) {
6594     // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
6595     // ifunc directly. In any other case, just give up, as we don't know what we
6596     // could break by changing those.
6597     if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
6598       if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
6599         return false;
6600 
6601       for (llvm::User *CEUser : ConstExpr->users()) {
6602         if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
6603           IFuncs.push_back(IFunc);
6604         } else {
6605           return false;
6606         }
6607       }
6608       CEs.push_back(ConstExpr);
6609     } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
6610       IFuncs.push_back(IFunc);
6611     } else {
6612       // This user is one we don't know how to handle, so fail redirection. This
6613       // will result in an ifunc retaining a resolver name that will ultimately
6614       // fail to be resolved to a defined function.
6615       return false;
6616     }
6617   }
6618 
6619   // Now we know this is a valid case where we can do this alias replacement, we
6620   // need to remove all of the references to Elem (and the bitcasts!) so we can
6621   // delete it.
6622   for (llvm::GlobalIFunc *IFunc : IFuncs)
6623     IFunc->setResolver(nullptr);
6624   for (llvm::ConstantExpr *ConstExpr : CEs)
6625     ConstExpr->destroyConstant();
6626 
6627   // We should now be out of uses for the 'old' version of this function, so we
6628   // can erase it as well.
6629   Elem->eraseFromParent();
6630 
6631   for (llvm::GlobalIFunc *IFunc : IFuncs) {
6632     // The type of the resolver is always just a function-type that returns the
6633     // type of the IFunc, so create that here. If the type of the actual
6634     // resolver doesn't match, it just gets bitcast to the right thing.
6635     auto *ResolverTy =
6636         llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
6637     llvm::Constant *Resolver = GetOrCreateLLVMFunction(
6638         CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
6639     IFunc->setResolver(Resolver);
6640   }
6641   return true;
6642 }
6643 
6644 /// For each function which is declared within an extern "C" region and marked
6645 /// as 'used', but has internal linkage, create an alias from the unmangled
6646 /// name to the mangled name if possible. People expect to be able to refer
6647 /// to such functions with an unmangled name from inline assembly within the
6648 /// same translation unit.
6649 void CodeGenModule::EmitStaticExternCAliases() {
6650   if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
6651     return;
6652   for (auto &I : StaticExternCValues) {
6653     IdentifierInfo *Name = I.first;
6654     llvm::GlobalValue *Val = I.second;
6655 
6656     // If Val is null, that implies there were multiple declarations that each
6657     // had a claim to the unmangled name. In this case, generation of the alias
6658     // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
6659     if (!Val)
6660       break;
6661 
6662     llvm::GlobalValue *ExistingElem =
6663         getModule().getNamedValue(Name->getName());
6664 
6665     // If there is either not something already by this name, or we were able to
6666     // replace all uses from IFuncs, create the alias.
6667     if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
6668       addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
6669   }
6670 }
6671 
6672 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
6673                                              GlobalDecl &Result) const {
6674   auto Res = Manglings.find(MangledName);
6675   if (Res == Manglings.end())
6676     return false;
6677   Result = Res->getValue();
6678   return true;
6679 }
6680 
6681 /// Emits metadata nodes associating all the global values in the
6682 /// current module with the Decls they came from.  This is useful for
6683 /// projects using IR gen as a subroutine.
6684 ///
6685 /// Since there's currently no way to associate an MDNode directly
6686 /// with an llvm::GlobalValue, we create a global named metadata
6687 /// with the name 'clang.global.decl.ptrs'.
6688 void CodeGenModule::EmitDeclMetadata() {
6689   llvm::NamedMDNode *GlobalMetadata = nullptr;
6690 
6691   for (auto &I : MangledDeclNames) {
6692     llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
6693     // Some mangled names don't necessarily have an associated GlobalValue
6694     // in this module, e.g. if we mangled it for DebugInfo.
6695     if (Addr)
6696       EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
6697   }
6698 }
6699 
6700 /// Emits metadata nodes for all the local variables in the current
6701 /// function.
6702 void CodeGenFunction::EmitDeclMetadata() {
6703   if (LocalDeclMap.empty()) return;
6704 
6705   llvm::LLVMContext &Context = getLLVMContext();
6706 
6707   // Find the unique metadata ID for this name.
6708   unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
6709 
6710   llvm::NamedMDNode *GlobalMetadata = nullptr;
6711 
6712   for (auto &I : LocalDeclMap) {
6713     const Decl *D = I.first;
6714     llvm::Value *Addr = I.second.getPointer();
6715     if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
6716       llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
6717       Alloca->setMetadata(
6718           DeclPtrKind, llvm::MDNode::get(
6719                            Context, llvm::ValueAsMetadata::getConstant(DAddr)));
6720     } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
6721       GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
6722       EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
6723     }
6724   }
6725 }
6726 
6727 void CodeGenModule::EmitVersionIdentMetadata() {
6728   llvm::NamedMDNode *IdentMetadata =
6729     TheModule.getOrInsertNamedMetadata("llvm.ident");
6730   std::string Version = getClangFullVersion();
6731   llvm::LLVMContext &Ctx = TheModule.getContext();
6732 
6733   llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
6734   IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
6735 }
6736 
6737 void CodeGenModule::EmitCommandLineMetadata() {
6738   llvm::NamedMDNode *CommandLineMetadata =
6739     TheModule.getOrInsertNamedMetadata("llvm.commandline");
6740   std::string CommandLine = getCodeGenOpts().RecordCommandLine;
6741   llvm::LLVMContext &Ctx = TheModule.getContext();
6742 
6743   llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
6744   CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
6745 }
6746 
6747 void CodeGenModule::EmitCoverageFile() {
6748   if (getCodeGenOpts().CoverageDataFile.empty() &&
6749       getCodeGenOpts().CoverageNotesFile.empty())
6750     return;
6751 
6752   llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
6753   if (!CUNode)
6754     return;
6755 
6756   llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
6757   llvm::LLVMContext &Ctx = TheModule.getContext();
6758   auto *CoverageDataFile =
6759       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
6760   auto *CoverageNotesFile =
6761       llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
6762   for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
6763     llvm::MDNode *CU = CUNode->getOperand(i);
6764     llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
6765     GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
6766   }
6767 }
6768 
6769 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
6770                                                        bool ForEH) {
6771   // Return a bogus pointer if RTTI is disabled, unless it's for EH.
6772   // FIXME: should we even be calling this method if RTTI is disabled
6773   // and it's not for EH?
6774   if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice ||
6775       (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
6776        getTriple().isNVPTX()))
6777     return llvm::Constant::getNullValue(Int8PtrTy);
6778 
6779   if (ForEH && Ty->isObjCObjectPointerType() &&
6780       LangOpts.ObjCRuntime.isGNUFamily())
6781     return ObjCRuntime->GetEHType(Ty);
6782 
6783   return getCXXABI().getAddrOfRTTIDescriptor(Ty);
6784 }
6785 
6786 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
6787   // Do not emit threadprivates in simd-only mode.
6788   if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
6789     return;
6790   for (auto RefExpr : D->varlists()) {
6791     auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
6792     bool PerformInit =
6793         VD->getAnyInitializer() &&
6794         !VD->getAnyInitializer()->isConstantInitializer(getContext(),
6795                                                         /*ForRef=*/false);
6796 
6797     Address Addr(GetAddrOfGlobalVar(VD),
6798                  getTypes().ConvertTypeForMem(VD->getType()),
6799                  getContext().getDeclAlign(VD));
6800     if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
6801             VD, Addr, RefExpr->getBeginLoc(), PerformInit))
6802       CXXGlobalInits.push_back(InitFunction);
6803   }
6804 }
6805 
6806 llvm::Metadata *
6807 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
6808                                             StringRef Suffix) {
6809   if (auto *FnType = T->getAs<FunctionProtoType>())
6810     T = getContext().getFunctionType(
6811         FnType->getReturnType(), FnType->getParamTypes(),
6812         FnType->getExtProtoInfo().withExceptionSpec(EST_None));
6813 
6814   llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
6815   if (InternalId)
6816     return InternalId;
6817 
6818   if (isExternallyVisible(T->getLinkage())) {
6819     std::string OutName;
6820     llvm::raw_string_ostream Out(OutName);
6821     getCXXABI().getMangleContext().mangleTypeName(T, Out);
6822     Out << Suffix;
6823 
6824     InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
6825   } else {
6826     InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
6827                                            llvm::ArrayRef<llvm::Metadata *>());
6828   }
6829 
6830   return InternalId;
6831 }
6832 
6833 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
6834   return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
6835 }
6836 
6837 llvm::Metadata *
6838 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
6839   return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
6840 }
6841 
6842 // Generalize pointer types to a void pointer with the qualifiers of the
6843 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
6844 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
6845 // 'void *'.
6846 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
6847   if (!Ty->isPointerType())
6848     return Ty;
6849 
6850   return Ctx.getPointerType(
6851       QualType(Ctx.VoidTy).withCVRQualifiers(
6852           Ty->getPointeeType().getCVRQualifiers()));
6853 }
6854 
6855 // Apply type generalization to a FunctionType's return and argument types
6856 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
6857   if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
6858     SmallVector<QualType, 8> GeneralizedParams;
6859     for (auto &Param : FnType->param_types())
6860       GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
6861 
6862     return Ctx.getFunctionType(
6863         GeneralizeType(Ctx, FnType->getReturnType()),
6864         GeneralizedParams, FnType->getExtProtoInfo());
6865   }
6866 
6867   if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
6868     return Ctx.getFunctionNoProtoType(
6869         GeneralizeType(Ctx, FnType->getReturnType()));
6870 
6871   llvm_unreachable("Encountered unknown FunctionType");
6872 }
6873 
6874 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
6875   return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
6876                                       GeneralizedMetadataIdMap, ".generalized");
6877 }
6878 
6879 /// Returns whether this module needs the "all-vtables" type identifier.
6880 bool CodeGenModule::NeedAllVtablesTypeId() const {
6881   // Returns true if at least one of vtable-based CFI checkers is enabled and
6882   // is not in the trapping mode.
6883   return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
6884            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
6885           (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
6886            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
6887           (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
6888            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
6889           (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
6890            !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
6891 }
6892 
6893 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
6894                                           CharUnits Offset,
6895                                           const CXXRecordDecl *RD) {
6896   llvm::Metadata *MD =
6897       CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
6898   VTable->addTypeMetadata(Offset.getQuantity(), MD);
6899 
6900   if (CodeGenOpts.SanitizeCfiCrossDso)
6901     if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
6902       VTable->addTypeMetadata(Offset.getQuantity(),
6903                               llvm::ConstantAsMetadata::get(CrossDsoTypeId));
6904 
6905   if (NeedAllVtablesTypeId()) {
6906     llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
6907     VTable->addTypeMetadata(Offset.getQuantity(), MD);
6908   }
6909 }
6910 
6911 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
6912   if (!SanStats)
6913     SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
6914 
6915   return *SanStats;
6916 }
6917 
6918 llvm::Value *
6919 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
6920                                                   CodeGenFunction &CGF) {
6921   llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
6922   auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
6923   auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
6924   auto *Call = CGF.EmitRuntimeCall(
6925       CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
6926   return Call;
6927 }
6928 
6929 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
6930     QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
6931   return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
6932                                  /* forPointeeType= */ true);
6933 }
6934 
6935 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
6936                                                  LValueBaseInfo *BaseInfo,
6937                                                  TBAAAccessInfo *TBAAInfo,
6938                                                  bool forPointeeType) {
6939   if (TBAAInfo)
6940     *TBAAInfo = getTBAAAccessInfo(T);
6941 
6942   // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
6943   // that doesn't return the information we need to compute BaseInfo.
6944 
6945   // Honor alignment typedef attributes even on incomplete types.
6946   // We also honor them straight for C++ class types, even as pointees;
6947   // there's an expressivity gap here.
6948   if (auto TT = T->getAs<TypedefType>()) {
6949     if (auto Align = TT->getDecl()->getMaxAlignment()) {
6950       if (BaseInfo)
6951         *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
6952       return getContext().toCharUnitsFromBits(Align);
6953     }
6954   }
6955 
6956   bool AlignForArray = T->isArrayType();
6957 
6958   // Analyze the base element type, so we don't get confused by incomplete
6959   // array types.
6960   T = getContext().getBaseElementType(T);
6961 
6962   if (T->isIncompleteType()) {
6963     // We could try to replicate the logic from
6964     // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
6965     // type is incomplete, so it's impossible to test. We could try to reuse
6966     // getTypeAlignIfKnown, but that doesn't return the information we need
6967     // to set BaseInfo.  So just ignore the possibility that the alignment is
6968     // greater than one.
6969     if (BaseInfo)
6970       *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6971     return CharUnits::One();
6972   }
6973 
6974   if (BaseInfo)
6975     *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
6976 
6977   CharUnits Alignment;
6978   const CXXRecordDecl *RD;
6979   if (T.getQualifiers().hasUnaligned()) {
6980     Alignment = CharUnits::One();
6981   } else if (forPointeeType && !AlignForArray &&
6982              (RD = T->getAsCXXRecordDecl())) {
6983     // For C++ class pointees, we don't know whether we're pointing at a
6984     // base or a complete object, so we generally need to use the
6985     // non-virtual alignment.
6986     Alignment = getClassPointerAlignment(RD);
6987   } else {
6988     Alignment = getContext().getTypeAlignInChars(T);
6989   }
6990 
6991   // Cap to the global maximum type alignment unless the alignment
6992   // was somehow explicit on the type.
6993   if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
6994     if (Alignment.getQuantity() > MaxAlign &&
6995         !getContext().isAlignmentRequired(T))
6996       Alignment = CharUnits::fromQuantity(MaxAlign);
6997   }
6998   return Alignment;
6999 }
7000 
7001 bool CodeGenModule::stopAutoInit() {
7002   unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7003   if (StopAfter) {
7004     // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7005     // used
7006     if (NumAutoVarInit >= StopAfter) {
7007       return true;
7008     }
7009     if (!NumAutoVarInit) {
7010       unsigned DiagID = getDiags().getCustomDiagID(
7011           DiagnosticsEngine::Warning,
7012           "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7013           "number of times ftrivial-auto-var-init=%1 gets applied.");
7014       getDiags().Report(DiagID)
7015           << StopAfter
7016           << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7017                       LangOptions::TrivialAutoVarInitKind::Zero
7018                   ? "zero"
7019                   : "pattern");
7020     }
7021     ++NumAutoVarInit;
7022   }
7023   return false;
7024 }
7025 
7026 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7027                                                     const Decl *D) const {
7028   // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7029   // postfix beginning with '.' since the symbol name can be demangled.
7030   if (LangOpts.HIP)
7031     OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7032   else
7033     OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7034 
7035   // If the CUID is not specified we try to generate a unique postfix.
7036   if (getLangOpts().CUID.empty()) {
7037     SourceManager &SM = getContext().getSourceManager();
7038     PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7039     assert(PLoc.isValid() && "Source location is expected to be valid.");
7040 
7041     // Get the hash of the user defined macros.
7042     llvm::MD5 Hash;
7043     llvm::MD5::MD5Result Result;
7044     for (const auto &Arg : PreprocessorOpts.Macros)
7045       Hash.update(Arg.first);
7046     Hash.final(Result);
7047 
7048     // Get the UniqueID for the file containing the decl.
7049     llvm::sys::fs::UniqueID ID;
7050     if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7051       PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7052       assert(PLoc.isValid() && "Source location is expected to be valid.");
7053       if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7054         SM.getDiagnostics().Report(diag::err_cannot_open_file)
7055             << PLoc.getFilename() << EC.message();
7056     }
7057     OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7058        << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7059   } else {
7060     OS << getContext().getCUIDHash();
7061   }
7062 }
7063 
7064 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7065   assert(DeferredDeclsToEmit.empty() &&
7066          "Should have emitted all decls deferred to emit.");
7067   assert(NewBuilder->DeferredDecls.empty() &&
7068          "Newly created module should not have deferred decls");
7069   NewBuilder->DeferredDecls = std::move(DeferredDecls);
7070 
7071   assert(NewBuilder->DeferredVTables.empty() &&
7072          "Newly created module should not have deferred vtables");
7073   NewBuilder->DeferredVTables = std::move(DeferredVTables);
7074 
7075   assert(NewBuilder->MangledDeclNames.empty() &&
7076          "Newly created module should not have mangled decl names");
7077   assert(NewBuilder->Manglings.empty() &&
7078          "Newly created module should not have manglings");
7079   NewBuilder->Manglings = std::move(Manglings);
7080 
7081   assert(WeakRefReferences.empty() && "Not all WeakRefRefs have been applied");
7082   NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7083 
7084   NewBuilder->TBAA = std::move(TBAA);
7085 
7086   assert(NewBuilder->EmittedDeferredDecls.empty() &&
7087          "Still have (unmerged) EmittedDeferredDecls deferred decls");
7088 
7089   NewBuilder->EmittedDeferredDecls = std::move(EmittedDeferredDecls);
7090 
7091   NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7092 }
7093