1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This coordinates the per-module state used while generating code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenModule.h" 14 #include "ABIInfo.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGHLSLRuntime.h" 21 #include "CGObjCRuntime.h" 22 #include "CGOpenCLRuntime.h" 23 #include "CGOpenMPRuntime.h" 24 #include "CGOpenMPRuntimeGPU.h" 25 #include "CodeGenFunction.h" 26 #include "CodeGenPGO.h" 27 #include "ConstantEmitter.h" 28 #include "CoverageMappingGen.h" 29 #include "TargetInfo.h" 30 #include "clang/AST/ASTContext.h" 31 #include "clang/AST/ASTLambda.h" 32 #include "clang/AST/CharUnits.h" 33 #include "clang/AST/DeclCXX.h" 34 #include "clang/AST/DeclObjC.h" 35 #include "clang/AST/DeclTemplate.h" 36 #include "clang/AST/Mangle.h" 37 #include "clang/AST/RecursiveASTVisitor.h" 38 #include "clang/AST/StmtVisitor.h" 39 #include "clang/Basic/Builtins.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/CodeGenOptions.h" 42 #include "clang/Basic/Diagnostic.h" 43 #include "clang/Basic/FileManager.h" 44 #include "clang/Basic/Module.h" 45 #include "clang/Basic/SourceManager.h" 46 #include "clang/Basic/TargetInfo.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/CodeGen/BackendUtil.h" 49 #include "clang/CodeGen/ConstantInitBuilder.h" 50 #include "clang/Frontend/FrontendDiagnostic.h" 51 #include "llvm/ADT/STLExtras.h" 52 #include "llvm/ADT/StringExtras.h" 53 #include "llvm/ADT/StringSwitch.h" 54 #include "llvm/Analysis/TargetLibraryInfo.h" 55 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 56 #include "llvm/IR/AttributeMask.h" 57 #include "llvm/IR/CallingConv.h" 58 #include "llvm/IR/DataLayout.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/LLVMContext.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/ProfileSummary.h" 63 #include "llvm/ProfileData/InstrProfReader.h" 64 #include "llvm/ProfileData/SampleProf.h" 65 #include "llvm/Support/CRC.h" 66 #include "llvm/Support/CodeGen.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/ConvertUTF.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/TimeProfiler.h" 71 #include "llvm/Support/xxhash.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include "llvm/TargetParser/X86TargetParser.h" 74 #include <optional> 75 76 using namespace clang; 77 using namespace CodeGen; 78 79 static llvm::cl::opt<bool> LimitedCoverage( 80 "limited-coverage-experimental", llvm::cl::Hidden, 81 llvm::cl::desc("Emit limited coverage mapping information (experimental)")); 82 83 static const char AnnotationSection[] = "llvm.metadata"; 84 85 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 86 switch (CGM.getContext().getCXXABIKind()) { 87 case TargetCXXABI::AppleARM64: 88 case TargetCXXABI::Fuchsia: 89 case TargetCXXABI::GenericAArch64: 90 case TargetCXXABI::GenericARM: 91 case TargetCXXABI::iOS: 92 case TargetCXXABI::WatchOS: 93 case TargetCXXABI::GenericMIPS: 94 case TargetCXXABI::GenericItanium: 95 case TargetCXXABI::WebAssembly: 96 case TargetCXXABI::XL: 97 return CreateItaniumCXXABI(CGM); 98 case TargetCXXABI::Microsoft: 99 return CreateMicrosoftCXXABI(CGM); 100 } 101 102 llvm_unreachable("invalid C++ ABI kind"); 103 } 104 105 static std::unique_ptr<TargetCodeGenInfo> 106 createTargetCodeGenInfo(CodeGenModule &CGM) { 107 const TargetInfo &Target = CGM.getTarget(); 108 const llvm::Triple &Triple = Target.getTriple(); 109 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); 110 111 switch (Triple.getArch()) { 112 default: 113 return createDefaultTargetCodeGenInfo(CGM); 114 115 case llvm::Triple::le32: 116 return createPNaClTargetCodeGenInfo(CGM); 117 case llvm::Triple::m68k: 118 return createM68kTargetCodeGenInfo(CGM); 119 case llvm::Triple::mips: 120 case llvm::Triple::mipsel: 121 if (Triple.getOS() == llvm::Triple::NaCl) 122 return createPNaClTargetCodeGenInfo(CGM); 123 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); 124 125 case llvm::Triple::mips64: 126 case llvm::Triple::mips64el: 127 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); 128 129 case llvm::Triple::avr: { 130 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used 131 // on avrtiny. For passing return value, R18~R25 are used on avr, and 132 // R22~R25 are used on avrtiny. 133 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; 134 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; 135 return createAVRTargetCodeGenInfo(CGM, NPR, NRR); 136 } 137 138 case llvm::Triple::aarch64: 139 case llvm::Triple::aarch64_32: 140 case llvm::Triple::aarch64_be: { 141 AArch64ABIKind Kind = AArch64ABIKind::AAPCS; 142 if (Target.getABI() == "darwinpcs") 143 Kind = AArch64ABIKind::DarwinPCS; 144 else if (Triple.isOSWindows()) 145 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); 146 147 return createAArch64TargetCodeGenInfo(CGM, Kind); 148 } 149 150 case llvm::Triple::wasm32: 151 case llvm::Triple::wasm64: { 152 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; 153 if (Target.getABI() == "experimental-mv") 154 Kind = WebAssemblyABIKind::ExperimentalMV; 155 return createWebAssemblyTargetCodeGenInfo(CGM, Kind); 156 } 157 158 case llvm::Triple::arm: 159 case llvm::Triple::armeb: 160 case llvm::Triple::thumb: 161 case llvm::Triple::thumbeb: { 162 if (Triple.getOS() == llvm::Triple::Win32) 163 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); 164 165 ARMABIKind Kind = ARMABIKind::AAPCS; 166 StringRef ABIStr = Target.getABI(); 167 if (ABIStr == "apcs-gnu") 168 Kind = ARMABIKind::APCS; 169 else if (ABIStr == "aapcs16") 170 Kind = ARMABIKind::AAPCS16_VFP; 171 else if (CodeGenOpts.FloatABI == "hard" || 172 (CodeGenOpts.FloatABI != "soft" && 173 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 174 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 175 Triple.getEnvironment() == llvm::Triple::EABIHF))) 176 Kind = ARMABIKind::AAPCS_VFP; 177 178 return createARMTargetCodeGenInfo(CGM, Kind); 179 } 180 181 case llvm::Triple::ppc: { 182 if (Triple.isOSAIX()) 183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); 184 185 bool IsSoftFloat = 186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); 187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 188 } 189 case llvm::Triple::ppcle: { 190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); 192 } 193 case llvm::Triple::ppc64: 194 if (Triple.isOSAIX()) 195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); 196 197 if (Triple.isOSBinFormatELF()) { 198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; 199 if (Target.getABI() == "elfv2") 200 Kind = PPC64_SVR4_ABIKind::ELFv2; 201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 202 203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 204 } 205 return createPPC64TargetCodeGenInfo(CGM); 206 case llvm::Triple::ppc64le: { 207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; 209 if (Target.getABI() == "elfv1") 210 Kind = PPC64_SVR4_ABIKind::ELFv1; 211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 212 213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); 214 } 215 216 case llvm::Triple::nvptx: 217 case llvm::Triple::nvptx64: 218 return createNVPTXTargetCodeGenInfo(CGM); 219 220 case llvm::Triple::msp430: 221 return createMSP430TargetCodeGenInfo(CGM); 222 223 case llvm::Triple::riscv32: 224 case llvm::Triple::riscv64: { 225 StringRef ABIStr = Target.getABI(); 226 unsigned XLen = Target.getPointerWidth(LangAS::Default); 227 unsigned ABIFLen = 0; 228 if (ABIStr.ends_with("f")) 229 ABIFLen = 32; 230 else if (ABIStr.ends_with("d")) 231 ABIFLen = 64; 232 bool EABI = ABIStr.ends_with("e"); 233 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); 234 } 235 236 case llvm::Triple::systemz: { 237 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 238 bool HasVector = !SoftFloat && Target.getABI() == "vector"; 239 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); 240 } 241 242 case llvm::Triple::tce: 243 case llvm::Triple::tcele: 244 return createTCETargetCodeGenInfo(CGM); 245 246 case llvm::Triple::x86: { 247 bool IsDarwinVectorABI = Triple.isOSDarwin(); 248 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 249 250 if (Triple.getOS() == llvm::Triple::Win32) { 251 return createWinX86_32TargetCodeGenInfo( 252 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 253 CodeGenOpts.NumRegisterParameters); 254 } 255 return createX86_32TargetCodeGenInfo( 256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI, 257 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); 258 } 259 260 case llvm::Triple::x86_64: { 261 StringRef ABI = Target.getABI(); 262 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 263 : ABI == "avx" ? X86AVXABILevel::AVX 264 : X86AVXABILevel::None); 265 266 switch (Triple.getOS()) { 267 case llvm::Triple::Win32: 268 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); 269 default: 270 return createX86_64TargetCodeGenInfo(CGM, AVXLevel); 271 } 272 } 273 case llvm::Triple::hexagon: 274 return createHexagonTargetCodeGenInfo(CGM); 275 case llvm::Triple::lanai: 276 return createLanaiTargetCodeGenInfo(CGM); 277 case llvm::Triple::r600: 278 return createAMDGPUTargetCodeGenInfo(CGM); 279 case llvm::Triple::amdgcn: 280 return createAMDGPUTargetCodeGenInfo(CGM); 281 case llvm::Triple::sparc: 282 return createSparcV8TargetCodeGenInfo(CGM); 283 case llvm::Triple::sparcv9: 284 return createSparcV9TargetCodeGenInfo(CGM); 285 case llvm::Triple::xcore: 286 return createXCoreTargetCodeGenInfo(CGM); 287 case llvm::Triple::arc: 288 return createARCTargetCodeGenInfo(CGM); 289 case llvm::Triple::spir: 290 case llvm::Triple::spir64: 291 return createCommonSPIRTargetCodeGenInfo(CGM); 292 case llvm::Triple::spirv32: 293 case llvm::Triple::spirv64: 294 return createSPIRVTargetCodeGenInfo(CGM); 295 case llvm::Triple::ve: 296 return createVETargetCodeGenInfo(CGM); 297 case llvm::Triple::csky: { 298 bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); 299 bool hasFP64 = 300 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); 301 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 302 : hasFP64 ? 64 303 : 32); 304 } 305 case llvm::Triple::bpfeb: 306 case llvm::Triple::bpfel: 307 return createBPFTargetCodeGenInfo(CGM); 308 case llvm::Triple::loongarch32: 309 case llvm::Triple::loongarch64: { 310 StringRef ABIStr = Target.getABI(); 311 unsigned ABIFRLen = 0; 312 if (ABIStr.ends_with("f")) 313 ABIFRLen = 32; 314 else if (ABIStr.ends_with("d")) 315 ABIFRLen = 64; 316 return createLoongArchTargetCodeGenInfo( 317 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); 318 } 319 } 320 } 321 322 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 323 if (!TheTargetCodeGenInfo) 324 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); 325 return *TheTargetCodeGenInfo; 326 } 327 328 CodeGenModule::CodeGenModule(ASTContext &C, 329 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS, 330 const HeaderSearchOptions &HSO, 331 const PreprocessorOptions &PPO, 332 const CodeGenOptions &CGO, llvm::Module &M, 333 DiagnosticsEngine &diags, 334 CoverageSourceInfo *CoverageInfo) 335 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), 336 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 337 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 338 VMContext(M.getContext()), Types(*this), VTables(*this), 339 SanitizerMD(new SanitizerMetadata(*this)) { 340 341 // Initialize the type cache. 342 llvm::LLVMContext &LLVMContext = M.getContext(); 343 VoidTy = llvm::Type::getVoidTy(LLVMContext); 344 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 345 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 346 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 347 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 348 HalfTy = llvm::Type::getHalfTy(LLVMContext); 349 BFloatTy = llvm::Type::getBFloatTy(LLVMContext); 350 FloatTy = llvm::Type::getFloatTy(LLVMContext); 351 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 352 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); 353 PointerAlignInBytes = 354 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) 355 .getQuantity(); 356 SizeSizeInBytes = 357 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 358 IntAlignInBytes = 359 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 360 CharTy = 361 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); 362 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 363 IntPtrTy = llvm::IntegerType::get(LLVMContext, 364 C.getTargetInfo().getMaxPointerWidth()); 365 Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); 366 const llvm::DataLayout &DL = M.getDataLayout(); 367 AllocaInt8PtrTy = 368 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); 369 GlobalsInt8PtrTy = 370 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); 371 ConstGlobalsPtrTy = llvm::PointerType::get( 372 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); 373 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 374 375 // Build C++20 Module initializers. 376 // TODO: Add Microsoft here once we know the mangling required for the 377 // initializers. 378 CXX20ModuleInits = 379 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == 380 ItaniumMangleContext::MK_Itanium; 381 382 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 383 384 if (LangOpts.ObjC) 385 createObjCRuntime(); 386 if (LangOpts.OpenCL) 387 createOpenCLRuntime(); 388 if (LangOpts.OpenMP) 389 createOpenMPRuntime(); 390 if (LangOpts.CUDA) 391 createCUDARuntime(); 392 if (LangOpts.HLSL) 393 createHLSLRuntime(); 394 395 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 396 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 397 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 398 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 399 getCXXABI().getMangleContext())); 400 401 // If debug info or coverage generation is enabled, create the CGDebugInfo 402 // object. 403 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || 404 CodeGenOpts.CoverageNotesFile.size() || 405 CodeGenOpts.CoverageDataFile.size()) 406 DebugInfo.reset(new CGDebugInfo(*this)); 407 408 Block.GlobalUniqueCount = 0; 409 410 if (C.getLangOpts().ObjC) 411 ObjCData.reset(new ObjCEntrypoints()); 412 413 if (CodeGenOpts.hasProfileClangUse()) { 414 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 415 CodeGenOpts.ProfileInstrumentUsePath, *FS, 416 CodeGenOpts.ProfileRemappingFile); 417 // We're checking for profile read errors in CompilerInvocation, so if 418 // there was an error it should've already been caught. If it hasn't been 419 // somehow, trip an assertion. 420 assert(ReaderOrErr); 421 PGOReader = std::move(ReaderOrErr.get()); 422 } 423 424 // If coverage mapping generation is enabled, create the 425 // CoverageMappingModuleGen object. 426 if (CodeGenOpts.CoverageMapping) 427 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 428 429 // Generate the module name hash here if needed. 430 if (CodeGenOpts.UniqueInternalLinkageNames && 431 !getModule().getSourceFileName().empty()) { 432 std::string Path = getModule().getSourceFileName(); 433 // Check if a path substitution is needed from the MacroPrefixMap. 434 for (const auto &Entry : LangOpts.MacroPrefixMap) 435 if (Path.rfind(Entry.first, 0) != std::string::npos) { 436 Path = Entry.second + Path.substr(Entry.first.size()); 437 break; 438 } 439 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); 440 } 441 } 442 443 CodeGenModule::~CodeGenModule() {} 444 445 void CodeGenModule::createObjCRuntime() { 446 // This is just isGNUFamily(), but we want to force implementors of 447 // new ABIs to decide how best to do this. 448 switch (LangOpts.ObjCRuntime.getKind()) { 449 case ObjCRuntime::GNUstep: 450 case ObjCRuntime::GCC: 451 case ObjCRuntime::ObjFW: 452 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 453 return; 454 455 case ObjCRuntime::FragileMacOSX: 456 case ObjCRuntime::MacOSX: 457 case ObjCRuntime::iOS: 458 case ObjCRuntime::WatchOS: 459 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 460 return; 461 } 462 llvm_unreachable("bad runtime kind"); 463 } 464 465 void CodeGenModule::createOpenCLRuntime() { 466 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 467 } 468 469 void CodeGenModule::createOpenMPRuntime() { 470 // Select a specialized code generation class based on the target, if any. 471 // If it does not exist use the default implementation. 472 switch (getTriple().getArch()) { 473 case llvm::Triple::nvptx: 474 case llvm::Triple::nvptx64: 475 case llvm::Triple::amdgcn: 476 assert(getLangOpts().OpenMPIsTargetDevice && 477 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); 478 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); 479 break; 480 default: 481 if (LangOpts.OpenMPSimd) 482 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 483 else 484 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 485 break; 486 } 487 } 488 489 void CodeGenModule::createCUDARuntime() { 490 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 491 } 492 493 void CodeGenModule::createHLSLRuntime() { 494 HLSLRuntime.reset(new CGHLSLRuntime(*this)); 495 } 496 497 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 498 Replacements[Name] = C; 499 } 500 501 void CodeGenModule::applyReplacements() { 502 for (auto &I : Replacements) { 503 StringRef MangledName = I.first; 504 llvm::Constant *Replacement = I.second; 505 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 506 if (!Entry) 507 continue; 508 auto *OldF = cast<llvm::Function>(Entry); 509 auto *NewF = dyn_cast<llvm::Function>(Replacement); 510 if (!NewF) { 511 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 512 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 513 } else { 514 auto *CE = cast<llvm::ConstantExpr>(Replacement); 515 assert(CE->getOpcode() == llvm::Instruction::BitCast || 516 CE->getOpcode() == llvm::Instruction::GetElementPtr); 517 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 518 } 519 } 520 521 // Replace old with new, but keep the old order. 522 OldF->replaceAllUsesWith(Replacement); 523 if (NewF) { 524 NewF->removeFromParent(); 525 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 526 NewF); 527 } 528 OldF->eraseFromParent(); 529 } 530 } 531 532 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 533 GlobalValReplacements.push_back(std::make_pair(GV, C)); 534 } 535 536 void CodeGenModule::applyGlobalValReplacements() { 537 for (auto &I : GlobalValReplacements) { 538 llvm::GlobalValue *GV = I.first; 539 llvm::Constant *C = I.second; 540 541 GV->replaceAllUsesWith(C); 542 GV->eraseFromParent(); 543 } 544 } 545 546 // This is only used in aliases that we created and we know they have a 547 // linear structure. 548 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { 549 const llvm::Constant *C; 550 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV)) 551 C = GA->getAliasee(); 552 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV)) 553 C = GI->getResolver(); 554 else 555 return GV; 556 557 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts()); 558 if (!AliaseeGV) 559 return nullptr; 560 561 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); 562 if (FinalGV == GV) 563 return nullptr; 564 565 return FinalGV; 566 } 567 568 static bool checkAliasedGlobal( 569 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, 570 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, 571 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames, 572 SourceRange AliasRange) { 573 GV = getAliasedGlobal(Alias); 574 if (!GV) { 575 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 576 return false; 577 } 578 579 if (GV->hasCommonLinkage()) { 580 const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); 581 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { 582 Diags.Report(Location, diag::err_alias_to_common); 583 return false; 584 } 585 } 586 587 if (GV->isDeclaration()) { 588 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; 589 Diags.Report(Location, diag::note_alias_requires_mangled_name) 590 << IsIFunc << IsIFunc; 591 // Provide a note if the given function is not found and exists as a 592 // mangled name. 593 for (const auto &[Decl, Name] : MangledDeclNames) { 594 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) { 595 if (ND->getName() == GV->getName()) { 596 Diags.Report(Location, diag::note_alias_mangled_name_alternative) 597 << Name 598 << FixItHint::CreateReplacement( 599 AliasRange, 600 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") 601 .str()); 602 } 603 } 604 } 605 return false; 606 } 607 608 if (IsIFunc) { 609 // Check resolver function type. 610 const auto *F = dyn_cast<llvm::Function>(GV); 611 if (!F) { 612 Diags.Report(Location, diag::err_alias_to_undefined) 613 << IsIFunc << IsIFunc; 614 return false; 615 } 616 617 llvm::FunctionType *FTy = F->getFunctionType(); 618 if (!FTy->getReturnType()->isPointerTy()) { 619 Diags.Report(Location, diag::err_ifunc_resolver_return); 620 return false; 621 } 622 } 623 624 return true; 625 } 626 627 void CodeGenModule::checkAliases() { 628 // Check if the constructed aliases are well formed. It is really unfortunate 629 // that we have to do this in CodeGen, but we only construct mangled names 630 // and aliases during codegen. 631 bool Error = false; 632 DiagnosticsEngine &Diags = getDiags(); 633 for (const GlobalDecl &GD : Aliases) { 634 const auto *D = cast<ValueDecl>(GD.getDecl()); 635 SourceLocation Location; 636 SourceRange Range; 637 bool IsIFunc = D->hasAttr<IFuncAttr>(); 638 if (const Attr *A = D->getDefiningAttr()) { 639 Location = A->getLocation(); 640 Range = A->getRange(); 641 } else 642 llvm_unreachable("Not an alias or ifunc?"); 643 644 StringRef MangledName = getMangledName(GD); 645 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 646 const llvm::GlobalValue *GV = nullptr; 647 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, 648 MangledDeclNames, Range)) { 649 Error = true; 650 continue; 651 } 652 653 llvm::Constant *Aliasee = 654 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver() 655 : cast<llvm::GlobalAlias>(Alias)->getAliasee(); 656 657 llvm::GlobalValue *AliaseeGV; 658 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 659 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 660 else 661 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 662 663 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 664 StringRef AliasSection = SA->getName(); 665 if (AliasSection != AliaseeGV->getSection()) 666 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 667 << AliasSection << IsIFunc << IsIFunc; 668 } 669 670 // We have to handle alias to weak aliases in here. LLVM itself disallows 671 // this since the object semantics would not match the IL one. For 672 // compatibility with gcc we implement it by just pointing the alias 673 // to its aliasee's aliasee. We also warn, since the user is probably 674 // expecting the link to be weak. 675 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) { 676 if (GA->isInterposable()) { 677 Diags.Report(Location, diag::warn_alias_to_weak_alias) 678 << GV->getName() << GA->getName() << IsIFunc; 679 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 680 GA->getAliasee(), Alias->getType()); 681 682 if (IsIFunc) 683 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee); 684 else 685 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee); 686 } 687 } 688 } 689 if (!Error) 690 return; 691 692 for (const GlobalDecl &GD : Aliases) { 693 StringRef MangledName = getMangledName(GD); 694 llvm::GlobalValue *Alias = GetGlobalValue(MangledName); 695 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 696 Alias->eraseFromParent(); 697 } 698 } 699 700 void CodeGenModule::clear() { 701 DeferredDeclsToEmit.clear(); 702 EmittedDeferredDecls.clear(); 703 DeferredAnnotations.clear(); 704 if (OpenMPRuntime) 705 OpenMPRuntime->clear(); 706 } 707 708 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 709 StringRef MainFile) { 710 if (!hasDiagnostics()) 711 return; 712 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 713 if (MainFile.empty()) 714 MainFile = "<stdin>"; 715 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 716 } else { 717 if (Mismatched > 0) 718 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 719 720 if (Missing > 0) 721 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 722 } 723 } 724 725 static std::optional<llvm::GlobalValue::VisibilityTypes> 726 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { 727 // Map to LLVM visibility. 728 switch (K) { 729 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: 730 return std::nullopt; 731 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: 732 return llvm::GlobalValue::DefaultVisibility; 733 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: 734 return llvm::GlobalValue::HiddenVisibility; 735 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: 736 return llvm::GlobalValue::ProtectedVisibility; 737 } 738 llvm_unreachable("unknown option value!"); 739 } 740 741 void setLLVMVisibility(llvm::GlobalValue &GV, 742 std::optional<llvm::GlobalValue::VisibilityTypes> V) { 743 if (!V) 744 return; 745 746 // Reset DSO locality before setting the visibility. This removes 747 // any effects that visibility options and annotations may have 748 // had on the DSO locality. Setting the visibility will implicitly set 749 // appropriate globals to DSO Local; however, this will be pessimistic 750 // w.r.t. to the normal compiler IRGen. 751 GV.setDSOLocal(false); 752 GV.setVisibility(*V); 753 } 754 755 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, 756 llvm::Module &M) { 757 if (!LO.VisibilityFromDLLStorageClass) 758 return; 759 760 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility = 761 getLLVMVisibility(LO.getDLLExportVisibility()); 762 763 std::optional<llvm::GlobalValue::VisibilityTypes> 764 NoDLLStorageClassVisibility = 765 getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); 766 767 std::optional<llvm::GlobalValue::VisibilityTypes> 768 ExternDeclDLLImportVisibility = 769 getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); 770 771 std::optional<llvm::GlobalValue::VisibilityTypes> 772 ExternDeclNoDLLStorageClassVisibility = 773 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); 774 775 for (llvm::GlobalValue &GV : M.global_values()) { 776 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) 777 continue; 778 779 if (GV.isDeclarationForLinker()) 780 setLLVMVisibility(GV, GV.getDLLStorageClass() == 781 llvm::GlobalValue::DLLImportStorageClass 782 ? ExternDeclDLLImportVisibility 783 : ExternDeclNoDLLStorageClassVisibility); 784 else 785 setLLVMVisibility(GV, GV.getDLLStorageClass() == 786 llvm::GlobalValue::DLLExportStorageClass 787 ? DLLExportVisibility 788 : NoDLLStorageClassVisibility); 789 790 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 791 } 792 } 793 794 static bool isStackProtectorOn(const LangOptions &LangOpts, 795 const llvm::Triple &Triple, 796 clang::LangOptions::StackProtectorMode Mode) { 797 if (Triple.isAMDGPU() || Triple.isNVPTX()) 798 return false; 799 return LangOpts.getStackProtector() == Mode; 800 } 801 802 void CodeGenModule::Release() { 803 Module *Primary = getContext().getCurrentNamedModule(); 804 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) 805 EmitModuleInitializers(Primary); 806 EmitDeferred(); 807 DeferredDecls.insert(EmittedDeferredDecls.begin(), 808 EmittedDeferredDecls.end()); 809 EmittedDeferredDecls.clear(); 810 EmitVTablesOpportunistically(); 811 applyGlobalValReplacements(); 812 applyReplacements(); 813 emitMultiVersionFunctions(); 814 815 if (Context.getLangOpts().IncrementalExtensions && 816 GlobalTopLevelStmtBlockInFlight.first) { 817 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; 818 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); 819 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; 820 } 821 822 // Module implementations are initialized the same way as a regular TU that 823 // imports one or more modules. 824 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) 825 EmitCXXModuleInitFunc(Primary); 826 else 827 EmitCXXGlobalInitFunc(); 828 EmitCXXGlobalCleanUpFunc(); 829 registerGlobalDtorsWithAtExit(); 830 EmitCXXThreadLocalInitFunc(); 831 if (ObjCRuntime) 832 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 833 AddGlobalCtor(ObjCInitFunction); 834 if (Context.getLangOpts().CUDA && CUDARuntime) { 835 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) 836 AddGlobalCtor(CudaCtorFunction); 837 } 838 if (OpenMPRuntime) { 839 if (llvm::Function *OpenMPRequiresDirectiveRegFun = 840 OpenMPRuntime->emitRequiresDirectiveRegFun()) { 841 AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); 842 } 843 OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); 844 OpenMPRuntime->clear(); 845 } 846 if (PGOReader) { 847 getModule().setProfileSummary( 848 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), 849 llvm::ProfileSummary::PSK_Instr); 850 if (PGOStats.hasDiagnostics()) 851 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 852 } 853 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { 854 return L.LexOrder < R.LexOrder; 855 }); 856 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 857 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 858 EmitGlobalAnnotations(); 859 EmitStaticExternCAliases(); 860 checkAliases(); 861 EmitDeferredUnusedCoverageMappings(); 862 CodeGenPGO(*this).setValueProfilingFlag(getModule()); 863 if (CoverageMapping) 864 CoverageMapping->emit(); 865 if (CodeGenOpts.SanitizeCfiCrossDso) { 866 CodeGenFunction(*this).EmitCfiCheckFail(); 867 CodeGenFunction(*this).EmitCfiCheckStub(); 868 } 869 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 870 finalizeKCFITypes(); 871 emitAtAvailableLinkGuard(); 872 if (Context.getTargetInfo().getTriple().isWasm()) 873 EmitMainVoidAlias(); 874 875 if (getTriple().isAMDGPU()) { 876 // Emit amdgpu_code_object_version module flag, which is code object version 877 // times 100. 878 if (getTarget().getTargetOpts().CodeObjectVersion != 879 llvm::CodeObjectVersionKind::COV_None) { 880 getModule().addModuleFlag(llvm::Module::Error, 881 "amdgpu_code_object_version", 882 getTarget().getTargetOpts().CodeObjectVersion); 883 } 884 885 // Currently, "-mprintf-kind" option is only supported for HIP 886 if (LangOpts.HIP) { 887 auto *MDStr = llvm::MDString::get( 888 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == 889 TargetOptions::AMDGPUPrintfKind::Hostcall) 890 ? "hostcall" 891 : "buffered"); 892 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", 893 MDStr); 894 } 895 } 896 897 // Emit a global array containing all external kernels or device variables 898 // used by host functions and mark it as used for CUDA/HIP. This is necessary 899 // to get kernels or device variables in archives linked in even if these 900 // kernels or device variables are only used in host functions. 901 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { 902 SmallVector<llvm::Constant *, 8> UsedArray; 903 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { 904 GlobalDecl GD; 905 if (auto *FD = dyn_cast<FunctionDecl>(D)) 906 GD = GlobalDecl(FD, KernelReferenceKind::Kernel); 907 else 908 GD = GlobalDecl(D); 909 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 910 GetAddrOfGlobal(GD), Int8PtrTy)); 911 } 912 913 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); 914 915 auto *GV = new llvm::GlobalVariable( 916 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, 917 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); 918 addCompilerUsedGlobal(GV); 919 } 920 921 emitLLVMUsed(); 922 if (SanStats) 923 SanStats->finish(); 924 925 if (CodeGenOpts.Autolink && 926 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 927 EmitModuleLinkOptions(); 928 } 929 930 // On ELF we pass the dependent library specifiers directly to the linker 931 // without manipulating them. This is in contrast to other platforms where 932 // they are mapped to a specific linker option by the compiler. This 933 // difference is a result of the greater variety of ELF linkers and the fact 934 // that ELF linkers tend to handle libraries in a more complicated fashion 935 // than on other platforms. This forces us to defer handling the dependent 936 // libs to the linker. 937 // 938 // CUDA/HIP device and host libraries are different. Currently there is no 939 // way to differentiate dependent libraries for host or device. Existing 940 // usage of #pragma comment(lib, *) is intended for host libraries on 941 // Windows. Therefore emit llvm.dependent-libraries only for host. 942 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { 943 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); 944 for (auto *MD : ELFDependentLibraries) 945 NMD->addOperand(MD); 946 } 947 948 // Record mregparm value now so it is visible through rest of codegen. 949 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 950 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 951 CodeGenOpts.NumRegisterParameters); 952 953 if (CodeGenOpts.DwarfVersion) { 954 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", 955 CodeGenOpts.DwarfVersion); 956 } 957 958 if (CodeGenOpts.Dwarf64) 959 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); 960 961 if (Context.getLangOpts().SemanticInterposition) 962 // Require various optimization to respect semantic interposition. 963 getModule().setSemanticInterposition(true); 964 965 if (CodeGenOpts.EmitCodeView) { 966 // Indicate that we want CodeView in the metadata. 967 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 968 } 969 if (CodeGenOpts.CodeViewGHash) { 970 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); 971 } 972 if (CodeGenOpts.ControlFlowGuard) { 973 // Function ID tables and checks for Control Flow Guard (cfguard=2). 974 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); 975 } else if (CodeGenOpts.ControlFlowGuardNoChecks) { 976 // Function ID tables for Control Flow Guard (cfguard=1). 977 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 978 } 979 if (CodeGenOpts.EHContGuard) { 980 // Function ID tables for EH Continuation Guard. 981 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); 982 } 983 if (Context.getLangOpts().Kernel) { 984 // Note if we are compiling with /kernel. 985 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); 986 } 987 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 988 // We don't support LTO with 2 with different StrictVTablePointers 989 // FIXME: we could support it by stripping all the information introduced 990 // by StrictVTablePointers. 991 992 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 993 994 llvm::Metadata *Ops[2] = { 995 llvm::MDString::get(VMContext, "StrictVTablePointers"), 996 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 997 llvm::Type::getInt32Ty(VMContext), 1))}; 998 999 getModule().addModuleFlag(llvm::Module::Require, 1000 "StrictVTablePointersRequirement", 1001 llvm::MDNode::get(VMContext, Ops)); 1002 } 1003 if (getModuleDebugInfo()) 1004 // We support a single version in the linked module. The LLVM 1005 // parser will drop debug info with a different version number 1006 // (and warn about it, too). 1007 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 1008 llvm::DEBUG_METADATA_VERSION); 1009 1010 // We need to record the widths of enums and wchar_t, so that we can generate 1011 // the correct build attributes in the ARM backend. wchar_size is also used by 1012 // TargetLibraryInfo. 1013 uint64_t WCharWidth = 1014 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 1015 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 1016 1017 if (getTriple().isOSzOS()) { 1018 getModule().addModuleFlag(llvm::Module::Warning, 1019 "zos_product_major_version", 1020 uint32_t(CLANG_VERSION_MAJOR)); 1021 getModule().addModuleFlag(llvm::Module::Warning, 1022 "zos_product_minor_version", 1023 uint32_t(CLANG_VERSION_MINOR)); 1024 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", 1025 uint32_t(CLANG_VERSION_PATCHLEVEL)); 1026 std::string ProductId = getClangVendor() + "clang"; 1027 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", 1028 llvm::MDString::get(VMContext, ProductId)); 1029 1030 // Record the language because we need it for the PPA2. 1031 StringRef lang_str = languageToString( 1032 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); 1033 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", 1034 llvm::MDString::get(VMContext, lang_str)); 1035 1036 time_t TT = PreprocessorOpts.SourceDateEpoch 1037 ? *PreprocessorOpts.SourceDateEpoch 1038 : std::time(nullptr); 1039 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", 1040 static_cast<uint64_t>(TT)); 1041 1042 // Multiple modes will be supported here. 1043 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", 1044 llvm::MDString::get(VMContext, "ascii")); 1045 } 1046 1047 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1048 if ( Arch == llvm::Triple::arm 1049 || Arch == llvm::Triple::armeb 1050 || Arch == llvm::Triple::thumb 1051 || Arch == llvm::Triple::thumbeb) { 1052 // The minimum width of an enum in bytes 1053 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 1054 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 1055 } 1056 1057 if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { 1058 StringRef ABIStr = Target.getABI(); 1059 llvm::LLVMContext &Ctx = TheModule.getContext(); 1060 getModule().addModuleFlag(llvm::Module::Error, "target-abi", 1061 llvm::MDString::get(Ctx, ABIStr)); 1062 } 1063 1064 if (CodeGenOpts.SanitizeCfiCrossDso) { 1065 // Indicate that we want cross-DSO control flow integrity checks. 1066 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 1067 } 1068 1069 if (CodeGenOpts.WholeProgramVTables) { 1070 // Indicate whether VFE was enabled for this module, so that the 1071 // vcall_visibility metadata added under whole program vtables is handled 1072 // appropriately in the optimizer. 1073 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", 1074 CodeGenOpts.VirtualFunctionElimination); 1075 } 1076 1077 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { 1078 getModule().addModuleFlag(llvm::Module::Override, 1079 "CFI Canonical Jump Tables", 1080 CodeGenOpts.SanitizeCfiCanonicalJumpTables); 1081 } 1082 1083 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { 1084 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); 1085 // KCFI assumes patchable-function-prefix is the same for all indirectly 1086 // called functions. Store the expected offset for code generation. 1087 if (CodeGenOpts.PatchableFunctionEntryOffset) 1088 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", 1089 CodeGenOpts.PatchableFunctionEntryOffset); 1090 } 1091 1092 if (CodeGenOpts.CFProtectionReturn && 1093 Target.checkCFProtectionReturnSupported(getDiags())) { 1094 // Indicate that we want to instrument return control flow protection. 1095 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1096 1); 1097 } 1098 1099 if (CodeGenOpts.CFProtectionBranch && 1100 Target.checkCFProtectionBranchSupported(getDiags())) { 1101 // Indicate that we want to instrument branch control flow protection. 1102 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1103 1); 1104 } 1105 1106 if (CodeGenOpts.FunctionReturnThunks) 1107 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); 1108 1109 if (CodeGenOpts.IndirectBranchCSPrefix) 1110 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); 1111 1112 // Add module metadata for return address signing (ignoring 1113 // non-leaf/all) and stack tagging. These are actually turned on by function 1114 // attributes, but we use module metadata to emit build attributes. This is 1115 // needed for LTO, where the function attributes are inside bitcode 1116 // serialised into a global variable by the time build attributes are 1117 // emitted, so we can't access them. LTO objects could be compiled with 1118 // different flags therefore module flags are set to "Min" behavior to achieve 1119 // the same end result of the normal build where e.g BTI is off if any object 1120 // doesn't support it. 1121 if (Context.getTargetInfo().hasFeature("ptrauth") && 1122 LangOpts.getSignReturnAddressScope() != 1123 LangOptions::SignReturnAddressScopeKind::None) 1124 getModule().addModuleFlag(llvm::Module::Override, 1125 "sign-return-address-buildattr", 1); 1126 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) 1127 getModule().addModuleFlag(llvm::Module::Override, 1128 "tag-stack-memory-buildattr", 1); 1129 1130 if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || 1131 Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || 1132 Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || 1133 Arch == llvm::Triple::aarch64_be) { 1134 if (LangOpts.BranchTargetEnforcement) 1135 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1136 1); 1137 if (LangOpts.BranchProtectionPAuthLR) 1138 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1139 1); 1140 if (LangOpts.GuardedControlStack) 1141 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); 1142 if (LangOpts.hasSignReturnAddress()) 1143 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); 1144 if (LangOpts.isSignReturnAddressScopeAll()) 1145 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1146 1); 1147 if (!LangOpts.isSignReturnAddressWithAKey()) 1148 getModule().addModuleFlag(llvm::Module::Min, 1149 "sign-return-address-with-bkey", 1); 1150 } 1151 1152 if (CodeGenOpts.StackClashProtector) 1153 getModule().addModuleFlag( 1154 llvm::Module::Override, "probe-stack", 1155 llvm::MDString::get(TheModule.getContext(), "inline-asm")); 1156 1157 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 1158 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", 1159 CodeGenOpts.StackProbeSize); 1160 1161 if (!CodeGenOpts.MemoryProfileOutput.empty()) { 1162 llvm::LLVMContext &Ctx = TheModule.getContext(); 1163 getModule().addModuleFlag( 1164 llvm::Module::Error, "MemProfProfileFilename", 1165 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); 1166 } 1167 1168 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 1169 // Indicate whether __nvvm_reflect should be configured to flush denormal 1170 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 1171 // property.) 1172 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 1173 CodeGenOpts.FP32DenormalMode.Output != 1174 llvm::DenormalMode::IEEE); 1175 } 1176 1177 if (LangOpts.EHAsynch) 1178 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); 1179 1180 // Indicate whether this Module was compiled with -fopenmp 1181 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 1182 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); 1183 if (getLangOpts().OpenMPIsTargetDevice) 1184 getModule().addModuleFlag(llvm::Module::Max, "openmp-device", 1185 LangOpts.OpenMP); 1186 1187 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 1188 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { 1189 EmitOpenCLMetadata(); 1190 // Emit SPIR version. 1191 if (getTriple().isSPIR()) { 1192 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 1193 // opencl.spir.version named metadata. 1194 // C++ for OpenCL has a distinct mapping for version compatibility with 1195 // OpenCL. 1196 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1197 llvm::Metadata *SPIRVerElts[] = { 1198 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1199 Int32Ty, Version / 100)), 1200 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1201 Int32Ty, (Version / 100 > 1) ? 0 : 2))}; 1202 llvm::NamedMDNode *SPIRVerMD = 1203 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 1204 llvm::LLVMContext &Ctx = TheModule.getContext(); 1205 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 1206 } 1207 } 1208 1209 // HLSL related end of code gen work items. 1210 if (LangOpts.HLSL) 1211 getHLSLRuntime().finishCodeGen(); 1212 1213 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 1214 assert(PLevel < 3 && "Invalid PIC Level"); 1215 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 1216 if (Context.getLangOpts().PIE) 1217 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 1218 } 1219 1220 if (getCodeGenOpts().CodeModel.size() > 0) { 1221 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel) 1222 .Case("tiny", llvm::CodeModel::Tiny) 1223 .Case("small", llvm::CodeModel::Small) 1224 .Case("kernel", llvm::CodeModel::Kernel) 1225 .Case("medium", llvm::CodeModel::Medium) 1226 .Case("large", llvm::CodeModel::Large) 1227 .Default(~0u); 1228 if (CM != ~0u) { 1229 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM); 1230 getModule().setCodeModel(codeModel); 1231 1232 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && 1233 Context.getTargetInfo().getTriple().getArch() == 1234 llvm::Triple::x86_64) { 1235 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); 1236 } 1237 } 1238 } 1239 1240 if (CodeGenOpts.NoPLT) 1241 getModule().setRtLibUseGOT(); 1242 if (getTriple().isOSBinFormatELF() && 1243 CodeGenOpts.DirectAccessExternalData != 1244 getModule().getDirectAccessExternalData()) { 1245 getModule().setDirectAccessExternalData( 1246 CodeGenOpts.DirectAccessExternalData); 1247 } 1248 if (CodeGenOpts.UnwindTables) 1249 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 1250 1251 switch (CodeGenOpts.getFramePointer()) { 1252 case CodeGenOptions::FramePointerKind::None: 1253 // 0 ("none") is the default. 1254 break; 1255 case CodeGenOptions::FramePointerKind::NonLeaf: 1256 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); 1257 break; 1258 case CodeGenOptions::FramePointerKind::All: 1259 getModule().setFramePointer(llvm::FramePointerKind::All); 1260 break; 1261 } 1262 1263 SimplifyPersonality(); 1264 1265 if (getCodeGenOpts().EmitDeclMetadata) 1266 EmitDeclMetadata(); 1267 1268 if (getCodeGenOpts().CoverageNotesFile.size() || 1269 getCodeGenOpts().CoverageDataFile.size()) 1270 EmitCoverageFile(); 1271 1272 if (CGDebugInfo *DI = getModuleDebugInfo()) 1273 DI->finalize(); 1274 1275 if (getCodeGenOpts().EmitVersionIdentMetadata) 1276 EmitVersionIdentMetadata(); 1277 1278 if (!getCodeGenOpts().RecordCommandLine.empty()) 1279 EmitCommandLineMetadata(); 1280 1281 if (!getCodeGenOpts().StackProtectorGuard.empty()) 1282 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); 1283 if (!getCodeGenOpts().StackProtectorGuardReg.empty()) 1284 getModule().setStackProtectorGuardReg( 1285 getCodeGenOpts().StackProtectorGuardReg); 1286 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) 1287 getModule().setStackProtectorGuardSymbol( 1288 getCodeGenOpts().StackProtectorGuardSymbol); 1289 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) 1290 getModule().setStackProtectorGuardOffset( 1291 getCodeGenOpts().StackProtectorGuardOffset); 1292 if (getCodeGenOpts().StackAlignment) 1293 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); 1294 if (getCodeGenOpts().SkipRaxSetup) 1295 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); 1296 if (getLangOpts().RegCall4) 1297 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); 1298 1299 if (getContext().getTargetInfo().getMaxTLSAlign()) 1300 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", 1301 getContext().getTargetInfo().getMaxTLSAlign()); 1302 1303 getTargetCodeGenInfo().emitTargetGlobals(*this); 1304 1305 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); 1306 1307 EmitBackendOptionsMetadata(getCodeGenOpts()); 1308 1309 // If there is device offloading code embed it in the host now. 1310 EmbedObject(&getModule(), CodeGenOpts, getDiags()); 1311 1312 // Set visibility from DLL storage class 1313 // We do this at the end of LLVM IR generation; after any operation 1314 // that might affect the DLL storage class or the visibility, and 1315 // before anything that might act on these. 1316 setVisibilityFromDLLStorageClass(LangOpts, getModule()); 1317 } 1318 1319 void CodeGenModule::EmitOpenCLMetadata() { 1320 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 1321 // opencl.ocl.version named metadata node. 1322 // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. 1323 auto Version = LangOpts.getOpenCLCompatibleVersion(); 1324 llvm::Metadata *OCLVerElts[] = { 1325 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1326 Int32Ty, Version / 100)), 1327 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1328 Int32Ty, (Version % 100) / 10))}; 1329 llvm::NamedMDNode *OCLVerMD = 1330 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 1331 llvm::LLVMContext &Ctx = TheModule.getContext(); 1332 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 1333 } 1334 1335 void CodeGenModule::EmitBackendOptionsMetadata( 1336 const CodeGenOptions &CodeGenOpts) { 1337 if (getTriple().isRISCV()) { 1338 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", 1339 CodeGenOpts.SmallDataLimit); 1340 } 1341 } 1342 1343 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 1344 // Make sure that this type is translated. 1345 Types.UpdateCompletedType(TD); 1346 } 1347 1348 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 1349 // Make sure that this type is translated. 1350 Types.RefreshTypeCacheForClass(RD); 1351 } 1352 1353 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 1354 if (!TBAA) 1355 return nullptr; 1356 return TBAA->getTypeInfo(QTy); 1357 } 1358 1359 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 1360 if (!TBAA) 1361 return TBAAAccessInfo(); 1362 if (getLangOpts().CUDAIsDevice) { 1363 // As CUDA builtin surface/texture types are replaced, skip generating TBAA 1364 // access info. 1365 if (AccessType->isCUDADeviceBuiltinSurfaceType()) { 1366 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != 1367 nullptr) 1368 return TBAAAccessInfo(); 1369 } else if (AccessType->isCUDADeviceBuiltinTextureType()) { 1370 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != 1371 nullptr) 1372 return TBAAAccessInfo(); 1373 } 1374 } 1375 return TBAA->getAccessInfo(AccessType); 1376 } 1377 1378 TBAAAccessInfo 1379 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 1380 if (!TBAA) 1381 return TBAAAccessInfo(); 1382 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 1383 } 1384 1385 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 1386 if (!TBAA) 1387 return nullptr; 1388 return TBAA->getTBAAStructInfo(QTy); 1389 } 1390 1391 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 1392 if (!TBAA) 1393 return nullptr; 1394 return TBAA->getBaseTypeInfo(QTy); 1395 } 1396 1397 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 1398 if (!TBAA) 1399 return nullptr; 1400 return TBAA->getAccessTagInfo(Info); 1401 } 1402 1403 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 1404 TBAAAccessInfo TargetInfo) { 1405 if (!TBAA) 1406 return TBAAAccessInfo(); 1407 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 1408 } 1409 1410 TBAAAccessInfo 1411 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 1412 TBAAAccessInfo InfoB) { 1413 if (!TBAA) 1414 return TBAAAccessInfo(); 1415 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 1416 } 1417 1418 TBAAAccessInfo 1419 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 1420 TBAAAccessInfo SrcInfo) { 1421 if (!TBAA) 1422 return TBAAAccessInfo(); 1423 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 1424 } 1425 1426 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 1427 TBAAAccessInfo TBAAInfo) { 1428 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 1429 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 1430 } 1431 1432 void CodeGenModule::DecorateInstructionWithInvariantGroup( 1433 llvm::Instruction *I, const CXXRecordDecl *RD) { 1434 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 1435 llvm::MDNode::get(getLLVMContext(), {})); 1436 } 1437 1438 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 1439 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 1440 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 1441 } 1442 1443 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1444 /// specified stmt yet. 1445 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 1446 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1447 "cannot compile this %0 yet"); 1448 std::string Msg = Type; 1449 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) 1450 << Msg << S->getSourceRange(); 1451 } 1452 1453 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1454 /// specified decl yet. 1455 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 1456 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 1457 "cannot compile this %0 yet"); 1458 std::string Msg = Type; 1459 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 1460 } 1461 1462 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 1463 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 1464 } 1465 1466 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 1467 const NamedDecl *D) const { 1468 // Internal definitions always have default visibility. 1469 if (GV->hasLocalLinkage()) { 1470 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1471 return; 1472 } 1473 if (!D) 1474 return; 1475 1476 // Set visibility for definitions, and for declarations if requested globally 1477 // or set explicitly. 1478 LinkageInfo LV = D->getLinkageAndVisibility(); 1479 1480 // OpenMP declare target variables must be visible to the host so they can 1481 // be registered. We require protected visibility unless the variable has 1482 // the DT_nohost modifier and does not need to be registered. 1483 if (Context.getLangOpts().OpenMP && 1484 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) && 1485 D->hasAttr<OMPDeclareTargetDeclAttr>() && 1486 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() != 1487 OMPDeclareTargetDeclAttr::DT_NoHost && 1488 LV.getVisibility() == HiddenVisibility) { 1489 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 1490 return; 1491 } 1492 1493 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { 1494 // Reject incompatible dlllstorage and visibility annotations. 1495 if (!LV.isVisibilityExplicit()) 1496 return; 1497 if (GV->hasDLLExportStorageClass()) { 1498 if (LV.getVisibility() == HiddenVisibility) 1499 getDiags().Report(D->getLocation(), 1500 diag::err_hidden_visibility_dllexport); 1501 } else if (LV.getVisibility() != DefaultVisibility) { 1502 getDiags().Report(D->getLocation(), 1503 diag::err_non_default_visibility_dllimport); 1504 } 1505 return; 1506 } 1507 1508 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || 1509 !GV->isDeclarationForLinker()) 1510 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 1511 } 1512 1513 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 1514 llvm::GlobalValue *GV) { 1515 if (GV->hasLocalLinkage()) 1516 return true; 1517 1518 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 1519 return true; 1520 1521 // DLLImport explicitly marks the GV as external. 1522 if (GV->hasDLLImportStorageClass()) 1523 return false; 1524 1525 const llvm::Triple &TT = CGM.getTriple(); 1526 const auto &CGOpts = CGM.getCodeGenOpts(); 1527 if (TT.isWindowsGNUEnvironment()) { 1528 // In MinGW, variables without DLLImport can still be automatically 1529 // imported from a DLL by the linker; don't mark variables that 1530 // potentially could come from another DLL as DSO local. 1531 1532 // With EmulatedTLS, TLS variables can be autoimported from other DLLs 1533 // (and this actually happens in the public interface of libstdc++), so 1534 // such variables can't be marked as DSO local. (Native TLS variables 1535 // can't be dllimported at all, though.) 1536 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) && 1537 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && 1538 CGOpts.AutoImport) 1539 return false; 1540 } 1541 1542 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols 1543 // remain unresolved in the link, they can be resolved to zero, which is 1544 // outside the current DSO. 1545 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) 1546 return false; 1547 1548 // Every other GV is local on COFF. 1549 // Make an exception for windows OS in the triple: Some firmware builds use 1550 // *-win32-macho triples. This (accidentally?) produced windows relocations 1551 // without GOT tables in older clang versions; Keep this behaviour. 1552 // FIXME: even thread local variables? 1553 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 1554 return true; 1555 1556 // Only handle COFF and ELF for now. 1557 if (!TT.isOSBinFormatELF()) 1558 return false; 1559 1560 // If this is not an executable, don't assume anything is local. 1561 llvm::Reloc::Model RM = CGOpts.RelocationModel; 1562 const auto &LOpts = CGM.getLangOpts(); 1563 if (RM != llvm::Reloc::Static && !LOpts.PIE) { 1564 // On ELF, if -fno-semantic-interposition is specified and the target 1565 // supports local aliases, there will be neither CC1 1566 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set 1567 // dso_local on the function if using a local alias is preferable (can avoid 1568 // PLT indirection). 1569 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias())) 1570 return false; 1571 return !(CGM.getLangOpts().SemanticInterposition || 1572 CGM.getLangOpts().HalfNoSemanticInterposition); 1573 } 1574 1575 // A definition cannot be preempted from an executable. 1576 if (!GV->isDeclarationForLinker()) 1577 return true; 1578 1579 // Most PIC code sequences that assume that a symbol is local cannot produce a 1580 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 1581 // depended, it seems worth it to handle it here. 1582 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 1583 return false; 1584 1585 // PowerPC64 prefers TOC indirection to avoid copy relocations. 1586 if (TT.isPPC64()) 1587 return false; 1588 1589 if (CGOpts.DirectAccessExternalData) { 1590 // If -fdirect-access-external-data (default for -fno-pic), set dso_local 1591 // for non-thread-local variables. If the symbol is not defined in the 1592 // executable, a copy relocation will be needed at link time. dso_local is 1593 // excluded for thread-local variables because they generally don't support 1594 // copy relocations. 1595 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 1596 if (!Var->isThreadLocal()) 1597 return true; 1598 1599 // -fno-pic sets dso_local on a function declaration to allow direct 1600 // accesses when taking its address (similar to a data symbol). If the 1601 // function is not defined in the executable, a canonical PLT entry will be 1602 // needed at link time. -fno-direct-access-external-data can avoid the 1603 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as 1604 // it could just cause trouble without providing perceptible benefits. 1605 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 1606 return true; 1607 } 1608 1609 // If we can use copy relocations we can assume it is local. 1610 1611 // Otherwise don't assume it is local. 1612 return false; 1613 } 1614 1615 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 1616 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 1617 } 1618 1619 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1620 GlobalDecl GD) const { 1621 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 1622 // C++ destructors have a few C++ ABI specific special cases. 1623 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 1624 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 1625 return; 1626 } 1627 setDLLImportDLLExport(GV, D); 1628 } 1629 1630 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 1631 const NamedDecl *D) const { 1632 if (D && D->isExternallyVisible()) { 1633 if (D->hasAttr<DLLImportAttr>()) 1634 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 1635 else if ((D->hasAttr<DLLExportAttr>() || 1636 shouldMapVisibilityToDLLExport(D)) && 1637 !GV->isDeclarationForLinker()) 1638 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 1639 } 1640 } 1641 1642 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1643 GlobalDecl GD) const { 1644 setDLLImportDLLExport(GV, GD); 1645 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl())); 1646 } 1647 1648 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 1649 const NamedDecl *D) const { 1650 setDLLImportDLLExport(GV, D); 1651 setGVPropertiesAux(GV, D); 1652 } 1653 1654 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, 1655 const NamedDecl *D) const { 1656 setGlobalVisibility(GV, D); 1657 setDSOLocal(GV); 1658 GV->setPartition(CodeGenOpts.SymbolPartition); 1659 } 1660 1661 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 1662 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 1663 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 1664 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 1665 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 1666 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 1667 } 1668 1669 llvm::GlobalVariable::ThreadLocalMode 1670 CodeGenModule::GetDefaultLLVMTLSModel() const { 1671 switch (CodeGenOpts.getDefaultTLSModel()) { 1672 case CodeGenOptions::GeneralDynamicTLSModel: 1673 return llvm::GlobalVariable::GeneralDynamicTLSModel; 1674 case CodeGenOptions::LocalDynamicTLSModel: 1675 return llvm::GlobalVariable::LocalDynamicTLSModel; 1676 case CodeGenOptions::InitialExecTLSModel: 1677 return llvm::GlobalVariable::InitialExecTLSModel; 1678 case CodeGenOptions::LocalExecTLSModel: 1679 return llvm::GlobalVariable::LocalExecTLSModel; 1680 } 1681 llvm_unreachable("Invalid TLS model!"); 1682 } 1683 1684 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 1685 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 1686 1687 llvm::GlobalValue::ThreadLocalMode TLM; 1688 TLM = GetDefaultLLVMTLSModel(); 1689 1690 // Override the TLS model if it is explicitly specified. 1691 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 1692 TLM = GetLLVMTLSModel(Attr->getModel()); 1693 } 1694 1695 GV->setThreadLocalMode(TLM); 1696 } 1697 1698 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 1699 StringRef Name) { 1700 const TargetInfo &Target = CGM.getTarget(); 1701 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 1702 } 1703 1704 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 1705 const CPUSpecificAttr *Attr, 1706 unsigned CPUIndex, 1707 raw_ostream &Out) { 1708 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is 1709 // supported. 1710 if (Attr) 1711 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); 1712 else if (CGM.getTarget().supportsIFunc()) 1713 Out << ".resolver"; 1714 } 1715 1716 static void AppendTargetVersionMangling(const CodeGenModule &CGM, 1717 const TargetVersionAttr *Attr, 1718 raw_ostream &Out) { 1719 if (Attr->isDefaultVersion()) 1720 return; 1721 Out << "._"; 1722 const TargetInfo &TI = CGM.getTarget(); 1723 llvm::SmallVector<StringRef, 8> Feats; 1724 Attr->getFeatures(Feats); 1725 llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { 1726 return TI.multiVersionSortPriority(FeatL) < 1727 TI.multiVersionSortPriority(FeatR); 1728 }); 1729 for (const auto &Feat : Feats) { 1730 Out << 'M'; 1731 Out << Feat; 1732 } 1733 } 1734 1735 static void AppendTargetMangling(const CodeGenModule &CGM, 1736 const TargetAttr *Attr, raw_ostream &Out) { 1737 if (Attr->isDefaultVersion()) 1738 return; 1739 1740 Out << '.'; 1741 const TargetInfo &Target = CGM.getTarget(); 1742 ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); 1743 llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { 1744 // Multiversioning doesn't allow "no-${feature}", so we can 1745 // only have "+" prefixes here. 1746 assert(LHS.starts_with("+") && RHS.starts_with("+") && 1747 "Features should always have a prefix."); 1748 return Target.multiVersionSortPriority(LHS.substr(1)) > 1749 Target.multiVersionSortPriority(RHS.substr(1)); 1750 }); 1751 1752 bool IsFirst = true; 1753 1754 if (!Info.CPU.empty()) { 1755 IsFirst = false; 1756 Out << "arch_" << Info.CPU; 1757 } 1758 1759 for (StringRef Feat : Info.Features) { 1760 if (!IsFirst) 1761 Out << '_'; 1762 IsFirst = false; 1763 Out << Feat.substr(1); 1764 } 1765 } 1766 1767 // Returns true if GD is a function decl with internal linkage and 1768 // needs a unique suffix after the mangled name. 1769 static bool isUniqueInternalLinkageDecl(GlobalDecl GD, 1770 CodeGenModule &CGM) { 1771 const Decl *D = GD.getDecl(); 1772 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) && 1773 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); 1774 } 1775 1776 static void AppendTargetClonesMangling(const CodeGenModule &CGM, 1777 const TargetClonesAttr *Attr, 1778 unsigned VersionIndex, 1779 raw_ostream &Out) { 1780 const TargetInfo &TI = CGM.getTarget(); 1781 if (TI.getTriple().isAArch64()) { 1782 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1783 if (FeatureStr == "default") 1784 return; 1785 Out << "._"; 1786 SmallVector<StringRef, 8> Features; 1787 FeatureStr.split(Features, "+"); 1788 llvm::stable_sort(Features, 1789 [&TI](const StringRef FeatL, const StringRef FeatR) { 1790 return TI.multiVersionSortPriority(FeatL) < 1791 TI.multiVersionSortPriority(FeatR); 1792 }); 1793 for (auto &Feat : Features) { 1794 Out << 'M'; 1795 Out << Feat; 1796 } 1797 } else { 1798 Out << '.'; 1799 StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); 1800 if (FeatureStr.starts_with("arch=")) 1801 Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); 1802 else 1803 Out << FeatureStr; 1804 1805 Out << '.' << Attr->getMangledIndex(VersionIndex); 1806 } 1807 } 1808 1809 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, 1810 const NamedDecl *ND, 1811 bool OmitMultiVersionMangling = false) { 1812 SmallString<256> Buffer; 1813 llvm::raw_svector_ostream Out(Buffer); 1814 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 1815 if (!CGM.getModuleNameHash().empty()) 1816 MC.needsUniqueInternalLinkageNames(); 1817 bool ShouldMangle = MC.shouldMangleDeclName(ND); 1818 if (ShouldMangle) 1819 MC.mangleName(GD.getWithDecl(ND), Out); 1820 else { 1821 IdentifierInfo *II = ND->getIdentifier(); 1822 assert(II && "Attempt to mangle unnamed decl."); 1823 const auto *FD = dyn_cast<FunctionDecl>(ND); 1824 1825 if (FD && 1826 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 1827 if (CGM.getLangOpts().RegCall4) 1828 Out << "__regcall4__" << II->getName(); 1829 else 1830 Out << "__regcall3__" << II->getName(); 1831 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() && 1832 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { 1833 Out << "__device_stub__" << II->getName(); 1834 } else { 1835 Out << II->getName(); 1836 } 1837 } 1838 1839 // Check if the module name hash should be appended for internal linkage 1840 // symbols. This should come before multi-version target suffixes are 1841 // appended. This is to keep the name and module hash suffix of the 1842 // internal linkage function together. The unique suffix should only be 1843 // added when name mangling is done to make sure that the final name can 1844 // be properly demangled. For example, for C functions without prototypes, 1845 // name mangling is not done and the unique suffix should not be appeneded 1846 // then. 1847 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { 1848 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && 1849 "Hash computed when not explicitly requested"); 1850 Out << CGM.getModuleNameHash(); 1851 } 1852 1853 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 1854 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 1855 switch (FD->getMultiVersionKind()) { 1856 case MultiVersionKind::CPUDispatch: 1857 case MultiVersionKind::CPUSpecific: 1858 AppendCPUSpecificCPUDispatchMangling(CGM, 1859 FD->getAttr<CPUSpecificAttr>(), 1860 GD.getMultiVersionIndex(), Out); 1861 break; 1862 case MultiVersionKind::Target: 1863 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 1864 break; 1865 case MultiVersionKind::TargetVersion: 1866 AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out); 1867 break; 1868 case MultiVersionKind::TargetClones: 1869 AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(), 1870 GD.getMultiVersionIndex(), Out); 1871 break; 1872 case MultiVersionKind::None: 1873 llvm_unreachable("None multiversion type isn't valid here"); 1874 } 1875 } 1876 1877 // Make unique name for device side static file-scope variable for HIP. 1878 if (CGM.getContext().shouldExternalize(ND) && 1879 CGM.getLangOpts().GPURelocatableDeviceCode && 1880 CGM.getLangOpts().CUDAIsDevice) 1881 CGM.printPostfixForExternalizedDecl(Out, ND); 1882 1883 return std::string(Out.str()); 1884 } 1885 1886 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 1887 const FunctionDecl *FD, 1888 StringRef &CurName) { 1889 if (!FD->isMultiVersion()) 1890 return; 1891 1892 // Get the name of what this would be without the 'target' attribute. This 1893 // allows us to lookup the version that was emitted when this wasn't a 1894 // multiversion function. 1895 std::string NonTargetName = 1896 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 1897 GlobalDecl OtherGD; 1898 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 1899 assert(OtherGD.getCanonicalDecl() 1900 .getDecl() 1901 ->getAsFunction() 1902 ->isMultiVersion() && 1903 "Other GD should now be a multiversioned function"); 1904 // OtherFD is the version of this function that was mangled BEFORE 1905 // becoming a MultiVersion function. It potentially needs to be updated. 1906 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() 1907 .getDecl() 1908 ->getAsFunction() 1909 ->getMostRecentDecl(); 1910 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 1911 // This is so that if the initial version was already the 'default' 1912 // version, we don't try to update it. 1913 if (OtherName != NonTargetName) { 1914 // Remove instead of erase, since others may have stored the StringRef 1915 // to this. 1916 const auto ExistingRecord = Manglings.find(NonTargetName); 1917 if (ExistingRecord != std::end(Manglings)) 1918 Manglings.remove(&(*ExistingRecord)); 1919 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 1920 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = 1921 Result.first->first(); 1922 // If this is the current decl is being created, make sure we update the name. 1923 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) 1924 CurName = OtherNameRef; 1925 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 1926 Entry->setName(OtherName); 1927 } 1928 } 1929 } 1930 1931 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 1932 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 1933 1934 // Some ABIs don't have constructor variants. Make sure that base and 1935 // complete constructors get mangled the same. 1936 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 1937 if (!getTarget().getCXXABI().hasConstructorVariants()) { 1938 CXXCtorType OrigCtorType = GD.getCtorType(); 1939 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 1940 if (OrigCtorType == Ctor_Base) 1941 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 1942 } 1943 } 1944 1945 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a 1946 // static device variable depends on whether the variable is referenced by 1947 // a host or device host function. Therefore the mangled name cannot be 1948 // cached. 1949 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { 1950 auto FoundName = MangledDeclNames.find(CanonicalGD); 1951 if (FoundName != MangledDeclNames.end()) 1952 return FoundName->second; 1953 } 1954 1955 // Keep the first result in the case of a mangling collision. 1956 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1957 std::string MangledName = getMangledNameImpl(*this, GD, ND); 1958 1959 // Ensure either we have different ABIs between host and device compilations, 1960 // says host compilation following MSVC ABI but device compilation follows 1961 // Itanium C++ ABI or, if they follow the same ABI, kernel names after 1962 // mangling should be the same after name stubbing. The later checking is 1963 // very important as the device kernel name being mangled in host-compilation 1964 // is used to resolve the device binaries to be executed. Inconsistent naming 1965 // result in undefined behavior. Even though we cannot check that naming 1966 // directly between host- and device-compilations, the host- and 1967 // device-mangling in host compilation could help catching certain ones. 1968 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() || 1969 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || 1970 (getContext().getAuxTargetInfo() && 1971 (getContext().getAuxTargetInfo()->getCXXABI() != 1972 getContext().getTargetInfo().getCXXABI())) || 1973 getCUDARuntime().getDeviceSideName(ND) == 1974 getMangledNameImpl( 1975 *this, 1976 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), 1977 ND)); 1978 1979 auto Result = Manglings.insert(std::make_pair(MangledName, GD)); 1980 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1981 } 1982 1983 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1984 const BlockDecl *BD) { 1985 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1986 const Decl *D = GD.getDecl(); 1987 1988 SmallString<256> Buffer; 1989 llvm::raw_svector_ostream Out(Buffer); 1990 if (!D) 1991 MangleCtx.mangleGlobalBlock(BD, 1992 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1993 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1994 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1995 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1996 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1997 else 1998 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1999 2000 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 2001 return Result.first->first(); 2002 } 2003 2004 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { 2005 auto it = MangledDeclNames.begin(); 2006 while (it != MangledDeclNames.end()) { 2007 if (it->second == Name) 2008 return it->first; 2009 it++; 2010 } 2011 return GlobalDecl(); 2012 } 2013 2014 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 2015 return getModule().getNamedValue(Name); 2016 } 2017 2018 /// AddGlobalCtor - Add a function to the list that will be called before 2019 /// main() runs. 2020 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 2021 unsigned LexOrder, 2022 llvm::Constant *AssociatedData) { 2023 // FIXME: Type coercion of void()* types. 2024 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); 2025 } 2026 2027 /// AddGlobalDtor - Add a function to the list that will be called 2028 /// when the module is unloaded. 2029 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, 2030 bool IsDtorAttrFunc) { 2031 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && 2032 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { 2033 DtorsUsingAtExit[Priority].push_back(Dtor); 2034 return; 2035 } 2036 2037 // FIXME: Type coercion of void()* types. 2038 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); 2039 } 2040 2041 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 2042 if (Fns.empty()) return; 2043 2044 // Ctor function type is void()*. 2045 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 2046 llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, 2047 TheModule.getDataLayout().getProgramAddressSpace()); 2048 2049 // Get the type of a ctor entry, { i32, void ()*, i8* }. 2050 llvm::StructType *CtorStructTy = llvm::StructType::get( 2051 Int32Ty, CtorPFTy, VoidPtrTy); 2052 2053 // Construct the constructor and destructor arrays. 2054 ConstantInitBuilder builder(*this); 2055 auto ctors = builder.beginArray(CtorStructTy); 2056 for (const auto &I : Fns) { 2057 auto ctor = ctors.beginStruct(CtorStructTy); 2058 ctor.addInt(Int32Ty, I.Priority); 2059 ctor.add(I.Initializer); 2060 if (I.AssociatedData) 2061 ctor.add(I.AssociatedData); 2062 else 2063 ctor.addNullPointer(VoidPtrTy); 2064 ctor.finishAndAddTo(ctors); 2065 } 2066 2067 auto list = 2068 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 2069 /*constant*/ false, 2070 llvm::GlobalValue::AppendingLinkage); 2071 2072 // The LTO linker doesn't seem to like it when we set an alignment 2073 // on appending variables. Take it off as a workaround. 2074 list->setAlignment(std::nullopt); 2075 2076 Fns.clear(); 2077 } 2078 2079 llvm::GlobalValue::LinkageTypes 2080 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 2081 const auto *D = cast<FunctionDecl>(GD.getDecl()); 2082 2083 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 2084 2085 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 2086 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 2087 2088 return getLLVMLinkageForDeclarator(D, Linkage); 2089 } 2090 2091 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 2092 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 2093 if (!MDS) return nullptr; 2094 2095 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 2096 } 2097 2098 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { 2099 if (auto *FnType = T->getAs<FunctionProtoType>()) 2100 T = getContext().getFunctionType( 2101 FnType->getReturnType(), FnType->getParamTypes(), 2102 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 2103 2104 std::string OutName; 2105 llvm::raw_string_ostream Out(OutName); 2106 getCXXABI().getMangleContext().mangleCanonicalTypeName( 2107 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 2108 2109 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 2110 Out << ".normalized"; 2111 2112 return llvm::ConstantInt::get(Int32Ty, 2113 static_cast<uint32_t>(llvm::xxHash64(OutName))); 2114 } 2115 2116 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, 2117 const CGFunctionInfo &Info, 2118 llvm::Function *F, bool IsThunk) { 2119 unsigned CallingConv; 2120 llvm::AttributeList PAL; 2121 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, 2122 /*AttrOnCallSite=*/false, IsThunk); 2123 F->setAttributes(PAL); 2124 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 2125 } 2126 2127 static void removeImageAccessQualifier(std::string& TyName) { 2128 std::string ReadOnlyQual("__read_only"); 2129 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 2130 if (ReadOnlyPos != std::string::npos) 2131 // "+ 1" for the space after access qualifier. 2132 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 2133 else { 2134 std::string WriteOnlyQual("__write_only"); 2135 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 2136 if (WriteOnlyPos != std::string::npos) 2137 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 2138 else { 2139 std::string ReadWriteQual("__read_write"); 2140 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 2141 if (ReadWritePos != std::string::npos) 2142 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 2143 } 2144 } 2145 } 2146 2147 // Returns the address space id that should be produced to the 2148 // kernel_arg_addr_space metadata. This is always fixed to the ids 2149 // as specified in the SPIR 2.0 specification in order to differentiate 2150 // for example in clGetKernelArgInfo() implementation between the address 2151 // spaces with targets without unique mapping to the OpenCL address spaces 2152 // (basically all single AS CPUs). 2153 static unsigned ArgInfoAddressSpace(LangAS AS) { 2154 switch (AS) { 2155 case LangAS::opencl_global: 2156 return 1; 2157 case LangAS::opencl_constant: 2158 return 2; 2159 case LangAS::opencl_local: 2160 return 3; 2161 case LangAS::opencl_generic: 2162 return 4; // Not in SPIR 2.0 specs. 2163 case LangAS::opencl_global_device: 2164 return 5; 2165 case LangAS::opencl_global_host: 2166 return 6; 2167 default: 2168 return 0; // Assume private. 2169 } 2170 } 2171 2172 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, 2173 const FunctionDecl *FD, 2174 CodeGenFunction *CGF) { 2175 assert(((FD && CGF) || (!FD && !CGF)) && 2176 "Incorrect use - FD and CGF should either be both null or not!"); 2177 // Create MDNodes that represent the kernel arg metadata. 2178 // Each MDNode is a list in the form of "key", N number of values which is 2179 // the same number of values as their are kernel arguments. 2180 2181 const PrintingPolicy &Policy = Context.getPrintingPolicy(); 2182 2183 // MDNode for the kernel argument address space qualifiers. 2184 SmallVector<llvm::Metadata *, 8> addressQuals; 2185 2186 // MDNode for the kernel argument access qualifiers (images only). 2187 SmallVector<llvm::Metadata *, 8> accessQuals; 2188 2189 // MDNode for the kernel argument type names. 2190 SmallVector<llvm::Metadata *, 8> argTypeNames; 2191 2192 // MDNode for the kernel argument base type names. 2193 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 2194 2195 // MDNode for the kernel argument type qualifiers. 2196 SmallVector<llvm::Metadata *, 8> argTypeQuals; 2197 2198 // MDNode for the kernel argument names. 2199 SmallVector<llvm::Metadata *, 8> argNames; 2200 2201 if (FD && CGF) 2202 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 2203 const ParmVarDecl *parm = FD->getParamDecl(i); 2204 // Get argument name. 2205 argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); 2206 2207 if (!getLangOpts().OpenCL) 2208 continue; 2209 QualType ty = parm->getType(); 2210 std::string typeQuals; 2211 2212 // Get image and pipe access qualifier: 2213 if (ty->isImageType() || ty->isPipeType()) { 2214 const Decl *PDecl = parm; 2215 if (const auto *TD = ty->getAs<TypedefType>()) 2216 PDecl = TD->getDecl(); 2217 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 2218 if (A && A->isWriteOnly()) 2219 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); 2220 else if (A && A->isReadWrite()) 2221 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); 2222 else 2223 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); 2224 } else 2225 accessQuals.push_back(llvm::MDString::get(VMContext, "none")); 2226 2227 auto getTypeSpelling = [&](QualType Ty) { 2228 auto typeName = Ty.getUnqualifiedType().getAsString(Policy); 2229 2230 if (Ty.isCanonical()) { 2231 StringRef typeNameRef = typeName; 2232 // Turn "unsigned type" to "utype" 2233 if (typeNameRef.consume_front("unsigned ")) 2234 return std::string("u") + typeNameRef.str(); 2235 if (typeNameRef.consume_front("signed ")) 2236 return typeNameRef.str(); 2237 } 2238 2239 return typeName; 2240 }; 2241 2242 if (ty->isPointerType()) { 2243 QualType pointeeTy = ty->getPointeeType(); 2244 2245 // Get address qualifier. 2246 addressQuals.push_back( 2247 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( 2248 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 2249 2250 // Get argument type name. 2251 std::string typeName = getTypeSpelling(pointeeTy) + "*"; 2252 std::string baseTypeName = 2253 getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; 2254 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2255 argBaseTypeNames.push_back( 2256 llvm::MDString::get(VMContext, baseTypeName)); 2257 2258 // Get argument type qualifiers: 2259 if (ty.isRestrictQualified()) 2260 typeQuals = "restrict"; 2261 if (pointeeTy.isConstQualified() || 2262 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 2263 typeQuals += typeQuals.empty() ? "const" : " const"; 2264 if (pointeeTy.isVolatileQualified()) 2265 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 2266 } else { 2267 uint32_t AddrSpc = 0; 2268 bool isPipe = ty->isPipeType(); 2269 if (ty->isImageType() || isPipe) 2270 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 2271 2272 addressQuals.push_back( 2273 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); 2274 2275 // Get argument type name. 2276 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty; 2277 std::string typeName = getTypeSpelling(ty); 2278 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); 2279 2280 // Remove access qualifiers on images 2281 // (as they are inseparable from type in clang implementation, 2282 // but OpenCL spec provides a special query to get access qualifier 2283 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 2284 if (ty->isImageType()) { 2285 removeImageAccessQualifier(typeName); 2286 removeImageAccessQualifier(baseTypeName); 2287 } 2288 2289 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); 2290 argBaseTypeNames.push_back( 2291 llvm::MDString::get(VMContext, baseTypeName)); 2292 2293 if (isPipe) 2294 typeQuals = "pipe"; 2295 } 2296 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); 2297 } 2298 2299 if (getLangOpts().OpenCL) { 2300 Fn->setMetadata("kernel_arg_addr_space", 2301 llvm::MDNode::get(VMContext, addressQuals)); 2302 Fn->setMetadata("kernel_arg_access_qual", 2303 llvm::MDNode::get(VMContext, accessQuals)); 2304 Fn->setMetadata("kernel_arg_type", 2305 llvm::MDNode::get(VMContext, argTypeNames)); 2306 Fn->setMetadata("kernel_arg_base_type", 2307 llvm::MDNode::get(VMContext, argBaseTypeNames)); 2308 Fn->setMetadata("kernel_arg_type_qual", 2309 llvm::MDNode::get(VMContext, argTypeQuals)); 2310 } 2311 if (getCodeGenOpts().EmitOpenCLArgMetadata || 2312 getCodeGenOpts().HIPSaveKernelArgName) 2313 Fn->setMetadata("kernel_arg_name", 2314 llvm::MDNode::get(VMContext, argNames)); 2315 } 2316 2317 /// Determines whether the language options require us to model 2318 /// unwind exceptions. We treat -fexceptions as mandating this 2319 /// except under the fragile ObjC ABI with only ObjC exceptions 2320 /// enabled. This means, for example, that C with -fexceptions 2321 /// enables this. 2322 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 2323 // If exceptions are completely disabled, obviously this is false. 2324 if (!LangOpts.Exceptions) return false; 2325 2326 // If C++ exceptions are enabled, this is true. 2327 if (LangOpts.CXXExceptions) return true; 2328 2329 // If ObjC exceptions are enabled, this depends on the ABI. 2330 if (LangOpts.ObjCExceptions) { 2331 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 2332 } 2333 2334 return true; 2335 } 2336 2337 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 2338 const CXXMethodDecl *MD) { 2339 // Check that the type metadata can ever actually be used by a call. 2340 if (!CGM.getCodeGenOpts().LTOUnit || 2341 !CGM.HasHiddenLTOVisibility(MD->getParent())) 2342 return false; 2343 2344 // Only functions whose address can be taken with a member function pointer 2345 // need this sort of type metadata. 2346 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && 2347 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD); 2348 } 2349 2350 SmallVector<const CXXRecordDecl *, 0> 2351 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 2352 llvm::SetVector<const CXXRecordDecl *> MostBases; 2353 2354 std::function<void (const CXXRecordDecl *)> CollectMostBases; 2355 CollectMostBases = [&](const CXXRecordDecl *RD) { 2356 if (RD->getNumBases() == 0) 2357 MostBases.insert(RD); 2358 for (const CXXBaseSpecifier &B : RD->bases()) 2359 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 2360 }; 2361 CollectMostBases(RD); 2362 return MostBases.takeVector(); 2363 } 2364 2365 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 2366 llvm::Function *F) { 2367 llvm::AttrBuilder B(F->getContext()); 2368 2369 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables) 2370 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); 2371 2372 if (CodeGenOpts.StackClashProtector) 2373 B.addAttribute("probe-stack", "inline-asm"); 2374 2375 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) 2376 B.addAttribute("stack-probe-size", 2377 std::to_string(CodeGenOpts.StackProbeSize)); 2378 2379 if (!hasUnwindExceptions(LangOpts)) 2380 B.addAttribute(llvm::Attribute::NoUnwind); 2381 2382 if (D && D->hasAttr<NoStackProtectorAttr>()) 2383 ; // Do nothing. 2384 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() && 2385 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2386 B.addAttribute(llvm::Attribute::StackProtectStrong); 2387 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) 2388 B.addAttribute(llvm::Attribute::StackProtect); 2389 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) 2390 B.addAttribute(llvm::Attribute::StackProtectStrong); 2391 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) 2392 B.addAttribute(llvm::Attribute::StackProtectReq); 2393 2394 if (!D) { 2395 // If we don't have a declaration to control inlining, the function isn't 2396 // explicitly marked as alwaysinline for semantic reasons, and inlining is 2397 // disabled, mark the function as noinline. 2398 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 2399 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 2400 B.addAttribute(llvm::Attribute::NoInline); 2401 2402 F->addFnAttrs(B); 2403 return; 2404 } 2405 2406 // Handle SME attributes that apply to function definitions, 2407 // rather than to function prototypes. 2408 if (D->hasAttr<ArmLocallyStreamingAttr>()) 2409 B.addAttribute("aarch64_pstate_sm_body"); 2410 2411 if (auto *Attr = D->getAttr<ArmNewAttr>()) { 2412 if (Attr->isNewZA()) 2413 B.addAttribute("aarch64_pstate_za_new"); 2414 } 2415 2416 // Track whether we need to add the optnone LLVM attribute, 2417 // starting with the default for this optimization level. 2418 bool ShouldAddOptNone = 2419 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 2420 // We can't add optnone in the following cases, it won't pass the verifier. 2421 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 2422 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 2423 2424 // Add optnone, but do so only if the function isn't always_inline. 2425 if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) && 2426 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2427 B.addAttribute(llvm::Attribute::OptimizeNone); 2428 2429 // OptimizeNone implies noinline; we should not be inlining such functions. 2430 B.addAttribute(llvm::Attribute::NoInline); 2431 2432 // We still need to handle naked functions even though optnone subsumes 2433 // much of their semantics. 2434 if (D->hasAttr<NakedAttr>()) 2435 B.addAttribute(llvm::Attribute::Naked); 2436 2437 // OptimizeNone wins over OptimizeForSize and MinSize. 2438 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 2439 F->removeFnAttr(llvm::Attribute::MinSize); 2440 } else if (D->hasAttr<NakedAttr>()) { 2441 // Naked implies noinline: we should not be inlining such functions. 2442 B.addAttribute(llvm::Attribute::Naked); 2443 B.addAttribute(llvm::Attribute::NoInline); 2444 } else if (D->hasAttr<NoDuplicateAttr>()) { 2445 B.addAttribute(llvm::Attribute::NoDuplicate); 2446 } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2447 // Add noinline if the function isn't always_inline. 2448 B.addAttribute(llvm::Attribute::NoInline); 2449 } else if (D->hasAttr<AlwaysInlineAttr>() && 2450 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 2451 // (noinline wins over always_inline, and we can't specify both in IR) 2452 B.addAttribute(llvm::Attribute::AlwaysInline); 2453 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 2454 // If we're not inlining, then force everything that isn't always_inline to 2455 // carry an explicit noinline attribute. 2456 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 2457 B.addAttribute(llvm::Attribute::NoInline); 2458 } else { 2459 // Otherwise, propagate the inline hint attribute and potentially use its 2460 // absence to mark things as noinline. 2461 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2462 // Search function and template pattern redeclarations for inline. 2463 auto CheckForInline = [](const FunctionDecl *FD) { 2464 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { 2465 return Redecl->isInlineSpecified(); 2466 }; 2467 if (any_of(FD->redecls(), CheckRedeclForInline)) 2468 return true; 2469 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); 2470 if (!Pattern) 2471 return false; 2472 return any_of(Pattern->redecls(), CheckRedeclForInline); 2473 }; 2474 if (CheckForInline(FD)) { 2475 B.addAttribute(llvm::Attribute::InlineHint); 2476 } else if (CodeGenOpts.getInlining() == 2477 CodeGenOptions::OnlyHintInlining && 2478 !FD->isInlined() && 2479 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 2480 B.addAttribute(llvm::Attribute::NoInline); 2481 } 2482 } 2483 } 2484 2485 // Add other optimization related attributes if we are optimizing this 2486 // function. 2487 if (!D->hasAttr<OptimizeNoneAttr>()) { 2488 if (D->hasAttr<ColdAttr>()) { 2489 if (!ShouldAddOptNone) 2490 B.addAttribute(llvm::Attribute::OptimizeForSize); 2491 B.addAttribute(llvm::Attribute::Cold); 2492 } 2493 if (D->hasAttr<HotAttr>()) 2494 B.addAttribute(llvm::Attribute::Hot); 2495 if (D->hasAttr<MinSizeAttr>()) 2496 B.addAttribute(llvm::Attribute::MinSize); 2497 } 2498 2499 F->addFnAttrs(B); 2500 2501 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 2502 if (alignment) 2503 F->setAlignment(llvm::Align(alignment)); 2504 2505 if (!D->hasAttr<AlignedAttr>()) 2506 if (LangOpts.FunctionAlignment) 2507 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); 2508 2509 // Some C++ ABIs require 2-byte alignment for member functions, in order to 2510 // reserve a bit for differentiating between virtual and non-virtual member 2511 // functions. If the current target's C++ ABI requires this and this is a 2512 // member function, set its alignment accordingly. 2513 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 2514 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2) 2515 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); 2516 } 2517 2518 // In the cross-dso CFI mode with canonical jump tables, we want !type 2519 // attributes on definitions only. 2520 if (CodeGenOpts.SanitizeCfiCrossDso && 2521 CodeGenOpts.SanitizeCfiCanonicalJumpTables) { 2522 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 2523 // Skip available_externally functions. They won't be codegen'ed in the 2524 // current module anyway. 2525 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) 2526 CreateFunctionTypeMetadataForIcall(FD, F); 2527 } 2528 } 2529 2530 // Emit type metadata on member functions for member function pointer checks. 2531 // These are only ever necessary on definitions; we're guaranteed that the 2532 // definition will be present in the LTO unit as a result of LTO visibility. 2533 auto *MD = dyn_cast<CXXMethodDecl>(D); 2534 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 2535 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 2536 llvm::Metadata *Id = 2537 CreateMetadataIdentifierForType(Context.getMemberPointerType( 2538 MD->getType(), Context.getRecordType(Base).getTypePtr())); 2539 F->addTypeMetadata(0, Id); 2540 } 2541 } 2542 } 2543 2544 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 2545 const Decl *D = GD.getDecl(); 2546 if (isa_and_nonnull<NamedDecl>(D)) 2547 setGVProperties(GV, GD); 2548 else 2549 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 2550 2551 if (D && D->hasAttr<UsedAttr>()) 2552 addUsedOrCompilerUsedGlobal(GV); 2553 2554 if (const auto *VD = dyn_cast_if_present<VarDecl>(D); 2555 VD && 2556 ((CodeGenOpts.KeepPersistentStorageVariables && 2557 (VD->getStorageDuration() == SD_Static || 2558 VD->getStorageDuration() == SD_Thread)) || 2559 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 2560 VD->getType().isConstQualified()))) 2561 addUsedOrCompilerUsedGlobal(GV); 2562 } 2563 2564 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, 2565 llvm::AttrBuilder &Attrs, 2566 bool SetTargetFeatures) { 2567 // Add target-cpu and target-features attributes to functions. If 2568 // we have a decl for the function and it has a target attribute then 2569 // parse that and add it to the feature set. 2570 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 2571 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; 2572 std::vector<std::string> Features; 2573 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl()); 2574 FD = FD ? FD->getMostRecentDecl() : FD; 2575 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 2576 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr; 2577 assert((!TD || !TV) && "both target_version and target specified"); 2578 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 2579 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr; 2580 bool AddedAttr = false; 2581 if (TD || TV || SD || TC) { 2582 llvm::StringMap<bool> FeatureMap; 2583 getContext().getFunctionFeatureMap(FeatureMap, GD); 2584 2585 // Produce the canonical string for this set of features. 2586 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 2587 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 2588 2589 // Now add the target-cpu and target-features to the function. 2590 // While we populated the feature map above, we still need to 2591 // get and parse the target attribute so we can get the cpu for 2592 // the function. 2593 if (TD) { 2594 ParsedTargetAttr ParsedAttr = 2595 Target.parseTargetAttr(TD->getFeaturesStr()); 2596 if (!ParsedAttr.CPU.empty() && 2597 getTarget().isValidCPUName(ParsedAttr.CPU)) { 2598 TargetCPU = ParsedAttr.CPU; 2599 TuneCPU = ""; // Clear the tune CPU. 2600 } 2601 if (!ParsedAttr.Tune.empty() && 2602 getTarget().isValidCPUName(ParsedAttr.Tune)) 2603 TuneCPU = ParsedAttr.Tune; 2604 } 2605 2606 if (SD) { 2607 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can 2608 // favor this processor. 2609 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); 2610 } 2611 } else { 2612 // Otherwise just add the existing target cpu and target features to the 2613 // function. 2614 Features = getTarget().getTargetOpts().Features; 2615 } 2616 2617 if (!TargetCPU.empty()) { 2618 Attrs.addAttribute("target-cpu", TargetCPU); 2619 AddedAttr = true; 2620 } 2621 if (!TuneCPU.empty()) { 2622 Attrs.addAttribute("tune-cpu", TuneCPU); 2623 AddedAttr = true; 2624 } 2625 if (!Features.empty() && SetTargetFeatures) { 2626 llvm::erase_if(Features, [&](const std::string& F) { 2627 return getTarget().isReadOnlyFeature(F.substr(1)); 2628 }); 2629 llvm::sort(Features); 2630 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 2631 AddedAttr = true; 2632 } 2633 2634 return AddedAttr; 2635 } 2636 2637 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 2638 llvm::GlobalObject *GO) { 2639 const Decl *D = GD.getDecl(); 2640 SetCommonAttributes(GD, GO); 2641 2642 if (D) { 2643 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 2644 if (D->hasAttr<RetainAttr>()) 2645 addUsedGlobal(GV); 2646 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 2647 GV->addAttribute("bss-section", SA->getName()); 2648 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 2649 GV->addAttribute("data-section", SA->getName()); 2650 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 2651 GV->addAttribute("rodata-section", SA->getName()); 2652 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>()) 2653 GV->addAttribute("relro-section", SA->getName()); 2654 } 2655 2656 if (auto *F = dyn_cast<llvm::Function>(GO)) { 2657 if (D->hasAttr<RetainAttr>()) 2658 addUsedGlobal(F); 2659 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 2660 if (!D->getAttr<SectionAttr>()) 2661 F->addFnAttr("implicit-section-name", SA->getName()); 2662 2663 llvm::AttrBuilder Attrs(F->getContext()); 2664 if (GetCPUAndFeaturesAttributes(GD, Attrs)) { 2665 // We know that GetCPUAndFeaturesAttributes will always have the 2666 // newest set, since it has the newest possible FunctionDecl, so the 2667 // new ones should replace the old. 2668 llvm::AttributeMask RemoveAttrs; 2669 RemoveAttrs.addAttribute("target-cpu"); 2670 RemoveAttrs.addAttribute("target-features"); 2671 RemoveAttrs.addAttribute("tune-cpu"); 2672 F->removeFnAttrs(RemoveAttrs); 2673 F->addFnAttrs(Attrs); 2674 } 2675 } 2676 2677 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 2678 GO->setSection(CSA->getName()); 2679 else if (const auto *SA = D->getAttr<SectionAttr>()) 2680 GO->setSection(SA->getName()); 2681 } 2682 2683 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 2684 } 2685 2686 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 2687 llvm::Function *F, 2688 const CGFunctionInfo &FI) { 2689 const Decl *D = GD.getDecl(); 2690 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); 2691 SetLLVMFunctionAttributesForDefinition(D, F); 2692 2693 F->setLinkage(llvm::Function::InternalLinkage); 2694 2695 setNonAliasAttributes(GD, F); 2696 } 2697 2698 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 2699 // Set linkage and visibility in case we never see a definition. 2700 LinkageInfo LV = ND->getLinkageAndVisibility(); 2701 // Don't set internal linkage on declarations. 2702 // "extern_weak" is overloaded in LLVM; we probably should have 2703 // separate linkage types for this. 2704 if (isExternallyVisible(LV.getLinkage()) && 2705 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 2706 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 2707 } 2708 2709 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 2710 llvm::Function *F) { 2711 // Only if we are checking indirect calls. 2712 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 2713 return; 2714 2715 // Non-static class methods are handled via vtable or member function pointer 2716 // checks elsewhere. 2717 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 2718 return; 2719 2720 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 2721 F->addTypeMetadata(0, MD); 2722 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 2723 2724 // Emit a hash-based bit set entry for cross-DSO calls. 2725 if (CodeGenOpts.SanitizeCfiCrossDso) 2726 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 2727 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 2728 } 2729 2730 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { 2731 llvm::LLVMContext &Ctx = F->getContext(); 2732 llvm::MDBuilder MDB(Ctx); 2733 F->setMetadata(llvm::LLVMContext::MD_kcfi_type, 2734 llvm::MDNode::get( 2735 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); 2736 } 2737 2738 static bool allowKCFIIdentifier(StringRef Name) { 2739 // KCFI type identifier constants are only necessary for external assembly 2740 // functions, which means it's safe to skip unusual names. Subset of 2741 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). 2742 return llvm::all_of(Name, [](const char &C) { 2743 return llvm::isAlnum(C) || C == '_' || C == '.'; 2744 }); 2745 } 2746 2747 void CodeGenModule::finalizeKCFITypes() { 2748 llvm::Module &M = getModule(); 2749 for (auto &F : M.functions()) { 2750 // Remove KCFI type metadata from non-address-taken local functions. 2751 bool AddressTaken = F.hasAddressTaken(); 2752 if (!AddressTaken && F.hasLocalLinkage()) 2753 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); 2754 2755 // Generate a constant with the expected KCFI type identifier for all 2756 // address-taken function declarations to support annotating indirectly 2757 // called assembly functions. 2758 if (!AddressTaken || !F.isDeclaration()) 2759 continue; 2760 2761 const llvm::ConstantInt *Type; 2762 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) 2763 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0)); 2764 else 2765 continue; 2766 2767 StringRef Name = F.getName(); 2768 if (!allowKCFIIdentifier(Name)) 2769 continue; 2770 2771 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + 2772 Name + ", " + Twine(Type->getZExtValue()) + "\n") 2773 .str(); 2774 M.appendModuleInlineAsm(Asm); 2775 } 2776 } 2777 2778 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 2779 bool IsIncompleteFunction, 2780 bool IsThunk) { 2781 2782 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 2783 // If this is an intrinsic function, set the function's attributes 2784 // to the intrinsic's attributes. 2785 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 2786 return; 2787 } 2788 2789 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2790 2791 if (!IsIncompleteFunction) 2792 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, 2793 IsThunk); 2794 2795 // Add the Returned attribute for "this", except for iOS 5 and earlier 2796 // where substantial code, including the libstdc++ dylib, was compiled with 2797 // GCC and does not actually return "this". 2798 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 2799 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 2800 assert(!F->arg_empty() && 2801 F->arg_begin()->getType() 2802 ->canLosslesslyBitCastTo(F->getReturnType()) && 2803 "unexpected this return"); 2804 F->addParamAttr(0, llvm::Attribute::Returned); 2805 } 2806 2807 // Only a few attributes are set on declarations; these may later be 2808 // overridden by a definition. 2809 2810 setLinkageForGV(F, FD); 2811 setGVProperties(F, FD); 2812 2813 // Setup target-specific attributes. 2814 if (!IsIncompleteFunction && F->isDeclaration()) 2815 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 2816 2817 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 2818 F->setSection(CSA->getName()); 2819 else if (const auto *SA = FD->getAttr<SectionAttr>()) 2820 F->setSection(SA->getName()); 2821 2822 if (const auto *EA = FD->getAttr<ErrorAttr>()) { 2823 if (EA->isError()) 2824 F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); 2825 else if (EA->isWarning()) 2826 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); 2827 } 2828 2829 // If we plan on emitting this inline builtin, we can't treat it as a builtin. 2830 if (FD->isInlineBuiltinDeclaration()) { 2831 const FunctionDecl *FDBody; 2832 bool HasBody = FD->hasBody(FDBody); 2833 (void)HasBody; 2834 assert(HasBody && "Inline builtin declarations should always have an " 2835 "available body!"); 2836 if (shouldEmitFunction(FDBody)) 2837 F->addFnAttr(llvm::Attribute::NoBuiltin); 2838 } 2839 2840 if (FD->isReplaceableGlobalAllocationFunction()) { 2841 // A replaceable global allocation function does not act like a builtin by 2842 // default, only if it is invoked by a new-expression or delete-expression. 2843 F->addFnAttr(llvm::Attribute::NoBuiltin); 2844 } 2845 2846 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 2847 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2848 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 2849 if (MD->isVirtual()) 2850 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 2851 2852 // Don't emit entries for function declarations in the cross-DSO mode. This 2853 // is handled with better precision by the receiving DSO. But if jump tables 2854 // are non-canonical then we need type metadata in order to produce the local 2855 // jump table. 2856 if (!CodeGenOpts.SanitizeCfiCrossDso || 2857 !CodeGenOpts.SanitizeCfiCanonicalJumpTables) 2858 CreateFunctionTypeMetadataForIcall(FD, F); 2859 2860 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) 2861 setKCFIType(FD, F); 2862 2863 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 2864 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 2865 2866 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) 2867 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); 2868 2869 if (const auto *CB = FD->getAttr<CallbackAttr>()) { 2870 // Annotate the callback behavior as metadata: 2871 // - The callback callee (as argument number). 2872 // - The callback payloads (as argument numbers). 2873 llvm::LLVMContext &Ctx = F->getContext(); 2874 llvm::MDBuilder MDB(Ctx); 2875 2876 // The payload indices are all but the first one in the encoding. The first 2877 // identifies the callback callee. 2878 int CalleeIdx = *CB->encoding_begin(); 2879 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); 2880 F->addMetadata(llvm::LLVMContext::MD_callback, 2881 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( 2882 CalleeIdx, PayloadIndices, 2883 /* VarArgsArePassed */ false)})); 2884 } 2885 } 2886 2887 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 2888 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2889 "Only globals with definition can force usage."); 2890 LLVMUsed.emplace_back(GV); 2891 } 2892 2893 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 2894 assert(!GV->isDeclaration() && 2895 "Only globals with definition can force usage."); 2896 LLVMCompilerUsed.emplace_back(GV); 2897 } 2898 2899 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { 2900 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) && 2901 "Only globals with definition can force usage."); 2902 if (getTriple().isOSBinFormatELF()) 2903 LLVMCompilerUsed.emplace_back(GV); 2904 else 2905 LLVMUsed.emplace_back(GV); 2906 } 2907 2908 static void emitUsed(CodeGenModule &CGM, StringRef Name, 2909 std::vector<llvm::WeakTrackingVH> &List) { 2910 // Don't create llvm.used if there is no need. 2911 if (List.empty()) 2912 return; 2913 2914 // Convert List to what ConstantArray needs. 2915 SmallVector<llvm::Constant*, 8> UsedArray; 2916 UsedArray.resize(List.size()); 2917 for (unsigned i = 0, e = List.size(); i != e; ++i) { 2918 UsedArray[i] = 2919 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2920 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 2921 } 2922 2923 if (UsedArray.empty()) 2924 return; 2925 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 2926 2927 auto *GV = new llvm::GlobalVariable( 2928 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 2929 llvm::ConstantArray::get(ATy, UsedArray), Name); 2930 2931 GV->setSection("llvm.metadata"); 2932 } 2933 2934 void CodeGenModule::emitLLVMUsed() { 2935 emitUsed(*this, "llvm.used", LLVMUsed); 2936 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 2937 } 2938 2939 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 2940 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 2941 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2942 } 2943 2944 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 2945 llvm::SmallString<32> Opt; 2946 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 2947 if (Opt.empty()) 2948 return; 2949 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2950 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 2951 } 2952 2953 void CodeGenModule::AddDependentLib(StringRef Lib) { 2954 auto &C = getLLVMContext(); 2955 if (getTarget().getTriple().isOSBinFormatELF()) { 2956 ELFDependentLibraries.push_back( 2957 llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); 2958 return; 2959 } 2960 2961 llvm::SmallString<24> Opt; 2962 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 2963 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 2964 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); 2965 } 2966 2967 /// Add link options implied by the given module, including modules 2968 /// it depends on, using a postorder walk. 2969 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 2970 SmallVectorImpl<llvm::MDNode *> &Metadata, 2971 llvm::SmallPtrSet<Module *, 16> &Visited) { 2972 // Import this module's parent. 2973 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 2974 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 2975 } 2976 2977 // Import this module's dependencies. 2978 for (Module *Import : llvm::reverse(Mod->Imports)) { 2979 if (Visited.insert(Import).second) 2980 addLinkOptionsPostorder(CGM, Import, Metadata, Visited); 2981 } 2982 2983 // Add linker options to link against the libraries/frameworks 2984 // described by this module. 2985 llvm::LLVMContext &Context = CGM.getLLVMContext(); 2986 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); 2987 2988 // For modules that use export_as for linking, use that module 2989 // name instead. 2990 if (Mod->UseExportAsModuleLinkName) 2991 return; 2992 2993 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { 2994 // Link against a framework. Frameworks are currently Darwin only, so we 2995 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 2996 if (LL.IsFramework) { 2997 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), 2998 llvm::MDString::get(Context, LL.Library)}; 2999 3000 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3001 continue; 3002 } 3003 3004 // Link against a library. 3005 if (IsELF) { 3006 llvm::Metadata *Args[2] = { 3007 llvm::MDString::get(Context, "lib"), 3008 llvm::MDString::get(Context, LL.Library), 3009 }; 3010 Metadata.push_back(llvm::MDNode::get(Context, Args)); 3011 } else { 3012 llvm::SmallString<24> Opt; 3013 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); 3014 auto *OptString = llvm::MDString::get(Context, Opt); 3015 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 3016 } 3017 } 3018 } 3019 3020 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { 3021 assert(Primary->isNamedModuleUnit() && 3022 "We should only emit module initializers for named modules."); 3023 3024 // Emit the initializers in the order that sub-modules appear in the 3025 // source, first Global Module Fragments, if present. 3026 if (auto GMF = Primary->getGlobalModuleFragment()) { 3027 for (Decl *D : getContext().getModuleInitializers(GMF)) { 3028 if (isa<ImportDecl>(D)) 3029 continue; 3030 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?"); 3031 EmitTopLevelDecl(D); 3032 } 3033 } 3034 // Second any associated with the module, itself. 3035 for (Decl *D : getContext().getModuleInitializers(Primary)) { 3036 // Skip import decls, the inits for those are called explicitly. 3037 if (isa<ImportDecl>(D)) 3038 continue; 3039 EmitTopLevelDecl(D); 3040 } 3041 // Third any associated with the Privat eMOdule Fragment, if present. 3042 if (auto PMF = Primary->getPrivateModuleFragment()) { 3043 for (Decl *D : getContext().getModuleInitializers(PMF)) { 3044 // Skip import decls, the inits for those are called explicitly. 3045 if (isa<ImportDecl>(D)) 3046 continue; 3047 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?"); 3048 EmitTopLevelDecl(D); 3049 } 3050 } 3051 } 3052 3053 void CodeGenModule::EmitModuleLinkOptions() { 3054 // Collect the set of all of the modules we want to visit to emit link 3055 // options, which is essentially the imported modules and all of their 3056 // non-explicit child modules. 3057 llvm::SetVector<clang::Module *> LinkModules; 3058 llvm::SmallPtrSet<clang::Module *, 16> Visited; 3059 SmallVector<clang::Module *, 16> Stack; 3060 3061 // Seed the stack with imported modules. 3062 for (Module *M : ImportedModules) { 3063 // Do not add any link flags when an implementation TU of a module imports 3064 // a header of that same module. 3065 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 3066 !getLangOpts().isCompilingModule()) 3067 continue; 3068 if (Visited.insert(M).second) 3069 Stack.push_back(M); 3070 } 3071 3072 // Find all of the modules to import, making a little effort to prune 3073 // non-leaf modules. 3074 while (!Stack.empty()) { 3075 clang::Module *Mod = Stack.pop_back_val(); 3076 3077 bool AnyChildren = false; 3078 3079 // Visit the submodules of this module. 3080 for (const auto &SM : Mod->submodules()) { 3081 // Skip explicit children; they need to be explicitly imported to be 3082 // linked against. 3083 if (SM->IsExplicit) 3084 continue; 3085 3086 if (Visited.insert(SM).second) { 3087 Stack.push_back(SM); 3088 AnyChildren = true; 3089 } 3090 } 3091 3092 // We didn't find any children, so add this module to the list of 3093 // modules to link against. 3094 if (!AnyChildren) { 3095 LinkModules.insert(Mod); 3096 } 3097 } 3098 3099 // Add link options for all of the imported modules in reverse topological 3100 // order. We don't do anything to try to order import link flags with respect 3101 // to linker options inserted by things like #pragma comment(). 3102 SmallVector<llvm::MDNode *, 16> MetadataArgs; 3103 Visited.clear(); 3104 for (Module *M : LinkModules) 3105 if (Visited.insert(M).second) 3106 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 3107 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 3108 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 3109 3110 // Add the linker options metadata flag. 3111 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 3112 for (auto *MD : LinkerOptionsMetadata) 3113 NMD->addOperand(MD); 3114 } 3115 3116 void CodeGenModule::EmitDeferred() { 3117 // Emit deferred declare target declarations. 3118 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) 3119 getOpenMPRuntime().emitDeferredTargetDecls(); 3120 3121 // Emit code for any potentially referenced deferred decls. Since a 3122 // previously unused static decl may become used during the generation of code 3123 // for a static function, iterate until no changes are made. 3124 3125 if (!DeferredVTables.empty()) { 3126 EmitDeferredVTables(); 3127 3128 // Emitting a vtable doesn't directly cause more vtables to 3129 // become deferred, although it can cause functions to be 3130 // emitted that then need those vtables. 3131 assert(DeferredVTables.empty()); 3132 } 3133 3134 // Emit CUDA/HIP static device variables referenced by host code only. 3135 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still 3136 // needed for further handling. 3137 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) 3138 llvm::append_range(DeferredDeclsToEmit, 3139 getContext().CUDADeviceVarODRUsedByHost); 3140 3141 // Stop if we're out of both deferred vtables and deferred declarations. 3142 if (DeferredDeclsToEmit.empty()) 3143 return; 3144 3145 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 3146 // work, it will not interfere with this. 3147 std::vector<GlobalDecl> CurDeclsToEmit; 3148 CurDeclsToEmit.swap(DeferredDeclsToEmit); 3149 3150 for (GlobalDecl &D : CurDeclsToEmit) { 3151 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 3152 // to get GlobalValue with exactly the type we need, not something that 3153 // might had been created for another decl with the same mangled name but 3154 // different type. 3155 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 3156 GetAddrOfGlobal(D, ForDefinition)); 3157 3158 // In case of different address spaces, we may still get a cast, even with 3159 // IsForDefinition equal to true. Query mangled names table to get 3160 // GlobalValue. 3161 if (!GV) 3162 GV = GetGlobalValue(getMangledName(D)); 3163 3164 // Make sure GetGlobalValue returned non-null. 3165 assert(GV); 3166 3167 // Check to see if we've already emitted this. This is necessary 3168 // for a couple of reasons: first, decls can end up in the 3169 // deferred-decls queue multiple times, and second, decls can end 3170 // up with definitions in unusual ways (e.g. by an extern inline 3171 // function acquiring a strong function redefinition). Just 3172 // ignore these cases. 3173 if (!GV->isDeclaration()) 3174 continue; 3175 3176 // If this is OpenMP, check if it is legal to emit this global normally. 3177 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) 3178 continue; 3179 3180 // Otherwise, emit the definition and move on to the next one. 3181 EmitGlobalDefinition(D, GV); 3182 3183 // If we found out that we need to emit more decls, do that recursively. 3184 // This has the advantage that the decls are emitted in a DFS and related 3185 // ones are close together, which is convenient for testing. 3186 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 3187 EmitDeferred(); 3188 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 3189 } 3190 } 3191 } 3192 3193 void CodeGenModule::EmitVTablesOpportunistically() { 3194 // Try to emit external vtables as available_externally if they have emitted 3195 // all inlined virtual functions. It runs after EmitDeferred() and therefore 3196 // is not allowed to create new references to things that need to be emitted 3197 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 3198 3199 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 3200 && "Only emit opportunistic vtables with optimizations"); 3201 3202 for (const CXXRecordDecl *RD : OpportunisticVTables) { 3203 assert(getVTables().isVTableExternal(RD) && 3204 "This queue should only contain external vtables"); 3205 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 3206 VTables.GenerateClassData(RD); 3207 } 3208 OpportunisticVTables.clear(); 3209 } 3210 3211 void CodeGenModule::EmitGlobalAnnotations() { 3212 for (const auto& [MangledName, VD] : DeferredAnnotations) { 3213 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3214 if (GV) 3215 AddGlobalAnnotations(VD, GV); 3216 } 3217 DeferredAnnotations.clear(); 3218 3219 if (Annotations.empty()) 3220 return; 3221 3222 // Create a new global variable for the ConstantStruct in the Module. 3223 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 3224 Annotations[0]->getType(), Annotations.size()), Annotations); 3225 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 3226 llvm::GlobalValue::AppendingLinkage, 3227 Array, "llvm.global.annotations"); 3228 gv->setSection(AnnotationSection); 3229 } 3230 3231 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 3232 llvm::Constant *&AStr = AnnotationStrings[Str]; 3233 if (AStr) 3234 return AStr; 3235 3236 // Not found yet, create a new global. 3237 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 3238 auto *gv = new llvm::GlobalVariable( 3239 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, 3240 ".str", nullptr, llvm::GlobalValue::NotThreadLocal, 3241 ConstGlobalsPtrTy->getAddressSpace()); 3242 gv->setSection(AnnotationSection); 3243 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3244 AStr = gv; 3245 return gv; 3246 } 3247 3248 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 3249 SourceManager &SM = getContext().getSourceManager(); 3250 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 3251 if (PLoc.isValid()) 3252 return EmitAnnotationString(PLoc.getFilename()); 3253 return EmitAnnotationString(SM.getBufferName(Loc)); 3254 } 3255 3256 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 3257 SourceManager &SM = getContext().getSourceManager(); 3258 PresumedLoc PLoc = SM.getPresumedLoc(L); 3259 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 3260 SM.getExpansionLineNumber(L); 3261 return llvm::ConstantInt::get(Int32Ty, LineNo); 3262 } 3263 3264 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { 3265 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()}; 3266 if (Exprs.empty()) 3267 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); 3268 3269 llvm::FoldingSetNodeID ID; 3270 for (Expr *E : Exprs) { 3271 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult()); 3272 } 3273 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; 3274 if (Lookup) 3275 return Lookup; 3276 3277 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs; 3278 LLVMArgs.reserve(Exprs.size()); 3279 ConstantEmitter ConstEmiter(*this); 3280 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { 3281 const auto *CE = cast<clang::ConstantExpr>(E); 3282 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), 3283 CE->getType()); 3284 }); 3285 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); 3286 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, 3287 llvm::GlobalValue::PrivateLinkage, Struct, 3288 ".args"); 3289 GV->setSection(AnnotationSection); 3290 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3291 3292 Lookup = GV; 3293 return GV; 3294 } 3295 3296 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 3297 const AnnotateAttr *AA, 3298 SourceLocation L) { 3299 // Get the globals for file name, annotation, and the line number. 3300 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 3301 *UnitGV = EmitAnnotationUnit(L), 3302 *LineNoCst = EmitAnnotationLineNo(L), 3303 *Args = EmitAnnotationArgs(AA); 3304 3305 llvm::Constant *GVInGlobalsAS = GV; 3306 if (GV->getAddressSpace() != 3307 getDataLayout().getDefaultGlobalsAddressSpace()) { 3308 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( 3309 GV, 3310 llvm::PointerType::get( 3311 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); 3312 } 3313 3314 // Create the ConstantStruct for the global annotation. 3315 llvm::Constant *Fields[] = { 3316 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, 3317 }; 3318 return llvm::ConstantStruct::getAnon(Fields); 3319 } 3320 3321 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 3322 llvm::GlobalValue *GV) { 3323 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 3324 // Get the struct elements for these annotations. 3325 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 3326 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 3327 } 3328 3329 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, 3330 SourceLocation Loc) const { 3331 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3332 // NoSanitize by function name. 3333 if (NoSanitizeL.containsFunction(Kind, Fn->getName())) 3334 return true; 3335 // NoSanitize by location. Check "mainfile" prefix. 3336 auto &SM = Context.getSourceManager(); 3337 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); 3338 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) 3339 return true; 3340 3341 // Check "src" prefix. 3342 if (Loc.isValid()) 3343 return NoSanitizeL.containsLocation(Kind, Loc); 3344 // If location is unknown, this may be a compiler-generated function. Assume 3345 // it's located in the main file. 3346 return NoSanitizeL.containsFile(Kind, MainFile.getName()); 3347 } 3348 3349 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, 3350 llvm::GlobalVariable *GV, 3351 SourceLocation Loc, QualType Ty, 3352 StringRef Category) const { 3353 const auto &NoSanitizeL = getContext().getNoSanitizeList(); 3354 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) 3355 return true; 3356 auto &SM = Context.getSourceManager(); 3357 if (NoSanitizeL.containsMainFile( 3358 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), 3359 Category)) 3360 return true; 3361 if (NoSanitizeL.containsLocation(Kind, Loc, Category)) 3362 return true; 3363 3364 // Check global type. 3365 if (!Ty.isNull()) { 3366 // Drill down the array types: if global variable of a fixed type is 3367 // not sanitized, we also don't instrument arrays of them. 3368 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 3369 Ty = AT->getElementType(); 3370 Ty = Ty.getCanonicalType().getUnqualifiedType(); 3371 // Only record types (classes, structs etc.) are ignored. 3372 if (Ty->isRecordType()) { 3373 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 3374 if (NoSanitizeL.containsType(Kind, TypeStr, Category)) 3375 return true; 3376 } 3377 } 3378 return false; 3379 } 3380 3381 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 3382 StringRef Category) const { 3383 const auto &XRayFilter = getContext().getXRayFilter(); 3384 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 3385 auto Attr = ImbueAttr::NONE; 3386 if (Loc.isValid()) 3387 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 3388 if (Attr == ImbueAttr::NONE) 3389 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 3390 switch (Attr) { 3391 case ImbueAttr::NONE: 3392 return false; 3393 case ImbueAttr::ALWAYS: 3394 Fn->addFnAttr("function-instrument", "xray-always"); 3395 break; 3396 case ImbueAttr::ALWAYS_ARG1: 3397 Fn->addFnAttr("function-instrument", "xray-always"); 3398 Fn->addFnAttr("xray-log-args", "1"); 3399 break; 3400 case ImbueAttr::NEVER: 3401 Fn->addFnAttr("function-instrument", "xray-never"); 3402 break; 3403 } 3404 return true; 3405 } 3406 3407 ProfileList::ExclusionType 3408 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, 3409 SourceLocation Loc) const { 3410 const auto &ProfileList = getContext().getProfileList(); 3411 // If the profile list is empty, then instrument everything. 3412 if (ProfileList.isEmpty()) 3413 return ProfileList::Allow; 3414 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); 3415 // First, check the function name. 3416 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) 3417 return *V; 3418 // Next, check the source location. 3419 if (Loc.isValid()) 3420 if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) 3421 return *V; 3422 // If location is unknown, this may be a compiler-generated function. Assume 3423 // it's located in the main file. 3424 auto &SM = Context.getSourceManager(); 3425 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) 3426 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) 3427 return *V; 3428 return ProfileList.getDefault(Kind); 3429 } 3430 3431 ProfileList::ExclusionType 3432 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, 3433 SourceLocation Loc) const { 3434 auto V = isFunctionBlockedByProfileList(Fn, Loc); 3435 if (V != ProfileList::Allow) 3436 return V; 3437 3438 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; 3439 if (NumGroups > 1) { 3440 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; 3441 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) 3442 return ProfileList::Skip; 3443 } 3444 return ProfileList::Allow; 3445 } 3446 3447 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 3448 // Never defer when EmitAllDecls is specified. 3449 if (LangOpts.EmitAllDecls) 3450 return true; 3451 3452 const auto *VD = dyn_cast<VarDecl>(Global); 3453 if (VD && 3454 ((CodeGenOpts.KeepPersistentStorageVariables && 3455 (VD->getStorageDuration() == SD_Static || 3456 VD->getStorageDuration() == SD_Thread)) || 3457 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && 3458 VD->getType().isConstQualified()))) 3459 return true; 3460 3461 return getContext().DeclMustBeEmitted(Global); 3462 } 3463 3464 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 3465 // In OpenMP 5.0 variables and function may be marked as 3466 // device_type(host/nohost) and we should not emit them eagerly unless we sure 3467 // that they must be emitted on the host/device. To be sure we need to have 3468 // seen a declare target with an explicit mentioning of the function, we know 3469 // we have if the level of the declare target attribute is -1. Note that we 3470 // check somewhere else if we should emit this at all. 3471 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { 3472 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr = 3473 OMPDeclareTargetDeclAttr::getActiveAttr(Global); 3474 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) 3475 return false; 3476 } 3477 3478 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3479 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 3480 // Implicit template instantiations may change linkage if they are later 3481 // explicitly instantiated, so they should not be emitted eagerly. 3482 return false; 3483 } 3484 if (const auto *VD = dyn_cast<VarDecl>(Global)) { 3485 if (Context.getInlineVariableDefinitionKind(VD) == 3486 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 3487 // A definition of an inline constexpr static data member may change 3488 // linkage later if it's redeclared outside the class. 3489 return false; 3490 if (CXX20ModuleInits && VD->getOwningModule() && 3491 !VD->getOwningModule()->isModuleMapModule()) { 3492 // For CXX20, module-owned initializers need to be deferred, since it is 3493 // not known at this point if they will be run for the current module or 3494 // as part of the initializer for an imported one. 3495 return false; 3496 } 3497 } 3498 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 3499 // codegen for global variables, because they may be marked as threadprivate. 3500 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 3501 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 3502 !Global->getType().isConstantStorage(getContext(), false, false) && 3503 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) 3504 return false; 3505 3506 return true; 3507 } 3508 3509 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { 3510 StringRef Name = getMangledName(GD); 3511 3512 // The UUID descriptor should be pointer aligned. 3513 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 3514 3515 // Look for an existing global. 3516 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3517 return ConstantAddress(GV, GV->getValueType(), Alignment); 3518 3519 ConstantEmitter Emitter(*this); 3520 llvm::Constant *Init; 3521 3522 APValue &V = GD->getAsAPValue(); 3523 if (!V.isAbsent()) { 3524 // If possible, emit the APValue version of the initializer. In particular, 3525 // this gets the type of the constant right. 3526 Init = Emitter.emitForInitializer( 3527 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); 3528 } else { 3529 // As a fallback, directly construct the constant. 3530 // FIXME: This may get padding wrong under esoteric struct layout rules. 3531 // MSVC appears to create a complete type 'struct __s_GUID' that it 3532 // presumably uses to represent these constants. 3533 MSGuidDecl::Parts Parts = GD->getParts(); 3534 llvm::Constant *Fields[4] = { 3535 llvm::ConstantInt::get(Int32Ty, Parts.Part1), 3536 llvm::ConstantInt::get(Int16Ty, Parts.Part2), 3537 llvm::ConstantInt::get(Int16Ty, Parts.Part3), 3538 llvm::ConstantDataArray::getRaw( 3539 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8, 3540 Int8Ty)}; 3541 Init = llvm::ConstantStruct::getAnon(Fields); 3542 } 3543 3544 auto *GV = new llvm::GlobalVariable( 3545 getModule(), Init->getType(), 3546 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 3547 if (supportsCOMDAT()) 3548 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3549 setDSOLocal(GV); 3550 3551 if (!V.isAbsent()) { 3552 Emitter.finalize(GV); 3553 return ConstantAddress(GV, GV->getValueType(), Alignment); 3554 } 3555 3556 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); 3557 return ConstantAddress(GV, Ty, Alignment); 3558 } 3559 3560 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( 3561 const UnnamedGlobalConstantDecl *GCD) { 3562 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); 3563 3564 llvm::GlobalVariable **Entry = nullptr; 3565 Entry = &UnnamedGlobalConstantDeclMap[GCD]; 3566 if (*Entry) 3567 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); 3568 3569 ConstantEmitter Emitter(*this); 3570 llvm::Constant *Init; 3571 3572 const APValue &V = GCD->getValue(); 3573 3574 assert(!V.isAbsent()); 3575 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), 3576 GCD->getType()); 3577 3578 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3579 /*isConstant=*/true, 3580 llvm::GlobalValue::PrivateLinkage, Init, 3581 ".constant"); 3582 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3583 GV->setAlignment(Alignment.getAsAlign()); 3584 3585 Emitter.finalize(GV); 3586 3587 *Entry = GV; 3588 return ConstantAddress(GV, GV->getValueType(), Alignment); 3589 } 3590 3591 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( 3592 const TemplateParamObjectDecl *TPO) { 3593 StringRef Name = getMangledName(TPO); 3594 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); 3595 3596 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 3597 return ConstantAddress(GV, GV->getValueType(), Alignment); 3598 3599 ConstantEmitter Emitter(*this); 3600 llvm::Constant *Init = Emitter.emitForInitializer( 3601 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); 3602 3603 if (!Init) { 3604 ErrorUnsupported(TPO, "template parameter object"); 3605 return ConstantAddress::invalid(); 3606 } 3607 3608 llvm::GlobalValue::LinkageTypes Linkage = 3609 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) 3610 ? llvm::GlobalValue::LinkOnceODRLinkage 3611 : llvm::GlobalValue::InternalLinkage; 3612 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), 3613 /*isConstant=*/true, Linkage, Init, Name); 3614 setGVProperties(GV, TPO); 3615 if (supportsCOMDAT()) 3616 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3617 Emitter.finalize(GV); 3618 3619 return ConstantAddress(GV, GV->getValueType(), Alignment); 3620 } 3621 3622 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 3623 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 3624 assert(AA && "No alias?"); 3625 3626 CharUnits Alignment = getContext().getDeclAlign(VD); 3627 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 3628 3629 // See if there is already something with the target's name in the module. 3630 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 3631 if (Entry) 3632 return ConstantAddress(Entry, DeclTy, Alignment); 3633 3634 llvm::Constant *Aliasee; 3635 if (isa<llvm::FunctionType>(DeclTy)) 3636 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 3637 GlobalDecl(cast<FunctionDecl>(VD)), 3638 /*ForVTable=*/false); 3639 else 3640 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 3641 nullptr); 3642 3643 auto *F = cast<llvm::GlobalValue>(Aliasee); 3644 F->setLinkage(llvm::Function::ExternalWeakLinkage); 3645 WeakRefReferences.insert(F); 3646 3647 return ConstantAddress(Aliasee, DeclTy, Alignment); 3648 } 3649 3650 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) { 3651 if (!D) 3652 return false; 3653 if (auto *A = D->getAttr<AttrT>()) 3654 return A->isImplicit(); 3655 return D->isImplicit(); 3656 } 3657 3658 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 3659 const auto *Global = cast<ValueDecl>(GD.getDecl()); 3660 3661 // Weak references don't produce any output by themselves. 3662 if (Global->hasAttr<WeakRefAttr>()) 3663 return; 3664 3665 // If this is an alias definition (which otherwise looks like a declaration) 3666 // emit it now. 3667 if (Global->hasAttr<AliasAttr>()) 3668 return EmitAliasDefinition(GD); 3669 3670 // IFunc like an alias whose value is resolved at runtime by calling resolver. 3671 if (Global->hasAttr<IFuncAttr>()) 3672 return emitIFuncDefinition(GD); 3673 3674 // If this is a cpu_dispatch multiversion function, emit the resolver. 3675 if (Global->hasAttr<CPUDispatchAttr>()) 3676 return emitCPUDispatchDefinition(GD); 3677 3678 // If this is CUDA, be selective about which declarations we emit. 3679 // Non-constexpr non-lambda implicit host device functions are not emitted 3680 // unless they are used on device side. 3681 if (LangOpts.CUDA) { 3682 if (LangOpts.CUDAIsDevice) { 3683 const auto *FD = dyn_cast<FunctionDecl>(Global); 3684 if ((!Global->hasAttr<CUDADeviceAttr>() || 3685 (LangOpts.OffloadImplicitHostDeviceTemplates && FD && 3686 hasImplicitAttr<CUDAHostAttr>(FD) && 3687 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() && 3688 !isLambdaCallOperator(FD) && 3689 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && 3690 !Global->hasAttr<CUDAGlobalAttr>() && 3691 !Global->hasAttr<CUDAConstantAttr>() && 3692 !Global->hasAttr<CUDASharedAttr>() && 3693 !Global->getType()->isCUDADeviceBuiltinSurfaceType() && 3694 !Global->getType()->isCUDADeviceBuiltinTextureType() && 3695 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) && 3696 !Global->hasAttr<CUDAHostAttr>())) 3697 return; 3698 } else { 3699 // We need to emit host-side 'shadows' for all global 3700 // device-side variables because the CUDA runtime needs their 3701 // size and host-side address in order to provide access to 3702 // their device-side incarnations. 3703 3704 // So device-only functions are the only things we skip. 3705 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 3706 Global->hasAttr<CUDADeviceAttr>()) 3707 return; 3708 3709 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 3710 "Expected Variable or Function"); 3711 } 3712 } 3713 3714 if (LangOpts.OpenMP) { 3715 // If this is OpenMP, check if it is legal to emit this global normally. 3716 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 3717 return; 3718 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 3719 if (MustBeEmitted(Global)) 3720 EmitOMPDeclareReduction(DRD); 3721 return; 3722 } 3723 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) { 3724 if (MustBeEmitted(Global)) 3725 EmitOMPDeclareMapper(DMD); 3726 return; 3727 } 3728 } 3729 3730 // Ignore declarations, they will be emitted on their first use. 3731 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 3732 // Update deferred annotations with the latest declaration if the function 3733 // function was already used or defined. 3734 if (FD->hasAttr<AnnotateAttr>()) { 3735 StringRef MangledName = getMangledName(GD); 3736 if (GetGlobalValue(MangledName)) 3737 DeferredAnnotations[MangledName] = FD; 3738 } 3739 3740 // Forward declarations are emitted lazily on first use. 3741 if (!FD->doesThisDeclarationHaveABody()) { 3742 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 3743 return; 3744 3745 StringRef MangledName = getMangledName(GD); 3746 3747 // Compute the function info and LLVM type. 3748 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3749 llvm::Type *Ty = getTypes().GetFunctionType(FI); 3750 3751 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 3752 /*DontDefer=*/false); 3753 return; 3754 } 3755 } else { 3756 const auto *VD = cast<VarDecl>(Global); 3757 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 3758 if (VD->isThisDeclarationADefinition() != VarDecl::Definition && 3759 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 3760 if (LangOpts.OpenMP) { 3761 // Emit declaration of the must-be-emitted declare target variable. 3762 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = 3763 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { 3764 3765 // If this variable has external storage and doesn't require special 3766 // link handling we defer to its canonical definition. 3767 if (VD->hasExternalStorage() && 3768 Res != OMPDeclareTargetDeclAttr::MT_Link) 3769 return; 3770 3771 bool UnifiedMemoryEnabled = 3772 getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); 3773 if ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3774 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3775 !UnifiedMemoryEnabled) { 3776 (void)GetAddrOfGlobalVar(VD); 3777 } else { 3778 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || 3779 ((*Res == OMPDeclareTargetDeclAttr::MT_To || 3780 *Res == OMPDeclareTargetDeclAttr::MT_Enter) && 3781 UnifiedMemoryEnabled)) && 3782 "Link clause or to clause with unified memory expected."); 3783 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); 3784 } 3785 3786 return; 3787 } 3788 } 3789 // If this declaration may have caused an inline variable definition to 3790 // change linkage, make sure that it's emitted. 3791 if (Context.getInlineVariableDefinitionKind(VD) == 3792 ASTContext::InlineVariableDefinitionKind::Strong) 3793 GetAddrOfGlobalVar(VD); 3794 return; 3795 } 3796 } 3797 3798 // Defer code generation to first use when possible, e.g. if this is an inline 3799 // function. If the global must always be emitted, do it eagerly if possible 3800 // to benefit from cache locality. 3801 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 3802 // Emit the definition if it can't be deferred. 3803 EmitGlobalDefinition(GD); 3804 addEmittedDeferredDecl(GD); 3805 return; 3806 } 3807 3808 // If we're deferring emission of a C++ variable with an 3809 // initializer, remember the order in which it appeared in the file. 3810 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 3811 cast<VarDecl>(Global)->hasInit()) { 3812 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 3813 CXXGlobalInits.push_back(nullptr); 3814 } 3815 3816 StringRef MangledName = getMangledName(GD); 3817 if (GetGlobalValue(MangledName) != nullptr) { 3818 // The value has already been used and should therefore be emitted. 3819 addDeferredDeclToEmit(GD); 3820 } else if (MustBeEmitted(Global)) { 3821 // The value must be emitted, but cannot be emitted eagerly. 3822 assert(!MayBeEmittedEagerly(Global)); 3823 addDeferredDeclToEmit(GD); 3824 } else { 3825 // Otherwise, remember that we saw a deferred decl with this name. The 3826 // first use of the mangled name will cause it to move into 3827 // DeferredDeclsToEmit. 3828 DeferredDecls[MangledName] = GD; 3829 } 3830 } 3831 3832 // Check if T is a class type with a destructor that's not dllimport. 3833 static bool HasNonDllImportDtor(QualType T) { 3834 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 3835 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 3836 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 3837 return true; 3838 3839 return false; 3840 } 3841 3842 namespace { 3843 struct FunctionIsDirectlyRecursive 3844 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> { 3845 const StringRef Name; 3846 const Builtin::Context &BI; 3847 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) 3848 : Name(N), BI(C) {} 3849 3850 bool VisitCallExpr(const CallExpr *E) { 3851 const FunctionDecl *FD = E->getDirectCallee(); 3852 if (!FD) 3853 return false; 3854 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3855 if (Attr && Name == Attr->getLabel()) 3856 return true; 3857 unsigned BuiltinID = FD->getBuiltinID(); 3858 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 3859 return false; 3860 StringRef BuiltinName = BI.getName(BuiltinID); 3861 if (BuiltinName.starts_with("__builtin_") && 3862 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 3863 return true; 3864 } 3865 return false; 3866 } 3867 3868 bool VisitStmt(const Stmt *S) { 3869 for (const Stmt *Child : S->children()) 3870 if (Child && this->Visit(Child)) 3871 return true; 3872 return false; 3873 } 3874 }; 3875 3876 // Make sure we're not referencing non-imported vars or functions. 3877 struct DLLImportFunctionVisitor 3878 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 3879 bool SafeToInline = true; 3880 3881 bool shouldVisitImplicitCode() const { return true; } 3882 3883 bool VisitVarDecl(VarDecl *VD) { 3884 if (VD->getTLSKind()) { 3885 // A thread-local variable cannot be imported. 3886 SafeToInline = false; 3887 return SafeToInline; 3888 } 3889 3890 // A variable definition might imply a destructor call. 3891 if (VD->isThisDeclarationADefinition()) 3892 SafeToInline = !HasNonDllImportDtor(VD->getType()); 3893 3894 return SafeToInline; 3895 } 3896 3897 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 3898 if (const auto *D = E->getTemporary()->getDestructor()) 3899 SafeToInline = D->hasAttr<DLLImportAttr>(); 3900 return SafeToInline; 3901 } 3902 3903 bool VisitDeclRefExpr(DeclRefExpr *E) { 3904 ValueDecl *VD = E->getDecl(); 3905 if (isa<FunctionDecl>(VD)) 3906 SafeToInline = VD->hasAttr<DLLImportAttr>(); 3907 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 3908 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 3909 return SafeToInline; 3910 } 3911 3912 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 3913 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 3914 return SafeToInline; 3915 } 3916 3917 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 3918 CXXMethodDecl *M = E->getMethodDecl(); 3919 if (!M) { 3920 // Call through a pointer to member function. This is safe to inline. 3921 SafeToInline = true; 3922 } else { 3923 SafeToInline = M->hasAttr<DLLImportAttr>(); 3924 } 3925 return SafeToInline; 3926 } 3927 3928 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 3929 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 3930 return SafeToInline; 3931 } 3932 3933 bool VisitCXXNewExpr(CXXNewExpr *E) { 3934 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 3935 return SafeToInline; 3936 } 3937 }; 3938 } 3939 3940 // isTriviallyRecursive - Check if this function calls another 3941 // decl that, because of the asm attribute or the other decl being a builtin, 3942 // ends up pointing to itself. 3943 bool 3944 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 3945 StringRef Name; 3946 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 3947 // asm labels are a special kind of mangling we have to support. 3948 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 3949 if (!Attr) 3950 return false; 3951 Name = Attr->getLabel(); 3952 } else { 3953 Name = FD->getName(); 3954 } 3955 3956 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 3957 const Stmt *Body = FD->getBody(); 3958 return Body ? Walker.Visit(Body) : false; 3959 } 3960 3961 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 3962 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 3963 return true; 3964 3965 const auto *F = cast<FunctionDecl>(GD.getDecl()); 3966 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 3967 return false; 3968 3969 // We don't import function bodies from other named module units since that 3970 // behavior may break ABI compatibility of the current unit. 3971 if (const Module *M = F->getOwningModule(); 3972 M && M->getTopLevelModule()->isNamedModule() && 3973 getContext().getCurrentNamedModule() != M->getTopLevelModule() && 3974 !F->hasAttr<AlwaysInlineAttr>()) 3975 return false; 3976 3977 if (F->hasAttr<NoInlineAttr>()) 3978 return false; 3979 3980 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) { 3981 // Check whether it would be safe to inline this dllimport function. 3982 DLLImportFunctionVisitor Visitor; 3983 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 3984 if (!Visitor.SafeToInline) 3985 return false; 3986 3987 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 3988 // Implicit destructor invocations aren't captured in the AST, so the 3989 // check above can't see them. Check for them manually here. 3990 for (const Decl *Member : Dtor->getParent()->decls()) 3991 if (isa<FieldDecl>(Member)) 3992 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 3993 return false; 3994 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 3995 if (HasNonDllImportDtor(B.getType())) 3996 return false; 3997 } 3998 } 3999 4000 // Inline builtins declaration must be emitted. They often are fortified 4001 // functions. 4002 if (F->isInlineBuiltinDeclaration()) 4003 return true; 4004 4005 // PR9614. Avoid cases where the source code is lying to us. An available 4006 // externally function should have an equivalent function somewhere else, 4007 // but a function that calls itself through asm label/`__builtin_` trickery is 4008 // clearly not equivalent to the real implementation. 4009 // This happens in glibc's btowc and in some configure checks. 4010 return !isTriviallyRecursive(F); 4011 } 4012 4013 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 4014 return CodeGenOpts.OptimizationLevel > 0; 4015 } 4016 4017 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, 4018 llvm::GlobalValue *GV) { 4019 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4020 4021 if (FD->isCPUSpecificMultiVersion()) { 4022 auto *Spec = FD->getAttr<CPUSpecificAttr>(); 4023 for (unsigned I = 0; I < Spec->cpus_size(); ++I) 4024 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4025 } else if (FD->isTargetClonesMultiVersion()) { 4026 auto *Clone = FD->getAttr<TargetClonesAttr>(); 4027 for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) 4028 if (Clone->isFirstOfVersion(I)) 4029 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); 4030 // Ensure that the resolver function is also emitted. 4031 GetOrCreateMultiVersionResolver(GD); 4032 } else 4033 EmitGlobalFunctionDefinition(GD, GV); 4034 } 4035 4036 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 4037 const auto *D = cast<ValueDecl>(GD.getDecl()); 4038 4039 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 4040 Context.getSourceManager(), 4041 "Generating code for declaration"); 4042 4043 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4044 // At -O0, don't generate IR for functions with available_externally 4045 // linkage. 4046 if (!shouldEmitFunction(GD)) 4047 return; 4048 4049 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { 4050 std::string Name; 4051 llvm::raw_string_ostream OS(Name); 4052 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), 4053 /*Qualified=*/true); 4054 return Name; 4055 }); 4056 4057 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 4058 // Make sure to emit the definition(s) before we emit the thunks. 4059 // This is necessary for the generation of certain thunks. 4060 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method)) 4061 ABI->emitCXXStructor(GD); 4062 else if (FD->isMultiVersion()) 4063 EmitMultiVersionFunctionDefinition(GD, GV); 4064 else 4065 EmitGlobalFunctionDefinition(GD, GV); 4066 4067 if (Method->isVirtual()) 4068 getVTables().EmitThunks(GD); 4069 4070 return; 4071 } 4072 4073 if (FD->isMultiVersion()) 4074 return EmitMultiVersionFunctionDefinition(GD, GV); 4075 return EmitGlobalFunctionDefinition(GD, GV); 4076 } 4077 4078 if (const auto *VD = dyn_cast<VarDecl>(D)) 4079 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 4080 4081 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 4082 } 4083 4084 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 4085 llvm::Function *NewFn); 4086 4087 static unsigned 4088 TargetMVPriority(const TargetInfo &TI, 4089 const CodeGenFunction::MultiVersionResolverOption &RO) { 4090 unsigned Priority = 0; 4091 unsigned NumFeatures = 0; 4092 for (StringRef Feat : RO.Conditions.Features) { 4093 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 4094 NumFeatures++; 4095 } 4096 4097 if (!RO.Conditions.Architecture.empty()) 4098 Priority = std::max( 4099 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 4100 4101 Priority += TI.multiVersionFeatureCost() * NumFeatures; 4102 4103 return Priority; 4104 } 4105 4106 // Multiversion functions should be at most 'WeakODRLinkage' so that a different 4107 // TU can forward declare the function without causing problems. Particularly 4108 // in the cases of CPUDispatch, this causes issues. This also makes sure we 4109 // work with internal linkage functions, so that the same function name can be 4110 // used with internal linkage in multiple TUs. 4111 llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, 4112 GlobalDecl GD) { 4113 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 4114 if (FD->getFormalLinkage() == Linkage::Internal) 4115 return llvm::GlobalValue::InternalLinkage; 4116 return llvm::GlobalValue::WeakODRLinkage; 4117 } 4118 4119 void CodeGenModule::emitMultiVersionFunctions() { 4120 std::vector<GlobalDecl> MVFuncsToEmit; 4121 MultiVersionFuncs.swap(MVFuncsToEmit); 4122 for (GlobalDecl GD : MVFuncsToEmit) { 4123 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4124 assert(FD && "Expected a FunctionDecl"); 4125 4126 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4127 if (FD->isTargetMultiVersion()) { 4128 getContext().forEachMultiversionedFunctionVersion( 4129 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 4130 GlobalDecl CurGD{ 4131 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 4132 StringRef MangledName = getMangledName(CurGD); 4133 llvm::Constant *Func = GetGlobalValue(MangledName); 4134 if (!Func) { 4135 if (CurFD->isDefined()) { 4136 EmitGlobalFunctionDefinition(CurGD, nullptr); 4137 Func = GetGlobalValue(MangledName); 4138 } else { 4139 const CGFunctionInfo &FI = 4140 getTypes().arrangeGlobalDeclaration(GD); 4141 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4142 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4143 /*DontDefer=*/false, ForDefinition); 4144 } 4145 assert(Func && "This should have just been created"); 4146 } 4147 if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { 4148 const auto *TA = CurFD->getAttr<TargetAttr>(); 4149 llvm::SmallVector<StringRef, 8> Feats; 4150 TA->getAddedFeatures(Feats); 4151 Options.emplace_back(cast<llvm::Function>(Func), 4152 TA->getArchitecture(), Feats); 4153 } else { 4154 const auto *TVA = CurFD->getAttr<TargetVersionAttr>(); 4155 llvm::SmallVector<StringRef, 8> Feats; 4156 TVA->getFeatures(Feats); 4157 Options.emplace_back(cast<llvm::Function>(Func), 4158 /*Architecture*/ "", Feats); 4159 } 4160 }); 4161 } else if (FD->isTargetClonesMultiVersion()) { 4162 const auto *TC = FD->getAttr<TargetClonesAttr>(); 4163 for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); 4164 ++VersionIndex) { 4165 if (!TC->isFirstOfVersion(VersionIndex)) 4166 continue; 4167 GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), 4168 VersionIndex}; 4169 StringRef Version = TC->getFeatureStr(VersionIndex); 4170 StringRef MangledName = getMangledName(CurGD); 4171 llvm::Constant *Func = GetGlobalValue(MangledName); 4172 if (!Func) { 4173 if (FD->isDefined()) { 4174 EmitGlobalFunctionDefinition(CurGD, nullptr); 4175 Func = GetGlobalValue(MangledName); 4176 } else { 4177 const CGFunctionInfo &FI = 4178 getTypes().arrangeGlobalDeclaration(CurGD); 4179 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4180 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 4181 /*DontDefer=*/false, ForDefinition); 4182 } 4183 assert(Func && "This should have just been created"); 4184 } 4185 4186 StringRef Architecture; 4187 llvm::SmallVector<StringRef, 1> Feature; 4188 4189 if (getTarget().getTriple().isAArch64()) { 4190 if (Version != "default") { 4191 llvm::SmallVector<StringRef, 8> VerFeats; 4192 Version.split(VerFeats, "+"); 4193 for (auto &CurFeat : VerFeats) 4194 Feature.push_back(CurFeat.trim()); 4195 } 4196 } else { 4197 if (Version.starts_with("arch=")) 4198 Architecture = Version.drop_front(sizeof("arch=") - 1); 4199 else if (Version != "default") 4200 Feature.push_back(Version); 4201 } 4202 4203 Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature); 4204 } 4205 } else { 4206 assert(0 && "Expected a target or target_clones multiversion function"); 4207 continue; 4208 } 4209 4210 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); 4211 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) { 4212 ResolverConstant = IFunc->getResolver(); 4213 // In Aarch64, default versions of multiversioned functions are mangled to 4214 // their 'normal' assembly name. This deviates from other targets which 4215 // append a '.default' string. As a result we need to continue appending 4216 // .ifunc in Aarch64. 4217 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4218 // in turn ifunc function match that of other targets? 4219 if (FD->isTargetClonesMultiVersion() && 4220 !getTarget().getTriple().isAArch64()) { 4221 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4222 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4223 std::string MangledName = getMangledNameImpl( 4224 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4225 // In prior versions of Clang, the mangling for ifuncs incorrectly 4226 // included an .ifunc suffix. This alias is generated for backward 4227 // compatibility. It is deprecated, and may be removed in the future. 4228 auto *Alias = llvm::GlobalAlias::create( 4229 DeclTy, 0, getMultiversionLinkage(*this, GD), 4230 MangledName + ".ifunc", IFunc, &getModule()); 4231 SetCommonAttributes(FD, Alias); 4232 } 4233 } 4234 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant); 4235 4236 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4237 4238 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) 4239 ResolverFunc->setComdat( 4240 getModule().getOrInsertComdat(ResolverFunc->getName())); 4241 4242 const TargetInfo &TI = getTarget(); 4243 llvm::stable_sort( 4244 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 4245 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4246 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 4247 }); 4248 CodeGenFunction CGF(*this); 4249 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4250 } 4251 4252 // Ensure that any additions to the deferred decls list caused by emitting a 4253 // variant are emitted. This can happen when the variant itself is inline and 4254 // calls a function without linkage. 4255 if (!MVFuncsToEmit.empty()) 4256 EmitDeferred(); 4257 4258 // Ensure that any additions to the multiversion funcs list from either the 4259 // deferred decls or the multiversion functions themselves are emitted. 4260 if (!MultiVersionFuncs.empty()) 4261 emitMultiVersionFunctions(); 4262 } 4263 4264 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 4265 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4266 assert(FD && "Not a FunctionDecl?"); 4267 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); 4268 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 4269 assert(DD && "Not a cpu_dispatch Function?"); 4270 4271 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4272 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4273 4274 StringRef ResolverName = getMangledName(GD); 4275 UpdateMultiVersionNames(GD, FD, ResolverName); 4276 4277 llvm::Type *ResolverType; 4278 GlobalDecl ResolverGD; 4279 if (getTarget().supportsIFunc()) { 4280 ResolverType = llvm::FunctionType::get( 4281 llvm::PointerType::get(DeclTy, 4282 getTypes().getTargetAddressSpace(FD->getType())), 4283 false); 4284 } 4285 else { 4286 ResolverType = DeclTy; 4287 ResolverGD = GD; 4288 } 4289 4290 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction( 4291 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); 4292 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); 4293 if (supportsCOMDAT()) 4294 ResolverFunc->setComdat( 4295 getModule().getOrInsertComdat(ResolverFunc->getName())); 4296 4297 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 4298 const TargetInfo &Target = getTarget(); 4299 unsigned Index = 0; 4300 for (const IdentifierInfo *II : DD->cpus()) { 4301 // Get the name of the target function so we can look it up/create it. 4302 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 4303 getCPUSpecificMangling(*this, II->getName()); 4304 4305 llvm::Constant *Func = GetGlobalValue(MangledName); 4306 4307 if (!Func) { 4308 GlobalDecl ExistingDecl = Manglings.lookup(MangledName); 4309 if (ExistingDecl.getDecl() && 4310 ExistingDecl.getDecl()->getAsFunction()->isDefined()) { 4311 EmitGlobalFunctionDefinition(ExistingDecl, nullptr); 4312 Func = GetGlobalValue(MangledName); 4313 } else { 4314 if (!ExistingDecl.getDecl()) 4315 ExistingDecl = GD.getWithMultiVersionIndex(Index); 4316 4317 Func = GetOrCreateLLVMFunction( 4318 MangledName, DeclTy, ExistingDecl, 4319 /*ForVTable=*/false, /*DontDefer=*/true, 4320 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 4321 } 4322 } 4323 4324 llvm::SmallVector<StringRef, 32> Features; 4325 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 4326 llvm::transform(Features, Features.begin(), 4327 [](StringRef Str) { return Str.substr(1); }); 4328 llvm::erase_if(Features, [&Target](StringRef Feat) { 4329 return !Target.validateCpuSupports(Feat); 4330 }); 4331 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 4332 ++Index; 4333 } 4334 4335 llvm::stable_sort( 4336 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, 4337 const CodeGenFunction::MultiVersionResolverOption &RHS) { 4338 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > 4339 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); 4340 }); 4341 4342 // If the list contains multiple 'default' versions, such as when it contains 4343 // 'pentium' and 'generic', don't emit the call to the generic one (since we 4344 // always run on at least a 'pentium'). We do this by deleting the 'least 4345 // advanced' (read, lowest mangling letter). 4346 while (Options.size() > 1 && 4347 llvm::all_of(llvm::X86::getCpuSupportsMask( 4348 (Options.end() - 2)->Conditions.Features), 4349 [](auto X) { return X == 0; })) { 4350 StringRef LHSName = (Options.end() - 2)->Function->getName(); 4351 StringRef RHSName = (Options.end() - 1)->Function->getName(); 4352 if (LHSName.compare(RHSName) < 0) 4353 Options.erase(Options.end() - 2); 4354 else 4355 Options.erase(Options.end() - 1); 4356 } 4357 4358 CodeGenFunction CGF(*this); 4359 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 4360 4361 if (getTarget().supportsIFunc()) { 4362 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); 4363 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD)); 4364 4365 // Fix up function declarations that were created for cpu_specific before 4366 // cpu_dispatch was known 4367 if (!isa<llvm::GlobalIFunc>(IFunc)) { 4368 assert(cast<llvm::Function>(IFunc)->isDeclaration()); 4369 auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, 4370 &getModule()); 4371 GI->takeName(IFunc); 4372 IFunc->replaceAllUsesWith(GI); 4373 IFunc->eraseFromParent(); 4374 IFunc = GI; 4375 } 4376 4377 std::string AliasName = getMangledNameImpl( 4378 *this, GD, FD, /*OmitMultiVersionMangling=*/true); 4379 llvm::Constant *AliasFunc = GetGlobalValue(AliasName); 4380 if (!AliasFunc) { 4381 auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, 4382 &getModule()); 4383 SetCommonAttributes(GD, GA); 4384 } 4385 } 4386 } 4387 4388 /// If a dispatcher for the specified mangled name is not in the module, create 4389 /// and return an llvm Function with the specified type. 4390 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { 4391 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4392 assert(FD && "Not a FunctionDecl?"); 4393 4394 std::string MangledName = 4395 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 4396 4397 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has 4398 // a separate resolver). 4399 std::string ResolverName = MangledName; 4400 if (getTarget().supportsIFunc()) { 4401 // In Aarch64, default versions of multiversioned functions are mangled to 4402 // their 'normal' assembly name. This deviates from other targets which 4403 // append a '.default' string. As a result we need to continue appending 4404 // .ifunc in Aarch64. 4405 // FIXME: Should Aarch64 mangling for 'default' multiversion function and 4406 // in turn ifunc function match that of other targets? 4407 if (!FD->isTargetClonesMultiVersion() || 4408 getTarget().getTriple().isAArch64()) 4409 ResolverName += ".ifunc"; 4410 } else if (FD->isTargetMultiVersion()) { 4411 ResolverName += ".resolver"; 4412 } 4413 4414 // If the resolver has already been created, just return it. 4415 if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) 4416 return ResolverGV; 4417 4418 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4419 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); 4420 4421 // The resolver needs to be created. For target and target_clones, defer 4422 // creation until the end of the TU. 4423 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) 4424 MultiVersionFuncs.push_back(GD); 4425 4426 // For cpu_specific, don't create an ifunc yet because we don't know if the 4427 // cpu_dispatch will be emitted in this translation unit. 4428 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { 4429 llvm::Type *ResolverType = llvm::FunctionType::get( 4430 llvm::PointerType::get(DeclTy, 4431 getTypes().getTargetAddressSpace(FD->getType())), 4432 false); 4433 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4434 MangledName + ".resolver", ResolverType, GlobalDecl{}, 4435 /*ForVTable=*/false); 4436 llvm::GlobalIFunc *GIF = 4437 llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), 4438 "", Resolver, &getModule()); 4439 GIF->setName(ResolverName); 4440 SetCommonAttributes(FD, GIF); 4441 4442 return GIF; 4443 } 4444 4445 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 4446 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); 4447 assert(isa<llvm::GlobalValue>(Resolver) && 4448 "Resolver should be created for the first time"); 4449 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver)); 4450 return Resolver; 4451 } 4452 4453 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 4454 /// module, create and return an llvm Function with the specified type. If there 4455 /// is something in the module with the specified name, return it potentially 4456 /// bitcasted to the right type. 4457 /// 4458 /// If D is non-null, it specifies a decl that correspond to this. This is used 4459 /// to set the attributes on the function when it is first created. 4460 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 4461 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 4462 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 4463 ForDefinition_t IsForDefinition) { 4464 const Decl *D = GD.getDecl(); 4465 4466 // Any attempts to use a MultiVersion function should result in retrieving 4467 // the iFunc instead. Name Mangling will handle the rest of the changes. 4468 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 4469 // For the device mark the function as one that should be emitted. 4470 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && 4471 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 4472 !DontDefer && !IsForDefinition) { 4473 if (const FunctionDecl *FDDef = FD->getDefinition()) { 4474 GlobalDecl GDDef; 4475 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 4476 GDDef = GlobalDecl(CD, GD.getCtorType()); 4477 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 4478 GDDef = GlobalDecl(DD, GD.getDtorType()); 4479 else 4480 GDDef = GlobalDecl(FDDef); 4481 EmitGlobal(GDDef); 4482 } 4483 } 4484 4485 if (FD->isMultiVersion()) { 4486 UpdateMultiVersionNames(GD, FD, MangledName); 4487 if (!IsForDefinition) 4488 return GetOrCreateMultiVersionResolver(GD); 4489 } 4490 } 4491 4492 // Lookup the entry, lazily creating it if necessary. 4493 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4494 if (Entry) { 4495 if (WeakRefReferences.erase(Entry)) { 4496 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 4497 if (FD && !FD->hasAttr<WeakAttr>()) 4498 Entry->setLinkage(llvm::Function::ExternalLinkage); 4499 } 4500 4501 // Handle dropped DLL attributes. 4502 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4503 !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) { 4504 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4505 setDSOLocal(Entry); 4506 } 4507 4508 // If there are two attempts to define the same mangled name, issue an 4509 // error. 4510 if (IsForDefinition && !Entry->isDeclaration()) { 4511 GlobalDecl OtherGD; 4512 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 4513 // to make sure that we issue an error only once. 4514 if (lookupRepresentativeDecl(MangledName, OtherGD) && 4515 (GD.getCanonicalDecl().getDecl() != 4516 OtherGD.getCanonicalDecl().getDecl()) && 4517 DiagnosedConflictingDefinitions.insert(GD).second) { 4518 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4519 << MangledName; 4520 getDiags().Report(OtherGD.getDecl()->getLocation(), 4521 diag::note_previous_definition); 4522 } 4523 } 4524 4525 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 4526 (Entry->getValueType() == Ty)) { 4527 return Entry; 4528 } 4529 4530 // Make sure the result is of the correct type. 4531 // (If function is requested for a definition, we always need to create a new 4532 // function, not just return a bitcast.) 4533 if (!IsForDefinition) 4534 return Entry; 4535 } 4536 4537 // This function doesn't have a complete type (for example, the return 4538 // type is an incomplete struct). Use a fake type instead, and make 4539 // sure not to try to set attributes. 4540 bool IsIncompleteFunction = false; 4541 4542 llvm::FunctionType *FTy; 4543 if (isa<llvm::FunctionType>(Ty)) { 4544 FTy = cast<llvm::FunctionType>(Ty); 4545 } else { 4546 FTy = llvm::FunctionType::get(VoidTy, false); 4547 IsIncompleteFunction = true; 4548 } 4549 4550 llvm::Function *F = 4551 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 4552 Entry ? StringRef() : MangledName, &getModule()); 4553 4554 // Store the declaration associated with this function so it is potentially 4555 // updated by further declarations or definitions and emitted at the end. 4556 if (D && D->hasAttr<AnnotateAttr>()) 4557 DeferredAnnotations[MangledName] = cast<ValueDecl>(D); 4558 4559 // If we already created a function with the same mangled name (but different 4560 // type) before, take its name and add it to the list of functions to be 4561 // replaced with F at the end of CodeGen. 4562 // 4563 // This happens if there is a prototype for a function (e.g. "int f()") and 4564 // then a definition of a different type (e.g. "int f(int x)"). 4565 if (Entry) { 4566 F->takeName(Entry); 4567 4568 // This might be an implementation of a function without a prototype, in 4569 // which case, try to do special replacement of calls which match the new 4570 // prototype. The really key thing here is that we also potentially drop 4571 // arguments from the call site so as to make a direct call, which makes the 4572 // inliner happier and suppresses a number of optimizer warnings (!) about 4573 // dropping arguments. 4574 if (!Entry->use_empty()) { 4575 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 4576 Entry->removeDeadConstantUsers(); 4577 } 4578 4579 addGlobalValReplacement(Entry, F); 4580 } 4581 4582 assert(F->getName() == MangledName && "name was uniqued!"); 4583 if (D) 4584 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 4585 if (ExtraAttrs.hasFnAttrs()) { 4586 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); 4587 F->addFnAttrs(B); 4588 } 4589 4590 if (!DontDefer) { 4591 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 4592 // each other bottoming out with the base dtor. Therefore we emit non-base 4593 // dtors on usage, even if there is no dtor definition in the TU. 4594 if (isa_and_nonnull<CXXDestructorDecl>(D) && 4595 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 4596 GD.getDtorType())) 4597 addDeferredDeclToEmit(GD); 4598 4599 // This is the first use or definition of a mangled name. If there is a 4600 // deferred decl with this name, remember that we need to emit it at the end 4601 // of the file. 4602 auto DDI = DeferredDecls.find(MangledName); 4603 if (DDI != DeferredDecls.end()) { 4604 // Move the potentially referenced deferred decl to the 4605 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 4606 // don't need it anymore). 4607 addDeferredDeclToEmit(DDI->second); 4608 DeferredDecls.erase(DDI); 4609 4610 // Otherwise, there are cases we have to worry about where we're 4611 // using a declaration for which we must emit a definition but where 4612 // we might not find a top-level definition: 4613 // - member functions defined inline in their classes 4614 // - friend functions defined inline in some class 4615 // - special member functions with implicit definitions 4616 // If we ever change our AST traversal to walk into class methods, 4617 // this will be unnecessary. 4618 // 4619 // We also don't emit a definition for a function if it's going to be an 4620 // entry in a vtable, unless it's already marked as used. 4621 } else if (getLangOpts().CPlusPlus && D) { 4622 // Look for a declaration that's lexically in a record. 4623 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 4624 FD = FD->getPreviousDecl()) { 4625 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 4626 if (FD->doesThisDeclarationHaveABody()) { 4627 addDeferredDeclToEmit(GD.getWithDecl(FD)); 4628 break; 4629 } 4630 } 4631 } 4632 } 4633 } 4634 4635 // Make sure the result is of the requested type. 4636 if (!IsIncompleteFunction) { 4637 assert(F->getFunctionType() == Ty); 4638 return F; 4639 } 4640 4641 return F; 4642 } 4643 4644 /// GetAddrOfFunction - Return the address of the given function. If Ty is 4645 /// non-null, then this function will use the specified type if it has to 4646 /// create it (this occurs when we see a definition of the function). 4647 llvm::Constant * 4648 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, 4649 bool DontDefer, 4650 ForDefinition_t IsForDefinition) { 4651 // If there was no specific requested type, just convert it now. 4652 if (!Ty) { 4653 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 4654 Ty = getTypes().ConvertType(FD->getType()); 4655 } 4656 4657 // Devirtualized destructor calls may come through here instead of via 4658 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 4659 // of the complete destructor when necessary. 4660 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 4661 if (getTarget().getCXXABI().isMicrosoft() && 4662 GD.getDtorType() == Dtor_Complete && 4663 DD->getParent()->getNumVBases() == 0) 4664 GD = GlobalDecl(DD, Dtor_Base); 4665 } 4666 4667 StringRef MangledName = getMangledName(GD); 4668 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 4669 /*IsThunk=*/false, llvm::AttributeList(), 4670 IsForDefinition); 4671 // Returns kernel handle for HIP kernel stub function. 4672 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && 4673 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) { 4674 auto *Handle = getCUDARuntime().getKernelHandle( 4675 cast<llvm::Function>(F->stripPointerCasts()), GD); 4676 if (IsForDefinition) 4677 return F; 4678 return Handle; 4679 } 4680 return F; 4681 } 4682 4683 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { 4684 llvm::GlobalValue *F = 4685 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts()); 4686 4687 return llvm::NoCFIValue::get(F); 4688 } 4689 4690 static const FunctionDecl * 4691 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 4692 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 4693 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4694 4695 IdentifierInfo &CII = C.Idents.get(Name); 4696 for (const auto *Result : DC->lookup(&CII)) 4697 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4698 return FD; 4699 4700 if (!C.getLangOpts().CPlusPlus) 4701 return nullptr; 4702 4703 // Demangle the premangled name from getTerminateFn() 4704 IdentifierInfo &CXXII = 4705 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 4706 ? C.Idents.get("terminate") 4707 : C.Idents.get(Name); 4708 4709 for (const auto &N : {"__cxxabiv1", "std"}) { 4710 IdentifierInfo &NS = C.Idents.get(N); 4711 for (const auto *Result : DC->lookup(&NS)) { 4712 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 4713 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result)) 4714 for (const auto *Result : LSD->lookup(&NS)) 4715 if ((ND = dyn_cast<NamespaceDecl>(Result))) 4716 break; 4717 4718 if (ND) 4719 for (const auto *Result : ND->lookup(&CXXII)) 4720 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 4721 return FD; 4722 } 4723 } 4724 4725 return nullptr; 4726 } 4727 4728 /// CreateRuntimeFunction - Create a new runtime function with the specified 4729 /// type and name. 4730 llvm::FunctionCallee 4731 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 4732 llvm::AttributeList ExtraAttrs, bool Local, 4733 bool AssumeConvergent) { 4734 if (AssumeConvergent) { 4735 ExtraAttrs = 4736 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); 4737 } 4738 4739 llvm::Constant *C = 4740 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 4741 /*DontDefer=*/false, /*IsThunk=*/false, 4742 ExtraAttrs); 4743 4744 if (auto *F = dyn_cast<llvm::Function>(C)) { 4745 if (F->empty()) { 4746 F->setCallingConv(getRuntimeCC()); 4747 4748 // In Windows Itanium environments, try to mark runtime functions 4749 // dllimport. For Mingw and MSVC, don't. We don't really know if the user 4750 // will link their standard library statically or dynamically. Marking 4751 // functions imported when they are not imported can cause linker errors 4752 // and warnings. 4753 if (!Local && getTriple().isWindowsItaniumEnvironment() && 4754 !getCodeGenOpts().LTOVisibilityPublicStd) { 4755 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 4756 if (!FD || FD->hasAttr<DLLImportAttr>()) { 4757 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4758 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 4759 } 4760 } 4761 setDSOLocal(F); 4762 } 4763 } 4764 4765 return {FTy, C}; 4766 } 4767 4768 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 4769 /// create and return an llvm GlobalVariable with the specified type and address 4770 /// space. If there is something in the module with the specified name, return 4771 /// it potentially bitcasted to the right type. 4772 /// 4773 /// If D is non-null, it specifies a decl that correspond to this. This is used 4774 /// to set the attributes on the global when it is first created. 4775 /// 4776 /// If IsForDefinition is true, it is guaranteed that an actual global with 4777 /// type Ty will be returned, not conversion of a variable with the same 4778 /// mangled name but some other type. 4779 llvm::Constant * 4780 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, 4781 LangAS AddrSpace, const VarDecl *D, 4782 ForDefinition_t IsForDefinition) { 4783 // Lookup the entry, lazily creating it if necessary. 4784 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 4785 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4786 if (Entry) { 4787 if (WeakRefReferences.erase(Entry)) { 4788 if (D && !D->hasAttr<WeakAttr>()) 4789 Entry->setLinkage(llvm::Function::ExternalLinkage); 4790 } 4791 4792 // Handle dropped DLL attributes. 4793 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() && 4794 !shouldMapVisibilityToDLLExport(D)) 4795 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 4796 4797 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 4798 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 4799 4800 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) 4801 return Entry; 4802 4803 // If there are two attempts to define the same mangled name, issue an 4804 // error. 4805 if (IsForDefinition && !Entry->isDeclaration()) { 4806 GlobalDecl OtherGD; 4807 const VarDecl *OtherD; 4808 4809 // Check that D is not yet in DiagnosedConflictingDefinitions is required 4810 // to make sure that we issue an error only once. 4811 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 4812 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 4813 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 4814 OtherD->hasInit() && 4815 DiagnosedConflictingDefinitions.insert(D).second) { 4816 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 4817 << MangledName; 4818 getDiags().Report(OtherGD.getDecl()->getLocation(), 4819 diag::note_previous_definition); 4820 } 4821 } 4822 4823 // Make sure the result is of the correct type. 4824 if (Entry->getType()->getAddressSpace() != TargetAS) 4825 return llvm::ConstantExpr::getAddrSpaceCast( 4826 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); 4827 4828 // (If global is requested for a definition, we always need to create a new 4829 // global, not just return a bitcast.) 4830 if (!IsForDefinition) 4831 return Entry; 4832 } 4833 4834 auto DAddrSpace = GetGlobalVarAddressSpace(D); 4835 4836 auto *GV = new llvm::GlobalVariable( 4837 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, 4838 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, 4839 getContext().getTargetAddressSpace(DAddrSpace)); 4840 4841 // If we already created a global with the same mangled name (but different 4842 // type) before, take its name and remove it from its parent. 4843 if (Entry) { 4844 GV->takeName(Entry); 4845 4846 if (!Entry->use_empty()) { 4847 Entry->replaceAllUsesWith(GV); 4848 } 4849 4850 Entry->eraseFromParent(); 4851 } 4852 4853 // This is the first use or definition of a mangled name. If there is a 4854 // deferred decl with this name, remember that we need to emit it at the end 4855 // of the file. 4856 auto DDI = DeferredDecls.find(MangledName); 4857 if (DDI != DeferredDecls.end()) { 4858 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 4859 // list, and remove it from DeferredDecls (since we don't need it anymore). 4860 addDeferredDeclToEmit(DDI->second); 4861 DeferredDecls.erase(DDI); 4862 } 4863 4864 // Handle things which are present even on external declarations. 4865 if (D) { 4866 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 4867 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 4868 4869 // FIXME: This code is overly simple and should be merged with other global 4870 // handling. 4871 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); 4872 4873 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); 4874 4875 setLinkageForGV(GV, D); 4876 4877 if (D->getTLSKind()) { 4878 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 4879 CXXThreadLocals.push_back(D); 4880 setTLSMode(GV, *D); 4881 } 4882 4883 setGVProperties(GV, D); 4884 4885 // If required by the ABI, treat declarations of static data members with 4886 // inline initializers as definitions. 4887 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 4888 EmitGlobalVarDefinition(D); 4889 } 4890 4891 // Emit section information for extern variables. 4892 if (D->hasExternalStorage()) { 4893 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 4894 GV->setSection(SA->getName()); 4895 } 4896 4897 // Handle XCore specific ABI requirements. 4898 if (getTriple().getArch() == llvm::Triple::xcore && 4899 D->getLanguageLinkage() == CLanguageLinkage && 4900 D->getType().isConstant(Context) && 4901 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 4902 GV->setSection(".cp.rodata"); 4903 4904 // Handle code model attribute 4905 if (const auto *CMA = D->getAttr<CodeModelAttr>()) 4906 GV->setCodeModel(CMA->getModel()); 4907 4908 // Check if we a have a const declaration with an initializer, we may be 4909 // able to emit it as available_externally to expose it's value to the 4910 // optimizer. 4911 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 4912 D->getType().isConstQualified() && !GV->hasInitializer() && 4913 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 4914 const auto *Record = 4915 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 4916 bool HasMutableFields = Record && Record->hasMutableFields(); 4917 if (!HasMutableFields) { 4918 const VarDecl *InitDecl; 4919 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 4920 if (InitExpr) { 4921 ConstantEmitter emitter(*this); 4922 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 4923 if (Init) { 4924 auto *InitType = Init->getType(); 4925 if (GV->getValueType() != InitType) { 4926 // The type of the initializer does not match the definition. 4927 // This happens when an initializer has a different type from 4928 // the type of the global (because of padding at the end of a 4929 // structure for instance). 4930 GV->setName(StringRef()); 4931 // Make a new global with the correct type, this is now guaranteed 4932 // to work. 4933 auto *NewGV = cast<llvm::GlobalVariable>( 4934 GetAddrOfGlobalVar(D, InitType, IsForDefinition) 4935 ->stripPointerCasts()); 4936 4937 // Erase the old global, since it is no longer used. 4938 GV->eraseFromParent(); 4939 GV = NewGV; 4940 } else { 4941 GV->setInitializer(Init); 4942 GV->setConstant(true); 4943 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 4944 } 4945 emitter.finalize(GV); 4946 } 4947 } 4948 } 4949 } 4950 } 4951 4952 if (D && 4953 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { 4954 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); 4955 // External HIP managed variables needed to be recorded for transformation 4956 // in both device and host compilations. 4957 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() && 4958 D->hasExternalStorage()) 4959 getCUDARuntime().handleVarRegistration(D, *GV); 4960 } 4961 4962 if (D) 4963 SanitizerMD->reportGlobal(GV, *D); 4964 4965 LangAS ExpectedAS = 4966 D ? D->getType().getAddressSpace() 4967 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 4968 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); 4969 if (DAddrSpace != ExpectedAS) { 4970 return getTargetCodeGenInfo().performAddrSpaceCast( 4971 *this, GV, DAddrSpace, ExpectedAS, 4972 llvm::PointerType::get(getLLVMContext(), TargetAS)); 4973 } 4974 4975 return GV; 4976 } 4977 4978 llvm::Constant * 4979 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { 4980 const Decl *D = GD.getDecl(); 4981 4982 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D)) 4983 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, 4984 /*DontDefer=*/false, IsForDefinition); 4985 4986 if (isa<CXXMethodDecl>(D)) { 4987 auto FInfo = 4988 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D)); 4989 auto Ty = getTypes().GetFunctionType(*FInfo); 4990 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4991 IsForDefinition); 4992 } 4993 4994 if (isa<FunctionDecl>(D)) { 4995 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 4996 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 4997 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 4998 IsForDefinition); 4999 } 5000 5001 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition); 5002 } 5003 5004 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( 5005 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, 5006 llvm::Align Alignment) { 5007 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 5008 llvm::GlobalVariable *OldGV = nullptr; 5009 5010 if (GV) { 5011 // Check if the variable has the right type. 5012 if (GV->getValueType() == Ty) 5013 return GV; 5014 5015 // Because C++ name mangling, the only way we can end up with an already 5016 // existing global with the same name is if it has been declared extern "C". 5017 assert(GV->isDeclaration() && "Declaration has wrong type!"); 5018 OldGV = GV; 5019 } 5020 5021 // Create a new variable. 5022 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 5023 Linkage, nullptr, Name); 5024 5025 if (OldGV) { 5026 // Replace occurrences of the old variable if needed. 5027 GV->takeName(OldGV); 5028 5029 if (!OldGV->use_empty()) { 5030 OldGV->replaceAllUsesWith(GV); 5031 } 5032 5033 OldGV->eraseFromParent(); 5034 } 5035 5036 if (supportsCOMDAT() && GV->isWeakForLinker() && 5037 !GV->hasAvailableExternallyLinkage()) 5038 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 5039 5040 GV->setAlignment(Alignment); 5041 5042 return GV; 5043 } 5044 5045 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 5046 /// given global variable. If Ty is non-null and if the global doesn't exist, 5047 /// then it will be created with the specified type instead of whatever the 5048 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 5049 /// that an actual global with type Ty will be returned, not conversion of a 5050 /// variable with the same mangled name but some other type. 5051 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 5052 llvm::Type *Ty, 5053 ForDefinition_t IsForDefinition) { 5054 assert(D->hasGlobalStorage() && "Not a global variable"); 5055 QualType ASTTy = D->getType(); 5056 if (!Ty) 5057 Ty = getTypes().ConvertTypeForMem(ASTTy); 5058 5059 StringRef MangledName = getMangledName(D); 5060 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, 5061 IsForDefinition); 5062 } 5063 5064 /// CreateRuntimeVariable - Create a new runtime global variable with the 5065 /// specified type and name. 5066 llvm::Constant * 5067 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 5068 StringRef Name) { 5069 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global 5070 : LangAS::Default; 5071 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); 5072 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 5073 return Ret; 5074 } 5075 5076 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 5077 assert(!D->getInit() && "Cannot emit definite definitions here!"); 5078 5079 StringRef MangledName = getMangledName(D); 5080 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 5081 5082 // We already have a definition, not declaration, with the same mangled name. 5083 // Emitting of declaration is not required (and actually overwrites emitted 5084 // definition). 5085 if (GV && !GV->isDeclaration()) 5086 return; 5087 5088 // If we have not seen a reference to this variable yet, place it into the 5089 // deferred declarations table to be emitted if needed later. 5090 if (!MustBeEmitted(D) && !GV) { 5091 DeferredDecls[MangledName] = D; 5092 return; 5093 } 5094 5095 // The tentative definition is the only definition. 5096 EmitGlobalVarDefinition(D); 5097 } 5098 5099 void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { 5100 EmitExternalVarDeclaration(D); 5101 } 5102 5103 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 5104 return Context.toCharUnitsFromBits( 5105 getDataLayout().getTypeStoreSizeInBits(Ty)); 5106 } 5107 5108 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 5109 if (LangOpts.OpenCL) { 5110 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 5111 assert(AS == LangAS::opencl_global || 5112 AS == LangAS::opencl_global_device || 5113 AS == LangAS::opencl_global_host || 5114 AS == LangAS::opencl_constant || 5115 AS == LangAS::opencl_local || 5116 AS >= LangAS::FirstTargetAddressSpace); 5117 return AS; 5118 } 5119 5120 if (LangOpts.SYCLIsDevice && 5121 (!D || D->getType().getAddressSpace() == LangAS::Default)) 5122 return LangAS::sycl_global; 5123 5124 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 5125 if (D) { 5126 if (D->hasAttr<CUDAConstantAttr>()) 5127 return LangAS::cuda_constant; 5128 if (D->hasAttr<CUDASharedAttr>()) 5129 return LangAS::cuda_shared; 5130 if (D->hasAttr<CUDADeviceAttr>()) 5131 return LangAS::cuda_device; 5132 if (D->getType().isConstQualified()) 5133 return LangAS::cuda_constant; 5134 } 5135 return LangAS::cuda_device; 5136 } 5137 5138 if (LangOpts.OpenMP) { 5139 LangAS AS; 5140 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) 5141 return AS; 5142 } 5143 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 5144 } 5145 5146 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { 5147 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 5148 if (LangOpts.OpenCL) 5149 return LangAS::opencl_constant; 5150 if (LangOpts.SYCLIsDevice) 5151 return LangAS::sycl_global; 5152 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) 5153 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) 5154 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up 5155 // with OpVariable instructions with Generic storage class which is not 5156 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V 5157 // UniformConstant storage class is not viable as pointers to it may not be 5158 // casted to Generic pointers which are used to model HIP's "flat" pointers. 5159 return LangAS::cuda_device; 5160 if (auto AS = getTarget().getConstantAddressSpace()) 5161 return *AS; 5162 return LangAS::Default; 5163 } 5164 5165 // In address space agnostic languages, string literals are in default address 5166 // space in AST. However, certain targets (e.g. amdgcn) request them to be 5167 // emitted in constant address space in LLVM IR. To be consistent with other 5168 // parts of AST, string literal global variables in constant address space 5169 // need to be casted to default address space before being put into address 5170 // map and referenced by other part of CodeGen. 5171 // In OpenCL, string literals are in constant address space in AST, therefore 5172 // they should not be casted to default address space. 5173 static llvm::Constant * 5174 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 5175 llvm::GlobalVariable *GV) { 5176 llvm::Constant *Cast = GV; 5177 if (!CGM.getLangOpts().OpenCL) { 5178 auto AS = CGM.GetGlobalConstantAddressSpace(); 5179 if (AS != LangAS::Default) 5180 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 5181 CGM, GV, AS, LangAS::Default, 5182 llvm::PointerType::get( 5183 CGM.getLLVMContext(), 5184 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 5185 } 5186 return Cast; 5187 } 5188 5189 template<typename SomeDecl> 5190 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 5191 llvm::GlobalValue *GV) { 5192 if (!getLangOpts().CPlusPlus) 5193 return; 5194 5195 // Must have 'used' attribute, or else inline assembly can't rely on 5196 // the name existing. 5197 if (!D->template hasAttr<UsedAttr>()) 5198 return; 5199 5200 // Must have internal linkage and an ordinary name. 5201 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) 5202 return; 5203 5204 // Must be in an extern "C" context. Entities declared directly within 5205 // a record are not extern "C" even if the record is in such a context. 5206 const SomeDecl *First = D->getFirstDecl(); 5207 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 5208 return; 5209 5210 // OK, this is an internal linkage entity inside an extern "C" linkage 5211 // specification. Make a note of that so we can give it the "expected" 5212 // mangled name if nothing else is using that name. 5213 std::pair<StaticExternCMap::iterator, bool> R = 5214 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 5215 5216 // If we have multiple internal linkage entities with the same name 5217 // in extern "C" regions, none of them gets that name. 5218 if (!R.second) 5219 R.first->second = nullptr; 5220 } 5221 5222 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 5223 if (!CGM.supportsCOMDAT()) 5224 return false; 5225 5226 if (D.hasAttr<SelectAnyAttr>()) 5227 return true; 5228 5229 GVALinkage Linkage; 5230 if (auto *VD = dyn_cast<VarDecl>(&D)) 5231 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 5232 else 5233 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 5234 5235 switch (Linkage) { 5236 case GVA_Internal: 5237 case GVA_AvailableExternally: 5238 case GVA_StrongExternal: 5239 return false; 5240 case GVA_DiscardableODR: 5241 case GVA_StrongODR: 5242 return true; 5243 } 5244 llvm_unreachable("No such linkage"); 5245 } 5246 5247 bool CodeGenModule::supportsCOMDAT() const { 5248 return getTriple().supportsCOMDAT(); 5249 } 5250 5251 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 5252 llvm::GlobalObject &GO) { 5253 if (!shouldBeInCOMDAT(*this, D)) 5254 return; 5255 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 5256 } 5257 5258 /// Pass IsTentative as true if you want to create a tentative definition. 5259 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 5260 bool IsTentative) { 5261 // OpenCL global variables of sampler type are translated to function calls, 5262 // therefore no need to be translated. 5263 QualType ASTTy = D->getType(); 5264 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 5265 return; 5266 5267 // If this is OpenMP device, check if it is legal to emit this global 5268 // normally. 5269 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && 5270 OpenMPRuntime->emitTargetGlobalVariable(D)) 5271 return; 5272 5273 llvm::TrackingVH<llvm::Constant> Init; 5274 bool NeedsGlobalCtor = false; 5275 // Whether the definition of the variable is available externally. 5276 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable 5277 // since this is the job for its original source. 5278 bool IsDefinitionAvailableExternally = 5279 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; 5280 bool NeedsGlobalDtor = 5281 !IsDefinitionAvailableExternally && 5282 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; 5283 5284 const VarDecl *InitDecl; 5285 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 5286 5287 std::optional<ConstantEmitter> emitter; 5288 5289 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 5290 // as part of their declaration." Sema has already checked for 5291 // error cases, so we just need to set Init to UndefValue. 5292 bool IsCUDASharedVar = 5293 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>(); 5294 // Shadows of initialized device-side global variables are also left 5295 // undefined. 5296 // Managed Variables should be initialized on both host side and device side. 5297 bool IsCUDAShadowVar = 5298 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5299 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() || 5300 D->hasAttr<CUDASharedAttr>()); 5301 bool IsCUDADeviceShadowVar = 5302 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() && 5303 (D->getType()->isCUDADeviceBuiltinSurfaceType() || 5304 D->getType()->isCUDADeviceBuiltinTextureType()); 5305 if (getLangOpts().CUDA && 5306 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) 5307 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5308 else if (D->hasAttr<LoaderUninitializedAttr>()) 5309 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); 5310 else if (!InitExpr) { 5311 // This is a tentative definition; tentative definitions are 5312 // implicitly initialized with { 0 }. 5313 // 5314 // Note that tentative definitions are only emitted at the end of 5315 // a translation unit, so they should never have incomplete 5316 // type. In addition, EmitTentativeDefinition makes sure that we 5317 // never attempt to emit a tentative definition if a real one 5318 // exists. A use may still exists, however, so we still may need 5319 // to do a RAUW. 5320 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 5321 Init = EmitNullConstant(D->getType()); 5322 } else { 5323 initializedGlobalDecl = GlobalDecl(D); 5324 emitter.emplace(*this); 5325 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); 5326 if (!Initializer) { 5327 QualType T = InitExpr->getType(); 5328 if (D->getType()->isReferenceType()) 5329 T = D->getType(); 5330 5331 if (getLangOpts().CPlusPlus) { 5332 if (InitDecl->hasFlexibleArrayInit(getContext())) 5333 ErrorUnsupported(D, "flexible array initializer"); 5334 Init = EmitNullConstant(T); 5335 5336 if (!IsDefinitionAvailableExternally) 5337 NeedsGlobalCtor = true; 5338 } else { 5339 ErrorUnsupported(D, "static initializer"); 5340 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 5341 } 5342 } else { 5343 Init = Initializer; 5344 // We don't need an initializer, so remove the entry for the delayed 5345 // initializer position (just in case this entry was delayed) if we 5346 // also don't need to register a destructor. 5347 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 5348 DelayedCXXInitPosition.erase(D); 5349 5350 #ifndef NDEBUG 5351 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + 5352 InitDecl->getFlexibleArrayInitChars(getContext()); 5353 CharUnits CstSize = CharUnits::fromQuantity( 5354 getDataLayout().getTypeAllocSize(Init->getType())); 5355 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 5356 #endif 5357 } 5358 } 5359 5360 llvm::Type* InitType = Init->getType(); 5361 llvm::Constant *Entry = 5362 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 5363 5364 // Strip off pointer casts if we got them. 5365 Entry = Entry->stripPointerCasts(); 5366 5367 // Entry is now either a Function or GlobalVariable. 5368 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 5369 5370 // We have a definition after a declaration with the wrong type. 5371 // We must make a new GlobalVariable* and update everything that used OldGV 5372 // (a declaration or tentative definition) with the new GlobalVariable* 5373 // (which will be a definition). 5374 // 5375 // This happens if there is a prototype for a global (e.g. 5376 // "extern int x[];") and then a definition of a different type (e.g. 5377 // "int x[10];"). This also happens when an initializer has a different type 5378 // from the type of the global (this happens with unions). 5379 if (!GV || GV->getValueType() != InitType || 5380 GV->getType()->getAddressSpace() != 5381 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 5382 5383 // Move the old entry aside so that we'll create a new one. 5384 Entry->setName(StringRef()); 5385 5386 // Make a new global with the correct type, this is now guaranteed to work. 5387 GV = cast<llvm::GlobalVariable>( 5388 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) 5389 ->stripPointerCasts()); 5390 5391 // Replace all uses of the old global with the new global 5392 llvm::Constant *NewPtrForOldDecl = 5393 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 5394 Entry->getType()); 5395 Entry->replaceAllUsesWith(NewPtrForOldDecl); 5396 5397 // Erase the old global, since it is no longer used. 5398 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 5399 } 5400 5401 MaybeHandleStaticInExternC(D, GV); 5402 5403 if (D->hasAttr<AnnotateAttr>()) 5404 AddGlobalAnnotations(D, GV); 5405 5406 // Set the llvm linkage type as appropriate. 5407 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); 5408 5409 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 5410 // the device. [...]" 5411 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 5412 // __device__, declares a variable that: [...] 5413 // Is accessible from all the threads within the grid and from the host 5414 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 5415 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 5416 if (LangOpts.CUDA) { 5417 if (LangOpts.CUDAIsDevice) { 5418 if (Linkage != llvm::GlobalValue::InternalLinkage && 5419 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 5420 D->getType()->isCUDADeviceBuiltinSurfaceType() || 5421 D->getType()->isCUDADeviceBuiltinTextureType())) 5422 GV->setExternallyInitialized(true); 5423 } else { 5424 getCUDARuntime().internalizeDeviceSideVar(D, Linkage); 5425 } 5426 getCUDARuntime().handleVarRegistration(D, *GV); 5427 } 5428 5429 GV->setInitializer(Init); 5430 if (emitter) 5431 emitter->finalize(GV); 5432 5433 // If it is safe to mark the global 'constant', do so now. 5434 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 5435 D->getType().isConstantStorage(getContext(), true, true)); 5436 5437 // If it is in a read-only section, mark it 'constant'. 5438 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 5439 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 5440 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 5441 GV->setConstant(true); 5442 } 5443 5444 CharUnits AlignVal = getContext().getDeclAlign(D); 5445 // Check for alignment specifed in an 'omp allocate' directive. 5446 if (std::optional<CharUnits> AlignValFromAllocate = 5447 getOMPAllocateAlignment(D)) 5448 AlignVal = *AlignValFromAllocate; 5449 GV->setAlignment(AlignVal.getAsAlign()); 5450 5451 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper 5452 // function is only defined alongside the variable, not also alongside 5453 // callers. Normally, all accesses to a thread_local go through the 5454 // thread-wrapper in order to ensure initialization has occurred, underlying 5455 // variable will never be used other than the thread-wrapper, so it can be 5456 // converted to internal linkage. 5457 // 5458 // However, if the variable has the 'constinit' attribute, it _can_ be 5459 // referenced directly, without calling the thread-wrapper, so the linkage 5460 // must not be changed. 5461 // 5462 // Additionally, if the variable isn't plain external linkage, e.g. if it's 5463 // weak or linkonce, the de-duplication semantics are important to preserve, 5464 // so we don't change the linkage. 5465 if (D->getTLSKind() == VarDecl::TLS_Dynamic && 5466 Linkage == llvm::GlobalValue::ExternalLinkage && 5467 Context.getTargetInfo().getTriple().isOSDarwin() && 5468 !D->hasAttr<ConstInitAttr>()) 5469 Linkage = llvm::GlobalValue::InternalLinkage; 5470 5471 GV->setLinkage(Linkage); 5472 if (D->hasAttr<DLLImportAttr>()) 5473 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 5474 else if (D->hasAttr<DLLExportAttr>()) 5475 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 5476 else 5477 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 5478 5479 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 5480 // common vars aren't constant even if declared const. 5481 GV->setConstant(false); 5482 // Tentative definition of global variables may be initialized with 5483 // non-zero null pointers. In this case they should have weak linkage 5484 // since common linkage must have zero initializer and must not have 5485 // explicit section therefore cannot have non-zero initial value. 5486 if (!GV->getInitializer()->isNullValue()) 5487 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 5488 } 5489 5490 setNonAliasAttributes(D, GV); 5491 5492 if (D->getTLSKind() && !GV->isThreadLocal()) { 5493 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 5494 CXXThreadLocals.push_back(D); 5495 setTLSMode(GV, *D); 5496 } 5497 5498 maybeSetTrivialComdat(*D, *GV); 5499 5500 // Emit the initializer function if necessary. 5501 if (NeedsGlobalCtor || NeedsGlobalDtor) 5502 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 5503 5504 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); 5505 5506 // Emit global variable debug information. 5507 if (CGDebugInfo *DI = getModuleDebugInfo()) 5508 if (getCodeGenOpts().hasReducedDebugInfo()) 5509 DI->EmitGlobalVariable(GV, D); 5510 } 5511 5512 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { 5513 if (CGDebugInfo *DI = getModuleDebugInfo()) 5514 if (getCodeGenOpts().hasReducedDebugInfo()) { 5515 QualType ASTTy = D->getType(); 5516 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); 5517 llvm::Constant *GV = 5518 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); 5519 DI->EmitExternalVariable( 5520 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D); 5521 } 5522 } 5523 5524 static bool isVarDeclStrongDefinition(const ASTContext &Context, 5525 CodeGenModule &CGM, const VarDecl *D, 5526 bool NoCommon) { 5527 // Don't give variables common linkage if -fno-common was specified unless it 5528 // was overridden by a NoCommon attribute. 5529 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 5530 return true; 5531 5532 // C11 6.9.2/2: 5533 // A declaration of an identifier for an object that has file scope without 5534 // an initializer, and without a storage-class specifier or with the 5535 // storage-class specifier static, constitutes a tentative definition. 5536 if (D->getInit() || D->hasExternalStorage()) 5537 return true; 5538 5539 // A variable cannot be both common and exist in a section. 5540 if (D->hasAttr<SectionAttr>()) 5541 return true; 5542 5543 // A variable cannot be both common and exist in a section. 5544 // We don't try to determine which is the right section in the front-end. 5545 // If no specialized section name is applicable, it will resort to default. 5546 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 5547 D->hasAttr<PragmaClangDataSectionAttr>() || 5548 D->hasAttr<PragmaClangRelroSectionAttr>() || 5549 D->hasAttr<PragmaClangRodataSectionAttr>()) 5550 return true; 5551 5552 // Thread local vars aren't considered common linkage. 5553 if (D->getTLSKind()) 5554 return true; 5555 5556 // Tentative definitions marked with WeakImportAttr are true definitions. 5557 if (D->hasAttr<WeakImportAttr>()) 5558 return true; 5559 5560 // A variable cannot be both common and exist in a comdat. 5561 if (shouldBeInCOMDAT(CGM, *D)) 5562 return true; 5563 5564 // Declarations with a required alignment do not have common linkage in MSVC 5565 // mode. 5566 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 5567 if (D->hasAttr<AlignedAttr>()) 5568 return true; 5569 QualType VarType = D->getType(); 5570 if (Context.isAlignmentRequired(VarType)) 5571 return true; 5572 5573 if (const auto *RT = VarType->getAs<RecordType>()) { 5574 const RecordDecl *RD = RT->getDecl(); 5575 for (const FieldDecl *FD : RD->fields()) { 5576 if (FD->isBitField()) 5577 continue; 5578 if (FD->hasAttr<AlignedAttr>()) 5579 return true; 5580 if (Context.isAlignmentRequired(FD->getType())) 5581 return true; 5582 } 5583 } 5584 } 5585 5586 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for 5587 // common symbols, so symbols with greater alignment requirements cannot be 5588 // common. 5589 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two 5590 // alignments for common symbols via the aligncomm directive, so this 5591 // restriction only applies to MSVC environments. 5592 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && 5593 Context.getTypeAlignIfKnown(D->getType()) > 5594 Context.toBits(CharUnits::fromQuantity(32))) 5595 return true; 5596 5597 return false; 5598 } 5599 5600 llvm::GlobalValue::LinkageTypes 5601 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, 5602 GVALinkage Linkage) { 5603 if (Linkage == GVA_Internal) 5604 return llvm::Function::InternalLinkage; 5605 5606 if (D->hasAttr<WeakAttr>()) 5607 return llvm::GlobalVariable::WeakAnyLinkage; 5608 5609 if (const auto *FD = D->getAsFunction()) 5610 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) 5611 return llvm::GlobalVariable::LinkOnceAnyLinkage; 5612 5613 // We are guaranteed to have a strong definition somewhere else, 5614 // so we can use available_externally linkage. 5615 if (Linkage == GVA_AvailableExternally) 5616 return llvm::GlobalValue::AvailableExternallyLinkage; 5617 5618 // Note that Apple's kernel linker doesn't support symbol 5619 // coalescing, so we need to avoid linkonce and weak linkages there. 5620 // Normally, this means we just map to internal, but for explicit 5621 // instantiations we'll map to external. 5622 5623 // In C++, the compiler has to emit a definition in every translation unit 5624 // that references the function. We should use linkonce_odr because 5625 // a) if all references in this translation unit are optimized away, we 5626 // don't need to codegen it. b) if the function persists, it needs to be 5627 // merged with other definitions. c) C++ has the ODR, so we know the 5628 // definition is dependable. 5629 if (Linkage == GVA_DiscardableODR) 5630 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 5631 : llvm::Function::InternalLinkage; 5632 5633 // An explicit instantiation of a template has weak linkage, since 5634 // explicit instantiations can occur in multiple translation units 5635 // and must all be equivalent. However, we are not allowed to 5636 // throw away these explicit instantiations. 5637 // 5638 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, 5639 // so say that CUDA templates are either external (for kernels) or internal. 5640 // This lets llvm perform aggressive inter-procedural optimizations. For 5641 // -fgpu-rdc case, device function calls across multiple TU's are allowed, 5642 // therefore we need to follow the normal linkage paradigm. 5643 if (Linkage == GVA_StrongODR) { 5644 if (getLangOpts().AppleKext) 5645 return llvm::Function::ExternalLinkage; 5646 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 5647 !getLangOpts().GPURelocatableDeviceCode) 5648 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 5649 : llvm::Function::InternalLinkage; 5650 return llvm::Function::WeakODRLinkage; 5651 } 5652 5653 // C++ doesn't have tentative definitions and thus cannot have common 5654 // linkage. 5655 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 5656 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 5657 CodeGenOpts.NoCommon)) 5658 return llvm::GlobalVariable::CommonLinkage; 5659 5660 // selectany symbols are externally visible, so use weak instead of 5661 // linkonce. MSVC optimizes away references to const selectany globals, so 5662 // all definitions should be the same and ODR linkage should be used. 5663 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 5664 if (D->hasAttr<SelectAnyAttr>()) 5665 return llvm::GlobalVariable::WeakODRLinkage; 5666 5667 // Otherwise, we have strong external linkage. 5668 assert(Linkage == GVA_StrongExternal); 5669 return llvm::GlobalVariable::ExternalLinkage; 5670 } 5671 5672 llvm::GlobalValue::LinkageTypes 5673 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { 5674 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 5675 return getLLVMLinkageForDeclarator(VD, Linkage); 5676 } 5677 5678 /// Replace the uses of a function that was declared with a non-proto type. 5679 /// We want to silently drop extra arguments from call sites 5680 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 5681 llvm::Function *newFn) { 5682 // Fast path. 5683 if (old->use_empty()) return; 5684 5685 llvm::Type *newRetTy = newFn->getReturnType(); 5686 SmallVector<llvm::Value*, 4> newArgs; 5687 5688 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 5689 ui != ue; ) { 5690 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 5691 llvm::User *user = use->getUser(); 5692 5693 // Recognize and replace uses of bitcasts. Most calls to 5694 // unprototyped functions will use bitcasts. 5695 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 5696 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 5697 replaceUsesOfNonProtoConstant(bitcast, newFn); 5698 continue; 5699 } 5700 5701 // Recognize calls to the function. 5702 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user); 5703 if (!callSite) continue; 5704 if (!callSite->isCallee(&*use)) 5705 continue; 5706 5707 // If the return types don't match exactly, then we can't 5708 // transform this call unless it's dead. 5709 if (callSite->getType() != newRetTy && !callSite->use_empty()) 5710 continue; 5711 5712 // Get the call site's attribute list. 5713 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 5714 llvm::AttributeList oldAttrs = callSite->getAttributes(); 5715 5716 // If the function was passed too few arguments, don't transform. 5717 unsigned newNumArgs = newFn->arg_size(); 5718 if (callSite->arg_size() < newNumArgs) 5719 continue; 5720 5721 // If extra arguments were passed, we silently drop them. 5722 // If any of the types mismatch, we don't transform. 5723 unsigned argNo = 0; 5724 bool dontTransform = false; 5725 for (llvm::Argument &A : newFn->args()) { 5726 if (callSite->getArgOperand(argNo)->getType() != A.getType()) { 5727 dontTransform = true; 5728 break; 5729 } 5730 5731 // Add any parameter attributes. 5732 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); 5733 argNo++; 5734 } 5735 if (dontTransform) 5736 continue; 5737 5738 // Okay, we can transform this. Create the new call instruction and copy 5739 // over the required information. 5740 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); 5741 5742 // Copy over any operand bundles. 5743 SmallVector<llvm::OperandBundleDef, 1> newBundles; 5744 callSite->getOperandBundlesAsDefs(newBundles); 5745 5746 llvm::CallBase *newCall; 5747 if (isa<llvm::CallInst>(callSite)) { 5748 newCall = 5749 llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); 5750 } else { 5751 auto *oldInvoke = cast<llvm::InvokeInst>(callSite); 5752 newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), 5753 oldInvoke->getUnwindDest(), newArgs, 5754 newBundles, "", callSite); 5755 } 5756 newArgs.clear(); // for the next iteration 5757 5758 if (!newCall->getType()->isVoidTy()) 5759 newCall->takeName(callSite); 5760 newCall->setAttributes( 5761 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), 5762 oldAttrs.getRetAttrs(), newArgAttrs)); 5763 newCall->setCallingConv(callSite->getCallingConv()); 5764 5765 // Finally, remove the old call, replacing any uses with the new one. 5766 if (!callSite->use_empty()) 5767 callSite->replaceAllUsesWith(newCall); 5768 5769 // Copy debug location attached to CI. 5770 if (callSite->getDebugLoc()) 5771 newCall->setDebugLoc(callSite->getDebugLoc()); 5772 5773 callSite->eraseFromParent(); 5774 } 5775 } 5776 5777 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 5778 /// implement a function with no prototype, e.g. "int foo() {}". If there are 5779 /// existing call uses of the old function in the module, this adjusts them to 5780 /// call the new function directly. 5781 /// 5782 /// This is not just a cleanup: the always_inline pass requires direct calls to 5783 /// functions to be able to inline them. If there is a bitcast in the way, it 5784 /// won't inline them. Instcombine normally deletes these calls, but it isn't 5785 /// run at -O0. 5786 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 5787 llvm::Function *NewFn) { 5788 // If we're redefining a global as a function, don't transform it. 5789 if (!isa<llvm::Function>(Old)) return; 5790 5791 replaceUsesOfNonProtoConstant(Old, NewFn); 5792 } 5793 5794 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 5795 auto DK = VD->isThisDeclarationADefinition(); 5796 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 5797 return; 5798 5799 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 5800 // If we have a definition, this might be a deferred decl. If the 5801 // instantiation is explicit, make sure we emit it at the end. 5802 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 5803 GetAddrOfGlobalVar(VD); 5804 5805 EmitTopLevelDecl(VD); 5806 } 5807 5808 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 5809 llvm::GlobalValue *GV) { 5810 const auto *D = cast<FunctionDecl>(GD.getDecl()); 5811 5812 // Compute the function info and LLVM type. 5813 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 5814 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 5815 5816 // Get or create the prototype for the function. 5817 if (!GV || (GV->getValueType() != Ty)) 5818 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 5819 /*DontDefer=*/true, 5820 ForDefinition)); 5821 5822 // Already emitted. 5823 if (!GV->isDeclaration()) 5824 return; 5825 5826 // We need to set linkage and visibility on the function before 5827 // generating code for it because various parts of IR generation 5828 // want to propagate this information down (e.g. to local static 5829 // declarations). 5830 auto *Fn = cast<llvm::Function>(GV); 5831 setFunctionLinkage(GD, Fn); 5832 5833 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 5834 setGVProperties(Fn, GD); 5835 5836 MaybeHandleStaticInExternC(D, Fn); 5837 5838 maybeSetTrivialComdat(*D, *Fn); 5839 5840 CodeGenFunction(*this).GenerateCode(GD, Fn, FI); 5841 5842 setNonAliasAttributes(GD, Fn); 5843 SetLLVMFunctionAttributesForDefinition(D, Fn); 5844 5845 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 5846 AddGlobalCtor(Fn, CA->getPriority()); 5847 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 5848 AddGlobalDtor(Fn, DA->getPriority(), true); 5849 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>()) 5850 getOpenMPRuntime().emitDeclareTargetFunction(D, GV); 5851 } 5852 5853 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 5854 const auto *D = cast<ValueDecl>(GD.getDecl()); 5855 const AliasAttr *AA = D->getAttr<AliasAttr>(); 5856 assert(AA && "Not an alias?"); 5857 5858 StringRef MangledName = getMangledName(GD); 5859 5860 if (AA->getAliasee() == MangledName) { 5861 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5862 return; 5863 } 5864 5865 // If there is a definition in the module, then it wins over the alias. 5866 // This is dubious, but allow it to be safe. Just ignore the alias. 5867 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5868 if (Entry && !Entry->isDeclaration()) 5869 return; 5870 5871 Aliases.push_back(GD); 5872 5873 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5874 5875 // Create a reference to the named value. This ensures that it is emitted 5876 // if a deferred decl. 5877 llvm::Constant *Aliasee; 5878 llvm::GlobalValue::LinkageTypes LT; 5879 if (isa<llvm::FunctionType>(DeclTy)) { 5880 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 5881 /*ForVTable=*/false); 5882 LT = getFunctionLinkage(GD); 5883 } else { 5884 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, 5885 /*D=*/nullptr); 5886 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl())) 5887 LT = getLLVMLinkageVarDefinition(VD); 5888 else 5889 LT = getFunctionLinkage(GD); 5890 } 5891 5892 // Create the new alias itself, but don't set a name yet. 5893 unsigned AS = Aliasee->getType()->getPointerAddressSpace(); 5894 auto *GA = 5895 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); 5896 5897 if (Entry) { 5898 if (GA->getAliasee() == Entry) { 5899 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 5900 return; 5901 } 5902 5903 assert(Entry->isDeclaration()); 5904 5905 // If there is a declaration in the module, then we had an extern followed 5906 // by the alias, as in: 5907 // extern int test6(); 5908 // ... 5909 // int test6() __attribute__((alias("test7"))); 5910 // 5911 // Remove it and replace uses of it with the alias. 5912 GA->takeName(Entry); 5913 5914 Entry->replaceAllUsesWith(GA); 5915 Entry->eraseFromParent(); 5916 } else { 5917 GA->setName(MangledName); 5918 } 5919 5920 // Set attributes which are particular to an alias; this is a 5921 // specialization of the attributes which may be set on a global 5922 // variable/function. 5923 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 5924 D->isWeakImported()) { 5925 GA->setLinkage(llvm::Function::WeakAnyLinkage); 5926 } 5927 5928 if (const auto *VD = dyn_cast<VarDecl>(D)) 5929 if (VD->getTLSKind()) 5930 setTLSMode(GA, *VD); 5931 5932 SetCommonAttributes(GD, GA); 5933 5934 // Emit global alias debug information. 5935 if (isa<VarDecl>(D)) 5936 if (CGDebugInfo *DI = getModuleDebugInfo()) 5937 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD); 5938 } 5939 5940 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 5941 const auto *D = cast<ValueDecl>(GD.getDecl()); 5942 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 5943 assert(IFA && "Not an ifunc?"); 5944 5945 StringRef MangledName = getMangledName(GD); 5946 5947 if (IFA->getResolver() == MangledName) { 5948 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5949 return; 5950 } 5951 5952 // Report an error if some definition overrides ifunc. 5953 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 5954 if (Entry && !Entry->isDeclaration()) { 5955 GlobalDecl OtherGD; 5956 if (lookupRepresentativeDecl(MangledName, OtherGD) && 5957 DiagnosedConflictingDefinitions.insert(GD).second) { 5958 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 5959 << MangledName; 5960 Diags.Report(OtherGD.getDecl()->getLocation(), 5961 diag::note_previous_definition); 5962 } 5963 return; 5964 } 5965 5966 Aliases.push_back(GD); 5967 5968 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 5969 llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); 5970 llvm::Constant *Resolver = 5971 GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, 5972 /*ForVTable=*/false); 5973 llvm::GlobalIFunc *GIF = 5974 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 5975 "", Resolver, &getModule()); 5976 if (Entry) { 5977 if (GIF->getResolver() == Entry) { 5978 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 5979 return; 5980 } 5981 assert(Entry->isDeclaration()); 5982 5983 // If there is a declaration in the module, then we had an extern followed 5984 // by the ifunc, as in: 5985 // extern int test(); 5986 // ... 5987 // int test() __attribute__((ifunc("resolver"))); 5988 // 5989 // Remove it and replace uses of it with the ifunc. 5990 GIF->takeName(Entry); 5991 5992 Entry->replaceAllUsesWith(GIF); 5993 Entry->eraseFromParent(); 5994 } else 5995 GIF->setName(MangledName); 5996 if (auto *F = dyn_cast<llvm::Function>(Resolver)) { 5997 F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); 5998 } 5999 SetCommonAttributes(GD, GIF); 6000 } 6001 6002 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 6003 ArrayRef<llvm::Type*> Tys) { 6004 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 6005 Tys); 6006 } 6007 6008 static llvm::StringMapEntry<llvm::GlobalVariable *> & 6009 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 6010 const StringLiteral *Literal, bool TargetIsLSB, 6011 bool &IsUTF16, unsigned &StringLength) { 6012 StringRef String = Literal->getString(); 6013 unsigned NumBytes = String.size(); 6014 6015 // Check for simple case. 6016 if (!Literal->containsNonAsciiOrNull()) { 6017 StringLength = NumBytes; 6018 return *Map.insert(std::make_pair(String, nullptr)).first; 6019 } 6020 6021 // Otherwise, convert the UTF8 literals into a string of shorts. 6022 IsUTF16 = true; 6023 6024 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 6025 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6026 llvm::UTF16 *ToPtr = &ToBuf[0]; 6027 6028 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6029 ToPtr + NumBytes, llvm::strictConversion); 6030 6031 // ConvertUTF8toUTF16 returns the length in ToPtr. 6032 StringLength = ToPtr - &ToBuf[0]; 6033 6034 // Add an explicit null. 6035 *ToPtr = 0; 6036 return *Map.insert(std::make_pair( 6037 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 6038 (StringLength + 1) * 2), 6039 nullptr)).first; 6040 } 6041 6042 ConstantAddress 6043 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 6044 unsigned StringLength = 0; 6045 bool isUTF16 = false; 6046 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 6047 GetConstantCFStringEntry(CFConstantStringMap, Literal, 6048 getDataLayout().isLittleEndian(), isUTF16, 6049 StringLength); 6050 6051 if (auto *C = Entry.second) 6052 return ConstantAddress( 6053 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); 6054 6055 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 6056 llvm::Constant *Zeros[] = { Zero, Zero }; 6057 6058 const ASTContext &Context = getContext(); 6059 const llvm::Triple &Triple = getTriple(); 6060 6061 const auto CFRuntime = getLangOpts().CFRuntime; 6062 const bool IsSwiftABI = 6063 static_cast<unsigned>(CFRuntime) >= 6064 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift); 6065 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; 6066 6067 // If we don't already have it, get __CFConstantStringClassReference. 6068 if (!CFConstantStringClassRef) { 6069 const char *CFConstantStringClassName = "__CFConstantStringClassReference"; 6070 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 6071 Ty = llvm::ArrayType::get(Ty, 0); 6072 6073 switch (CFRuntime) { 6074 default: break; 6075 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; 6076 case LangOptions::CoreFoundationABI::Swift5_0: 6077 CFConstantStringClassName = 6078 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" 6079 : "$s10Foundation19_NSCFConstantStringCN"; 6080 Ty = IntPtrTy; 6081 break; 6082 case LangOptions::CoreFoundationABI::Swift4_2: 6083 CFConstantStringClassName = 6084 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" 6085 : "$S10Foundation19_NSCFConstantStringCN"; 6086 Ty = IntPtrTy; 6087 break; 6088 case LangOptions::CoreFoundationABI::Swift4_1: 6089 CFConstantStringClassName = 6090 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" 6091 : "__T010Foundation19_NSCFConstantStringCN"; 6092 Ty = IntPtrTy; 6093 break; 6094 } 6095 6096 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); 6097 6098 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { 6099 llvm::GlobalValue *GV = nullptr; 6100 6101 if ((GV = dyn_cast<llvm::GlobalValue>(C))) { 6102 IdentifierInfo &II = Context.Idents.get(GV->getName()); 6103 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); 6104 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 6105 6106 const VarDecl *VD = nullptr; 6107 for (const auto *Result : DC->lookup(&II)) 6108 if ((VD = dyn_cast<VarDecl>(Result))) 6109 break; 6110 6111 if (Triple.isOSBinFormatELF()) { 6112 if (!VD) 6113 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6114 } else { 6115 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 6116 if (!VD || !VD->hasAttr<DLLExportAttr>()) 6117 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 6118 else 6119 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 6120 } 6121 6122 setDSOLocal(GV); 6123 } 6124 } 6125 6126 // Decay array -> ptr 6127 CFConstantStringClassRef = 6128 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) 6129 : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); 6130 } 6131 6132 QualType CFTy = Context.getCFConstantStringType(); 6133 6134 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 6135 6136 ConstantInitBuilder Builder(*this); 6137 auto Fields = Builder.beginStruct(STy); 6138 6139 // Class pointer. 6140 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef)); 6141 6142 // Flags. 6143 if (IsSwiftABI) { 6144 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); 6145 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); 6146 } else { 6147 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 6148 } 6149 6150 // String pointer. 6151 llvm::Constant *C = nullptr; 6152 if (isUTF16) { 6153 auto Arr = llvm::ArrayRef( 6154 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 6155 Entry.first().size() / 2); 6156 C = llvm::ConstantDataArray::get(VMContext, Arr); 6157 } else { 6158 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 6159 } 6160 6161 // Note: -fwritable-strings doesn't make the backing store strings of 6162 // CFStrings writable. 6163 auto *GV = 6164 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 6165 llvm::GlobalValue::PrivateLinkage, C, ".str"); 6166 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6167 // Don't enforce the target's minimum global alignment, since the only use 6168 // of the string is via this class initializer. 6169 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) 6170 : Context.getTypeAlignInChars(Context.CharTy); 6171 GV->setAlignment(Align.getAsAlign()); 6172 6173 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 6174 // Without it LLVM can merge the string with a non unnamed_addr one during 6175 // LTO. Doing that changes the section it ends in, which surprises ld64. 6176 if (Triple.isOSBinFormatMachO()) 6177 GV->setSection(isUTF16 ? "__TEXT,__ustring" 6178 : "__TEXT,__cstring,cstring_literals"); 6179 // Make sure the literal ends up in .rodata to allow for safe ICF and for 6180 // the static linker to adjust permissions to read-only later on. 6181 else if (Triple.isOSBinFormatELF()) 6182 GV->setSection(".rodata"); 6183 6184 // String. 6185 llvm::Constant *Str = 6186 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 6187 6188 Fields.add(Str); 6189 6190 // String length. 6191 llvm::IntegerType *LengthTy = 6192 llvm::IntegerType::get(getModule().getContext(), 6193 Context.getTargetInfo().getLongWidth()); 6194 if (IsSwiftABI) { 6195 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || 6196 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) 6197 LengthTy = Int32Ty; 6198 else 6199 LengthTy = IntPtrTy; 6200 } 6201 Fields.addInt(LengthTy, StringLength); 6202 6203 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is 6204 // properly aligned on 32-bit platforms. 6205 CharUnits Alignment = 6206 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); 6207 6208 // The struct. 6209 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 6210 /*isConstant=*/false, 6211 llvm::GlobalVariable::PrivateLinkage); 6212 GV->addAttribute("objc_arc_inert"); 6213 switch (Triple.getObjectFormat()) { 6214 case llvm::Triple::UnknownObjectFormat: 6215 llvm_unreachable("unknown file format"); 6216 case llvm::Triple::DXContainer: 6217 case llvm::Triple::GOFF: 6218 case llvm::Triple::SPIRV: 6219 case llvm::Triple::XCOFF: 6220 llvm_unreachable("unimplemented"); 6221 case llvm::Triple::COFF: 6222 case llvm::Triple::ELF: 6223 case llvm::Triple::Wasm: 6224 GV->setSection("cfstring"); 6225 break; 6226 case llvm::Triple::MachO: 6227 GV->setSection("__DATA,__cfstring"); 6228 break; 6229 } 6230 Entry.second = GV; 6231 6232 return ConstantAddress(GV, GV->getValueType(), Alignment); 6233 } 6234 6235 bool CodeGenModule::getExpressionLocationsEnabled() const { 6236 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 6237 } 6238 6239 QualType CodeGenModule::getObjCFastEnumerationStateType() { 6240 if (ObjCFastEnumerationStateType.isNull()) { 6241 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 6242 D->startDefinition(); 6243 6244 QualType FieldTypes[] = { 6245 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), 6246 Context.getPointerType(Context.UnsignedLongTy), 6247 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), 6248 nullptr, ArraySizeModifier::Normal, 0)}; 6249 6250 for (size_t i = 0; i < 4; ++i) { 6251 FieldDecl *Field = FieldDecl::Create(Context, 6252 D, 6253 SourceLocation(), 6254 SourceLocation(), nullptr, 6255 FieldTypes[i], /*TInfo=*/nullptr, 6256 /*BitWidth=*/nullptr, 6257 /*Mutable=*/false, 6258 ICIS_NoInit); 6259 Field->setAccess(AS_public); 6260 D->addDecl(Field); 6261 } 6262 6263 D->completeDefinition(); 6264 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 6265 } 6266 6267 return ObjCFastEnumerationStateType; 6268 } 6269 6270 llvm::Constant * 6271 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 6272 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 6273 6274 // Don't emit it as the address of the string, emit the string data itself 6275 // as an inline array. 6276 if (E->getCharByteWidth() == 1) { 6277 SmallString<64> Str(E->getString()); 6278 6279 // Resize the string to the right size, which is indicated by its type. 6280 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 6281 assert(CAT && "String literal not of constant array type!"); 6282 Str.resize(CAT->getSize().getZExtValue()); 6283 return llvm::ConstantDataArray::getString(VMContext, Str, false); 6284 } 6285 6286 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 6287 llvm::Type *ElemTy = AType->getElementType(); 6288 unsigned NumElements = AType->getNumElements(); 6289 6290 // Wide strings have either 2-byte or 4-byte elements. 6291 if (ElemTy->getPrimitiveSizeInBits() == 16) { 6292 SmallVector<uint16_t, 32> Elements; 6293 Elements.reserve(NumElements); 6294 6295 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6296 Elements.push_back(E->getCodeUnit(i)); 6297 Elements.resize(NumElements); 6298 return llvm::ConstantDataArray::get(VMContext, Elements); 6299 } 6300 6301 assert(ElemTy->getPrimitiveSizeInBits() == 32); 6302 SmallVector<uint32_t, 32> Elements; 6303 Elements.reserve(NumElements); 6304 6305 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 6306 Elements.push_back(E->getCodeUnit(i)); 6307 Elements.resize(NumElements); 6308 return llvm::ConstantDataArray::get(VMContext, Elements); 6309 } 6310 6311 static llvm::GlobalVariable * 6312 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 6313 CodeGenModule &CGM, StringRef GlobalName, 6314 CharUnits Alignment) { 6315 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 6316 CGM.GetGlobalConstantAddressSpace()); 6317 6318 llvm::Module &M = CGM.getModule(); 6319 // Create a global variable for this string 6320 auto *GV = new llvm::GlobalVariable( 6321 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 6322 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 6323 GV->setAlignment(Alignment.getAsAlign()); 6324 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 6325 if (GV->isWeakForLinker()) { 6326 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 6327 GV->setComdat(M.getOrInsertComdat(GV->getName())); 6328 } 6329 CGM.setDSOLocal(GV); 6330 6331 return GV; 6332 } 6333 6334 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 6335 /// constant array for the given string literal. 6336 ConstantAddress 6337 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 6338 StringRef Name) { 6339 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 6340 6341 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 6342 llvm::GlobalVariable **Entry = nullptr; 6343 if (!LangOpts.WritableStrings) { 6344 Entry = &ConstantStringMap[C]; 6345 if (auto GV = *Entry) { 6346 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6347 GV->setAlignment(Alignment.getAsAlign()); 6348 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6349 GV->getValueType(), Alignment); 6350 } 6351 } 6352 6353 SmallString<256> MangledNameBuffer; 6354 StringRef GlobalVariableName; 6355 llvm::GlobalValue::LinkageTypes LT; 6356 6357 // Mangle the string literal if that's how the ABI merges duplicate strings. 6358 // Don't do it if they are writable, since we don't want writes in one TU to 6359 // affect strings in another. 6360 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && 6361 !LangOpts.WritableStrings) { 6362 llvm::raw_svector_ostream Out(MangledNameBuffer); 6363 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 6364 LT = llvm::GlobalValue::LinkOnceODRLinkage; 6365 GlobalVariableName = MangledNameBuffer; 6366 } else { 6367 LT = llvm::GlobalValue::PrivateLinkage; 6368 GlobalVariableName = Name; 6369 } 6370 6371 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 6372 6373 CGDebugInfo *DI = getModuleDebugInfo(); 6374 if (DI && getCodeGenOpts().hasReducedDebugInfo()) 6375 DI->AddStringLiteralDebugInfo(GV, S); 6376 6377 if (Entry) 6378 *Entry = GV; 6379 6380 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>"); 6381 6382 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6383 GV->getValueType(), Alignment); 6384 } 6385 6386 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 6387 /// array for the given ObjCEncodeExpr node. 6388 ConstantAddress 6389 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 6390 std::string Str; 6391 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 6392 6393 return GetAddrOfConstantCString(Str); 6394 } 6395 6396 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 6397 /// the literal and a terminating '\0' character. 6398 /// The result has pointer to array type. 6399 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 6400 const std::string &Str, const char *GlobalName) { 6401 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 6402 CharUnits Alignment = 6403 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 6404 6405 llvm::Constant *C = 6406 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 6407 6408 // Don't share any string literals if strings aren't constant. 6409 llvm::GlobalVariable **Entry = nullptr; 6410 if (!LangOpts.WritableStrings) { 6411 Entry = &ConstantStringMap[C]; 6412 if (auto GV = *Entry) { 6413 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) 6414 GV->setAlignment(Alignment.getAsAlign()); 6415 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6416 GV->getValueType(), Alignment); 6417 } 6418 } 6419 6420 // Get the default prefix if a name wasn't specified. 6421 if (!GlobalName) 6422 GlobalName = ".str"; 6423 // Create a global variable for this. 6424 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 6425 GlobalName, Alignment); 6426 if (Entry) 6427 *Entry = GV; 6428 6429 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 6430 GV->getValueType(), Alignment); 6431 } 6432 6433 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 6434 const MaterializeTemporaryExpr *E, const Expr *Init) { 6435 assert((E->getStorageDuration() == SD_Static || 6436 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 6437 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 6438 6439 // If we're not materializing a subobject of the temporary, keep the 6440 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 6441 QualType MaterializedType = Init->getType(); 6442 if (Init == E->getSubExpr()) 6443 MaterializedType = E->getType(); 6444 6445 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 6446 6447 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); 6448 if (!InsertResult.second) { 6449 // We've seen this before: either we already created it or we're in the 6450 // process of doing so. 6451 if (!InsertResult.first->second) { 6452 // We recursively re-entered this function, probably during emission of 6453 // the initializer. Create a placeholder. We'll clean this up in the 6454 // outer call, at the end of this function. 6455 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); 6456 InsertResult.first->second = new llvm::GlobalVariable( 6457 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, 6458 nullptr); 6459 } 6460 return ConstantAddress(InsertResult.first->second, 6461 llvm::cast<llvm::GlobalVariable>( 6462 InsertResult.first->second->stripPointerCasts()) 6463 ->getValueType(), 6464 Align); 6465 } 6466 6467 // FIXME: If an externally-visible declaration extends multiple temporaries, 6468 // we need to give each temporary the same name in every translation unit (and 6469 // we also need to make the temporaries externally-visible). 6470 SmallString<256> Name; 6471 llvm::raw_svector_ostream Out(Name); 6472 getCXXABI().getMangleContext().mangleReferenceTemporary( 6473 VD, E->getManglingNumber(), Out); 6474 6475 APValue *Value = nullptr; 6476 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { 6477 // If the initializer of the extending declaration is a constant 6478 // initializer, we should have a cached constant initializer for this 6479 // temporary. Note that this might have a different value from the value 6480 // computed by evaluating the initializer if the surrounding constant 6481 // expression modifies the temporary. 6482 Value = E->getOrCreateValue(false); 6483 } 6484 6485 // Try evaluating it now, it might have a constant initializer. 6486 Expr::EvalResult EvalResult; 6487 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 6488 !EvalResult.hasSideEffects()) 6489 Value = &EvalResult.Val; 6490 6491 LangAS AddrSpace = GetGlobalVarAddressSpace(VD); 6492 6493 std::optional<ConstantEmitter> emitter; 6494 llvm::Constant *InitialValue = nullptr; 6495 bool Constant = false; 6496 llvm::Type *Type; 6497 if (Value) { 6498 // The temporary has a constant initializer, use it. 6499 emitter.emplace(*this); 6500 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 6501 MaterializedType); 6502 Constant = 6503 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, 6504 /*ExcludeDtor*/ false); 6505 Type = InitialValue->getType(); 6506 } else { 6507 // No initializer, the initialization will be provided when we 6508 // initialize the declaration which performed lifetime extension. 6509 Type = getTypes().ConvertTypeForMem(MaterializedType); 6510 } 6511 6512 // Create a global variable for this lifetime-extended temporary. 6513 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); 6514 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 6515 const VarDecl *InitVD; 6516 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 6517 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 6518 // Temporaries defined inside a class get linkonce_odr linkage because the 6519 // class can be defined in multiple translation units. 6520 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 6521 } else { 6522 // There is no need for this temporary to have external linkage if the 6523 // VarDecl has external linkage. 6524 Linkage = llvm::GlobalVariable::InternalLinkage; 6525 } 6526 } 6527 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 6528 auto *GV = new llvm::GlobalVariable( 6529 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 6530 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 6531 if (emitter) emitter->finalize(GV); 6532 // Don't assign dllimport or dllexport to local linkage globals. 6533 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { 6534 setGVProperties(GV, VD); 6535 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) 6536 // The reference temporary should never be dllexport. 6537 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 6538 } 6539 GV->setAlignment(Align.getAsAlign()); 6540 if (supportsCOMDAT() && GV->isWeakForLinker()) 6541 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 6542 if (VD->getTLSKind()) 6543 setTLSMode(GV, *VD); 6544 llvm::Constant *CV = GV; 6545 if (AddrSpace != LangAS::Default) 6546 CV = getTargetCodeGenInfo().performAddrSpaceCast( 6547 *this, GV, AddrSpace, LangAS::Default, 6548 llvm::PointerType::get( 6549 getLLVMContext(), 6550 getContext().getTargetAddressSpace(LangAS::Default))); 6551 6552 // Update the map with the new temporary. If we created a placeholder above, 6553 // replace it with the new global now. 6554 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; 6555 if (Entry) { 6556 Entry->replaceAllUsesWith(CV); 6557 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent(); 6558 } 6559 Entry = CV; 6560 6561 return ConstantAddress(CV, Type, Align); 6562 } 6563 6564 /// EmitObjCPropertyImplementations - Emit information for synthesized 6565 /// properties for an implementation. 6566 void CodeGenModule::EmitObjCPropertyImplementations(const 6567 ObjCImplementationDecl *D) { 6568 for (const auto *PID : D->property_impls()) { 6569 // Dynamic is just for type-checking. 6570 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 6571 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 6572 6573 // Determine which methods need to be implemented, some may have 6574 // been overridden. Note that ::isPropertyAccessor is not the method 6575 // we want, that just indicates if the decl came from a 6576 // property. What we want to know is if the method is defined in 6577 // this implementation. 6578 auto *Getter = PID->getGetterMethodDecl(); 6579 if (!Getter || Getter->isSynthesizedAccessorStub()) 6580 CodeGenFunction(*this).GenerateObjCGetter( 6581 const_cast<ObjCImplementationDecl *>(D), PID); 6582 auto *Setter = PID->getSetterMethodDecl(); 6583 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) 6584 CodeGenFunction(*this).GenerateObjCSetter( 6585 const_cast<ObjCImplementationDecl *>(D), PID); 6586 } 6587 } 6588 } 6589 6590 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 6591 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 6592 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 6593 ivar; ivar = ivar->getNextIvar()) 6594 if (ivar->getType().isDestructedType()) 6595 return true; 6596 6597 return false; 6598 } 6599 6600 static bool AllTrivialInitializers(CodeGenModule &CGM, 6601 ObjCImplementationDecl *D) { 6602 CodeGenFunction CGF(CGM); 6603 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 6604 E = D->init_end(); B != E; ++B) { 6605 CXXCtorInitializer *CtorInitExp = *B; 6606 Expr *Init = CtorInitExp->getInit(); 6607 if (!CGF.isTrivialInitializer(Init)) 6608 return false; 6609 } 6610 return true; 6611 } 6612 6613 /// EmitObjCIvarInitializations - Emit information for ivar initialization 6614 /// for an implementation. 6615 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 6616 // We might need a .cxx_destruct even if we don't have any ivar initializers. 6617 if (needsDestructMethod(D)) { 6618 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 6619 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6620 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( 6621 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6622 getContext().VoidTy, nullptr, D, 6623 /*isInstance=*/true, /*isVariadic=*/false, 6624 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6625 /*isImplicitlyDeclared=*/true, 6626 /*isDefined=*/false, ObjCImplementationControl::Required); 6627 D->addInstanceMethod(DTORMethod); 6628 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 6629 D->setHasDestructors(true); 6630 } 6631 6632 // If the implementation doesn't have any ivar initializers, we don't need 6633 // a .cxx_construct. 6634 if (D->getNumIvarInitializers() == 0 || 6635 AllTrivialInitializers(*this, D)) 6636 return; 6637 6638 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 6639 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 6640 // The constructor returns 'self'. 6641 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( 6642 getContext(), D->getLocation(), D->getLocation(), cxxSelector, 6643 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, 6644 /*isVariadic=*/false, 6645 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, 6646 /*isImplicitlyDeclared=*/true, 6647 /*isDefined=*/false, ObjCImplementationControl::Required); 6648 D->addInstanceMethod(CTORMethod); 6649 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 6650 D->setHasNonZeroConstructors(true); 6651 } 6652 6653 // EmitLinkageSpec - Emit all declarations in a linkage spec. 6654 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 6655 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && 6656 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { 6657 ErrorUnsupported(LSD, "linkage spec"); 6658 return; 6659 } 6660 6661 EmitDeclContext(LSD); 6662 } 6663 6664 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { 6665 // Device code should not be at top level. 6666 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6667 return; 6668 6669 std::unique_ptr<CodeGenFunction> &CurCGF = 6670 GlobalTopLevelStmtBlockInFlight.first; 6671 6672 // We emitted a top-level stmt but after it there is initialization. 6673 // Stop squashing the top-level stmts into a single function. 6674 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { 6675 CurCGF->FinishFunction(D->getEndLoc()); 6676 CurCGF = nullptr; 6677 } 6678 6679 if (!CurCGF) { 6680 // void __stmts__N(void) 6681 // FIXME: Ask the ABI name mangler to pick a name. 6682 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); 6683 FunctionArgList Args; 6684 QualType RetTy = getContext().VoidTy; 6685 const CGFunctionInfo &FnInfo = 6686 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); 6687 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); 6688 llvm::Function *Fn = llvm::Function::Create( 6689 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); 6690 6691 CurCGF.reset(new CodeGenFunction(*this)); 6692 GlobalTopLevelStmtBlockInFlight.second = D; 6693 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, 6694 D->getBeginLoc(), D->getBeginLoc()); 6695 CXXGlobalInits.push_back(Fn); 6696 } 6697 6698 CurCGF->EmitStmt(D->getStmt()); 6699 } 6700 6701 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 6702 for (auto *I : DC->decls()) { 6703 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 6704 // are themselves considered "top-level", so EmitTopLevelDecl on an 6705 // ObjCImplDecl does not recursively visit them. We need to do that in 6706 // case they're nested inside another construct (LinkageSpecDecl / 6707 // ExportDecl) that does stop them from being considered "top-level". 6708 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 6709 for (auto *M : OID->methods()) 6710 EmitTopLevelDecl(M); 6711 } 6712 6713 EmitTopLevelDecl(I); 6714 } 6715 } 6716 6717 /// EmitTopLevelDecl - Emit code for a single top level declaration. 6718 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 6719 // Ignore dependent declarations. 6720 if (D->isTemplated()) 6721 return; 6722 6723 // Consteval function shouldn't be emitted. 6724 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction()) 6725 return; 6726 6727 switch (D->getKind()) { 6728 case Decl::CXXConversion: 6729 case Decl::CXXMethod: 6730 case Decl::Function: 6731 EmitGlobal(cast<FunctionDecl>(D)); 6732 // Always provide some coverage mapping 6733 // even for the functions that aren't emitted. 6734 AddDeferredUnusedCoverageMapping(D); 6735 break; 6736 6737 case Decl::CXXDeductionGuide: 6738 // Function-like, but does not result in code emission. 6739 break; 6740 6741 case Decl::Var: 6742 case Decl::Decomposition: 6743 case Decl::VarTemplateSpecialization: 6744 EmitGlobal(cast<VarDecl>(D)); 6745 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 6746 for (auto *B : DD->bindings()) 6747 if (auto *HD = B->getHoldingVar()) 6748 EmitGlobal(HD); 6749 break; 6750 6751 // Indirect fields from global anonymous structs and unions can be 6752 // ignored; only the actual variable requires IR gen support. 6753 case Decl::IndirectField: 6754 break; 6755 6756 // C++ Decls 6757 case Decl::Namespace: 6758 EmitDeclContext(cast<NamespaceDecl>(D)); 6759 break; 6760 case Decl::ClassTemplateSpecialization: { 6761 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 6762 if (CGDebugInfo *DI = getModuleDebugInfo()) 6763 if (Spec->getSpecializationKind() == 6764 TSK_ExplicitInstantiationDefinition && 6765 Spec->hasDefinition()) 6766 DI->completeTemplateDefinition(*Spec); 6767 } [[fallthrough]]; 6768 case Decl::CXXRecord: { 6769 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D); 6770 if (CGDebugInfo *DI = getModuleDebugInfo()) { 6771 if (CRD->hasDefinition()) 6772 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6773 if (auto *ES = D->getASTContext().getExternalSource()) 6774 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 6775 DI->completeUnusedClass(*CRD); 6776 } 6777 // Emit any static data members, they may be definitions. 6778 for (auto *I : CRD->decls()) 6779 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 6780 EmitTopLevelDecl(I); 6781 break; 6782 } 6783 // No code generation needed. 6784 case Decl::UsingShadow: 6785 case Decl::ClassTemplate: 6786 case Decl::VarTemplate: 6787 case Decl::Concept: 6788 case Decl::VarTemplatePartialSpecialization: 6789 case Decl::FunctionTemplate: 6790 case Decl::TypeAliasTemplate: 6791 case Decl::Block: 6792 case Decl::Empty: 6793 case Decl::Binding: 6794 break; 6795 case Decl::Using: // using X; [C++] 6796 if (CGDebugInfo *DI = getModuleDebugInfo()) 6797 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 6798 break; 6799 case Decl::UsingEnum: // using enum X; [C++] 6800 if (CGDebugInfo *DI = getModuleDebugInfo()) 6801 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D)); 6802 break; 6803 case Decl::NamespaceAlias: 6804 if (CGDebugInfo *DI = getModuleDebugInfo()) 6805 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 6806 break; 6807 case Decl::UsingDirective: // using namespace X; [C++] 6808 if (CGDebugInfo *DI = getModuleDebugInfo()) 6809 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 6810 break; 6811 case Decl::CXXConstructor: 6812 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 6813 break; 6814 case Decl::CXXDestructor: 6815 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 6816 break; 6817 6818 case Decl::StaticAssert: 6819 // Nothing to do. 6820 break; 6821 6822 // Objective-C Decls 6823 6824 // Forward declarations, no (immediate) code generation. 6825 case Decl::ObjCInterface: 6826 case Decl::ObjCCategory: 6827 break; 6828 6829 case Decl::ObjCProtocol: { 6830 auto *Proto = cast<ObjCProtocolDecl>(D); 6831 if (Proto->isThisDeclarationADefinition()) 6832 ObjCRuntime->GenerateProtocol(Proto); 6833 break; 6834 } 6835 6836 case Decl::ObjCCategoryImpl: 6837 // Categories have properties but don't support synthesize so we 6838 // can ignore them here. 6839 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 6840 break; 6841 6842 case Decl::ObjCImplementation: { 6843 auto *OMD = cast<ObjCImplementationDecl>(D); 6844 EmitObjCPropertyImplementations(OMD); 6845 EmitObjCIvarInitializations(OMD); 6846 ObjCRuntime->GenerateClass(OMD); 6847 // Emit global variable debug information. 6848 if (CGDebugInfo *DI = getModuleDebugInfo()) 6849 if (getCodeGenOpts().hasReducedDebugInfo()) 6850 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 6851 OMD->getClassInterface()), OMD->getLocation()); 6852 break; 6853 } 6854 case Decl::ObjCMethod: { 6855 auto *OMD = cast<ObjCMethodDecl>(D); 6856 // If this is not a prototype, emit the body. 6857 if (OMD->getBody()) 6858 CodeGenFunction(*this).GenerateObjCMethod(OMD); 6859 break; 6860 } 6861 case Decl::ObjCCompatibleAlias: 6862 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 6863 break; 6864 6865 case Decl::PragmaComment: { 6866 const auto *PCD = cast<PragmaCommentDecl>(D); 6867 switch (PCD->getCommentKind()) { 6868 case PCK_Unknown: 6869 llvm_unreachable("unexpected pragma comment kind"); 6870 case PCK_Linker: 6871 AppendLinkerOptions(PCD->getArg()); 6872 break; 6873 case PCK_Lib: 6874 AddDependentLib(PCD->getArg()); 6875 break; 6876 case PCK_Compiler: 6877 case PCK_ExeStr: 6878 case PCK_User: 6879 break; // We ignore all of these. 6880 } 6881 break; 6882 } 6883 6884 case Decl::PragmaDetectMismatch: { 6885 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 6886 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 6887 break; 6888 } 6889 6890 case Decl::LinkageSpec: 6891 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 6892 break; 6893 6894 case Decl::FileScopeAsm: { 6895 // File-scope asm is ignored during device-side CUDA compilation. 6896 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 6897 break; 6898 // File-scope asm is ignored during device-side OpenMP compilation. 6899 if (LangOpts.OpenMPIsTargetDevice) 6900 break; 6901 // File-scope asm is ignored during device-side SYCL compilation. 6902 if (LangOpts.SYCLIsDevice) 6903 break; 6904 auto *AD = cast<FileScopeAsmDecl>(D); 6905 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 6906 break; 6907 } 6908 6909 case Decl::TopLevelStmt: 6910 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D)); 6911 break; 6912 6913 case Decl::Import: { 6914 auto *Import = cast<ImportDecl>(D); 6915 6916 // If we've already imported this module, we're done. 6917 if (!ImportedModules.insert(Import->getImportedModule())) 6918 break; 6919 6920 // Emit debug information for direct imports. 6921 if (!Import->getImportedOwningModule()) { 6922 if (CGDebugInfo *DI = getModuleDebugInfo()) 6923 DI->EmitImportDecl(*Import); 6924 } 6925 6926 // For C++ standard modules we are done - we will call the module 6927 // initializer for imported modules, and that will likewise call those for 6928 // any imports it has. 6929 if (CXX20ModuleInits && Import->getImportedOwningModule() && 6930 !Import->getImportedOwningModule()->isModuleMapModule()) 6931 break; 6932 6933 // For clang C++ module map modules the initializers for sub-modules are 6934 // emitted here. 6935 6936 // Find all of the submodules and emit the module initializers. 6937 llvm::SmallPtrSet<clang::Module *, 16> Visited; 6938 SmallVector<clang::Module *, 16> Stack; 6939 Visited.insert(Import->getImportedModule()); 6940 Stack.push_back(Import->getImportedModule()); 6941 6942 while (!Stack.empty()) { 6943 clang::Module *Mod = Stack.pop_back_val(); 6944 if (!EmittedModuleInitializers.insert(Mod).second) 6945 continue; 6946 6947 for (auto *D : Context.getModuleInitializers(Mod)) 6948 EmitTopLevelDecl(D); 6949 6950 // Visit the submodules of this module. 6951 for (auto *Submodule : Mod->submodules()) { 6952 // Skip explicit children; they need to be explicitly imported to emit 6953 // the initializers. 6954 if (Submodule->IsExplicit) 6955 continue; 6956 6957 if (Visited.insert(Submodule).second) 6958 Stack.push_back(Submodule); 6959 } 6960 } 6961 break; 6962 } 6963 6964 case Decl::Export: 6965 EmitDeclContext(cast<ExportDecl>(D)); 6966 break; 6967 6968 case Decl::OMPThreadPrivate: 6969 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 6970 break; 6971 6972 case Decl::OMPAllocate: 6973 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D)); 6974 break; 6975 6976 case Decl::OMPDeclareReduction: 6977 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 6978 break; 6979 6980 case Decl::OMPDeclareMapper: 6981 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D)); 6982 break; 6983 6984 case Decl::OMPRequires: 6985 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D)); 6986 break; 6987 6988 case Decl::Typedef: 6989 case Decl::TypeAlias: // using foo = bar; [C++11] 6990 if (CGDebugInfo *DI = getModuleDebugInfo()) 6991 DI->EmitAndRetainType( 6992 getContext().getTypedefType(cast<TypedefNameDecl>(D))); 6993 break; 6994 6995 case Decl::Record: 6996 if (CGDebugInfo *DI = getModuleDebugInfo()) 6997 if (cast<RecordDecl>(D)->getDefinition()) 6998 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D))); 6999 break; 7000 7001 case Decl::Enum: 7002 if (CGDebugInfo *DI = getModuleDebugInfo()) 7003 if (cast<EnumDecl>(D)->getDefinition()) 7004 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D))); 7005 break; 7006 7007 case Decl::HLSLBuffer: 7008 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D)); 7009 break; 7010 7011 default: 7012 // Make sure we handled everything we should, every other kind is a 7013 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 7014 // function. Need to recode Decl::Kind to do that easily. 7015 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 7016 break; 7017 } 7018 } 7019 7020 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 7021 // Do we need to generate coverage mapping? 7022 if (!CodeGenOpts.CoverageMapping) 7023 return; 7024 switch (D->getKind()) { 7025 case Decl::CXXConversion: 7026 case Decl::CXXMethod: 7027 case Decl::Function: 7028 case Decl::ObjCMethod: 7029 case Decl::CXXConstructor: 7030 case Decl::CXXDestructor: { 7031 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 7032 break; 7033 SourceManager &SM = getContext().getSourceManager(); 7034 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) 7035 break; 7036 DeferredEmptyCoverageMappingDecls.try_emplace(D, true); 7037 break; 7038 } 7039 default: 7040 break; 7041 }; 7042 } 7043 7044 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 7045 // Do we need to generate coverage mapping? 7046 if (!CodeGenOpts.CoverageMapping) 7047 return; 7048 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 7049 if (Fn->isTemplateInstantiation()) 7050 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 7051 } 7052 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); 7053 } 7054 7055 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 7056 // We call takeVector() here to avoid use-after-free. 7057 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 7058 // we deserialize function bodies to emit coverage info for them, and that 7059 // deserializes more declarations. How should we handle that case? 7060 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 7061 if (!Entry.second) 7062 continue; 7063 const Decl *D = Entry.first; 7064 switch (D->getKind()) { 7065 case Decl::CXXConversion: 7066 case Decl::CXXMethod: 7067 case Decl::Function: 7068 case Decl::ObjCMethod: { 7069 CodeGenPGO PGO(*this); 7070 GlobalDecl GD(cast<FunctionDecl>(D)); 7071 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7072 getFunctionLinkage(GD)); 7073 break; 7074 } 7075 case Decl::CXXConstructor: { 7076 CodeGenPGO PGO(*this); 7077 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 7078 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7079 getFunctionLinkage(GD)); 7080 break; 7081 } 7082 case Decl::CXXDestructor: { 7083 CodeGenPGO PGO(*this); 7084 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 7085 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 7086 getFunctionLinkage(GD)); 7087 break; 7088 } 7089 default: 7090 break; 7091 }; 7092 } 7093 } 7094 7095 void CodeGenModule::EmitMainVoidAlias() { 7096 // In order to transition away from "__original_main" gracefully, emit an 7097 // alias for "main" in the no-argument case so that libc can detect when 7098 // new-style no-argument main is in used. 7099 if (llvm::Function *F = getModule().getFunction("main")) { 7100 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && 7101 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { 7102 auto *GA = llvm::GlobalAlias::create("__main_void", F); 7103 GA->setVisibility(llvm::GlobalValue::HiddenVisibility); 7104 } 7105 } 7106 } 7107 7108 /// Turns the given pointer into a constant. 7109 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 7110 const void *Ptr) { 7111 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 7112 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 7113 return llvm::ConstantInt::get(i64, PtrInt); 7114 } 7115 7116 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 7117 llvm::NamedMDNode *&GlobalMetadata, 7118 GlobalDecl D, 7119 llvm::GlobalValue *Addr) { 7120 if (!GlobalMetadata) 7121 GlobalMetadata = 7122 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 7123 7124 // TODO: should we report variant information for ctors/dtors? 7125 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 7126 llvm::ConstantAsMetadata::get(GetPointerConstant( 7127 CGM.getLLVMContext(), D.getDecl()))}; 7128 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 7129 } 7130 7131 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, 7132 llvm::GlobalValue *CppFunc) { 7133 // Store the list of ifuncs we need to replace uses in. 7134 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs; 7135 // List of ConstantExprs that we should be able to delete when we're done 7136 // here. 7137 llvm::SmallVector<llvm::ConstantExpr *> CEs; 7138 7139 // It isn't valid to replace the extern-C ifuncs if all we find is itself! 7140 if (Elem == CppFunc) 7141 return false; 7142 7143 // First make sure that all users of this are ifuncs (or ifuncs via a 7144 // bitcast), and collect the list of ifuncs and CEs so we can work on them 7145 // later. 7146 for (llvm::User *User : Elem->users()) { 7147 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an 7148 // ifunc directly. In any other case, just give up, as we don't know what we 7149 // could break by changing those. 7150 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) { 7151 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) 7152 return false; 7153 7154 for (llvm::User *CEUser : ConstExpr->users()) { 7155 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) { 7156 IFuncs.push_back(IFunc); 7157 } else { 7158 return false; 7159 } 7160 } 7161 CEs.push_back(ConstExpr); 7162 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) { 7163 IFuncs.push_back(IFunc); 7164 } else { 7165 // This user is one we don't know how to handle, so fail redirection. This 7166 // will result in an ifunc retaining a resolver name that will ultimately 7167 // fail to be resolved to a defined function. 7168 return false; 7169 } 7170 } 7171 7172 // Now we know this is a valid case where we can do this alias replacement, we 7173 // need to remove all of the references to Elem (and the bitcasts!) so we can 7174 // delete it. 7175 for (llvm::GlobalIFunc *IFunc : IFuncs) 7176 IFunc->setResolver(nullptr); 7177 for (llvm::ConstantExpr *ConstExpr : CEs) 7178 ConstExpr->destroyConstant(); 7179 7180 // We should now be out of uses for the 'old' version of this function, so we 7181 // can erase it as well. 7182 Elem->eraseFromParent(); 7183 7184 for (llvm::GlobalIFunc *IFunc : IFuncs) { 7185 // The type of the resolver is always just a function-type that returns the 7186 // type of the IFunc, so create that here. If the type of the actual 7187 // resolver doesn't match, it just gets bitcast to the right thing. 7188 auto *ResolverTy = 7189 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); 7190 llvm::Constant *Resolver = GetOrCreateLLVMFunction( 7191 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); 7192 IFunc->setResolver(Resolver); 7193 } 7194 return true; 7195 } 7196 7197 /// For each function which is declared within an extern "C" region and marked 7198 /// as 'used', but has internal linkage, create an alias from the unmangled 7199 /// name to the mangled name if possible. People expect to be able to refer 7200 /// to such functions with an unmangled name from inline assembly within the 7201 /// same translation unit. 7202 void CodeGenModule::EmitStaticExternCAliases() { 7203 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 7204 return; 7205 for (auto &I : StaticExternCValues) { 7206 IdentifierInfo *Name = I.first; 7207 llvm::GlobalValue *Val = I.second; 7208 7209 // If Val is null, that implies there were multiple declarations that each 7210 // had a claim to the unmangled name. In this case, generation of the alias 7211 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. 7212 if (!Val) 7213 break; 7214 7215 llvm::GlobalValue *ExistingElem = 7216 getModule().getNamedValue(Name->getName()); 7217 7218 // If there is either not something already by this name, or we were able to 7219 // replace all uses from IFuncs, create the alias. 7220 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) 7221 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 7222 } 7223 } 7224 7225 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 7226 GlobalDecl &Result) const { 7227 auto Res = Manglings.find(MangledName); 7228 if (Res == Manglings.end()) 7229 return false; 7230 Result = Res->getValue(); 7231 return true; 7232 } 7233 7234 /// Emits metadata nodes associating all the global values in the 7235 /// current module with the Decls they came from. This is useful for 7236 /// projects using IR gen as a subroutine. 7237 /// 7238 /// Since there's currently no way to associate an MDNode directly 7239 /// with an llvm::GlobalValue, we create a global named metadata 7240 /// with the name 'clang.global.decl.ptrs'. 7241 void CodeGenModule::EmitDeclMetadata() { 7242 llvm::NamedMDNode *GlobalMetadata = nullptr; 7243 7244 for (auto &I : MangledDeclNames) { 7245 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 7246 // Some mangled names don't necessarily have an associated GlobalValue 7247 // in this module, e.g. if we mangled it for DebugInfo. 7248 if (Addr) 7249 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 7250 } 7251 } 7252 7253 /// Emits metadata nodes for all the local variables in the current 7254 /// function. 7255 void CodeGenFunction::EmitDeclMetadata() { 7256 if (LocalDeclMap.empty()) return; 7257 7258 llvm::LLVMContext &Context = getLLVMContext(); 7259 7260 // Find the unique metadata ID for this name. 7261 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 7262 7263 llvm::NamedMDNode *GlobalMetadata = nullptr; 7264 7265 for (auto &I : LocalDeclMap) { 7266 const Decl *D = I.first; 7267 llvm::Value *Addr = I.second.getPointer(); 7268 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 7269 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 7270 Alloca->setMetadata( 7271 DeclPtrKind, llvm::MDNode::get( 7272 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 7273 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 7274 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 7275 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 7276 } 7277 } 7278 } 7279 7280 void CodeGenModule::EmitVersionIdentMetadata() { 7281 llvm::NamedMDNode *IdentMetadata = 7282 TheModule.getOrInsertNamedMetadata("llvm.ident"); 7283 std::string Version = getClangFullVersion(); 7284 llvm::LLVMContext &Ctx = TheModule.getContext(); 7285 7286 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 7287 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 7288 } 7289 7290 void CodeGenModule::EmitCommandLineMetadata() { 7291 llvm::NamedMDNode *CommandLineMetadata = 7292 TheModule.getOrInsertNamedMetadata("llvm.commandline"); 7293 std::string CommandLine = getCodeGenOpts().RecordCommandLine; 7294 llvm::LLVMContext &Ctx = TheModule.getContext(); 7295 7296 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; 7297 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); 7298 } 7299 7300 void CodeGenModule::EmitCoverageFile() { 7301 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 7302 if (!CUNode) 7303 return; 7304 7305 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 7306 llvm::LLVMContext &Ctx = TheModule.getContext(); 7307 auto *CoverageDataFile = 7308 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 7309 auto *CoverageNotesFile = 7310 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 7311 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 7312 llvm::MDNode *CU = CUNode->getOperand(i); 7313 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 7314 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 7315 } 7316 } 7317 7318 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 7319 bool ForEH) { 7320 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 7321 // FIXME: should we even be calling this method if RTTI is disabled 7322 // and it's not for EH? 7323 if (!shouldEmitRTTI(ForEH)) 7324 return llvm::Constant::getNullValue(GlobalsInt8PtrTy); 7325 7326 if (ForEH && Ty->isObjCObjectPointerType() && 7327 LangOpts.ObjCRuntime.isGNUFamily()) 7328 return ObjCRuntime->GetEHType(Ty); 7329 7330 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 7331 } 7332 7333 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 7334 // Do not emit threadprivates in simd-only mode. 7335 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 7336 return; 7337 for (auto RefExpr : D->varlists()) { 7338 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 7339 bool PerformInit = 7340 VD->getAnyInitializer() && 7341 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 7342 /*ForRef=*/false); 7343 7344 Address Addr(GetAddrOfGlobalVar(VD), 7345 getTypes().ConvertTypeForMem(VD->getType()), 7346 getContext().getDeclAlign(VD)); 7347 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 7348 VD, Addr, RefExpr->getBeginLoc(), PerformInit)) 7349 CXXGlobalInits.push_back(InitFunction); 7350 } 7351 } 7352 7353 llvm::Metadata * 7354 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 7355 StringRef Suffix) { 7356 if (auto *FnType = T->getAs<FunctionProtoType>()) 7357 T = getContext().getFunctionType( 7358 FnType->getReturnType(), FnType->getParamTypes(), 7359 FnType->getExtProtoInfo().withExceptionSpec(EST_None)); 7360 7361 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 7362 if (InternalId) 7363 return InternalId; 7364 7365 if (isExternallyVisible(T->getLinkage())) { 7366 std::string OutName; 7367 llvm::raw_string_ostream Out(OutName); 7368 getCXXABI().getMangleContext().mangleCanonicalTypeName( 7369 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); 7370 7371 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) 7372 Out << ".normalized"; 7373 7374 Out << Suffix; 7375 7376 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 7377 } else { 7378 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 7379 llvm::ArrayRef<llvm::Metadata *>()); 7380 } 7381 7382 return InternalId; 7383 } 7384 7385 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 7386 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 7387 } 7388 7389 llvm::Metadata * 7390 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 7391 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 7392 } 7393 7394 // Generalize pointer types to a void pointer with the qualifiers of the 7395 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 7396 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 7397 // 'void *'. 7398 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 7399 if (!Ty->isPointerType()) 7400 return Ty; 7401 7402 return Ctx.getPointerType( 7403 QualType(Ctx.VoidTy).withCVRQualifiers( 7404 Ty->getPointeeType().getCVRQualifiers())); 7405 } 7406 7407 // Apply type generalization to a FunctionType's return and argument types 7408 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 7409 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 7410 SmallVector<QualType, 8> GeneralizedParams; 7411 for (auto &Param : FnType->param_types()) 7412 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 7413 7414 return Ctx.getFunctionType( 7415 GeneralizeType(Ctx, FnType->getReturnType()), 7416 GeneralizedParams, FnType->getExtProtoInfo()); 7417 } 7418 7419 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 7420 return Ctx.getFunctionNoProtoType( 7421 GeneralizeType(Ctx, FnType->getReturnType())); 7422 7423 llvm_unreachable("Encountered unknown FunctionType"); 7424 } 7425 7426 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 7427 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 7428 GeneralizedMetadataIdMap, ".generalized"); 7429 } 7430 7431 /// Returns whether this module needs the "all-vtables" type identifier. 7432 bool CodeGenModule::NeedAllVtablesTypeId() const { 7433 // Returns true if at least one of vtable-based CFI checkers is enabled and 7434 // is not in the trapping mode. 7435 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 7436 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 7437 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 7438 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 7439 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 7440 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 7441 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 7442 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 7443 } 7444 7445 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 7446 CharUnits Offset, 7447 const CXXRecordDecl *RD) { 7448 llvm::Metadata *MD = 7449 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 7450 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7451 7452 if (CodeGenOpts.SanitizeCfiCrossDso) 7453 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 7454 VTable->addTypeMetadata(Offset.getQuantity(), 7455 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 7456 7457 if (NeedAllVtablesTypeId()) { 7458 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 7459 VTable->addTypeMetadata(Offset.getQuantity(), MD); 7460 } 7461 } 7462 7463 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 7464 if (!SanStats) 7465 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule()); 7466 7467 return *SanStats; 7468 } 7469 7470 llvm::Value * 7471 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 7472 CodeGenFunction &CGF) { 7473 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 7474 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 7475 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 7476 auto *Call = CGF.EmitRuntimeCall( 7477 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); 7478 return Call; 7479 } 7480 7481 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( 7482 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { 7483 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 7484 /* forPointeeType= */ true); 7485 } 7486 7487 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, 7488 LValueBaseInfo *BaseInfo, 7489 TBAAAccessInfo *TBAAInfo, 7490 bool forPointeeType) { 7491 if (TBAAInfo) 7492 *TBAAInfo = getTBAAAccessInfo(T); 7493 7494 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But 7495 // that doesn't return the information we need to compute BaseInfo. 7496 7497 // Honor alignment typedef attributes even on incomplete types. 7498 // We also honor them straight for C++ class types, even as pointees; 7499 // there's an expressivity gap here. 7500 if (auto TT = T->getAs<TypedefType>()) { 7501 if (auto Align = TT->getDecl()->getMaxAlignment()) { 7502 if (BaseInfo) 7503 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 7504 return getContext().toCharUnitsFromBits(Align); 7505 } 7506 } 7507 7508 bool AlignForArray = T->isArrayType(); 7509 7510 // Analyze the base element type, so we don't get confused by incomplete 7511 // array types. 7512 T = getContext().getBaseElementType(T); 7513 7514 if (T->isIncompleteType()) { 7515 // We could try to replicate the logic from 7516 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the 7517 // type is incomplete, so it's impossible to test. We could try to reuse 7518 // getTypeAlignIfKnown, but that doesn't return the information we need 7519 // to set BaseInfo. So just ignore the possibility that the alignment is 7520 // greater than one. 7521 if (BaseInfo) 7522 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7523 return CharUnits::One(); 7524 } 7525 7526 if (BaseInfo) 7527 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 7528 7529 CharUnits Alignment; 7530 const CXXRecordDecl *RD; 7531 if (T.getQualifiers().hasUnaligned()) { 7532 Alignment = CharUnits::One(); 7533 } else if (forPointeeType && !AlignForArray && 7534 (RD = T->getAsCXXRecordDecl())) { 7535 // For C++ class pointees, we don't know whether we're pointing at a 7536 // base or a complete object, so we generally need to use the 7537 // non-virtual alignment. 7538 Alignment = getClassPointerAlignment(RD); 7539 } else { 7540 Alignment = getContext().getTypeAlignInChars(T); 7541 } 7542 7543 // Cap to the global maximum type alignment unless the alignment 7544 // was somehow explicit on the type. 7545 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 7546 if (Alignment.getQuantity() > MaxAlign && 7547 !getContext().isAlignmentRequired(T)) 7548 Alignment = CharUnits::fromQuantity(MaxAlign); 7549 } 7550 return Alignment; 7551 } 7552 7553 bool CodeGenModule::stopAutoInit() { 7554 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; 7555 if (StopAfter) { 7556 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is 7557 // used 7558 if (NumAutoVarInit >= StopAfter) { 7559 return true; 7560 } 7561 if (!NumAutoVarInit) { 7562 unsigned DiagID = getDiags().getCustomDiagID( 7563 DiagnosticsEngine::Warning, 7564 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " 7565 "number of times ftrivial-auto-var-init=%1 gets applied."); 7566 getDiags().Report(DiagID) 7567 << StopAfter 7568 << (getContext().getLangOpts().getTrivialAutoVarInit() == 7569 LangOptions::TrivialAutoVarInitKind::Zero 7570 ? "zero" 7571 : "pattern"); 7572 } 7573 ++NumAutoVarInit; 7574 } 7575 return false; 7576 } 7577 7578 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, 7579 const Decl *D) const { 7580 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers 7581 // postfix beginning with '.' since the symbol name can be demangled. 7582 if (LangOpts.HIP) 7583 OS << (isa<VarDecl>(D) ? ".static." : ".intern."); 7584 else 7585 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__"); 7586 7587 // If the CUID is not specified we try to generate a unique postfix. 7588 if (getLangOpts().CUID.empty()) { 7589 SourceManager &SM = getContext().getSourceManager(); 7590 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); 7591 assert(PLoc.isValid() && "Source location is expected to be valid."); 7592 7593 // Get the hash of the user defined macros. 7594 llvm::MD5 Hash; 7595 llvm::MD5::MD5Result Result; 7596 for (const auto &Arg : PreprocessorOpts.Macros) 7597 Hash.update(Arg.first); 7598 Hash.final(Result); 7599 7600 // Get the UniqueID for the file containing the decl. 7601 llvm::sys::fs::UniqueID ID; 7602 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { 7603 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); 7604 assert(PLoc.isValid() && "Source location is expected to be valid."); 7605 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) 7606 SM.getDiagnostics().Report(diag::err_cannot_open_file) 7607 << PLoc.getFilename() << EC.message(); 7608 } 7609 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) 7610 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); 7611 } else { 7612 OS << getContext().getCUIDHash(); 7613 } 7614 } 7615 7616 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { 7617 assert(DeferredDeclsToEmit.empty() && 7618 "Should have emitted all decls deferred to emit."); 7619 assert(NewBuilder->DeferredDecls.empty() && 7620 "Newly created module should not have deferred decls"); 7621 NewBuilder->DeferredDecls = std::move(DeferredDecls); 7622 assert(EmittedDeferredDecls.empty() && 7623 "Still have (unmerged) EmittedDeferredDecls deferred decls"); 7624 7625 assert(NewBuilder->DeferredVTables.empty() && 7626 "Newly created module should not have deferred vtables"); 7627 NewBuilder->DeferredVTables = std::move(DeferredVTables); 7628 7629 assert(NewBuilder->MangledDeclNames.empty() && 7630 "Newly created module should not have mangled decl names"); 7631 assert(NewBuilder->Manglings.empty() && 7632 "Newly created module should not have manglings"); 7633 NewBuilder->Manglings = std::move(Manglings); 7634 7635 NewBuilder->WeakRefReferences = std::move(WeakRefReferences); 7636 7637 NewBuilder->TBAA = std::move(TBAA); 7638 7639 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); 7640 } 7641